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Spatial Super-Resolution of Light Field Video

Balakumaran Palanivel

Master of Science in Computer Science
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Supervisor: Michael Manzke

This thesis is a comprehensive feasibility study of the light �eld video technology using

acquisition hardware which is portable enough to be mounted on an aerial platform.

It studies various issues in capturing light �eld video using this platform and focuses

on solving the problem of low spatial resolution of the video. It analyses in detail an

existing state of the art method to produce light �eld video and proposes a modi�cation

to achieve spatial super-resolution thus enhancing the overall video quality. To achieve

this, di�erent spatial super-resolution techniques for light �eld images are weighed against

each other and the best �t to be incorporated into the existing video generation pipeline

is determined. Two of these techniques are implemented with necessary modi�cation to

work with the light �eld video pipeline and its results are discussed. This thesis also

includes detailed background study on the relevance of a light �eld and light �eld video.

The problems and bene�ts of having a portable device capable of generating light �eld

video are also discussed from the perspective of aerial photography platforms.
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1 Introduction

The light �eld is a concept which has been around in the history of scienti�c research

for a few decades now. In this time period, there have been di�erent de�nitions pro-

vided for the light �eld, each one accurate from the context of respective domains such

as mathematics, physics, computer graphics etc. But in all of these de�nitions, the com-

mon aspect is the fact that a light �eld always represents an entity which is capable of

storing and manipulating light information present in a given environment. From the

perspective of computer graphics, it is a far simpler way to interactively manipulate light

information than the traditional methods of using 3D scene �les. Despite these obvious

bene�ts, the applications in which light �elds are being employed currently is consider-

ably low. Because the understanding of a light �eld's properties and capabilities is not

on par with a concept that has been around in the research world for a few decades. This

is partly due to the lack of computational power during which this concept was theorised

which resulted in studies and research of light �elds to be temporarily shelved. But with

current hardware advancements, several new light �eld research has commenced and this

has resulted in the exploration of using the light �eld in many applications. However,

this culture of light �eld research is relatively new and there still exists a vast number of

domains and applications which remain completely unexplored. One such domain is light

�eld videography. More speci�cally, light �eld videography using portable or hand-held

light �eld cameras instead of using existing complex, bulky and sophisticated camera rigs.
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1.1 Motivation

The features and content available through light �eld enables several applications like

depth estimation, autostereoscopic displays, etc. The refocusing ability of the light �eld

can be used to compute defocus cues. Hence, the light �eld has a very wide range

of potential applications in domains such as computer vision, virtual and augmented

reality (2). However, an important observation is that the fact that the research and

content available in light �eld videography is surprisingly limited. Another potential

reason for this, apart from hardware limitations, could be the very limited reception to

the commercially marketed light �eld cameras, which eventually resulted in shutting down

of pioneer Lytro (3). The state of the art light �eld camera such as Lytro Illum had poor

image quality due to the trade-o� between angular and spatial resolution. In addition,

the continuous acquisition mode could only capture videos at 3 frames per second. Since

a set of moving images to be conveniently accepted as a video requires at least 24 frames

per second, the Lytro cameras resulted in videos with very little temporal information

and poor image quality.

There are highly specialised production cameras such as Lytro Cinema which is capable

of capturing videos up to 300 frames per second (4). These videos have the same features

of light �eld images such as the ability to refocus, modify the viewpoint etc. But a crucial

di�erence between the Lytro Illum and Lytro Cinema is that the former is a hand-held

camera, while the latter requires a huge custom rig for operation. Hence, although the

technology to capture light �eld video is feasible, it has not been integrated into hand-

held (smaller size) cameras. There could be a number of applications and advantages to

such a camera as they could be mounted on drones and capture videos which could be

easily refocused. It can be used for many applications, for instance observing surfaces of

huge aircraft to verify its structural integrity after a thunder strike.

But one of the major issues that a�ect employing a light �eld video camera in all these

applications is the poor image quality. It is caused due to the low spatial resolution which

is a side e�ect of the spatial-angular tradeo� that was already mentioned. Many solutions
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have been proposed to improve the spatial resolution by using super-resolution techniques

which are a class of techniques that have been designed to enhance the resolution of an

imaging system. But the current super-resolution research in the light �eld is limited to

images. This dissertation extends one of these techniques to light �eld videos.

Therefore the primary motivation of this dissertation is to study the issues of a portable

light �eld video camera and enhance the feasibility of building one by solving one of the

fundamental problems of poor video quality using super-resolution techniques.
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2 Background and Related Work

2.1 Light Field

Traditionally three-dimensional graphics systems are used to model real or virtual envi-

ronments for a wide variety of applications. An input to such a system is a scene built

with a collection of intricately placed geometrical primitives. And physical texture prop-

erties such as re�ection, opacity are achieved by applying materials onto the geometrical

primitives through shaders. Following this, the scene is usually lit using a pre-con�gured

lighting system. Based on these input speci�cation, the rendering system synthesises an

image of this virtual environment using algorithms such as rasterisation, ray tracing, ray

casting etc. Advancement in hardware capabilities such as GPUs and highly optimised

rendering algorithms have enabled creating new views and interactive modi�cation of vir-

tual scenes to be rendered in real-time with ease. However, a new approach to rendering

has recently surfaced called image-based rendering. Such systems are capable of gener-

ating di�erent views of the scene from a collection of pre-acquired imagery and without

the need for de�ning a set of inputs generally required for traditional rendering methods.

There are a number of advantages to image-based rendering (5).

• Image-based rendering algorithms utilise substantially less computational resources

compared to standard rendering methodologies. This makes the system suitable for

real-time implementation on personal devices and workstations where the availabil-

ity of powerful and sophisticated hardware could be limited.
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• Interactive manipulation and viewing of the scene are independent of the complexity

of the scene.

• The rendering system is independent of the source of input images. The images can

be either from the real world, virtual environment or a mixture of both.

Although there are a number of ways to implement the image-based rendering (6, 7), the

most robust technique with a wide range of possible views uses the light �eld function

(5). The light �eld is simply the collection of light rays in 3D space (8). More formally,

this can be described as representing the radiance of light as function parameterised by

its position and direction in the scene.

The concept of the Light �eld itself was �rst described by Lippmann in 1908 (9). Lipp-

mann proposed, using a set of small biconvex lenses to capture light rays in di�erent

directions and referred to it as integral imaging. However, the term "light �eld" itself

was �rst used by Greshun while studying the radiometric properties of light in space (10).

But Light �eld and Light �eld imaging have become popular recently, especially after a

detailed study of the Light �eld rendering systems (5, 11). These image-based rendering

methods de�ned by (5, 11) was further extended by Aaron Isaksen, Leonard McMillan

and Steven J Gortler by adding a number of versatile features. The �xed two-plane pa-

rameterisation of the light �eld was redesigned to be dynamically re-parameterised which

resulted in the feasibility of e�ects such as post-capture refocusing, variable aperture and

autostereoscopic light �eld images (5). These contributions encouraged a focus on the

development of devices that are capable of capturing light �eld e�ciently. Ren Ng made

a signi�cant contribution to the light �eld imaging hardware by designing the �rst hand-

held light �eld plenoptic camera (12). This was necessary since the primary method of

acquiring light �eld imagery was by using complicated camera rigs. This new hand-held

camera will later become the forerunner for the commercially marketed light �eld cameras

by Ren Ng's Lytro (3), Raytrix (13).
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2.2 Aerial Photography

The type of photography captured from an aircraft or other �ying object is called Aerial

Photography. The platforms used for this kind of photography include �xed-wing air-

craft, helicopters, unmanned aerial vehicles etc. Recently, the popularity of using images

acquired using aerial photography platforms has grown to a very large extent. The

global market for aerial imagery is projected to reach $3,545 million by 2023, at Com-

pound Annual Growth Rate of 13.4 per cent during 2017-2023 (14). With this enormous

market growth, the technology used to capture aerial photography has substantially im-

proved, and the number and variety of platforms available have grown. Early platforms

included using primitive methods such as hot-air balloons, kites, pigeons, rockets and

�xed-wing aircraft. These platforms often carried unstabilised �lm cameras which intro-

duced motion-blur and had a very limited resolution. However, technology modernisation

has enabled unmanned-�xed wing aircraft, helicopters and multi-rotor unmanned aircraft

systems to be used for aerial photography. Quadrotors are inexpensive and accessible con-

sumer product these days. In addition, digital camera systems with very high resolution

have become quite standard and gyro-stabilised platforms have addressed the issues of

motion blur to great extent.

2.2.1 Applications

The main reason behind aerial photography's substantial economic growth is the versa-

tile applications in which it can be employed. For instance, in the �eld of exploratory

geophysics, aerial photography can be used to determine the physical components of sub-

surface and its anomalies. Apart from that, there are a few more types of explorations in

which aerial photography holds quite an unbeatable importance namely, fossil fuel explo-

ration, hydrocarbon exploration, geothermal exploration and groundwater exploration.

