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Over the last couple of years, Augmented Reality (AR) has reached millions of con-

sumers with the help of Visual-Inertial Odometry systems. This key process has been

developed to such extent that it can now run on handheld smartphones. Research in the

field has been focused on creating usable and entertaining experiences, but there is still

a need to design solutions addressed at some crucial technical obstacles of Augmented

Reality systems. Nowadays, frameworks such as ARKit or ARCore are available in

millions of devices and allow a basic interaction between virtual objects and real-world

planes, lacking any other 3D understanding of the rest of objects present in the scene.

The project hereby presented aims to design and implement a real-time 3D reconstruc-

tion system for a richer environmental understanding of the physical world, focusing

on allowing an e�cient collision between real and virtual objects. Some solutions have

been proposed using specific hardware. This work, however, is developed on top of

monocular SLAM systems which are available in today’s mobile devices, thus, the

constraints that these low-end devices have must be taken into consideration. This

dissertation seeks to describe how to make use of a cloud of visual features in order

to build a meaningful 3D representation of the scene. The results of this research ex-

tend the alternatives currently available, and show how real-time can be achieved by

taking advantage of an volumetric data structure with adaptive levels-of-detail and a

multithreaded processing pipeline.
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Chapter 1

Introduction

Augmented Reality (AR) is not a new concept anymore. Numerous books and movies

of the last decades have shown us the once utopic immersion into a computer-generated

environment. Even if we still have a long road ahead to achieve this vision, where the

overlaid information presented to the user will be impossible to discern from the real

world, we are getting closer day after day. Researchers, in some cases maybe inspired

by science fiction, usually try to find solutions to create a seamless integration between

the real and the virtual world. In general, most of these solutions seek to improve the

current hardware, the visual perception of the virtual objects, or the physical interac-

tions, in order increase the believability of any AR experience.

Thanks to the progress made in the Computer Vision and Machine Learning fields,

Augmented Reality has been brought to million of commercial mobile phones. It is

now more accessible than ever, and end-users are able to experiment and have a sneak-

peek of how the future will look like through their hand-size devices.

This dissertation presents a novel approach that allows interaction between real-world

environments and virtual objects in Mobile Augmented Reality, focusing on improv-

ing the current 3D understanding of the scene around us. Our approach is based in

two main contributions: an adaptive data structure and a multithreaded processing

pipeline.
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Chapter 1. Introduction

1.1 Motivation

In recent years, the industry of Augmented Reality has experienced an exponential

growth; predictions say this increase will not stop any time soon [5]. This technology

is currently being used in commercial sectors such as telecommunication, healthcare,

education, and entertainment among others. Since device manufactures are able to

pack more power into smaller systems, we have seen the increment of new AR-capable

hardware in the last couple of years. In 2016, HoloLens was presented by Microsoft

as a self-contained, holographic computer, that enables the user to engage with digital

content and interact with holograms placed around them [43]. Further examples of

headsets include the Meta II or Magic Leap One, which are mainly focused on enhanc-

ing work productivity by overlaying information relevant to the user. Even if these

devices are capable of an impressive spatial mapping thanks to their power and sen-

sors, their price ranging from $1,500 to $5,000 make them an unnecessary whim for

the general public.

While we wait for these headsets to be more a↵ordable and useful, Google and Apple

have released in the last months frameworks that enable augmented reality capabilities

in their mobile operating systems, i.e. Android and iOS respectively. Both frameworks,

called ARCore and ARkit, have brought augmented reality to millions of consumers

and developers world-wide, removing some of the barriers that other types of hardware

have. However, making AR as accessible as it is right now entails some drawbacks:

mobile devices are very limited when it comes to power and sensors.

Fundamentally, mobile Augmented Reality is capable of two things: tracking the pose

–rotation and location– of the device in real-time and have a basic understanding of

the scene around the user. Due to the lack of depth sensors in modern smartphones,

the 3D reconstruction of the real world is carried out by only representing the close

planes available and completely omitting the remaining objects present in the scene.

Therefore, when a virtual object is thrown into a mobile AR experience it will only

collide with planes that have already been detected previously, limiting the overall im-

mersion of the user.
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Chapter 1. Introduction

Although immersion in AR can be lost by the visual quality of the rendered objects, or

in other cases by the hardware used, the fidelity of physical interactions also play a big

role on the quality of the experience. Likewise, reconstructing the scene is not a trivial

problem, nonetheless proposing solutions is crucial for enhancing the user perception

by providing accurate collisions with the real world. Having a richer scene understand-

ing will not only increase the quality of the experience, but it will also be helpful for

developers to build apps and games that make use of the totality of the 3D space they

are run at.

Even though 3D reconstruction is an established research area within the Computer

Vision field, most of the methods proposed in the past relied on GPU-based pipelines

and depth maps as input. Nevertheless, these features are not available on regular

smartphones, hence brand new approaches need to be implemented. The constraints

of the type of device used do not limit our research, but help us find new and creative

solutions that can be extrapolated to other devices later on.

1.2 Objectives

The primary aim of this dissertation is to describe, analyse and build an online 3D

reconstruction system that is capable of e�ciently representing the scene for physical

interactions. The device used for development is a consumer-grade smartphone, there-

fore the solutions proposed should respect the constraints of these kind of devices.

The current capabilities of handheld smartphone Augmented Reality are limited to

detection and understanding of planes in the scene. Extending that functionality will

improve the perception and therefore the overall quality of the user’s experience.

Along with the primary goal, the reconstruction system pursues the following secondary

objectives:

– To extend the current understanding functionalities of mobile AR, so that more

objects apart from the already detected planes are spatially mapped on the scene

allowing physical interaction with digital objects.

– To manage CPU in a performant way taking into account the limitations that

3
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GPUs on mobile devices have. This will be done by designing a multi-thread

implementation to reduce the workload of the main thread.

– To suggest an e�cient, real-time system able to run simultaneously with the

internal AR processes that track the motion, rotation and location of the device

as well as the rest of digital objects present on the scene.

– In order to meet all the above, the data structure needed will be designed. This

structure allows the storage of a volumetric representation of the world with

various levels of detail (LODs), focusing on adaptiveness, and increasing the

overall accuracy of the physical interactions between real and virtual world.

The aforementioned challenges are explained and reasoned throughout this dissertation

and a solution for each of them will be presented. The project and all its code has

been designed taking into account extensibility, and has been exported afterwards into

a Unity3D package that can be used by other developers to encourage further research

and applications. This dissertation and its design choices aim not only to improve the

quality of the experiences in the fields of entertainment and videogames, but also to

expand new areas of knowledge that take advantage of Augmented Reality and spatial

mapping.

1.3 Dissertation Roadmap

This dissertation is arranged as follows:

– Chapter 2 - State of the Art overviews the background needed to understand

the research being done and reviews the current state of the art by taking a look

at previous related work. Then, it will examine why the already existing potential

solutions do not solve the challenges mentioned in Section 1.2, and therefore why

new approaches should be encouraged.

– Chapter 3 - Adaptive Volumetric Representation o↵ers an in-depth view

of the design choices that are the foundation of our adaptive data structure.

– Chapter 4 - Object Reconstruction Pipeline describes the algorithm and

multithread process behind the 3D reconstruction.

4



Chapter 1. Introduction

– Chapter 5 - Implementation analyses the implementation possibilities of the

data structure and pipeline presented in Chapters 3 & 4. The tools and libraries

used are also described and discussed in this section.

– Chapter 6 - Results & Discussion evaluates the outcomes achieved in the

implementation of an adaptive 3D reconstruction and exposes some of the limi-

tations that the system has. The results are compared in regards to the current

capabilities of smartphone-based Augmented Reality.

– Chapter 7 - Conclusions & Future Work summarises the proposed contri-

butions and suggests ideas for future work.

5



Chapter 2

State of the Art

This chapter describes the current state of the art as well as the background knowledge

needed to understand the underlying concepts that shape this dissertation. It starts

by exploring Augmented Reality and more specifically the technologies that enable AR

experiences on handheld smartphones. Next, an in-depth review of the related work

being carried out in three-dimensional reconstruction is made, including the di↵erent

ways of representing the scene data volumetrically. Finally, we look briefly into collision

detection in Physics, and how e�cient physics systems are developed.

2.1 Augmented Reality

Augmented Reality (AR) is usually defined as the technology that seamlessly overlays

information on top of the real world to enable new interactive experiences [15]. More-

over, Augmented Reality is mentioned in literature as a variation of Virtual Reality

(VR) [2]. While VR immerses the user inside a synthetic environment, AR superim-

poses the virtual objects into the real world, supplementing reality instead of replacing

it. Milgram and Kishino in 1994 [44] formulate the taxonomy of the di↵erent ways in

which real and virtual worlds can be combined, proposing clear terminologies for the

Mixed Reality concepts. In their paper A Taxonomy of Mixed Reality Visual Displays,

Augmented Reality is referred as all the cases in which “a display of an otherwise real

environment is augmented by means of virtual (computer graphic) objects”. They clas-

sify Augmented Reality as a subset of Mixed Reality (MR), where real world and virtual
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Chapter 2. State of the Art

world objects are presented together within a single display. Figure 2.1 below exposes

the relations between the di↵erent terminologies inside the “virtuality continuum”.

Figure 2.1: Virtuality Continuum by Milgram in 1994 [44]

Even if the first combination of virtual and real world views appeared in 1968 with the

use of helmet-mounted video screens [59], the term Augmented Reality was not used

until 1992. That year, Boeing Computer Services [10] designed and prototyped a see-

through, head-mounted display (HUDSET) and first used the term “augmentation”,

which referred to the enhancement of the visual field of view (FOV) of the user by

overlaying relevant information for their current task. Overtime, Augmented Reality

hardware has evolved, increasing the quality of immersion of the user and therefore,

making it possible for the emergence of additional consumer, industrial, and commer-

cial applications.

