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View Synthesis in Light Field Volume Rendering Using

Convolutional Neural Networks

Seán Martin, Master of Science in Computer Science

University of Dublin, Trinity College, 2018

Supervisor: Dr. Michael Manzke

In this dissertation, view synthesis for light field volume rendering using deep learning is

investigated. Given a single volume rendered central view along with the camera param-

eters and an estimated depth map from the rendering pipeline, a structured grid of 8×8

views of the volume are synthesised. Firstly, this involves estimating a per pixel depth

map during volume ray casting. This depth map is converted to a disparity map using

the camera parameters for the purposes of image warping. Preprocessing is performed

on the disparity map and reference view, such as image warping and normalisation,

in order to be fed to a Convolutional Neural Network. Deep learning is applied with

the prospect of accounting for inaccuracies in the depth map, non-Lambertian effects,

and occlusions to improve the visual coherency of synthesised views over pure disparity

based image warping. Multiple residual Convolutional Neural Network architectures

are experimented with, and in particular, the results of three dimensional convolutions

are compared with two dimensional convolutions. The experiments performed reveal

that the networks all learnt to improve the visual quality of views that are far away

from the central reference view, but failed to improve views that were close to the

reference. In addition, convolutional neural networks are fast enough for view synthesis

at interactive rates, and geometrical image warping is the bottleneck for light field

synthesis in real-time. Overall, the methods presented have limitations, but show

promising results for future research and expansion. Source code for this dissertation is

available online at https://github.com/flabby99/LF_View_Synthesis and a video

demonstration is available at https://youtu.be/AQ4ec7Bgn1s.
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1 Introduction

1.1 Motivation

The motivation for this research derives from the large body of related research available,

but not specifically aimed towards advancing view synthesis for light field volume

rendering. Particularly, recent research by Srinivasan et al. [Sri+17] showed impressive

results with using only one image from a camera to synthesise a light field. Building

upon this research to apply it to volume rendered light fields and draw out further

insights is an exciting prospect. Volume rendering a light field offers the opportunity

to achieve a new level of convincing immersive experiences. Although direct volume

rendering by ray tracing is possible in real time for a single viewpoint, this is infeasible

for a full light field. As such, performing fast and high quality view synthesis in light field

volume rendering has the potential to disrupt visualisation techniques. For example,

medical practitioners could view the result of Magnetic Resonance Imaging (MRI)

scans in virtual reality in real-time, without the drawback of current virtual reality

devices, such as a single focal plane. These impressive visualisations would allow for

deep understanding of a patient’s anatomy before surgery, and open up new avenues

for medical training. With this in mind, the challenging problem of view synthesis for

volume rendered light fields was determined as the focus of this dissertation.

In addition, applying deep learning to this complex problem drives the motivation

of this research. In computer vision, deep Convolutional Neural Networks have quickly

become state of the art for many tasks, including image classification, depth estimation

and object segmentation. For view synthesis in light field volume rendering, taking

advantage of the volumetric information available and combining it with rendered views

for view synthesis is a complicated task, and it seems appropriate to apply deep learning

to this. Recently, the Convolutional Neural Network (CNN) architecture has been

extensively applied to resolution enhancement of light fields of natural images to great

success, with the deep learning approaches Wu et al. [Wu+17a] and Kalantari, Wang,

and Ramamoorthi [KWR16] constituting state of the art.
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Introduction Overview

1.2 Overview

Light field technology is an exciting emergent subject, allowing for extremely rich capture

of visual information. Unlike conventional images, which record a two dimensional

(2D) projection of light rays, a light field describes the distribution of light rays in free

space [Wu+17a], described by a four dimensional (4D) plenoptic function. Capturing

an entire light field is infeasible, so a light field is generally sampled by capturing a

large uniform grid of images of a scene. [LH96]. However, capturing this 4D data leads

to an inherent resolution trade off between dimensions. As such, the angular resolution,

or number of images in the grid, is often low. Because of this, view synthesis from

a limited number of reference views is of great interest and benefit to any light field

application.

In this dissertation, view synthesis for volume rendered light fields was considered.

The general idea was to experiment with combining research on view synthesis for light

field cameras, view synthesis in volume rendering, and deep learning techniques. In

summary, this involved creating the following pipeline. Firstly, depth heuristics were

used to estimate a reasonable depth map during volume ray casting, based on the work

of Zellmann, Aumüller, and Lang [ZAL12]. This depth map was converted to a disparity

map in pixel values using the camera parameters from ray casting. Using the disparity

map, a fast image warping shifted information from the single reference view to all

novel view locations. Finally, multiple different CNN architectures were experimented

with to improve the visual consistency of all synthesised views in a single pass.

The results of this research suggest that deep learning can definitely improve view

synthesis in light field volume rendering. The learnt residual light field does increase

the visual consistency of synthesised views, especially for those views at a large distance

from the reference view. Unfortunately though, the method of Srinivasan et al. [Sri+17]

does not apply particularly well to volumes. The drawback of the three dimensional

(3D) convolutions they use can be effectively removed by remapping the network to use

2D convolutions. However, their method is aimed towards images of flowers captured

by light field cameras. The captured flower is always near the centre of the view, so the

most important information in the scene is never outside the camera frustum of the

reference view. In volume rendering, important information is often outside the central

view, and no CNN architecture was able to learn to fill in the unseen information.

Additionally, the method is not faster than directly volume rendering the light field,

both taking close to one second for a light field of 64 images with 512 × 512 pixels

each. Promisingly, the bottleneck in terms of time performance was not using CNNs,

but instead the geometrical image warping procedure is too slow, especially since only
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Introduction Project Goals

limited Graphics Processing Unit (GPU) memory is available, so it has to be performed

on the Central Processing Unit (CPU). Any experiments performed to have a CNN

learn to perform image warping, rather than improve warped images, did function faster

than direct volume rendering, but the results were inaccurate. In this case, the CNN

roughly learnt how to shift information using a disparity map, although the colour

consistency between views was weak. If this was to be used, a custom loss function

penalising colour inconsistency would be required.

1.3 Project Goals

1. Effectively combine and expand on ideas from multiple existing fields for this

new research area. In particular, approaches from 2D image processing, light

field angular resolution enhancement, deep learning and view synthesis in volume

rendering are of interest.

2. Investigate applicability of deep learning in this domain, using volumetric data

and rendered images.

3. Achieve a reasonable level of quantitatively measured view synthesis quality.

4. Experiment with the feasibility of view synthesis with deep learning for light field

volume rendering at interactive rates.

5. Integrate the view synthesis pipeline into the volume rendering framework Inviwo

[Sun+15].

3



2 Background Research

2.1 Summary of Primary Research Areas

Listed below are the main areas of research, with a short explanation on why the subject

is important. Each of these research topics is later expanded with particularly relevant

literature on that matter.

• Light field representation: Representing and sampling the 4D plenoptic func-

tion describing a light field is of utmost importance in any light field application.

This is commonly performed by capturing a grid of images of a scene at a fixed

exposure, which is most appropriate in this case.

• View synthesis in volume rendering: In volume rendering, view synthesis

has been studied to increase application frame rate or reduce bandwidth in remote

rendering applications. Primarily, depth heuristics during volume rendering will

be studied in this domain.

• Light field angular resolution enhancement: A good deal of research has

been performed into view synthesis, or angular resolution enhancement, for light

field cameras. Depth based approaches to this problem are particularly suitable,

since we have volumetric information available. Nonetheless, methods which take

advantage of the light field structure will also be studied.

• Deep learning applied to light fields: Other problems in the light field domain

aside from view synthesis have also seen success with deep learning. The ideas

behind these deep learning architectures are novel and conducive to comprehensive

study of light field learning techniques.

• Image quality evaluation: Regardless of the approach, evaluation of the syn-

thesised output is critical. Quantitative evaluation is generally performed by

comparing synthesised views to a ground truth by a metric.

