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Automatic Irish Sign Language Recognition

Irene Hernández, Master of Science in Computer Science

University of Dublin, Trinity College, 2018

Supervisor: Aljoša Smolić

A deep learning approach to automatic Irish sign language recognition has not been
thoroughly examined before. Two frameworks are introduced in this work: a convolu-
tional neural network to extract spatial features and classify the 23 letters of the Irish
sign language alphabet that do not incorporate motion, and a convolutional neural net-
work with a multi-stream input channel and three-dimensional filters in order to detect
spatio-temporal features and classify 8 dynamic gestures in Irish Sign Language.



Summary

This dissertation presents a framework for automatic Irish sign language recognition.

The objective is the evaluation of performance of deep learning algorithms on Irish

Sign Language data towards automatic classification of signs. Automatic sign language

recognition is an area of research with a wide scope that encompasses topics such as

hand posture recognition, motion trajectory modelling, or sign sequence segmentation.

This work addresses sign recognition from single frames through the design of a neural

network model that achieves an accuracy of 99.87% for hand gesture recognition on Irish

sign language data. Sequences of signs that extend over time to complete a trajectory

are also studied: the proposed architecture produces an accuracy value of 79.66% in

spatio-temporal Irish sign classification on a small set of Irish Sign Language videos

that are not subject to concrete conditions. This document contributes to the field

of sign language recognition with a comprehensive exploration of convolutional neural

networks applied to Irish Sign Language data, an attempt at which has only been

documented for non-spatio-temporal signs. In particular, this analysis aims attention

at the type and administration of input data, especially when dealing with a small

dataset, as well as the implications and handling of temporal information.
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Chapter 1

Introduction

The present dissertation aims to explore gesture recognition models so as to evaluate

deep learning algorithms applied to Irish Sign Language media. Before delving into the

proposed solutions, the relevance and potential impact of the work hereby presented is

laid out.

1.1 Motivation for Research Topic

Sign languages have their own linguistic structure, grammar and characteristics, and

are independent of the rules that govern spoken languages. They are visual languages

that rely on hand gestures as well as on bodily and facial expressions. Sign languages

in different countries are vastly different from one another, so enabling easy communi-

cation is important: not just to break the barrier between hearing and deaf individuals,

but also between people who do not sign in the same language. In Ireland, there are

5000 Deaf people and it is estimated that around 50000 people regularly communicate

using ISL [2]. The relevance of automatic sign language recognition is significant: ac-

cess to interpreters is not available under all circumstances, and societal inclusion is

critical for all people, regardless of their hearing ability. ISL has a vital cultural com-

ponent for the Deaf community, which was acknowledged on September 2017, when

legal recognition was granted as the Irish Sign Language Bill 2016 [3] was passed. After

President Michael D. Higgins’s approval, ISL is now regarded as a native and indepen-

dent language [4]. This brings about more rights and easier access to public services

1
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for deaf people.

Automatic sign recognition is a widely researched area, especially for American Sign

Language. CNNs for gesture recognition have been extensively applied to ASL data

([5], [6], [7]). However, this is not the case for ISL. While automatic ISL detection has

been undertaken by making use of techniques like Principal Component Analysis [8],

Support Vector Machines, or Hidden Markov Models [9], research on ISL recognition

within the field of deep learning is scarcely documented [10], despite the successful

outcome for this kind of architectures in similar endeavours ([11], [12]).

The applications of automatic sign language recognition are diverse: sign-to-text trans-

lation, assistive technology for hearing-impared individuals, teaching system for sign

language students, among others.

1.2 Dissertation Overview

An outline of this dissertation’s structure follows. Chapter 2 presents a review of re-

lated work in order to frame this work in the context of two areas of research: hand

posture recognition, which relates to static sign recognition, and spatio-temporal ges-

ture recognition, which is linked to signs that require movement. Said chapter contains

an overview of deep learning concepts and applications in the realm of image recogni-

tion, ultimately focusing on state-of-the-art gesture recognition investigation.

Chapter 3 offers a detailed description of the frameworks assembled to tackle static

and dynamic Irish sign classification. The results yielded by the experiments in the

aforementioned chapter will be discussed and measured against the state of the art in

ISL recognition in Chapter 4.

Chapter 5 analyses the findings of this project, based on which Chapter 6 concludes

with a proposal of potential lines of work.



Chapter 2

State of the Art in Sign Language

Recognition

2.1 Related Work

Computer vision is the science that aims to obtain meaningful information from digital

data, image or video, and comprises applications like object detection, 3D reconstruc-

tion and augmented reality, among others. This chapter will describe visual recogni-

tion, zeroing in on hand posture recognition, both at single-frame level and over a short

temporal period.

2.1.1 Hand Posture Recognition

There are two general categories to sort hand gesture recognition methods, depending

on whether they are vision-based or involve data gloves. The latter entail the presence

of sensors that transduce physical movement into electrical signals that describe the

posture of the hand, or simply wearable assets that help track the subject’s hands

through colour segmentation. The former approach to hand gesture recognition can be

subdivided in two more specific groups [13]: methodologies based on 3D modelling of

the hand, which are applicable in many contexts but time prohibitive and overly com-

plex for most cases, and appearance-based systems that work well for communicative

gestures and are generally less computationally expensive [14]. The structure of said

systems can be broadly illustrated in a few stages: image pre-processing and segmen-

3
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tation, feature extraction, and gesture classification. Hand segmentation is primarily

concerned with skin detection and normalization, commonly tackled with parametric

(Gaussian modelling) and non-parametric (histograms) techniques. However, its sim-

plicity comes at the cost of little robustness, as non-dynamically adapting models are

sensitive to lightning conditions and skin tones [15]. State-of-the-art techniques include

HSV colour segmentation with thresholding and center of mass normalization [16], and

orientation histograms that combine edge detection with pixel-by-pixel comparison

[17]. Feature extraction deals with data representation to maximise performance. Past

works have implemented solutions that use the contour of the hand, the location of

fingers, the palm center coordinates, etcetera. In [18], a feature vector is created to

hold the mean values of brightness pixels and the ratio aspect of the bounding box

that encases the hand. Other researchers opt for features like the center of grativity of

the segmented hand and the distance from this location to the most distant point in

the fingers [19], to then construct a circle accordingly and extract a binary signal to

count the number of active fingers. The selected feature in [20] is the geometric central

moment given by fitting the input hand to a Gaussian distribution. Dynamic hand

gestures call for some sort of tracking, either on a frame-by-frame basis, or making

use of tracking information. Given the motivation for this research, neural networks

–which have been utilised with the purpose of extracting the hand shape [21], and for

hand gesture recognition [22][23]– shall be delved into later on.