To put it simply, aerial photography has enabled any geologist to extract a precise and

concentrated picture of the earth and analyse it to determine particular conditions.
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Another application of aerial photography that is currently being explored is using drones

for the inspection of aircraft surfaces after a �ight. This inspection is necessary for testing

the integrity of the aircraft after a thunder strike or �ying through a highly turbulent

weather. This study is usually carried out by a number of engineers visually observing the

aircraft surface which requires a platform to be built around it. This takes considerable

time, in contrast, a drone can �y around a plane much faster by snapping pictures of

the aircraft. These pictures are later analysed by engineers on a screen. The primary

requirement of such pictures is to have the adequate visual detail to replace the visual

check for routine issues, thus shortening the amount of time a jet is out of service. This

system is being widely tested to be incorporated into regular operations of major airlines.

(15)

2.2.2 Cameras Used

The cameras used for aerial photography are usually high-resolution digital camera with

a traditional setup which contains the main lens that focuses the rays entering the camera

at the image sensor. The rays here represent a collection of rays that propagate in the

same direction and have the same colour. The camera setup usually also contains some

form of a pupil or iris that prevents light rays from reaching the surface of the image

sensor. Essentially, what gets recorded in the sensor is the total power of the rays which

are hitting a particular location of the sensor. This is shown in Figure 2.1. Hence, a

traditional camera will not be able to identify each of the rays that are being summed

together to produce the �nal image.

On the other hand, a light �eld camera will be able to record the rays themselves

within the camera. This is shown in �gure 2.2. The popularity of light-�eld photography

has increased substantially in recent years since the development of hand-held plenoptic

cameras (12) and due to the bene�ts of light �elds itself.
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Figure 2.1: This is a model for a traditional camera. A main lens focuses multiple light
rays at an image sensor. A pupil restricts which light rays hit the sensor. In a traditional
camera, the sensor is able to record only the total of all rays hitting the sensor.

2.3 Plenoptic Camera

A plenoptic camera is equipped with a microlens array or printed mask that is placed

directly over the camera's imaging sensor. This �lters the light that passes through the

camera. Based on the properties of the main lens and the �ltering device, light-�eld rays

can be extracted from measurements on the imaging sensor. Each ray is described by

its two-dimensional intersection with the main lens and its two-dimensional intersection

with the image sensor (16). These two measurements constitute a four-dimensional ray.

A collection of such rays essentially make up the 4D light �eld. This can be processed

using integral imaging to create a 2D image (5). Plenoptic cameras are referred to as

light �eld camera because they capture the light �eld and for the rest of the paper, they

will be referred to as light �eld cameras.

The interest in the 4D light �eld is mainly due to the fact that such an image contains more

information in the scene than a traditional 2D image. With this additional information,

new features can be computationally generated that is normally not possible with a 2D

image. For instance, stereo images can be extracted from 4D light �eld image, which

allows them to be used for 3D visualisations and other computer vision applications(17).
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Figure 2.2: In contrast to traditional camera, A light �eld camera is able to record each
of these rays in a 4 dimensional function. Each ray is de�ned by the location it enters
the main lens and the location it hits the image sensor. Two of the dimensions represent
the location on the main lens where the ray passes through. The other two dimensions
represent the location where the ray hits the image sensor.
https://www.picturecorrect.com/tips/the-future-of-light-�eld-cameras-and-how-they-
work/

The complete 4D light �eld is not required to create a 2D image. It is possible to make

two virtual eyes with a single-lens camera, which allows the user to manipulate the images

produced in a manner similar to those produced by a binocular system. Using ray tracing,

it is then possible to determine how the light rays within the 4D light �eld hit each virtual

eye. This virtual eyes then produce stereo images (16).

It is possible to digitally refocus a light �eld image at a di�erent depth of �eld. This is

done by changing the focal plane of the image with a Fourier slice transform (18).

2.3.1 Advatages of Light Field Camera

The aspect of an imaging system to virtually change the focal plane post-capture o�ers

functionality that traditional imaging systems do not. This decouples the need to select

9



the appropriate focus of an image during capture time, hence there are fewer requirements

for real-time focusing and calibration. In most camera systems, the iris of the camera is

�xed and based on the brightness of the scene, the exposure time is set. Imaging systems

that have focal length set to in�nity do not require adaptive focusing and most airborne

systems are focused in this way. However, any camera system which is focused at in�nity

will produce an out-of-focus image when those images are captured from an altitude lower

than the focal distance. Focal distance is determined by a number of parameters of the

imaging system such as image sensor size, pupil size and focal length of the main lens.

Hence for small systems like a DSLR camera, a typical range for focal distance can be

between 0 and 25 feet (19). But since a light �eld camera allows for correction of images

that were not properly focused at capture time, there is considerably less dependency

on the hardware parameters of the imaging system in determining the focal length. A

software application can be built to change the focal depth based on the user's need.

Essentially, the focus of the captured image is dictated by the end user and not by the

capturing system.

In addition, since the trajectory of the light in the scene is captured in the 4D light �eld

image, it can be used to estimate the depth of the objects within the scene. The light

trajectory is interpolated to the origin of the beam with reference to the camera. This

is accomplished by taking the gradient of the sampled light �eld and tracing it along

the light rays as they pass through the camera. This information which relates to the

path a light ray takes through the camera enables for the interpolation of the origin and

direction of the ray. Hence, the depth is estimated by a collection of ray origins and the

point at which they intersect with the main lens.

2.4 Light Field camera for Aerial Photography

Traditional light �eld image acquisition techniques involved sophisticated multiple-camera

setups. They require complex rig mountings to hold the cameras which have to be care-

fully calibrated. Building such a system with adequate structural integrity and wide

10



viewing angles on an airborne platform are practically infeasible (at least with current

technology). Hence a single-lens light �eld camera is best suited to capture the 4D light

�eld from a drone. This also prevents the additional costs incurred by the traditional

systems involving multiple cameras.

But commercially available handheld light �eld cameras have not been developed incor-

porating the design elements required for a camera to perform e�ectively on an airborne

platform which is constantly under motion and is relatively unstable. They have very

short range image capture and recently has been expanded to be feasible with mid and

long ranges of up to 100 m (20). Such range becomes relevant if light �eld cameras are

to be used as potential mono-sensorial range imaging devices in autonomous cars or in

mobile robotics. In contrast, it is essential to note that long-range drone aircraft are

capable of operating at a range of up to 7000 m. On such a platform the mid-range light

�eld cameras may not be suitable, however, a wide variety of exploratory and investiga-

tive applications can comfortably be performed under a range of 70-100 m. For instance,

the application of using a drone to observe the surface of an aircraft will not require a

camera with a range of more than 100 m. Besides the results of (20) shows that depth

measurement accuracy deteriorates with depth. At depths of 30-100 m, which may be

considered as typical drone operation range for many applications, depth errors in the or-

der of 3% were obtained from processing small point clusters on an imaged target. Higher

errors were also obtained from single point analysis, which stresses the necessity of spa-

tial or spatiotemporal �ltering of the light �eld camera depth measurements. However,

despite these obviously large errors, a light �eld camera may nevertheless be considered a

valid option for many applications such as robotics, autonomous driving and unmanned

aerial vehicles because of the expansive information available in a 4D light �eld image,

compared to the traditional image (20).
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2.5 Aerial Videography

In addition to capturing images, airborne platforms are also very popular to capture

videos. There is a growing interest in performing aerial surveillance using video cameras.

Compared to traditional images, videos provide the capability to observe ongoing activity

within a scene and to automatically control the camera to track the activity (21). It is

widely used in several applications such as aerial video inspection of overhead power lines

(22), vehicle detection and tracking (23), using aerial video for tra�c �ow monitoring and

management (24) etc. Such cameras require a number of specialised features to ensure the

video is of the highest quality. In addition to hardware-based features such as gyroscopic

stabilisation, there are several technical challenges that have to be addressed for using the

video for e�ective surveillance. Kumar claims that due to high data rates and relatively

small �eld of view of video cameras, a specialised framework is required which is capable

of real-time, automatic exploitation of aerial video for surveillance applications (21).

2.5.1 Aerial Videography using Light Field Camera

The advantages and uses of having a camera mounted on an airborne platform to capture

light �eld images are numerous. But the value proposition of a camera capable of captur-

ing light �eld video is considerably higher as it can be used for a number of applications.

The ability to change the focus of di�erent parts of a video after it has been shot provides

great �exibility. It also prevents the e�ort involved in focus pulling, i.e manually shifting

the focus plane of the video to remain focused on a moving object within a shot (1). The

concept of light �eld video is not entirely new. Theoretical and practical studies have

been conducted on light �eld videos since Wilburn designed the �rst light �eld video

camera (25). However, most such cameras used a collection of miniature digital cameras

arranged together to form a camera array. Most of the times the cameras were crammed

in a compact package to ensure it can be hand-held, such as the ProFUSION-25c (26).

And this hardware limitation often resulted in cameras which had very less angular and
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spatial resolution. Hence although the ProFUSION was capable of capturing light �eld

videos at 25fps it had a resolution of only 640 x 480. But modern light �eld cameras have

substantially high spatial and angular resolution compared to this. And for a camera

mounted on an airborne platform, this is essential as the object of interest could be far

away and higher resolution cameras can capture more information of objects at distant.

