
AR Campus Tour

Patrick Geoghegan

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Augmented and

Virtual Reality)

Supervisor: Aljosa Smolic

August 2018

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Patrick Geoghegan

August 30, 2018

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Patrick Geoghegan

August 30, 2018

Acknowledgments

I would like to thank my mom, my dad, my sister and Adrian for all their love and

support over the past year, and for proof-reading this paper.

I would also like to thank Professor Aljosa Smolic for teaching me the wonders of

Computer Vision and Augmented Reality, and for his guidance and supervision over

the course of this project. I also thank Sebastian Lutz and Tejo Chalasani for their

guidance as well.

Finally, I would like to thank my friends and colleagues from within the college

community, as well as outside, for a year of valuable lessons, learning and laughter.

Patrick Geoghegan

University of Dublin, Trinity College

August 2018

iii

AR Campus Tour

Patrick Geoghegan, Master of Science in Computer Science

University of Dublin, Trinity College, 2018

Supervisor: Aljosa Smolic

With the growing interest and use of Augmented Reality in business and academia,
many studies have been conducted into the technology’s use in the tourism industry.
Using publicly available tools and frameworks, this paper maps out the design and
implementation of a tourism AR application, called the AR Campus Tour. This appli-
cation is built to guide users around the grounds of Trinity College Dublin, and direct
them to various famous landmarks. This paper also examines different algorithms that
can be used to create a quick and accurate system.

Summary

The paper is laid out as follows: first the background research will be discussed. Topics

will include benefits of technology in the tourism industry, the existing research on AR

in the tourism industry, as well as a literature overview of image recognition algorithms.

Next, the design of the application will be laid out with each component discussed in

detail. Following this, the actual implementation of the application will be explained,

including a list of the technologies used and a walk through of the application. The

results of the algorithm tests will then be presented and discussed. Finally, the conclu-

sion will be given followed by the limitations and further work that can be completed

on the AR Campus Tour application.

v

Contents

Acknowledgments iii

Abstract iv

Summary v

List of Tables viii

List of Figures ix

Chapter 1 Introduction 1

Chapter 2 Background 3

2.1 Technology in Tourism . 3

2.2 Augmented Reality in Tourism . 6

2.2.1 Definition of AR . 6

2.2.2 Uses of AR . 6

2.2.3 Combination with Mobile . 7

2.2.4 Effects of AR . 8

2.2.5 Mobile Hardware Restrictions 9

2.2.6 Marker Vs. Markerless . 9

2.3 Image Recognition . 10

2.3.1 SIFT . 10

2.3.2 SURF . 16

2.3.3 ORB (Orientated FAST and Rotated BRIEF) 20

2.4 Feature Matching . 22

vi

2.4.1 Brute-Force Matching . 22

2.4.2 FLANN-Based Matching . 23

Chapter 3 Design 24

3.1 Pipeline . 24

3.2 Mobile Device System . 25

3.3 Database System . 25

3.4 Image Recognition System . 27

Chapter 4 Implementation 28

4.1 Technologies Used . 28

4.2 Technical Architecture . 29

4.3 UI/UX Design . 30

4.4 Application Walkthrough . 31

Chapter 5 Results 35

Chapter 6 Conclusions 43

Chapter 7 Further Research 44

Appendices 50

vii

List of Tables

2.1 Example Scale Space (smaller images are scaled up for demonstration

purposes) . 13

5.1 Algorithm testing results - BF means using the Brute Force feature

matcher, FL means using the FLANN matcher 36

5.2 Algorithm testing results - SIFT is limited to 500 features and SURF

has a hessian threshold of 2000 . 40

viii

List of Figures

2.1 Smart Tourism and its layers and components 4

2.2 Experience Typology Matrix: linking technology and co-creation 5

2.3 Experience hierarchy . 5

2.4 Template Matching . 11

2.5 Approximating Laplacian of Gaussian using the Difference of Gaussian

method on the first octave . 12

2.6 Keypoint Detection . 14

2.7 Calculating a features orientation using a histogram 16

2.8 Generating feature descriptors [32] . 17

2.9 Box Filters for Approximating the Laplacian of Gaussian in SURF [33] 18

2.10 Scaling the box filters [33] . 19

2.11 Orientation Assignment in SURF [33] 19

2.12 FAST Corner Detection [36] . 21

3.1 Pipeline . 25

3.2 Mobile Device System . 26

3.3 Database System . 26

3.4 Recognition System . 27

4.1 Technical Architecture Diagram . 30

4.2 UI Elements of AR Campus Tour . 31

5.1 Feature detection time against complete image recognition process time 38

5.2 Number of Features Detected against Time Taken to perform image

recognition . 39

ix

5.3 Number of Features Detected against Time Taken to perform image

recognition separated by query image 39

5.4 Number of Features Detected against Time Taken to perform image

recognition for one query image . 40

5.5 Features detection time against feature matching time in SIFT (BF, 500) 41

5.6 Features detection time against feature matching time in SURF (BF,

2000) . 41

5.7 Normal image on the left, compressed image on the right 42

1 On start - the loading message in the Tour Select Menu indicates an

ongoing API request . 52

2 API request was successful - the Tour Select Menu asks users to select

a tour . 53

3 Selecting a tour . 54

4 A tour has been selected - the Map Button has become active and the

Next Landmark Icon has been initialized 55

5 Search is unsuccessful - the Nothing Marker has appeared 56

6 Search is successful - the AR Landmark Marker has appeared and the

Next Landmark Icon has been updated 57

7 Map is active . 58

8 Map after a successful search - a green tick appears above the landmark

position marker . 59

9 Database Images of Landmark A - Sphere Within Sphere 60

10 Database Images of Landmark B - Walton Memorial Statue 61

11 Database Images of Landmark C - Statue of Lecky 62

12 Database Images of Landmark D - The Campanile 63

13 Database Images of Landmark E - Statue of Salmon 64

14 Query Images . 65

x

Chapter 1

Introduction

The world has seen a huge growth of interest in technologies such as Virtual Reality

(VR), Augmented Reality (AR) and Mixed Reality (MR). Until recently, VR was the

most popular of these computer graphics and vision technologies. However, more and

more study is being conducted into AR, both academically and commercially. This

interest was arguably sparked when the successful mobile game Pokemon Go brought

AR to the masses. AR will soon expand into many industries around the globe as

investigation into the its uses has already begun in health care, facilities support and,

the subject of this project, tourism.

Tourism is one of the world’s biggest industries and contributes massively to the

global economy each year. The impact of its contribution affects many people and

businesses, including accommodation, transport, entertainment, restaurants, shopping

and attractions. As will be discussed in this paper, tourists are always on the look out

for new experiences and the industry itself is looking for new technologies to enhance

attractions. AR has the ability so satisfy both needs.

The goal of this project is to build an AR Campus Tour application of Trinity

College Dublin. The application will recognise different points of interest and overlay

information on the device regarding the point of interest. Additionally, the application

will provide a navigation function that will guide users to the next landmark on the

tour, again through overlaid information. There are multiple methods through which

the identification functionality can be implemented, and this paper investigates some

algorithms for their suitability (i.e speed and accuracy) for a tourist application such as

1

this one. As a result of this project, a framework for building AR tourism applications

will be created which will contribute to, and build on the existing research of the use

of AR in tourism.

2

Chapter 2

Background

2.1 Technology in Tourism

There are plenty of studies that chart the use of technology in tourism through the

years. In the late 90s, the focus of adopting technology in tourism was the strategic

advantage that it provided over competitors [1]. An example of this is selling tickets

through an online store to reach more customers worldwide. However, around the same

time, Pine and Gilmore [2] identified the consumer’s need for an experience as opposed

to a regular product or service. As a result, studies began shifting away from technology

as a competitive advantage to its usefulness in attracting more consumers by creating

new experiences. Technological integration has come in many forms, including the Web

2.0, virtual worlds [3], blogs [4] and social media [5].

In the modern age of smart-products and smart-services, tourism has also seen an

upgrade to smart-tourism. According to Gretzel et al.[6], smart-tourism is defined as:

Tourism supported by integrated efforts at a destination to collect and

aggregate/harness data derived from physical infrastructure, social con-

nections, government/organizational sources and human bodies/minds in

combination with the use of advanced technologies to transform that data

into on-site experiences and business value-propositions with a clear focus

on efficiency, sustainability and experience enrichment.