It is worth mentioning that Augmented Reality is radically changing the general per-

ception and prior considerations about Human-Computer Interaction. Technology is

now able to understand our most human inputs like hand gestures [63], gaze [51], or

even voice commands [43] and therefore, is enabling a more natural way of computing.

In the near future, Augmented Reality will play a big role on how we interact with

computers, impacting human life and extending the boundaries of what are we able to

do with technology [5].

AR is not limited to a set of specific applications; in fact, several studies [2, 6, 61, 39]

investigate about the various use-cases for Augmented Reality in several industries.

Researchers and developers constantly try to find fields in which overlaying virtual

information in the real world can be beneficial for the users. Although two of the most

common applications for AR are, undoubtedly, entertainment and videogames, other
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areas such as healthcare, Computer Assisted Design (CAD) or maintenance among

others also take advantage of this technology. For example, the display of information

relevant to a surgery procedure above the patient can help nurses and doctors in their

everyday labour [31]. As another example, further research in this field has led to

the application of AR in devices such as the Google Glass, that could be used in

surgical settings to indicate the doctor how to perform certain procedures [11]. Lately,

literature is also exploring how AR can be used as a marketing tool [8, 55] that enhances

customers’ experiences and therefore influences their decisions concerning the purchase

of a product. One of the most popular examples of this use-case is IKEA’s new app

called Place [18]. Under the slogan “Try before you buy”, this mobile application lets

you place true-to-scale photo-realistic furniture in any space, interact and walk around

it.

Figure 2.2: a) IKEA’s new app Place [18]. b) Augmented Reality informa-
tion overlaid in healthcare applications [31].

2.1.1 Mobile Augmented Reality

Mobile Augmented Reality (MAR) and Handheld Mobile Augmented Reality (HMAR)

are subsets of Augmented Reality, and refer specifically to any type of technology a

user can carry to visually augment the world [2]. Throughout this dissertation, these

concepts will be used interchangeably to talk about smartphone Augmented Reality,

which is the main focus of this work. This section explores some of the background be-

hind Mobile Augmented Reality and the technologies that make possible to experience

it in our smartphones. The first implementations of smartphone AR applications date

8



Chapter 2. State of the Art

from early 2004, with some demonstrations of real-time tracking of 3D markers [53].

Since then, and thanks to the technical advancement of mobile computing, AR can

now be distributed to a large number of users and the potential use-cases are unlim-

ited. Three main techniques are usually described in the literature [9] to create Mobile

Augmented Reality experiences:

• SLAM (Simultaneous Localisation and Mapping): The position of the device and

its motion is tracked through computer vision and machine learning algorithms.

• Marker Recognition: It tracks visual markers or objects to know the camera’s

perspective. Virtual objects are placed on top of the recognised markers. This

method is limited to knowing the marker location at all times, and as soon as it

goes away from the view frustum the tracking stops.

• Location Recognition: Uses GPS technology and/or a digital compass to track

the device on a specific location. This type of Augmented Reality is usually

helpful for overlaying information that refers to directions or nearby services.

Thanks to the increase of computing power in mobile phones, SLAM, and therefore

markerless tracking, can now be run on a hand-held format. At the moment, HMAR it

is mainly being developed by Apple and Google. In the late 2017, they both released

Software Development Kits (SDKs) for their respective Operating Systems (OS) to

enable developers build applications that leverage the use of Augmented Reality. How-

ever, Google’s Advanced Technology and Projects (ATAP) team was already developing

its AR technology since 2014 when they announced their project Tango, a device with

multiple cameras and depth-sensing capabilities. The Tango platform was presented as

a real-time location and mapping AR platform, solving most of the problems needed

for a basic HMAR. Google Tango, with the help of Computer Vision, is able to have

an adequate knowledge of the device location relative to the real world around it [35].

The Tango platform is fundamentally capable of three things: tracking motion, under-

standing the scene, and perceiving distances.

In March 2018, Google decided to shut down Project Tango [32], since the require-

ments and price of the hardware were not being well-accepted by consumers. However,

all the principles behind Tango are now used in Google’s new ARCore, the Android

9



Chapter 2. State of the Art

Augmented Reality platform that can run on most commercial smartphones. With the

help of just one RGB camera, and the on-board sensors, i.e. accelerometer and gyro-

scope, ARCore is able to track the device pose on real-time, have a basic understanding

of the scene and estimate the lighting conditions. Under the same principles, Apple

released the ARKit platform for their iPhone Operation System (iOS). Both platforms

by the two U.S. technology giants are the reason why Augmented Reality has become

so popular over the last couple years.

The following sub-sections will review some of the current features ARKit and AR-

Core come with, in order to understand the available functionalities, but also their

limitations.

Motion Tracking

Motion tracking can not be explained without first analysing the concept of Simul-

taneous Localization and Mapping (SLAM). SLAM is the process of understanding

the device position and rotation by mapping the surroundings. Before landing on

smartphones, it was a popular topic among the mobile robotics community. There

are di↵erent algorithms which make SLAM possible, but essentially they all incremen-

tally build a consistent map of the environment while simultaneously determining the

device location within this map [20]. Thanks to the growth of computing power in

mobile devices, SLAM algorithms can be calculated with significant consistency on

smartphones. The first implementation of smartphone-based SLAM was presented by

Klein and Murray in 2009 [33]. They proposed a keyframe-based SLAM approach that

could be run on regular smartphones using the camera data as input. Nonetheless,

using only images for 3D tracking can be limited and imprecise, and therefore SLAM

algorithms can be enhanced by using sensor fusion technology [37]. This concept relies

on combining the data of di↵erent sensors in order to have more accurate and detailed

information about the device and hence better motion tracking. Lynen et al. [37] ex-

tend the basic SLAM algorithms with sensor fusion increasing robustness and accuracy

of mobile robots navigation.

Understanding the device position and rotation on real-time starts with the data gath-
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ered from the Inertial Measuring Unit (IMU), which is formed by a gyroscope and a

accelerometer. From these two sensors we are able to obtain the rotational angle, ac-

celeration, velocity and position of the smartphone. Due to the fact that IMUs are not

accurate enough to track the device on their own, the image stream from the camera

is also necessary in the process. By identifying characteristic visual features on every

image and tracking them overtime using SLAM, the camera pose can be recovered with

respect to these features. The process that computes IMU data and images for motion

tracking is called Visual-Inertial Odometry.

Figure 2.3: VIO systems are possible thanks to the combination of SLAM
and sensors.

Nevertheless, Visual-Inertial Odometry poses an evident obstacle: it drifts overtime

and objects are moved from the original position they were detected at. Thanks to

SLAM optimisation processes (Figure 2.4), VIO is able to increase the accuracy of the

scene map in the background and detect loop closures [58] that stabilise the previously

detected poses. Due to the memory limitations of smartphones, once the scene map

becomes too big, the system needs to remove some of the information which will no

longer be used for the reconstruction.

Light Estimation

Smartphone AR detects information about the lighting of its environment by process-

ing a given frame. The light estimation is calculated by filtering the intensity of a

subset of pixel data for every single frame. Once computed, it returns a value of the

average brightness of the scene so the rendering style of the objects based on it can be

changed. The quality of the immersion is improved by adapting the virtual objects to

the surroundings and merging their aspect into the real world.
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Scene Understanding

In order to place virtual content on the scene, a 3D representation of the physical world

is needed. Once the camera pose has been tracked e�ciently, the HMAR frameworks

(i.e. ARCore and ARKit) improve their knowledge of the scene by detecting planes,

vertical and horizontal. Due to the lack of depth-sensing capabilities in commercial

smartphones, the scene understanding is limited to a few planes and a cloud of points.

Every plane is defined by a polygon and helps creating the illusion of virtual objects

resting on top of real-world surfaces.

Robust plane detection is achieved through detection of subsets of coplanar feature

points from the monocular camera image [3, 16]. On the other hand, the data of

the detected point cloud is improved by estimating surface normals [14], an expensive

method that is only helpful when the visual points are abundant.

Figure 2.4: Google’s ARCore processing pipeline. Our dissertation topic
deals with “Object Detection”, highlighted in red.

12
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2.1.2 Immersion

The concept of immersion has been addressed in numerous contexts; however, it has

recently been used to a greater extent in the area of Augmented and Virtual Reality.

Immersion is defined as the user sensation of involvement in the virtual world [56]

and it is linked to the mental sensation of engagement. Apart from the research that

has been conducted on psychological and emotional e↵ects of Virtual Reality [54, 55],

digital immersion can be influenced by mainly three technical factors [56]:

• Hardware: it plays a big role on how the user is able to engage with the virtual

reality experience. Headsets and glasses provide nowadays the most immersive

experience, as they increase the field-of-view (FOV) and therefore minimise the

visual boundaries between physical and digital world. This is in contrast to

smartphone AR, which only covers a small amount of real world and subsequently

leads to the need of other ways to enhance immersion.

• Physical interactions: the virtual objects need to interact with the world in a

lifelike manner. Otherwise, the immersion e↵ect may be lost if they do not follow

the laws of physics the user is accustomed to.

• Visual perception: how the real world and the virtual objects are rendered can

completely change the e↵ect that the experience has on the user [57]. Augmented

information can be rendered as realistic as possible to be seamlessly integrated

with the environment, or on the other hand, the real-world can be stylised to

match the virtual objects [12].

