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ABSTRACT

The technological advancement in mobile devices has enabled the evolution of new
resource-intensive mobile applications. However, the local execution of computationally
demanding applications in the mobile devices are constrained by the limited battery power
and energy consumption. By leveraging mobile cloud computing (MCC) which offloads
the local workloads to the cloud for remote execution, the performance of the mobile
computing can be significantly improved. Nevertheless, the cloud computing technology
induces a significant delay to exchange data back and forth between the mobile devices and
cloud servers. To cope with this network delay problem, mobile edge computing (MEC)
paradigm brings the computation and storage to the network edge enabling to handle
peak loads efficiently from the mobile devices. However, the edge devices are limited in
storage and capacity, making it less reliable for massive workload computations.

Employing a hierarchical hybrid architecture of mobile, edge and cloud enables to

manage the workloads across all the tiers effectively. This minimizes the processing delay



or energy consumption at the mobile devices by opportunistically deciding the tiers for the
task execution. With the goal of achieving higher energy efficiency and minimal delay in
workload processing, we suggest a novel algorithm which minimizes the energy consump-
tion at a mobile device in a hybrid mobile-edge-cloud architecture. The proposed idea
is fully implemented and validated in a real network environment using various network
interfaces. i.e., WiFi/Cellular (4G). We optimize the CPU speed and the transmission
delay by evaluating the energy consumption at the mobile devices. On top of these pri-
mary results, we propose an algorithm that effectively reduces energy consumption up to

47% by trading off minimal processing delay.
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Chapter 1

Introduction

1.1 Background

Resource-rich applications such as video encoding, multi-player chess game, and image
recognition demand high mobile processing power and transmission energy. The smart-
phones are trying to match up with the demand for processing power and are continuously
growing. e.g., the latest Qualcomm Snapdragon mobile processor has a CPU clock speed
of 2.9 GHz (max). Also, considering the networking traffic at the smartphones, Cisco VNI
Mobile forecasts the network traffic to grow from 92% to 99% by 2021 [1] which increases

the average load a mobile would experience to carry out any computation.

Public Internet

distance ~ 4d / 5d

TCD Merwork EDGE CLOUD

distance ~ d

Figure 1.1: Distance comparison of Edge and Cloud from Mobile.

(Distance between mobile-edge components are much shorter when compared with the distance
between the mobile-cloud components.)

However, processing all the computations locally in mobile at the maximum CPU
clock speed has an adverse impact on the mobile energy consumption since mobile battery
power is highly correlated with the mobile CPU clock frequency [2]. The idea of offloading
the computation to the remote edge computer (Edge Computing) or cloud data center
(Cloud computing) is one of the efficient ways of handling resource-intensive applications
by saving mobile energy resources. With the increased use of cloud resources, industry
leaders, e.g., Amazon Web Services (AWS) and Microsoft Azure are expanding their PaaS

products by making them more user-friendly and cost-effective. Moreover, the latency in



transmitting the data back and forth between mobile devices and the cloud is a significant
concern for applications that demand low network latency (e.g., autonomous cars, online
multi-player games). Since the virtual machines (VM) managed by the cloud providers
(such as AWS, Azure) can be located anywhere in the world, the response time from those
servers is not guaranteed and can vary between 36.69 to 374.56 milliseconds' making it
less reliable for low latency demanding applications.

Trying to address the fallbacks in mobile cloud computing, mobile edge computing has
gained attraction in the recent times which aims to bring the computation and storage
closer to the network edge. Figure 1.1 depicts the distance comparison between the mobile-
edge and mobile-cloud components where it can be observed that the edge components
are expected to be placed much closer to the mobile devices while compared with cloud
components. Additionally, with Internet of Things (IoT) becoming a great buzzword
in the industry and every city in the world having a grand vision of becoming a smart
city, edge computing is expected to intrude the technology in no time through smart city
applications [3]|. Cisco global cloud index forecasts that the edge data generated by IoT
devices and people would exceed 500 zettabytes by 2019 whereas the global cloud data
would be reaching 10.4 zettabytes by the same time which will introduce massive network
traffic [4]. Also, researchers expect the edge devices to carry out 45% of the generated
workload computation by itself by 2019 [5]. However, given the minimal storage capacity,
and its limited computational power, not every application can make efficient use of edge
computing (e.g., edge devices may not be able to handle heavy loads at the given time)
making the cloud computing inevitable. Moreover, edge computing would be a big boon
for the applications that demand very low latency, which is the primary use case of edge
computing. Additionally, we should consider the network energy? consumption at the
mobile devices while offloading the computation to a remote server, whereas this is not
applicable during local processing at the mobile CPU resources. 5G technology aimed
at provisioning ultra-reliable low-latency communications is expected to support edge
computing big-time to reap its maximum benefits [6].

With multiple technologies trying to address the mobile computation problem from
various aspects, efficient mobile computation has become a prime area to explore in ap-
plication development for better user engagement and effective use of mobile resources.
One of the most crucial bottlenecks in mobile computation is to efficiently manage the
smart-phone energy resources without compromising on application performance. This

demands an efficient algorithm to strike a balance between the networking energy and the

Thttps:/ /www.cloudping.co/
2Energy consumed by a mobile phone in handling the network traffic using the cellular or wireless
network interface.



CPU energy consumption for completing a task in the mobile device.

1.2 Motivation and Contributions

Computational efficiency of any mobile workload depends on various factors namely
(a) the number of CPU clock cycles required to handle the application processing at any
given time (b) the amount of battery power spent during the processing. Since different
applications demand various levels of computational power, the number of CPU clock
cycles impacts the computational efficiency. Additionally, the mobile battery power is
primarily influenced by CPU clock frequency where the battery consumption increases
linearly as the CPU clock speed increases [2]. Applications such as video encoding de-
mand high processing power, thus increasing the battery consumption in contrast to the
applications demanding less processing power namely default video player |7].

Kalic et al. [8] have shown that mobile networking energy depends on choosing the
better network interface for the network traffic. For instance, the WiFi network interface
consumes less energy when compared to the cellular interface if the mobile is located within
WiFi coverage area with high data rates. Choice of energy efficient interface based on the
workload acts as one of the driving factors in handling the network traffic in the mobile
devices. Previous works [7, 9, 10| have studied the behavior of computational offloading
under single hierarchical architecture and static network environments. Considering the
heterogeneous nature of mobile and network infrastructure, optimizing the energy under
varying loads and network conditions is crucial. Additionally, exploring the possibilities
of edge and cloud computing for the mobile environment paves the way for limitless
opportunities for better performance.

Therefore, our research work proposes a hybrid software architecture Hybrid Edge
Computing (HEC) using edge and cloud computing technologies that dynamically allo-
cates the task resources in the mobile devices. Additionally, our architecture efficiently
chooses the network and CPU resources for achieving the best computational performance
thus saving energy in the mobile devices. Compared to the earlier works where only single
layer offloading system was considered [10], our proposed HEC architecture is based on
multi-level hierarchical architecture exploiting the edge and cloud computing paradigms.
Additionally, HEC considers the varying impact of CPU clock speed on the transmission
delay® which was not considered in the previous studies [11]. To the best of our knowledge,
HEC is the first work to optimize the combined mobile-edge-cloud offloading policy and

CPU /network speed scaling by considering the impact on network dynamics during code

3Time spent in offloading network traffic through network interfaces.



offloading process thereby saving mobile energy. This work is carried out with the strong
motivation that if the computational speed at the edge or cloud setup is significantly
faster than executing locally, it may be worth offloading the task while compromising on
the energy and delay being spent.

This dissertation is mainly aimed at answering the following research ques-

tions.

(i) How to decide an optimal location of execution: local/edge/cloud?
(ii) How to optimize mobile CPU clock speed for local processing?
(iii) How to choose an optimal network interface: WiFi/Cellular?