In the realm of sign language applications, there is a variety of pertinent works such

as [24], where a system is developed for open finger detection applied to ASL alphabet

signs, with boundary tracing and cusp detection (to locate the fingertip) techniques,

prefaced by edge detection and clipping. Additionally, Clynch et al. [25] focus on letter

gestures from English sign language and build a pre-classification framework by using

histograms to reflect the distribution of distances between random pairs of points in the

object. Pansare et al. [26] prioritise the creation of a real-time, robust system for static

hand gestures in ASL, whose structure follows a traditional scheme of pre-processing to

select the region of interest, followed by feature extraction (centroid and area of hand

edge region) along with feature matching to recognise the sign according to the least

Euclidean distance. Rheka et al. [27] introduce the concept of derived features from the

available feature set in order to render a framework resistant to viewpoint variations,

and come up with a hybrid feature set that couple Speeded Up Robust Features (SURF,
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[28]) and Hu Moment Invariant features [29]. For the specific problem of ISL, Daniel

Kelly contributes with a new user independent hand shape feature [30]: the graph

for the hand contour gives the size function, which is an integer-valued function that

in this case is modified to incorporate eigenspace information. This makes the feature

representation more robust to noise and changes in shape associated with interpersonal

differences. PCA, a statistical process that describes observations in terms of linearly

uncorrelated values known as principal components, is used to reduce dimensionality

and accentuate relevant parts. They report a ROC AUC score of 0.973 for 23 hand

signs in ISL, for their own dataset with coloured gloves-wearing individuals, classified

employing a set of SVMs trained on the features extracted from labelled data. Another

solution proposed for ISL recognition is described in [8]. PCA is also suggested, so an

eigenspace depiction of the data, where each dimension is represented by an eigenvector

of the covariance matrix, is the focal point of their experimentation. The recognition

accuracy for the same 23 ISL classes was shown to be directly proportional to the

number of eigenvectors considered, reaching a value of 95% for 29 dimensions.

2.1.2 Spatio-Temporal Gesture Recognition

Two areas may be distinguished within the field of spatio-temporal gesture recogni-

tion. On the one hand, it might refer to extracting gestures of interest in a continuous

stream; i.e., identifying the start and end point of the sign. This is commonly mod-

elled making use of HMM. For instance, in [31] an HMM-based system that takes into

consideration both hand postures and facial cues is presented, reporting an accuracy of

88.5% for a bimodal face and body database. Likewise, a multi-modal implementation

is introduced in [32], where palm orientation and place of articulation besides hand

shape and motion are included in the framework, which recognises 38 ASL signs with

a rate of 93.9%, applying a tree-based classifier where each feature corroborates the

similarity between signs or lack thereof. This category also includes [13], where spatial

sign segmentation is extended to obtain a spatio-temporal representation that consists

of a sequence of feature vectors. These vectors have motion and shape components

to characterise the changes in appearance throughout the sequence. In [33], Lee et

al. implement the modelling of the likelihood threshold that determines whether a

sequence should be classified as a significant gesture. This approach is extended in [34]
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by optimizing the combination of the number of states and the number of potential

next states in the model. The parameters are iteratively recomputed and the gesture

sequence is segmented into subsequences to match the Viterbi algorithm [35] at each

iteration until the likelihood converges.

On the other hand, the alternative interpretation, which is the predominant idea that

concerns this research, understands spatio-temporal gesture recognition as the classi-

fication of frame sequences, each of which presents an isolated gesture with a certain

trajectory over time. With regards to hand gesture classification for sign language

recognition, attention will be drawn to the following papers. [36] describes a user-

independent system for German sign language sequences, combining maximum Likeli-

hood Linear Regression and maximum a posteriori estimation. Spatio-temporal feature

extraction techniques based on forward, backward and bi-directional predictions, whose

performance is tested on Arabic sign language gestures, are detailed in [37]: the pre-

diction errors are accumulated according to a threshold to represent the trajectory of

the sign. Another approach to spatio-temporal sign language recognition is suggested

in [38], creating a view-invariant way of measuring the similarity between two sign

sequences (one is the current observation and the other belongs to a set of known se-

quences). This converts the recognition process into a stereo vision-based verification

task. Under the necessary assumptions that the fundamental matrix associated with

two views should be unique when the observation and template signs are obtained syn-

chronously under virtual stereo vision and vice versa, an accuracy of 92% was reached

for Chinese sign language data. Cooper et al. [39] achieve 74.3% for a vocabulary of 164

signs by engineering each sequence as a succession of smaller sub-units that were then

assembled into word level by Markov chains. The strength of this paper is its expand-

able potential. Contrastingly, [40] makes use of an accelerometer and electromyography

(EMG); the fusion of features for both channels proved ambiguous and user-dependent.

State-of-the-art results for spatio-temporal recognition of ISL are given by [41]. Kelly’s

work presents techniques for automatic training of models applied to ISL unsegmented

videos, offering accurate sign identification in unseen videos. The contribution expands

over several fields of study, rendering a system capable of classifying hand postures in-

dependently of the hands subject, that also detects epenthesis in temporal sequences.

Explicit labelling is not required, as the multiple instance learning algorithm extracts

isolated samples of signs then used to train the models. The result is real-time classi-
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Figure 2.1: Example of 32x32 input image with 3 channels (red) and convolutional
layer with 5 neurons (blue) [1].

fication of hand shapes and a framework for motion gesture classification. The main

drawbacks are related to the limited conditions under which data was collected and

the unpragmatic computational power that a larger vocabulary would entail.

2.1.3 Deep Learning

Deep learning is a subfield of machine learning that refers to deep neural networks,

which combine neurons (units whose output corresponds to the result of an activation

function that is fed the sum of the linear combination of the input according to a

set of weights) grouped into multiple layers [42]. Setting up a network with fully

connected neurons for an image-related task is not viable for different reasons. One

being dimensionality, for if pixel intensity was the input, the number of weights would

be large, and the model would be too complex and overfit. It would also be inefficient

due to variance within the same class, since fully connected neurons do not register

spatial information, the network would not be translation invariant.

A convolutional layer is composed of stacked local feature detectors that learn local

image data because the input of the neuron is limited to the size of the filter. Therefore,

the dimensions of the output, which may be regarded as a volume, depend on the size

and number of said filters (Figure 2.1). CNNs are advantageous over classic image

classification algorithms and fully connected neural networks because they are robust to

variation (shift, scale, distortion) in images and fewer parameters are needed. Besides,
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they reproduce the way biological neural networks detect increasingly abstract features

thanks to the hierarchy of convolutional filters, whose layers gradually transition from

low level to high level detectors.