4
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2.2 Light Field Representation

The plenoptic function described by Adelson [Ade+91] is a seven dimensional function

recording the intensity of light rays travelling in every direction (θ, φ) through every

location in space (x, y, z) for every wavelength λ, at every time t. As a simplification,

the plenoptic function is assumed to be mono-chromatic and time invariant, reducing

it to a five dimensional function L(x, y, z, θ, φ). In 1996, two very important papers

were published on light fields, “Light Field Rendering” by Levoy and Hanrahan [LH96]

and “The Lumigraph” by Gortler et al. [Gor+96]. They both realised that in space

free of any occluders, the five dimensional plenoptic function contained a redundant

dimension. In this case, the radiance along a ray remains constant along a straight

line, so the z co-ordinate is unnecessary, and the plenoptic function reduces to the four

dimensional function L(x, y, θ, φ). This four dimensional plenoptic function is termed

the four dimensional light field, or simply the light field; the radiance along rays in

empty space.

The most popular light field representation was introduced by Levoy and Hanrahan

[LH96], parametrising a ray by its intersection with two planes, a uv plane and an st

plane. As such the 4D light field would map rays passing through a point (u, v) on one

plane and (s, t) on another plane to a radiance value:

L : R4 → R, (u, v, s, t) 7→ L(u, v, s, t)

With this parametrisation, a light field could be effectively sampled using arrays of

rendered or digital images by considering the camera to sit on the uv camera plane, and

capture images on the st focal plane. This representation was ideal for generating new

views from sample images, by interpreting the input images as 2D slices of the 4D light

field [IMG00]. It was later shown by Lin and Shum [LS04] that if the disparity between

neighbouring views in a light field sampling is less than one pixel, novel views can be

generated without ghosting effects by the use of linear interpolation. Since sampling

rates are rarely this high, to achieve such a densely sampled light field, view synthesis,

or angular resolution enhancement, is a necessity.

A fundamental notion in computer vision and light fields is that of an Epipolar-Plane

Image (EPI). As aforementioned, an image can be considered a 2D slice of the 4D light

field by fixing constant camera co-ordinates (u∗, v∗) and letting (s, t) vary. However,

the light field can be sliced in other manners, such as choosing a horizontal line by

fixing t∗ on the focus plane, and fixing v∗ on the camera plane to produce an EPI:

E : R2 → R, (u, s) 7→ L(u, v∗, s, t∗)

5
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EPIs are primarily of interest due to their structure. A line of constant slope in an EPI

corresponds to a point in 3D space, where the slope of the line is related to the depth

of that point. This means, for Lambertian objects, the intensity of the light field should

not change along a line of constant slope [WG14].

2.3 Light Field Angular Resolution Enhancement

There are two main paradigms for synthesising views for light field cameras. One

estimates some form of geometry in the scene, commonly depth, and bases the view

synthesis on this geometry. The other focuses on the structure of light fields, using

expected properties of EPIs for view synthesis, or transforming the problem to other

domains with well defined behaviour. For instance, transforming the problem into the

Fourier domain [Shi+14] or the Shearlet domain [VBG18]. Research on both sets will

be described in turn.

2.3.1 Depth Based Approaches

Wanner and Goldluecke [WG14] presented among the first techniques for increasing

angular resolution of light fields in a global manner, and it remains a state of the art non-

learning approach. They require disparity maps for each input view for their resolution

enhancement approach. Disparity maps can be obtained in any manner, but they propose

to use EPI analysis along horizontal and vertical slices, which are integrated into a

consistent disparity map. The view synthesis problem is formulated as a continuous

inverse problem, and optimised by minimising an energy using convex relaxation

techniques. However, as explained in previous work by Wanner and Goldluecke [WG12],

backwards warping using depth maps requires an expensive pre-computation step to

create the backwards warps. Furthermore, the convex optimisation is slow and scales

with the number of input views and pixels.

In an effort to apply CNNs to synthesise a greater number of views from a sparse

set of input views than in previous methods such as Yoon et al. [Yoo+15], Kalantari,

Wang, and Ramamoorthi [KWR16] proposed a novel learning based approach. Using

the four corner sub-aperture views of a light field Lytro camera, they synthesise novel

intermediate views. To make learning more tractable, they introduced a disparity

estimation component and a colour prediction component which are modelled by two

sequential CNNs. Interestingly, instead of training the disparity CNN to directly reduce

error between estimated disparity and ground truth disparity, both the disparity and

colour prediction CNNs were trained to minimise the error between the estimated and

6
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ground truth novel view images. They surmise that this provides two benefits; firstly,

that ground truth disparity maps are not required. Secondly, the network learns to

estimate disparity maps specifically for view synthesis, which may be more appropriate

than learning general disparity mapping. However, the method is based on warping

the four corner images, so if none of the warped images contain valid information, this

approach will fail to generate high quality results. This usually occurs with occlusions

or non-Lambertian surfaces. Additionally, the system does not run at interactive rates,

taking roughly 12.3 seconds to generate a single novel view from four input images of

541× 376 resolution. This paper provides much inspiration for this method, but we

will avoid synthesising the light field view by view to improve the time performance.

Srinivasan et al. [Sri+17] tackled the interesting, but severely ill-posed problem of

synthesising a 4D light field from a single image sample. They aim to take advantage

of redundancies in the light field and prior knowledge of scene content to infer the full

light field. In effort to make the problem more manageable, they factorise light field

synthesis into depth estimation for each ray in the light field with a CNN, then warping

the original image based on the depth estimation to form a dense grid of 64 novel views.

However, this depth-based image warping assumes that all surfaces in the scene are

Lambertian. As such, they apply a 3D CNN to the stacked novel views in order to

predict occluded rays and non-Lambertian effects, and correct for them. That is, their

method accounts for specular highlights, rather than assuming that all surfaces exhibit

diffuse reflection. With respect to volume rendering, this is very relevant, as surfaces

are often anisotropically shaded. In contrast to most approaches, they produce all novel

views at once instead of synthesising each novel view separately. This induces good

performance, synthesising a 4D light in under one second on a single NVIDIA Titan

X GPU. Although the output results are comparable to [KWR16], which takes four

views as input, the method was trained on a large dataset of plants and flowers and

experiments suggest it may not generalise well to other scenes. However, because of the

speed of this approach, and the single sample input view required, our approach will be

largely based on this method.

2.3.2 Structure Based Approaches

One of the earliest applications of the CNN framework to the domain of light field images

was by Yoon et al. [Yoo+15]. To take advantage of the light field structure, they split

the light field sub-aperture images into overlapping vertical pairs, horizontal pairs, and

squares of four images. They employed three separate spatial resolution enhancement

networks for the different sets of images, to produce a ×2 spatial upsampling of the

images. Three further angular resolution enhancement networks were applied to the

7
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upscaled image sets to produce a synthesised centre view for the three different sets

of images, resulting in a ×2 angular upsampling. Their work produced promising

results, but using three separate networks for spatial resolution enhancement is rather

redundant. Furthermore, the “method can only increase the [angular] resolution by

a factor of two, and is not able to synthesise views at arbitrary locations” [KWR16].

This resolution increase is too low to directly be of use in this case, as too many direct

volume rendered views would be required.

To address the redundancy issue in [Yoo+15], Yoon et al. [Yoo+17] revisited their

method two years later. The primary modification involved performing ×2 spatial

upscaling of all the sub-aperture images using one CNN as opposed to three networks.

As in their previous work, the resulting upscaled images were then passed through three

networks for view synthesis. In addition to being more computationally efficient, the

single CNN was able to learn a global view of spatial resolution enhancement, resulting

in fewer artefacts in the reconstructed views. This suggests that using a global CNN for

synthesis rather than multiple CNNs will produce better results, which will be adopted

in this paper.

Wu et al. [Wu+17b] presented an approach to take advantage of the EPI structure in

light field image data. An EPI is more undersampled in the angular domain than in the

spatial domain. To balance this, the authors remove the high frequency components of

an EPI using a blur. The blurred EPI is then upsampled to a higher angular resolution

using bicubic interpolation. Next, a CNN is applied to restore the detail of the EPI in

the angular domain. Finally, a deblur operation is applied to the EPI to retrieve the

high frequency spatial information, based on the blur previously used. To reconstruct a

full light field, multiple EPIs are reconstructed. This is somewhat ill explained in the

paper, but the source code reveals that they interpolate over row EPIs, then column

EPIs, to produce a higher resolution light field output. This output is then interpolated

across rows again in a second iteration to improve the synthesis and produce the final

result, which is very accurate. Performance timing is not reported in the paper, but

testing the source code on a computer with a NVIDIA GeForce GTX 1080 GPU took

almost sixteen minutes to produce a full 14 × 14 angular resolution light field. It is

worth noting, that although this is too slow to be used in this case, it is actually faster

than the state of the art method of Kalantari, Wang, and Ramamoorthi [KWR16].