(iv) How to optimize mobile CPU clock speed while offloading a workload to the edge?

Experiments were conducted using popular smartphones (Samsung S8, OnePlus 2,
Asus Zenofone) under multiple environments to study the real measurements of (i) the
CPU energy impact under different CPU clock speeds and workloads (ii) data through-
put values under various WiFi and cellular networks and (iii) the offloading energy and
computational effects by using multiple edge and cloud configurations with different com-
putational powers. Based on the experimental values, the developed HEC algorithm was
implemented on the Android platform mobile phones for the mobile end, a laptop serving
as the edge device and the AWS EC2 instance serving as the cloud VM infrastructure
forming the hierarchical architecture.

Key contributions of this research work are listed as follows.

e The proposed HEC algorithm is the first to study about the impact of mobile CPU
clock speed on network transmission delay while offloading workload through net-

work interfaces.

e Considering the energy-delay tradeoff, we propose a hierarchical architecture includ-
ing Mobile-Edge-Cloud systems to efficiently schedule and handle the different set
of workloads during the computation to address the limitations of mobile-cloud and

mobile-edge architectures.

e HEC algorithm jointly considers the CPU clock speed, mobile battery power, and
network interface selection to decide on the optimal computation location selec-
tion and CPU clock frequency thus resulting in nearly 47% reduction in energy

consumption with a delay of just 12 min. on average.



1.3 Dissertation Outline

In the rest of this research work, we discuss the related work in Chapter 2. Chapter 3
details about the system model that serves as the base for this complete dissertation. The
experimental setup for running the baseline tests is explained in Chapter 4. We evaluate
and discuss the baseline results in Chapter 5. In Chapter 6, we design and evaluate
the benefits of HEC algorithm and architecture by presenting the experimental results.
Finally we conclude the research and possible future works in Chapter 7 and Chapter 8

respectively.



Chapter 2

Related Work

In this chapter, we study state of the art in detail related to this research work.

2.1 CPU clock speed and network selection

Various studies, e.g., [12, 13] explored the control of CPU clock speed in mobile de-
vices along with the network selection in the device since the above two are the critical
elements that affect the processing and network delay during any application processing

or offloading.

2.1.1 Network Selection

Nicholson et al. [14] studied various methods of scanning and choosing the best access
points in detail. Probing method to pick the best access point (AP) was used in this
research to select the best network for the transmission. Additionally, this facilitates
the sandbox check about the port restrictions and provides end to end security that is
extensible for most of the architectures. Ra et al. [15] proposed an algorithm to effectively
choose the best quality network between 3G and WiFi for the communication. The tail
energy was not taken into consideration in this work whereas Shu et al. [13| studied the
behavior and proposed a network model considering the tail energy. With the studies, it is
evident that WiFi networks do not use tail energy to persist the communication channel,
whereas cellular network makes use of the tail energy to avoid breaking it, which has a
direct impact on the mobile battery power [13]. However, there is no precise definition
about good or bad network strength, the industry leaders and experts define heuristic
values based on the experimental results that may vary based upon the environments and
the application that demands extensive usage of bandwidth [16]. Also, Nicholson et al.
[17] observed that considering only the signal strength might not allow us to pick the



best AP. Choosing a valid AP at the shortest time would allow reducing the friction that
mobile has to go through during the user mobility phase.

2.1.2 Energy Saving

Kwak et al. [12] studied a joint CPU clock speed control and network selection scheme
to minimize the energy consumed by the CPU and the networking energy. However, the
system model proposed by them did not consider the mobile cloud computing environ-
ments.

Further, Kwak et al. [11| proposed an efficient way to manage the CPU clock cycles
by using a tradeoff mechanism for minimal delay tolerant applications in a cloud-only
architecture. The study showed around 42% energy saving by efficiently controlling the
network interface selection and controlling the CPU accordingly. Additionally, they also
demonstrated that this joint optimization algorithm could be extended for use in case
of real-time video streaming applications which can tolerate acceptable delays without
impacting its performance drastically. The constant increase in mobile CPU clock speeds
(maximum speed up to 2.8 GHz [18|) motivates to develop rich mobile applications pro-
viding the best user experience. With the increase in computation power at the mobile
end, it directly impacts the mobile battery consumption in addition to the energy that
is utilized by the network (4G/LTE/WiFi) resources. Their architecture only involved
mobile-cloud resources and they considered the impact of CPU clock speed while offload-

ing the computation to the cloud to be always constant under the given environment.

2.2 CPU Speed Scaling

Modern smartphones can operate at multiple CPU frequencies [Appendix A (iv)].
However, by default, the mobile devices operate at the high frequency to provide the rich
user experience. CPU frequencies are configured through CPU Governors in Android
and interactive is the default governor being used in mobile devices which sets the CPU
clock speed to its maximum [19]. These governors work at the Android kernel level,
and multiple governors work at different configurations [20]. Userspace is one particular
governor that lets the user or an application to configure the clock speed dynamically
which was used in this experimental dissertation setup which will be discussed later in
Section 5. The apparent correlation is that when the CPU frequency decreases, the CPU
usage increases correspondingly [19]. Additionally, at higher clock speeds, mobile device
battery consumption is more which is so crucial in an energy constraint environment.

Hu et al. [19] proposed an algorithm to dynamically control the CPU clock frequency



that samples the application process for 100 ms and makes a decision based on that to
configure the CPU clock frequency at that instance. This level of controlling the CPU
clock speed based on the application process density is crucial in this dissertation since
this algorithm is not bound to any specific application and it is dynamic enough to be
applied across different resource-intensive applications.

Controlling the CPU clock speed is mainly based on the DVFS (Dynamic Voltage and
Frequency Scaling) and DPM (Dynamic Power Management) principles which allow us
to tune the CPU clock speed and as well the number of CPU core usage in the mobile
device [20]. We can take advantage of the various states of wireless network interfaces into
consideration while tuning the CPU frequency. With the LTE wireless networks having
four different interfaces such as idle, promotion, data transmission, and tail not every time
we would need maximum frequency. In contrast to the WiFi network interface, the cellular
network interface tail state is maintained for a period even after the data transmission was
completed and this has an impact on the battery power of the mobile device. At this tail
state, lower CPU frequency can reduce the load on the battery consumption of the device
by saving the energy during download operation by altering the frequency [19]. However,
they did not consider the current battery level of the mobile device which suffers a direct
impact by tuning the CPU clock frequency frequently.

Additionally, various power management schemes namely HotPlug, OnDemand and
application-aware were discussed by altering the CPU clock frequency [21]. However, the
tuning approach was only based on the CPU utilization at the mobile end. Further, in
Section 5.3 we observe that it may not be accurate that the CPU utilization metric would
serve as the only criteria all the time depending on the application nature for altering
the frequency values. Studies have proved that changing the CPU clock frequency at
more frequent intervals results in poor energy management at the mobile end [19]. Volker
seeker results [22] discusses that the energy spent on finishing a task early and staying
idle until its deadline is more when compared to finishing a task at a slower pace closer
to its deadline. Finding a stable CPU frequency to complete any process at the mobile
end is turning out to be crucial to the rising trend in demand of computational power

and energy.

2.3 Computation Offloading

Computational offloading in its core offloads the application execution logic partly or
as a whole to the remote server for further execution, and the results are collected and
displayed back at the mobile device with the primary aim of reducing the processing delay

and to minimize the impact on the mobile battery power [23].



Chen et al. |24] discussed an opportunistic approach for offloading the computation in
detail. Their approach considers offloading to the cloudlet only based on the application
density at the given time along with the network choice. At a high level, the offloading
decision can choose to execute the task locally or to offload the task either partially or
completely [25]. To decide about full or partial offloading, various factors (static and
dynamic) needs to be considered and it grows more complex as the scenario changes with
every user and application based on its processing density [11]. Primary factors that
would influence the decision would be the application nature, knowledge about the data
to be processed and the dependency on the offloadable parts [25]. With the computation
decision being the essence of this dissertation, in this section, we discuss various resources
in this research area aimed at optimizing the choices across different computing paradigms.
Here we consider only the full offloading decision and will not be covering the partial
offloading since it is not under the scope of this research.

