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Video Soft Colour Segmentation

Johanna Barbier, Master of Science in Computer Science

University of Dublin, Trinity College, 2018

Supervisor: Aljosa Smolic

This dissertation explores the extension of a state-of-the-art image-based soft colour
segmentation into the video domain. The objective is to design an automatic video
soft colour segmentation that decomposes an input video into a set of colour layers
with transparency channels. The output layers have to be spatially and temporally
coherent. To answer this objective, the implemented method is divided into two parts:
a layer initialisation technique using optical flow to provide temporal information, and
a colour model estimation to correctly represent the current frame colour distributions.
This method is evaluated on the Blender Sintel animated movie in terms of temporal
smoothness, reconstruction error and time performance. While the layer initialisation
technique yields unexpectedly poor results, it uncovers a transparency diffusion be-
haviour of the original image-based segmentation. As for the colour model estimation,
fixing the colour model on detected video cuts produces temporally coherent output
layers and speeds up the video segmentation process.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, video editing software allows various colour editing such as saturation,

gamma, contrast or brightness corrections. These widely used tools enable creative

content over the full sequence of a video. However many of these edits are limited to

the global image scope and does not allow local modifications.

Video soft colour segmentation is the process of segmenting a video into temporally

consistent layers of different colours and opacities. These layers usually consist of fully

opaque and fully transparent regions, as well as pixels with alpha values between 0 and

1 wherever multiple layers overlap. On each layer, the represented colours should be

homogeneous, i.e. the variance of colours should stay small. Finally, when summed

back together, the output layers need to accurately reconstruct the input video. When

these requirements are fulfilled, it is then possible to apply per-layer modifications on

the resulting layers. Thus it allows an input video to be edited locally by changing

regions of similar colours in a post-processing step.

This process should enable further control over the video manipulation and allow

the creation of more complex visual effects. For instance, a layer containing the hair

colour could be contrasted more compared to the rest of the video elements, or the sky

colour changed. In the case of an animated movie, this video segmentation and post-
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processing step does not require access to the full scene’s initial objects and lighting.

The output video could directly be processed into video soft colour layers and then

edited. To sum up, this video segmentation could be used as a post-processing step to

give more freedom for video editing.

1.2 Objectives

The objectives of this thesis are to automatically extract soft colour segments from a

video. These soft colour segments, also known as layers in traditional editing software,

should be temporally consistent throughout the video. They should also reconstruct

the original video when summed back together. This is a necessary condition to allow

flawless video editing. Finally we want this video segmentation to be as fast as possible.

To satisfy these objectives, we work on the extension of the state-of-the-art paper

“Unmixing-Based Soft Color Segmentation for Image Manipulation” published by Ak-

soy et al. in 2017 [1]. They present an image-based soft colour segmentation algorithm

that efficiently decomposes an image into colour layers with transparency channels.

This soft colour segmentation allows different segments of the image to be processed

independently. For instance, the user can modify a layer colour or replace it by a

background image (see fig. 1.1).

Figure 1.1: Input image (a) decomposed in soft segments (b) that can be used for
image editing (c) or compositing (d).

The aforementioned paper is the foundation of our research and its method is

described in section 2.1.2. Our objective is to extend this existing soft colour seg-
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mentation for images to a video soft colour segmentation. The goal is to preserve the

layers’ colours and temporal information between frames in order to create a fast video

segmentation. To this end, we design a method which is twofold: how to use optical

flow information to ensure temporal smoothness in the output layers on the one hand;

and how to properly set the colour model throughout the video on the other hand.

Eventually this research could be integrated into an editing software for clients from

movie and visual effects industries. It could allow video editing such as colour editing:

changing the sky colour to red in the first frame of the video and have it automatically

spread to the remaining frames.

1.3 Plan of the Dissertation

To start with, chapter 2 reviews the state of the art in both image and video soft

colour segmentation. In particular, the first section details the unmixing-based pa-

per by Aksoy et al. [1] which is the foundation of this dissertation work. Then the

video segmentation section reviews the recent competitive methods proposed for video

processing and especially those using optical flow.

The design of the proposed video soft colour segmentation method is detailed in

chapter 3 together with its implementation. This chapter also includes preliminary

work carried out on the image-based soft colour segmentation initial code. Our method

can be divided into two parts: the layer initialisation technique using optical flow on

the one side and the colour model estimation on the other side.

Results for each step of the proposed method are given in chapter 4 for sequences

extracted from the Blender Sintel animated movie. Each section starts by describing

the evaluation process as well as the chosen metrics. The output layers are evaluated

based on their temporal smoothness and on the overall time performance while the

colour model estimation is evaluated depending on its time performance and how well

the output layers reconstruct the original frame.

The conclusion in chapter 5 summarises the main contributions and gives possible

avenues for future work.

3



Chapter 2

State of the Art

This chapter presents state-of-the-art works regarding image soft colour segmentation

first and video soft colour segmentation second.

2.1 Image Segmentation

2.1.1 Definition

In the field of image processing, image segmentation is the process of separating an

input image into different parts and is usually done at the pixel level. Each of these

parts corresponds to regions or objects that have similar features or characteristics.

Even though this is a fairly easy task for a human brain, intelligently recognising

objects of regions is a complex task for a computer and this need has lead to the

development of a broad range of methods on the segmentation of images.

Following this discussion, colour segmentation is the process of segmenting an input

image into regions of distinct colours. Compositing the sub-images of each region should

output the original image.

While the traditional hard segmentation exclusively sets every pixel as present or

absent from a region, soft segmentation allows a pixel to be part of several regions by

varying its opacity component or probability of belonging to a certain region. In the
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literature soft segmentation can also refer to any method computing both a label as

well as a confidence value for each point in the feature space. Under that definition

even the K-means clustering algorithm [2] can be described as a soft segmentation

method.

In this thesis, soft segmentation is defined as the decomposition of an image into

a set of layers with alpha channels and homogeneous colours, such as in fig. 2.1. In

other words every pixel can appear in different colour regions with different opacities

as long as the sum of its colour value weighted with its opacity equals to the original

pixel colour and an opacity of 1. This report uses interchangeably the following terms:

alpha from RGBA (Red-Green-Blue-Alpha) colour representation, transparency and

opacity. Soft colour segments are analogous to colour layers with alpha channels that

have been commonly utilised in modern image manipulation software. These layers

usually consist of fully opaque and fully transparent regions, as well as pixels with

alpha values between 0 and 1 wherever multiple layers overlap.

Figure 2.1: Sintel alley2 input image and its corresponding output layers.

The following subsections first describe the soft colour segmentation technique pre-

sented by Aksoy et al. in 2017 [1] and then discuss how it compares to other state-of-

the-art methods.

2.1.2 Unmixing-based Soft Colour Segmentation

Published in 2017, the paper “Unmixing-based Soft Color Segmentation for Image Ma-

nipulation” [1] proposes a competitive method producing high-quality colour segments.

Therefore it was chosen as the foundation for our video soft colour segmentation. Given

an input image, the presented technique starts by computing a set of prevalent colour
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distributions known as the Colour Model (CM). The original image is then segmented

in several layers, each layer being associated with a colour distribution from the CM.

Figure 2.2 shows an example of an input image, its corresponding CM, as well as the

layers after segmentation.

Figure 2.2: Left: Input image and associated Colour Model means. Right: Output
layers corresponding to the colour distributions.

This subsection first explains the colour model estimation method and then de-

scribes the soft colour segmentation technique. The colour segmentation can be divided

into three subsequent steps described below: Colour Unmixing, Matte Regularisation

and Colour Refinement. During this segmentation process, a set of constraints needs

to be satisfied. References from other related works are also given.

Colour Model Estimation

The colour model gives an approximate representation of the colours in an input image.

It is made up of N normal distributions N (µi, σi)i=1,..N . Each normal distribution is

associated with a layer, with µi determining the mean colour of the ith layer, and σi the

variance of colours in this ith layer. The size of the CM and the colour distributions are

automatically estimated using the input image. The method consists in dividing the

RGB colour space into 10*10*10 bins. Every pixel from the input image is then going

to vote for its own bin depending on how well it is already represented by the current

-possibly incomplete- colour model. This is done by calculating a representation score

rp for each pixel p as follows:
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rp = mini({Di(ui),∀i} ∪ {Fi,j,∀i,∀j 6= i}), (2.1)

where Di(ui) is the Mahalanobis distance between ui, the RGB colour of the pixel

p in the ith layer, and the current ith layer colour distribution N (µi, σi). Fi,j is a

simplified version of the colour unmixing function (equation 2.3) in the case of a two-

colour mixture. The first term of this equation represents how well the current pixel

fits a single colour distribution from the colour model, while the second term shows

how well the pixel can be represented as a mixture of two colour distributions in the

colour model.

After computing the representation score of every pixel, the RGB bin with the most

under-represented pixels is selected. For every pixel in this bin, the algorithm looks

back at its 20x20 pixel neighbourhood in the input image. The next seed pixel is the

one surrounded by the most other pixels from this same under-represented bin. Then

the colour mean µi and covariance σi in that 20x20 neighbourhood of pixels from the

selected bin are computed. The resulting colour distribution N (µi, σi) is added to the

colour model. This process is re-iterated until the majority of pixels in the input frame

are correctly represented.

Constraints

A crucial property of soft colour segmentation is for the resulting layers to sum up to

the original image. This allows the editing of individual layers without degrading the

final output. In mathematical terms, we want every pixel to satisfy the colour, alpha

and box constraints as follows:

∑
i

αiui = c,
∑
i

αi = 1, and αi,ui ∈ [0, 1], (2.2)

where, for the current pixel, αi denotes the opacity value for the ith layer, ui the

layer colour in RGB for the ith layer and c the original colour of the pixel in the input

image.

In equation (2.2), the colour constraint states that we should obtain the original

7



colour c of a pixel when we mix the underlying colours ui using the corresponding alpha

values αi; the alpha constraint states that the alpha values αi should sum up to unity

assuming the original image is fully opaque; and the box constraint limits the range of

possible alpha and colour values.