Despite the low resolution of early light �eld video cameras, several studies performed

using them have shown the advantages of a light �eld video. Light �eld video cameras

generate multi-view video streams with depth information of the scene. This essentially

is a 3D representation of the entire scene which can be e�ectively used in domains such

as 3D television and free viewpoint video (27). Also, the work by Brandon and Li de-

scribed a novel method to stabilise the videos shot with a hand-held video camera as they

have a considerably high amount of camera shake compared to professionally shot videos

(28). They claim that video stabilisation is an image rendering problem where new novel

images have to be generated given a set of input images captured along a path that is

shaky and unsteady. The new output sequence of images has to be along a virtual path

di�erent from the original path which was shaky. Solving this problem using a traditional

video camera is particularly challenging as it generates a standard video with only single

viewpoint available at any given time instant. This introduces parallax and the e�ect

of occlusion between the desired and actual viewpoints. On the other hand, the video

generated by a light �eld video camera provides several viewpoints for any given time

instant. Such a video enables interpolation or extrapolation of novel viewpoints using

view synthesis methods (28). This remarkably increases the quality of video stabilisation

which is possible only by capturing video using a light �eld video camera. Although

there are numerous bene�ts as mentioned above, the light �eld video camera poses a

set of specialised complications, especially when it is required to be mounted on mobile

platforms such as drones.
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2.5.2 Existing Challenges

The crucial factor limiting the feasibility of light �eld videos is the maximum data transfer

speed, given a limited bandwidth. The fundamental operating principle of a traditional

camera is the recording of the colour of light at each pixel. Hence, the amount of data

collected is directly proportional to the resolution of the image. A light �eld camera,

although still operating under the same principle of recording the colour of light, the

volume recorded is exponentially higher. Light �eld cameras have two distinct resolutions,

spatial and angular. The angular resolution is the number of di�erent views that are

captured in a single exposure. This is proportional to the number of pixels captured in

each of the lenslets present in the camera array of a hand-held light �eld camera. On the

other hand, the spatial resolution is the visible resolution of the image produced by each

view of the camera. This is proportional to the number of lenslets present in the camera

array. In the light �eld camera built and studied by Andre Ng (12), the light �eld is

captured by an array of 2692 lenslets inside a conventional camera. Each lenslet in this

setting corresponds to one viewpoint on the aperture, while di�erent lenslets correspond

to di�erent pixels in the �nal image. The result is an approximately 100-view light �eld

with 90,000 pixels per view. Now, recording a scene in both spatial and angular domains

of a light �eld takes a signi�cant amount of data. For instance, the raw output image of

the Lytro ILLUM camera is 5300 x 7600 pixels, which is nearly 20 times the resolution

of 1080p videos. Assuming similar bandwidth as a 1080p 60 fps video, one can record

light �eld images only at 3fps. As a matter of fact, this is the rate at which continuous

shooting mode is designed in Lytro ILLUM (1). There are modern advanced cameras such

as Red camera (2017) or Lytro Cinema which can shoot at a higher frame rate. However,

they are extremely expensive and quite bulky which makes it far too complicated to be

mounted easily on an airborne platform such as a quadcopter.
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2.6 Portable Light Field Video Camera

Therefore, it is obvious to arrive at the conclusion that a light �eld camera that could

be comfortably mounted on an airborne platform should certainly not be greater than

the size of a standard hand-held camera. However, the current state-of-the-art hand-held

cameras, one of which is Lytro Illum (3), can only capture static images and cannot

shoot videos even at 24fps due to the data bandwidth issue described in section 2.5.2.

This gap was addressed by the work of Wang who used a learning-based approach to

interpolate the low fps video shot by a Lytro Illum camera into a 24fps light �eld video

(1). However, this work uses a hybrid imaging system. A hybrid imaging system is a

setup in which two or more independent imaging system, such as, DSLR imaging, PET

imaging (Positron emission tomography), CT imaging (Computed Tomography) are fused

together to form a new image modality technique. The goal here is to combine the innate

advantages of the independent imaging systems to develop usually a new and powerful

imaging system. Some existing hybrid imaging systems include PET/CT, SPECT/CT,

ultrasound and CT etc. Wang uses a system where a light �eld and DSLR imaging

systems are combined. This system is focused to capture a scene simultaneously and

machine learning is employed to combine the outputs of both the cameras to generate

the desired light �eld video. This research essentially performs the interpolation of light

�eld video captured by the Lytro Illum camera. But this video has only three frames per

second, which is very less information to perform temporal interpolation comfortably.

To bridge this gap, the input from the DSLR video camera is utilised, which is a 30

fps standard high-resolution video. The machine learning-based approach employs two

convolutional neural networks (29). The �rst CNN is designed to propagate the angular

information from the light �eld sequence to the standard video. This enables warping

of the input images to the target view. The second CNN combines the warped images

to output the �nal pixels (1). This research successfully enables consumer light �eld

videography and also outperforms current video interpolation methods.

However, this research still has a number of limitations. For instance, since a learning-
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based approach is used to estimate the �ows between images, the CNN is unable to

determine the features in the regions of the image which are occluded. The �ow remains

unde�ned in such regions as the information is not available and this produces errors

during the interpolation of images. As a result, artefacts are introduced in the occluded

regions. There are more limitations which can strongly impact when the solution proposed

in the research is employed on an airborne platform.

First, the light �eld camera employed in this research, Lytro Illum, has a small baseline,

hence the object that is shot using this camera cannot be too far away. This aspect

directly contradicts the operating principle of aerial photography, where objects can easily

be at least 25 m away from the camera. The primary solution for this is a hardware

change, that is, using a camera which has a larger baseline at the same time is also

smaller and attachable such as phone cameras. Alternatively, Wang also proposes a more

fundamental solution to this problem by proposing to integrate the baseline parameters

of the camera directly into the learning system. Training the CNNs end to end with

information about the baseline can lead the network to learn and infer the di�erences

between the two cameras' hardware con�gurations (1).

Second, the presence of motion blur in the video causes the interpolation of the �ow

between two frames of the scene to often fail. This issue was prevented by having an

exposure time small enough so that no motion blur occurs (1). Since cameras used for

aerial photography also have a wide range of shutter speed, the exposure time can be

made small enough to ensure no motion blur occurs (30).

Finally, a crucial hardware based limitation of integrating Wang's research on an airborne

platform is the usage of a hybrid imaging system. Using a DSLR and a light �eld camera

in parallel on a drone is challenging. However, there are platforms that allow external

hand-held cameras to be mounted upon a drone, but currently, they do not support any

commercially available light �eld cameras. One such platform is GDU Technology's Byrd

Premium 2.0 (31). It comes with a 4K camera inbuilt on the aircraft and an ability to

mount a GoPro (32) or any other third-party camera.

In addition, the entirety of Wang's work is a focused approach to e�ectively propagate
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all the viewpoints captured using the 3fps continuous shooting mode of the Lytro Illum

camera to the 30fps DSLR video, essentially creating a multi-viewpoint light �eld video.

In other words, in this process, only the angular resolution captured by the light �eld

camera is preserved when it is interpolated into a video. The high spatial resolution

of the video generated by the DSLR camera is not used and therefore the overall light

�eld video generated is of low spatial resolution. This is mentioned by Wang as one of

the potential future works (1). But this is a limitation that highly impacts the overall

bene�ts of a light �eld video generated when captured from a drone. The high altitude

from which the drone captures the scene means the cameras that are mounted on them

should be able to produce high-resolution output with detailed information of the scene.

A low-resolution video would mean that a lot of information is lost and zooming results

in pixelation. This completely defeats the purpose of aerial photography and therefore

�xing this is one of the primary factors for the feasibility of light �eld camera.

But the �eld of light �eld photography has always had the problem of generating lower

spatial resolution images compared to standard DSLR cameras. This results in lower

image quality. According to several online reviews, the lower image quality of Lytro Illum

cameras is in fact, one of the main factors behind the fall in sales of Lytro's commercial

light �eld cameras (33). This is due to the fact that in light �eld photography from

earliest work of Lipmann (9), where the same was referred to as integral photography,

to more recent approaches of Adelson (34) and Ng (12), known as plenoptic cameras, a

common goal was that of increasing the angular resolution of the 4D light �eld measured.

This often comes at the cost of spatial resolution of the 2D images that are rendered from

the 4D light �eld (35). This drawback is very closely coupled to the hardware design of

light �eld cameras and hence remains inevitable. With the increase in the number of

lenslets in the camera array the spatial resolution increases, but more lenslets mean, that

each individual lenslet is smaller in size, which results in smaller angular resolution. Due

to this inverse proportionality, there has always been a trade-o� between the spatial and

angular resolution during the design and development of light �eld cameras. Although

modern light �eld technology has enabled development of cameras with good spatial and
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angular resolution, from the standpoint of professional photographers, the overall image

quality with respect to spatial resolution is still considered to be poor.

2.7 Super Resolution Algorithms

To overcome the disadvantage caused by the trade-o� between angular and spatial resolu-

tion and to enhance the overall image quality of light �eld cameras several computational

methods have been proposed. These methods are usually called super-resolution algo-

rithms, which as the name implies processes the image and attempts to increase the

resolution of the �nal image programmatically. Essentially, super-resolution algorithm

determine additional information from existing data (36). There have been compre-

hensive studies of both angular and spatial super-resolution. According to Gul and

Gunturk there are three di�erent approaches to achieve super-resolution of light �elds

gul2018spatial.

• First is the approach of directly processing the perspective images of the light-�eld

by applying multi-frame super-resolution techniques. The works of Wanner and

Goldluecke (17) and Bishop, Zanetti and Favaro (36) follows this approach.