8
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2.4 Deep Learning on Light Fields

As discussed, CNNs have been applied with great success to light field angular resolution

enhancement for light field cameras. Multi-view CNNs were chiefly studied, as although

we have volumetric information available, multi-view CNNs often outperform volumetric

CNNs. This indicates that current deep learning architectures are unable to fully exploit

the power of 3D representations [Qi+16]. Research on deep learning towards other light

field problems is also of benefit. This is principally because an increasingly popular

approach is to train networks end to end, implying that the network learns all aspects

of problem at hand. For example, in view synthesis, this avoids using computer vision

techniques, such as appearance flow, image inpainting, and depth image based rendering

to model certain parts of the network.

To help advance deep learning approaches in the light field domain, Wang et al.

[Wan+16] proposed and compared several novel CNN architectures to train on light

field images. In particular, they show how to map a 4D light field into an existing VGG

network, which takes a 2D image input. Since light field datasets tend to be smaller

than 2D image datasets, this provides huge benefit, as the weights of a pre-trained

model can be updated rather than training from scratch. Additionally, the authors

point out that although a 4D filter is intuitive to use on a 4D light field, the number of

parameters quickly explode, and the benefit of pre-trained models is lost. This conflicts

with the arguments presented by Srinivasan et al. [Sri+17] that the 3D CNN they

employ, which uses a 4D filter, is effective. As such, the original 3D CNN they presented

will also be remapped into multiple 2D architectures to experiment with removing the

drawback of 3D CNNs. In order to achieve this, we will employ a subset of the methods

from [Wan+16] to map a 4D light field into a 2D CNN. Their paper is aimed towards

material recognition, and as such, the methods they presented will be discussed below

in terms of relevance to view synthesis. Given a set of input images, they employed the

following strategies.

1. Pooling all images together after a 5 × 5 convolution. This loses too much

information to be effective for view synthesis, therefore it is not used in this

dissertation.

2. Directly stacking the images over the colour channels before performing a convo-

lution. This is more effective for view synthesis, as very little information is lost,

and is used in Shin et al. [Shi+18]. This will be experimented with in this project.

3. Remapping the multiple input images into one large 2D image by replacing each

pixel in the image by a block of pixels from the different input images. This is

9
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very similar to the raw micro-lens array captured by a Lytro Illum camera, and

will be tested in this dissertation.

4. Interleave two different types of 2D filters on a remapped image, spatial and

angular filters. The idea is to replicate a 4D filter, but mitigate the drawbacks,

and is a very interesting architecture. However, the spatial filter is not particularly

useful for view synthesis, since it is intended to pool spatial information.

2.5 View Synthesis for Volume Rendering

Volume rendering techniques are typically used to simulate an optical model of light

transfer through a 3D volume by a discrete approximation of the volume rendering

integral [Eng+06]. A discrete uniform sampling of a full 3D scalar field is typically

available for visualisation, such as that produced by an MRI scan. Rendering this scan

would involve sampling the volume, interpolating the discrete MRI data to estimate a

scalar value at each of these sample positions, and then applying a transfer function

(TF) to map these scalar values to 3D colour values and scalar opacity values. To

iteratively approximate the volume rendering integral, the sampled colour and opacity

information is composited along viewing rays through the volume. If the rays are

considered to travel from the viewer into the volume, then front-to-back compositing is

used. Given a ray with colour C and opacity α, and new sample data along the ray

with colour C ′ and opacity α’, then these values are front-to-back composited as

C ← C + (1− α) · C ′ (2.1)

α← α + (1− α) · α′ (2.2)

As a result of this alpha compositing, there is not always a single opaque surface

displayed by volume rendering, which is in direct contrast to more traditional surface

rendering.

Accelerating volume rendering has long been an active research area. Most ap-

proaches focus on the re-use of information, since volume rendering is expensive to

perform and rendered images do not tend change dramatically between viewpoints.

This ranges from re-using lighting information, to directly warping rendered images to

produce images from novel view points. Most depth based image warping techniques

assume that the scene is reducible to a single opaque surface with a single depth value.

However, as aforementioned, this assumption does not hold for volume rendering, and

errors will occur in image warping as a result. The solution we propose to this is to
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approximate depth values, use these for warping, then apply a CNN to the resulting

images to correct for inaccuracies.

Zellmann, Aumüller, and Lang [ZAL12] proposed to warp images received from a

remote server based on an additional depth channel. This has the benefit of covering

up latencies by warping the last frame received from the server until a new one is

available. Unfortunately, there is no single meaningful depth value for volumes. To

further complicate matters, the appearance of the volume rendered largely depends

on the transfer function applied. Different depth values would be more appropriate

depending on the chosen transfer function. For example, taking depth as the first

non-transparent voxel along the ray would be accurate if the transfer function applied

tended to reveal isosurfaces The authors present multiple depth heuristics for image

warping, comparing them based on Peak Signal to Noise Ratio (PSNR) with the ground

truth image, and the number of holes produced by warping. In general, they found

that modifying the ray tracer to return depth at the voxel where the accumulated

opacity along the ray reaches 80% was the best balance between speed and accuracy.

This heuristic will be used in this paper, and some experiments will be performed with

modifying this heuristic.

To hide the latency in a real time remote rendering setup in which volume renderings

were sent to a mobile phone, Lochmann et al. [Loc+16] proposed fast view synthesis using

a piecewise-analytic representation. This involves creating a view-dependent volume

representation of a sample image and synthesising new views from that representation.

The qualitative results are pleasing, but the approach assumes that the emission of

light out of the medium is view independent. For example, this would cause errors on

the silver lining of clouds. Furthermore, the volume rendering code must be modified.

As suggested by the authors, a completely new avenue would be to learn to produce

novel views from example image data, as we will adopt.

11
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2.6 Evaluation Methods

“The ability to compare data items is perhaps the most fundamental operation underlying

all of computing” [Zha+18]. However, effectively comparing visual patterns based on

human perception remains an unsolved problem. PSNR and Structural Similarity

(SSIM) are commonly used quantitative metrics in view synthesis papers. These fixed

functions are effective indicators of image quality, but they do not accurately model the

human visual system.

PSNR is measured on a scale of 0 to 100 dB, with higher values indicating lower

Euclidean distance between the pixel values in the reference image and the synthe-

sised image. This is fast to calculate and has clear meaning, but assumes pixel-wise

independence of images. As such, it does not always closely match the human visual

system.

A good deal of research has been performed to develop an image quality assessment

metric which more closely matches human perception. Wang et al. [Wan+04] proposed a

“framework for quality assessment based on the degradation of structural information”,

SSIM. SSIM is measured on a scale of 0 to 1, with greater values suggesting better

similarity of the luminance, contrast and structure of two images. As such, it better

able to detect artefacts such as heavy image blur than PSNR. Nonetheless, SSIM is

still a fixed function, and does not tend to accurately model human perception.

More recently, the deep features of neural networks trained on various tasks, such

as image classification, have been found to be an effective perceptual metric. The

features of multiple deep architectures were used by Zhang et al. [Zha+18] to form the

Learned Perceptual Image Patch Similarity (LPIPS) metric, measured on a scale of 0

to 1, with lower values indicating less loss between the perceptual similarity between

two images. The results from LPIPS were compared by to traditional perceptual

quality metrics, such as SSIM and PSNR. Using a large database of human perceptual

similarity judgements, the authors found that deep features consistently outperformed

these traditional metrics as a measure of perceptual quality.
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3 Experimental Design

3.1 Overview of the Pipeline

The overall aim of this dissertation is to investigate performing view synthesis for light

field volume rendering with deep learning at interactive rates. That is, given volume

rendered sample views, along with any information saved from the rendering pipeline,

synthesise a structured set of novel views. Based on background research, the following

steps will be involved in this view synthesis pipeline.

1. Estimate a per pixel depth map during volume ray casting.

2. Convert the depth map to a disparity map using the camera parameters.

3. Applying preprocessing to the input disparity map and reference view, such as

image warping and normalisation.