Colour Unmixing

In this first step, [1] proposes a novel energy formulation “Sparse Colour Unmixing”

(SCU) which upgrades the energy function introduced by Aksoy et al. for green-screen

keying in 2016 [3]. SCU decomposes the input image into soft compact layers of ho-

mogeneous colours by unmixing the colour of each pixel independently. It produces

compact colour segments by favouring fully opaque or transparent pixels. This com-

pactness is the principal upgrade compared to green-screen keying. To this end, each

layer is associated with a colour distribution from the pre-computed colour model.

The sparse energy function to be minimised for each pixel is expressed as follows:

Fs =
∑
i

αiDi(ui) + s

(∑
i αi∑
i α

2
i

− 1

)
, (2.3)

where αi is the opacity value of the pixel in the ith layer, Di(ui) is the Mahalanobis

distance between ui, the RGB colour of the pixel in the ith layer, and the current ith

layer colour distribution N (µi, σi). µi is the mean and σi the variance of the colour

distribution N . s is the sparsity weight and is set to 10 in the implementation at this

step.

The minimisation of this Fs function is used to estimate the alpha values αi and

the RGB colour ui while respecting the constraints using the method of multipliers

introduced by Bertsekas in 1982 [4]. The used algorithm is well explained in section 3.1

of the green-screen keying paper [3]. The Mahalanobis distance penalises RGB colour

that are too far from the current layer mean colour and thus imposes homogeneous

colour layers. The first term of this equation is similar to the energy function found

in green-screen keying [3]. However the second term called the sparsity term is a new

one and enforces compact layers, i.e. layers with opacity values being either 0 or 1.

This prevents pixels to be present in too many layers with small alpha values which
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was happening with the green-screen keying method.

Matte Regularisation

Afterwards the resulting layers have their opacity channels spatially filtered in order

to provide spatial coherency, hence smoothness. Indeed as the colour unmixing min-

imisation is done at the pixel level independently, spatial coherency needs to be taken

into account at this point. The pixel-based minimisation alone may result in sudden

changes in opacities that do not quite agree with the underlying image textures, as

shown in fig. 2.3(b). Hence, spatial regularisation of the opacity channels is necessary

for ensuring smooth layers as in fig. 2.3(c).

This matte regularisation is usually done using the matting Laplacian introduced

by Levin et al. [2008] [5] combined with the linear system solved by Gastal and Oliveira

[2010] [6] to include the spatially non-coherent alpha values. Even though it regularises

matte very effectively, this method is computationally and memory expensive which

is why the guided filter proposed by He et al. [2013] [7] is used instead. This guided

filter is an edge-aware filtering technique that uses a guide image to extract the edge

characteristics and then filters a second image using the edge information from the guide

image. The edges are extracted using the texture information of the guide image.

Figure 2.3: Two layers corresponding to the dark (top) and light (bottom) wood colour
in the original image (a) are shown before (b) and after (c) matte regularisation and
colour refinement.

He et al. demonstrates that satisfactory alpha mattes are obtained when the guided

filter is applied with the original image as the guide image. As these alpha mattes

are already properly minimised through the sparse colour unmixing step, the guided

filter provides a sufficient quality approximation of the matting Laplacian behaviour.
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However, the filtered opacity channels might no longer add up to 1 with this method,

therefore Aksoy et al. normalise the sum of alpha values for each pixel after filtering

to get rid of small deviations from the alpha constraint. This normalisation alters the

RGB colours which no longer respect the colour constraint.

Colour Refinement

The colour refinement aims at correcting the layers’ artefacts potentially created in the

matte regularisation step. The previous step only filtered the alpha values and this

step refines the RGB colour values while taking into account the regularised alpha. In

order to do so, the energy function (2.3) is minimised once again with the following

modified alpha constraint:

∑
i

(αi − α̂i)
2 = 0, (2.4)

which ensures that the output alpha αi is close to the previously regularised alpha

α̂i for the ith layer. This step does not require the sparsity term of the energy function

(2.3) as the regularised alpha values have to be retained and need no modification;

consequently s is set to 0 in this step. Eventually the unmixed colours at all layers are

re-estimated so that they satisfy the colour constraint while retaining spatial coherency

of the alpha channel.

Summary

Aksoy et al. [1] starts by automatically estimating the size and colour distributions of

the colour model from the input image. Each of this distribution is associated with

a layer for the soft segmentation algorithm. The soft segmentation process starts by

minimising the SCU energy function (2.3) for every pixel independently. Afterwards

the resulting layers have their opacity channels spatially filtered in order to provide

spatial coherency. Finally the energy minimisation is run once again but with an

augmented alpha constraint to ensure that the basic colour, alpha and box constraints

potentially overridden in the previous regularisation step are correctly satisfied. Hence,

resulting soft segments satisfy the fundamental colour, alpha, and box constraints, as
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well as the matte sparsity and spatial coherency requirements for high-quality soft-

segmentation. Furthermore, as the two energy minimisation steps are performed for

each pixel independently, this algorithm is also highly scalable and parallelisable. For

a full description, please refer to the original paper [1].

2.1.3 Related Works

This subsection discusses other state-of-the-art methods in soft segmentation, and how

the unmixing-based soft colour segmentation by Aksoy et al. in 2017 compares to

them. They can be categorised into unmixing-based and affinity-based methods.

Unmixing-based methods such as [8], [3], [9] and the one presented previously [1]

process the input colour of each pixel given a statistical representation for the layers

in order to turn it into a set of RGB colours with corresponding opacities.

In Tai et al. [2007] [8], the problem formulation and constraints are similar to

[1], but the energy function is alternatively optimised between the colour values, alpha

values and colour model. Though converging to a good optimal solution, the alternation

process tends to have layers oscillating between two solutions as the iterations progress.

Eventually this interdependence can lead to unnatural gradient in layer alphas.

Tan et al. [2016] [9] use a different approach by fixing the layer colours beforehand

and optimising only the opacity values. They start by extracting the colour model

from the convex hull formed by the input image pixels in RGB space. The output

layer colours are fixed to this predetermined colour model and then optimised only for

their alpha values. They also construct layers using an overlay representation where

the sum of alpha values for each pixel can be greater than one. This method requires

the user to initially input both the number of layers and their ordering. Additionally,

layers can not have colours close to the centre of the RGB cube as the colour model

is extracted from the boundaries of the convex hull. Therefore, the colour model can

include imaginary colours absent from the input image which, in turn, can lead to

incorrect image reconstruction.

The green-screen keying method by Aksoy et al. [2016] [3] proposes an energy

function which is shared with the first term of the sparse colour unmixing equation
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(2.3). They introduce alpha sparseness by estimating a per-frame local colour model,

which locally determines a subset of the global colour model. The first estimation of

this local colour model is done with a Random Markov Field optimisation that later

has to be manually refined by the user to correct artefacts. This method achieves

satisfactory results for green-screen keying but requires user input. It also lacks a

measure for spatial coherency which results in abrupt transitions between layers.

Affinity-based methods such as [10], [11], [12] aim to use local or non-local pixel

proximities to propagate a set of given labels to the rest of the image. All the following

methods arise from matting estimation. Image matting deals with the estimation of

the alpha matte at each pixel, i.e. the contribution of the foreground and background

layers at each pixel.

Levin et al. [2008] [10] technique extracts layers with varying opacity values but

without colour. The soft segments are automatically computed from eigenvectors cor-

responding to the smallest eigenvalues of a suitably defined Laplacian matrix. The

Laplacian matting matrix is introduced in a previous paper by the same authors in

early 2008 [5]. It is used to evaluate the quality of a matte by focusing on the alpha

channels without explicitly estimating the foreground and background colours. This

approach extends traditional spectral hard segmentation techniques to the extraction

of soft matting components. Their primary aim is to extract spatially connected soft

segments, rather than layers of homogeneous colours. However, their formulation re-

quires user input and fails to keep the alpha values between 0 and 1.

Singaraju et al. [2011] [11] introduce a method for estimating alpha mattes for

multiple image layers (N > 2), extending the traditional foreground-background seg-

mentation. They estimate alpha mattes two layers at a time and eventually connect

these sub-problems together. However, their closed-form approach can not satisfy both

non-negative alpha values and the alpha values summing up to one at the same time.

Similarly to the previous method by Levin et al., only the alpha values are estimated

and an additional step is required to obtain the layer colours. Singaraju et al. estimate

these colours that best fit the pre-computed alpha values using the energy function

introduced in [5]. Unfortunately, the colour constraint is not necessarily satisfied with

that formulation.
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The KNN matting method by Chen et al. [2013] [12] extracts layers by using

K Nearest Neighbours (KNN) to match non-local neighbourhoods. Unlike Singaraju

work, their estimated alphas naturally satisfy the alpha constraint of equation (2.2).

Given the alpha value, their closed-form solution can be elegantly generalised to extract

multiple image layers (N > 2). Following their non-local alpha computation, KNN

matting solves a sparse linear system to estimate the layer colours independently. This

method generalises well to any colour, feature space, dimension, any number (N > 2)

of alphas and layers at each pixel. In fact, this non-local approach produces higher-

quality soft layers when compared to its local counterparts [10] and [11]. However it is

highly computationally intensive and disturbing block-shaped artefacts can appear on

the layers due to KNN hard constraints around the seed pixels (see fig. 2.4).

Figure 2.4: A layer computed by Aksoy et al. 2017 algorithm (b) and KNN Matting
(c). KNNs hard constraints on alpha values may cause artefacts as shown in the inset.

To summarise, this section shows an in-depth discussion of state-of-the-art soft

segmentation methods with a focus on their differences and shortcomings when com-

pared to the “Unmixing-based Soft Color Segmentation for Image Manipulation” one.