This definition has multiple layers and components that can be summarised by

Figure 2.1. The layer of main interest in this project is the Smart Experience Layer.

3

Figure 2.1: Smart Tourism and its layers and components

This layer represents the enhancement of the tourism experience through the use of

technology. Enhancements include increased personalisation, context-awareness and

access to real-time data [7]. The goal of this project is to provide a smart experience

for tourists using a modern technology, augmented reality.

According to Neuhofer et al. [8], technology is one of two key components that

create a good tourism experience. The other component is co-creation, which is defined

as the joint creation of value by the customer as well as the company [9]. In the

case of tourism, this refers to the tourist in playing a primary part in creating the

experience. The most notable example of this is the Web 2.0s open, multimedia tools

including blogs, videos and images that enables the creation and global sharing of

custom content on the tourism experience [10]. The Experience Typology Matrix [8]

suggests that the levels of technological integration and co-creation affect what type

of experience is being provided (Figure 2.2). This project aims to create a tourism

application with high levels of technological integration, with the potential for high

co-creation, thus creating a newly enhanced experience, according to the Experience

Typology Matrix. Additionally, this project hopes to create a Technology-Empowered

Experience as detailed by the Experience Hierarchy shown in Figure 2.3 [8]. This means

that technology is not used as a support to the experience but rather, is an integral

part of the experience. For example, this project uses augmented reality as part of

a tourism application. Without augmented reality the application cannot function.

Thus, technology is an integral part to this application.

4

Figure 2.2: Experience Typology Matrix: linking technology and co-creation

Figure 2.3: Experience hierarchy

5

2.2 Augmented Reality in Tourism

2.2.1 Definition of AR

A formal definition for Augmented Reality has not been established. Across differ-

ent academic papers, definitions of AR focus on a particular aspect of the technology.

Zhang [11] defines AR as a “three-dimensional scene where virtual objects are super-

imposed on [a] real scene”. Chen [12] gives a similar definition calling AR an “environ-

ment” wherein both virtual reality (VR) and real-world exists. The author explains

that virtual data is superimposed onto the real-world. Other definitions separate AR

from VR and define the two as separate technologies. In the context of tourism, Jung

et al.[13] describe AR as a natural experience, enhanced with overlaid digital content,

whereas VR is a fully digital, immersive experience. For this project, the definition of

AR will be a combination of elements from the other definitions above:

Augmented Reality or AR is the creation of an environment, where digital

content, including virtual objects and data, is superimposed onto reality in

real-time, through the use of a device.

The main goal of AR in the tourism industry is to provide an enhanced experience

for tourists, also known as an augmented tourism experience [14]. This augmented

tourism experience is defined as a “complex construct which involves the emotions,

feelings, knowledge and skills resulting from the perception, processing and interaction

with virtual information that is merged with the real physical environment surrounding

the tourist”. To explain how AR achieves this, the capabilities and potential uses of

AR must be examined.

2.2.2 Uses of AR

The possible applications of AR in tourism has already been examined by some re-

searchers. Chen [12] describes an application whereby users can look at a particular

point of interest (e.g. a building) and the application will display a historical picture

taken of the building. Similarly, Cianciarulo [15] uses AR to vitalise exhibits of his-

toric crafting tools and stations in Italy. For example, a shoemaker’s bench could be

identified by the AR application and an interview with old shoemaker would be shown

6

to the user, describing how this piece of old technology was operated. From these ex-

amples, we see that AR has the potential to bring history to life by adding media such

as documents, images and videos to places and objects. Another popular use of AR

is routing and navigation. It is possible to superimpose some navigation information

onto the real world that will guide tourists to the next point of interest. An applica-

tion proposed by Umlauft et al. [16] enables users to search for a landmark and the

application would provide a map as well as textual information guiding the user along

the path to the specified location. Although this application did not implement AR,

this feature could easily be implemented by adding virtual text boxes or virtual arrows

in an AR application. Another way of providing an augmented tourism experience is

through implementing interactive AR objects. For example, giving users the ability

to tap or click on the object to provide more information about points of interest.

Kourouthanassis et al. [17] designed the application CorfuAR, where AR icons are

placed around the island of Corfu. By clicking on these icons, additional information

about the icon’s corresponding point of interest will appear. Adding these interactable

AR elements, tourists can interact with points of interest in a new way.

2.2.3 Combination with Mobile

AR does not reach its full potential unless combined with mobile technologies. The

concept of Mobile Augmented Reality (or MAR) was presented by Höllerer and Feiner

[18]. MAR uses mobile communication and location-based services (e.g. GPS) to take

AR out of the desktop and confined spaces. It increases the accessibility of AR by

making it available on portable devices such as smart phones and tablets. Typically,

a MAR application will use the device’s camera to capture the real environment and

superimpose some object or data on the cameras output [19]. However, by using

mobile communication, GPS and other hardware in the devices, more complex MAR

applications can be built. For example, adding the ability to connect to a server or

database to access more information or media, or the GPS could be used to build an

application that focuses on the user’s location (for example, the popular Pokemon Go

game).

7

2.2.4 Effects of AR

There are studies that have examined tourists’ reactions and responses to the use of AR

in tours. Jung et al. [13] investigated the effects of AR on tourists’ experiences using

the Social Presence Theory [20]. In the context of AR, Social Presence Theory discusses

the social interactions between the user and other beings (synthetic or living) in the

augmented environment and how this links to the user’s immersion in the environment.

To summarise, the less the users perceive artificial, the stronger the social presence

[21], [22]. Jung et al. [13] show that environments with strong social presence can

be built using AR. Following this, the authors found that social presence has a direct

positive impact on entertainment experience and entertainment experience has a direct

positive impact on visitor experience. Thus, using AR creates a positive, entertaining

experience for tourists.

Chen [12] designed an AR application that guided users around the historical land-

marks of Oslo. Users of the application found it easy to use and felt that their tourism

experience was enhanced. Users also found it convenient to look up historical im-

ages and information about points of interest while the camera was pointed towards

them. Finally, users were also very enthusiastic about keeping a record of the places

they visited. Overall, there was a general positive attitude from users towards the AR

application.

Cranmer et al. [23] examined the benefits of AR for the tourism site rather than for

the users. The authors highlighted the uses of AR in a Tin Mine Museum and concluded

that AR can increase tourist attraction sustainability. Firstly, AR applications are a

solution to the challenge of retaining valuable and authentic first-hand knowledge of

retired mine workers. At peak times, the application eased the pressure of not having

sufficient staff positioned around the museum to interpret exhibits. The introduction of

AR increased visitor appeal by “enticing interest and demonstrating site advancement”.

Finally, when asked, users responded that AR encouraged them to spend more time

and money in the site and increased their likelihood of visiting other sites with the

technology implemented. He et al. [24] extends this research with their study that

shows that visitors willingness to pay more is at its highest when museums combine

having a high virtual presence (e.g. using AR to depict an immersive background to

a painting) with dynamic verbal information (e.g. playing a voice-over or audio file

8

explaining the history of the painting), as opposed to dynamic visual information (e.g.

adding 2D dynamic visual cues to the painting).

2.2.5 Mobile Hardware Restrictions

Although AR is best used when combined with mobile technologies and devices, there

are some limitations when using mobile devices. The major issue is mobile hardware.

The relatively low CPU capabilities and RAM capacity, camera quality and WiFi or

mobile network connectivity must be considered when building an AR tourism applica-

tion [25], [26]. To maximise the CPU and RAM capabilities, many applications offload

the image processing to an external server. Fatima et al. [27] designed a mobile travel

guide application based on image recognition. As part of their implementation, images

are sent to a server that handles them using the OpenCV (Open Source Computer Vi-

sion Library) and sends the results back to the user’s device. Similarly, Gui et al. [28]

built an image recognition application and Zhang [11] built a mobile AR game based

on image recognition, where both applications offload the image recognition work to

an external server. This approach is the best and most popular way of implement-

ing an AR application that requires some image processing. However, the application

becomes dependent on the device’s WiFi or mobile network connectivity.