2.2 3D Scene Reconstruction

While scene understanding has already been mentioned previously in this dissertation,

the current capabilities of consumer HMAR three-dimensional reconstruction are very

limited. So far, ARCore and ARKit only include plane detection and in order to ex-

tend this feature we need to review some of the work that has been done in the 3D

reconstruction research field.
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Point cloud data is commonly used in image analysis for computer-aided design (CAD),

physical simulations and medical research [1], among others. One simple method for

3D reconstruction is saving multiple point clouds directly as a representation of the

physical space. These so-called point-based methods use points [4, 48] as their primi-

tive shape being an alternative to polygonal meshes, in particular when the models are

highly complex or dynamic. However, when the input data is very sparse and noisy,

these methods fail to accurately reconstruct the real world: areas without available

points are omitted thus generating gaps on the three-dimensional representation, and

negative (non-surface) information is never captured [34]. A di↵erent approach for

3D reconstruction was introduced in Elfes [21] alongside the term “Occupancy Grid

Mapping”. This method divides the world into a voxel grid that contains occupancy

possibilities generating maps from sparse and uncertain input data. Even if the orig-

inal paper was focused on robot perception and navigation, this algorithm has been

implemented in the Tango [40] platform, achieving impressive results.

Curless and Levoy [17] first introduce the concept of signed distance functions to vol-

umetrically reconstruct 3D objects from range images to overcome the limitations of

occupancy grids. The scanned information is converted to a weighted signed distance

function (SDF) of each point to the nearest range surface along the line of sight of the

scan device. Therefore, the real world data is discretised into a grid of values: data

inside a surface will be negative and data outside of it will be positive. Later on, thanks

to the use of a truncated signed distance function (TSDF) the surface is reconstructed

at subvoxel accuracy, removing the outliers present in the voxel grid. This method has

been extensively used since then in most of the depth-sensing cameras in the market,

and other image-based capture devices.

Kinect Fusion by Microsoft Research [46] tracks the 3D pose of the Kinect sensor and

geometrically reconstructs precise 3D models of the physical world. However, Fusion

uses a fixed voxel grid, depth sensing and a heavy GPU-based pipeline for its recon-

struction process, not being suitable for mobile devices with small memory and only

RGB cameras. Later research such as Kintinuous tries to solve this limitation by ef-

ficiently removing data not visible from the GPU. Hence, reconstruction data has to

be gathered and computed again if we point the sensor to an already deleted space.
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Some of the principles of Fusion were lately applied by MonoFusion [52]. Pradeep

et al. present how to build dense 3D reconstructions of the environment in real-time

thanks to the use of a standalone camera without depth information. Compared to

existing approaches, the live image stream is feed into a feature tracking algorithm

that estimates the camera pose in 6 degrees of freedom (6DoF). Their method is GPU

computational-intensive, and requires a desktop or high end laptop to perform e�-

ciently.

Figure 2.5: a) Example of a 3D-reconstructed scene with Kinect Fusion
[46]. b) Truncated signed-distance function using a Kinect as scanning
device [17].

It is also worth mentioning some under-development mobile applications that use lo-

cally processed photogrammetry for 3D scanning objects and scenes. Photogrammetry

is defined as the science of taking measurements from photographies and is the prin-

ciple behind some monocular RGB scan devices. Tim Field from Abound Labs [22]

published, on July 31st, 2018, an early-access beta app for 3D scanning in Augmented

Reality using real-time photogrammetry with impressive results. After a scan phase

using mobile GPU computing for speed up post-processing, the reconstructed mesh

can be used for collision detection and occlusion in ARKit.

2.2.1 Spatial Hashing

Spatial hashing is an optimisation technique in which objects in a 2D or 3D domain

space are projected into a 1D hash table allowing for very fast queries on objects in

the domain space [28]. The look-up complexity of O(1) make spatial hashing faster in

large-scale environments, but slower than other data structures like quadtrees when it

comes to small sets. Spatial hashing is widely used in several areas, such as collision
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detection and 3D reconstruction, to spatially distribute data into a grid-divided space.

In Teschner et al. [60], spatial hashing is used for e�cient collision detection of de-

formable objects. By distributing the data into a hash table, we can easily narrow

down which collection of objects are intersecting in what is called the broad phase.

Afterwards, the collision of that set of objects is calculated with more precision during

the narrow phase. In [60], during the first pass of the spatial hashing algorithm, the

hash values are computed to discretise the space into a uniform-sized grid by using the

following hash function:

hash(x, y, z) = (x · p1� y · p2� z · p3) mod n (2.1)

Where p1, p2 and p3 are large prime numbers and n is the hash table size. Experi-

ments indicate that the size of the hash table directly a↵ects the performance of data

manipulation; the higher the value, the more e�ciency achieved. Once we have our

unique hash value, data is saved into a hash table where it can be retrieved at any time

by performing a simple query. This equation is the starting point for multiple papers

[47, 30, 29] that research about three-dimensional representations of the physical world.

Later research [36] explores solutions for making spatial hashing compatible with GPU

parallelism, removing unused entries from the hash table by pre-computing the hash

value. However, this method is tightened to a fixed-size grid with uniform resolution.

2.2.2 Voxel Hashing

In Nieet al. [47], the plain spatial hashing data structure is extended for volumetric

reconstruction in what they call “Voxel Hashing” (Figure [47]). They show interactive

real-time reconstruction of di↵erent scenes using this data structure to e�ciently organ-

ise the input obtained from consumer depth cameras. In contrast to other methods,

voxel hashing does not require neither a hierarchical data structure nor a memory-

constrained voxel grid. Their pipeline uses a hash function to map the integer world

coordinates to hash buckets, in which pointers to voxel blocks are stored, accessed and

updated dynamically. The data structure they presented can be seen in Listing 2.1.
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Figure 2.6: a) The Voxel-Hashing data structure proposed in [47]. b) Results
of 3D reconstruction with Voxel-Hashing [47].

struct HashEntry {
short po s i t i o n [ 3 ] ;

short s i z e ;

int pointerToVoxel ;

} ;

Listing 2.1: Hash entry for the voxel hashing data structure [47].

In Klingensmith et al. [34], voxel hashing is applied to mobile augmented reality in

the Tango platform avoiding needless computation and wasted memory. Their imple-

mentation achieves a real-time 3D reconstruction with a resolution of 2-3 cm without

having to use GPU computing. Their pipeline pre-optimises the input data, only stor-

ing the relevant one in the GPU and throwing away the rest. Other works such as

Hui et al. [29] and Muratov et al. [45] propose minor extensions of the general voxel

hashing data structure by merging voxels to build a multi-scale 3D reconstruction, and

by post-processing the data with OpenCL after a 360� scan respectively.
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Figure 2.7: a) 3D reconstruction of a scene using Chisel [34]. b) Chisel
application based on Project Tango [40].

2.2.3 Hierarchical Data Structures

For some specific implementations, TSDF information has been saved into custom

hierarchical data structures such as octrees or KD-trees due to the vast amounts of

data that can be obtained from sensors nowadays. A balance between resolution and

e�ciency has to be found to store data. One of the most common examples of hier-

archical data structures are octrees. An octree subdivides the space recursively into

eight equally-sized volumes until the final partial volumes represent a unique voxel [64],

increasing the memory footprint but allowing a more detailed reconstruction resolu-

tion. In an octree, each new level results on an increase of resolution by a factor of

two impacting performance due to the need of a deep tree structure. In Zeng et al.

[64], Octrees are used to organize the sensor data from Kinect extending the original

Kinect Fusion [46] research. The results show a 2 times faster reconstruction with an

increase of only 10% of memory usage.

Kähler et al. [30] presents a novel approach for hierarchical voxel-hashing. Avoiding

unnecessarily deep trees, they store a limited number of levels depending on the reso-

lution of the scanned area. Every entry of the voxel hash table contains points to the

data blocks of 83 voxels each. Depending on the depth and resolution, more data is

represented in lower levels, and a special marker indicates if additional information can

be found at a deeper level. In order to e�ciently obtain the hash values or indexes of
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the hash table, they use the aforementioned hash function (2.1)[60].

2.3 Collision Detection

Collision Detection is the process of determining the geometric contact of virtual ob-

jects with respect to others or themselves. Despite the large amount of existing work

in this research field, further study is needed in the new context of Smartphone Aug-

mented Reality. A wide range of solutions are already available for computational

geometry, physics simulations or robotics among others, but there is always room for

improvement in this area due to new hardware and research fields such as AR. In

collision detection, there is no perfect solution for every system, fluids, rigid bodies,

particles, or waves require completely di↵erent approaches to this problem. When test-

ing a collision detection algorithm, performance can be determined by measuring its

complexity, speed, accuracy and di�culty of implementation [38].

In order to overcome the computational cost of collision calculations there are two

general approaches: to simplify the objects that are colliding or to simplify the space

in which they collide. Usually, collision detection and response are studied in basic

primitive shapes such as spheres, boxes and cylinders. Computing the contact points

of these shapes is cheap, and more complex polyhedra can be modeled by combining

these small pieces. Some algorithms [24, 42] make use of multi-resolution techniques

that calculate the collisions with lower resolution versions of the original model. How-

ever, these systems can run into ine�cient memory footprint because of the need to

store di↵erent representations of the same shapes, what is usually known as Level of

Details (LODs).

The practical approach to collision detection most widely used divides the computation

into two di↵erent stages:

Broad-Phase: determines which objects are close enough to collide and need

to be checked. The rest of objects are removed from the collision detection loop

hence the computation cost is highly reduced.

Narrow-Phase: once the subset of colliding objects has been obtained from
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the Broad-Phase, a more expensive calculation is done for those specific objects.

This phase usually processes exact geometry collision.