Throughout this research, we see that the technique presented by Aksoy et al. in 2017,

explained in-depth in section 2.1.2, has several advantages in terms of the quality of

the opacity channels, the colour content of individual layers and the absence of user

input. Indeed, it satisfies the colour, alpha and box constraints; it does not require a

predetermined layer ordering or other kind of user input; it provides smooth transitions

between layers; and it is scalable to high-resolution images and parallelisable thanks

to its per-pixel formulation. In contrast, the other analysed techniques fail in at least

one of these aspects. Consequently, this is the soft colour segmentation technique used

as foundation of our video soft segmentation.
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2.2 Video Segmentation

The previous section presents image-based soft segmentation state-of-the-art methods

and details the one selected for our video soft colour segmentation. It is now time to

review the state-of-the-art techniques that can help extend this work to the temporal

domain by particularly ensuring temporal consistency in the results. The great ma-

jority of papers referring to video segmentation deals with hard segmentation which

targets the extraction of semantically meaningful regions. Video segmentation aims at

grouping pixels into spatio-temporal regions that exhibit coherence in both appearance

and motion. Such a segmentation is useful for several higher-level vision tasks such as

activity recognition, object tracking, content-based retrieval, and visual editing.

Most high-quality video segmentation methods present some forms of motion track-

ing or optical flow to enforce temporally coherent segmentation. Temporal consistency

is usually acquired through the use of optical flow, hence we first detail optical flow

computation methods, then recent temporal filtering techniques utilising optical flow,

and finally related works on video segmentation.

2.2.1 Optical Flow

Optical flow (OF) is the pattern of apparent motion of image objects between two

consecutive frames caused by the movement of objects or cameras. It is the visible

motion of an object in an image, and the apparent flow of pixels in an image. It can

be represented as a 2D vector field where each vector is a displacement vector showing

the movement of pixels from the first frame to the second. Real motion may or may

not give rise to optical flow. For example, a sphere uniformly illuminated and rotating

about the axis parallel to the image plane would not render optical flow even though

real motion exists. Conversely, a stationary sphere with a moving light would render

optical flow without real motion.

The first breakthrough papers enabling optical flow computation are differential

methods published in 1981 by Lucas and Kanade [13] on one side, and Horn and

Schunck [14] on the other side. Both methods propose valid assumptions to formulate

solvable equations; they share the brightness constancy assumption which states that
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image intensities remain constant under their displacement. In addition, Lucas-Kanade

technique assumes that neighbouring pixels have similar motions and computes OF

using a local approach; while Horn-Schunk considers a global approach by expecting

smoothness in the flow over the whole image and minimises a corresponding energy

function.

Lucas-Kanade method is simple and widely used. It resists well to image noise

compared to point-wise method as it combines information from several nearby pix-

els. On the negative side, it cannot provide flow information inside uniform regions

of the image as it is purely a local method. Horn-Schunk technique contrasts with

Lucas-Kanade one as it produces a higher density flow field. Indeed more pixels are

represented because the flow information inside homogeneous regions of the image are

filled in from the motion boundaries. On the downside, Horn-Schunk technique is more

sensitive to noise than local methods such as Lucas-Kanade one.

Obtaining a reliable optical flow for real-world videos remains a challenging prob-

lem caused mainly by the recurring complex cases of motion discontinuities, large

displacements and occlusions. Since Horn-Schunk in 1981 who were the first to formu-

late optical flow estimation as an energy minimisation, energy-based approaches have

become increasingly popular and many effective ones have emerged to improve the

performance with complex motions [15][16]. Even though these methods are combined

with a coarse-to-fine scheme, they still often fail to estimate large displacements caused

by fast motions. Sun et al. [17] offer a great analysis of the current practices in optical

flow and the principles behind their enhancement. They point out that the majority

of today’s methods strongly resembles the original formulation of Horn and Schunk.

Indeed, they combine a data term that assumes constancy of some image properties

with a spatial term that models how the flow is expected to vary across the image. An

objective function combining these two terms is then optimised.

Improvements come from additional techniques. The classical methods all perform

beyond the original Horn-Schunk algorithm by using a spatial pyramid to cope with

fast motion. This spatial hierarchical matching is investigated in recent papers such

as those by Kim et al. [2013] [18], Hur et al. [2015] [19] and Hu et al. [2016] [20].

It consists in building a pyramid of an input image in different resolutions; and then

using the matching correspondences from higher levels of the pyramid as a guidance
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for the matching process on lower levels in a coarse-to-fine scheme.

Furthermore, some state-of-the-art methods are inspired by the Nearest Neighbour

Field (NNF) algorithms. NNF computation aims at finding one or more nearest visually

similar neighbours for every patch in a given image against another image. Being highly

computational intensive, several methods have advanced the efficiency of computing

NNF since the seminal work called PatchMatch by Barnes et al. in 2009 [21] to the

improved methods by He et al. in 2012 [22] and Korman et al. in 2016 [23]. The key

reason for this computational time enhancement lies in random search and propagation

between neighbours.

In 2016, Hu et al. [20] introduce CPM (Coarse-to-fine PatchMatch) matching

method that combines an efficient random search strategy using NNF (PatchMatch)

with a coarse-to-fine scheme of hierarchical architecture to handle optical flow with

large displacements. They introduce a fast propagation technique between each pyra-

mid level. The proposed CPM algorithm starts with constructing the pyramids and

processing them from top to bottom. On each level, the initial matching correspon-

dences are propagated with random search after a fixed number of time, and the results

of each level are used as an initialisation of the next lower level. The results after the

propagation on the finest level are their matching results. Their work assumes that

the visual similarity between two image regions is the most important clue for large

optical flow estimation.

To summarise, state-of-the-art OF methods are mainly energy-based methods re-

sembling the original Horn-Schunk technique. They can be local or non local; and

additionally use Nearest Neighbour Field for random search, or a spatial pyramid al-

lowing coarse-to-fine propagation. One of the best performing technique is the CPM

matching method by Hu et al. [2016] which combines an efficient random search with

the coarse-to-fine scheme on a sparse image grid structure. The evaluation on modern

datasets such as the MPI-Sintel Database [24] shows that CPM is capable of pro-

viding highly accurate optical flow for large displacements and is more efficient than

state-of-the-art methods with similar quality.
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2.2.2 Temporal Filtering

In this section, we describe recent state-of-the-art papers in the field of temporal fil-

tering. Within the scope of video segmentation, spatial filtering improves smoothness

at the frame level and temporal filtering enhances the temporal consistency between

two successive frames. It should enforce that colour segments stay temporally similar

within the same video shot. In general, temporal filtering uses classic image-filtering

methods extended to the temporal axis t. Therefore this section starts with a quick

description of common image-filtering methods.

Initially, the most widely used filtering operation attenuates or removes noise in a

specific signal (image). In order to correctly restore the signal (image), the methods

either require to model the signal from an initial belief or to learn the underlying

characteristics of the signal from the given data. Using the latter has become very

popular notably with the rise of patch-based techniques [25] [26] [27]. Patch-based

methods look for similarities and affinities at both the local and non-local scopes.

They measure affinities between a given data point, patch or region of interest and

others in the given image. These similarities are then used to filter contributions from

more similar data values with higher weights, and to properly discount filtering between

data points that are less similar. Other filtering techniques include the efficient Mean

Shift algorithm [28] from pattern recognition and general regression problems such as

least-squares regression [29] from machine learning. For a recent description of general

filtering methods in image applications, please refer to Milanfar exhaustive review in

2013 [30].

Edge-aware (EA) filtering methods generate useful local flexibility to the given data

by following the frame spatial information. One of the first established EA methods

is the bilateral filter (BF) [25] which is easy to construct and simple to compute.

Since then, a great diversity of EA filters [31] [32] [33] [34] [35] has been developed for

diverse applications such as colourisation, High Dynamic Range (HDR) tone mapping,

detail editing and noise reduction. The Weighted Least Squares (WLS) filter [31]

is a celebrated method producing high quality results which suppresses artefacts by

penalising the distance between the original and filtered images; on the downside it has

a high computation cost. Methods such as the Guided Filter (GF) [7], the Permeability
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Filter (PF) [36] and the Domain Transform (DT) [32] show a good trade-off between

quality and complexity. GF and DT, however, still suffer from halo-artefacts, which

is not the case of PF. PF is designed to mimic similar behaviour as the high-quality

WLS filter - but with significantly lower computational complexity.

Temporal consistency is one of the main challenges in video processing as the frame-

by-frame brute force approaches of computing image-based methods often produce in-

correct visual artefacts [34]. Spatio-temporal EA filters [33] [34] perform well in remov-

ing high-frequency temporal artefacts such as noise and flickering. On the other side,

some algorithms such as described in [37] and [38] can correct low-frequency defects,

but their large optimisation formulations provoke a significantly increased complexity

and necessitate pre-computed accurate optical flow. Even if limited for handling low-

frequency noises, spatio-temporal EA is an efficient trade-off for introducing temporal

consistency.

Lang et al. [33] produce temporal consistency with their spatio-temporal EA filter

by filtering along motion paths using an iterative approach that simultaneously uses and

estimates per-pixel optical flow vectors. Their method can be used to create temporally

consistent results for optical flow, disparity estimation or scribble propagation among

others. The state-of-the-art method by Schaffner et al. in 2017 [39] enhances Lang et al.

as a mean to yield accurate optical flow using sparse correspondences and interpolation.

They define a temporal filtering extension requiring smaller memory and bandwidth

access to reduce computation and memory resource. This is achieved by filtering only

over the past video frames and using the Permeability Filter (PF) [36] kernel, originally

introduced to filter disparity data, and successfully extended to the temporal domain

to filter HDR data in [34]. The PF can be implemented with linear complexity.

To sum up, this temporal filtering section shows that edge-aware filtering methods

can efficiently introduce temporal consistency in a video. In particular, the recent

method by Schaffner et al. illustrates the convenience of the edge-aware permeability

filter to spatially and temporally refine optical flow. This permeability filter outputs

results similar to the high-quality WLS filter while significantly simplifying the com-

putational complexity.
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2.2.3 Related Works

A first brute force approach to video segmentation is to apply image segmentation

techniques to video frames without considering temporal coherency [40] [41]. While

easily scalable and potentially fast, these methods lack temporal information from

neighbouring frames, which usually provokes apparent flickering across frames. More

appropriate methods include the temporal aspect in their segmentation. For instance,

a paper by Wang in 1998 [42] presents an unsupervised video segmentation technique

divided in two phases: an initial segmentation followed by temporal tracking. Temporal

tracking is performed after the first frame of a video sequence has been segmented into

moving objects. The objective of temporal tracking is to segment the subsequent

frames of the video sequence and to establish a correspondence of moving objects

between frames.