Liu et al. |26] aimed at minimizing the processing delay by considering the job queue
and the energy at the mobile devices. Their optimal algorithm showed convincing re-
sults while compared with local execution delay, remote execution policy, and a greedy
algorithm policy. Also, the research works [27, 28| pursued the extension of [26] using
Lyapunov optimization and was able to observe 74% reduction in execution time. How-
ever, all the above works did not consider the dynamic nature of the mobile devices based
on the battery power and the network strength variability. The energy loss on the mobile
side for processing and offloading the task was not considered crucially in their algorithms.

Covering the setbacks in the above-discussed work, Kamoun et al. [29] proposed an
optimization algorithm considering the energy savings during the computation ofloading.
The author suggested a deterministic and randomized offline strategy for offloading where
the knowledge of the incoming application is known earlier, and it showed convincing
results of nearly 80% in energy saving for offloading tasks. Additionally, the research
works [30, 31, 32| enhanced the similar idea by improving the energy savings at the mobile
end during the offloading process by considering a multi-user environment. However, the
above work did not exploit the capability of tuning the CPU clock speed of the mobile
device that can support in both local processing and during the offloading process from
the mobile to the edge or remote cloud endpoints.

Guo et al. [33] discussed various methods to optimize the way how a task is handled at
the edge and the cloud. Their work primarily focused on maximizing the amount of work
performed at the edge and offloading to the cloud only when there is insufficient computa-
tional power at the edge to perform specific heavy computations. Other research studies,
e.g., [34, 35| enhanced on the similar interest by considering the energy optimization at

the edge devices and also to efficiently schedule the jobs across all the tiers.



2.4 Mobile Cloud Computing

Mobile Cloud Computing (MCC) platform is expected to generate revenue excess of
$3.6 billion in the next four years [36]. Various factors need to be considered before of-
floading the task such as the network strength and the battery power. Inefficient decisions
may result in poor performance for the user. Considering the dynamic factors effectively
during the offloading decision is critical for the MCC technology to yield maximum ben-
efits.

Recent trends in mobile application development are leveraging the processing power
of the cloud resources to execute a task. Some of the resource-intensive mobile applications
are offloaded to the cloud resources with higher configurations that are designed to process
extremely resource-rich applications. However, the round trip networking delay from the
mobile end to the cloud resource becomes a bottleneck if the network connectivity is
bad between them which would cause the task completion to delay further. Also, energy
consumption during this transmission is a critical factor to be observed. With cloud
computing, even small applications can experience higher latency due to WAN delays
[37]. Additionally, the cost of using cloud resources should be considered during the
offloading process in place of using local CPU resources at no additional cost. As with
every technology, various challenges and issues in using MCC were discussed by Ruay et
al. [38] primarily on the aspects of latency, maintenance, and cost.

Many popular frameworks such as MAUI [7], Clone cloud [9], ThinkAir [10] and CDroid
[39] uses MCC architecture and focus on more sophisticated algorithms to minimize the
task computation time at the mobile considering many factors. Kwak et al. [11] for-
mulated a matured energy trade-off algorithm to make the offloading decision based on
various factors dynamically efficiently but leveraging the MCC architecture. Significant
power savings were demonstrated with the MCC architecture by efficiently handling the
CPU clock speed and the network interface selection to maximize the energy saving at
the mobile end.

Though MCC provides lots of benefits, it was not expected to solve every problem
in the communication domain with the primary factor being its high latency. Offloading
the computation to the public cloud involves long latency during the exchange of data
between them [40].

2.5 Mobile Edge Computing

Mobile Edge Computing (MEC) was introduced to bring the computation elements

closer to the network edge. This enables a platform for offloading the resource-intensive
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applications from the mobile devices to the edge for reducing networking latency. Ad-
ditionally, the processing time can be still minimized due to its proximity nature thus
providing significant benefits concerning time savings and energy.

Cloudlet architecture [23] is advantageous for non-trivial applications for the prime
reason of close physical proximity, high bandwidth wireless access, and one-hop network
latency. Trusted cloudlets/edge devices can be a single or cluster of resource-rich comput-
ers while compared to mobile processing power and are available for the nearby mobile
devices. With recent developments in 5G technology where the core focus is to bring down
the latency, 5G MEC (Multi-Access Edge computing) [25] is expected to bring down the
average latency to 90% less than the average LTE network latency which could be a
humongous advantage for resource-intensive life-saving applications.

Chen et al. |41] formulated the offloading decision in MEC environment among mul-
tiple users or tasks as a multi-user computation offloading game. Since the mobile usage
and the mobility vary continuously among the users, the game theory approach suggested
here serves as a promising framework for making an efficient offloading decision. Results
from the experiments showed that the Nash equilibrium is maintained across the game
by improving the offloading decision. Ha et al. [24] researched various real-time applica-
tions that are time sensitive and demonstrated nearly 80% reduction in time savings and

30-40% saving in terms of energy by exploiting the edge computing architecture.
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Chapter 3

System Model

This section details the system model employed in this research work. We model the
mobile end with an Android-powered smartphone and the edge component with a Laptop.

AWS EC2 instance is modeled as the cloud component.

Network

Cellular (4G)

Figure 3.1: Framework for hierarchical mobile-edge-cloud code offloading.

(Proposed hierarchical system model involving mobile, edge and cloud components along with
workload queuing model.)

3.1 Task Model

In this research work, the mobile phone tasks are classified into four different types
such as local processing LA (non-offloadable) workloads, edge-offloadable (EA) workloads,
cloud-offloadable (CA) workloads and legacy network traffic (NA) workloads. Offloadable
workloads (OA) often refers to the combination EA and CA workloads as depicted in
Figure 3.1

LA workloads can exploit only the mobile CPU resources since they are non-offload
workloads. Whereas OA (EA and CA) workloads can make use of either the local CPU

12



resources or the network resources. OA resources utilize the network resources through
the WiFi or cellular network interface during the offloading process to edge or cloud
components'. We model all the tasks to be time bounded, such that at any given time

slot ¢, the workload is completed before its maximum allowed time.

3.2 Processing Model

Throughout this research work, we consider only a single CPU core in the smartphones.
The mobile phones used in the experiments has the latest configuration, and its processors
CPU clock frequency can be tuned, which exhibits the capability of Dynamic Voltage
Frequency Scaling (DVFS). Given the nature of various applications, each mobile workload
requires different CPU clock cycles in processing the same amount data in bits which are
influenced by the workload characteristics. This notion is denoted by processing density
in the unit of cycles/bit. At any given time ¢, only either LA or OA workloads can
exploit the local CPU resources given the consideration of single core CPU. The CPU
clock speed influences LA workloads since it can exploit only the mobile CPU resources.
Adding novelty to our work, we consider the impact of the mobile CPU clock speeds while
processing the EA, CA and NA workloads using the network interfaces.

3.3 Computation Model

We model a hierarchical architecture to execute the computations at three different
architectural entities namely on the local mobile device, edge component, and the cloud
data center. We model the environment by installing the same computational code across
all the three tiers. The application code remains the same across the tiers to achieve the

same code performance without any difference in the application behavior.
Computational power comparison: P,, < P, << P,

Considering the computational capabilities, we assume that edge computational power
(P,) is always better when compared to the mobile processing power (P,,). Moreover,
cloud data center processing power (P,.) is much higher than the processing power of
the edge devices. It is safe to assume that cloud has infinite processing speed given the
possibilities to exploit the cloud technologies. For instance, Lambda functions in AWS is
one such example where AWS uses serverless computing enabling the auto-scaling feature.