4. Using the information from the previous step, apply a CNN to perform angular

resolution enhancement.

Deep learning is performed with the prospect of accounting for inaccuracies in the depth

map, anisotropically shaded surfaces, and occlusions to improve the visual coherency of

synthesised views over solely depth based image warping.

3.2 Experiments

As mentioned in the introduction, the goals of the project were to combine approaches

from 2D image processing, light field angular resolution enhancement, and deep learning

to perform view synthesis in volume rendering. Performance is compared both in

terms of visual accuracy as measured by PSNR, SSIM. Additionally, some tests will

be performed with the LPIPS loss metric, which uses deep features of neural networks

13
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[Zha+18]. In order to fairly evaluate the process, a number of experiments were planned

before detailed design and creation of the view synthesis pipeline:

1. Compare depth heuristics used in terms of PSNR and SSIM.

2. Evaluate different CNN architectures over the full validation set of one hundred

light fields by PSNR and SSIM.

3. Analyse the image warping and the best performing CNN for each image grid

location with the LPIPS loss metric, PSNR and SSIM.

4. Perform detailed timing tests in the Inviwo [Sun+15] visualisation framework, to

see if synthesis can compare with direct volume rendering a light field.

5. Appraise the results of the best performing CNN on unseen volumes and transfer

functions from the training set.

6. Qualitatively investigate image patches where warping performs effectively and

ineffectively.

3.2.1 Test System Specifications

Every experiment would be performed on a computer with 16GB memory, an Intel

i7-7700K @ 4.20GHz CPU, and a NVIDIA GeForce GTX 1080 GPU running on Ubuntu

16.04. For deep learning, the PyTorch library [Pas+17], version 0.40 would be used

with Cuda 9.1, with cuDNN 7.1.2 and NVIDIA driver version 390.30.

3.3 Key Design Decisions

There were many choices to be made in this project at the design phase. Often, they

would involve balancing speed and quality for a particular method. However, some

decisions were more specific, such as the input and output required at each stage in the

pipeline. The most important decisions to be made are listed below, and are addressed

in detail following this.

• How many reference views are required for light field reconstruction?

• Which dataset to train and evaluate on, and how to sample it?

• What volume depth heuristics to use?
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• How to perform image warping?

• Which CNN architectures to experiment with?

3.3.1 Number of Reference Views Required

Frequently, the four corner grid images are required for light field view synthesis.

Occasionally, the four corner images and the central image are required. It would be

very interesting to create a method that can take advantage of any number of reference

views, as mentioned in future work of Kalantari, Wang, and Ramamoorthi [KWR16].

Designing a CNN to handle variable sized inputs is challenging, as the number of input

channels would vary. Possible approaches to this would be to:

• Segment the input into smaller samples of fixed size, input those into a CNN and

then combine the information.

• Apply preprocessing to convert the input information into a standard format,

such as an estimated colour and depth map at each viewpoint via interpolation.

• Perform view synthesis with a per-pixel confidence mask for each reference view,

similar to Zhou et al. [Zho+16]. Then, combine the synthesised views based on

the confidence mask.

Unfortunately, all of the above methods take more time to perform than fixing an

expected input pattern. Additionally, they would take more time to implement, pushing

the project out of scope. For these reasons, an expected set of reference views are

defined. A very exciting approach is to use only the central image in the light field

sample to reconstruct the whole light field. Since volume rendering is slow, taking

only the central image and an associated depth map would allow for much faster light

field volume rendering. Thus, it was determined to require one direct volume rendered

central view and a corresponding depth map as output from the volume rendering

framework. That is, only one reference view would be available for view synthesis.

3.3.2 Dataset Selection

Choosing an appropriately complex dataset and associated transfer function for this

project is of utmost concern. For example, suppose that a volume dataset was rendered

with a transfer function that contained high frequencies which tended to reveal isosur-

faces. Then the volume rendering algorithms could be “adjusted to detect these and
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set the depth value accordingly” [ZAL12]. This is not regularly the case, and to fairly

evaluate handling non-Lambertian effects and occlusions, sufficiently complex volume

datasets were required with adequate transfer functions. Additionally, the geometry

revealed by the transfer function on the volume should not be too static in texture.

This is in order to fairly test the depth map generation, as inaccurate depth maps can

still produce correct warping on large regions with a static texture. To further elucidate

this point by example, evaluating the contributions in this paper on a MRI of a head

which is rendered to show only the surface of the head would be far less fruitful than a

rendering which reveals the complex brain structure inside the head.

With the above information in mind, an MRI of a heart with visible aorta and

arteries would be used for testing. This volume dataset has a resolution of 512×512×96.

The heart has a rough surface, and the aorta and arteries create intricate wavy structures

which are difficult to reconstruct. The full dataset is available online [Roe18] and is

also available for use in Inviwo, a visualisation framework [Sun+15]. See Figure 3.1

for examples of this dataset rendered. For training, all light field samples would be

captured at 8× 8 angular-resolution, and 512× 512 spatial-resolution.

(a) Example rendering (b) Training transfer function (c) Simple transfer function

Figure 3.1: Demonstrating the training volume. Figure 3.1a was
retrieved from the source repository and the other figures produced in

Inviwo.

3.3.3 Volume Depth Heuristics

As opposed to surface rendering, a well-defined depth value does not exist in volume

rendering. This is because in volume rendering, the 3D scalar data being rendered is

accumulated to generate an image, so there is no well-defined surface. Since there is

no single meaningful depth value for volumes, there are many possible heuristics for a

per-pixel depth. For example, as in Zellmann, Aumüller, and Lang [ZAL12] a single

pass ray marching depth heuristic would be to output the depth of the voxel where

the gradient of the opacity along a ray is maximal. Alternatively, two passes could be
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implemented, the first pass to define an opacity threshold value and the second pass to

output the depth at that threshold value. There is no single heuristic that performs

best for all combinations of volumes and transfer functions. Ideally, the depth heuristic

would be switched based on some evaluation of the volume and the transfer function,

but this is out of scope for this project. Furthermore, two pass heuristics are too slow

to be of use in this application. As such, the most consistently performing single pass

method from Zellmann, Aumüller, and Lang [ZAL12] was chosen for experimentation,

outputting depth at a fixed threshold value.

3.3.4 Image warping

Once the disparity map in pixels is obtained, there are multiple approaches to image

warping, falling into the categories of forward mapping and backward mapping. Forward

mapping views the problem as mapping pixels from the reference view into the novel

view, which results in holes. Backward mapping works in the inverse direction. For

each pixel in the novel view, the most relevant information from the reference view

is assigned to that pixel, so no holes are formed, but the reference view is usually

oversampled. In general, balancing warping speed and quality is the aim. For example,

disparity could be used to directly move pixels from the reference image to a novel view,

or a triangular mesh could be built over the reference image and the mesh warped to a

novel view. The latter will produce better results, but of course, is more expensive. In

particular, the following areas are of primary concern for image warping:

1. Handling non-integer shifts: Warped data very rarely lies at integer pixel

positions in novel views. Of course, these can be rounded to the nearest pixel.

However, sub-pixel information could be handled by interpolating at non-integer

positions in backward warping, or splatting in forward warping. Splatting involves

adding contributions at a sub-pixel location to neighbouring pixels with a certain

weight.

2. Handling occlusions: In forward warping, holes and cracks may appear in a

novel view, since some information that is visible in a novel view may have been

occluded in the reference view. Using multiple views will often cover up these

holes. However, we only have one reference view available. As such, the missing

holes can be filled by interpolated from neighbouring pixels. Alternatively, image

inpainting could be applied by a CNN to fill in the holes.

3. Handling unseen information: The border pixels of a novel view might be

blank as they contain scene information that was outside the camera frustum of
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the reference view. There are multiple strategies to fill in this information. As

one example, the holes could be filled in by stretching out the border information

from the reference view.

It was decided that two image warping techniques would be experimented with.

Firstly, a simple forward warping with

1. Non-integer shifts rounded to the nearest pixel.

2. Holes from occlusions left as black holes.

3. Unseen information left as black holes.

This would be performed in the hope that the CNN would be able to easily identify

incorrect information, as it would be a black hole. Through experimentation, it quickly

became clear that this image inpainting operation would be an ineffective approach.