Another relevant theoretical concept motivated by the similarities between image and

video data is the extension of 2D convolutions to accommodate a third dimension,

thus having a volume as input and output. The receptive field of a 3D convolution

extends over both spatial dimensions as well as the temporal one. Therefore, motion

information is also captured.

Due to the convenience of modelling spatio-temporal features, 3D CNNs have been

used for action recognition [43] and, to a lesser extent, for action detection [44]. 3D

CNN models have shown superior performance to 2D CNNs in video analysis, in works

such as [45], on the topic of skeleton-based action recognition, or [46], which reinforces

the usefulness of volumetric convolutions in the extraction of spatio-temporal features.

Overview of Image Recognition

Image classification is a widely researched task in the domain of computer vision al-

gorithms. Deep learning procedures have stimulated progress, showing unparalleled

results in related challenges, such as the ImageNet competition. AlexNet [47] was the

turning point back in 2012, due to the vast improvement achieved. Said paper estab-

lished several foundations that manifested the value of neural networks, such as the

popular baseline block that combines convolution and pooling layers, finishing with

fully connected layers, as well as ubiquitous design techniques. Since then, over the

last few years, more outstanding progress has taken place. In 2014, VGGNet [48] was

introduced as a network that proposed increasing depth, and consequently the amount

of discriminative features, whilst reducing the number of parameters as a result of more

intensive spatial pooling. The next pivotal work looked into the computational aspect

that became crucial as networks got deeper. The GoogLeNet [49] architecture intro-

duced the Inception module, which decoupled cross-channel and spatial correlations,

rendering the convolution operation as a concatenation of filters, so as to learn features

on multiple levels. The resource demands were addressed with 1x1 convolutions that

would reduce the number of feature maps. In 2015, ResNet [50] allowed for networks

with far more depth through the implementation of skip connections that link layers,
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whereby information is propagated and better backpropagation is attained. DenseNet

[51] extended this idea by connecting all layers and propagating raw feature maps

through all of them.

The main challenges faced with deep learning-based image recognition have to do with

the need for vast amounts of labelled data, even if a related dataset is used to pre-train

the network and take advantage of transfer learning, along other issues like design op-

timisation, which can be challenging and time-intensive. Semi-supervised and one-shot

learning, as well as having neural architectures learn their own optimal parameters and

stack blocks to maximise accuracy, are steps towards solving such problems through

automating the design process and making the most of features learnt for other labelled

data.

State of the Art in Gesture Recognition

Neural networks present well-known benefits in a broad sense and for hand gesture

recognition [52]: they are flexible and capable of handling complex data and incon-

stant environments since they are able to generalise and learn from existing patterns

in the dataset. Deep learning applied to gesture classification has produced a series of

pertinent publications, a significant share of which require depth information. Many

of these use data captured with Microsoft Kinect, which features an RGB camera, a

depth sensor, and an array of microphones. Out of the multiple works that employ the

Kinect sensor, [53] is excerpted because of its focus on sub-units to encode information

of different nature (location, motion, and hand shape) present in the frame sequence

for a sign. The features extracted for each sub-unit are used independently to then

perform classification at sign level. This approach is conceptually similar to the ar-

chitecture presented later on, when multi-input networks are inspected. [54] builds

on previous depth-based studies by testing on unseen subjects and environments, and

deals with the temporal scope of videos by performing 3D max pooling to reduce the

time dimension. Hand and upper body features are considered separately, and the

results are concatenated. In [55], intensity and depth, as gathered from images from

the ASL alphabet, are kept separate during the first layers of the network, because the

authors recognise the intrinsically distinct nature of these two kinds of information.

Molchanov et al. [56] employ multiple spatial scales to tackle hand gesture recognition
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for depth and intensity information, using 3D convolutions on spatio-temporal volumes

composed of interleaved depth and image gradient data, observing a test accuracy of

74.4%.

The need for depth data creates capturing prerequisites such as tracking gloves or

other devices, which evidently impairs the scalability and ease of implementation. So-

lutions that do not rely on such input information are reviewed next. Pre-processing

tasks take up the initial stages of the pipeline for the framework developed in [12].

The convolutional neural network in this human hand gesture recognition system is

preceded by skin colour modelling, using Gaussian Mixture Models to prevent sensi-

tivity to light conditions, and calibration of the hand to a neutral position. Transitive

hand motion is also considered through the inclusion of a post-processing step whereby

a classifier assigns the few frames corresponding to transition gestures to either the

previous or next gesture. [57] offers a real-time (although slow) implementation that

fine-tunes a pre-trained GoogleNet and takes into account the temporal succession of

frames by keeping a running cache that evaluates the cost of similar letters and prob-

abilities at a position in a word, for a sequence delimited by the user. In [6], Bheda

et al. attempt to create a fairly traditional CNN with no transfer learning involved

to classify the handshapes that correspond to the alphabet and numbers in ASL. This

course of action echoes a segment of the work undertaken in Chapter 3. Similarly, [14]

proposes a system for ASL alphabet recognition. In this case, the neural network is

preceded by pre-processing procedures, which encompasses re-sizing, change of colour

space (RGB to grey), Canny edge detection, and feature extraction, with a comparison

of techniques: segmentation proves preferable to histogram when the set of gestures is

small and diverse. Some of the latest, noteworthy deep learning efforts in our area of

interest include [21], whose CNN learns seven gestures. Transitive gestures are dealt

with by interpolating from adjacent frames. However, it is not entirely generalizable,

as there is disparity in performance depending on the sign and it shows sensitivity to

hand characteristics. The feature extraction focuses on hand morphology (with prior

skin filtering and segmentation), obtained using Self-Growing and Self-Organized Neu-

ral Gas network, whereby data is clustered aiming for small distance between points in

the same class and large distance between clusters. This method achieves high perfor-

mance accuracy at the expense of a very limited system, as strict hand and background

conditions are required. In [58], a time delay neural network classifies signs from ASL
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data with prior extraction of motion trajectories from continuous frames. [59] deliv-

ers a scalable solution for ASL recognition that works with a regular camera but is

dependant on the capturing conditions. As previously pointed out, the exploration of

deep learning techniques to recognise ISL gestures is very limited. The state-of-the-art

accuracy is 99.87% [60] for 23 static ISL signs with minimal pre-processing, for a CNN

comprised of four convolutional layers with ReLU non-linearity and two fully connected

layers with 128 and 23 neurons respectively.



Chapter 3

Design and Implementation

This section provides a detailed analysis of deep learning techniques applied to ISL

data. Despite the complexity of sign language communication, two main channels are

identified: the hand posture channel, given by position and finger orientation, and the

spatio-temporal channel, which defines the trajectory and spatial component of the

hand [41]. Consequently, two particular areas of interest are considered:

• Static sign recognition: each sign is conveyed by a single frame.