This eliminates the need for maintaining fixed computational power manually [42].

'Multi-homing technology is not configured in the smartphone to avoid transmitting data through
cellular and WiFi networks simultaneously.

13



3.4 Networking and Energy Model

We configure the smartphone to have cellular connectivity, and we assume that the
connectivity remains active all the time and WiFi connectivity is active at irregular inter-
vals based on the environment. In our model, NA workloads can fully exploit the network
resources whereas OA workloads can choose to use the network resources to offload the
computation to the edge devices. Hence we model three different network interface states
namely Cellular Network (C), WiFi (W) and No Network (N). A particular task (NA
or OA) can choose to use any of these different states to complete its computation thus
yielding results. Both the C and W interface speed varies spatiotemporally based on the
network coverage and access points. At any given point in time, the smartphone can
choose between {C, W, N} or {C, N} interfaces only because of the WiF1i irregularity
nature.

To obtain the realistic CPU parameters, we observe the energy consumption of CPU
under various workloads in the Section 5. Also, we consider the energy consumed by
the cellular and WiFi network interfaces during the process. This enables us to model
the algorithm further to efficiently choose the optimum interface based on the correlation

observed here.

14



Chapter 4

Baseline Experiment Setup
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Figure 4.1: High-level architecture.

(Architecture design to execute baseline experiments across mobile, edge (laptop) and cloud
(AWS) components.)

The experimental setup was planned with careful consideration of design choices to

avoid any bias in architecture behavior.

4.1 Mobile Setup

The mobile phone being the critical component in the architecture where the workload
is originally generated, the latest smartphones are chosen to conduct the series of exper-
iments to observe the baseline values for the algorithm development. We used Samsung
S8, OnePlus 2 and Asus Zenofone (X008DA) smartphones with the latest Android ver-
sions (8.0.0, 7.0.0) during the experiments to study the behavior in various smartphone

vendor configurations.
Mobile phones are rooted! in the experiment which enables to control the CPU clock

! Allows the user to configure the Android OS kernel-level configurations.
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frequency based on our preference. This is possible in accordance with DVFS - the power
and performance management technique inbuilt in most of the latest smartphones [27].
For exploiting the native Android OS kernel interface, we use TWRP package [43| that
provides a shell interface to interact with native kernel commands. All the commands
are executed as a superuser of the smartphone which provides complete control over the
smartphone configurable parameters, and the developer options were enabled actively on
the smartphones®. To carry out our experiments, we developed an Android native mobile
application from scratch with Java as the primary programming language to monitor
and configure the smartphone parameters during the experiments. Source code for the

developed application is maintained in GitHub repository [44].

4.2 Network

All the smartphones are enabled with mobile internet using the active data pack-
age from network operator Three3. Also considering the varying spatiotemporal nature,
smartphones are configured to connect to TCDwifi* (University Provided) and a private
WiFi network (Virgin Media®) automatically. Average upload and download speeds are
captured during every experiment. The outlier values observed during the experiments
due to the unexpected network behavior are continuously monitored to avoid bias in the
results. We perform the Boxplot analysis [45] to capture the distribution of values and to

analyze the outliers.

4.3 Encoding Application

For this research work, we choose JCodec [46], a video encoding application whose
tasks are modeled to be the primary workload in the experiments. We configure various
sets of audio and video codec encoding operations as the workload to the mobile device.
Since the processing density of a video encoding application varies between 200 to 1200
(cycles/bit), it enables to study the behavior of various mobile parameters at different
configurations [11]. With careful attention in scheduling the workloads, the application
was well researched before using them in the real experiments to avoid bias in the algo-
rithm behavior. For instance, if the processing delay of an application is always higher or

lower than the transmission delay, then the algorithm can behave biased and will result in

http:/ /www.vogella.com /tutorials/ Android Tools /article.html
3https://www.three.ie/

4https: //www.tcd.ie/itservices /network /kb /wi-fi-coverage.php
Shttps://www.virginmedia.ie/
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processing all the workloads locally (only in mobile), or all the workloads will be offloaded
directly to the edge component. This behavior will defeat the purpose of this research
work which is more focused on energy-delay savings by exploiting the hierarchical archi-
tecture with its opportunistic decisions. The observed correlation between the processing
and networking delay for the JCodec application is detailed in the Section 5. Additionally,
JCodec library supports the native Java and Android platform software development with
platform agnostic Java classes. This enables us to implement the same application code

logic across both the platforms making it portable across various environment settings.

4.3.1 JCodec - Mobile

We integrate the JCodec android library with the developed Android application to
support video encoding. The frame count and the video file to be encoded are maintained
as configurable dynamic parameters which allow us to reuse the same source code for run-
ning different sets of experiments under various loads. Inline with Android application
development guidelines [47], Android threading model is used to handle the long-running
process as a background process. The developed application requires access to the lo-
cal storage to handle the video encoding operation, and full permissions to the network

interface for workload offloading purpose®.

4.3.2 JCodec - Edge/Cloud

To accommodate the application load at the edge and cloud components, a SpringBoot
application” using Java is developed, and multiple endpoints are configured for running
various experiments. The application is made portable by creating a flat executable jar,
which can be shipped to the edge and cloud component similar to the code-clone technique
[9] which are popular in mobile/pervasive computing,.

JCodec native Java library is integrated with the developed application that performs
the same operation as implemented at the mobile side since this library provides a con-
sistent behavior of the application across different platforms. During the execution time,
we configure the heap size of the Java Virtual Machine (JVM)® to accommodate large file
uploads and downloads. Maximum heap size is configured using Java executable com-
mands? and we configure to use the 64-bit processor during its process execution. These

tuning parameters are configured to reflect during application startup at the edge and

6 Android application prompts for permission approval during its initial startup.
"https://spring.io/projects/spring-boot

8Java Virtual Machine provides -Xms and -Xmx to limit the Heap memory usage.
9java -Xmx6144M -d64 -jar video-encoding.jar
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cloud components. Performance impact and the memory footprint of SpringBoot appli-
cations are detailed in [48]. Source code for the developed application is maintained in
the GitHub repository [49].

4.4 Edge Setup

Edge component in this Hybrid architecture is modeled using a MacBook Air laptop
with the latest configuration. Configuration details of the edge component are listed in
Appendix A (ii). We install Java in the edge and cloud components to allow installation of
our developed application. The developed Java application integrated with JCodec (Java)
is installed as a usual Java binary. This edge device is configured to connect to the WiFi
network interface. Other system applications were suspended during the experiments
to avoid impact on the application performance. Additionally, throughout this research
work, we assume that the edge and cloud components are powered with infinite energy

and the energy consumption at both edge and cloud is not studied in any measurements.

4.5 Cloud Setup

Many vendor solutions are providing various IaaS/PaaS resources in the marketplace
namely Amazon Web Services (AWS), Microsoft Azure, Google Cloud Engine (GCE) and
OpenStack. We choose AWS as the cloud component for this experiment considering its
latest efficient rollouts and effective/flexible pricing model’®. Two EC2 (Elastic Cloud
Compute) instances with different configurations (Appendix A (iii))) are provisioned in
the AWS. With Unix platform and the Java resources installed, the Cloud configuration
resembles the edge component experiment setup apart from the fact that the computa-
tional speed and resources are exponentially high at the cloud end. Provisioned cloud
resources are charged based on the type of the configuration and the usage. All the EC2
instances are allocated with a static IP address that can be used by the edge components
during the offloading action. The developed Java executable binary is installed at the

cloud side with the similar heap size tuning to serve high load requests.

4.6 Delay and Energy Measurement

Source code [49] includes the logic to capture the time spent in each operation across all

the tiers. We capture the Processing delay - time delay for the processing the workload and

Ohttps://aws.amazon.com /ec2 /pricing/
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the Transmission delay - time taken to offload the traffic between mobile and edge/cloud
components separately to study the time spent on each section. All the measurements were
calculated in seconds (secs) or minutes (min) for the ease of understanding and consistency.