• Second is using machine learning-based techniques on each individual sub-aperture

perspective images of light-�eld to achieve super-resolution. Gul and Gunturk's

research follows this approach (8). They have developed two CNNs, one to enhance

spatial resolution and the other to enhance angular resolution. There are other

researches which follow this approach, however, Gul and Gunturk's CNNs performs

better since angular information is also used to train the network which enhances

spatial resolution.

• The �nal approach is using a Hybrid imaging system where a light �eld sensor and

a standard image sensor, usually some kind of a digital camera, are used in parallel.

In these methods, the regular sensors generate high spatial resolution images. The

information available in these images are used to enhance the perspective images
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generated by the light �eld sensor. Boominathan's research uses this approach (37).

But this system is bulky as it requires additional hardware which also increases the

overall cost compared to the �rst two approaches.

Each of these methods and the research work pertaining to them were analysed in detail

to gain insights into the super-resolution technology. The information obtained from this

analysis was crucial in shaping the course and structure of the entire project. Hence the

super-resolution analysis is documented in the section 3 that focuses on the design of the

project, instead of the current section.

2.8 Summary

This dissertation evaluates light �eld videography based on the work of Wang (1) which

already employs a hybrid imaging system. This essentially enables usage of any of the

three approaches mentioned above for enhancing the spatial resolution of the light �eld

video. Theoretically, all of the above three approaches can be integrated with the light

�eld video pipeline but the practical aspects of the three methods need to be evaluated and

integrated with the system to try and produce a high-resolution light �eld video.
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3 Design

The overall goal of the project is to generate a high spatial resolution light �eld video.

The granular description of the individual goals of the project is listed below. Since this

dissertation is a direct continuation of Wang's work, the success and failure of each of

the goals are benchmarked against the light �eld video produced as output by Wang's

pipeline.

• The �nal light �eld video generated should have a higher spatial resolution than

the video generated by Wang (1).

• The angular resolution of the �nal light �eld video should be preserved or enhanced

compared to the video generated by Wang (1).

The following design elements were crucial to achieving the overall goals of the project.

• Design and development of the component that performs the spatial super-resolution

of the light �eld video.

• Determining the integration point of the component mentioned above with Wang's

(1) existing light �eld video generation pipeline.

Both the aspects listed above are not completely independent. Certain decisions were

made because of this interdependency in designing of the overall pipeline.
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3.1 Spatial Super Resolution Component

Based on the survey of existing and state of the art methodologies there are three di�erent

categories of computational super-resolution. These are listed in Section 2.7 and the

comprehensive study carried out in deciding between these three methods is described in

this section. In each category of super-resolution, one research publication is considered

to determine the feasibility of extending the solution proposed by the aforementioned

category to super-resolve light �eld videos. Each of these research work was selected such

that either they are the state of the art in the particular super-resolution category or

have comparable results to the state of the art.

3.1.1 Learning Based Super-Resolution

In the work proposed by Mitra and Veeraraghavan (38), a machine learning procedure is

used to super-resolve low-resolution light �elds based on the disparity between overlapping

patches of the light �eld. A patch here refers to the individual light �eld views. An

o�ine system learns a Gaussian Mixture Model prior using high-resolution light �eld

training datasets for di�erent discrete values of disparity. This model combined with

a MAP estimator is employed to super-resolve each patch in the test dataset with the

corresponding disparity. But one of the major drawback of Mitra and Veeraraghavan's

work (38) is in the elemental design decision of assuming constant disparity for the light

�eld patches which introduces artefacts in the super-resolved image. In Wang's work

(1) on light �eld video, estimating the disparity in each frame is an essential step to

determine the optical �ow of the objects in the scene. This is important for interpolation

and is also recorded that in occluded regions of the scene where the disparity estimation

fails artefacts are introduced in the rendered light �eld video. It is worth noting that

any super-resolution technique has to be applied to each individual light �eld frame used

to generate the �nal video. Therefore, applying Mitra and Veeraraghavan's technique

of spatial super-resolution to multiple light �eld frames, which has a known issue of

21



introducing artefacts because of the constant disparity assumption, will result in artefacts

in each of the output frames. With artefacts being introduced in every output frame the

disparity estimation step will fail and overall error in disparity will get accumulated.

This reduces the features present in the output light �eld video because considerable

information is lost in the input frames due to artefacts. Therefore, despite the increase in

the resolution, it was decided that this was not a suitable technique to be used because

the loss of information is extremely undesirable.

3.1.2 Hybrid Super-Resolution

Since Wang's light �eld video generation solution works by using the hybrid image acqui-

sition setup, this form of super-resolution is in fact mentioned as future work in the paper

itself (1). But since the goal of Wang's work was focused only on the angular resolution,

the high-resolution DSLR video was downsampled to match the spatial resolution of the

low-resolution light �eld image frames from the Lytro Illum camera. Hence, the DSLR's

high-resolution information is never used, and the work of Boominathan (37) does ex-

actly this - use the spatial resolution information in DSLR of a hybrid imaging system and

super-resolve the light �eld images. Although this dissertation is a direct continuation

of Wang's (1) work which used the hybrid camera system for image acquisition, there

was no plan to build a hybrid camera rig for experiments. Hence, this dissertation relies

on the light �eld datasets publicly available. However, according to best of the author's

knowledge, there are no publicly available datasets where the scene was captured using

a DLSR-light �eld camera hybrid setup except the one published by authors of (1). Any

hybrid imaging based super-resolution certainly requires the high-resolution input along

with the low-resolution input, which in this case are the DSLR 2D video and frames

from the Lytro Illum light �eld camera respectively. But unfortunately, the dataset of

(1) contains only the downsampled DSLR 2D video and the Lytro Illum frames both

at a low resolution of 512 x 352. Since there was no other practical way to acquire the

required data without building a camera rig, this technique was explored by de�ning
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some workarounds. This is documented in section 4.5, but a feasible solution could not

be built with the workarounds, therefore other methods were explored. But this method

would have been the most ideal and elegant way to super-resolve the video considering the

hardware setup was already available. The features of the high-resolution DSLR video

could have been learned by the CNN by letting it train end-to-end with input from both

the camera. This would have enabled the network to identify the spatial information and

propagate it to the light �eld video.

3.1.3 Computational Super Resolution

Any super-resolution process which does not employ machine learning, CNNs or any

custom hardware such as camera rigs and solely relies only upon logical and mathemat-

ical techniques to enhance the spatial resolution of the light �eld images is considered

as computational super-resolution. There are several publications which fall under this

category. But this vast literature of super-resolution algorithms can be classi�ed into two

major types namely, single-frame and multi-frame techniques. As the name implies in

the single-frame technique a single image from the scene is processed individually and

independently to increase its resolution. For a light �eld, the single-frame technique can

be applied to every view separately. This eventually increases the overall spatial reso-

lution of the entire light �eld. However, such an approach will fail to exploit the high

correlation that exists between the di�erent views of the light �eld (39). Also, since each

of the views is processed independently, it runs the risk of failing to enforce or maintain

the consistency between the light �eld views.

These can be avoided by using a multi-frame super-resolution algorithm where multiple

images of the same scene are used in tandem to enhance the resolution. This approach

performs better with light-�eld images as the design of the algorithm resembles the struc-

ture of the light �eld. In fact, a multi-frame super-resolution technique can also easily be

extended for super-resolving videos. Hence we consider the possibility of exploring such

a technique as a way to super-resolve the light �eld video. In particular, the work by
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Rossi and Frossard, light �eld-super resolution using a graph-based (GB) regularisation

(39) is used for this purpose. In addition, the state of the art super-resolution methods

of this category such as Wanner and Goldluecke (17) and Mitra and Veeraraghavan (38)

exhibited lower performance in comparison, both in terms of peak signal to noise ratio

(PSNR) and overall visual quality.

A crucial step in super-resolution is the estimation of disparity of light �eld images input

to the system. This is a very challenging because, usually the input is of very low-spatial

resolution. And the GB regularisation bypasses this challenge because it did not rely

upon accurate disparity estimation like other state of the art methods. Therefore, it was

independent of scene geometry and this was another important parameter in deciding to

use this method.

3.1.4 Deep Learning Based Super-Resolution

Convolutional Neural Networks have also been used to address and solve the problem of

light �eld super-resolution. In such techniques, a common approach is to build individual

CNNs each specialised to perform a single task and operating them in a cascade to

achieve the overall result. For instance, the work of Gul and Gunturk (8) two CNNs

are built - one to super-resolve the given light �elds and the second to generate novel

high-resolution views based on the super-resolved input from the previous CNN stage.

However, the CNN employs a single-frame super-resolution technique due to which the

views are independently enhanced. This is a probable rational behind the fact that

the computational super-resolution method of GB regularisation which uses multi-frame

super-resolution performs better than the CNN based approach (39). And due to this

reason CNN based spatial super-resolution is not explored in this thesis.

3.1.5 Verdict

Based on the detailed practical and theoretical analysis of various super-resolution tech-

nique, it was decided to integrate the graph-based regularisation of light �eld super-
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resolution (39) with Wang's work (1) for the spatial super-resolution of light �eld video.

Note that an implementation was attempted with hybrid super-resolution technique, but

later pivoted to use this technique instead. More details about this in section 4.5.