2.2.6 Marker Vs. Markerless

There are two forms of AR recognition and display: marker and markerless. Marker-

based AR uses special images such as barcodes or QR Codes to identify where a virtual

object should be placed. With this method, marker identification is almost instant,

and the position and rotation of the virtual object is easily obtained, in terms of

tourism, it requires that markers be placed near exhibits and must be scanned at

short distances, which could be inconvenient for users [29]. Alternatively, there is the

markerless approach, whereby real-world objects, scenes or data are used as the base

for AR objects. This achieves the effect of blending the virtual and reality and is

more practical for tourism sites [29]. When using the markerless approach, AR content

can be triggered through image recognition or through the devices GPS and location

data [30], or a combination of both [28]. In the case of the combination, GPS data is

used to narrow down the number of images that the image recognition algorithm must

9

search through by identifying which scenes are close enough to the user. The result is

a quicker overall scene identification process and less waiting time for the user.

2.3 Image Recognition

To identify landmarks in images, the initial approach was to use Template Matching.

Template Matching investigates if some input image contains a view of some feature

[31]. The view of the feature is captured in the template image. The template image

slides over the input image, performing a comparison with a small section of the input

image. This process is known as a 2D convolution. The output is a greyscale image,

where each pixel represents how similar the area around that pixel is to the template

image. An example of template matching is shown in Figure 2.4. The red box shows

where the template has been best matched and the accuracy of the match.

The benefit of this method is that it is quick. This fast return is desirable in an

application such as this, because it means that users are not waiting a long time after

they have requested information on a landmark. However, there are many issues with

the template matching algorithm. Firstly, the algorithm is neither rotation-invariant

nor scale-invariant. If either the template or input image is rotated by any number of

degrees or is scaled by a factor, the accuracy of the algorithm falls. This is not suited

to a tourism application as it is highly likely that users will take pictures of a landmark

that is either zoomed or at a slight angle. Secondly, an issue arises in identifying the

template image. If the user’s image is chosen as the template image, difficulties will

arise when using the whole image as the template because if the landmark only takes

up a small portion of the template image, it will be difficult to get an accurate result.

Additionally, if the user’s image captured more than one landmark, the algorithm may

return information about a different landmark to the one the user wanted to view.

2.3.1 SIFT

An improved approach to identifying landmarks is using SIFT feature detection. SIFT,

or Scale-Invariant Feature Transform, proposed by Lowe [32] is an approach that uses

corner detection in images, and handles images of different scale and rotation. The

SIFT feature detection algorithm consists of the following steps:

10

(a) Example Template

(b) Example Template Match 1

(c) Example Template Match 2

Figure 2.4: Template Matching

11

Figure 2.5: Approximating Laplacian of Gaussian using the Difference of Gaussian
method on the first octave

Scale Space The preparation step of SIFT is to create what is known as a scale

space. This process involves doubling or halving the size of the image and blurring it

a number of times. This creates a table of images where each column (known as an

octave) is a group of images that are the same size but different levels of blur, and each

row (known as a scale) is a group of images that are different sizes but equal levels

of blur. In the first octave, the images are twice the size of the original. The second

octave images retain the size of the original image. For every octave after the second,

the size of the images are half the size of those in the previous octave. An example of

the scale space is presented in Table 2.1. The number of scales and octaves is left to

the developer, however 4 octaves and 5 scales are the recommended amount [32]. The

blurring is performed using a Gaussian Blur operation.

Laplacian of Gaussian Approximation The Laplacian of Gaussian (LoG) is used

to identify the corners and edges in images. First the image is blurred slightly and then

the second order derivative (or the “laplacian”) is calculated on the image. The second

order derivative is sensitive to noise, however the blurring stabilises the second order

derivative by smoothing out noise. Performing the LoG operation is computationally

expensive and so an approximation called the Difference of Gaussian (DoG) is used

instead. The DoG operation takes the octaves produced in the previous step and

calculates the DoG for each pair of consecutive scales using a simple subtraction. The

DoG for the first octave in the example scale space is show in Figure 2.5. This process

is completed for each octave.

12

Scales First Octave Second Octave Third Octave Fourth Octave

First Scale

Second Scale

Third Scale

Fourth Scale

Fifth Scale

Table 2.1: Example Scale Space (smaller images are scaled up for demonstration pur-
poses)

13

Figure 2.6: Keypoint Detection

Keypoint Detection To identify keypoints in the image, the maxima and minima

must be located in the images produced after the DoG operation. In each octave of

DoG images, we cycle through the pixels of the inner images (i.e. all images except

the first and last), and perform a check on the neighbouring pixels as well as the

corresponding pixels in the scales above and below the current image. If the current

pixel’s intensity is greater or lesser than that of all the neighbouring pixels, then it is

marked as an approximate maxima or minima. Figure 2.6 illustrates this process. Each

large grid represents a scale of an image in one octave. The subsections of the grids

represent a pixel. The orange ‘X’ marks the current pixel and the green circles mark

the pixels that the keypoint is compared to. If the keypoint has a high or low enough

itensity, it is marked only as an approximate maxima or minima because it is likey that

the true maxima and minima lies somewhere in between the pixels. However, using a

Taylor Expansion, subpixel data can be created and the true maxima and minima can

be calculated, increasing the stability of keypoint detection step.

Removal of Low Contrast Features Now that we have produced many keypoints,

we need to remove the keypoints that are along an edge or do not have enough contrast.

14

To remove low contrast keypoints, we calculate the magnitude of the pixel’s intensity

at that keypoint. If the intensity is lower than a threshold, it is removed. This often

involves getting the intensity of the subpixels generated in the previous step. To remove

edges, two perpendicular gradients are calculated based on the data surrounding the

keypoint’s pixel. If both gradients are small, then the area is a flat region and that

keypoint is removed. If one gradient is large and the other small, this indicates an

edge. Keypoints that are edges are also removed, as keypoints that are corners are the

most distinct features. A keypoint is determined to be a corner if the two gradients

are large. In this case, the keypoint is kept.

Keypoint Orientation To ensure rotation-invarince, the orientation of the remain-

ing keypoints must be calculated. To calulate the orientation, a region around the

keypoint’s pixel is taken, the size of the region depends on the scale of the image (i.e.

how blurred the image is, rather than the size). The higher the blur, the bigger the

region. For each pixel in this region the gradient magnitudes and orientations are cal-

culated. Then a histogram is created with 36 bins (of 10 degrees) as shown in Figure

2.7. The magnitude values are placed into one of the bins depending on the orientation.

For example, a pixel with the orientation of 43.98 degrees and a magnitude of 3 would

be placed into the 40 - 49 bin, and that bar would increase by 3. Once this is complete

for all pixels, the keypoint will be assigned the orientation of the highest bar in the

histogram. However, is any other bar is above 80% of the highest bar, a new keypoint

is created with the same position and scale data as the original but is assigned the

orientation of the other bar.

Feature Descriptor The final stage of the SIFT algorithm is to create a unique

fingerprint that identifies each keypoint. To do this a 16 x 16 grid is created around the

keypoint, which is divided into 4 x 4 windows. Again, this stage works with subpixel

data and therefore the keypoint lies at the very centre of the grid. Within each of

the 16 grid sections, the magnitude and orientation is calculated in a similar way to

keypoint orientation method, however, the histograms have only 8 bins of 45 degrees.

The amount that is added to the historgram is also reliant on the subpixel’s distance to

the keypoint. Subpixels that are further away from the keypoint have less weighting to

the overall fingerprint. The weight is calculated using a Gaussian weighting function.

15

Figure 2.7: Calculating a features orientation using a histogram

Since there is a 4 x 4 grid with each section containing a 8-bar histogram, the resulting

fingerprint is a normalised 128 variable vector. Figure 2.8 shows how feature descriptors

are produced using a 8 x 8 grid divided into 2 x 2 windows.

The OpenCV library has SIFT functions for feature detection, so all the steps above

are readily available. SIFT only detects features and does not match them. A separate

feature matcher must be implemented. Two feature matchers are tested as part of this

project. They will be outlined in section 2.4.

2.3.2 SURF

The SURF (or Speeded-Up Robust Features) algorithm was published in a paper by

Bay et al.[33] and, as the name suggests, it is a quicker version of the SIFT algorithm.

SURF makes multiple improvements to the SIFT algorithm which are discussed in this

section.