Collision detection algorithms are boosted with two main Broad-Phase methods: Spa-

tial Partitioning and Bounding Volume Hierarchy (BVH). This latter method achieves

impressive results when used on rigid bodies and deformable objects by pre-processing

their simpler representation. BVH was first introduced in 1976 by Clark [13], who

explored a hierarchical algorithm for accelerating object render processes. By testing

collision with a simpler shape instead of the object itself, Bounding Volumes reduce

the cost of computation. There are multiple ways of structuring the data spatially,

for example, AABB (Axis Aligned Bounding Box) compares e�ciently the overlap-

ping coordinate values [19]. Other popular method is Oriented Bounding Box (OBB)

[27], allowing a tighter collision than AABB because of the orientation information,

despite being less e�cient. Some of the drawbacks of OBB and AABB are overcome

by using sphere bounding volumes, due to the fact that they are rotationally invariant,

transformation is defined by their center points and overlaps are faster to calculate [49].

Another way for e�ciently calculating collisions is by culling away whole objects that

are too distant from each other, and therefore they will be removed from the computing

loop. Instead of dividing the object into di↵erent regions, the spatial partitioning

approach splits the virtual space into several sections. Three di↵erent types of spatial

structures are mentioned in literature: grids, trees and hashed storage [38]. Grids

divide the space into uniform-sized sections, lacking of higher resolution representation

when it is needed. To overcome this issue, trees recursively go to lower levels, usually

allowing a finer resolution but increasing the memory overhead. In order to reduce the

memory usage, hashed storage (hash tables) help organise the data with a potentially

infinite limit.

2.3.1 AR Collisions

Apart from the abovementioned general collision background knowledge, it is impor-

tant to go deeper into the problem and see what solutions are proposed in the literature

for collision detection in Augmented Reality environments.
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In Breen et al. [7], several techniques for interactively performing collision detection

between real objects and dynamic virtual objects in Augmented Reality are addressed.

The authors bring attention to the idea of seamlessly merging real and virtual objects

in order to increase the believability of the AR experience. In their implementation,

they propose two di↵erent techniques for acquiring models of the real world based on

computer vision algorithms. The first one consists in model-based methods and uses

pre-designed 3D models to align them to the real world geometry. The pose of the 3D

objects is usually set by using visual features from the computer vision algorithms, or

manually set by the user. This method registers the object’s landmarks and calculate

their transformation based on the camera’s coordinate system, reducing the input of

the user and automating the procedure. The second type of techniques for scene

understanding falls into the category of depth-based methods, in which the depth of

the real environment is acquired through a depth-sensing camera. The depth map

generated with this method does not include full information of the object and is tied

to the viewpoint of the camera. However, depth-based methods allow to have a more

general knowledge about objects that are not available in the collection of models.

Figure 2.8: a) A wireframe model is overlaid on a real object after registra-
tion [7]. b) The model is used for occlusion and collision of digital objects
(two chairs and one lamp) [7].

Later in their research, Breen et al. investigate collision and occlusion for both of these

techniques. Virtual objects are hidden when they are behind the real object repre-

sentations, and collision between them is achieved by comparing 3D positions of their
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bounding boxes [19]. The authors conclude by stating that the model-based method is

highly limited in those cases when the scene is large, or the objects are not present in

the repository. On the other hand, depth-based techniques do not need prior knowl-

edge of the scene but have a higher computational cost for real-time applications. For

the time being, their approach showcased admirable results that notably improve the

physical interactions of the user in AR.

Since then, the various solutions that appear in the literature [46, 52, 29] tend to follow

similar modi operandi: improving the scene understanding (mesh reconstruction [46])

and applying a general knowledge of physics calculations and collisions (as described

in Section 2.3) in order to enable interactions between virtual and real objects in AR.

2.4 Level of Detail (LOD)

Level of Detail (LOD) is the concept of decreasing the complexity of a 3D model as it

moves away from the viewer or according to other variables, such as object relevance,

speed or resolution. In Computer Graphics, LOD techniques decrease the computa-

tional cost of graphic pipeline stages by reducing the number of polygons that need to

be rendered at a given time. When it comes to textures, multiple levels of detail are

usually called mipmaps [62]. Thanks to cross-platform rendering engines [23], dynamic

geometry level-of-detail (LOD) algorithms have become more popular and help run

the same source code in di↵erent GPU architectures with adaptive render qualities.

In addition, LOD techniques are not only helpful to relieve heavy rendering, but also

to optimise the computation of expensive tasks that can be omitted. In O’Sullivan

et al. [50] crowd simulation, it proves to be cost-e↵ective due to level-of-detail artificial

intelligence (LODAI). For example, if an agent is not in the current view-frame, its

complex behaviour is simplified to only make it appear believable. However, they not

only use LOD techniques for crowd behaviour, but also for geometry rendering, colli-

sion and motion. One of the problems they mention in crowd simulation is the lack of

realism due to the use of coarse collision approximations. A hierarchy of rigid bounding

volumes is used in their system, and the di↵erent levels of resolution are switched as

required for collision detection. Further information on LOD used in di↵erent areas

such as collision detection or animation, can be consulted in [25, 41].
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Adaptive Volumetric

Representation

The overall goal of this research project is to design an e�cient pipeline that extends

the current scene understanding of smartphone AR. The approach in order to achieve

this objective is a novel data structure that stores key-frame independent point clouds

into a hash table of voxels that can be used for physics interactions. Through the use

of an extended version of Voxel-Hashing [47], di↵erent levels of detail for each voxel are

created to freely adapt the resolution of the reconstruction based on any given factor.

This chapter explains in detail all the design choices that have been taken to build an

adaptive level of detail data structure for scene understanding in smartphone AR.

3.1 Scene Understanding in AR Frameworks

ARCore and ARKit frameworks for smartphone Augmented Reality are only able to

recognise 3D planes in the scene. As explained in Section 2.1.1, subsets of coplanar

feature points are extracted from the monocular RGB camera data and combined to

build a polygon that represents each plane. Moreover, AR frameworks have limited

access to their internal processes, and only allow developers to access the detected

planes and a collection of feature points called “point cloud”. Point clouds are local vi-

sual features on the current frame with a significant change of an image property (e.g.

intensity, colour, texture). When the device is moved around the scene, correspon-
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dences of the visual features can be found and mapped into the 3D space. However,

the point cloud extracted by AR frameworks is frame independent, hence there is no

built-in way of knowing how visual features change from frame to frame. Taking this

into consideration, the need arises to design a custom approach in order to e�ciently

store those feature points. Every point extracted from the point cloud is stored as an

array of four floats, where the first three represent the x, y and z 3D coordinates of the

point measured in meters. The last float (w) indicates a confidence value given by the

framework in the range of 0 � 1, where 1 corresponds to full confidence in the mea-

sured position values. Point locations are based in world coordinates, consistent with

the camera pose for the specific frame that provided the point cloud. Apart from the

collection of points, each point cloud has a timestamp which indicates in nanoseconds

the moment it was observed.

These factors contribute to several alternatives in order to represent the scene. One

possible way to do this with the help of the point cloud data would be to use point-

based scene reconstruction methods (Section 2.2). However, from a monocular scan

device, computer vision algorithms are not able to detect high-confidence visual fea-

tures in textureless or reflective surfaces, resulting on a very sparse point cloud data.

While point-based reconstruction shows impressive results when the models are com-

plex or highly dynamic, it works poorly with scattered data [48]. In addition, the lack

of computational power and memory on smartphone devices proves to be ine�cient for

the storage and 3D tracking of thousands of points.

A second technique is mesh reconstruction, despite leading to problems similar to the

ones found in point-based methods. Gaps in the reconstruction appear when there

is not enough information available from the point cloud data and the quality of re-

construction will not allow accurate physics interactions (i.e. virtual objects going

through real ones). Moreover, mesh reconstruction relies on normal data from the sur-

faces, which is not available in the current versions of smartphone AR frameworks.
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3.2 Basic Voxel-Hashing

In order to e�ciently store on the device the three-dimensional volumetric representa-

tion, the Voxel-Hashing [47] data structure has been extended in our proposed design.

In the classic Voxel-Hahshing data structure, every hash entry is used to store TSDF

values into a hash table. Each occupied entry in the hash table refers to an allocated

voxel block, and each block stores a TSDF value along with its weight and colour.

By using the hash function described in Equation 3.1, voxel-blocks can be e�ciently

found in the hash table by simply having the world coordinates. Nonetheless, this data

structure was designed for a fixed resolution 3D representation, where the resolution

can not be changed over time or by any given factor such as the density of the point

cloud or the distance to the scanning device.

Conceptually, the world space is divided into a infinite uniform grid. Every visual

feature detected by the framework is located inside the grid and mapped to a block.

Likewise, each block or cell that forms the grid can contain multiple points based on

the scale of the subdivisions, which will cause redundant voxels to be reconstructed.

In order to retrieve and avoid duplicate entries, every block in the space is identified

with a unique hash value calculated using the following function:

hash(x, y, z) = (x · p1� y · p2� z · p3) mod n (3.1)

where p1, p2, and p3 are large prime numbers (in this specific case, 73856093, 19349669,

and 83492791 respectively based on [Teschner et al. 2003] and [Nieet al. 2013]) and the

� symbol represents the exclusive OR operator. The size of the hash table (n) is set

to the prime number 9973, since experiments demonstrate that large numbers have

a positive e↵ect on the hash table operations [60]. This function is designed to work

with integer values, but for this specific purpose the point cloud data is measured in

meters. If data is used without scaling, each voxel and hash entry will have a fixed size

of 1m3. To overcome this obstacle and allow more flexibility, the world coordinates of

each point in the cloud are converted to a integer value by scaling them based on the

cell size of our grid. Flooring the point positions and removing their decimal part after

scaling converts them to a unique hash value when computing the hash function.
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3.3 LOD Data Structure

By repeating the aforementioned procedure for all the data in the point cloud, a collec-

tion of hash entries with a unique hash value is obtained. All the entries are saved into

the hash table where points inside the same grid cell will be discarded and therefore

not duplicated. This approach presents a main problem, since the size of each item

of the grid is fixed and there are cases where more detailed information of the scene

is needed. For instance, in cases when the user is closer to an object, a more detailed

reconstruction should be used. On the contrary, if the user is far away, the whole object

will be represented as a unique voxel reducing the cost of physical calculation. With

that aim in mind, Listing 3.1 and Figure 3.1 show a hierarchical data structure for

e�ciently storing point clouds into a hash table of voxels. Points in the world space

are hashed and then saved to a adaptive representation that can handle di↵erent level-

of-details for di↵erent use-cases. Multiple resolutions of the same reconstruction can

be retrieved and e�ciently used when required. The basic Voxel-Hashing procedure

previously described is employed to achieve the first level of detail of the reconstructed

scene (LOD-0) by having the block/cell size in cm3 as unique parameter.

struct HashEntry {
f loat po s i t i o n [ 3 ] ;

f loat s i z e ;

f loat con f id ence ;

f loat distanceToCamera ;

Voxel voxe l ;

HashTable LOD[ n ] ;

} ;

Listing 3.1: Hash entry data structure representing LOD-0.