3.2 Integeration to Pipeline

Now that the technique to be used for spatially super-resolving light �eld video has been

�nalised in section 3.1, the next crucial thing to do is to determine how to integrate this

solution with the light �eld video generation pipeline (1). A fundamental task involved in

making this decision is comprehensive study and understanding of the pipeline. However,

this section is not a summary of the entire publication of (1). It only highlights the

important aspects of the video generation pipeline which were considered for deciding

where and how to integrate the GB super-resolution algorithm (39).

Since the following subsections highlight certain components of Wang's (1) work, the block

diagram of the entire pipeline is included in the �gure 3.1 below for better understanding

of the text.

Figure 3.1: Original Light �eld video pipeline by Wang (1)

3.2.1 Loosely Coupled Integeration

Standard software engineering principles dictate that individual components should be

adequately abstracted and decoupled. However, analysing the pipeline revealed that

it has not been developed with room for much extensibility and is a closely coupled
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pipeline. An attempt to introduce modularity to include the GB regularisation technique

into the pipeline proved to be very challenging and also resulted in errors in the �nal video

generated. Hence it was decided best to leave the light �eld video generation pipeline

untouched and integrate the spatial super-resolution algorithm at the beginning or end

of the pipeline.

3.2.2 Closely Coupled Integeration

As mentioned in Section 3.2.1, the pipeline is very closely coupled. The two main com-

ponents of this pipeline are the spatiotemporal �ow estimation CNN and the appearance

estimation CNN (1). These can be observed in the �gure 3.1. The former is used to warp

the light �eld images and the frames input using the 2D video to the various angular

view. This part performs the combination of temporal and spatial information in the

2D video with the angular information in the light �eld frames. The latter is used to

accumulate together all the warped images to generate the �nal image. The appearance

CNN is specialised to perform only an aggregating task and does not contribute in any

form to the overall quality of the image. Hence, increasing the resolution should be a

before this part, that is, the warped images provided as input to the appearance CNN

should be the spatially super-resolved images.

There are two distinct ways this can be achieved as listed below.

• Before the start of the video generation pipeline.

• After the Spatiotemporal CNN stage but Before the Appearance CNN stage.

Each of these positions has bene�ts and pitfalls and have been discussed in dedicated

sub-sections.

3.2.3 Adding at the beginning of the Pipeline

In this position, the data from the hybrid image acquisition setup is processed by the

GB-regularised super-resolution method before being input to the light �eld video gener-
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ation pipeline. For this to work, the light �eld images from the Lytro Illum camera have

to be spatially super-resolved and then fed to the spatiotemporal CNN. A high spatial

resolution light �eld input will greatly help the disparity estimation step of the spatiotem-

poral CNN as well. Hence in addition to increased resolution output, better disparity

assists in the accurate determination of optical �ow and hence the overall video interpola-

tion quality can also enhance. While there are potential theoretical advantages there are

some practical challenges to this approach such as implementing the GB-regularisation

technique that works with input from the Lytro Illum light �eld images.

3.2.4 Adding in-between the CNNs

In this position, the warped image output by the spatiotemporal CNN is spatially super-

resolved before being input to the appearance estimation CNN. This is a practically simple

design since only one set of images are input to the appearance CNN since redesigning the

corresponding network to accommodate the super-resolved image dimension is relatively

straightforward. The GB-regularisation technique can also be implemented easily because

at this stage the data to work on is a set of warped images, which is essentially images

of the same scene with slightly di�erent viewpoints. This is very similar to the data

used to test the GB-regularised method which was images acquired with a grid of camera

which was considered as the light �eld instead of using a plenoptic camera with a camera

array.

3.2.5 Verdict

Based on this study of various options for implementation, it was decided to implement

the GB Regularised super-resolution component at the beginning of the pipeline. Be-

cause at this position Wang's (1) pipeline is not disrupted at all in any way. This would

also mean that, in overall, the pipeline would have three well-de�ned and self-contained

components each abstracted from each other. And these components are interconnected

by data processing units which will convert the input and output data of each component
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Figure 3.2: Overall Pipeline design diagram

into suitable formats. This is described in the block diagram 3.2.

Such a design will ensure that any errors or issues realised during the implementation

process can be isolated to speci�c components and can be addressed using a compart-

mentalised approach.

3.3 Light Field Video Viewer

This is another important part of the project that is essential for the easy visual perception

of the light �eld video. Although it is not directly part of the pipeline that generates

the light �eld video itself, a light �eld video viewer is required to conveniently view

the generated video and highlight the aspects of the light �eld such as post-capture re-

focusing, post-capture aperture control etc. After an adequate background check, it was

veri�ed that there was not an out-of-the-box application which was capable of running

light �eld videos. There was no public standard for light �eld video formats or methods to

highlight the signi�cant aspects of a light �eld while it was in the video format. This was

probably one of the main reasons why Wang (1) decided to develop a special light �eld

video viewer capable of interpreting the generated video and also modifying the camera

properties while the video is playing.
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Figure 3.3: Light �eld video viewer from (1)

3.3.1 Zooming

This viewer, however, did not possess any speci�c way to highlight the spatial super-

resolution of the frames generated by the system. An ideal way to visually observe the

e�ects of super-resolution would be to zoom the super-resolved and non-super resolved

video to exactly the same extent and observe for image distortions or pixelations. But

there was no feature in the light �eld video viewer program to achieve the zooming of

the video. And it was decided to introduce this feature into the program as part of this

project. The details of how this was achieved are not discussed in this thesis as it was

relatively straight forward.
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4 Implemetation

The previous chapter highlighted many of the crucial design decisions that were made

during the course of the project which eventually resulted in the architecture of the entire

pipeline. This architecture is picturised in the �gure 3.2. This chapter will describe

in detail how the di�erent components of the proposed architecture were implemented.

Each section of this chapter pertains to a component and explains the tools, techniques

and algorithms implemented in it. The various parameters which were considered to

optimise the entire pipeline with respect to each component are also discussed, wherever

relevant.

4.1 Overview

This project was initially intended to use the hybrid imaging technique for enhancing

the spatial resolution of the video. But the unavailability of the appropriate datasets

hindered the feasibility of developing such an application. If this approach had been

followed the output would have been a single application which was capable of taking

input and producing the super-resolved output. But due to the fact, the project pivoted

to use a super-resolution using graph-based regulariser the implementation of this project

was broken down into components each of which were implemented using di�erent tools

and techniques. The aspect that is worth highlighting here is that this pipeline is not

a one-click application, that is, the output data of the super-resolved light �eld from

the �rst stage (light �eld super-resolution) of the pipeline had to be manually fed to the
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second stage of the pipeline (light �eld video generation). It is acknowledged that it is a

poor design, and after exploration, it was determined that automation of this part of the

pipeline should be a relatively straightforward task. Hence this was not implemented in

this project.

4.2 Input

The input to the system was the dataset published as part of the original light �eld

video pipeline. The images of this dataset were captured using a prototype setup of a

high-resolution DLSR and Lytro Illum connected together using a tripod screw adapter.

The two cameras were calibrated, synchronised appropriately when made available to the

public, hence can be directly used without the need for any pre-processing (1). Unfortu-

nately, this was the only hybrid imaging dataset publicly available and hence this project

was not tested with any other datasets.

4.3 Spatial Super Resolution

This section describes the implementation of the light �eld super-resolution via Graph-

Based regularisation technique for a set of light �eld images acquired from Lytro Illum

camera. The entire implementation of this section was done using MATLAB and involved

the development of new scripts and modifying existing scripts to suit this project.

The problem of light �eld spatial super-resolution can be theorized as the process of

recovering the high-resolution light �eld U from its low-resolution counterpart V . Where

U andV are light �elds which are considered as the output of anM x M array of pinhole

cameras, each of which is equipped with an N x N pixel sensor. And the resolution of

V is (N/α) x (N/α) x M x M , where α is the super-resolution factor. To solve this

problem, it can be formulated as an optimisation problem which involves minimising the
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following objective function (39).

u∗ ∈ argminuF (u) (1)

where

F (u) ≡ F1(u) + λ2F2(u) + λ3F3(u) (2)

Each of the terms in the equation 2 captures the constraints enforced on the problem by

the structure of the light �eld. And the constant multipliers λ1 and λ2 balance out the

e�ect of various terms in the equation.

The �rst term F1(u) represents the consistency between the high and low-resolution views.

The relationship between the two is captured using a blurring and sampling matrix and

is denoted in (39) as the data �delity term. It is implemented by calculating the error

between the high and low-resolution views and since the entire equation 2 is minimised

for optimisation, the di�erence or error between the output and input is minimised and

the �delity is preserved.

The second term F2(u) in the equation is used to represent the contribution each neigh-

bouring views make to enhance the resolution of the view that is currently being pro-

cessed. This term ensures the multi-view structure of the light �eld is accounted for.

It also bene�ts from the scenario where the current view has some occlusions which the

neighbouring views may not. The un-occluded regions of the neighbouring views provide

complementary information useful for enhancing occluded regions of the current view.

The third term of F3(u) is the regularizer. A regularisation term is necessary for the

optimisation function used in this scenario because

• Any system of linear equation is ill-posed if the matrix used is fat, that is, the total

number of variables to solve for is less than the total number of equation available

in the system. The blurring and sampling matrices used in F1(u) is of this type.