• Dynamic sign recognition: the target signs involve motion and therefore have a

temporal dimension.

3.1 Datasets

Two datasets were employed to account for each of the aforementioned fields of exper-

imentation.

3.1.1 The Irish Sign Language hand-shape (ISL-HS) dataset

The ISL-HS dataset [8] contains 468 videos that capture 6 subjects performing with

rotation the 26 hand-shapes that correspond to the letters of the English alphabet, 3

times each. Only the arm and hand are in frame (Figure 3.1). Extracted frames from

the videos whose background is removed by thresholding are also provided. For the

12
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developed framework, 23 labels are used, excluding the letters j, x, and z, which entail

hand motion and are out of the scope of the first area of research.

Figure 3.1: Frame 1 for Person 1 performing sign for ’A’.

3.1.2 Signs of Ireland Corpus

Compiled by the Center for Deaf Studies (School of Linguistic, Speech and Communi-

cation Services, Trinity College Dublin), this dataset is composed of 55 videos featuring

40 human subjects from 5 different locations in Ireland. Out of the 55 videos, 40 depict

personal stories that are specific to each of the 40 subjects. The ISL content of the rest

of the videos is common to all 15 of them: subjects sign the same story. The videos

capture the subjects sitting down (their upper body is in frame) against a background

that varies, although in most cases it is a neutral-coloured wall. ELAN is a software

tool that allows for visualization and editing of complex annotations, and EAF is an

XML file format registers information in several categories, such as eyebrow and body

movement, eye gaze direction or the person’s attitude. The annotations are supplied

as EAF files. For the purposes of this research, only lexical gloss, which gives the

meaning of the sign in English, is considered. The 8 most common signs among all

videos are selected as target labels. Each sample consists of a set of equally spaced

frames extracted from the time interval defined by the timecodes in the annotations.

This configuration of input data is defined as trajectory stacking [61]. An example is

shown in Figure 3.2. Predictably, even the most repeated signs over 55 videos do not
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constitute a large dataset. The fact that poor generalization is foreseen will influence

some design decisions, as described later on.

Figure 3.2: Frame sequence featuring Subject 13 (Sean, Dublin) signing ’Home’.

Data from the Signs of Ireland corpus are used with permission of the Centre for Deaf

Studies, Trinity College Dublin.

3.2 Framework pipeline

3.2.1 Pre-processing

Hand Segmentation

The Signs of Ireland Corpus presents complex conditions (e.g., low resolution, varying

lightning and environment) that obstruct the task at hand, rendering it necessary to

prepare the data. Processing the video frames to detect the person’s hands with con-

ventional image processing techniques, which included background subtraction based

on running average, skin colour thresholding, upper body and face cascading classifiers,

and finger recognition based on contour detection produced subpar results. Contrarily,

OpenPose [62] trained on the CMU Panoptic Studio dataset provided the best results

for hand segmentation among the evaluated detectors (HandSegNet from [63] and hand

detector from [64]). The right hand is detected by forward feeding a network based

on VGG-19 that produces 2D confidence maps of keypoints and their connections (see

Figure 3.3b). Given the elbow and wrist positions, the hand location is estimated

under assumptions derived from general human physicality. The left hand is identified

by simply flipping the input image and repeating the process. This enables straight-

forward segmentation, by creating a mask according to the obtained keypoints (Figure

3.3c).

The ISL-HS dataset is cropped around the hands to extract the region of interest and
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(a) Original frame (b) OpenPose output (c) Masked frame

Figure 3.3: Frame featuring Subject 05 (Michelle, Dublin) signing ’Frog’.

highlight the relevant information with a traditional image processing approach.

It has been established that several components play into the interpretation of ISL

(or any sign language for that matter). It could be essential to include all channels

of information for the recognition to be successful. For instance, certain words are

signed with the same hand posture but at different start and end positions, and vice

versa. For this framework, given that it deals with limited vocabulary, it is preferable

to center and focalise the hands in the input images, consequently removing relative

spatial information, as CNNs benefit from centered target close-ups.

Data Augmentation

The data obtained from the Signs of Ireland Corpus was artificially augmented to pre-

vent overfitting given the limited amount of samples (5349 sign sequences after said

augmentation). The small size will influence some design decisions, as explained fur-

ther into the chapter. Affine transformations are applied to extend the data through

transformations in the data-space. Label preservation is evaluated by observing that

the sign can still be recognised, which ensures that the data augmentation techniques

are creating plausible images from existing frames [65]. The training data is rotated

by -5, -10, 10 and 5 degrees. Salt-and-pepper noise is added with a probability of 0.05

in 5 instances.

In terms of normalisation, both scaling and centering are introduced. Images are

normalised between values -1 and 1, which improves convergence speed. Mean sub-

traction and standard deviation division are also applied to achieve a data distribution
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that resembles a zero-centered Gaussian, which promotes uniform gradients. For both

datasets, the subjects’ hands are clearly singled out prior to being fed to the network.

Therefore, colour does not provide any information that would be helpful to localise

the object of interest or distinguish between classes. This is the reason why input

channels that depict natural data (hands) are converted to greyscale.

3.2.2 Network Architecture

Static Sign Recognition Model

The proposed architecture (Figure 3.5) for the single-frame signs classifier consists of

2-dimensional convolutions that extract features spatially. The appeal of CNNs for

this task is linked to their capability to learn local spatial features.

The first layer tends to learn about basic pixel features like lines and corners. This

is more evident when observing one of the input frames convolved with the filters in

the first layer, as in Figure 3.4.

The number of filters increases to make the most of the networks’s scope, which is nar-

rower at the beginning: there are fewer generic features that the model is concerned

with during the early layers, and more high level elements that need to be learnt by

deeper layers. The size of the filters, on the other hand, gets smaller at successive

layers, as this is known to be advantageous [47]. The CNN follows the long-established

structure of convolution with ReLU activation followed by max pooling.

Dynamic Sign Recognition Model

The spatio-temporal model follows the general structure depicted in 3.2.2, with two

key incorporations. First, since the input information extends over the temporal di-

mension, three-dimensional convolutional layers are employed. As previously stated,

they extend the convolution kernels found in 2D CNNs with an extra dimension that

allows for the computation of temporal features. They preserve the principle of local

constraint along the new temporal dimension. This fact is useful for sign language

recognition, because the aim is to model local variations that describe the trajectory

of the gesture over time.
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Figure 3.4: Convolution of sample frame with first 32 filters.