Once the high-level voxel representation of the point has been obtained (LOD-0), the

rest of resolutions for that same voxel can be built. For that purpose, the algorithm

starts transforming the point in world space coordinates gathered from the point cloud

into voxel space coordinates (P
voxel

). This process occurs by using the inverse trans-

formation of a point (Equation 3.2), that takes as parameters the voxel transformation

26



Chapter 3. Adaptive Volumetric Representation

matrix M
voxel

and the point transformation matrix in world coordinates P
world

. The

measure units of the point inside of the voxel space are normalised from meters to

percentage, facilitating how the data is handled. The parent voxel is then divided into

a grid of equally-sized subvoxels. The number of subvoxels (e.g. 23, 33, 43, ..., n3) for

each resolution is pre-defined by the developer of the application and indicates how

much detail will each voxel have.

P
voxel

= P�1
world

·M
voxel

(3.2)

In order to ensure that each point is converted to a unique subvoxel for the levels of

detail, spatial hashing is to be computed once again. Since the point position is now

normalised and measured in the voxel space, the coordinates are scaled and floored

(Equation 3.3) based on the subvoxel grid size and then fed to the hash function

(Equation 3.1). This process is repeated for every LOD of the reconstruction before

storing the subvoxel data in the hash table. Each voxel entry has an array of hash

tables referring to the various resolutions that have been reconstructed for that space

in the world. Hash tables are very well suited for representing each level of detail and

can be e�ciently accessed in modern programming languages [60]. The same hash

function as in LOD-0 is employed to calculate the hash value, mapping the point to a

subvoxel inside of the parent voxel.

P
scaled

=

�
P

GridSize

⌫
·GridSize (3.3)

This approach allows a 3D representation of the scene that overcomes the problems

which point cloud sparsity entails. The areas with small point density will still be rep-

resented, whereas the areas with higher density will be reconstructed in further detail.

TSDF information is not stored as in other related work [47, 30]; the point from the

point cloud is instead directly converted to a set of voxels and subvoxels. For example,

an object will be reconstructed with 10 cm3 voxels for the LOD-0 representation. Two

more levels of detail are set in the pipeline, LOD-1 and LOD-2, containing 23 and 43

subvoxels of sizes 5cm3 and 2.5 cm3 respectively. LOD-1 and LOD-2 are hashtables

saved in the LOD array (Listing 3.1) and their information can be retrieved through
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a unique hash value. Fundamentally, copies of the same voxel with di↵erent details

are saved into the memory thus enabling flexibility of use. When it is required, the

resolution of the scene reconstruction is increased for more accurate collision. In our

particular case, a float variable —called distanceToCamera— is updated every time

the camera view frustum changes and used to update the level of detail represented.

Figure 3.1: Our Adaptive LOD data structure for storing di↵erent resolu-
tions of the scene. Feature points are the starting data needed for building
a hierarchical hash table of voxels.

This custom technique for storing data does not follow the principles of conventional

tree data structures with n-depths; in contrast, the n-resolutions reconstructed are

children of the first LOD. Depending on the visual-features that the VIO system is

able to extract for some specific area, the details (subvoxels) available will be di↵erent.

Some points will be contained inside the same LOD-0 voxel, but after running the hash

function for the di↵erent level of details, these points could be missing. This means

that, for a specific resolution, the point has not been stored yet, therefore it is created
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and the detail of that specific area is increased (Figure 3.2). The LOD-0 voxels have

a parent-child relation with various levels of details, and therefore any transformation

on the parent will directly a↵ect all the contained subvoxels.

Figure 3.2: Features points contained in the same LOD-0 (grey voxel) can
be in di↵erent subvoxels for the di↵erent resolutions.

3.3.1 Confidence Value

The data structure hereby proposed also contains a confidence value that is increased

based on how many times a point has been hashed to the same hash value. Since the

point cloud information from the AR framework is key-frame independent, this variable

is useful to discard low-confidence voxels from the 3D reconstruction. Another way of

measuring the relevance of a particular voxel is by counting the hash table entries it

has in its respective levels of detail (LOD). The garbage collector checks these two

parameters (confidence value and density) to identify outliers and noise and remove

the amount of unwanted voxels.

3.4 Hash Operations

Insertion – To insert new hash entries, the hash value for a specific point is computed.

The first step is to verify if the hash value is contained in the first-level (LOD-0) hash

table, and then a second check is recursively done for each level of the detail hash

tables. New voxels are only inserted if the hash value is not contained, otherwise the

confidence value is increased.
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Look-up and Update – To read and update hash entries, a linear search based on

the level of detail needs to be performed. If the level of detail is 0, the search will

be made on the main hash table. If the level of detail is other than zero, the specific

hash entries based on the hash value are retrieved, and a linear search is made in their

respective LOD hash tables. The small number of subvoxels that can be contained in

every voxel increase the e�ciency of this procedure.

Deletion – To delete a hash entry, retrieval and deletion of every single element in

their LOD hash tables is needed first in order to avoid unwanted data in the device. The

final stage is the removal of the high-level voxel from the memory. For cases in which

the usage of a specific voxel is unwanted for reconstruction or physical interaction, the

information of the voxel will be left empty but will still be present in the hash table

to avoid unexpected insertions (e.g., if the voxel is too close to an already detected

plane).

3.5 Reducing Tracked Objects

AR frameworks build their own spatial understanding of the surroundings in real-time

using SLAM for mapping and localisation of the visual features. One common prob-

lem that can be expected from AR experiences is virtual objects shifting from the real

position overtime. This issue is more common in the early phases of reconstruction,

when the app has been recently opened, although it also occurs when the device runs

out of memory and the garbage collector is activated to destroy some of the map in-

formation. In order to accurately track every object in the scene, anchors need to be

placed. Anchors are tracked points in the space that ensure that objects stay in the

same position and orientation in space over time, helping to maintain the illusion that

they are placed in the real world [26]. When an anchor is created in a specific point,

the estimated position and orientation relative to the world space is stored and added

to the tracking loop. Placement of anchors leads to a trade-o↵: tracking them is ex-

pensive for the AR internal process and the device can easily run out of RAM memory.

Therefore, anchors need to be placed e↵ectively and e�ciently, and only employing the

important anchors reduces the computational cost. In the current version of ARKit

and ARCore, anchors can be sent to the cloud to allow online multi-device experiences
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and spatial mapping with multiple cameras at the same time. This fact justifies the

creation of only the necessary anchors to avoid sending useless data to the server.

Our suggested data structure helps organise the point cloud into voxels, and also allows

having several levels of detail while avoiding the placement of unnecessary anchors in

the world space. Only the LOD-0 voxels are attached to an anchor, whereas all the sub-

voxels contained in the di↵erent reconstructed resolutions are children to them. Every

subvoxel transformation matrix is calculated in respect to its parent. Subsequently, if

the anchor changes its pose (position and orientation) every element on the hierarchy

tree will be a↵ected.
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Object Reconstruction Pipeline

The fourth chapter examines the three-dimensional reconstruction pipeline, which takes

the point cloud as input and processes it to obtain a hierarchical structure of voxels

that can be used for physical interactions. In order to achieve real-time performance,

voxels are processed in a multithreaded pipeline.

4.1 Point Cloud Input

The bare minimum for the algorithm we are developing in this dissertation is a set

of 3D points that can be detected by any Virtual-Inertial Odometry (VIO) system.

Working with the points alone fails to obtain an adequate representation of how the

world looks, hence the need to process this input into a collection of voxels or primitive

shapes. Our points are described by their 3D coordinates (x, y and z), and a confidence

value (w) that the system has about each point. Most of the 3D reconstruction algo-

rithms reviewed in Section 2 rely on surface normals from the depth scanning devices.

However, VIO systems in AR do not provide this information and therefore, we need

a simplified reconstruction that meets the requirements of basic physical interactions.

The points are gathered in a frame basis and directly fed to the pipeline and converted

into a set of voxels that represent the scene.
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4.2 Processing the Point Cloud

For every visual feature detected at a specific time, the hash value using hash function

(Equation 2.1) is computed. Ideally, multiple threads will be created to process all the

points e�ciently. However, we might encounter multiple points in a single frame that

are contained in a unique voxel. By multithreading the process, collisions in the hash

table will occur when di↵erent threads try to insert entries with the same hash value.