Also, the energy spent at the mobile end was captured using various methodologies.

Battery Level i 0 HeEEE [ ]| [
i Top app
CPU running (NINNRIRIRRRNIRREEN (1] EVPPIeH
21:59:36 - 22:19:00
Device active 1111 | | | 11 +1d00h56m48s559ms to +1d01h16m12s263ms
active duration: 19m 23s 77ms
Mobile network type I g oc rences
Top app Number of times | Total duration
Network connectivity | BB cicdhec 6 19m 175 946ms
net.oneplus.launcher | 6 55 131ms
Top app I |
Wifi signal strength N l1
Wifi on | |
* unreliable metric I WetI:I 04 06 II-W 12 IPM 06 ‘PM Thl,ll 05 06 I.'L\M 12 IPMI 06 IF‘M I
Time (UTC UTC UTC+00:00)

Figure 4.2: Battery Historian Interface.

(Battery historian tool interface to visualize the values such as network strength, battery power
and WiFi status at different time slots for every application thread.)

(i) Battery Historian [50] is used along with the Batterystats to analyze the report
generated by the Android device. As shown in Figure 4.2, this helps in observing the bat-
tery data at any given point of time, battery discharge rate, WiFi connectivity strength
and the specific application that used the battery power during that time. Detailed infor-
mation paves an additional way to capture the accurate results during the experiments.

(ii) Accu Battery [51], one of the widespread application to monitor the battery re-
sources was used to measure the experimental results. This application provides segment-
wise values of the battery being consumed even while the device is in sleep in addition to
application wise energy consumption as depicted in Figure 4.3. We aggregate the results

from both these methods to arrive at substantial numbers to depict the results.
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Figure 4.3: AccuBattery mobile application interface.

(AccuBattery mobile application interface showing various mobile battery values including the
amount of battery discharge for a specific duration.)
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Chapter 5
Baseline Results

This section discusses the summary of critical observations from the experiments. All
the measurements discussed here are the average of minimum three to five test executions.
Youtube dataset! video files were used during the encoding operations. To study the
correlation between various parameters, the workload is scheduled at fixed intervals on
the mobile with varying mobile CPU clock frequencies. We vary the load continuously,
and the WiFi network is turned ON and OFF intermittently to analyze the network

impact during the offloading process.

5.1 Load vs. Processing Time and Energy

Figure 5.1 depicts the impact of varying load on the processing time and the mobile
energy consumption in different smartphones. The description of Figure 5.1(a) implies
that as the workload density increases, the processing time in the mobile increases linearly.
The difference in processing times at different smartphones are due to the fact that all
smartphones have a variety of CPU clock speed. Impact of CPU clock speed on processing
time is studied in Section 5.3. Additionally, Figure 5.1(b) depicts the impact on the
battery power with varying processing time. The tight correlation between battery power
and the processing time can be observed here where the battery consumption is more as
the processing time increases. Since mobile CPU resources will be utilized for a longer

duration, the energy dissipation is more as the processing duration increases.

Thttps:/ /research.google.com /youtube8m/download.html
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(a) Impact on Processing time (b) Impact on battery consumption
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Figure 5.1: Comparison of processing time and energy consumption in different smart-
phones.

((a) Impact of varying load on the processing time.(b) Battery consumption impact due to the
application processing time.)

5.2 Network Delay vs Energy

We conduct a series of experiments to analyze the impact of networking delay on the
mobile energy consumption for the traffic ofloading process. Various workload combina-
tions were executed namely EA only, EA and CA combined and CA only workloads. The
time spent in offloading the workload to the edge and cloud components and retrieving
the computation results back on the mobile device is calculated as the networking delay
or the transmission delay. The experimental results for varying loads are depicted in the
Figure 5.2(a) that describes the transmission delay increases proportionally as the load is
increased with an additional impact on the battery consumption.

Moreover, considering both Cellular and WiFi network interfaces, the impact of net-
work selection on energy consumption is shown in 5.2(a). Two different WiFi networks
are considered as discussed in the Section 4 and for the cellular network, a 4G connec-
tion is being used. As the WiFi coverage increases, the energy consumed by the NA
and offloaded EA and CA workloads consume much lesser energy while compared with
the energy spent on processing the same load using the cellular interface. As studied by
Niranjan et al. [52], WiFi interface is more energy efficient since it does not consume

the tail energy that the cellular interfaces make use of to persist the connectivity and
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Figure 5.2: Impact of Transmission delay on energy consumption.

((a) Impact of network interface on energy consumption and transmission delay.
(b) Impact of execution tier on energy and transmission delay with varying load.)

also because of the short coverage area for the WiFi service. It was observed that nearly
60% of the energy is wasted as the tail energy during the high-power state which has a
direct impact on the energy being consumed by the mobile device [2]|. For brevity, in this
research, the impact of tail energy is not studied separately. Additionally, Figure 5.2(b)
describes the variation in transmission delay between the edge and cloud components.
The total round trip time between the mobile and edge is lesser when compared to the
values between the mobile and cloud server. This is because of the proximity of the edge

server and the variation in latency of the cloud servers.

5.3 CPU Impact on Processing and Networking Delay

Here we study the impact of mobile CPU clock speed on processing and networking
delay. As depicted in Figure 5.3, we run the various workloads {LA, EA, CA} in their
respective tiers. Figure 5.3(a) depicts the LA workload processing time variations under
different mobile CPU frequencies. Processing time being referred here denotes the time
spent only for processing the workload excluding the transmission delay. It is evident that
there is a strong correlation between the CPU clock speed and the processing delay that
an application can experience in a mobile device. As a result, we can observe that the

higher the CPU clock frequency, the processing duration becomes smaller with varying
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Figure 5.3: Processing time comparison for LA, EA, CA workloads across tiers.

((a) LA workload processing time for different mobile CPU clock frequencies.
(b) EA workload processing time at edge component for three test executions.
(c,d) CA workload processing time at cloud component for three test executions.
(e) Comparison of processing time at the maximum CPU clock cycles across all the tiers.)
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load. Aligning with our research motivation, this observation enables us to control the

CPU clock frequency within the mobile device to achieve delay reduction during process

computation.
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Figure 5.4: Impact of mobile CPU clock frequency on Transmission delay.

((a,b,c) Transmission delay during multiple runs for various mobile CPU clock frequencies.
(d) Comparison of Transmission delay between various CPU clock frequencies.)

Additionally, Figure 5.3(b,c,d) describes the processing time across the edge and cloud
components for multiple test executions. We also study the processing time experienced by
CA workloads at single and dual-core cloud virtual machines?. We observe the processor
power across the tiers, and it is safe to conclude that better the CPU clock speed at edge
and cloud components, the processing time can be reduced further by offloading. The
consolidated plot comparing the difference in processing time across all the three tiers is
depicted in Figure 5.3(e). The LA workloads consume the maximum of the processing
speed given its limited CPU frequency while compared to the EA and CA workloads
where processing happens at the edge and cloud components with higher CPU clock
frequency. Even though we observe that CA workloads consume minimal processing delay,
as discussed in section 5.2, the latency factor between the cloud components introduces
higher transmission delay while compared with the edge components. This demands an

efficient method of trading off between energy and delay factors to achieve better efficiency.

2Negligible differences were observed between single and dual-core virtual machine during the experi-
ments; hence we consider only single core virtual machine during rest of the experiments for brevity.
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A crucial observation from this research work is depicted in Figure 5.4 where we study
the impact of mobile CPU clock frequency on the transmission delay. We transmit files
of varying sizes at fixed intervals during the experiment. This study demonstrates that
as a function of mobile CPU clock frequency, the transmission delay of the offloadable
workloads (EA, CA and NA) is impacted. To the best of our knowledge, we are the first to
study about this impact of mobile CPU clock frequency on the network dynamics. Figure
5.4(a) describes the variation in transmission delay at the lowest CPU clock frequency at
the mobile, whereas Figure 5.4 (c) depicts the variation at a higher frequency. As shown
in Figure 5.4(d), higher CPU clock frequency minimizes the transmission delay.