Downsampling is performed only on the spatial dimension, since convolutions are

enough to reduce dimensionality along the depth axis. The architecture for a sin-

gle stream is depicted in Figure 3.6.

LSTMs are a variant of RNNs. RNNs, unlike feedforward networks, have memory with

regard to the input in time. Their feedback loop signifies that past predictions affect

new ones. LSTMs expand the time domain that the neural network has influence over,
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Figure 3.5: Static Sign Recognition Architecture.

Figure 3.6: Dynamic Sign Recognition Architecture, for one stream.
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by virtue of a gated cell that stores certain information, according to what it progres-

sively learns about when and how much to let through. An LSTM-based architecture

on its own would not perform well because both spatial and temporal information is

not preserved due to flattening. In some instances, notably when the sequences have

variable length, a combination of LSTM with 3D CNNs is arranged as a two-step clas-

sifier wherein the 3D CNN acts as an encoder for sub-gestures, which are composed

of a few frames, and the LSTM unit makes a prediction on the full, longer sequence

[66]. Because there are no long term dependencies, LSTMs were discarded during the

design process.

The other crucial addition is a multi-stream set-up. Multi-input networks refer to

models where each input is fed to independent convolutional streams and trained sep-

arately. Such streams are combined at a later point, thus integrating information from

different sources. This type of architectures has been explored in past works such as

[61] or [45], mostly within the area of action recognition. A variable number of streams

has been analysed, together with the type of input suited for the classification of hand

signs. Past works suggest a temporal and a spatial stream; i.e., a static frame to learn

spatial features, and a series of frames (original data or some other information that

adequately typifies temporal characteristics). Nevertheless, this is not applicable in

this context since a dynamic sign is not fully characterised with one frame, especially

considering the subjective variations between people.

In summary, the dynamic sign classifier consists of the following phases: after tempo-

ral segmentation according to dataset annotations, hand detection, region extraction

and feature extraction (if used), are implemented on a single frame basis, followed by

gesture recognition for each sequence.



Chapter 4

Results

This chapter pertains the results obtained for the experiments described in the following

section.

4.1 Experiments

The experiments were implemented using the TFLearn library for TensorFlow and ran

on an Nvidia GeForce GTX 1080 graphics card with 8 GB of dedicated memory, using

CUDA V9.1.85 and cuDNN V7.0.5.

4.1.1 Nature of Input Data

Optical flow can be defined as the ”pattern of apparent motion of objects, edges and

surface in a visual scene caused by the relative motion between an observer (an eye or

a camera) and the scene” [67]. In the field of action recognition, training on optical

flow information rather than raw stacked frames has proven beneficial ([68], [69]).

These antecedents suggest potential for the experiments carried out on this basis. Two

implementations are tested: dense and sparse optical flow. The difference between

them is that sparse techniques compute the flow for specific pixels according to tracked

features, whereas dense methodologies process all of them. The particular OpenCV

implementation used in the project makes use of the pyramidal implementation [70] to

compute sparse optical flow, whereas the Gunner Farneback’s algorithm [71] was put

20
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to work in pursuance of dense optical flow. For an in-depth review of both methods,

please refer to Appendix A.

For our case, optical flow did not grant any advantages over raw image data. This

can be explained by the fact that optical flow manifests movement at a scale that does

not properly differentiate the motion for the different sign language trajectories. The

kind of movement that sets ISL signs apart suggests the need for an approach that

captures the subtleties of hand gestures. In other words, the location of the hands over

the sequence is seemingly well modelled by optical flow, but details like finger posi-

tion and orientation are overlooked. Additionally, there is natural disparity between

subjects, who might place their hands at a different height or distance from body for

the same sign, either because of individual styles, or due to the organic transition from

other signs: the articulation of a sign can be influenced by the preceding and following

signs, an occurrence known as co-articulation [72].

This realization led to the execution of experiments with the methodology of perform-

ing feature extraction to compute key points distributed along the hand. This was

achieved by obtaining data via OpenPose, as mentioned in 3.2.1. The aforemenetioned

tool outputs an RGB skeleton of the detected hand, with colour-coded fingers. This

specificity is valuable, as proven by upcoming results, because it does carry the precise

information that was noted to be missing in previous undertakings. A visualization of

input information is depicted in Figure 4.1.

(a) Right hand (b) Right skeleton (c) Left hand (d) Left skeleton

Figure 4.1: Sample of input data streams, featuring Subject 05 (Michelle, Dublin)
signing ’Frog’.

Ultimately, the best performing framework reflects an earlier vision: spatio-temporal

trajectories can be construed as a set of 2D or 3D points depicting human joints [73].

A different approach to introducing the keypoints as a stream was explored: a four di-
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mensional matrix that contains the skeleton information for every frame (Figure 4.2a).

Its rows correspond to the joints of the hand (Figure 4.2b), and each of its columns

contains the coordinates for one frame in the sequence. Its third dimension has two

components (x and y points). The 2D convolutions in the network this matrix was

fed through were able to gather temporal information thanks to the layout of such

information over spatial coordinates.

(a) Matrix of hand keypoints for a given sign
sequence.

(b) OpenPose hand keypoints [74].

Figure 4.2: Hand keypoints data.

It should be noted that left and right hands were considered separately: the base-

line network had two streams, corresponding to each of the hands. In all cases, the

supplementary data was fed as streams that were parallel to the segmented hands

streams, and always keeping the separation between data pertaining the right or the

left extremity, as displayed in Figure 4.3.
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Figure 4.3: Multi-stream model.

4.1.2 Effect of Temporal Filters

In this section, the handling of temporal data through the network is analysed, which

is very pertinent when extending the preceding static sign classifier to a dynamic sign

model that deals with sequential images. The fusion of time information is thoroughly

inspected in [75], whose conclusion supports that maintaining throughout the layers

temporal information that is gradually fused grants, to higher layers, access to global

spatio-temporal features. This is the rationale behind the increasing depth of the con-

volutional filters, until the time dimension has no depth and the features are expressed

in a 2D map.

It is also interesting to look at the amount of frames that appear necessary to infer

the represented gesture. There is a restriction imposed by the Signs of Ireland Corpus

dataset: given the frame rate of the videos, the duration of some signs is not enough to

capture a large number of frames. Memory and computational power are added factors

that favour a lower sequence depth. Ergo, the experiments were conducted within the

range of 4 to 8 frames per sign, modifying the temporal extent of the filters to ensure

steady filtering of the time dimension whilst preserving the slow fusion architecture.
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This manifested that more data per sequence does not entail better performance. Six-

frame long trajectories were enough to fully capture the sign, since they trace smooth

paths. To further evaluate the effect of the filters (and nature of data) for the best per-

forming model, the deconvolution method introduced in [76] is employed. Figure 4.4

shows the outcome for a deconvolution after the first convolutional block for randomly

selected OpenPose samples, which are part of one of the streams. It is appreciable that

the fingers are the focal point, which is coherent.