This issue has been proved to create unexpected results, such as the inconsistency of

the di↵erent levels of detail created for each voxel with the information retrieved by

the VIO system. In order to avoid this problem while still benefiting by multithreading

and multiple resolutions, every hash value calculated is stored into an array that helps

organise the multithreaded processing pipeline. For every unique hash value, a new

thread is created (Figure 4.1). If, for a given frame, multiple points are detected to

have the same LOD-0 hash value, they are inserted into a queue and run in a unique

thread. Each thread for colliding hash entries computes the information necessary to

add new voxels into the hash table. In any given queue, the first element will create a

LOD-0 voxel, and the rest of duplicate hash values will be checked so as to add detail

to the parent voxel.

Figure 4.1: Our multithread processing pipeline organises threads based on
the hash values of the points in order to avoid hash table collisions.

4.2.1 Building di↵erent Levels of Detail

Every thread that is created for the hash values runs the Algorithm 1 to insert the

voxels into the hash table. The first step is to check if the hash value is already con-

tained in the hash table. If it is not, a new voxel is created and saved as LOD-0 (first
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level resolution) of that point. Later, the system iterates through all the pre-defined

resolutions that need to be created and a subvoxel is generated and stored in the re-

spective LOD hash table. All the subvoxels are contained inside the LOD-0 voxel and

therefore all the transformations applied to the parent will be transmitted to the chil-

dren. Therefore, every high-level voxel has a minimum of n subvoxels, where n is the

number of LODs (di↵erent resolution copies) that are saved.

Algorithm 1: Thread processing pipeline
Data: Array of points with same pre-computed hash ! Points.

Hash table of voxels ! HT.

Resolutions to be reconstructed ! LODs.

Result: Modified hash table of voxels HT .

foreach Point P 2 Points do
Point P

scaled

 Scale(P )

Point P
floored

 Floor(P
scaled

)

int hash GetHash(P
floored

)

if hash 2 HT then
increaseV oxelConfidence(hash)

foreach LOD L 2 LODs do
int subHash GetSubHash(L, P

floored

)

if subHash /2 HT [hash] then
addSubvoxelToLOD(L, subHash)

else
end

else
addToHashTable(hash)

foreach LOD L 2 LODs do
addSubvoxelToLOD(L, hash)

end

end

end

If the hash value is contained on the LOD-0, the corresponding voxel is retrieved

and the di↵erent levels of detail contained in the array of hash tables are checked for
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collisions. The confidence value for every voxel found also increases if it has already

been represented. In this project, the total confidence C for every voxel has been

calculated with the Equation 4.1, where C
P

is the confidence of the point P extracted

from the point cloud information provided by the AR framework and n is the times

that point was previously detected. A collision box is also designed for every voxel and

subvoxel created, to enable collision detection from the physics system.

C =
(n� 1) · C

n�1 + C
P

n
(4.1)

The scale of every subvoxel with respect its parent is calculated using Equation 4.2,

where n
d

ivisions is the number of divisions in which the subvoxel is split (e.g. 23, 33,

43, ..., n3).

V
size

=
1

3
p
n
divisions

(4.2)

If the 3D reconstruction is enabled, new points are fed into the algorithm every frame,

in order to verify if they were already mapped. Thanks to the multithreaded pipeline,

verifications are done in real-time without blocking the main thread and therefore not

reducing the frame rate. Our system allows the physics engine and the rendering engine

to run alongside the reconstruction process.

4.3 Boosting real-time interaction

Once the hash table has been updated with the new entries, an optimisation stage is

run to discard redundant elements. In our case, points that are contained inside any

plane already detected are removed from the reconstruction. The removal can be done

after checking if the point is contained inside a axis aligned bounding box (AABB)

that is attached to each plane. This step reduces the number of voxels on the screen,

and increases the quality of the interaction with planes. Every time a new plane is

detected, this procedure is run to check if already detected voxels are contained by this

new plane. If they are, voxels and all their LODs are sent to the garbage collector.

Moreover, while the space is being reconstructed, a pointer to every voxel and their
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subvoxels is stored inside a native array enabling high-speed access. In order to control

and use each resolution, instead of recursively go through all the hash entries and either

enable or disable their children, the array full of pointers for that resolution is obtained

and their elements are modified. This technique optimises the treatment of the various

levels of detail, and accelerates their usage.

4.4 Reconstruction Output

The output of our processing pipeline is a collection of voxels that are visually snapped

to an invisible grid. These voxels are helpful to represent the Level of Detail 0 (LOD-0),

or first-level resolution. Inside every LOD-0 voxel, di↵erent hash tables of fixed-size

subvoxels are allocated to represent the several levels of detail for that area in the space.

The higher the number of points detected for a specific area, the more detail it will

have. Every level of detail is a uniformly distributed grid inside the highest-level voxel,

where subvoxels will only be reconstructed if information is found within a specific cell.

All the scene voxels and subvoxels have a box collider attached which allows physical

interactions with virtual objects on the scene. Thanks to our pipeline, the hash table

containing the 3D scene reconstruction includes various LODs that can be activated

or deactivated for an e�cient calculation of physical interactions in specific use-cases.

Only LOD-0 are attached to anchors on the scene, thus reducing the computational

cost of localising virtual objects on the scene. When the camera moves around the

scene, the reconstruction is anchored to a fixed position in the 3D space creating the

illusion that is in the real world. The colliders needed for physical interactions overlap

the real-world objects represented and therefore collisions between digital objects and

physical ones will take place.
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Implementation

This chapter shows a sample application that has been built to experiment with the

use of the data structure and the processing pipeline previously designed. Three-

dimensional scene understanding can be done on real-time before interacting with the

scene. Our implementation is built on top of the Unity3D engine, since the debug-

ging tools it comes with allow for faster development in mobile devices. Moreover,

Unity3D has the o�cial ARCore and ARKit SDKs integrated, so extending our design

to di↵erent operating systems can be easily done by changing a few lines in the code.

5.1 Application

We have aimed to demonstrate the use of our data structure by building an Android

application with ARCore [26]. Once the application is launched, the first stage is to

obtain the detected planes information from ARCore. On every frame, we query AR-

Core for new or updated planes and visualise them accordingly. When the user moves

around the space, visual features on the objects start to be detected and the point cloud

needed for our system is generated. Voxels with enough confidence to be represented

will be reconstructed in the scene. However in order to improve immersion, voxels are

not rendered and are only defined by a collider that is used for physical interactions.

Our application was designed to help us measure reconstruction statistics and results,

and therefore a debugging interface can be enabled or disabled. The user can change
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the maximum distance of the reconstruction and the size of the LOD-0 voxels by using

some sliders. Besides those sliders, the rendering, 3D reconstruction, and updating of

the distances can be toggled ON or OFF. When “Update distances” is activated, a

thread is created to calculate the distances from the camera to each voxel in real-time.

The distance value is used to update the resolution that will be represented at every

single frame. If the camera is far away from the object, the resolution used will be

LOD-0. The closer it gets, the higher will become the resolution of the reconstruction

and more smaller voxels will appear to achieve a more accurate physical interaction.

In our case, the framework is employed to set the variable distanceToCamera as the

value to change the which resolution is used. This variable, however, can be set to

anything for specific use-cases. For instance, the resolution could be adapted to the

density or confidence value of that voxel: the more confidence a voxel has, the higher

the resolution, and therefore the better physical interaction.

Figure 5.1: By moving the phone around the scene, visual features are
detected and voxels start to appear to represent the 3D scene.
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5.1.1 Physical Interaction

In order to demonstrate how the physical interactions can be tested with our 3D rep-

resentation of the real world, digital objects can be instantiated by tapping on the

screen. When tapping, the vector perpendicular to the camera image is calculated

and an object is thrown with a particular force to the scene. These objects are rigid

bodies with collision boxes and are a↵ected by gravity, therefore they will bounce o↵

the reconstructed objects and rest on the planes that are provided by ARCore.

5.2 Framework

Using Unity3D allowed us to create a framework that can be used for di↵erent use-

cases, and that developers can plug into their applications to benefit from 3D object

reconstruction. All the variables that are employed in the 3D reconstruction can be

modified from our custom UI inspector.

– Confidence Threshold (%): It determines what voxels will be discarded from the

reconstruction. The confidence on the voxels increases every time they are in the

view frustum, and once they are higher than the threshold they will be activated

for the 3D representation.

– Scale (cm3): It is the size of the LOD-0 voxels. This parameter will also a↵ect

the size of the subvoxels since they are children of high-level voxels.

– Camera Update Distance (cm): Distances from each voxel to the camera are

only calculated if the device moves a certain distance, reducing the redundant

calculations.

– Maximum Reconstruction Distance (cm): Voxels that are detected far away from

the device are immediately discarded from the reconstruction.

– Levels of Detail: This variable contains the information of how many resolutions

will be built during the 3D reconstruction. In our specific case, we have also

set a percentage from 0 to the Maximum Reconstruction Distance that changes

the 3D reconstruction from one resolution to another. Each resolution is set by
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an integer number that refers to how many small cells each side of the voxel is

divided into.

Figure 5.2: Custom Unity3D user interface for configuring the reconstruc-
tion process.

5.3 Rendering

In order to create the illusion that objects are placed on top of the real-world space,

rendering is divided in two stages: first the camera information is rendered; secondly,

the virtual objects. For the first stage, the camera image is transformed into a Unity3D

texture and bounded to the shader in every frame step. The texture is rendered into a

quad that covers the whole screen, creating the e↵ect that the camera is activated. The

user can now see through the device. On the second stage, we obtain the transformation

matrix of the virtual objects based on the projection and view matrix that ARCore

calculates (M
projection

and M
view

respectively) and render them afterwards (Equation

5.1).

M
transformation

= M
projection

·M
view

·M
model

(5.1)

5.3.1 Occlusion of virtual objects

With the help of a transparency shader, digital objects that are behind the real ones

can be occluded. Our shader sends the voxel rendering process to the back of the
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rendering queue, therefore the background will be rendered on top of them even if it is

located further away. In Chapter 6 we will discuss the implication of rendering multiple

voxels and how it a↵ects performance.
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Results & Discussion

This chapter showcases and describes the results of our implemented Android applica-

tion, and how our adaptive data structure performs in various use-cases. The results

are divided into two di↵erent sections. The first one analyses the quality of the re-

construction and the second section measures the overall performance of the system.