Therefore term F1(u) in equation 2 is ill-posed and hence requires a regularisation

function to solve and minimise the objective function.
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• To avoid the ill-posed system of equations to solve the equation 2, the term F2(u)

can help. But the warping matrices of F2(u) are generated at run-time and cannot

be relied upon to �x this issue. Hence a regularisation term is essential for the

equation 2.

The regulariser used for this purpose was derived from Graph Signal Processing (40).

The graph constructed in this process is represented by an adjacency matrix and used

in the term F3(u) of equation 2. The graph is constructed by considering each pixel of

the light �eld image as a node in the graph. Two nodes are connected by an edge if the

pixel represented by the �rst node of one view is the projection of the pixel represented

by the second node in a di�erent view. The entire graph is undirected and the edges are

weighted. The value of the edge weight is governed by a mapping function which assigns

a numerical value to the weight based on the similarity of intensities between two pixels.

The term F3(u) is designed to penalise signi�cant intensity variations along edges that

are highly weighted of the super-resolved light �eld. And the overall minimisation of the

optimisation function leads to selective smoothening of the light �eld. Therefore, a graph

constructed in this way promotes the structure of the light �eld to be incorporated into

the optimisation function and thereby have a signi�cant impact on the super-resolved

output.

4.3.1 Algorithm

This section brie�y describes the set of steps that were followed to construct the individual

components of the optimisation function and how it was solved to get the output. The

entire algorithm is the iterative execution of the following four steps. The number of

iterations was �xed to a value of 200 as suggested in (39).

• Processing the input

• Construction of Regularisation Graph

• Construction of the Warping Matrix
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• Minimising optimisation function

Each of the steps is described in detail below. The steps are essentially derived from

the super-resolution policy proposed in (39), however, how each of these steps was im-

plemented is di�erent. Only the conceptual approach, certain universal constants and

mapping functions were directly used and the rest of the implementation was modi�ed

considering the requirement of this project, the dataset and functionalities present in

MATLAB. The parts of the algorithm which directly uses entities from (39) are ex-

plicitly mentioned (like the value for the number of iterations speci�ed in the above

paragraph).

Input Processing

They Lytro Illum (3) images which were available as part of the dataset were �rst sep-

arated into individual views. Each view was stored as an RGB image with dimensions

of height ∗ width ∗ 3. This was further loaded into two sets of MATLAB matrix of type

unsigned integer. One of the matrices was the input matrix, that was to be used for the

construction of warping matrices and regularisation graph. And the other matrix was

the output matrix. The super-resolved light �eld image generated after the optimisation

step was stored in the output matrix. At the end of each iteration, the values of the out-

put matrix are copied into the input matrix and the algorithm continues as mentioned

above.

Regularisation Matrix Construction

According to (39) the e�ectiveness of the term F3(u) depends upon the ability of the

graph to capture the underlying structure of the light �eld. First an adjacency matrix

for the light �eld graph G is created and initialised based on the number of pixels present

in the input light �eld matrix. To create the edges between the pixels and add an edge

weight to them, we have to identify the projection of each pixel in other views. Con-

sidering the current view V , a set of neighbouring views are determined based on the
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indices of the input matrix. And this set of neighbouring views is denoted by V+. A

search window is de�ned in one of the neighbouring views in V+ and the current view

V , whose dimensions are the same. The centre of the search window in both the views

is at equivalent positions with respect to the view and the two search window covers the

same amount of pixels within their respective view.

Consider the current view as u(i) = Us,t(x , y) and the neighbouring view as u(j) =

Us′,t′(x
′, y ′) and u(j) ∈ V+. Here the terms denoted by (s, t) is the parameters uniquely

identi�ying the light �eld view and (x , y) denotes the pixel co-cordinates within each of

the view. This type of (s, t, x , y) parameterisation is one of the fundamental ways of

representing light �eld (41). This is a modi�cation of the original way of representing

light �elds using the two-plane parameterisation technique.

Based on the intensity of the pixels available within the two search window, a similarity

score is calculated using the following formula.

Similarity(i , j) = exp(−||ρs,t(x , y)− ρs′,t′(x
′, y ′)||2F

σ2
) (3)

The calculation de�ned in equation 3 is directly adopted from the graph-based regulari-

sation technique in (39).

• The term ρs,t(x , y) represents a square shaped patch within the search window

centred at the pixel Us,t(x , y).

• The operator || · ||F denotes the Frobenius norm.

• The operator σ is a constant value

Based on the similarity index computed between each pixel in the current view and the

neighbouring view, the center pixels of the search window pair whose similarity is high will

have a higher similarity index value is added to the graph G as an edge. The edge weight

is set to the product of the similarity index value and a constant that is determined based

on the overall size of the light �eld. At the end of this step, the entire graph structure is

built.
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Warping Matrix Construction

The contribution of the warping matrix is accounted for in the term F2(u). The warping

matrix constructed is responsible for propagating the information and other visual cues

available in the neighbouring views to the current view. For this purpose, once again, a

set of neighbouring views is de�ned as R+
k to the current view Uk . This is similar to the

previous section where a set of neighbouring views were de�ned, namely, V+. However,

the important di�erence between V+ and R+
k is that while the former is a collection of

all the neighbouring views, the latter is only a subset of V+. The four views U ′k adjacent

to current view Uk in the light �eld is de�ned as

{
U ′k : k ′ ∈ R+

k

}
=
{
Us,t±1,Us±1,t

}
(4)

According to the equation 4, the views considered for warping are only the four views -

top, bottom, left and right. But there are in total of eight neighbouring views including

the diagonal views in the set V+. It was essential to consider all the eight views in V+

because it was being used to record the structure of the light �eld. And skipping views

could lead to errors as the light �eld structure was used for regularisation whose sole

purpose was to adaptively smoothen the errors introduced in the terms F1(u) and F2(u)

of the optimisation function 2. However, to understand why considering only the four

views is su�cient for warping, it is essential to understand the process of determining the

warping matrices itself. This is detailed in the subsequent paragraphs.

Consider a pixel uk(i) in the current view Uk . The warping matrix is determined by

a convex combination of those pixels around its projection on the neighbouring view

U ′k = Us′,t′ . Although the process of convex combination is straightforward the important

step is determining the current pixel's projection in the neighbouring view. But it so

happens, this is exactly what we had done in the process of determining the regularisation

graph of the light �eld. Hence, the same equation of 3 is used to determine the projection

of the current pixel in the neighbouring view. Once the target pixel is determined, an

approximate disparity is computed by considering the similarity score obtained and the
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following function.

S(δ) = ws,t−1(x , y + δ) + ws,t−1(x , y + δ + 1)

+ws,t+1(x , y − δ − 1) + ws,t+1(x , y − δ)

+ws−1,t(x + δ, y) + ws−1,t(x + δ + 1, y)

+ws+1,t(x − δ − 1, y) + ws+1,t(x − δ, y)

(5)

To put it simply, each line of the equation 5 is a pair of adjacent pixels in one of the

neighbouring views. This equation is directly used from (39). The value provided by this

equation is the disparity which is used as an o�set to determine the coordinates of the

those pixles adjacent to the target pixel of neighbouring light �eld views.

Considering a warping matrix F k ′

k that maps from the pixel uk(i) of the view Us,t(x , y)

to one of the neighbouring view. Each row of the said matrix can be �lled by computing

the convex combination of the two pixels which are closest to the projection of the pixel

uk(i) on the neighbouring views. As already mentioned the projection of the pixel is de-

termined by the equation 3 and the disparity value available from the equation 5 is used

for determining the pixels nearest to the projection. And each of the two pixels in the

covex combination contributes a value equivalent to a weight that is directly proportional

to its similarity to the target pixel of the original view Us,t(x , y).

Now, that the process of determining the warping matrix has been detailed, it can be eas-

ily explained why only the four neighbouring views are considered instead of all the eight

views. From the process mentioned above, it is evident that the similarity score calcu-

lated by the equation 3 plays a major role. The contribution of each pixel is measured by

3 and it was found experimentally that the absolute value of similarity for the diagonally

neighbouring views was insigni�cant compared to the values for the other neighbouring

views. The degree of contribution was very low that it had little to no impact on the

overall score but the computational cycles involved in calculating the similarity score for

every pixel was very high. Considering this condition, the diagonally neighbouring views

were not used for evaluation of the warping matrix.
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Minimise Optimisation Function

Now all the individual components, namely F1(u), F2(u) and F3(u) is computed, the �nal

step is to solve the optimisation problem in equation 1. This is a straightforward process

where the optimisation equation is converted into a quadratic problem and rewritten in

the matrix form with co-e�cient and variables. This matrix is solved using the iterative

approach detailed at the beginning of this chapter. Essentially, the matrix is broken

down further to generate linear equations which is solved using the Conjugate Gradient

method.

4.3.2 Final Output

The �nal output after all the iterations of the graph regularisation step is the spatially

super-resolved light �eld images. While feeding the input, these images were loaded into

MATLAB matrices for processing. These matrices were operated upon by the algorithm

and the output matrices were generated. A simple data processor is used to render these

matrices back as images which can be fed to the light �eld video generation pipeline.