Figure 4.4: Right-hand skeleton samples from the deconvolutional layers.

The deconvoluted image of a dense optical flow sample (Figure 4.5) reinforces the

perception that this data is too coarse to be valuable in the context of hand sign recog-

nition. Reconstructing frames from the input stream of segmented hands shows that

the network first learns the general appearance of the extremity (Figure 4.6).

Figure 4.5: Dense optical flow sample from deconvolutional layer.
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Figure 4.6: Segmented hand samples from deconvolutional layer.

4.1.3 Fusion Techniques

In the sphere of multi-input networks, the matter of combining streams appropriately

is a subject of research. Several paths were explored in the experiments. Generally,

two categories are recognised: early and late fusion. The former refers to merging

models that combine the input data, as raw data or feature descriptors, whereas the

latter fuses information after classification. Early fusion was briefly analysed adding

the segmented hand as the fourth channel to its skeleton representation. While this

improved the accuracy results when compared to the bare-bones network with only the

detected hands as inputs, it did not yield any improvement over the four-stream version

of the architecture. As per conventional multi-stream architectures, we focus on late

fusion. Generally, the final prediction that results from late fusion can be formally

expressed as in 4.1 [77].

y = f(s1, ..., sM) (4.1)

where y is the final predicted label, sm are the scores for the mth stream, and f rep-

resents a transition function.

In relation to said function, averaging (which mimics the merging technique in [61]), as

well as concatenating the outputs of the fully connected layers, were examined. Late

fusion assumes all streams to be expressly complementary, which is, as a matter of

fact, not detrimental in this situation. However, this fusion methodology can cause an

imbalance in the interpretation of input information, depending on the magnitude of

the activations for each stream, and might lead to overfitting [61].

Concatenating the outputs of the convolutions along the depth dimension (number of

filters) at some layer was the next fusion mode put into action. Although Park et

al. [78] suggest merging at this stage, their proposal includes element-wise multiplica-
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Figure 4.7: Concatenation of feature maps after last convolutional block.

tion, which amplifies or suppresses feature activations, preceded by 1x1 convolutions.

For our architecture, a slightly different approach worked better. The feature maps

were simply stacked, experimenting with and without a temporal component; that is,

fusing before and after the last convolutional block. The superior alternative, whose

schematic representation is displayed in Figure 4.7, was found to be the latter. One of

the experiments mentioned in 4.1.1, which included a keypoint matrix instead of the

colour-coded hand skeletons, required a modified architecture for the keypoint streams,

since the dimensions of the input data were completely different. Conceptually, the

ideas for gradual temporal fusion and late feature fusion were perpetuated, but the dis-

parate shapes of the frames and keypoint data made it unfeasible to keep the merging

technique that stacks feature maps. Fusing the output of the fully-connected layers

was a variable alternative, with either element-wise sum or multiplication providing

the lowest error.

4.1.4 Hyperparameters

The optimization of hyperparameters is a fundamental part in the construction of

neural networks, for the quality of results is dependant on them. Several models have

been proposed toward finding the right set of values in the hyperparameter space, but it

still remains a computationally expensive and time consuming task. The present section

reviews the hyperparameter choices for the frameworks, whose tuning was fulfilled

mostly via grid search (sampling values over a specified range) or coordinate descent

(fixing all hyperparameters but one, which is adjusted).
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• Optimizer: SGD performs a parameter update according to the approximate

gradient based on a few traning samples. This optimizer is extensively used in

landmark papers ([50], [51], [79]). Better test accuracy for dynamic sign recog-

nition was attained with SGD than with other optimizers; namely Adam, RM-

SProp and AdaGrad. Adaptive optimizers have been found, in fact, to generalise

poorly, especially when there are few data points and many parameters [80]. For

the static sign model, as the available data is sufficient, the Adam optimizer was

chosen.

• Learning rate: the initial rate at which weights are updated was assessed over

the range from 10−6 to 10−1 and the optimum value was found to be 0.01 for

SGD and 0.0001 for Adam.

• Dropout: This is a regularization technique introduced during the training deep

neural neurals in order to reduce overfitting by randomising the activation or

omission of neurons in accordance an input probability [81]. It prevents co-

adaptation of neurons so that they do not rely too heavily on certain units. A

high dropout ratio (0.7) is chosen before the last fully connected layer, as it helps

with generalisation when training from scratch [61].

• Activation Function: the final neuron output is determined by ReLU (4.2), a pop-

ular option that solves issues like exploding gradients in the case of the sigmoid

function, and is more time-effective.

ϕ(s) = max(0, s) (4.2)

The last fully connected layer has softmax activation (4.3), which assigns a prob-

ability of each of the labels, such that the sum over all classes is 1.

ϕ(s) = exp(sk)/
∑
K

exp(sk) (4.3)

• Depth: In regards to the spatio-temporal model, the number of blocks in the

network was inspected for a small range, as the performance quickly showed

no improvements for deeper versions of the model. Three convolutional blocks
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provided higher test accuracy than deeper models. This kind of performance is

likely a product of how small the Signs of Ireland Corpus dataset is: a more

complicated model leads to overparametrization, whose complexity motivates an

overfitting problem. A similar design methodology was followed for the static

framework: progressively deepening the model until no further improvement was

observed.

• Width: Reducing the number of filters per layer, thus creating a narrower net-

work, showed a slight decrease in performance, since the problem was not accu-

rately represented when lowering the amount of feature detectors.

4.2 Implementation Results

The frameworks for the experiments that have been previously explained so as to

perform spatio-temporal ISL recognition, including the baseline architectures with dual

input, are summed up in Table 4.1.

Model Description
2 streams (I) Masked left and right hand in greyscale
2 streams (II) Skeleton for left and right hand in RGB colour space.
4 streams (I) Masked left and right hands in greyscale + right and left skeletons in RGB.
4 streams (II) Masked left and right hands in greyscale + greyscale right and left skeletons.
4 streams (III) Masked left and right hands in greyscale + matrix of keypoints for each hand.
4 streams (IV) Masked left and right hands in greyscale + dense optical flow.
4 streams (V) Masked left and right hands in greyscale + sparse optical flow.

Table 4.1: Model descriptions for the dynamic sign recognition multi-stream architec-
ture.