Spatio-temporal video segmentation techniques can generally be separated depend-

ing on whether they simply use past frames or whether future frames are used as well.

Causal methods apply Kalman filtering to aggregate data over time and only consider

past data such as in [43] and [44]. Spatio-temporal techniques utilising past and future

frames typically treat the video as a 3D space-time-volume [45] and segment this vol-

ume thanks to a variant of the mean shift algorithm for segmentation [46] [47]. As for

tracking-based video segmentation methods, they generally define segments at frame-

level and use motion, colour and spatial cues to force temporal coherence [48] [49]. In

addition, Brendel and Todorovic [50] use contour cues to allow splitting and merging

of segments to boost the tracking performance.

Another type of video segmentation can be witnessed in the hierarchical graph-

based video segmentation method introduced by Grundmann in 2010 [51]. This method

generalises Felzenszwalb and Huttenlochers [52] graph-based image segmentation tech-

nique. Grundmann et al. begin by over-segmenting a volumetric video graph into

space-time regions grouped by appearance. Then they construct a region graph over

the obtained segmentation and iteratively repeat this process over multiple levels to

create a tree of spatio-temporal segments. They further improve segmentation quality

by using dense optical flow to guide temporal connections in the initial graph.

Finally a higher-level approach uses a structure-from-motion (SFM) algorithm to
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estimate the 3D-scene structure [53], which is then segmented leading to a correspond-

ing 2D segmentation. It is a model-based approach as it starts by using a robust

structure-from-motion algorithm to identify multiple objects and recover initial 3D-

shape models. Afterwards, these models are used to identify and track the objects over

multiple frames of the video sequence. Though interesting for video segmentation,

SFM has a very high complexity inducing a long computation time.

All the methods discussed above are video hard segmentation. Very little research

has been done in the field of video soft segmentation. We can cite the method by

Bai et al. [2009] [54], which proposes an interactive framework for soft segmentation

and matting of natural images and videos. The technique presented is mainly based

on computation of weighted geodesic distances to user-provided scribbles, from which

the whole data is automatically segmented. The paper displays diverse applications

including extraction of moving foreground from dynamic background in video and

natural and 3D medical images.

The framework is introduced for still images and extended to video segmentation

and matting. For every pixel in the image, they compute the geodesic distance to every

user’s scribbles. The geodesic distance is the smallest integral of a weight function

over all possible paths from the scribbles to the current pixel. The weights are here

selected as the gradient of the likelihood that a pixel belongs to the foreground. This

likelihood is based on a specific feature that can be chosen depending on the image /

video content and on the particular application: a classic choice is pixel colour but for

instance frequency response of Gabor filters can be used for texture images and optical

flow can be used for image sequences of moving objects.

This method by Bai et al. necessitates a heavy user intervention through scribble

drawing to label the region of interest and in a later stage to refine the segmentation.

It can be justified as foreground and background interpretation of objects of interest

can differ from one person to the other. This method is limited as it only depends

on the pixel value distributions. As such, the algorithm performs poorly when these

distributions overlap too much. In principle, this could be solved by tedious additional

user interactions.

To summarise this section on video segmentation, several methods exist for video
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hard segmentation such as efficient spatio-temporal segmentation, hierarchical graph-

based segmentation or structure-from-motion segmentation. However very little re-

search has been done on video soft segmentation yet. A matting example creating soft

segments for the foreground and background of a video was introduced by Bai et al. in

2009. It yields correct results but necessitates heavy user interaction through scribbles

and has difficulties to segment the video in regions where distributions overlap too

much.

The next chapter 3 describes the method we propose for video soft colour segmen-

tation that combines several state-of-the-art background techniques.
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Chapter 3

Design and Implementation

This chapter first presents the design of the proposed method in section 3.1. Then

section 3.2 explains how the method is technically implemented.

3.1 Design

Our objective is to design a video soft colour segmentation which automatically pro-

duces high-quality layers. These layers have to be temporally consistent. The compu-

tation time needed for each individual frame should also be reduced in comparison to

the independent image-based segmentation. Two aspects are analysed to achieve these

objectives: how to use motion information through optical flow to improve the video

layer results, and how to properly set the colour model throughout the video.

3.1.1 Layer Initialisation using Optical Flow

This section introduces a layer initialisation technique using Optical Flow (OF). We

select this technique because we assume that, as optical flow is a measure of motion

information, it can be used to propagate the layer colour and alpha values from frame N

to frame N + 1. These propagated layers can then be employed to initialise the colour

unmixing energy described in eq. (2.3) before this energy is minimised to refine the

layer estimates. Initialising the image segmentation following the optical flow should
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enforce temporal consistency. In addition, using a more accurate initialisation of the

layers in the unmixing energy should also speed up the convergence of the algorithm.

The whole process is shown in fig. 3.1. To begin with, an input frame N is seg-

mented following the image-based soft colour segmentation presented in section 2.1.2.

Afterwards, the output colour layers of frame N are shifted following the OF from

frame N to frame N + 1. This flow can be either computed along the video segmenta-

tion or loaded from given pre-computed flow files at the start of the program. Finally

the shifted layers are used to initialise the colour layers of the subsequent frame before

minimising the energy function (equation 2.3).

Figure 3.1: Overview of the layer initialisation technique. An input image N is first
segmented. The resulting layers are shifted following the optical flow. Finally these
shifted layers are used to initialise the next frame segmentation.

3.1.2 Colour Model Estimation

The Colour Model (CM) represents the principal set of colour distributions of an input

image. Our method uses the colour model computation presented in the image-based
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soft segmentation paper by Aksoy et al. [1]. The whole computation technique is

described in section 2.1.2. In order to extend this image-based estimation to video, the

method examines how and when a new colour model should be computed. Especially,

how to detect the key frames on which the colour model has to be reset. The chosen

technique has to correctly handle video sequences with cuts. A video cut is defined

as the separation between two different video shots. In general, the frames before and

after a cut vary greatly in terms of colours and thus their colour model can be very

different.

Figure 3.2: Different colour model estimation approaches on four successive frames.

The proposed approaches for the colour model estimation summed up in fig. 3.2

are:

1. Independent CM: The first brute force approach consists of computing the CM

for each frame independently and then applying the soft segmentation on each

frame with its associated CM. The quality of this technique mainly relies on the

stability of the CM computation, it requires similar frames to output the same

number and set of colour distributions so that the video segmentation per layer

stays temporally coherent.

2. Fixed CM: A simple approach to keep the same CM for the full video is to

calculate the colour model on the first frame and apply it on all subsequent

frames. However, if the video contains a cut, one can expect difficulty when
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converging to a correct segmentation, particularly if the new shot displays colours

far from the currently fixed CM.

3. Volume CM: A separate way involves stacking all frames from a video together

and estimating the CM from this larger image representing the video volume

before using it individually on each frame. Hence the CM represents all the main

video colours and stays the same throughout the video. The efficiency of this

technique could decrease as the number of frames increases.

4. Fixed CM with cut detection: Finally this last way fixes the CM until a cut is

detected in the video. Every time a cut happens, the layers are reset, the CM

is recomputed and then remains the same until the next cut is identified. The

cut detection is done by calculating the RGB histogram distances between two

successive frames. When this distance is higher than a certain threshold, a cut

is found or at least considered as such. Indeed in some cases, the introduction of

a large object in the scene can be identified as a cut and would also require to

reset the colour model.

3.2 Implementation

This section describes the implementation of the designed video soft colour segmenta-

tion method.

3.2.1 Computer Work Environment

The majority of this dissertation work, including the evaluation, was done on a personal

computer with the following CPU: Intel core i7-3630qm, 2.4GHz; and GPU: Nvidia

GeForce 660M, 2GB. Therefore, the computation time results presented in chapter 4

are performed on a medium-performance machine and would likely be faster on a more

recent and powerful computer.

Our code was implemented on a Linux environment, precisely Ubuntu 16.04. The

code platform is Visual Studio Code associated with an internal GDB debugging. The

25



code is shared on the web-based Git-repository manager GitLab (private link: https:

//gitlab.scss.tcd.ie/V-SENSE/extended_soft_segmentation). Some Linux-lib-

raries such as “boost” or the system “make directory” are used, hence the current

implementation is not directly portable to Windows.

Throughout this dissertation, the open content movie “Sintel” copyright c©Blender

Foundation www.sintel.org produced by Blender Institute [55] is used to present and

test our method. MPI Sintel Dataset [24] contains open-source ground truth optical

flow of the “Sintel” animated movie which are employed for the evaluation of the

method.

3.2.2 Preliminary Work

Before beginning the extension of the available image-based soft segmentation code,

some changes were required. Indeed, upon inspection, it became clear that several

steps needed to be optimised and refined so that the code would accurately reflect the

algorithm proposed by Aksoy et al. [1]. The initial code was an incomplete version as

the Colour Refinement step was missing from it. The Colour Refinement step explained

in section 2.1.2 comes just after the Matte Regularisation step which spatially filters

the alpha values. After integrating the current state of the code in our framework with-

out the Colour Refinement, the computed layers were showing reconstruction issues.

Indeed, some pixels were not converging correctly, which in turn highly increased the

reconstruction error. The reconstruction error represents how far the sum of every layer

is from the original image. Having a low reconstruction error is a necessary condition

to enable correct image editing. The initial code produced layers with alpha values not

adding up 1.0, some of them being as low as 0.5. The following section explains how

we handled this convergence issue.

Initial Code Fixes and Modifications

Figure 3.3 (b,d) shows the opacity error in the reconstructed image as well as the pixels

having an opacity lower than 0.8 or higher than 1.1. Every pixel needs to have their

layer opacity values adding up to a value close to 1.0 in order to enable correct image
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editing. The initial image is a painting by J. M. W. Turner made in 1842 and named

“The Blue Rigi, Sunrise”.

Upon inspection of the original code, we found that when computing the gradient

of the minimisation energy function (equation 2.3) to find the direction towards the

minimum, only the blue channel was taken into account at the expense of the green, red

and alpha channels. This wrong gradient explains why most pixels were not converging

to a correct unmixing. Using an accurate gradient already leads to significantly better

output layers, as can be seen on fig. 3.3 (c,e).