4.4 Light Field Video Generation

The next step of the implementation was to use the super-resolved light �eld images

as input to the light �eld video generation pipeline designed by Wang(1). The pipeline

was directly used without any modi�cation to its components. Hence, no tangible code

modi�cation was performed in this part of the project. However, the major task which

consumed a good amount of time was understanding the pipeline and essentially rebuild-

ing the same on a local machine. This was a particularly di�cult task because although

the conceptual details of the pipeline were discussed in depth and published in the re-

search publication, the practical details and instructions were insu�cient in the GitHub

repository that was made public as part of the publication.
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Rebuilding the pipeline involved the tasks which involved setting up the environment

and the components of the pipeline. Ubuntu 18.04 LTS being the latest at the time,

was �rst used as the operating system on which the pipeline was to be rebuilt. This was

later discovered to be a wrong choice because of the fact that almost all of the depen-

dencies which were related to the project had been updated several versions. There were

signi�cant di�erences in the way each dependency was designed and there were many

new protocols placed in the latest Ubuntu (18.04 LTS) which prevented installation of

older versions of the dependencies. Hence this entire endeavour was abandoned and it

was decided to rebuild the pipeline on Ubuntu 14.04 which was the version on which the

original project was developed. Once the platform was �nalised individual components

were assembled. And the most important parts of the assembly are discussed here.

• CNN

The project used Ca�ee framework for de�ning and executing the two CNNs. There

were a number of dependencies which had to be set up in the machine to recreate

the exact environment. Since the older version of Ubuntu and Ca�e were used,

individual dependencies such as CUDA, BLAS, cuDNN, Boost libraries etc had to

be manually installed. Ensuring version match and compatibility was a tremendous

task. This task was important to ensure the existing CNN models could be modi�ed

and built successfully. Although eventually, no modi�cation was actually done to

the CNN, setting up the CNN build environment was neccessary since the initial

approach of using Hybrid super-resolution required the CNN to be modi�ed and

re-built to be used.

• Matlab

MATLAB wrappers were required to ensure the CNNs built could be used with

the scripts written to control the pipeline. There were a number of issues with the

MATLAB versioning, C++ compiler versioning. All of these were systematically
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addressed after a considerable amount of investigation into each of the issue.

• Light Field Video Viewer

As mentioned in the section 3.3, a custom tool was available to highlight the features

and playing the light �eld video. The source code of the tool was analysed to

implement new features. Setting up the environment for building this tool after

the modi�cation was also a particularly di�cult task. The important problem was

ensuring version compatibility between a number of di�erent dependencies.

• Data

The means of handling the data input to the system and how to process the output

from the pipeline for viewing using the light �eld video viewer was completely

glossed over in the original publication. This was another essential step in rebuilding

the pipeline which consumed a lot of man-hours.

4.5 Hybrid Super-Resolution

The original approach to achieve super-resolution was to use Hybrid imaging techniques

for light �eld video, which was later abandoned due to unavailability of the required

datasets. But before completely abandoning this approach a workaround was attempted.

This section details the implementation approach of the failed task.

4.5.1 Approach

The two main requirement for the hybrid super-resolution were high-resolution video and

low-resolution light �eld images. The dataset published by Wang (1) was supposed to

have the high-resolution video but unfortunately did not. The video available was a

down-sampled version of the original DSLR video which matched the light �eld image
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resolution of 512 x 352. Hence, to bypass this problem, a straightforward solution is

to make whatever video available to be of higher resolution than the light �eld images.

Ultimately, this will ful�l the requirement of the hybrid super-resolution technique (i.e)

high-resolution video and low-resolution light �eld image. Note that the overall resolution

of the video is still nowhere close to the original DSLR video but is relatively higher

compared to the light �eld images.

4.5.2 Implementation

To simulate a scenario where the input video has higher spatial resolution than the light

�eld images, the light �eld images were programmatically downsampled. The resolution

was decreased by half and this re�ected in a mismatch of spatial resolution dimension

between the inputs.

This mismatch of dimension meant that the input cannot be directly fed to the pipeline

since the kernel size of the original CNN had to be modi�ed. This task was important to

ensure that the change in dimension resulted in kernel mismatch errors when the pipeline

was run. And this was done after considerable research as understanding the complex

network itself was enduring. After due diligence all the essential modi�cations were made

and the pipeline started executing without any errors.

4.5.3 Expected Results

The expectation from this task was that the generated output video will be spatially

super-resolved compared to the original light �eld images. This meant that the high-

resolution information in the video is propagated to the light �eld. Essentially the output

would have a resolution close to the input video which is double the resolution of the light

�eld images. The evaluation strategy was to compare and study this video generated to

the original video generated by the unchanged pipeline.
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4.5.4 Observed Results

After successfully modifying the CNNs with necessary dimensions, the next step would

have been to update the learning parameters so that the new CNNs could train them-

selves to learn how to use the high-resolution information available in the video frames

to super-resolve the light �eld frames. However, this step could never be practically ex-

ecuted since after the dimensionality update, although the pipeline executed, it never

ran to completion and produced an output. The learning process never completed and

resulted in out-of-memory errors. Neither executing in a machine with better hardware

nor modifying the parameters of the CNNs resolved this issue. Even after spending a

considerable amount of time and resource these issues remained unresolved and hence the

switch was made to use a di�erent approach (using the Graph-based regularised super-

resolution (39)). One potential reason for this issue could be attributed to the fact that,

in the original paper, Wang (1) downsampled the DSLR video to match the resolution

of the light �eld. This was done to ensure that the CNN structure could be kept simple

and modi�cation of the CNN introduced complexities which was not evident and easily

comprehensible. However, note that this observation is only a hypothesis and further

research is required to isolate the root cause.
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5 Evaluation

In this chapter, the project implementation is subjected to a collection of tests to eval-

uate its performance. The results obtained in these steps are essential in objectively

determining the project's success in achieving the goals stated in Section 3. Each section

of this chapter �rst describes the relevance of each test and the parameters used in the

tests. Then the rationale behind the values obtained for each parameter is discussed by

presenting arguments and inferring decisions on the results.

Some tests performed are not directly relevant to evaluating the quality of spatial reso-

lution of the image. Such tests were done to ensure that the interpolation and angular

resolution achieved by (1) were not compromised while enhancing the spatial resolution.

These tests were directly derived from the evaluation methodologies used in (1) and the

di�erences are highlighted in appropriate sections. However, it is worth mentioning that

all the tests of (1) are not performed and the reason behind skipping few tests are brie�y

described.

5.1 Subjective Evaluation

Subjective evaluation is the technique where multiple subjects, usually individual volun-

teer or focus groups, are asked to rate (a numerical value called opinion score) the images

enhanced by the super-resolution algorithm under study. Based on every individual's

score the mean opinion score is calculated which acts as the indicator of the overall image

quality. Since the ultimate sensors of any visual signal are the human eye, subjective
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evaluation provides reliable data for testing super-resolution algorithms (42).

But conducting such experiments prove to be very expensive and time-consuming as well.

Also, such evaluation methods cannot directly be incorporated into the process of design-

ing and optimising super-resolution and interpolation algorithms. Due to these practical

di�culties, only a nominal amount of subjective evaluation was done in this project. This

is recorded in the following paragraph.

The two sets of images represented in �gures 5.1 and 5.2 is from the dataset published

Figure 5.1: Girl Dancing - Superresolved (left), Original (right)

Figure 5.2: Train - Superresolved (left), Original (right)

as part of (1). The results generated after super-resolution were not evident and hence

the images were zoomed to a level where individual pixels can be observed to facilitate

subjective evaluation. Observing the �gures 5.1 and 5.2 it is evident that there is a

tangible amount of enhancement in spatial resolution. The borders between sections of

di�erent colour are sharper. This can be very easily observed in �gure 5.1 where the

44



sharpness of the border between the girl's hair and face is enhanced. While a certain

degree of sharpness is enhanced in �gure 5.2, it is not as comparable to the amount in

�gure 5.1. This could be due to the fact that the edges are more profound in the dancing

girl's image compared to the train's image.

5.2 Qualitative Evaluation

Quality of the super-resolution algorithm can be appraised by common image quality

assessment methods such as peak-signal-to-noise-ratio (PSNR) and the structural simi-

larity (SSIM) index. This is speci�cally to evaluate the quality of spatial super-resolution

by comparing the frames of super-resolved light �eld video generated in this project with

the frames of original light �eld video generated by Wang in (1). The results prove that

the super-resolved light �eld video is of higher quality than the original video. Since the

original video performed better than the state of the art video interpolation techniques

(1) and the scope of this project is only super-resolution, the comparison to other video

interpolation techniques is not performed in this project.

5.2.1 PSNR

Historically, the most preferred and suitable metric to evaluate the quality of super-

resolved images are Peak Signal-to-Noise Ratio (PSNR) (43). This is the most commonly

used measure to determine the di�erence between the source and super-resolved image

and is given by the following formula.

PSNR = 10 log10
MAX 2

MSE
(1)

Here MAX is the maximum possible pixel value and MSE is mean square error. MSE

is de�ned as the sum of the square of intensity di�erences between a noise-free m x n

image I and its noisy approximation K. The same is given by the following equation.
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MSE =
1

m n

m−1∑
i=0

n−1∑
j=0

[I (i , j)− K (i , j)]2 (2)

Table 5.1: The e�ect of super-resolution compared using PSNR

Method LF Super-Resolved LF Original

PSNR 34.4412 29.22
PSNR Single Frame 21.1717 19.23

The �rst entry of table 5.1 is computed by determining the average PSNR values across

all of the in-between frames and the four corner views as speci�ed in the original paper.