Each model will be referred to as the title given to the row, for simplicity and clarity

in the upcoming presentation of results. The metrics for the numerical values found for

the devised models were selected to facilitate direct comparison with the latest work

in the ISL recognition.
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Model Accuracy
Original Frames 0.9979
Cropped Frames 0.9998

Table 4.2: Accuracy results for the static sign recognition model.

Model Accuracy
2 streams (I) 0.6610
2 streams (II) 0.6271
4 streams (I) 0.7966
4 streams (II) 0.7288
4 streams (III) 0.7627
4 streams (IV) 0.6780
4 streams (V) 0.6830

Table 4.3: Accuracy results for the dynamic sign recognition model.

4.2.1 Accuracy

Accuracy is the ratio of correct predictions over the number of predictions. In this

multi-class context, categorical accuracy is computed for each class. The mean of

categorical accuracies is what is referred to as accuracy in this chapter. Various results

are included in Table 4.3 for the dynamic ISL classifier model trained and tested on 8

classes, in order to gain perspective on the most notable experiments of the proposed

solutions.

These accuracy values lead to some observations: we can infer the presence of

colour-sensitive units [82] because of the difference in result for 4 streams (I) and 4

streams (II); the network does learn from the information associated to the colour

coding of fingers, since the greyscale depiction of the hand joints rendered an accuracy

lower by 7%. With regards to employing optical flow algorithms to convey the temporal

aspect of the signs, the lack of success was already considered in Section 4.1.1, because

it dictated the course of action for the design process. Those findings echo the discus-

sion in [83], which argues that optical flow is successful in increasing the robustness of

the network to the general appearance of the scene, regardless of temporal coherence.

This is not useful in this context, since the environment is the same for all classes, and

the hands are segmented a priori in any case. Moreover, the small frame dimensions

of the available videos prevent greater flow accuracy, which has greater importance
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Model ROC AUC Score
2 streams (I) 0.8762
2 streams (II) 0.8525
4 streams (I) 0.9526
4 streams (II) 0.9231
4 streams (III) 0.9352
4 streams (IV) 0.9147
4 streams (V) 0.9212

Table 4.4: ROC AUC scores for the dynamic sign recognition model.

for small displacements [83]. In all cases, the implementation benefits from additional

multi-domain streams of data.

As for the static sign recognition framework, we can refer to the state-of-the-art accu-

racy for static ISL recognition as given by [60], where a value of 0.99875 is attained for

the 23 motionless letters of the alphabet. The model developed in this research reaches

an accuracy of 0.9998, thus improving the cited result. The structure of the network

is fairly similar to the characteristics of that presented in [60], in a general sense. The

same dataset is used: a reduced version of the ISL-HS dataset, where redundant frames

have been are removed. The differences in the preparation of aforesaid input data are

more pronounced: Oliveira et al. avoid any image pre-processing, whereas in our case

the hand is cropped so that the background is less substantial and the hand is the focal

point. It does, indeed, make a difference – the accuracy is noticeably worse without it

(Table 4.2).

4.2.2 ROC AUC Score

The ROC curve graphically conveys the ratio of correctly classified samples versus

data erroneously assigned to that same class; i.e., it plots true positive rate or recall

(correct positive predictions over the number of actual positive samples) against false

positive rate or inverse recall (samples incorrectly classified as negatives over the total

number of negatives). Having defined the binary case, we can extend this metric

to encompass of multi-label scenarios such as this one by simply taking the average.

The state-of-the-art ROC AUC metric for ISL recognition of spatio-temporal signs
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is that of [41]. The ROC AUC score for isolated dynamic gestures assessed on a

proprietary ISL dataset of similar conditions for 8 classes is 0.9750. Said data is

comparable to the Signs of Ireland Corpus handled in this dissertation: their dataset

captures individuals, with their upper body in frame, performing natural sign language

sentences, wearing coloured gloves. This is the most notable difference as it simplifies

the hand tracking aspect. For the experiments, eight different signs are extracted from

these videos, and two channels are considered for parallel models (right and left hand),

like the implementation here presented. However, it should be noted that different

labels are considered, and there are intrinsic dissimilarities like the labelling format

and the changing environments. As seen in Table 4.4, the best-performing suggested

framework, which takes both segmented hands and RGB OpenPose-rendered skeletons,

does not surpass the state of the art.

For completeness, although it does not stand as the state of the art, it should be

acknowledged that the above-mentioned work presents a ROC AUC score of 0.977 for

static ISL recognition, considering the 23 non-moving alphabet signs as well. Given

the successful outcome observed in Section 4.2.1, our static model logically outperforms

that implementation, achieving a ROC AUC equal to 0.9999.

4.3 Research Question Results

This research posed the question of how ISL recognition performs using deep learning

algorithms. The preceding section displayed quantifiable results that cover a signifi-

cant in the scope of sign language recognition. First, the static sign framework dealt

with the alphabet signs, which are used for spelling out proper nouns and other words

for which there is no sign (this is known as fingerspelling). The outcome shows that

ISL letter detection is perfectly suited for deep learning architectures: even a simple

network improves the performance of other approaches, with nearly perfect recognition

rate for all classes, as seen in the confusion matrix in Figure 4.8.

The second model looked at signs for specific words with translation over time, and a

certain hand posture at each instant. Whilst the performance is not superior to the

state of the art, the result for dynamic sign recognition is competitive and promising.

The confusion matrix (Figure 4.9) manifests recognition errors particularly significant

for the see sign, since it is very similar to the gesture for but : both require raising the
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Figure 4.8: Confusion matrix for static sign model.

Figure 4.9: Confusion matrix for dynamic sign model.
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index finger, the main difference being the position of the hand with respect to the face.

The best performance is observed for the most populated classes (boy and but), thusly

supporting the usefulness of a greater amount of samples. One of the strengths of this

classifier is that regular videos were used as input: low resolution, irregular capturing

conditions, diverse subjects, and independent of electromechanical devices (no gloves

or depth sensors). As stated by Vijay et al. [84], a system of maximum efficiency with

low cost and good results against complex backgrounds should be preferred. This sug-

gests potential for deep learning applied to ISL, which would benefit from data curated

more extensively and precisely.



Chapter 5

Conclusion

With the intention of offering a thorough study of neural networks that learn from

ISL images and videos, it has been found that some theoretical notions that work

well in related tasks are not as adequately suited for our purpose. Delving into the

types of input information constituted an interesting exploration: whereas keypoint

coordinates for the joints and fingers proved successful in the learning process, optical

flow did not provide an insight into spatio-temporal manual signs. 3D convolutional

layers, on the other hand, were positively validated in the modelling of short temporal

correspondences. In terms of managing the depth or time dimension through the CNN,

it was found that gradual fusion meant that the network learnt about the spatial

features first and progressively incorporated the temporal features.