Secondly, a backward warping with

1. Non-integer shifts reading information from four nearest pixel locations by bilinear

interpolation.

2. Occlusions producing no holes, as backward warping is performed.

3. Unseen information filled in by stretching the border information from the reference

view.

This warping would be far more accurate, and faster. However, it is uncertain if a

CNN would be able to identify and correct for inaccurate information in this case. This

backward warping would be implemented on both the CPU to allow for multiprocessing

and avoid using GPU memory. This is because the CNNs tested require between 6GB

and 7GB memory on the GPU to complete a forward pass with an input image of size

512× 512× 3 with 32 bit precision floating point numbers, and the NVIDIA GeForce

GTX 1080 has 8GB of memory available.

3.3.5 Convolutional Neural Network Architecture

From background research on CNNs applied to light field angular resolution enhancement,

it is clear that multiple valid approaches exist. Since volume rendering is being

considered, scene geometry is available and the challenge is taking advantage of it.

Therefore, approaches related to EPI reconstruction, or reconstruction in Fourier or
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Shearlet domains are less applicable in this case. On the contrary, approaches which

are related to estimating depth in the scene, and performing reconstruction using this

depth are very relevant. A per-pixel depth can be estimated accurately during volume

rendering, and existing methods which use depth information can be taken advantage

of. One consideration is whether to take a global view of view synthesis or a local view.

A local view would consist of taking a warped image, a disparity map and a set of novel

position co-ordinates as inputs to a CNN and outputting a corrected novel view at that

single position. A global view would consist of using all warped images and disparity

maps as inputs to a CNN and outputting all corrected images in one step, similar to

Srinivasan et al. [Sri+17]. The method of Kalantari, Wang, and Ramamoorthi [KWR16]

is a mix of the two above approaches, taking in all warped images, disparity maps and

a position, outputting an estimated view at the input position.

Based on these observations, for this project two primary architecture types would

be experimented with. The first would be based on the method of Srinivasan et al.

[Sri+17], using the 3D convolutions in that paper, but removing the depth estimation

step. This second architecture type would have attempt to combat the drawbacks of

the 3D convolutions applied by Srinivasan et al. [Sri+17]. A similar input would be

required and output produced, but the information would be modified as in Wang et al.

[Wan+16] so that 2D convolutions can be performed. The hope is that remapping the

3D convolutions to 2D convolutions would give similar accuracy, but faster performance.

Additionally, pre-trained 2D models could be taken advantage of, and a larger set of

high performance 2D models exist for inspiration. To break this down further, the

following architectures were experimented with.

1. A residual 3D network taking a grid of warped images and a colour mapped

disparity map as input [Sri+17].

2. A 3D network taking a central view and a colour mapped disparity map as input

and directly synthesising a light field.

3. Two different residual 2D networks taking a set of warped images and a colour

mapped disparity map as input, stacked over the colour channels. One is based

on the ResNet18 architecture [He+16] and the other on the Enhanced Deep

Super-Resolution (EDSR) network [Lim+17].

4. A residual 2D network taking a set of warped images, all remapped into one large

image.
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4 Implementation

4.1 Outline

Chapter 3, Experimental Design, provided information on the design of the view

synthesis pipeline. In this chapter, the exact algorithms, frameworks and architectures

created to fit this design will be described. To briefly reiterate an overview of the

pipeline, During volume ray casting, a per-pixel depth map is estimated. This is then

converted to a disparity map in pixel values using the camera parameters. Using the

above disparity map, the input image is warped to desired novel view locations. All

warped views are stacked together with the disparity map and a residual CNN is applied

to improve visual consistency.

4.1.1 The Inviwo Visualisation Framework

Inviwo [Sun+15] is extensively used in this dissertation, and as such, a high level

discussion of the framework is necessary. Inviwo is an open source extensible visualisation

framework written in C++ and designed for researchers. Inviwo is based on data flow

networks, with nodes in the network represented by processors with input and output

ports that data travels through. Properties define the state of these processors, and

properties can be shared among processors. For example, the camera location could be

shared among a ray casting processor and a processor which estimates a bounding box

for a volume. Inviwo can be extended by creating new processors in C++ and custom

Python scripts can be used to drive the application. This work makes extensive use

of Inviwo to capture a training set of volume rendered light fields, and to perform

experiments. A ray tracing processor was developed based on the default Inviwo ray

tracing that implements depth heuristics in the fragment shader. To demonstrate

validity of the method, the entire view synthesis pipeline was integrated into Inviwo

using Python.
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4.2 Depth Heuristics for Volumes

Depth maps are useful for image warping, but there is no single view of depth for a

volume. Using default Inviwo raycasting, the depth of the first non-transparent voxel

along the ray is returned, which is very unsatisfactory for image warping purposes. This

is because this depth tends to be corrupted by almost transparent volume information

that is close to the camera. To retrieve more meaningful depths from Inviwo two

methods were employed. One method involved extracting an isosurface from the volume

using the marching cubes algorithm on the CPU. This isosurface was then surface

rendered with the same camera parameters as the volume rendering, and a well-defined

depth extracted from the depth buffer. The depth from isosurfaces performed well for

warping, but the pre-calculation step of isosurfaces on the CPU is slow. Furthermore,

any changes in the volume during runtime would require isosurfaces to be recalculated.

A superior method, and the one used as the final output in this project, is to estimate

a depth during ray casting. For each pixel, a ray is cast and opacity is accumulated

along the ray as is the ray is advanced through the volume and sampled at the Nyquist

rate. Following the research of Zellmann, Aumüller, and Lang [ZAL12], the best single

pass depth heuristic was used. That is, when a ray accumulates a fixed amount of

opacity, the depth at that voxel is saved. After some deliberation, it was determined

to expand the above method slightly. This was due to the depth map missing some

information when a ray never accumulated the desired opacity. As such, a depth value

was saved when a ray accumulated a low threshold opacity, and overwritten if it later

accumulated the high threshold opacity. Since ray traversal is implemented as a single

pass fragment shader loop in Inviwo, it is very fast to compute this depth heuristic. On

average, computing this depth heuristic takes only 20ms longer than traditional ray

casting. An implementation of this depth heuristic is demonstrated by pseudocode in

Algorithm 4.1.
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Algorithm 4.1: Ray casting with depth heuristic

1 input : f l o a t low thresho ld , f l o a t high th r e sho ld

2 output : vec3 co lour , f l o a t opacity , f l o a t depth

3 begin

4 i n i t i a l i s e low depth and high depth to −1
5 Determine volume entry po s i t i o n

6 Compute ray d i r e c t i o n

7

8 while ray po s i t i o n in volume

9 Get voxe l data at cur rent ray po s i t i o n

10 Composite co l ou r and opac i ty

11

12 /* Save depths by threshold heuristic */

13 i f opac i ty > low thre sho ld and low depth i s −1
14 low depth ← depth o f cur r ent po s i t i o n

15 e l se i f opac i ty > high thr e sho ld and high depth i s −1
16 high depth ← depth o f cur r ent po s i t i o n

17

18 Perform ea r l y ray terminat ion

19 Advance po s i t i o n along ray

20 end

21

22 depth ← max( low depth , h igh depth )

23

24 /* Rays that don ’t pass either threshold have maximum depth */

25 i f depth i s −1
26 depth ← 1 .0

27

28 return co lour , opacity , depth

29 end

4.3 Converting Depth to Disparity

The volume rendering pipeline provides a depth buffer, or Z-buffer, which gives a depth

value for each pixel location. The depth from the Z-buffer is converted to disparity

using the intrinsic camera parameters obtained from Inviwo for warping purposes. The

process to convert a value Zb ∈ [0, 1] from the depth buffer to a pixel disparity value is

as follows. The depth buffer value Zb is converted into normalised device co-ordinates,

in the range [−1, 1], as Zc = 2 · Zb − 1. Then the perspective projection is inverted to

give depth in eye space, Ze, as

Ze =
2 · Zn · Zf

Zn + Zf − Zc · (Zf − Zn)

Where Zn and Zf are the depths of the camera’s near and far planes in eye space,

respectively. Note that Zn should be set as high as possible to improve depth buffer

accuracy, while Zf has little effect on the accuracy. Given eye depth Ze, it can be

converted to a disparity value dr in real units by the use of similar triangles [WMG13]
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as

dr =
B · f
Ze
−∆x

Where B is the camera baseline, or distance between two neighbouring cameras in

the grid, f is the focal length of the camera, and ∆x is the distance between two

neighbouring cameras’ principle points. Again, using similar triangles, the disparity in

real units can be converted to a disparity in pixels as

dp =
drWp

Wr

Where dp and dr denote the disparity in pixels and real world units respectively, Wp is

the image width in pixels, and Wr is the image sensor width in real units. If the image

sensor width in real units is unknown, Wr can be computed from the camera field of

view θ and focal length f as, Wr = 2 · f · tan( θ
2
). In Inviwo, the image sensor size in

real units is roughly 2.