Figure 3.3: Initial image (a), image reconstruction before (b) and after (c) code cor-
rections. Their respective reconstruction error images (d) and (e) show pixels with
opacity values lower than 0.8 (blue) or higher than 1.1 (red).

Nonetheless, the reconstruction remained imperfect, and we focused on the minimi-

sation process to understand why some pixels were still converging incorrectly. In order

to do so, we tweaked several minimisation parameters such as the maximum number of

iterations per pixel before stopping the minimisation, the tolerance value under which

the minimisation stops and whether the method is reaching this maximum number

of iterations or reaching the tolerance threshold. Eventually this study revealed that

the cost function taking a value below this tolerance threshold is not proof of good
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convergence. Indeed the best results are achieved with a high maximum number of

iterations and a very low and unreachable tolerance. The more iterations, the better.

This demonstrates that the tolerance is not playing its part. The original tolerance

value represents the distance between the previous and current pixel unmixing values;

it is equal to the step size between the previous and current pixel unmixing values.

The issue is that this step size is systematically reduced at each iteration and that the

direction in which we step is periodically reset. Therefore if the current direction does

not point towards the minimum, the step size would still get smaller even though the

pixel unmixing colour does not improve. As such, the step size is not a good indication

of convergence. In other words, the step can decrease towards zero even if the energy

minimisation itself is not improving.

Instead of comparing the distance between two subsequent unmixing values of the

same pixel which equals the step size, we choose to compare the distance of the current

pixel colour with the original image pixel colour as follows:

dist =

∥∥∥∥∥∑
i

α̂iûi − c

∥∥∥∥∥
L2

, (3.1)

where ûi and α̂i are respectively the estimated colour and alpha values of the ith

layer at the current step of the optimisation, and c is the original image pixel colour.

The tolerance threshold is set to 4.0 in our current implementation. Eventually after

changing the tolerance to the RGB distance rather than the step size, the reconstruction

error finally goes down and the output layers are perfectly adding up to the original

image. The table 3.1 displays the reconstruction error after each correction step. It is

clear that after the different corrections, the reconstruction error is substantially lower,

which is required to continue towards the video extension.

Initial Code After code fixes After code modifications
Reconstruction Error 0.070638 0.044447 0.000538

Table 3.1: Output layers reconstruction error of the image “The Blue Rigi, Sunrise”
after code fixes and modifications.
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Video Utility

Thereafter, the corrected and modified image-based code is extended to include a

video framework. A class to handle all video operations is introduced. It can load

frames directly from an input folder or from an input video file. An output folder

is automatically created at run-time to organise all the different outputs from the

video soft segmentation. Some utility functions to save all output layers as videos are

also included. However mainstream video formats do not allow transparency channel

visualisation such as a chess pattern, thus we decide to fill the transparent values with

a white background before saving the output layers.

3.2.3 Layer Initialisation using Optical Flow

In order to initialise the layers using Optical Flow (OF), we first need to compute the

flow. This is done by integrating the Permeability Filter (PF) [36] to spatially and

temporally obtain a refined Optical Flow (OF) following the video motion path similar

to Schaffner et al. [2017] [39]. The initial raw OFs are computed with the Coarse-

to-fine PatchMatch (CPM) method by Hu et al. [2016] [20]. This recent method has

proven to output high quality OF. CPM combines an efficient random search strategy

using Nearest Neighbour Field (NNF and PatchMatch) with a coarse-to-fine scheme

of hierarchical architecture to handle optical flow with large displacements. As with

other OF estimations, the biggest failing cases appear for images containing too many

flat surfaces or texture-less zones. In those cases it becomes difficult to detect feature

points or similar patches between images, which is the basis for any OF computation.

Please refer to section 2.2 for the full state of the art on optical flow and temporal

filtering.

The CPM and PF integration to our framework was complex due to the difficulty

to handle the libraries with cmake. Ultimately, CPM was integrated as an external

library while the PF was simply appended inside the current code. For a more steady

computation time, we decide to compute the refined optical flows one at a time during

run-time and not all at the beginning of the program.

Our video soft segmentation process begins by loading all the video frames from a
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folder or from a video file. For a frame N , it then runs as follows: it starts by computing

the frame histogram distance. If N = 0 or if a video cut is detected, the colour model

is computed. Thereafter the process computes the spatio-temporal flow from frame

N to frame N + 1 using the permeability filter. Afterwards the output layers from

frame N − 1 are shifted by the refined flow. The image-based soft colour segmentation

of Aksoy et al. [1] is initialised with those shifted layers. After the minimisation, all

output elements are saved in the output directory. If it is the last frame, the output

layers are also saved as videos.

3.2.4 Colour Model Estimation

Among the four techniques presented in the design section 3.1, the first three can easily

be implemented by slightly modifying the initial colour model estimation of Aksoy et al.

[1]. That’s why this subsection focuses on the implementation of the fourth technique:

fixed CM with cut detection, and especially how to identify the video cuts.

Video Cut Detection

A great amount of work has been done in the field of video cut detection. Classic

approaches define a similarity measure between successive images. Two images being

sufficiently dissimilar may indicate a cut. Gradual transitions are found by using

cumulative difference measures and more sophisticated thresholding schemes. Based on

the metrics used to reveal the difference between successive frames, the algorithms can

be divided broadly into three categories: pixel, block-based and histogram comparisons.

For an overview of these different categories, please refer to Koprinska survey [2001]

[56].

Histogram comparisons are greatly time-efficient and reliable in detecting cuts, but

two images with similar histograms may have completely different contents. However,

the probability of this situation is rare in practice. Moreover, it is not a real drawback

for our video soft colour segmentation. Indeed, as the colour distributions would be

similar before and after the cut, it will still give coherent colour layers for both video

shots. Therefore we select this algorithm for identifying video cuts. The final objective
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of this fourth technique is to segment the video into cuts to properly fix the colour

model within these cuts.

Histogram Comparisons

A histogram depicts the different colours present in an input image. To determine a

histogram, a number of colour levels must be selected. Afterwards each pixel is sorted

out in the range of intensity or level where it belongs. The output is an n-dimensional

vector with the number of pixels present in each level.

Originally, grey-level histograms are used to detect video cuts, then their distance

is computed as the sum of the absolute differences of each bin from frame N + 1 with

each bin from frame N . One approach to increase segmentation accuracy is to consider

the intensity distributions of the individual colour channels. This is the approach

we implement. We are calculating the euclidean distances of the R, G and B colour

histograms with level of range 1 from an intensity of 0 to 255. Hence our histograms

contain 256 levels. The final histogram distance is the average of the R, G and B colour

histogram distances. A cut is declared if this average distance between two successive

frames is higher than a threshold T. In our implementation, T has been empirically set

to 0.4.
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Chapter 4

Results

This chapter examines the results of the method presented in chapter 3. Similarly

to the method, the evaluation is twofold with the results of the layer initialisation in

section 4.1, and those of the colour model estimation in section 4.2. Each part starts

by describing the evaluation process including the metrics used.

4.1 Layer Initialisation using Optical Flow

4.1.1 Evaluation Process

Overview

The layer initialisation technique is evaluated on the sequences from the MPI Sintel

Dataset [24]. This dataset comprises 23 video test sequences extracted from the ani-

mated movie Sintel copyright c©Blender Foundation www.sintel.org. We select this

dataset as the associated ground truth optical flows are included. After a preliminary

output analysis, we then evaluate the temporal smoothness and the time performance

for each sequence with the three following techniques:

1. No flow: This is the reference technique where each frame is segmented indepen-

dently with the image-based segmentation by Aksoy et al. [1]. The optical flow
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is not used.

2. Initialisation with custom flow: The minimisation is initialised with the shifted

output layers from the previous frame. The output layers are shifted using the

refined optical flow computation technique by Schaffner et al. [39], where the

optical flow is spatially and temporally filtered using the permeability filter along

the video motion path.

3. Initialisation with ground truth flow: Instead of computing the optical flow during

run-time, this technique loads the ground truth flows of the MPI dataset at the

start of the program and utilises them to shift the output layers for initialisation.

This ground truth technique serves as a comparison against the one with custom

flow.

Each of these techniques uses the Fixed CM estimation, which means they have

the colour model fixed on the first frame in order to properly compute the temporal

smoothness on the output layers. All sequences from the MPI Sintel Dataset are video

shots without cuts, therefore it justifies using the Fixed CM technique (see section 4.2

for the results of the colour model estimation). Moreover each approach is derived in

two ways: with and without the matte regularisation step which spatially filters the

output layers using the Guided Filter (GF). For the techniques initialising the layers

with optical flow, the GF is applied before shifting the layers, thus the next frame is

initialised by already spatially filtered layers.

To sum up, the Sintel test sequences are computed and tested in six different ways:

No flow with and without GF, Initialisation with custom flow with and without GF,

and finally Initialisation with ground truth flow with and without GF. The evaluation

compares the independent output of each frame segmented using image-based soft

segmentation method by Aksoy et al. [1] with the output frames from our video soft

segmentation. The initialisation with the refined custom flow is also compared to the

ground truth flow one.
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Temporal Smoothness Metric

To evaluate the output layers temporal coherency, we define a smoothness metric sim-

ilar to the one presented by Schaffner et al. [39]. To properly specify this metric, the

trace trp of a pixel p has to be defined. The trace of a pixel p starting at position

(px, py) in the first frame is the sequence of all its positions following the ground truth

flow throughout the video (see fig. 4.1). The trace length can vary greatly as it stops

as soon as the pixel is being occluded or disappears outside of the frame. Schaffner et

al. find that for the Sintel sequences, this results in traces with an average length of 21

samples. In our case, the smoothness metric is employed on pixels in the output layers

which additionally have a non-zero alpha channel. Thus the trace also stops when the

next position is completely transparent, giving traces of smaller average length.

Figure 4.1: Visualisation of the trace of a pixel starting in p at frame 0 throughout a
video volume of N + 1 frames and its corresponding vector of RGB values.