Another point to review is the importance of the size of the dataset. The multi-input

set-up provided a means to making the most of the available data, by creating streams

that contained alternative representations or extracted features of the information. It

seems apt to assume the concept of mutual reinforcement, as articulated by Liu at

al. in [45] when asserting the productivity of a two-stream CNN. Pre-processing was

a consequential aid, particularly ROI extraction, although previous works have noted

that ignoring the features outside of the extracted region can hinder the understanding

of the context of the information within the ISL [85]. This has been shown to be

true, but it is not a substantial concern for the given framework. In any case, the

relative position of the hands in the frame would definitely provide relevant contextual

information for a larger dictionary. Some fusion methods for getting a final score

34
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from the multiple input streams were analysed, and retaining spatial information when

merging gave the optimum result.

The framework meant for static sign recognition manifested the capability of deep

learning systems, even with straight-forward implementations, to perform image recog-

nition tasks.

Many applications can be derived from these results, with some refinements: a real-

time fingerspelling captioning application, a tool to automatically subtitle ISL videos

given the signs’ timecodes, or a virtual ISL teaching assistant that evaluates the student

by comparing to the learnt signs.

Ultimately, answers in different domains were found for the research question, which

might propel new lines of work, as detailed next.



Chapter 6

Future Work

Parallelisms to Daniel Kelly’s published works have been established throughout the

document, since they stand as a major study of automatic learning and recognition of

ISL. In keeping with these correspondences, future courses of action can be suggested

as follow-up lines of work to this dissertation.

An interesting area is continuous sign recognition, which aims to detect and isolate

signs from sequences. This involves recognising movement epenthesis, a term that

refers to the transitional motion between signs. Regarding ISL, Kelly [34] models each

gesture as a succession of sub-patterns. Each of these segments is an HMM state.

The HMM is trained to classify each sequence as a sign or epenthesis, according to

a probability distribution computed for a two-hand gesture. It would be interesting

to apply a different approach to ISL data, such as identifying lip movement patterns:

Pfister et al. [86] focus on the openness of the mouth to distinguish between sign

and silence, because it is common to mouth the word that is being signed, so there is

co-occurrence.

Furthermore, this research could be extended to encompass more factors of expres-

sion besides hands. A multi-modal system that incorporates facial and body language

would be able to better convey the full meaning and connotations of what is being

transmitted through signs. In [87], these non-manual descriptors (facial expressions,

head motion and eyebrow gestures) are studied for ISL. Said complementary elements

of communication have been analysed applying deep learning algorithms for other sign

languages, whose performance in respect to ISL could be assessed in the future. Koller
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et al. [88] look at mouth shape modelling in the context of sign language and propose a

weakly supervised method that relies on out-of-task data to tackle the lack of labelled

data. The solution is a combination of a pre-trained CNN with an HMM framework

that determines the most likely sequence according to the network’s softmax outputs.

Further widening the scope, Caridakis et al. [89] include head pose, eye gaze and ex-

pressivity (with tracking methods) and facial expressions (with a RNN). The Signs of

Ireland Corpus contains some of this information in the video annotations. However,

the scarcity of the available data hints at the need for further data collection and la-

belling, in order to employ techniques from the works cited above. In any case, the

impact on including these modifiers into automatic sign language recognition is still

indefinite [89].

Throughout the development of this project, the lack of a great amount of precisely

annotated data has posed some issues. Clearly, gathering more samples and strongly

supervised data would assist the progress of developing automatic ISL recognition

systems. Weak supervision of sign language information, an idea backed by previous

works such as [90], [91] or [92], is also an option to compensate for the lack of data and

the noisy and weak labelling that is frequent with subtitles, whose alignment may not

be exact.
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Appendix A: Optical Flow

The computation of the sparse optical flow is based on the Lucas-Kanade algorithm

[93], which was proposed in 1981 as a method for image alignment in stereo vision.

The correspondence problem is closely liked to motion estimation: its extension to

optical flow calculation is a derived from performing template matching on small pixel

neighbourhoods.

This method associates a movement vector with features of interest by comparing

successive images, under the assumption that the difference is small enough for the

approximation to be adequate. Changes in intensity (image gradients) are registered

for sub-regions of pixels in order to deduce or discard displacement. There are just

two variables per pixel: u and v, which stand for motion along each coordinate. As a

result, taking into consideration a set of adjacent pixels leads to more equations than

unknowns, which defines an overdetermined system. The Least Squares solution is

therefore appropriate. The motion vector for one pixel satisfies equation 1.

Ix ∗ u + Iy ∗ v = −It (1)

where I is the intensity increment in each direction (x,y), which then gives the total

intensity difference for that pixel (It).

For a pixel neighbourhood, the least square solution for the equations can be expressed

in matrix form as follows.

V = (AT ∗ A)−1 ∗ A ∗ b (2)

where A is the matrix of brightness change in both axes for all pixels in the region,

b represents the vector of total local brightness variation , and V is the movement

vector.

The particular OpenCV implementation used in the project makes use of the pyramidal
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implementation [70]. This is an iterative version of Lukas-Kanade that operates on

different image levels, meaning recursive representations of the frame,starting from

the original, with decreasing resolutions. Conceptually, this algorithm computes the

optical flow at the last level (i.e., the lowest resolution) and propagates this estimation

to higher levels. This is done for every level in the pyramid. The propagated output

works as an initial guess that enables refinement through the levels. The optical flow at

each level is the outcome of an optimization step that intends to minimise the matching

error function between two comparable images (I1 and I2), as seen in 3.

eL(d) =
∑
x

∑
y

anI
L
1 (x, y) − IL2 (x + gLx + dLx , y + gLy + dLy ) (3)

where g is the initial guess, and d is the residual pixel displacement vector, whose

minimisation is the objective. Towards this goal, standard Lucas-Kanade is applied

successively, until the pixel residual is below a certain threshold, or until a maximum

number of iterations is reached.

Gunner Farneback’s algorithm [71] was put to work in pursuance of dense optical flow.

Conceptually, this method begins by approximating the two patches from contiguous

frames by quadratic polynomials. The idea is that the global displacement can be

inferred for any two polynomials under ideal translation, by equating the coefficients.

This perfect relationship between two signals is not realistic, which is why local poly-

nomial approximations constitute a more suitable approach, as is the notion of global

displacement not being constant over the entire image; it is instead a function with slow

spatial variation. The aforementioned approximations concede a primary constraint.

Prior knowledge about the displacement is also incorporated so as to reduce poten-

tial errors produced by larger displacements, due to the assumption of local models.

This means that introducing an a priori estimate might help create a smaller relative

displacement, which is less prone to errors.