4.4 Disparity Based Image Warping

A disparity map D : R2 7→ R2 is used to relate pixel locations in a novel view to those

in a reference view. Let I(ur, vr) : R2 7→ R3 denote a reference Red Green Blue (RGB)

colour image at grid position (ur, vr) with an associated pixel valued disparity map D.

Then a synthesised novel view I ′(un, vn) at grid position (un, vn) can be formulated as:

I ′(un, vn)(x+ (ur − un)D(x, y), y + (vr − vn)D(x, y)) = I(ur, vr)(x, y)

Keep in mind that the y-axis is assumed to be inverted from the regular cartesian

co-ordinate system, since we use Portable Network Graphics (PNG) images, which

store data left to right on the x-axis and top to bottom on the y-axis. The (u, v) grid

co-ordinates are represented as matrix style indices, so position (1, 2) would be in the

first row, second column. As such, the co-ordinate systems of the images and the grid

match.

To perform fast but accurate image warping using a disparity map, a form of

backward warping with bilinear interpolation was implemented. The estimated disparity

map for the central view was basically used an an estimate for all views. Pixels in

the novel view that should read data from a location that falls outside the border

of the reference view were set to read the closest border pixel in the reference view

instead. Essentially, this would stretch the border of the reference view in the novel

view, rather than produce holes. Since warped pixels rarely fell at integer positions,
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bilinear interpolation was applied to accumulate information from the four nearest

pixels in the reference view. This resulted in fast warping with no holes, and good

accuracy. A comparison between backwards mapping and forward mapping is presented

in Figure 4.1.

(a) Forward warping
PSNR 22.81, SSIM 0.58

(b) Backward warping
PSNR 24.36, SSIM 0.79

(c) Stretched border 4.1b
PSNR 27.92, SSIM 0.91

(d) Central reference view (e) Ground truth (f) Difference 4.1e and 4.1c

Figure 4.1: Demonstrating different warping methods to synthesise the
top left novel view at grid position (0, 0) from a reference view 4.1d at
position (4, 4). Figure 4.1c represents the final backward warping used.
For comparison, the reference view has 24.43 PSNR and 0.87 SSIM with

the ground truth novel view.
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4.5 Deep Learning

4.5.1 Proposed Learning Based Algorithm

From a reference view and disparity map for this view, a function f should generate a

structured set of 8× 8 novel views. f is modelled as the composition of three functions

f = p ◦ s ◦ w

Where w is a disparity based warping function, s stacks together information from w to

be input into p, and p is an occlusion prediction function modelled as a residual CNN.

Namely, given a reference view V and associated disparity map D

f(V,D) = W ′ = W ′
1,W

′
2, . . . ,W

′
64 where 64 is the number of output views.

The function w normalises the reference view V to have all values in the range [0, 1].

Then, the reference view is warped to novel positions using the disparity map D. That

is, w returns n warped views and the input disparity map:

w : (V,D)→ W1,W2, . . . ,W64, D

Note that each warped view Wi is an RGB image, so it has three channels. To match

these number of channels, s converts the single channel disparity map D to an RGB

image using a fixed colour map with values in the range [0, 1].

s : (W1,W2, . . . ,W64, D)→ (W1,W2, . . . ,W64, D
′)

Finally, p performs a CNN on the output of s, producing 64 residual images with values

in the range [−1, 1]. This range is chosen so that the residual can remove or add colour

over the full range of input values. These residual images (R1, R2, . . . , R64) are added

to the warped images (W1,W2, . . . ,W64). Since the residuals have values in the range

[−1, 1], but the warped images are in the range [0, 1], the result of the addition then

gets every value clipped to the range [0, 1].

p : (W1,W2, . . . ,W64, D
′)→ (W ′

1,W
′
2, . . . ,W

′
64)
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4.5.2 Data Collection

Using Inviwo [Sun+15], a synthetic light field dataset is captured. The light field

capturing geometry used is a “2D array of outward looking (non-sheared) perspective

views with fixed field of view” [LH96] To capture the synthetic dataset, a Python script

is created to move the camera in Inviwo along a regular equidistant grid. The cameras

are shifted along the grid rather than rotated in order to keep the optical axes parallel.

This removes any need to rectify captured images to a common plane. Each light field

sample has an angular resolution of 8× 8, with 512× 512 spatial resolution. That is,

each light field sample consists of 64 sub-aperture images, each with 512× 512 pixels.

See Figure 4.2 for the central sub-aperture image of five captured light fields.

A Python script was used to randomly move the camera around the scene in the

region between two spheres, so as not to be too close or far away from the origin. To

avoid the camera pointing to empty space, it was set to always look to a random position

within a small distance from the origin. Sampling was performed uniformly, rather than

focusing on particular sections of the heart. At these random positions, for each light

field sub-aperture image a colour PNG is saved, and depth as a NumPy array of 32 bit

precision floating point numbers is saved. To increase the diversity of the data captured,

a plane with a normal aligned with the camera view direction is used to clip the volume

for half the captured examples. This plane clipping can reveal detailed structures inside

the volume. Furthermore, it demonstrates the validity of depth calculation during ray

casting, as the only possible effect clipping on this is increased speed from a reduction

in voxels. However, if isosurfaces were used to estimate depth, they would have to be

recalculated each time the volume is clipped by a plane.

Overall, 2000 training light fields are captured, and 100 validation light fields. After

data collection, the colour and depth images, along with camera metadata, are processed

into a Hierarchical Data Format, version 5 (HDF5) file [The97]. During this processing,

the camera data is used to convert the depth into disparity, and disparity is saved

instead of depth. The ZLIB filter is applied for compression purposes, reducing the

overall size of the dataset by close to 30%. Additionally, the file is saved with single

writer, multiple reader enabled to allow for data reading with multiple cores.

Figure 4.2: Sample training light field central sub-aperture views.
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4.5.3 Convolutional Neural Network Architectures

As demonstrated in Wang et al. [Wan+16], there is strong evidence that 3D convolutions,

which use 4D filters, can be mapped into 2D architectures. To experiment with this,

four primary architectures were implemented. Note that any network’s Rectified Linear

Unit activations have been replaced by Exponential Linear Unit activations. The first

network tested was the 3D occlusion prediction network from Srinivasan et al. [Sri+17].

All estimated sub-aperture views are stacked along one dimension and a 3D CNN is

employed so that each filter is processing global information from each view.

The second network tested was a modified version of ResNet18, [He+16]. For

convenience, this will be called StackedResNet. The input to StackedResNet is all

warped images, and a colour mapped disparity map which are stacked over the colour

channels, a 195 channel input. The first layer of ResNet18 is replaced, as it is intended

to pool spatial information, and the input is instead convolved into 64 features to gather

angular information. All spatial pooling is removed from ResNet18. The final fully

connected layer of ResNet18 is replaced by a convolutional layer with a tanh activation

function.

The third network, labelled StackedEDSR, was based on the Enhanced Deep Super-

Resolution (EDSR) network by He et al. [He+16]. The body of the network remains as

in the original paper. Additionally, a pre-processing step to subtract the mean of each

colour channel is maintained as 1× 1 filter over the colour channels. However, the first

convolutional layer is modified to map 195 colour channels, instead of 3 colour channels,

to 256 features. StackedEDSR also removes the final spatial upscaling performed by

EDSR, and applies tanh activation after the last layer.

The final network, which will be denoted AngularEDSR, is the exact same network

as EDSR, bar removal of spatial upscaling at the last layer, and application of tanh

activation at the final layer. In order to map the input into the three colour channel

input required for EDSR, the angular remapping from [Wan+16] is employed. The

involves creating a large three channel colour image. Consider a light field sample

with 8× 8 images having 512× 512 pixels and three colour channels. This would be

remapped into a large image having (8 · 512)× (8 · 512) pixels and three colour channels.