Following this trace, the RGB and alpha values at the different positions are stored

and can be used to define the smoothness metric ψ. Indeed this trace vector represents

the variance of the RGB colours or alpha values along the motion path and can serve

to estimate temporal coherency for both RGB and alpha values.

Once the pixel trace trp of a pixel p is computed, its smoothness metric ψ can be

calculated as follows:

ψ(trp) = 0.5 · acf(diff(trp), 1) + 0.5 (4.1)
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The diff operator differs depending on if trp contains RGB or alpha values. In the

first instance, diff calculates the 3D distances in RGB colour space of a pixel trace in

each pair of subsequent frames. As for the alpha values, the diff outputs the direct

difference of the initial pixel trace values two-by-two. In both cases, the resulting vector

is auto-correlated in lag 1. In the above equation, acf represents this auto-correlation

function. The auto-correlation represents how much a signal is similar to a delayed

version of itself. In the case in point, we estimate the correlation of the pixel trace

of RGB distances / alpha differences in lag 1, i.e. the similarity of colour / alpha

values of subsequent frames following the motion path. With this representation, the

smoother the colour distances and alpha differences are along the vector, the higher the

metric score is. The auto-correlation version utilised is the normalised one, therefore

the smoothness results go from 0 to 1, from discontinuous to smooth.

4.1.2 Results

Output Layers Analysis

A first overview of the results is displayed in fig. 4.2. It shows some key frames that

have a dark colour distribution for the three presented evaluation techniques without

Guided Filter (GF). The first remark is that our layer initialisation technique creates

artefacts both when using the custom and ground truth flows. Overall the custom

and ground truth flow initialisation techniques show very little difference in the output

layers, therefore some future diagrams only include the ground truth flow results for

clearer visualisations. The artefacts that can be seen on frames 10 and 20 gradually

appear starting at frame 1 when the first layer initialisation takes place. Frame 0 is

similar for all shown techniques as the initialisation only starts from frame 1.

For all Sintel sequences tested with the two layer initialisation techniques, the out-

put layers tend to blend into one another: originally opaque pixels slowly fade out,

while originally transparent pixels slowly appear. Unfortunately, the output layers

mix together as the video elapses, and this visually shows that the layer initialisation

technique with optical flow is not inducing temporal smoothness. On the contrary, the

frames computed independently without using the flow seem to perform much better
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in that regard.

Figure 4.2: Sintel sleeping1 frames 0, 10 and 20 segmented with the three different
video segmentation techniques. The layer shown corresponds to a dark brown colour
distribution. The white background signals transparent pixels.

The Sintel sleeping1 sequence segmented with the additional Guided Filter step

does not clearly show the difference between the independent segmentation (No flow)

and our initialisation technique (Custom flow and Ground truth flow). Indeed the

appearing artefacts are mostly smoothed out by this filter but the phenomenon still

happens underneath (see percentage of opaque pixels graphs in fig. 4.3). However the

videos with the output layers have clear flickering which are more frequent with the

initialisation than without. This flickering is expected as the GF is a spatial filter and

not a temporal one, which induces that subsequent frames may possess very different

outputs. Nonetheless it still looks more spatially coherent when no optical flows are

used as the amount of flickering is lower in comparison. The initialised layers are

inclined to produce more artefacts and shift the layers further than it would be when

estimating the layers independently. Therefore the spatial filtering of those already

altered layers could differ even more from one frame to the other. Indeed we have seen

that No flow outputs more coherent layers, which logically give more coherent spatial
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filtering layers as the layers are more similar to start with.

The layer initialisation using optical flow visually yields temporally incoherent re-

sults. On the other hand, the independent approach without flow seems to produce

proper temporal coherency. The following parts take a closer look at the quantitative

results in terms of smoothness and time performance.

Temporal Smoothness

Both RGB and alpha temporal smoothness results computed using the temporal smoo-

thness metric introduced earlier in eq. (4.1) are summarised in table 4.1 for five Sintel

sequences and the six layer initialisation approaches.

No flow Init custom flow Init truth flow
No GF GF No GF GF No GF GF
µ σ µ σ µ σ µ σ µ σ µ σ

Sleeping1
RGB 0.58 0.23 0.65 0.21 0.57 0.20 0.68 0.21 0.59 0.20 0.68 0.21
Alpha 0.62 0.31 0.65 0.25 0.51 0.28 0.51 0.25 0.61 0.27 0.52 0.26

Alley1
RGB 0.69 0.22 0.70 0.20 0.69 0.19 0.74 0.18 0.72 0.18 0.74 0.18
Alpha 0.69 0.30 0.63 0.23 0.45 0.22 0.58 0.21 0.56 0.22 0.58 0.21

Mountain1
RGB 0.61 0.22 0.61 0.20 0.59 0.19 0.63 0.19 0.61 0.19 0.62 0.19
Alpha 0.71 0.30 0.68 0.29 0.49 0.28 0.55 0.26 0.56 0.28 0.55 0.26

Cave2
RGB 0.49 0.17 0.52 0.17 0.50 0.16 0.58 0.15 0.54 0.15 0.58 0.15
Alpha 0.65 0.30 0.49 0.19 0.36 0.16 0.48 0.16 0.43 0.18 0.49 0.16

Alley2
RGB 0.60 0.20 0.64 0.19 0.61 0.18 0.68 0.20 0.67 0.17 0.71 0.18
Alpha 0.72 0.31 0.64 0.25 0.42 0.20 0.49 0.21 0.54 0.21 0.59 0.23

Table 4.1: Average temporal smoothness on all layers for both RGB and alpha values.
µ is the average mean of the smoothness vector and σ the standard deviation.

Let’s first analyse the results on the RGB temporal smoothness. To begin with,

the average mean values are overall better with the Guided Filter (GF). Moreover,

the RGB smoothness results are similar without flow and with the initialisation with

custom flow but are usually better with the ground truth flow. This suggests that the

initialisation with the ground truth flow offers the best spatial coherency, but the video

layers and fig. 4.2 show otherwise.
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Actually this outcome seems to indicate that the value computed using the smooth-

ness metric is a measure of the layer’s RGB temporal coherency. And as the layers

are associated with a set of colour distributions with variance and mean, this metric

may indicate more about the current layer’s colour variance rather than the temporal

consistency. On another note, cave2 has the worst RGB smoothness of all sequences.

The layers of cave2 are not smooth because the initial video has large scope motions.

As for the alpha smoothness, not using the flow performs much better on all tested

Sintel sequences. Furthermore the initialisation with ground truth flow technique out-

puts better results compared to the technique using the flow computed during run-time.

The important variations induce that the optical flow custom estimation may not be

satisfying enough. When comparing with and without GF, the alpha temporal smooth-

ness is sometimes better when initialising with the flow as in alley1, cave2 or alley2 but

sometimes lower for instance for sleeping1. The guided filter brings spatial consistency

that creates smoother alpha spatially but it is not a temporal filter thus sometimes

strong flickering appears and make the smoothness worse. Both alpha smoothness and

RGB smoothness show high standard deviations highlighting that the output results

differ greatly depending on which layer is evaluated. Indeed the layers can have a very

different number of pixels represented depending on the colour distributions.

In summary, the studied smoothness metric shows that the colour smoothness is the

best without flow and with the ground truth flow. However this result might be biased

by the underlying layer colour variance. As for the alpha smoothness, it indicates

that computing each frame independently without flow is better and is inconclusive

regarding the guided filter step.

Even though the RGB temporal smoothness scores stay high when using the ground

truth flow, fig. 4.2 shows that both initialisation techniques create artefacts. Yet these

artefacts do not have a clear impact on the temporal smoothness results. To clarify

this behaviour, we observe the percentage of non-transparent pixels (α 6= 0) in the

sequence sleeping1. The resulting curves are displayed on fig. 4.3. The custom flow

and the ground truth flow are very similar, therefore only the ground truth flow graph

is present on the figure for more clarity.

This figure demonstrates a specific behaviour of our layer initialisation technique:
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Figure 4.3: Percentage of non-transparent pixels for all layers over the 50 frames of the
Sintel sleeping1 video sequence.

the pixels tend to spread on more and more layers as the video continues. Indeed,

fig. 4.3 reveals that both with and without the guided filter, the percentage of non-

transparent pixels quickly increases in the first ten frames with the output layers ini-

tialisation. What happens is that the minimisation step from the image-based soft

colour segmentation has a tendency to spread the given pixel unmixing on more lay-

ers. Therefore, when initialising the output layers with the previous segmentation, this

minimisation starts with pixels already partially transparent and diffuses them even

more. This pixels diffusion on several layers keeps on happening until it stagnates after

a certain amount of frames.

Without the flow, the pixels given to the minimisation are initially fully opaque in a

single layer. With the flow, the pixels given are initially non-opaque and keep spreading

on several layers. This is undesirable as the video segmentation should mostly produce

sparse and compact layers for proper video editing. Initialising the output layers before

the minimisation removes this sparsity component initially present in the image-based
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segmentation by Aksoy et al. [1].

Time Performance

After witnessing the unexpected behaviour of the minimisation step when initialised

with non-opaque pixels, we also want to verify whether the initialisation approach

speeds up the segmentation process or not. To that end, the computation time of

different parts of our program is recorded. The various times are shown in table 4.2

for the sequences sleeping1 and alley1. The flow computation, frame unmixing and GF

values are specified in seconds as average per frame. These computation time results

are computed on a personal computer with medium performance (see section 3.2.1).

sleeping1 No flow Init custom flow Init truth flow
CM = 10 colours No GF GF No GF GF No GF GF

Load video 3 3 2 2 2 2
Load flow 0 0 0 0 6 8

Avg Flow computation 0 0 6 6 0 0
Avg Frame unmixing 92 92 115 123 120 123

Avg Guided Filter 0 1 0 1 0 1
Total (sec) 4,661 4,709 6,140 6,602 6,093 6,283
Total (min) 77.68 78.48 102.34 110.03 101.56 104.72

alley1 No flow Init custom flow Init truth flow
CM = 6 colours No GF GF No GF GF No GF GF

Load video 2 2 2 2 2 2
Load flow 0 0 0 0 6 7

Avg Flow computation 0 0 6 6 0 0
Avg Frame unmixing 59 59 89 91 86 92

Avg Guided Filter 0 1 0 1 0 1
Total (sec) 3,010 3,039 4,797 4,914 4,382 4,691
Total (min) 50.17 50.65 79.95 81.90 73.03 78.19

Table 4.2: Computation time in seconds of the main program sections for Sintel sleep-
ing1 and alley1 with the six evaluation approaches.