The second entry is the PSNR value of all the views of a single frame. Based on both the

results the newly generated video performed better compared to the original light �eld

video.

5.2.2 SSIM

Although PSNR can be argued to be a good approximation of the overall image quality,

research studies have proved that it fails to correlate well with human perceptual visual

quality (44). Hence, a new evaluation metric called Structural Similarity (SSIM) index is

considered which is capable of approximating the way the human visual system processes

structural information by assigning a numerical value. This numerical value is computed

by using the variance and mean pixel intensity between the two images under comparison

and the covariance between the images respectively. SSIM approximates the contrast,

luminance and the structure of the image. The mean structural similarity is obtained by

computing the local similarity of small windows across the images and averaging them

(43).

The table 5.2 lists the SSIM value index for the original and super-resolved light �eld

video. The way the input images were collected for evaluation is same as the methods

used for determining PSNR in Section 5.2.1. In the results published in (1) the SSIM

values were already very close to a perfect similarity value of 1. And the images compared
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Table 5.2: SSIM between the original and super-resolved light �eld frame

Method LF Super-Resolved

SSIM 0.9237
SSIM Single Frame 0.9754

between the frames of the video with the ground truth. In this tests, the SSIM value

is compared between the original video and the super-resolved one. From the results

captured in Table 5.2, we can infer that the super-resolution preserved the high similarity

index and no substantial loss was introduced.

5.3 No-Reference Evaluation

Computing PSNR or SSIM requires the original high-resolution reference image to de-

termine the extent to which the super-resolved image corresponds with it. And the

fundamental problem is that a perfect quality high-resolution image is never available

for such an comparison. Although human observers can easily spot the degradation or

enhancement without the reference image, it is a subjective process and cannot be in-

tegrated into the super-resolution pipeline. Therefore estimation of image quality using

an assessment that co-relates well with human perception but without the use of any

reference image is necessary. Therefore this evaluation is also done in this project using

Matlab's inbuilt models.

For this purpose, a No-Reference Quality Assessment Model provided by Matlab is

used. The model itself is called the Blind/Referenceless Image Spatial Quality Evaluator

(BRISQUE) and uses a training based approach to compute a quality score. The training

is done using predictable statistical features called Natural Scene Statistics (NSS). The

BRISQUE model uses images along with subjective quality scores for training and thus

has the highest co-relation with human perception of quality compared to other models

provided by Matlab (45). The default BRISQUE model is used for evaluation. But the

most suitable model for this project would be a custom model trained by a collection of
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light �eld images each with a subjective evaluation image quality assessment score. Since

such a dataset is not available, the default model is used. The BRISQUE score obtained

by using this model is captured in Table 5.3.

According to MATLAB documentation the image that has the better perceptual visual

Table 5.3: The e�ect of super-resolution compared using BRISQUE

Method LF Super-Resolved LF Original

BRISQUE 20.6586 24.5643
BRISQUE Single Frame 23.1123 22.6723

quality will have a lower BRISQUE score (46). And from Table 5.3 it is evident that the

super-resolved video frames have a better perceptual visual quality than the original light

�eld video frames. Also comparing to the data observed in Table 5.2 which also evaluates

the overall perceptual quality, the BRISQUE score value follows a similar pattern.

5.4 Depth From Video

In this test, the video is analysed to determine how accurate is the depth information of

objects in the scene is captured. Usually, light �eld images with better angular resolution

will have rich depth information as well. But this project is focused on spatial resolution

and this test is performed only to ensure that the spatial super-resolution did not com-

promise the angular resolution of the original light �eld video. This test is performed in

(1) and Wang has reported the results compared to a state of the art depth estimation

method called depthTransfer. However, in this project, the frames of super-resolved video

is compared with the frames of the original light �eld video and analysed for any loss of

depth information. This is done by extracting the middle view of both the light �eld video

and comparing it with the ground truth image. The data used for this purpose is part of

the dataset used for training the CNNs in (1) and made available publicly. The middle

view of the generated light �eld video is compared because its orientation is the closest

to the orientation of the ground truth image captured by the light �eld camera.
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Figure 5.3: Original Figure 5.4: SuperResolved

The �gures 5.3 is the inverted result of the absolute di�erence between the frame generated

by the original light �eld video and the ground truth. On the other hand, the �gure 5.4

is the absolute di�erence between the ground truth (�gure 5.6) and super-resolved light

�eld video and the ground truth (�gure 5.6). We can observe from the image that

both of the di�erences look quite similar. This means that the super-resolution has not

compromised any of the information generated during interpolation. The same argument

can be extended to other views of the light �eld to prove that the views generated by the

super-resolved pipeline are consistent with the views generated by the original pipeline.

This implies that the depth information that can be acquired from the light �eld is not

a�ected in any manner.

To further strengthen the argument on the similarity between the �gures 5.3 and 5.4,

Figure 5.5: SSIM between Fig 5.3 and Fig
5.4

Figure 5.6: GroundTruth
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the structural similarity index (SSIM) (Described in 5.2.2) is calculated and is shown in

the �gure 5.5 and the value itself was 0.837, which indicates very high similarity between

the images.

5.5 Quantitative Evaluation

Wang performs the quantitative evaluation in (1) to measure the performance of inter-

polating the light �eld and 2D video frames into a light �eld video. Hence, the system

is compared with di�erent video interpolation techniques by varying the quantity of the

input. The quality of the video is determined by calculating the PSNR and SSIM values

of individual frames. But this has already been evaluated in detail in previous sections.

Therefore another parameter valid for quantitative evaluation - the overall time taken

to generate the super-resolved interpolated video is considered in this section. The time

taken for each dataset is described in the table 5.4. It can be easily observed that the

Table 5.4: Time taken for each datasets.

Dataset Time (Minutes)

Train 195
Cat 240
Girl 234
Cat on Train 292

time taken is in order of several hours. And based on analysis of the total time taken it

was detected that over 97% of the time is incurred by the GB regularised spatial super-

resolution that has been integrated into the light �eld video generation pipeline. The

main reason is due to the optimisation process which bypasses the requirement of high-

resolution light �eld images as input for the super-resolution process. Every iteration of

computation of the inter-view graph and warping matrices takes considerable processing

time. This is reported in the original publication as well (39). In addition, this process

had to be applied for each light �eld frame produced by the camera at 3 frames per

second. This exponentially increased the overall time. Since the goal of the project was
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only achieving super-resolution of light �eld video, the optimisation of the overall time

taken is not carried out.
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6 Conclusion

The �nal product of this thesis is a new pipeline which is capable of producing the light

�eld video of good spatial resolution. And as shown in the section 5 the overall quality of

the video is enhanced without any compromise to the other features of light �eld video.

The spatial super-resolution has been enhanced while preserving the integrity of the light

�eld video such as angular resolution and other post-capture processing e�ects. The prin-

ciple demonstrated in this dissertation �xes one of the major problems in the development

of light-weight, hand-held and low-cost light �eld video cameras so that it can be used

on an airborne platform. Many other issues have been identi�ed in the development of

such a camera and documented as part of this dissertation. This provides scope for a

lot of research that can be performed. In fact, there was very limited work being done

one light �eld videos. One of the major reason being the poor overall image quality due

to the spatial-angular resolution tradeo� resulting in a meagre return on investments.

This dissertation by successfully enhancing video quality using super-resolution tries to

restore the commercial viability of light �eld video research. Light �eld video has many

applications such as dynamically refocusing during video runtime, tracking the focus of

an object throughout the scene etc. Although these features are not developed in this

research lack of spatial resolution was rendering these features e�ectively useless. By en-

abling usage of such features, this dissertation extends the many bene�ts of current light

�eld technology. Detailed comparative study of various spatial super-resolution algorithm

has been performed. This study has been included in this report which can serve as a

survey material for future works.
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6.1 Future Work

Almost all of the issues that can be addressed in Light Field videography that is docu-

mented in this dissertation can be explored as a future work.

6.1.1 Real-Time Light Field Video

Another important aspect that can be improved relates to the Quantitative evaluation

mentioned in the section 5.5. From the time taken to generate each video, it is evident

that the entire system takes in the order of several hours. But many systems can bene�t

from the video generation being real-time in order to use the features of light �eld video

e�ectively. For instance, computer systems on driverless cars have only a few milliseconds

to interpret the current situation from the data produced by the camera and make a

driving decision. Therefore, real-time light �eld video generation can be pursued as a

potential future work.

6.1.2 Evaluation with other Spatial-SuperResolution

The evaluation results that have been recorded in section 5 of this dissertation only proves

that the new video generated has certainly better spatial-resolution than the original

light �eld video generated by Wang (1). But it is worth highlighting that the work

by Wang (1) never intended to achieve good spatial resolution. Hence the evaluation

results do not prove that the method proposed in this work is the best way to spatially

super-resolve the light �eld video. Although a detailed qualitative analysis was done to

compare di�erent spatial light �eld super-resolution techniques before �nalising on using

Graph-Based Regularisation (39), a more thorough study would involve integrating other

techniques into the pipeline and evaluate the di�erent light �eld video produced against

each other and the ground truth.
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