Integral Image SURF is able to achieve a speed-up in feature detection by making

use of integral images, also known as summed-area table [34]. In summary, an integral

image I(x, y) is an image where each point stores the sum of all pixels in a rectangular

16

Figure 2.8: Generating feature descriptors [32]

area between the origin and (x, y).

I(x, y) =
i≤x∑
i=0

j≤y∑
j=0

p(i, j)

where p(i, j) is the intensity value of the pixel at (i, j). Once the integral image is

formed, the sum of intensities in any rectangle can be found with simple addition and

subtraction. For example, for some points A = (x0, y0), B = (x1, y1), C = (x2, y2) and

D = (x3, y3), the sum of intensities is:

Isum = I(D) + I(A) − I(B) − I(C)

Blob Detection SIFT uses Difference of Gaussian to detection potential keypoints,

but SURF takes a different approach. Based on the Hessian Matrix, surf uses a blob

detector. The goal is to find the determinant of the Hessian matrix, which is an ap-

proximation of the Laplacian of Gaussian (for finding edges and corners). The Hessian

determinate is approximate by performing a convolution on the image using the box

filters pictured in Figure 2.9. The calculation of the convolution is also made easier

with the use of the integral image. An interesting benefit to this method of feature

detection is that the sign of the trace of the Hessian Matrix will tell if the feature is

black with a white background or vice versa. Thus, an improvement in the feature

matching phase can be made, in that we only match features of the same colour.

17

(a) Box Filters

(b) Descritized Box Filters for Approximation and Speed Up

Figure 2.9: Box Filters for Approximating the Laplacian of Gaussian in SURF [33]

Scale Space Similar to SIFT, SURF also creates a scale sacpe to ensure scale-

invariance. However, unlike SIFT, SURF increases the size of the images with every

octave. The same convolution can be performed on the larger images by increasing the

size of the box filters. When increasing the size of box filters, it must be ensured that

while the size of the kernels is being increased, the lobes must also be correctly scaled.

An example of this is shown in Figure 2.10. From this point on until the orientation

assignment, the SURF algorithm follows similar steps as SIFT: the local maxima are

found, and the true location of the maxima are found using subpixel data.

Orientation Assignment SURF uses a method called Haar Wavlet [35] to assign

orientation. The Haar Wavelet is applied to the image in a horizontal and vertical

direction. The integral image is also used here to simplify the calculations. Then

a region around the keypoint is taken. The size of this region depends on the scale

of the image. Gaussian weighting is applied to the Haar Wavlet responses so that

the responses that are closer to the keypoint have more of an effect on the orientation

assignment. The responses are then plotted in a space as shown in 2.11. The orientation

is calculated though the sum of all the responses.

Feature Descriptors When describing features in SURF, a region is taken around

the keypoint and divided into 4 x 4 windows (similar to SIFT). The size of the region

again depends on the scale of the image. For each window, the responses to the Haar

18

Figure 2.10: Scaling the box filters [33]

Figure 2.11: Orientation Assignment in SURF [33]

19

Wavelets that were performed in the previous section are used to create a 4-variable

vector that describes that window. This process is completed for each window. The

result is a feature descriptor that is a normalised 64-variable vector.

The OpenCV library provides two types of SURF algorithms: the normal SURF

method that was just discussed and a rotation variant version called U-SURF (or Up-

right SURF). U-SURF provides faster feature detection in return for SURF’s rotation

invariance. For the AR Campus Tour application, it is better to enable users to take

photos at whatever angle they prefer. Thus, only the normal SURF algorithm was

tested.

2.3.3 ORB (Orientated FAST and Rotated BRIEF)

The ORB algorithm is divided into the Orientated FAST algorithm for feature detection

and the Rotated BRIEF algorithm for feature description.

FAST The FAST (or Features from Accelerated Segment Test) was developed to

be used in real-time applications. Proposed by Rosten and Drummond [36], it uses

machine learning algorithm to perform speedy corner detection. The algorithm works

as follows:

• Select a pixel P in the input image as a potential feature. The intensity of this

pixel is Ip.

• Get the intensity of the 16 pixels that create a circle around P , as shown in

Figure 2.12. Call these intensities I1 to I16.

• Select an appropriate threshold value T .

• P is a corner if there exists a set of 12 contiguous pixels, where the intensity of all

pixels is brighter than Ip + T or the intensity of all pixels is darker than Ip − T .

• After some iterations the algorithm generates a decision tree classifier, so that

feature detection can be sped up.

20

Figure 2.12: FAST Corner Detection [36]

FAST is a quicker algorithm than SIFT however there are some disadvantages to

using FAST. The algorithm is not robust against images with high levels of noise and

is dependent on the threshold value T . Picking a value for T that is too high or too

low will result in poorly performing algorithm. Although the speed-up is a desirable

feature of the algorithm, this could cause difficulties in a tourism application. The

value for T was chosen to be 10, as recommended by OpenCV.

FAST is not rotation-invariant, meaning that the algorithm performs poorly with

rotated images. However, it was modified to calculate the orientation for ORB. This

version is called Orientated FAST. After a pixel is determined to be a corner, a weighed

centroid is calculated based on the intensity of the circling pixels (i.e. I1 to I16). The

orientation of the feature is represented as the direction of the vector from the centre

pixel to the centroid.

BRIEF BRIEF (Binary Robust Independent Elementary Features) [37] is a feature

description generator that avoids using large vectors as descriptors like in SIFT to

reduce the memory and time required to match features. It produces the description

by taking some region around the keypoint. Within this region, a number of pixel pairs

are selected (usually 128, 256 or 512 pairs) and their intensity values are compared. If

the first pixel has a greater intensity, then a value of ’1’ is assigned and ’0’ otherwise.

This is done for all pixel pairs and the result is a string of bits. The length of this

string is equal to the number of pixel pairs selected. This is why numbers that are

21

multiples of 8 such as 128, 256 or 512 are selected. The pixel pairs can be selected in

multiple ways according to [37]. One example, is to randomly and uniformly choose x

and y values for the pixels to be compared.

BRIEF is also used to match the features it describes. Using binary strings instead

of vectors of floating-point values provides a speed-up to the feature matching stage

by using Hamming distance. This is a simple operation, that only requires a XOR

operation on the two feature descriptors being compared, followed by a simple bit

count operation.

ORB ORB (or Oriented FAST and Rotated BRIEF) [38] is designed to be an ef-

ficient alternative to SIFT by combining algorithms that have previously been men-

tioned. ORB uses the FAST algorithm for feature detection and the BRIEF method

of creating feature descriptors. The algorithm also includes the application of Harris

Corner Detection [39] to measure the keypoints and determine which are best for the

feature matching step.

2.4 Feature Matching

Once the feature detection stage has been completed, feature matching must be im-

plemented. Similar to the feature detection algorithms, there are multiple feature

matching algorithms. The following section will compare two different methods of fea-

ture matching: Brute-Force Matching and FLANN-Based Matching. Note that these

feature matchers are only compatible with SIFT and SURF because they expect feature

descriptors to be vectors of floating point numbers. ORB uses bit strings as descrip-

tors and therefore cannot be implemented with the matchers described in this section.

Instead ORB uses the BRIEF algorithm to carry out feature matching.

2.4.1 Brute-Force Matching

A brute-force matcher is as simple as the name suggests. The matcher takes each of

the descriptors from the identified features in the first image and matches it with the

descriptors in the second image. To identify a match, one feature in the first image

is compared to all the features in the second image using some distance formula. The

22

feature in the second image that returns the closest distance is returned as the match.

There are different distance formulae depending on which matching method is being

used. As the descriptors are floating-point values, the normalised L1 or normalised

L2 distance formulae are suitable (normalised L2 distance is preferred). There is an

optional cross check matcher that performs the matching process twice: once going

from the first image to the second image, and once going from the second image to

the first. It only returns the feature pairs that are the best match in both tests. This

sacrifices speed in return for reliability.

2.4.2 FLANN-Based Matching

FLANN is a Fast Library for Approximate Nearest Neighbours, a collection of highly

optimised algorithms for fast nearest neighbour operations in large databases or high

dimensional features. This library can be used to implement a nearest-neighbours

matcher, which is similar to a Brute-Force matcher, but it returns the top k matches,

where k is decided by the developer. A FLANN-based matcher performs better than

a brute-force matching for large datasets, e.g. a large image.