Moreover, this impact is very active concerning the average load that gets offloaded
across the tiers. For very low EA, CA, NA workloads, the impact of the CPU tuning is
negligible regarding delay savings. Additionally, at very high loads, energy savings are
negligible when the frequency gets altered. Nominal load sizes benefits hugely with this
CPU frequency impact concerning both energy and delay savings. Therefore, this result

observation adds a significant and unique contribution to this research work.

5.4 End to End Delay as a Function of Time

With the previous experiments studying about the impact of CPU and delay in terms
of varying loads, Figure 5.5 shows the impact of the end to end delay as a function of
CPU frequency under fixed load since it is essential to study the behavior of delay in
the temporal space given the mobility of smartphones. With variation in time, the end
to end delay across three level of CPU frequencies varies consistently. It is evident that
the network interface strength is continuously changing with the spatiotemporal relation
impacting the transmission delay. Outlier values were observed during the experiment,
depicting a real-time environment setup where the coverage of the network interface may
not be consistent always.

The description of Figure 5.5 (a,c,e) implies that the processing delay remains close
to constant at various time intervals during the process. However, the transmission delay
varies consistently at different time slots impacting the total end to end delay. Also, the
box plots represented in Figure 5.5 (c, f, i) reflects on the range of values for processing
and transmission delay and its mean values.

Figure 5.6 represents the variation, in end-to-end delay at different time intervals
across all the three tiers across the different set of CPU clock frequencies. In the graph,
it can be observed that the total end to end delay while processing only in the mobile is
consistently lesser when compared to the delay at the other two tiers combined. Addition-

ally, depending on the location of cloud VM resource connectivity, the latency between
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Figure 5.5: Impact on End to end delay based on time variations.

((a,c,e) Total end to end delay at various time slots for different CPU clock frequencies.
(b,d,f) Boxplot depicting the mean and outlier values for processing and transmission delay;
PD-Processing Delay, TD-Transmission Delay.)
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Figure 5.6: End to end delay as a function of fixed load for different types workloads.

(Comparison of end to end delay across various tiers and different CPU clock frequencies at
different time slots.)
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the edge and cloud shows some impact on the networking delay as discussed in the Sec-
tion 5.2. This is one of the driving factors for this research work because offloading the
workloads directly to the cloud in all cases may not be an optimal solution to maximize
the energy savings.

Despite the impact of time variation on processing delay on the edge and cloud, the
local processing (PA workloads) is not sensitive to time since the processing is entirely
independent about the network coverage or the network interface selection. The processing
delay at one particular mobile CPU frequency instance is consistent irrespective of time
the experiment was executed. However, it is notable that the total end to end delay at
the Mobile-Edge-Cloud architecture is comparable with the local processing delay at some

instance of the experiment.
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Chapter 6
Algorithm Design and Implementation

In this section, we develop and discuss an optimization function with the strong mo-
tivation of exploiting the Hybrid architecture by minimizing the energy consumption and
the end to end delay. The algorithm design to address the research question is supported

by the baseline results discussed in Section 5.

6.1 Optimization Function

Cellular Signal WiFi Signal

Strength Strength
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Mobile:/—k\

Processing : Network
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Battery Decision
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Figure 6.1: Control Knobs.

(Five control knobs in the architecture to tune performance.)

With the five control knobs as referred to in Figure 6.1, the optimization function aims

to address the below decisions:
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(i) Offloading Decision (Mobile): Choose an optimal location to execute the process

considering the process density and the energy throughput values.

(ii) CPU Speed (Local Processing): Minimize the energy spent in processing LA and
local EA, CA workloads by configuring with optimal CPU frequency.

(iii) Network Interface Selector: For offloadable EA, CA and NA workloads, choose the
best (energy-delay efficient) network interface to offload the traffic.

(iv) CPU Speed (Offloading): Configure the optimal CPU clock frequency during work-

load offloading thus minimizing the energy consumption.

(v) Offloading Decision (Edge): Choose an optimal location to execute the process

considering the process density and the network throughput values.

Also, the algorithm considers fairness while maintaining the workload queues to make
sure that all the workloads are processed within the allowed time duration. Considering
the experimental time slot ¢, the total energy consumption at the mobile device is given
as E(t). Similarly, the total end to end delay at any given time ¢ is represented as D().

At any given time slot (t), the objective function can be defined as
min (E(t) + V D(¢)) — (1)

where V' is the energy-delay tradeoff parameter.
With the aim of minimizing the total energy spent and the delay to complete a task

as a function of time ¢, this is further detailed as

min([Ey (r(t)) + En(ro(t)] + V [QL(t) + Qe(t) + Qc(t) + Qn(t)]) — (2)

where E; and Ey corresponds to the energy consumption values during the local
processing and the network processing respectively. The CPU clock speed frequency
during local processing is represented as r; whereas ro denotes the CPU clock speed
during the offloading process. Queue lengths of LA, EA, CA and NA workloads are
denoted as @, Qg, Qc and QQn. Additionally, Qr and Q¢ can be combined as Qo
representing the offloadable workload queue length. ie., Qo = Qg + Q¢

In the algorithm design, we aim to minimize the function (2) dynamically based on

the various control knobs at any given time slot .
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6.2 Algorithm Design

The core objective of this algorithm is to dynamically optimize and control the energy
consumption and the CPU clock speed by reasonably maintaining the workload delay.
Introducing the dynamicity into the algorithm makes it more efficient and eliminates the
need of having prior knowledge about the network interface availability, workload arrival
rate, and workload processing density.

To manage the five control knobs, for every time slot ¢, the algorithm at the smartphone

is defined as follows.

Algorithm 1 Hybrid Edge Computing.

if Qr(t) > Qo(t) then
if Qo(t) >= Qn(t) then
Schedule LA and OA* as the primary workload
ro*(t) = min ([ Ep (ro(t)) |+ V [ Qc(f) ]) — (11)
(t) = min ([ Ey (1(2)) | + V [ Qe(t) + Qc(t) ] ) — (12)
ro*(t) = min ([ Ex (ro(t)) | + V [ Qe(t) + Qct) | ) — (13)
end

else if Qo (t) < Qn(t) then
Schedule LA and NA with LA as the primary workload

Configure CPU speed r.*(¢) as (11)
(t) = min ([ Ex (1(2)) [+ V [Qn(2) ]) = (14)
ry*(t) = min ([ Ex (ry(t) ]+ V [ @n(8)] ) = (15)

end
else if Q1 (t) <= Qo(t) then

if QL(U > QN(t) and Lpp > Npp then
Schedule LA and OA with OA as the higher priority

Configure CPU speed r.*(t) as (11)
Select Network Interface 1%(t) as (12)
Configure CPU speed ro*(t) as (13)

end

else if QL(t) <= QN(t) and Lpp <= Npp then
Schedule OA and NA with OA as the higher priority

Configure CPU speed ro*(t) as (13)
Select Network Interface 1%(t) as (12)
Configure CPU speed ry*(t) as (15)

* OA — EA + CA;
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where [(t) is the network interface selection parameter that decides to choose between
cellular and WiFi network interface.

Algorithm explained here considers deriving a new CPU clock speed rp*(t) for work-
loads that gets scheduled locally and chooses the networking interface (*(t) for the offload-
able workloads. Also as a significant contribution to this research work, the algorithm
is designed to configure the new CPU clock speed ro*(t) after choosing the networking
interface for offloadable workloads. This is based on the impact of CPU clock speed on
the network transmission delay as discussed in Section 5.