Table 4.2 reveals that the techniques without using the optical flow are always

faster. For instance, the average frame unmixing corresponding to the minimisation

step is 1.33 times faster for sleeping1 and 1.5 times faster for the alley1 in comparison

40



to the techniques employing the layers initialisation. For alley1, the total computation

of No flow without GF is almost twice as long as the custom flow with GF with values

of 50 minutes and 82 minutes. The initialisation with ground truth flow is slightly

faster than the initialisation with custom flow mainly because of the flow computation

time. Indeed loading the ground truth optical flows takes a total of about 6 seconds

for both sequences whereas the custom flow computation lasts about 6 * 50 = 300

seconds for all 50 frames. Concerning the guided filter step, it is performed in about

a second for each frame which is pretty quick. Finally the table points out that alley1

total computation time compared to sleeping1 is about 1.5 faster without flow and 1.35

faster with flow. This is due to the number of colour distributions in the colour model

which amounts to 10 for sleeping1 and 6 for alley1. In general, the larger the CM size,

the longer the unmixing.

An additional time analysis of the first frames of sleeping1 is displayed in table 4.3.

It indicates that the average frame unmixing time increases along with the number of

non-transparent pixels shown in fig. 4.3. The more the program processes through the

video, the longer the unmixing step takes. This interconnection between the computa-

tion time and percentage of non-transparent pixels confirms that the minimisation is

slower when given partially transparent pixels already present on several layers.

sleeping1 No flow Init custom flow Init truth flow
Frames No GF GF No GF GF No GF GF

0 86 86 84 86 86 88
1 93 93 104 111 105 116
2 92 92 110 117 113 116
3 93 93 114 117 117 118
4 93 93 116 116 116 118
5 91 91 118 116 119 119
6 93 93 114 116 119 118
7 91 91 115 120 118 118

Sequence avg 92 92 115 123 120 122

Table 4.3: Computation time in seconds of the frame minimisation step of the first 8
frames of Sintel sleeping1.

At the beginning of this dissertation, we expected the method with a layer initiali-

sation approach to be faster as layers would initially have input values closer to their
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convergence point. On the contrary, the average unmixing time is much higher. There

again, it is due to the unexpected behaviour of the image-based soft colour segmen-

tation and especially its minimisation which tends to spread a given pixel on more

layers. The opposite action of restoring the pixel opacity and gathering back the pixel

unmixing on fewer layers is not happening during the minimisation step. Therefore

the time performance is greatly lower for both initialisation techniques in comparison

to the independent frame computation as every partially transparent pixel unmixing

takes longer to converge.

Conclusions and Analysis

This evaluation reveals that the minimisation step from the image-based soft colour

segmentation by Aksoy et al. [1] tends to spread a given pixel unmixing to several

layers. Therefore our initialisation technique with both custom and ground truth flows

accentuates this behaviour by initialising the pixels before the unmixing with more and

more transparent and diffused contributions.

The RGB smoothness is not distinctive as it seems to be more representative of

the colour variances of the colour model. As for the alpha smoothness, it shows that

No flow is better. The “spreading” behaviour is seen when observing the percentage

of non-transparent pixels. Indeed more and more pixels are present in all layers with

lower alpha values as the video elapses. Furthermore, the minimisation is longer when

a pixel is present in several layers as it has to take into account the contributions of

every layer. Finally the more colours in the colour model, the longer the unmixing.

The main limitation of this technique is due to the minimisation behaviour that

expects fully opaque pixels and only diffuses the pixels when looking for convergence.

Now that this behaviour is known, it would be more relevant to temporally filter the

output layers in a post-minimisation step instead of the pre-minimisation initialisation,

or change the minimisation process so that it can account for temporal information

without introducing these artefacts.
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4.2 Colour Model Estimation

4.2.1 Evaluation Process

The Colour Model (CM) estimation technique (section 3.1) is evaluated by comparing

the four proposed techniques (see fig. 3.2) in terms of CM size, colour distributions,

computation time and average reconstruction error per frame. The tested sequences

contain six frames each, three from one of the Sintel scenes, and three from another.

Hence the tested sequences all include a video cut between the third and fourth frames.

The fig. 4.4 shows the different test sequences.

Figure 4.4: Sintel sequences used for the colour model evaluation: (a) combines bam-
boo1 and bandage1, (b) combines alley1 and cave2, and (c) combines mountain1 and
alley2.

To compute the reconstruction error, the output layers are first added up together

to reconstruct the sum image. The reconstruction error is calculated as the sum of

euclidean distances of every pixel between the reconstructed and original images. It is

defined as follows:

εrec =
∑
i

∑
j

||Ii,j − Si,j||L2, (4.2)

where Ii,j is the initial image RGB value at pixel (i, j), and Si,j is the sum image

RGB value at pixel (i, j). Having a low reconstruction error is a necessary condition

to enable correct video manipulation such as colourisation or compositing.

The histogram comparison described in section 3.2.4 and used in the Fixed CM with
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cut detection technique is evaluated on the “Big Buck Bunny” animated movie of the

Blender Foundation www.blender.org because this video contains many cuts. When

the colour histogram distances of two subsequent frames are higher than a certain

threshold, a video cut is identified and the colour model is reset. The threshold value

is empirically set to 0.4 by evaluating the histogram distances on 5,000 frames from

the “Big Buck Bunny” animated movie. Among the 5,000 frames, all the video abrupt

cuts are correctly detected. Gradual cuts where the video slowly fades to black are

not detected by this current implementation. Their detection would necessitate a

supplementary technique such as the twin-comparison method by Zhang et al. [57].

Additionally the computation time of this histogram distance per frame lasts about

0.5sec. Therefore, the colour histogram distance is time-efficient and it accurately

detects abrupt cuts, which confirms its profitability.

Figure 4.5: Histogram visualisation for a set of four Sintel frames. The red, green
and blue histograms correspond to the normalised number of pixels present in each
intensity bin of width one.

As an example, the normalised histograms for red, green and blue channels are

displayed in fig. 4.5 for an artificially created Sintel sequence of four frames with two

cuts. Their corresponding histogram distances are: 0.88 from frame 0 to frame 1, 0.04

from frame 1 to frame 2, and 0.78 from frame 2 to frame 3. It illustrates the quality

of the histogram comparison metric as the two successive frames 1 and 2 have a very

low distance, and the cuts between frames 0 and 1 as well as between frames 2 and 3

are correctly identified with the current threshold.
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4.2.2 Results

CM Size and Colour Distributions

The Colour Models (CM) of the test sequence (a) are displayed in fig. 4.6 for all four

techniques proposed.

Figure 4.6: Output colour models of the four techniques on the test sequence (a).

Firstly a remarkable result on the Independent CM technique is that the output

CM can have a very different number of colour distributions within the same video

shot. Even though the three “bamboo” green frames look similar, the difference is

high with a respective number of 5, 4 and 7. Similarly the three following “bandage”
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orange frames have a CM of size 13, 12 and 11. The same behaviour appears in the

(b) and (c) sequences, which proves that the CM computation is too unstable in its

size. The colour distributions are also unstable as analogous frames mostly output

distinct CM. With a different number of layers in each frame, it is impossible to obtain

coherent video segmentation per layer. Therefore it is necessary to fix the colour model

over a certain number of frames. This first brute force independent technique can then

already be removed from the pool of appropriate video methods.

Both video shots of sequence (a) have different colour distributions so the Fixed CM

technique is expected to face difficulties when minimising the bandage sequence using

the green shades of the bamboo colour model. As for the Volume CM, the displayed

colour model seems to enclose all the prevalent colour distributions of the video volume.

Finally the cut is correctly identified in the last method Fixed CM with cut detection.

Time Performance

The table 4.4 summarises the computation time in the three tested sequences. Concern-

ing the time performance, the Fixed CM with and without cut detection are the fastest

at computing their colour model(s). The CM computation without cut detection is 15

times (a), 1.2 times (b), and 2.1 times (c) faster than the one with cut detection. The

reason is that the CM is only computed once for the Fixed CM without cut detection

and twice with cut detection. The Volume CM only estimates the colour model once

from the full video volume but its computation lasts 101 times more (a), 10 times

more (b), and 34 times more (c) when compared to the individual CM computation

of Fixed CM. This demonstrates that the colour model computation scales badly for

larger images.

Sintel
sequence

Independent CM Fixed CM Volume CM
Fixed CM w/
cut detection

(a) 242 5 507 79
(b) 86 21 209 26
(c) 60 11 371 23

Table 4.4: Colour model(s) computation time in seconds for each test sequence.
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An additional test on Sintel alley1 is given in table 4.5 with the CM computation

time for different volumes. It further illustrates that the more frames that are stacked

to compute the volume CM, the longer the estimation. Observing that only a second

of video (24 frames) takes 467 seconds confirms that the Volume CM technique is

unusable as it does not scale properly to larger video volumes.

Nb of frames Size CM Computation time CM
1 6 22
3 6 72
6 6 155
12 5 211
18 5 311
24 5 467

Table 4.5: Computation time in seconds for different numbers of frames in the CM
volume.

Reconstruction Error

Let’s analyse the reconstruction error of all techniques and especially of the two remain-

ing techniques. The Fixed CM technique fixes the colour model for the full duration

of the given video frames, while the Fixed CM with cut detection technique fixes a

different colour model for each distinct shot of the video, if any. Table 4.6 summarises

the reconstruction error in the three tested sequences.

Sintel
sequence

Independent CM Fixed CM Volume CM
Fixed CM w/
cut detection

(a) 0.000630 0.000812 0.000902 0.000789
(b) 0.000123 0.000128 0.000234 0.000108
(c) 0.000164 0.000218 0.000192 0.000231

Table 4.6: Reconstruction error of the evaluated sequences.