23

Chapter 3

Design

3.1 Pipeline

The pipeline for this application is divided into two main sections (Figure 3.1). The

first part consists of the functionality that occurs on the user’s mobile device. The

second part includes all of the online functionality. This design is similar to other AR

Image Recognition applications [11], [29].

The user’s mobile device has the ability to take images and also capture information

related to the image which will assist with image recognition later on in the pipeline.

It captures the GPS location and camera pose of the user’s device when the image was

taken, which helps narrow down the search for which landmark is pictured. The device

then uploads the image and the appropriate information to the Image Recognition

Server. Finally, the device receives a result from the Image Recognition Server.

The online section of the pipeline is made up of a database and an Image Recognition

Server. The online database stores all of the reference images of landmarks with the

GPS and pose information associated with them. The Image Recognition Server will

take the user’s image and attempt to match it to one of the images stored in the

database. As mentioned previously, the additional information that is uploaded by the

user is used to reduce the time of finding the correct landmark. The Image Recognition

Server will return a result to the user’s device indicating if the matching was successful

or not. If the match is successful, the server will return additional information.

24

Figure 3.1: Pipeline

3.2 Mobile Device System

The only actor involved in this system is the user of the mobile device (Figure 3.2). The

main functionality of this system is to upload the image and corresponding information.

The upload image function uses the device’s camera to take a picture. To upload the

additional information, the data is retrieved from the device’s gyroscope and the GPS

system. Finally, the device must be able to accept and handle the data that is returned

from the image recognition server.

3.3 Database System

The Database Systems use case diagram is very straightforward (Figure 3.3). The two

actors involved are the image database handler and the extra information database

handler. Both of them must have the ability to save information of the appropriate

type into the database. Additionally, they must also have the ability to retrieve the

information so that it can be used by the image recognition server.

25

Figure 3.2: Mobile Device System

Figure 3.3: Database System

26

Figure 3.4: Recognition System

3.4 Image Recognition System

The Image Recognition System is the most complex system in the application. It is the

core system of the application and interacts with all of the other systems. To perform

an image recognition test, the system needs to retrieve the device’s image and extra

information and compares it to images and information stored in the database. This

has to be retrieved by the two database handlers.

27

Chapter 4

Implementation

4.1 Technologies Used

Android Android is a Linux-based operating system used in mobile devices. As of

2018, Android accounts for 86% of the mobile operating system market share, which

is over 2 billion mobile devices [40]. When an application is developed for the Android

platform it is able to run on most other Android devices (as long as the Android version

is compatible). This app uses Google ARCore which requires Android OS with API

level 24 (also known as Android Version 7.0 or Nougat). Additionally, the mobile device

requires access to the internet and an in-built camera.

Google ARCore ARCore is a AR platform developed by Google. It provides the

functionality necessary for building AR applications including motion tracking of a

device relative to the world, environmental understanding with flat surface detection

and objection detection, and light estimation of the environment [41]. The AR Campus

Tour application uses ARCore as the base for AR functionality.

Mapbox Mapbox is a platform that provides location data for applications. The

provided functions include map generation, location searching and navigation [42].

Mapbox also provides an AR version of their platform. This provides a library that

is built upon ARCore’s Unity API, so all of Mapbox’s services can be used in an AR

application.

28

Unity Engine Unity is video game physics engine that is used in many video games

across multiple platforms. The Unity Editor is a piece of development software that is

used to create games that run on the Unity Engine [43]. Unity was used to build the

AR Campus Tour application because both ARCore and Mapbox both have APIs that

integrate well with the Unity Engine. Unity also links with the Android Development

Studio to build projects on Android devices.

OpenCV Open-CV is the Open Source Computer Vision Library. It provides an

extensive range of computer vision and machine learning algorithms [44]. The algo-

rithms of interest are the object identification algorithms, which are used in the server

to identify landmarks in the query images.

Flask Flask is a micro-framework written in Python for building websites and web

applications. It is used in this project as the base to the web server [45]. It handles all

the requests that the user’s device sends while using AR Campus Tour. This includes

both API requests and image recognition requests.

JSON JSON (JavaScript Object Notation) is a lightweight data-interchange format.

It is easily read and written by humans but also easy for machines to parse. It follows

the conventions of the C-family of programming languages (e.g. C, C++, C#, Java,

Python) [46]. JSON is used in the AR Campus Tour application to exchange infor-

mation between the user’s device and server, such as tour information and attraction

information.

4.2 Technical Architecture

Figure 4.1 demonstrates how each of the technologies and tools used in this project

interact with each other. Unity is used to create the application and build it on

Android devices. Within Unity, ARCore and Mapbox APIs provide AR functionality

and location-based data and objects to the application. The user must have an Android

device with the correct Android version installed to run the app. The server was built

using Flask and Python. The application makes requests to the server which Flask

29

Figure 4.1: Technical Architecture Diagram

handles. Running within the server is the OpenCV library, which carries out the

recognition process. Data is sent to and from the server in JSON format.

4.3 UI/UX Design

This section will list and explain the different UI/UX elements present in the AR

Campus Tour Application. Figure 4.2 shows all the major UI/UX elements which are

labelled with red numbers.

The Capture Button (labelled 1) activates the image search and recognition process.

When the user presses this button, the camera’s output (or the background to the app)

is captured, ignoring all the UI elements that may prevent the recognition algorithm

from achieving an accurate result. If the recognition process is successful than an

AR Landmark Marker (labelled 5) is created. This object has the name and a piece

of information regarding the identified landmark. If the recognition is unsuccessful a

Nothing Marker (labelled 6) is created.

The Tour Selection Menu (labelled 2) enables the user to select which tour they

want to do. On start up, this menu will only have a loading message displayed. This

indicates that the application is requesting the data required to initialise a tour from

30

Figure 4.2: UI Elements of AR Campus Tour

the server. The response to this request includes the basic data regarding all the tours.

With this information, the Tour Selection Menu is filled with the names of each of the

tours. Now the menu behaves as a dropdown menu and the user can select a tour.

The Map Button (labelled 3) toggles the AR Map (labelled 7). The Map Button is

inactive until the user selects a tour from the Tour Selection Menu. Activating the AR

Map will produce and spawn an AR object in from of the device’s camera. The AR

object is a 3D map of the area the tour takes place in. The map also features markers

showing the position of points of interest and a 3D marker showing the location of the

user and the direction they are facing. Pressing the Map Button again will deactivate

the AR Map.

The Next Landmark Icon (labelled 4) indicates to the user what the next expected

landmark is. It is initialized when the user selects a tour from the Tour Selection Menu,

and updates when the user identifies the next expected landmark.

4.4 Application Walkthrough

This section maps out how a user would typically use the AR Campus Tour application.

The accompanying figures are in the Appendix - Figures 1 to 8.

Initial steps Once the app has started up (Figure 1), an API request is sent to the

server asking for information regarding tours. This fills the Tour Select Menu with

31

the names of the tours, enabling the user to select which tour they want to begin

(Figure 2). By clicking the Tour Select Menu, a dropdown menu expands listing all

the tours currently available to the user. The user selects the desired tour (Figure 3).

Another API request is made, requesting information regarding only that tour. The

server returns a list of all the attractions in the tour, along with the GPS positions of

those attractions. With this information a Tour Progress Manager object is created

that stores Array Lists of the landmark names, the GPS coordinates and Boolean

values marking whether the user has visited the landmark. This object tracks the

landmarks that the user has visited and keeps track of the users progress of the tour.

Using the Tour Progress Manager, the Next Landmark Icon is changed to represent the

first landmark on the tour (Figure 4). Now, the user can begin to walk around with

their device and take images. The user walks to a landmark, holds their device up to

the landmark and presses the Capture Button. This initializes the image recognition

process.

Server Behaviour The device sends the captured image, the GPS information and

camera pose to the server. With this data, the server first determines which of the

landmarks the user could be looking at based on the GPS location and removes the

landmarks that are too far away from the user. The next step is to narrow down the

number of images that need to be searched. This is done using the camera pose infor-

mation. Images that have similar camera poses to the query image will be prioritised to

try and find a good match in the shortest amount of time. Once a list of likely images

has been found, the matching algorithm can begin. The features of the query image

and likely images are found using feature detection. The query images features are

compared with each of the likely images features using feature matching. The result

of the feature matching is a score that represents the similarity between two images.