The algorithm is designed to allocate the jobs to CPU and network resources initially
and then to tune the CPU clock speed and finally to make the network interface selection.

The job scheduling scenarios are majorly classified into two scenarios as depicted in Figure
6.2.

6.2.1 Scenario 1

OA < PA + NA; PA> OA; OA > Job Scheduling =PA m=oA mNA
NA
&
.
PA 0A NA
WLOCAL WEDGE mCLOUD mNETWORK cAsE 2. A cpu
OA > PA + NA; PA > NA; -
% NA
&
I
MIN MED MAX
PA OA NA

CPU FREQUENCY
HLOCAL WEDGE mCLOUD mNETWORK

Figure 6.2: Algorithm Job Scheduling.

(Job scheduling priority for different workload queues and network interfaces.)

The primary scenario is where LA queue is greater than the OA queue; OA queue
is greater than NA queue, and also OA queue is not greater than LA and NA queue

combined which can be represented as,
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QL (t) > Qo(t) ; Qo(t) > Qn (1) ; Qo(t) < Qr(t) + Qn(t)

At any given timeslot ¢, LA workloads can exploit only the CPU resources, and NA
workloads can use the networking resources. However, with the case of OA (EA and
CA) workloads, it can exploit both CPU and networking resources. In this algorithm, to
maintain fairness in addressing the queue length and also to minimize excessive delay to
avoid exceeding the maximum amount of processing time, urgent tasks take priority in
the scheduling process. Therefore, when the LA queue is more than OA queue, the LA
workloads will be scheduled with the highest priority on the CPU resources, and when
CA queue is greater than NA queue, networking resources will be utilized by the CA
resources as referred in Figure 6.2 case(1). In contrast, if the NA queue is greater than
CA queue, NA resources utilize the networking resources for offloading the tasks to the

edge component.

6.2.2 Scenario 2

Considering the other scenario where the EA + CA queue is more than LA + NA,
offloadable workload EA and CA will be scheduled with higher priority.

Qo (t) > Qu(t) ; Qolt) > Qn (t) ; Qr(t) > Qn(t)
Given this situation, the OA (EA + CA) workloads can still exploit either of CPU

or networking resources for completing the task. Therefore the algorithm decides on this
factor based on the processing density and queue length of LA and NA queues where
the output could result in only two variants such as {OA, LA} or {OA, NA} workloads
getting scheduled.

When OA and LA workloads are scheduled, the OA workloads use the networking
resources for offloading, and CPU resources are allocated to the LA workloads. Moreover,
in the case of OA and NA tasks getting scheduled, OA will exploit the CPU resources,

and NA uses the networking resources for processing.

6.2.3 Decision Algorithm - Edge

The decision algorithm at the edge component side is detailed as follows.

Algorithm 2 Hybrid Edge Computing Algorithm At Edge.

Schedule EA and CA simultaneously
if Qg >> and RTTgc is within acceptable values then

| Qcln] = Qgln]

end
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where RTTgc! is the average Round Trip Time between the edge and cloud compo-
nents. We refer to the values discussed by Tauber et al. for defining the acceptable values
for WiFi strength and bandwidth values [53].

When the EA queue is very much higher, and the networking delay to the cloud is
on the minimal side, partial workload from EA gets pushed to the CA queue. Since the
processing delay at the cloud component is very minimal when compared with edge side
processing delay as discussed in Section 5, the algorithm strives to minimize the queue
length by offloading the workload to cloud. However, the energy factor is ignored in this
edge side algorithm since the cloud, and edge components are considered to have infinite
energy as referred to in Section 4. Additionally, WiFi is the default choice of the network

interface for the offloading purpose between the second and third tier.

6.3 Energy-Delay Tradeoff
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Figure 6.3: Energy-Delay Tradeoff.

(Depicts the algorithm decisions for different values of energy-delay tradeoff value V.)

As referred in the minimization function (1), the energy-delay tradeoff parameter is
referred as V. To arrive at an optimal value in the algorithm by balancing the delay and

energy consumption accordingly the value of V' can be tweaked accordingly.

'We sample this by uploading and downloading a sample file (1IMB) between edge and cloud compo-
nents.
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With reference to the detailed function (11) and (13), the factor without V refers to
the term that strives to minimize the energy during the processing. For the same value
of V in (11) and (13) if the queue length is longer, then the algorithm from equation
(11) (13) (15) thrives to choose a higher CPU clock speed which results in the reduction
of queue lengths. Similarly, the network interface selection can also be influenced using
the tradeoff parameter V' as depicted in Figure 6.3 case (1). In contrast, as referred in
Figure 6.3 case (2), for the same value of V| if the processing delay is relatively shorter,
the algorithm equation (12) and (14) tries to minimize the energy consumption factor.
This is possible by reducing the CPU clock frequency and also choosing energy efficient
network interface for OA and NA workloads. Additionally, if the delay is the primary
bottleneck to be addressed, the algorithm equation (12) and (13) choose delay efficient
interface between WiFi and cellular network at the given time slot ¢.

The developed algorithm is compared and listed in the table 6.1 along with its various

characteristics.
. . Single Layer
rardes | Smgetnr | pomc oy | s
P g e Y | with Hierarchy
Applications LA, EA, CA,NA LA, CA,NA LA, EA, CA, NA LA,CA
Algorithm Type Dynamic Dynamic Dynamic Static
CPU clock
control (For Yes Yes Yes No
Processing)
Network
Selection Yes Yes Yes No
CPU clock
control (For Yes No No No
Offloading)
N-Tier . . .
Architecture 3 Tier 2 Tier 3 Tier No

Table 6.1: Algorithm comparison with its characteristics.

As referred in Table 6.1, while comparing with the single layer dynamic policy, the
proposed HEC algorithm considers the hierarchical architecture of 3 tiers. This provides
more options for the decision algorithm to choose an optimum location for execution.
Additionally, the knob for controlling the CPU clock speed during offloading is a crucial

feature of this algorithm when compared with the existing dynamic and static algorithms.
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6.4 Algorithm Implementation

To evaluate the proposed algorithm performance, we implement and execute the al-

gorithm as discussed below.

Ezxperiment Setup: This section explains the implementation of the algorithm dis-

cussed in Section 6. Similar experimental setup as detailed in Section 4 is used here.

Algorithm 1 is implemented in a Samsung Galaxy S8 smartphone. Also, the algorithm 2

is implemented as a web application at the edge component and it is accessible through

a public static IP address. Both the algorithms are developed using Java as the pro-

gramming language. Cloud component is designed under the AWS system where an EC2

instance is deployed, and the developed web application is configured with public IP

address.
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i

LOCAL

N
& & |
DECISION CPU SPEED :
ENGINE CONTROLLER |
! .
1 .
& g
! | orrLoADING NETWORK I
| INTERFACE .
| ENGINE SELECTOR i
N 1]
\ h
N

Figure 6.4: Algorithm Implementation.
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(HEC algorithm implementation internal details.)

Implementation: Detailed algorithm structure is depicted in Figure 6.4. This Hybrid

Edge Computing architecture enables to implement the algorithm under the mobile-edge-

cloud setup. Major control components of this architecture are discussed below.

(i) Workload Manager that includes the Job Classifier and the Job Scheduler is respon-

sible for handling the classification and the scheduling of the incoming workload

(i)

arrivals. Based on the processing density and the current workload queue lengths,

the classifier

categorizes the workload into LA, EA, CA and NA types. The job

scheduler is majorly responsible for scheduling the next workload ready for process-

ing from the available queues.

Decision Engine acts as the heart of architecture which chooses optimal values that

serve as the input factors to the other components. This decision engine receives
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(iii)

(iv)

the parameter values from the other components that help in making the decision
at the given time slot £. Decision engine at the mobile side controls the CPU speed
controller and the offloading engine on the mobile side. Edge side decision engine is

intact with the offloading engine at the edge side.