Finally, we discuss the strengths and weaknesses detected in our system so that future

research on this area can benefit from these outcomes and discoveries. The applica-

tion is able to run at 60 frames per second with almost a thousand of reconstructed

voxels, and multiple virtual objects being thrown to the scene. All the measurements

were taken using a Samsung Galaxy S9 with Android Operating System, a device that

shares architecture with most of today’s smartphones. This hardware is formed by a

Snapdragon 845 CPU (Octa-Core - 4x2.7 GHz and 4x1.8 GHz), 4 GB of RAM Memory

and a Mali-G72 graphics card (18x850 MHz).

6.1 Quality of the Reconstruction and Interaction

In order to measure the quality of the interaction, we set up two di↵erent scenes to be

reconstructed. The first one shows a unique object resting on a plane. In the second

one, multiple unordered objects on top of a table are reconstructed. Consequently, the

scene understanding results are presented with screenshots of the two abovementioned

scenes, as well as attached videos that are available online (please see the Appendix

A). The quality of the interaction is di�cult to quantify although is directly propor-
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tional to the representation accuracy: the higher the quality of the reconstruction, the

better the interactions between the real world and virtual objects are. Unity3D has a

high-end physics engine that handles the collisions realistically and is used by many

AAA games, therefore in this specific project the quality of the interaction has not

been measured by how well the engine computes collision, since we did not implement

it. In summary, the quality of the interaction is related to the accuracy of the scene

reconstruction, and not to the physics engine used. Figure 6.1 showcases the number

of voxels and subvoxels for the di↵erent resolutions that are reconstructed in our two

di↵erent scenarios. The system clusters higher-detail subvoxels into first-level voxels,

reducing the number of tracked objects since only these last ones have anchors attached

to them.

Figure 6.1: a) Number of voxels and subvoxels reconstructed when scanning
a scene with a single object. b) Number of voxels and subvoxels recon-
structed when scanning multiple objects. The results are divided into the
three di↵erent resolutions that were scanned.

In order to scan a single object, the phone needs to be moved so that the visual

features begin to be detected and voxels begin to appear. Therefore, the reconstruction

is not instantaneous and takes some time to be performed, not allowing any physical

interaction as soon as the app is launched. On the other hand, the plane representation

provided by ARCore is detected almost immediately by calculating co-planar feature

points. The reconstruction for a unique object takes approximately 12 seconds in this

particular case, but it can not be precisely measured since is is highly dependent on

how fast and e�cient ARCore detects the feature points. Figure 6.2 shows the results

of scanning the various levels of detail of a single object. Please refer to Appendix A

for a complete video of the process.
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Figure 6.2: a) Level of detail 0 with 10cm3 voxels. b) Level of detail 1 with
5cm3 voxels. c) Level of detail 2 with 2.5cm3 voxels. d) Real object with
only a plane being rendered. e) All resolutions rendered simultaneously.

When scanning a more complex scene, the reconstruction phase lasts around 30 sec-

onds in which the user can not adequately interact with the scene. Once the scene has

been represented in three dimensions, colliders cover the real world and digital objects

can interact with them. The 3D reconstruction of a multiple object scene can be seen
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in Figure 6.3 (video in Appendix A).

Figure 6.3: a) Level of detail 0 with 10cm3 voxels. b) Level of detail 1
with 5cm3 voxels. c) Level of detail 2 with 2.5cm3 voxels. d) Only table
plane is being rendered. e) All resolutions for the reconstruction rendered
simultaneously.

In both cases, scanning single and multiple objects, three di↵erent resolutions are re-

constructed for each scan. These resolutions or LODs are indistinctly activated or

deactivated based on the distance of the smartphone to the objects. When the user is

far away, the LOD-0 is activated while the rest are disabled. Physical interactions are

less accurate, although this is not noticeable at a glance since the user is distant. As

soon as the user begins to get closer, higher detail starts to appear and collisions with

the objects thrown are more precise.
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It is worth mentioning that our system is highly dependent on the point cloud and

therefore we may obtain unexpected results on texture-less or reflective surfaces. In

these kind of surfaces, the VIO system is not able to e�ciently identify unique feature

points, hence voxels will not be reconstructed and gaps in the objects may appear.

When throwing virtual cubes to the scene for testing the quality of the interaction,

some of them go through the real world elements where no feature points were de-

tected. These gaps that appear on the reconstructed objects have a negative e↵ect on

the immersion perceived by the application user. Moreover, since we are using voxels

(i.e. cube meshes) as the primitive shape for our reconstruction, digital objects may

rest on a surface that is not existent in the real world, or bounce o↵ a corner, changing

their direction unrealistically.

The scale set by the user for the LOD-0 voxel size is relevant for the representation

accuracy. A whole voxel can cover the full object and make its digital boundaries di↵er

from the real ones. This problem can be solved by either changing the scale of the

high-level voxel with the slider, or by setting more and smaller levels of detail to be

reconstructed. The application designer needs an e�cient way of determining which

is the correct voxel size as soon as the app is launched, otherwise the user would need

to set this value manually. Table 6.1 shows the voxels and subvoxels obtained in our

two experiments compared to the number feature points that were processed from the

point cloud. These results were taken while recording the video attached in Appendix

A. However, in the next section, performance measurements were calculated with the

screen recording disabled to maximise e�ciency and remove the cost of video capture.

Single Object Multiple Objects
Feature Points processed 42931 132448
LOD0 13 48
LOD1 44 131
LOD2 92 262
Total Voxels 149 442

Table 6.1: Results of processing a point cloud into a adaptive hash table of
voxels.
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6.2 Performance

Throughout this dissertation, real-time performance was one of the main goals to be

achieved. The proposed system has to be e�cient enough to be computed simulta-

neously to an application or game, so that developers can use our work to create

Augmented Reality experiences.

One of the motivations to build an adaptive LOD data structure was that the more

objects smartphone AR is tracking and updating in every frame, the lower the frame

rate is. After doing some experiments, we become aware of the need of an e�cient

way to store the 3D reconstruction, while trying to obtain a suitable amount of detail

that maintains the quality level of physical interactions. In summary, anchors being

computed by ARCore on a frame basis need to be reduced as much as possible, since

a high number of tracked objects entails higher chances for the frames per second to

be low. Figure 6.1 in Section 6.1 shows the di↵erent numbers of voxels and subvoxels

that are generated by reconstructing a multi-resolution scene, and tracking all of them

is extremely ine�cient. In Figure 6.4 can be observed a higher update time when the

number of anchors increases, hence the motivation to keep the number of anchors low.

Figure 6.4: Duration of the update of all the anchors in the scene by frame.

Decreasing the computational cost does not only have an e↵ect on the application
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FPS, but also reduces the power consumption and battery drain of these mobile de-

vices, which can be considered by developers as a key factor for using our system. In

Table 6.2, we measure the time that it takes to process a frame depending on how

many objects are being tracked. These measurements are taken twice, activating and

deactivating the adaptive data structure we have designed. In both cases, the size of

the high-level voxel is 10cm3, but when the data structure is disabled we do not create

multiple LODs, and therefore the quality of the reconstruction and interaction is lower.

Our system does not only allow a more detailed reconstruction, but also implies the

same computational cost (anchor update time) for tracking all the digital colliders in

the AR scene.

Adaptative Data Structure ON OFF
Feature Points processed 82393 82393
LOD0 25 25
LOD1 51 0
LOD2 130 0
Total Voxels 206 25
Anchor Update Time (ms) 2.2 2.1

Table 6.2: Comparison of anchor update times between our hierarchical
data structure and plain Voxel-Hashing.

The multithreaded processing pipeline described in Chapter 4 helps us consistently

reach 60 frames per second (FPS) while reconstructing the scene. In Table 6.3 we mea-

sure the di↵erences in performance between a single thread processing pipeline and

our multithreaded approach. Both techniques have been evaluated under the same

conditions while scanning a single object resting on top of a table. The data shows

how much time it takes to process and insert multiple voxels into the hash table. In the

single thread pipeline every added voxel blocks the process, while in the multithreaded

pipeline multiple operations are done in parallel reducing the overall computational

cost.
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Processing Pipeline One Thread Multi Thread
Time to process 100 points (ms) 1.27 0.99

Table 6.3: Comparison between processing 100 points with one thread and
with multiple threads.

6.2.1 Unity3D

The Unity3D profiler was used in this implementation to measure performance on

engine related processes that we did not implement ourselves. In this section we explain

how our 3D reconstruction of the real world a↵ected the calculations done by the physics

engine and the rendering process. The results are measured by scanning multiple

objects and throwing digital cubes to the scene afterwards to test physics interactions.

Physics Calculations

In Figure 6.6, the time per frame that Unity3D took to calculate the physics is shown.

The number of voxels that compose the 3D reconstruction of the scene does not have

a noticeable e↵ect on how long the engine takes to calculate the physics and collisions.

Figure 6.5: Duration of the calculations of the physics update per frame by
Unity3D based on how many LOD-0 objects are reconstructed.
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Rendering

Rendering the reconstructed collection of voxels might be useful for di↵erent use-cases.

Nevertheless, in this particular case, they were only rendered for debugging purposes.

Later, we measured and compared the results of activating and deactivating the ren-

dering of the objects. Even if the number of voxels that represent the scene does

not have an e↵ect on the physics calculation being performed by Unity3D, rendering

causes a huge drop on the frame rate. Our implementation did not focus on rendering

the voxels, since in most cases, the immersion is higher if user is not able to discern

between virtual and real world. Taking into account the limitations of GPUs in smart-

phones, a better rendering system could be put in place by merging the voxels or using

instance-based rendering, resulting on an improvement in rendering performance.