A score of 0 is a perfect score and means the two images are a complete match. The

higher the score the less of a match the two images are. This score is calculated for

each feature pair. The server sorts the matches by score, from lowest to highest and

takes the sum of the top ten matches and uses that as the final score of the match

between the two images. This process is repeated between the query image and each

of the likely images. At the end of the process, the image with the lowest score, and

that score being below the threshold, is now considered the landmark being looked at.

32

The name and information associated with this image is returned to the user’s device

in the form of a JSON response. The JSON response includes the landmark name,

the display name of the landmark (the name the user sees), the information regarding

the point of interest and the position on the device’s screen that marks the centre of

the landmark. However, there are two cases where the server will return a negative

result, i.e. a landmark was not found. Firstly, if the position of the user is too far

away from any landmarks, a negative result is returned before any image recognition

is performed. Secondly, if all the images return a score that is above the threshold,

no adequate match is found, and a negative result is returned. This score threshold is

decided by the developer. In these cases, the JSON response simply returns the string

None.

Processing Server Result Based on the response, the application generates one of

two AR objects. For a negative response, the application produces a Nothing Marker.

This red marker is positioned in the environment directly in front of the device’s camera.

It has a notification icon, as well as the text Nothing Found, indicating to the user that

the landmark search was unsuccessful (Figure 5). This marker disappears 10 seconds

after its creation, so that the user’s display is overrun by these markers. In the case of a

positive response, an AR Landmark Marker is created. This marker holds the display

name received from the server at the top and a small piece of information printed

below. Similar to the Nothing Marker, this object is spawned directly in front of the

device’s camera. If the camera is moved horizontally or vertically, the AR Landmark

Marker retains its position in the augmented environment. On a successful result, the

Tour Progress Manager is updated, and the identified landmark is marked as visited.

If the landmark identified is the next expected landmark, the Next Landmark Icon

is updated based on which landmark the Tour Progress Manager returns as the next

landmark (Figure 6).

Using the AR Map By pressing the Map Button in the top-right corner of the

screen, the AR Map spawns in front of the device’s camera. This is a 3D map of the

area in which the tour is taking place. In the case of this app, the map is centred on

Trinity College Dublin (Figure 7). There are 2D markers that show the positions of

the landmarks. These markers consist of a tower of three icons. In the centre, there

33

is an icon that represents the landmark. The icon is a cartoon drawn version of the

landmark to guide users towards the correct points of interest. The bottom icon is

a downward pointing arrow that points to the point on the 3D where that landmark

is found. The final icon on the top is a tick icon that indicates whether the user has

identified the landmark. If the user has yet to visit the landmark, the icon is invisible

and appears when the user identifies the landmark through the app (Figure 8). Pushing

the Map Button again will deactivate the AR Map and remove it from the augmented

environment.

34

Chapter 5

Results

The three algorithms mentioned in Section 2.3 were tested for their efficiency. The

algorithms’ accuracy and speed were compared against each other. For an application

like the AR Campus, the ideal algorithm should have 100% accuracy and correctly iden-

tify landmarks every time with minimum time taken to perform the image matching.

To conduct this test, five landmarks were chosen in Trinity College Dublin. Multiple

images of these landmarks were taken and cropped so that there was as little of the

background as possible seen in the images. This reduces the amount of features iden-

tified that were not on the landmark. These features are noise and would disrupt the

algorithm tests. These cropped images were placed in the database and are used by

the server during the image recognition process. Finally, one more image was taken for

each landmark. These images remained uncropped and were used as the query images.

The database and query images can be seen in Appendices 9 to 14.

To test the accuracy of the algorithms, each query image was matched against the

database images. The test will have a positive result if the match with the lowest score

is between the query image and a database image of the same landmark as in the query

image. Otherwise, it is a negative result. To measure the speed of the algorithm, the

time taken to complete the image recognition process is measured. The timer starts

just before the query image is loaded and ends when results of the final match is found.

The results of the image recognition algorithms test is layout in Table 5.1.

The SIFT algorithm performed well. It successfully identified all five landmarks

with both matchers. However, on average, SIFT (BF) took just over two minutes to

35

Algorithm Accuracy Average Time Minimum Time Maximum Time

SIFT (BF) 100% 123.15 sec/Image 19.90 sec/Image 392.46 sec/Image
SIFT (FL) 100% 101.09 sec/Image 17.48 sec/Image 294.95 sec/Image
SURF (BF) 100% 101.00 sec/Image 16.64 sec/Image 313.07 sec/Image
SURF (FL) 60% 54.80 sec/Image 16.75 sec/Image 135.02 sec/Image
ORB 100% 0.48 sec/Image 0.34 sec/Image 0.69 sec/Image

Table 5.1: Algorithm testing results - BF means using the Brute Force feature matcher,
FL means using the FLANN matcher

complete one match (i.e. feature detection of the database image and feature matching

between query image and the database image). SIFT (FL) performed slightly better

with an average time of just over a minute and a half. The AR Campus Tour application

will most likely search through multiple images. Making the user wait for minutes

before receiving a result is unacceptable for this sort of application. Moreover, the

range of time taken is varied. The shortest time recorded for matching two images is

17.48 seconds (FL) and the longest time recorded is 392.46 seconds (BF). This variance

in time is due to the number of features detected in the images.

The SURF algorithm has extra estimation steps during the feature detection steps,

thus the accuracy begins to suffer when used with the FLANN matcher. SURF (FL)

misidentified two out of the five landmarks. However, because of the extra estimation

steps, SURF is able to quickly eliminate any impossible matches. It does this by

determining if a feature is white on a black background or black on a white background.

It eliminates potential matches if the features are different colours. Thus, there is

a significant speed-up when compared to SIFT. Using SURF with the BF matcher

performs better on accuracy, but loses the big time advantage over either of the SIFT

algorithms. On average SURF (FL) takes 54.80 seconds per image and SURF (BF)

takes 101 seconds. Although this is faster than both SIFTs, it is still an unacceptable

time for the AR Campus Tour application.

When comparing the Brute Force and FLANN feature matchers, FLANN com-

pleted the feature matching quicker than its Brute Force counterpart. This is because

FLANN performs better than Brute Force only on very large images. However, when

using the FLANN matcher in combination with SURF, the algorithm’s accuracy fell to

60%. In the context of AR Campus Tour, this translates into the misidentification of

36

landmarks. Therefore, if choosing between SURF and SIFT, SIFT with the FLANN

matcher provides good accuracy in the shorest time.

The ORB algorithm’s combination of using the FAST feature detection and BRIEF

feature matching achieves a high accuracy and low time. The algorithm successfully

identified all five landmarks, and the average time taken to perform a match is a fraction

of the average time of SIFT or SURF. The main reason for this is the feature descriptors

in ORB are byte strings. Descriptors in SIFT and SURF are vectors of floating-

point numbers. This means that the difference between features is much quicker to

calculate. The ORB algorithm provides a good, usable time for the AR Campus

Tour application. However, during the image recognition process, if multiple database

images are matched, the user will be left waiting for their device to receive a response

for too long. This is why we include the GPS and camera pose data to reduce the time

taken to recognise landmarks. Regardless, out of the algorithms tested, ORB is the

ideal algorithm for tourism applications.

Further investigation into the algorithms’ time was carried out. Firstly, the ratio

of the times taken during feature detection and feature matching was obtained. The

results are shown in Figure 5.1. It shows that when the overall process takes a relatively

short amount of time, the feature detection process take up a small percentage of

the total time of the process. However, as the process becomes more complex and

takes more time, the harder it is to predict how long the feature detection will take.

Nevertheless, the feature detection always accounted for the quicker part of the image

recognition process. On average, time spent on feature detection was only 8.5%, with

a lower bound 1.27% and an upper bound of 37.45% of the overall time. This shows

that by focusing efforts on speeding up the feature matching stage alone, a significant

speed up to the overall process can be achieved.