In this remapped image, the uppermost 8× 8 pixels would contain the upper-left pixel

from each of the original 8× 8 views.

The 3D convolution method did not have pre-trained weights available. Pre-trained

weights were not used for the ResNet based model, since all pooling was removed. Pre-

trained weights were tested for both EDSR based networks, but the spatial resolution

enhancement problem proved too far removed from angular resolution enhancement.
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4.5.4 Training Procedure

All CNN architectures are trained by minimising the per-pixel loss between the ground

truth views and the synthesised views. Specifically, the mean squared error is used, which

is easily differentiable, allowing for backpropagation. To increase training speeds and

the amount of available data, four random spatial patches of size 128×128 are extracted

from each light field at every training epoch. Additionally, training colour images have a

random gamma applied as data augmentation. Multiple Python processes are launched

to load data from the HDF5 file, with single writer, multiple reader enabled for this

purpose. During training and validation, sample input images, residual outputs, final

outputs and target images, and difference images are logged to inspect the effectiveness

of training. To further visualise the training, the validation and training loss, learning

rate, and a histogram of the convolutional layer weights are logged.

During initial training experiments, the learning rate was set to reduce by a factor

when the validation loss plateaued. However, this proved ineffective as the model

learnt very fast, but learning came to a halt early as well. To combat this, different

learning rate scheduling strategies were tested. A cyclic learning rate [Smi17] and cosine

annealing the learning rate with warm restarts [LH17] were tested. Both learnt slower,

but achieved lower loss over time. Cosine annealing with warm restarts proved to give

the best validation loss in small tests, and was used to train on the full set. Other

hyper-parameters selected for training are shown in Table 4.1

Training takes roughly 14 hours using 2D CNN architectures with eight CPU cores

used for data loading and image warping. Unfortunately, the 3D CNN would not work

with multiprocessing for data loading. As such, training took much longer for the 3D

CNN, taking three days.

Hyper-Parameter Value

Initial Learning Rate 0.1
Learning Rate Schedule Cosine annealing, warm restarts
Data Augmentation Patch extraction, random gamma

Regularisation L2
Gradient Clipping Based on norm at 0.4
Optimisation Stochastic gradient descent
Momentum Nesterov momentum at 0.9
Batch Normalisation Yes, bar EDSR network
Weight Decay 0.0001

Table 4.1: Hyper parameters for CNN training
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5.1 Quantitative Evaluation of View Synthesis

In order to evaluate the different network architectures experimented with, they are

compared in terms of PSNR and SSIM average and standard deviation between synthe-

sised views and ground truth views over the validation set. Furthermore, the timings

for these architectures are contrasted with the time taken to directly volume render a

light field. Finally, the best performers are compared using the deep features of neural

networks, as suggested by Zhang et al. [Zha+18].

Overall, the PSNR and SSIM values achieved are quite reasonable for each archi-

tecture tested. In Table 5.1, the Standard Deviation (SD) and mean of these metrics

averaged over all light field sub-aperture images are presented for the full validation

set of one hundred light fields. For certain, these experiments show that the 3D con-

volutions performed in Srinivasan et al. [Sri+17] can be effectively mapped into 2D

CNNs. In particular, the EDSR [Lim+17] based networks both outperform the slower

3D convolutions.

PSNR (dB) SSIM

CNN Architecture Mean SD Mean SD

No CNN 35.02 2.75 0.920 0.024

2D StackedResNet 34.10 2.64 0.919 0.024

3D 34.45 2.54 0.917 0.022

2D StackedEDSR 34.48 2.64 0.922 0.023

2D AngularEDSR 34.34 2.64 0.923 0.023

Table 5.1: Comparing quantitative results for view synthesis with
different CNN architectures over the validation set consisting of one

hundred synthesised light fields.
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From Table 5.1, it may appear that none of the residual CNNs exhibit much

performance difference from geometrical warping. However, investigating the results

image by image reveals further insights. This is because the CNN residual modifies the

reference view. Geometrical warping obtains maximum PSNR of 100 for the central

view, and SSIM of 1.0. However, when a residual CNN is applied this generally falls to

roughly 40 and 0.92, respectively. This is a huge loss in PSNR, and a large contribution

to difference in averages. The per image difference is more interesting, and Figure

5.1 presents this for one sample validation light field with AngularEDSR applied. In

particular, note that the difference is similar along rows and spikes for images in the same

column as the reference view. The synthesised image for the bottom right sub-aperture

view of this light field can be seen in Figure 5.2.

Figure 5.1: SSIM and PSNR increase / decrease on applying Angu-
larEDSR on top of image warping. Results are shown per image location
in an 8 × 8 grid, indexed from left to right, top to bottom. Note that
index 37 is the location of the reference view. Furthermore, the loss in

PSNR at index 37 is scaled to make the graph more readable.
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(a) AngularEDSR
PSNR 36.05, SSIM 0.909

(b) Warping alone
PSNR 35.59, SSIM 0.903

(c) Ground truth
PSNR 100.0, SSIM 1.000

Figure 5.2: Comparison of the bottom right synthesised sub-aperture
view in the light field which Figure 5.1 presents results for.

Lastly, evaluation was performed with the LPIPS metric [Zha+18]. Using this, the

deep features of AlexNet [KSH12] are used to form a perceptual loss function. This

revealed similar information to the plots shown in Figure 5.1, and tended to agree

with these metrics. Generally, images far away from the central view exhibited lower

loss according to LPIPS when a residual CNN was applied on top of image warping.

However, images close to the central view showed the opposite behaviour, and had

higher loss after incorporating the residual.

5.2 Qualitative Analysis of View Synthesis

To investigate where the method performs effectively and inefficaciously, an example

of a high, middling and low quality synthesised light field from the validation set is

presented in Figure 5.3. Figure 5.3b is a poor reconstruction due to the opaque structure

that should be present in the centre of the view. This structure is not picked up by the

disparity map, resulting in a large crack appearing in the synthesised image. Figure

5.3e is a reasonably well synthesised view. The majority of the information is accurately

shifted from the reference view, but some arteries lose their desired thickness and the

image is not very sharp. Figure 5.3h is a very accurate synthesis. Some errors are

seen around object borders, such as on the arch of the aorta, but overall it is hard

to distinguish from the ground truth information. It is difficult to truly demonstrate

effects such as the parallax between views on paper, so the ground truth and synthesised

images in Figure 5.3 open an animated Graphics Interchange Format (GIF) when

clicked. Additional qualitative results are presented in a supplementary video provided

at https://youtu.be/AQ4ec7Bgn1s. This video demonstrates a comparison between

synthesised light fields and ground truth light fields.
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Evaluation Qualitative Analysis of View Synthesis

(a) Reference image (b) Synthesised view (c) Ground truth

(d) Reference image (e) Synthesised view (f) Ground truth

(g) Reference image (h) Synthesised view (i) Ground truth

(j) Disparity map at (A) (k) Disparity map at (D) (l) Disparity map at (G)

Figure 5.3: Example synthesised upper-left images from the validation
set. The first row has low performance, the second row has middling
performance, and the third row has high performance. Disparity maps
for the central reference views are presented in the final row. Clicking a
ground truth or synthesised image opens an animated GIF in a browser.

32

https://drive.google.com/open?id=19xoi3CG04ZuBVN6PsWUhzsT4rdKJryMb
https://drive.google.com/open?id=1sCNiMOVwDme6xF4vSKlI_MF3LzkFj7xq
https://drive.google.com/open?id=1ofm6sXyvEanOqnt7mAjE89-YLuo36NFt
https://drive.google.com/open?id=1qlzfJxWYjtcTUJVUXx_4Y83Vm2o6Tues
https://drive.google.com/open?id=1KPHHIJe2wTSm3FLM9BdYOvIpQHzBBxU3
https://drive.google.com/open?id=1q6RAmt7vLW_plP21L197FHius2EtwUp5


Evaluation Time Performance in Inviwo

5.3 Time Performance in Inviwo

Currently, the presented method is not fast enough to be useful for light field volume

rendering at interactive rates. In Inviwo [Sun+15], synthesising and displaying a light

field takes nearly 3.73 seconds if bilinear interpolation is used for backward warping.