CPU speed controller is one of the main components of this architecture which is
responsible for altering the smartphone CPU clock speed based on the decision
from the algorithm output. This component is designed based DVFS techniques,
where the software gains root access to the Android OS and configures the mobile
to the desired CPU frequency as demanded by the algorithm decision engine. This
component stays active for almost the entire life cycle of the algorithm completion
since the local workload processing and the offloadable workloads benefit from the

varying CPU clock at any given time slot t.

Offloading Engine on the mobile side makes a crucial decision based on the through-
put values between mobile and the edge component. This is applicable for EA, CA
and NA workloads which are offloadable workloads. This engine controls the input
being fed into the network interface selector and the CPU speed controller since the
transmission delay is impacted by the CPU clock speed as referred in Section 5. The
offloading engine at the edge side is primarily for offloading the delayed workload to

the cloud component where infinite processing power is considered.

Network Interface Selector component chooses the optimal interface based on the
need of the algorithm. It chooses either of the WiFi or the cellular network inter-
face for the traffic offloading purpose. This interface selection is mainly based on
the energy consumption and network strength of the interfaces. The bandwidth

availability and the latency factors are also considered which influences the decision.

Along with the Hybrid Edge Computing algorithm, other baseline algorithm designs

were evaluated during this process namely (a) Single Layer Dynamic Policy - Architecture

involves only Mobile and Cloud resources (b) Multi Layer Dynamic Policy - Architecture

involving mobile, edge and cloud architecture without controlling the CPU clock speed
during network transmission (c) Static Policy - Classifies and offloads the LA, EA, CA and
NA workloads on round-robin fashion by controlling the CPU clock frequency randomly.

Other algorithm experiment values serve as the baseline values to be compared with for

analyzing the HEC algorithm benefits.

Additionally, during the experiment, the smartphone display is switched off to avoid

its impact on the battery power measurements. Energy consumption at the mobile device

is measured using Battery Historian and Accu Battery application where their aggregate
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values are considered for presenting the results. The smartphone is configured with the
ability to connect to the cellular (4G) and WiFi network. The WiF1i is turned ON and OFF

in a fixed interval for intermittent availability and to avoid one interface bias choice (no

one specific interface is chosen every time). With this settings, the mobile can transfer the

computation to the edge server. By scheduling the workload and executing the algorithm,

the energy and time delay values are monitored continuously at every time slot for all the

workloads.

6.5 Evaluation
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Figure 6.5: HEC algorithm implementation results.

(Comparison of variation in queue lengths, network selection, CPU speed scaling and energy
consumption between baseline and HEC algorithm for different energy-delay tradeoff values.)

Figure 6.5 illustrates the critical observations of the algorithm implementation describ-

ing the queue lengths, network selection, CPU speed scaling and the energy consumption

for different V' values compared with the baseline values.

(i) HEC algorithm outperforms the baseline algorithm results in terms of maintaining
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workload queue fairness, minimizing the power consumption and also exploiting the

CPU and network resources effectively for any values of V.

(ii) As V gets smaller (V & 0), the average queue lengths decreases and the network
selection happens less frequently allowing energy efficient interface to be selected.
Additionally, the CPU clock speed gets lower demonstrating minimal power con-

sumption.

(iii) For larger values of V (V = o0), the delay efficient network interface is frequently
selected to reduce the queue lengths faster. The CPU is clocked at higher frequencies,

resulting in more energy consumption but benefits with faster processing time.

i 5 10 15 20 25 30 33 40 45

——HEC
Algorithm Performance

—=_Single Layer Dynamic Policy -

Hierarchy 3

Single Layer Dynamic Policy

] STATIC 30

25

Average Energy (%)
—

Average Delay [min]

Figure 6.6: HEC algorithm evaluation.

(Energy-Delay savings comparison between HEC algorithm, single layer dynamic policy (with
and without hierarchy) and static algorithm.)

The experiment results are summarized and compared against other algorithms in
Figure 6.6. This graph illustrates the average end-to-end delay against the average energy
consumption in the mobile side including the application processing delay and the network
transmission delay. It can be observed that the HEC algorithm value outperforms the

other algorithms by a significant margin. This is majorly due to the reason that HEC
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algorithm dynamically exploits the CPU and network resources in addition to maintaining
the fairness with the workload queue lengths. Observed values of HEC algorithm in Figure
6.6 describes that the average energy consumption is reduced by introducing a small
amount of delay. Primarily, we observe that the average energy consumption dropped
around 30% with a small increment in delay of 12 mins to the workload computation.
This is nearly 47% of energy saving on the smartphone by trading off energy-delay by the
HEC algorithm.
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Chapter 7
Conclusion

To minimize the overall energy consumption and the processing delay at the mo-
bile phones, we studied the energy efficient mobile-edge-cloud offloading systems. Also,
we studied the correlation between various smartphone parameters and the results were
analyzed in detail. Based on the experimental results, we proposed a dynamic Hybrid
Edge Computing (HEC) algorithm which considers the various type of workloads (non-
offloadable, offloadable and network workloads) generated from a mobile phone. As a
novel contribution, we presented an analysis regarding the impact of mobile CPU clock
frequency on the network transmission delay. We also proposed a hybrid architecture
involving mobile, edge and cloud components and demonstrated the benefits of the pro-
posed architecture and the algorithm by implementing on an Android and Java platform.
Implementation results were compared against baseline values, and the HEC algorithm
outperformed them in all aspects depicting energy savings up to 47% by adding minimal
delay. Although the hybrid architecture demands high energy when compared to local
processing, it is compensated by the effective decisions of HEC algorithm by choosing
energy efficient interfaces for the network transmission and an optimum execution tier for
processing. We firmly believe that the proposed algorithm and the architecture would be
imperative in terms of saving energy and minimizing the delay by exploiting the compu-
tation offloading techniques as the edge and cloud computing paradigm is gaining more

attention in the mobile communication arena.
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Chapter 8

Future Work

With the advancements in mobile technologies and the recent improvements in the

edge and cloud computing arena, below are the few possible extensions to our work.

(1)

(i

(iii)

The similar optimization problem can be addressed by considering various code
offloading policy in which only partial code is offloaded for remote execution in
contrast to the computation offloading where all the computation is offloaded. Then
we can imagine a situation where a heavy workload will be split into chunks of

computation and gets offloaded across the tiers for completion.

A sophisticated process flow can be designed where the communication between the
edge and cloud components is asynchronous. In which, the edge device submits the
request to cloud, and the cloud can respond with the results to the same or different
edge device that has more bandwidth at that given point of time which would make

practical use of proximity edge devices serving more loads effectively in its idle time.

One another possible addition to this work, would be to consider the energy and
cost factor at the edge and cloud data center. This makes the offloading decision
algorithm at the edge to be more complicated since these additional energy factors

will majorly influence the offloading decision.
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Appendix A

(i) Mobile Configuration

Model Samsung S8
Model Number SM-G950F
Android Version 8.0.0
Kernel Version 4.4.111mat
QUALCOMM build 183c040, Iff84fb1103
Build Number G950FXXU3CRGH

(12) Edge Configuration

Processor 1.6 GHz Intel Core i5

Memory 8 GB 1600 MHz DDR3
Make Apple Inc.,
Model MacBook Air

(i1i1) Cloud Configuration

30



Instance #1 Instance #2
Provider Amazon Web Services | Amazon Web Services
(AWS) (AWS)
Instance Type t2.large t2.small
No.of vCPU 2 1
Memory (GiB) 8 2
Processor 2.3 GHz 2.4 GHz

(iv) Mobile CPU clock frequencies

Available Scaling Governors frequencies (Hz) in the smartphone used in the experi-
ments. 384000 460800 600000 672000 768000 864000 960000 1248000 1344000 1478400
1555200

o1