Following this, the feature matching process was examined further. In particular,

the effect of the number of features identified on the time of the overall process was

investigated. The expected result was that the higher number of features detected, the

more feature matching and therefore, the more time it takes. The results of this test

are laid out in Figure 5.2. This is a comparison of the total number of features found

in both the query and database image against the time taken to perform the image

recognition process. The graph shows that the time taken is highly dependent on the

number of features found in the query image, as highlighted in Figure 5.3. However,

37

0 1 2 3 4 5 6 7 8 9 10

0

200

400

600

Detection Time [s]

T
ot

al
T

im
e

[s
]

Figure 5.1: Feature detection time against complete image recognition process time

if the query image is constant during all the tests, a linear relationship between the

number of features and time taken is observed (Figure 5.4). When a query image with

a low number of features detected is used, the y-intercept of the graph is a low value

of time (i.e. the minimum time taken to complete feature matching is low) and the

slope of the graph is quite flat (i.e. an increase in the number of features detected in

the database image will not have a large effect on the overall time taken). However,

having an image with a large number of features will result in a higher minimum time

to complete the process and a steeper slope, so an increase in the number of features in

the database image will have a bigger increase in the overall time taken. Therefore, by

reducing the number of features in the images, particularly in the query image, then a

speed up will be achieved. However, there is a risk. By reducing the number of features

detected, will also reduce the accuracy of the image recognition algorithm.

One of the reasons why the ORB algorithm is very fast when compared to SIFT

or SURF is that it limits the number of keypoints it finds to 500. SIFT and SURF

can find thousands of features per image. However, a limit can be applied to SIFT

so that it detects a maximum of 500 features. SURF can be modified to detect less

features by increasing a parameter called the hessian threshold. The hessian threshold

was increased from 100 to 2000. New tests were carried out with SURF and SIFT to

see how these modifications effect their accuracy and speed. The results are shown in

38

0.5 1 1.5 2

·105

0

200

400

600

Features Detected

T
im

e
[s

]

Figure 5.2: Number of Features Detected against Time Taken to perform image recog-
nition

0.5 1 1.5 2

·105

0

200

400

600

Features Detected

T
im

e
[s

]

Query Image A
Query Image B
Query Image C
Query Image D
Query Image E

Figure 5.3: Number of Features Detected against Time Taken to perform image recog-
nition separated by query image

39

1.8 1.9 2 2.1 2.2

·105

0

200

400

600

Features Detected

T
im

e
[s

]

Figure 5.4: Number of Features Detected against Time Taken to perform image recog-
nition for one query image

Algorithm Accuracy Average Time Minimum Time Maximum Time

SIFT (BF, 500) 100% 3.52 sec/Image 2.85 sec/Image 4.66 sec/Image
SURF (BF, 2000) 100% 3.61 sec/Image 2.45 sec/Img 6.40 sec/Image

Table 5.2: Algorithm testing results - SIFT is limited to 500 features and SURF has a
hessian threshold of 2000

Table 5.2.

Limiting the number of features detected results in a massive increase in speed

for both algorithms. More interestingly, both achieved an accuracy of 100%. When

finding the final score for images, the scores of the best 10 matching features are taken.

Therefore, it is not necessary to use tens of thousands of features (as was the case in

the original algorithm tests). 500 features in both the query image and database image

is sufficient to achieve an accurate result. Another interesting result to note is the ratio

of feature detection time to feature matching time. The feature matching stage is now

the quicker part of the image recognition process and accounts for a small percentage of

the total time taken, as shown in Figures 5.5 and 5.6. However, the image recognition

process will still take a few seconds per image due to the feature detection stage, and

this may be too slow for users (considering that multiple images will be used during

the image recognition process). There are methods that can optimise feature detection

40

0

1

2

3

4

5

T
im

e
[s

]

Detection Time
Matching Time

Figure 5.5: Features detection time against feature matching time in SIFT (BF, 500)

0

2

4

6

T
im

e
[s

]

Detection Time
Matching Time

Figure 5.6: Features detection time against feature matching time in SURF (BF, 2000)

time. For example, saving the feature descriptors of images in a file, and then reading

the file instead of generating a new set of descriptors each time the algorithm is run.

Another method of reducing time is to use image compression or lower the im-

age quality. The SIFT algorithm was tested again using the same query images and

database images. However, when the images were loaded, the quality of the image

was lowered to 10% of the image’s original quality (Figure 5.7). This was done using

OpenCV’s compression algorithms. The expected result was to see an increase in the

speed of the image recognition process but see a decrease in the server’s ability to dis-

tinguish between landmarks. The image quality was reduced to a low amount (10%) to

try and achieve a significant speed-up when compared to no compression. On average,

41

Figure 5.7: Normal image on the left, compressed image on the right

there was a reduction in only 5% in the number of features detected, which only results

in a 10% speed up. However, this version of the algorithm misidentified two out of the

five landmarks.

42

Chapter 6

Conclusions

This paper has shown that it is possible to create a tourist AR application in the

form of AR Campus Tour. All the fundamental requirements for such an app are

present including landmark recognition, information display and mapping navigation

and guidance. This paper also describes a design for such applications that others can

follow to create their own applications and build on the research in this area. The

technologies that were used to build the AR Campus Tour application are listed and

have been shown to work well in the context of a tourism application. Finally, this

paper delved into the different possible image recognition algorithms that could be

used and concluded that an algorithm that has a low feature matching time but high

recognition accuracy is best suited for a tourism application, as well as modification

that can be made to help speed up this process. This paper finds ORB by [38] to be

an idea algorithm.

43

Chapter 7

Further Research

AR Object Interaction The AR Campus Tour application produces an AR Land-

mark Marker object whenever a landmark is successfully identified. However, this

object only displays the name of the landmark identified as well as some additional

information about it. There is potential to create an AR Landmark Marker object that

is interactable, similar to the CorfuAR application [17]. For example, the user could

tap this object when it is visible on screen to access additional information, as well as

media such as photos, videos and audio files. Including audio cues and information

about each landmark is shown to increase tourists’ willingness to pay more at a tour

site [24].

Accessibility One potential issue with the AR Campus Tour application is that it

is reliant on WiFi or mobile network connectivity. All information about tours and

landmarks are stored on the server. The server can only be accessed by the application

if the user’s device has a connection to the Internet. This means that areas with poor

WiFi and network coverage, as well as data-roaming charges, must be considered. A

possible solution is to allow users to pre-download data so that they can experience

the tour undisturbed in an offline mode.

User Co-creation of Content User co-creation of content is a key component in

making a good technology integrated tourism application [8]. This is a feature that

the AR Campus Tour application has yet to implement. Enabling users to post images

taken with the application on social media is a good way for users to share their

44

experience and attract more visitors to the tour site [10]. Alternatively, users could be

given the ability to create custom tours by linking their preferred landmarks [16] and

share these custom tours with others.

Deep Learning and Neural Networks A subject in the area of Machine Learning

that is currently being researched is Deep Learning. Convolutional Neural Networks are

networks that implement Deep Learning to complete highly complex image recognition

problems. Networks such as AlexNet [47] and ResNet [48] can be used instead of

SIFT/SURF/ORB in this project. Investigating the performance of these networks

would further enhance this project.

Hardware The algorithms were tested on one machine only. However, different

machines will have different CPU, GPU and RAM capabilities which will have different

effects on the performance. Extending the comparison of algorithms to include different

hardware would help get closer to finding the ideal design for a tourist AR application.

45

Bibliography

[1] D. Buhalis, “Strategic use of information technologies in the tourism industry,”

Tourism management, vol. 19, no. 5, pp. 409–421, 1998.

[2] B. J. Pine, J. Pine, and J. H. Gilmore, The experience economy: work is theatre

& every business a stage. Harvard Business Press, 1999.

[3] E. Binkhorst and T. Den Dekker, “Agenda for co-creation tourism experience

research,” Journal of Hospitality Marketing & Management, vol. 18, no. 2-3,

pp. 311–327, 2009.

[4] Y. Wang and D. R. Fesenmaier, “Towards understanding membersfffdfffdfffd

general participation in and active contribution to an online travel community,”

Tourism management, vol. 25, no. 6, pp. 709–722, 2004.

[5] J. Fotis, D. Buhalis, and N. Rossides, “Social media impact on holiday travel

planning: The case of the russian and the fsu markets,” International Journal of

Online Marketing (IJOM), vol. 1, no. 4, pp. 1–19, 2011.

[6] U. Gretzel, M. Sigala, Z. Xiang, and C. Koo, “Smart tourism: Foundations and

developments,” Electronic Markets, vol. 25, no. 3, pp. 179–188, 2015.