This time is broken down as follows. Rendering the reference view, and passing input

and output information through Inviwo generally takes about 0.91 seconds. None of

CNNs architectures tested exhibit slow enough performance to be the issue, completing

a forward pass in at most 200 milliseconds. However, it is worth noting that all of

2D CNN architectures experimented with are faster than a 3D CNN architecture.

As such, the time performance bottleneck is geometrical image warping, which takes

approximately 2.77 seconds to warp a 512× 512 image to a grid of 8× 8 locations on

the CPU. This is performed with bilinear interpolation, but removing the interpolation

and using the value of the nearest neighbouring pixel still takes roughly 1.17 seconds

on the CPU. The quality of the resulting images is similar in both cases, so bilinear

interpolation could be removed without jeopardising quality significantly.

In the Inviwo [Sun+15] visualisation framework, directly rendering a light field

directly takes close to 1.13 seconds. This is practically the same time as for a 2D

CNN applied on top of image warping with nearest neighbours, disregarding the time

to pass information through Inviwo. The positive point for the time of the CNN

synthesis is that it has very little deviation. The time taken to directly volume render

a light field depends heavily on the complexity of the scene. A CNN performs the same

operations regardless of input complexity, which results in extremely steady performance.

Additionally, the CNN performance is agnostic to the resolution of the volume data,

and only depends on the spatial resolution of the reference image. As such, for very

large complex volumes, this method would be applicable.

Because of this time drawback, a 3D CNN which directly took a reference view and

associated depth map to perform view synthesis was tested. This took only 0.49 seconds

on average, far faster than direct volume rendering. Unfortunately, the results were low

quality, averaging 26.1 PSNR and 0.83 SSIM. In general, the CNN learnt decently well

how to move information to new views, but the colour consistency between views was

very low. This method could see use if a loss function was developed to penalise a lack

of colour consistency between views.
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5.4 Performance on Unseen Data

Although the networks were all trained on one volume dataset with one transfer function,

it is possible that the performance is maintained for different volumes and transfer

functions (TFs). Additionally, the depth heuristic used during volume rendering seems

reasonable, but there is no guarantee it would perform well with different volumes and

TFs. Three experiments were performed with the AngularEDSR architecture, on ten

sample light fields in each case. The new volume set chosen was a head MRI, available

online [Erl18]. Results are presented in Table 5.2, and the central reference view and

a sample warped view presented for each volume TF combination in Figure 5.4. The

results suggest that the depth heuristic used and the image warping applied generalise

well. Unsurprisingly, the AngularEDSR network fails to generalise to unseen volumes

and transfer functions.

Residual CNN Warping Alone

TF volume combination PSNR SSIM PSNR SSIM

Unseen TF, head MRI 34.46 0.955 36.50 0.956

Training TF, head MRI 40.18 0.949 41.43 0.949

Unseen TF, heart MRI 36.89 0.927 37.78 0.932

Table 5.2: Results on unseen transfer function and volume combinations
during training.

(a) Unseen volume,
Unseen TF

(b) Unseen volume
Training TF

(c) Training volume
Unseen TF

Figure 5.4: Sample reference views used for synthesis of light fields on
unseen data.

34



Evaluation Depth Heuristic Comparison

5.5 Depth Heuristic Comparison

To compare the depth heuristics, ten light field samples were captured with volume

clipping, and ten without volume clipping. Five depth maps are recorded:

1. The depth at 0.8 opacity during ray casting is recorded.

2. The depth at 0.8 opacity, and if that is not reached, 0.3 opacity during ray casting

is recorded. This is the strategy that was selected for use in the training set, as it

achieves the highest SSIM.

3. The depth at 0.7 opacity, and if that is not reached, 0.35 opacity during ray

casting is recorded.

4. An isosurface at a value of 80 is precomputed on CPU, and the depth of this

surface is recorded.

5. The depth of the first non-transparent voxel hit is recorded.

For the clipped volume set, isosurfaces are not applicable since they would have to be

recomputed each time the clipping changes. Each of these depth maps is used to warp

the central light field sample image to all 64 grid locations. The average PSNR and

SSIM over the ten synthesised light fields for each different depth map are presented in

Table 5.3. The depth of the first non-transparent voxel hit is not expected to perform

well, and is provided for reference.

Clipped Unclipped

Depth map type PSNR (db) SSIM PSNR SSIM

One depth (0.8) 33.23 0.915 34.63 0.907

Two depths (0.8, 0.3) 34.00 0.925 35.95 0.922

Two depths (0.7, 0.35) 36.47 0.920 35.97 0.922

Isosurface depth (80) n/a n/a 35.01 0.909

First hit depth 27.38 0.818 27.96 0.802

Table 5.3: Comparing average quantitative results with different depth
maps used for view synthesis on ten synthesised light fields.
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6.1 Conclusion

This research has promising results, but requires further investigation to remove some

limitations. Certainly, deep learning has high potential for application to view synthesis

in light field volume rendering. Learning a residual light field improves the visual

consistency of the geometrically based warping function, especially for views far away

from the reference view. Additionally, producing the entire light field in one step lends

to a global sense of view synthesis, with better visual quality than producing views

individually at faster speed. Regrettably, the method of Srinivasan et al. [Sri+17]

experimented with does not function particularly well for volumes. This is because their

method deals with pictures of flowers, with the flower near the centre of the image, so

the most important information in the scene never goes out of sight. For volumes, this

happens regularly, and the CNNs applied never learnt to fill in the missing information.

However, the drawback of the 3D convolutions they use can be effectively removed by

remapping the network to use 2D convolutions.

Light field synthesis is performed quickly compared to existing methods, but is still

too slow to compete with direct volume rendering. However, in contrast to light field

volume rendering, the time to completion is independent of the volume resolution, and

only depends on the resolution of the sample volume rendered image. Encouragingly, a

low percentage of this time is spent on the CNN, with geometrical image warping being

the performance bottleneck. Although image warping is performed on the CPU due to

GPU memory limitations, the GPU based warping from [Sri+17] is also a performance

bottleneck. For images of size 192 × 192, their GPU accelerated warping takes 0.13

seconds, while our CPU warping with bilinear interpolation takes 0.17 seconds. In

conclusion, our view synthesis results for light field volume rendering using CNNs are

of high quality and deep learning can be effectively be applied to this problem, but

the geometrical image warping procedure prevents synthesis at interactive rates and

requires further research.
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6.2 Future Work

There is a myriad of avenues to expand upon this body of work in the future. Of course,

there is the clear expansion of developing a faster geometrical image warping procedure,

or removing this step and directly train a CNN to perform image warping. Additionally,

there is multiple more succinct points for further research, many of which are listed

below.

• Switching the depth heuristic: At runtime, the transfer function and volume

could be evaluated and the most appropriate depth heuristic chosen. For example,

if the transfer function maps a value to a colour with full opacity, it would tend

to reveal an isosurface at this value. The depth heuristic could then be chosen to

mimic the depth at this isosurface.

• Multiple depth maps: Further to the above point, multiple depth heuristics

could be used to form depth maps for the foreground, middleground and back-

ground layers. Then a CNN can be used to segment the input images into these

layers, and the three layers warped using the corresponding depth maps. This

extra information might allow the CNN to learn to better handle occlusions, and

depth map inaccuracy. Alternatively, these depth maps could be input into a

CNN and be combined to form one improved depth map.

• Learning over multiple volumes and transfer functions: In this project,

training was performed on one particular volume for a specific transfer function

to test validity of the method. Through experimentation, it was shown that

this learning did not generalise well to different volumes and transfer functions

However, it would be beneficial to learn a universal view synthesis for light field

volume rendering.

• Incorporating additional volume information: The only information ex-

tracted from the volume dataset is a depth map and rendered view. It would be

possible to develop a mixed method which learns on the actual volume data as

well as the depth and rendered image. Unfortunately, the extra time this would

take would be a difficulty. Additionally, learning the correct information from the

volume would be challenging.

• Experimenting with additional reference views: Only one reference view

was tested, and it would be interesting to experiment with multiple input views.

It is uncertain if the extra information available would be worth the extra time

spent on volume rendering.
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