Figure 6.6: Duration of the frame rendering process in relation to the num-
ber of LOD-0 voxels reconstructed.

6.2.2 Memory Footprint

Considering the limitations that smartphones have in internal memory size, it is crucial

to measure how many bytes are allocated for any given reconstruction. By determining

the size in memory of a single voxel, the total size of the representation will be directly

proportional to the number of voxels that compose it. This approach works for the

regular voxel-hashing algorithm and for calculating the first LOD memory size. How-
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ever, quantifying the memory footprint becomes more complicated for our adaptive

LOD data structure, since the high-level voxels contain the several resolutions that the

developer wants to save. The details of each block depend on the number of feature

points detected for that space and it can change due to many di↵erent factors (e.g.

lighting, type of surface etc.). Table 6.4 shows the results of measuring the allocated

memory in two di↵erent scenarios: when our adaptive resolution mode is enabled and

when it is disabled.

Adaptative Data Structure ON OFF
Feature Points processed 82393 82393
LOD-0 Voxels 25 25
LOD-1 Subvoxels 51 0
LOD-2 Subvoxels 130 0
Total Voxels 206 25
Allocated Memory (Kb) 185.48 22.05
Average bytes per voxel 922.00 903.00

Table 6.4: Memory allocated with our Adaptive Data Structure activated
and deactivated. Number of voxels in di↵erent resolutions and initial feature
points processed are also listed.

It is important to take into account that the size in kilobytes for every voxel was

calculated by measuring the memory allocated by the application, before and after

inserting a new voxel on the reconstruction. Since we are working with Unity3D for

implementing our application, the size of the memory footprint includes the internal

classes that are loaded by the engine for handling its processes. For example, all of our

voxels are contained inside the Unity GameObject class, allocating unnecessary data

in the memory. Nonetheless, the measurements taken can be used as reference for

comparison in future work.

6.3 Discussion and Limitations

While 3D reconstruction and collision detection have been extensively studied in pre-

vious work, most of the research has been carried out with specific hardware like

Kinect and taking advantage of the benefits of GPU computation. Our approach aims
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at extending the current functionalities of smartphone AR by improving the scene

understanding around the device and therefore we are constrained to the limited com-

putational power of this kind of mobile devices. Nonetheless, our results can be used

as a starting point for future work in this area, even if using alternative methods for

reconstruction.

Throughout this dissertation, our main goal of improving the scene understanding of

HMAR has been achieved, despite being in most cases limited to the data that could

be obtained by the AR Framework, i.e. ARCore in our case. The proposed solution

is based on the use of voxels, a primitive shape commonly used in 3D reconstruction,

so as to build a representation of the real world objects taking as input the visual

features that the VIO system finds. Even if our solution was not intended as a mecha-

nism to obtain a realistic representation of the scene, we were able to approximate the

real world for physical interactions. Instead of only colliding with the ARCore planes,

collisions now occur also with real-world objects thanks to our voxels. Evidence has

shown that, in cases where the surfaces are textureless or reflective, VIO fails to obtain

unique feature points and our objects have gaps on their representation. When try-

ing to interact with them, virtual elements go through these gaps and the immersion

e↵ect is lost. The quality of our technique would drastically improve by refining the

computer vision algorithms behind VIO systems so that more dense point clouds can

be detected. Similarly, the use of box colliders for the voxels produces unexpected

collision results in some tests. The solution proposed would be to substitute the shape

of the each collider from a box to a sphere, which is more often used in physical simu-

lations. Another limitation that a↵ected the quality of our representation is the scale

of the LOD-0 voxels, which is a variable that is set by the user at the beginning of the

reconstruction. This value should adapt automatically depending on the size object or

scene that is being reconstructed.

In terms of performance of the reconstruction, the system is able to obtain 60 frames

per second while processing and inserting our voxels into the hash table by employing

our custom data structure and a multithreaded processing pipeline. For a single object

scan, we were able to reduce 82393 feature points into just 25 LOD-0 voxels (Table

6.4). Rendering those 82393 points would not be e�cient for a phone, and therefore
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by clustering everything into voxels a real-time 3D representation is obtained. We

found that there is an imbalance between the level of detail of our reconstruction and

memory usage. Our system is able to create a 3D representation of the scene with

di↵erent levels of details that can be changed indistinctly at runtime, but the higher

the resolution, the more memory is allocated. The designed framework is also capable

of e�ciently reducing the number of anchors that are tracked in every frame by the AR

framework thanks to the clustering of the various LODs into high-level voxels. AR-

Core is still not able to use only the sensors (gyroscope and accelerometer) to track the

camera pose, it needs the camera feed to find feature points. If a frame of the camera

is lost, objects slide from their original position causing unexpected results. Having an

e�cient system is crucial in order to let the AR framework get the camera images on

real-time to be processed.

Finally, even though in our application we only rendered the voxels for debugging

purposes, results show that the rendering process is expensive for a high amount of

voxels. On the other hand, physical calculations are barely influenced by the number

of elements in the hash table since Unity3D is able to e�ciently compute collisions.
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7.1 Conclusions

Physical interactions between the real and virtual world play a crucial role in the level

of immersion the user experiences in AR. The current solutions proposed by smart-

phone Augmented Reality lack a satisfactory scene understanding since is limited to

plane detection. Similarly, the literature reviewed shows that most 3D reconstruction

techniques often use special hardware, such as depth sensors and GPU-intensive com-

putation. The purpose of this dissertation is to present a novel approach for real-time

3D spatial mapping that is specially well-suited for physical interactions in smartphone

AR. The main limitations and constraints of mobile computing have been overcome

thanks to the design of a custom adaptive LOD data structure and a multithreaded

processing pipeline.

Our system is able to build a voxel-based representation of the scene based on the point

cloud data gathered from smartphone AR frameworks, such as ARCore or ARKit. The

data structure proposed allows to store several resolutions of the 3D reconstruction,

reducing the number of objects computed by the AR tracking loop. All the data is

saved into a hash table data structure that extends Voxel-Hashing [47], and the dif-

ferent resolutions or LODs generated can be activated or deactivated for changing the

accuracy of physics collisions. Once the space has been represented, the user is able

to interact with real-world objects, and not only with planes like in default ARCore
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applications.

The point cloud is processed in real-time thanks to our multithreaded pipeline that

organises threads based on the hash value of each point in the cloud. The potential of

this design has been proved by prototyping an Android application that successfully

reaches 60 frames per second while reconstructing a scene of multiple objects. The

scene changes its resolution based on the distance from the device, and the user can

test collisions by throwing digital objects to the space.

Despite the constraints found, using mobile devices did not limit our research goals,

but helped us make novel and creative design choices while developing this dissertation.

We hope the proposed solutions can be helpful to future work, and can be extrapolated

to devices with di↵erent architectures.

7.2 Future Work

Despite the fact that the system designed allows us to reach promising results in 3D

reconstruction for smartphone AR, there are several areas of research arising from this

work which could be pursued at a later stage. Future work might address a deeper

analysis of the point cloud obtained from the VIO system in order to improve the over-

all scene understanding. For example, clusters of points could be processed to obtain

estimations of the surface normals and therefore, voxels could be rotated accordingly.

A better knowledge of the point cloud would also allow reconstruction of dynamic

real-world objects in real-time, something that could possibly be achieved with a data

structure other than the one we implemented.

There is also room for improvement of the current model by post-processing the gen-

erated reconstruction in order to merge adjoining voxels. This will create a multi-

resolution scene representation which, even though it could be more demanding to

handle and store, could also be more e�cient for collision detection.

A natural extension of research departing from this dissertation would be to investigate

mesh reconstruction based in photogrammetry techniques. However, AR frameworks
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should be expanded from their current functionalities and allow developers more acces-

sibility to their internal computer vision algorithms in order to obtain more and richer

visual features. Photogrammetry on mobile has been proved by startup companies like

AboundLabs [22] with their recent demos, and seems to be a viable way of generating

a mesh out of monocular RGB cameras.

Augmented Reality and Human-Computer Interaction trends [5, 63] show that there is

an increasing interest in hand-tracking applications based on monocular RGB cameras.

This field is very computational intensive and requires complex machine-learning al-

gorithms, but eventually future work could explore interaction between the real world

scene and the user’s hand based on our line of research.

Finally, another line of research that could follow our dissertation is aimed at reducing

computational cost of collision detection thanks to our data structure and the already

built-in spatial hashing algorithm. Collisions with the physical objects thrown to the

scene could be e�ciently calculated by using the hash values of the hash table contain-

ing all the voxels in the reconstruction.
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[47] Matthias Nie, Michael Zollhöfer, Shahram Izadi, and Marc Stamminger. Real-

time 3d reconstruction at scale using voxel hashing. ACM Trans. Graph., 32:

169:1–169:11, 2013.

[48] Evrard Freddy Ohou. Surface reconstruction: Techniques and methods from 3d

points data. 2009.

[49] Carol A. O’Sullivan. Real-time collision detection and response using sphere-trees.

1999.

[50] Carol A. O’Sullivan, Justine Cassell, Hannes Högni Vilhjálmsson, John Dingliana,
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Appendix A

Links to Videos

3D Reconstruction of a single object - https:// youtu.be/ f8EGg tjohs

3D Reconstruction of multiple objects - https:// youtu.be/BFQM Gj7twg

Scanning a kitchen - https:// youtu.be/ 63mVZeER3uI

Source Code

Github - https:// github.com/manugildev/ dissertation source code

Compiled Android Application

Application (Development Build) - https:// goo.gl/ pVJyXd
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