[7] D. Buhalis and A. Amaranggana, “Smart tourism destinations enhancing tourism

experience through personalisation of services,” in Information and communica-

tion technologies in tourism 2015, Springer, 2015, pp. 377–389.

[8] B. Neuhofer, D. Buhalis, and A. Ladkin, “A typology of technology-enhanced

tourism experiences,” International Journal of Tourism Research, vol. 16, no. 4,

pp. 340–350, 2014.

[9] C. K. Prahalad and V. Ramaswamy, “Co-creation experiences: The next practice

in value creation,” Journal of interactive marketing, vol. 18, no. 3, pp. 5–14, 2004.

46

[10] I. P. Tussyadiah and D. R. Fesenmaier, “Mediating tourist experiences: Access to

places via shared videos,” Annals of Tourism Research, vol. 36, no. 1, pp. 24–40,

2009.

[11] B. Zhang, “Design of mobile augmented reality game based on image recogni-

tion,” EURASIP Journal on Image and Video Processing, vol. 2017, no. 1, p. 90,

2017.

[12] W. Chen, “Historical oslo on a handheld device–a mobile augmented reality ap-

plication,” 2014.

[13] T. Jung, M. C. tom Dieck, H. Lee, and N. Chung, “Effects of virtual reality

and augmented reality on visitor experiences in museum,” in Information and

Communication Technologies in Tourism 2016, Springer, 2016, pp. 621–635.

[14] Z. Yovcheva, D. Buhalis, and C. Gatzidis, “Engineering augmented tourism ex-

periences,” in Information and communication technologies in tourism 2013,

Springer, 2013, pp. 24–35.

[15] D. Cianciarulo, “From local traditions to fffdfffdfffdaugmented realityfffdfffdfffd.

the muvig museum of viggiano (italy),” Procedia-Social and Behavioral Sciences,

vol. 188, pp. 138–143, 2015.

[16] M. Umlauft, G. Pospischil, G. Niklfeld, and E. Michlmayr, “Lol@, a mobile tourist

guide for umts,” Information Technology & Tourism, vol. 5, no. 3, pp. 151–164,

2002.

[17] P. E. Kourouthanassis, C. Boletsis, and G. Lekakos, “Demystifying the design

of mobile augmented reality applications,” Multimedia Tools and Applications,

vol. 74, no. 3, pp. 1045–1066, 2015.

[18] T. Höllerer and S. Feiner, “Mobile augmented reality,” Telegeoinformatics: Location-

Based Computing and Services. Taylor and Francis Books Ltd., London, UK,

vol. 21, p. 00 533, 2004.

[19] M. T. Linaza, D. Marimón, P. Carrasco, R. Álvarez, J. Montesa, S. R. Aguilar,

G. Diez, et al., Evaluation of mobile augmented reality applications for tourism

destinations. na, 2012.

[20] J. Short, E. Williams, and B. Christie, “The social psychology of telecommuni-

cations,” 1976.

47

[21] M. Kang and U. Gretzel, “Effects of podcast tours on tourist experiences in a

national park,” Tourism Management, vol. 33, no. 2, pp. 440–455, 2012.

[22] K. M. Lee, Social responses to synthesized speech: Theory and application. Stan-

ford University, 2002.

[23] E. Cranmer, T. Jung, A. Miller, et al., “Implementing augmented reality to in-

crease tourist attraction sustainability,” 2016.

[24] Z. He, L. Wu, and X. R. Li, “When art meets tech: The role of augmented reality

in enhancing museum experiences and purchase intentions,” Tourism Manage-

ment, vol. 68, pp. 127–139, 2018.

[25] A. L. Kečkeš and I. Tomičić, “Augmented reality in tourism–research and appli-

cations overview,” Interdisciplinary Description of Complex Systems: INDECS,

vol. 15, no. 2, pp. 157–167, 2017.

[26] C. D. Kounavis, A. E. Kasimati, and E. D. Zamani, “Enhancing the tourism

experience through mobile augmented reality: Challenges and prospects,” Inter-

national Journal of Engineering Business Management, vol. 4, p. 10, 2012.

[27] R. Fatima, I. Zarrin, M. A. Qadeer, and M. S. Umar, “Mobile travel guide using

image recognition and gps/geo tagging: A smart way to travel,” in Wireless

and Optical Communications Networks (WOCN), 2016 Thirteenth International

Conference on, IEEE, 2016, pp. 1–5.

[28] Z. Gui, Y. Wang, Y. Liu, and J. Chen, “Mobile visual recognition on smart-

phones,” Journal of Sensors, vol. 2013, 2013.

[29] C.-S. Wang, S.-H. Hung, and D.-J. Chiang, “A markerless augmented reality mo-

bile navigation system with multiple targets display function,” in Applied System

Innovation (ICASI), 2017 International Conference on, IEEE, 2017, pp. 408–411.

[30] L. Pombo and M. M. Marques, “Marker-based augmented reality application

for mobile learning in an urban park: Steps to make it real under the edupark

project,” in Computers in Education (SIIE), 2017 International Symposium on,

IEEE, 2017, pp. 1–5.

[31] R. Brunelli, Template matching techniques in computer vision: theory and prac-

tice. John Wiley & Sons, 2009.

48

[32] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Inter-

national journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[33] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in

European conference on computer vision, Springer, 2006, pp. 404–417.

[34] G. Facciolo, N. Limare, and E. Meinhardt-Llopis, “Integral images for block

matching,” Image Processing On Line, vol. 4, pp. 344–369, 2014.

[35] C. Chen and C. Hsiao, “Haar wavelet method for solving lumped and distributed-

parameter systems,” IEE Proceedings-Control Theory and Applications, vol. 144,

no. 1, pp. 87–94, 1997.

[36] E. Rosten and T. Drummond, “Machine learning for high-speed corner detec-

tion,” in European conference on computer vision, Springer, 2006, pp. 430–443.

[37] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust indepen-

dent elementary features,” in European conference on computer vision, Springer,

2010, pp. 778–792.

[38] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative

to sift or surf,” in Computer Vision (ICCV), 2011 IEEE international conference

on, IEEE, 2011, pp. 2564–2571.

[39] C. Harris and M. Stephens, “A combined corner and edge detector.,” in Alvey

vision conference, Citeseer, vol. 15, 1988, pp. 10–5244.

[40] Statista, Mobile os market share 2018, May 2017. [Online]. Available: https:

//www.statista.com/statistics/266136/global-market-share-held-by-

smartphone-operating-systems/.

[41] Google, Arcore overview. [Online]. Available: https://developers.google.

com/ar/discover/.

[42] Mapbox, About. [Online]. Available: https://www.mapbox.com/about/.

[43] U. Technologies, Unity3d. [Online]. Available: https://unity3d.com/unity.

[44] OpenCV, About. [Online]. Available: https://opencv.org/about.html.

[45] Flask, Welcome. [Online]. Available: http://flask.pocoo.org/.

[46] JSON, Introducing json. [Online]. Available: https://www.json.org/.

49

[47] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing

systems, 2012, pp. 1097–1105.

[48] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 770–778.

50

Appendix 1 - YouTube Video

A YouTube video demonstrating AR Campus Tour is available at:

https://youtu.be/QM22uf_kUs8

51

Appendix 2 - AR Campus Tour

Walkthrough

Figure 1: On start - the loading message in the Tour Select Menu indicates an ongoing
API request

52

Figure 2: API request was successful - the Tour Select Menu asks users to select a tour

53

Figure 3: Selecting a tour

54

Figure 4: A tour has been selected - the Map Button has become active and the Next
Landmark Icon has been initialized

55

Figure 5: Search is unsuccessful - the Nothing Marker has appeared

56

Figure 6: Search is successful - the AR Landmark Marker has appeared and the Next
Landmark Icon has been updated

57

Figure 7: Map is active

58

Figure 8: Map after a successful search - a green tick appears above the landmark
position marker

59

Appendix 3 - Database Images

Figure 9: Database Images of Landmark A - Sphere Within Sphere

60

Figure 10: Database Images of Landmark B - Walton Memorial Statue

61

Figure 11: Database Images of Landmark C - Statue of Lecky

62

Figure 12: Database Images of Landmark D - The Campanile

63

Figure 13: Database Images of Landmark E - Statue of Salmon

64

Figure 14: Query Images

65