All four techniques unexpectedly yield excellent reconstruction results. This is un-

derstandable for the independent, volume and fixed CM with cut detection approaches

which strive to represent each frame of the sequence. However the fixed CM fails to
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consider the colours from frames appearing after a video cut, thus the reconstruction

error should be higher after the cut. A deeper analysis of the layers obtained for the

Fixed CM and shown in fig. 4.7 clarifies this result. Indeed, when a frame very distinct

from the current colour model is minimised, the pixels tend to converge all together

towards the most corresponding layer distribution colour. The following paragraph

explains this behaviour.

In the example figure, the input frame mainly encompasses hues of orange and

therefore largely converges to the brown colour distribution while avoiding the green

colour distributions. As most pixels can only be represented by the brown distribution,

this technique additionally converges 1.4 times faster than with the cut detection.

Nonetheless fig. 4.7 clearly shows an incorrect layer representation as only one layer

comprises most of the input frame. These output layers cannot be utilised for any

kind of video editing. Ultimately, the Fixed CM approach is a time-efficient technique

raising no reconstruction error. But these misleading results hide an incorrect layer

representation when a frame is segmented after a cut. Thus it is not usable for video

manipulations.

Figure 4.7: Top-left: Input frame after the cut. The other images are the output layers
with corresponding colour model using the fixed CM technique.
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Conclusions and Analysis

To conclude the analysis of the colour model estimation, all computation techniques

yield layers with very low reconstruction errors. The Independent CM cannot achieve

layer temporal coherency as the number of layers is often modified even for similar

input frames. The Volume CM is representative but computationally intensive; indeed

the more frames that are used to compute the volume CM, the longer the computation

time. The fastest techniques are first the Fixed CM and second the Fixed CM with cut

detection. However the Fixed CM technique produces an incorrect layer representation

after a video cut. This leaves us with the Fixed CM with cut detection way which

is time-efficient, produces output layers properly reconstructing the initial frame and

possesses a correct layer representation contrary to the Fixed CM.

The colour model technique of computation from Aksoy et al. [1] shows an impor-

tant variation in the number of colour distributions estimated. This is clear in fig. 4.6

with five colour distributions on the bamboo sequence but thirteen on the bandage

sequence. Both also seem to possess very similar colour means, in particular the black

and brown hues. This impacts the overall time performance for the minimisation: the

larger the colour model, the longer the segmentation of each frame in the video se-

quence. A potential solution could be to set a limit on the number of possible colour

distributions. However if the size of the colour model does affect the computation

time, it does not reduce the output layers quality. Indeed when too many colour dis-

tributions are found, a post-processing step could simply combine the layers with close

colour distributions and subsequent edits could then be applied on the combined layers.

On another note, the fixed CM with cut detection technique does not handle disap-

pearing or appearing objects in the same video shot. So for instance let’s consider a red

apple coming into a scene where the red colour is not represented in the current colour

model. Then the apple would either fully go to the closest, and potentially distant,

colour distribution layer, either be a mixture of several layers or directly not converge.

In all those cases, performing a layer colourisation or other editing would prove to be

inappropriate for the new object(s). A solution could be to add an object detection

in the code but that might be too computationally-heavy. Another way would be to

allow for the user to inform the program when a new object with new colour distribu-
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tion(s) appears. Afterwards, the program would automatically detect which colour(s)

are missing and add them to the current colour model.
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Chapter 5

Conclusion

5.1 Main Contributions

The proposed video soft colour segmentation method automatically extracts video

colour layers. The program shows its coding robustness as it ran many times on several

reference sequences with several comparative approaches.

The layer initialisation using optical flow technique refutes our initial thoughts that

it would: 1. enforce temporal coherency in the layers and 2. speed up the minimisation

step as pixels are already closer to their convergence values. Instead it demonstrates

an unexpected behaviour of the image-based soft colour segmentation technique: the

minimisation tends to spread a pixel unmixing to several layers. Therefore it induces a

slow and poor convergence when initialised with non-opaque pixels, which is the case

when the layers are initialised with the previous shifted layers.

As for the colour model estimation, fixing the colour model on each detected video

cut performs the best. It allows for faster colour model computation and more coherent

layers.

Ultimately, these two evaluations establish that the best performing case is a frame-

independent segmentation associated with a fixed colour model with video cut detec-

tion. Additionally the post-minimisation spatial filtering tends to improve the layers

quality.
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5.2 Perspectives

Even though using optical flow in the initialisation step does not ensure temporal

coherency, we still strongly believe that using optical flow is the best way to take into

account the temporal motion of the video. Therefore we suggest a novel approach to

utilise optical flow information in a post-minimisation spatio-temporal filtering step

instead of the pre-minimisation initialisation. The Permeability Filter (PF) employed

by Schaffner et al. [39] already used in our implementation to spatially and temporally

refine the optical flows could be used to apply this temporal filtering step on the

resulting layers. Hence the spatial and temporal PF would replace the previously used

spatial Guided Filter (GF). As this filtering would affect the pixel unmixing values, an

additional refinement step to minimise the energy function once again with different

constraints would then be required. Another approach could also explore a different

unmixing technique that would incorporate temporal consistency during minimisation

and would therefore eliminate the need to filter afterwards.

The results regarding the colour model estimation work point out that the current

technique is unable to detect appearing or disappearing objects as it is only conceived

to identify video cuts. Possible future work could focus on detecting these appearing

and disappearing objects in the video. Thereafter, instead of fully re-computing the

colour model, the newly detected object(s) colour distribution(s) could be added to the

current colour model. And conversely disappearing object(s) one(s) could be removed.

This dissertation work is a video soft colour segmentation. It would be interesting

to investigate segmentation methods relying on other characteristics such as texture

extraction [58][59], or object motion deblurring [60].

5.3 Final Thoughts

This master thesis was a very valuable experience. I learnt a lot in the fields of image

and video processing, in particular the state-of-the-art methods to estimate optical

flow or induce temporal filtering. Moreover, the whole conduct of the project gave me

a broad insight into the research domain.
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The topic of video soft colour segmentation is of great interest to me. These five

months have confirmed that I would gladly work in animation, CGI, and VFX indus-

tries. The combination of computer graphics and artistic contents vastly appeals to

me.

To conclude this dissertation, I would like to thank my supervisors, my family,

my friends and all those I have met during my time in Dublin. They participated in

making this master year a very rewarding and constructive one. I wish them all the

best and look forward to seeing them again.
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58



editors, Computer Vision - ECCV 2004, pages 238–249, Berlin, Heidelberg, 2004.

Springer Berlin Heidelberg.

[48] S. Khan and M. Shah. Object based segmentation of video using color, motion and

spatial information. In Proceedings of the 2001 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition. CVPR 2001, volume 2, pages II–

746–II–751 vol.2, 2001.

[49] C. W. Zitnick, N. Jojic, and Sing Bing Kang. Consistent segmentation for optical

flow estimation. In Tenth IEEE International Conference on Computer Vision

(ICCV’05) Volume 1, volume 2, pages 1308–1315 Vol. 2, Oct 2005.

[50] W. Brendel and S. Todorovic. Video object segmentation by tracking regions. In

2009 IEEE 12th International Conference on Computer Vision, pages 833–840,

Sept 2009.

[51] M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hierarchical graph-

based video segmentation. In 2010 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition, pages 2141–2148, June 2010.

[52] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based image

segmentation. International Journal of Computer Vision, 59(2):167–181, Sep 2004.

[53] Eckehard Steinbach, Peter Eisert, and Bernd Girod. Motion-based analysis and

segmentation of image sequences using 3-d scene models. Signal Processing,

66(2):233 – 247, 1998.

[54] Xue Bai and Guillermo Sapiro. Geodesic matting: A framework for fast interactive

image andvideo segmentation and matting. International Journal of Computer

Vision, 82(2):113–132, Apr 2009.

[55] Blender institute. https://www.blender.org/institute/.

[56] Irena Koprinska and Sergio Carrato. Temporal video segmentation: A survey.

Signal Processing: Image Communication, 16(5):477 – 500, 2001.

[57] HongJiang Zhang, Atreyi Kankanhalli, and Stephen W. Smoliar. Automatic par-

titioning of full-motion video. Multimedia Systems, 1(1):10–28, Jan 1993.

59

https://www.blender.org/institute/


[58] Majid Mirmehdi and Maria Petrou. Segmentation of color textures. IEEE Trans.

Pattern Anal. Mach. Intell., 22(2):142–159, February 2000.

[59] Sai-Kit Yeung, Tai-Pang Wu, and Chi-Keung Tang. Extracting smooth and trans-

parent layers from a single image. In 2008 IEEE Conference on Computer Vision

and Pattern Recognition, pages 1–7, June 2008.

[60] J. Pan, Z. Hu, Z. Su, H. Y. Lee, and M. H. Yang. Soft-segmentation guided object

motion deblurring. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 459–468, June 2016.

60


	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	Motivation
	Objectives
	Plan of the Dissertation

	Chapter State of the Art
	Image Segmentation
	Definition
	Unmixing-based Soft Colour Segmentation
	Colour Model Estimation
	Constraints
	Colour Unmixing
	Matte Regularisation
	Colour Refinement
	Summary

	Related Works

	Video Segmentation
	Optical Flow
	Temporal Filtering
	Related Works


	Chapter Design and Implementation
	Design
	Layer Initialisation using Optical Flow
	Colour Model Estimation

	Implementation
	Computer Work Environment
	Preliminary Work
	Initial Code Fixes and Modifications
	Video Utility

	Layer Initialisation using Optical Flow
	Colour Model Estimation
	Video Cut Detection
	Histogram Comparisons



	Chapter Results
	Layer Initialisation using Optical Flow
	Evaluation Process
	Overview
	Temporal Smoothness Metric

	Results
	Output Layers Analysis
	Temporal Smoothness
	Time Performance
	Conclusions and Analysis


	Colour Model Estimation
	Evaluation Process
	Results
	CM Size and Colour Distributions
	Time Performance
	Reconstruction Error
	Conclusions and Analysis



	Chapter Conclusion
	Main Contributions
	Perspectives
	Final Thoughts

	Bibliography

