
Extending the Hierarchical Deep Reinforcement

Learning framework

Stefano Gatto B.Sc. in Computer Science

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science Graphic and Vision

Technologies

Supervisor: Mads Haahr

September 2018

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Stefano Gatto

September 7, 2018

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Stefano Gatto

September 7, 2018

Acknowledgments

Firstly, I want to thank my supervisor, Dr Mads Haahr, for his guidance and advice

throughout the dissertation. Dr Haahr’s support was an invaluable asset to shape and

develop this research, and his insights helped me progress when I was in difficulty.

I would like to express my sincerest gratitude to Kristian Hartikainen, co-author of the

baseline of our research, for helpin me understand and use his code.

I want to thank my mother, my father, and my brother, for their eternal support and

company.

I want to thank all my classmates, for making this year so interesting and fun. Special

thanks go to Chuka, Adwi and Anant, for their dodginess. Lastly I want to thank my

flatmates, for their company and the great food.

Stefano Gatto

University of Dublin, Trinity College

September 2018

iii

Extending the Hierarchical Deep Reinforcement

Learning framework

Stefano Gatto, Master of Science in Computer Science

University of Dublin, Trinity College, 2018

Supervisor: Mads Haahr

Deep Reinforcement Learning (DRL) allows to train an agent to perform a task in an
environment. The generality of this concept makes DRL a very powerful tool, appli-
cable to a multitude of fields. Self-driving cars, robot locomotion, drone control and
video games AI are only some of the fields which currently use and research DRL. To
train an agent to perform a task, a DRL algorithm learns a policy that maximizes the
future expected reward, thus ensuring that the agent will act optimally with respect to
a reward signal. When this reward is very sparse or the task to learn is very complex,
it is hard for a DRL algorithm to learn to perform it. When faced with a complex task
to perform, the human brain decomposes the actions to take into simpler ones, devel-
oping a hierarchical understanding of the problem. Hierarchical Deep Reinforcement
Learning (HDRL) brings this type of understanding to DRL models, allowing them to
tackle also very complex and sparse reward tasks.
SAC-LSP is a HDRL algorithm that allows to grow hierarchies of policies in bottom-up
layer-wise fashion. Each layer of the hierarchy is trained to perform the main task, and
even if the lower layers are not able to completely solve it, they “make the job easier”
for the higher layers. SAC-LSP yielded state-of-the-art results on a series of simulated
locomotion and control environments. In this research, we propose four different opti-
mizations to SAC-LSP, and evaluate their performance. The main contribution of this
work is Distributed SAC-LSP, an optimization that outperforms the baseline by 40%.

Contents

Acknowledgments iii

Abstract iv

List of Tables vii

List of Figures viii

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 7

1.3 Roadmap . 7

Chapter 2 State of the Art 9

2.1 Background . 10

2.1.1 Terminology . 10

2.1.2 Reinforcement Learning . 12

2.1.3 DQN . 14

2.1.4 Actor-critic methods . 15

2.2 Related Work . 19

2.2.1 Maximum entropy framework 20

2.2.2 Prioritized experience replay . 24

2.2.3 Categorical RL . 26

2.2.4 Hindsight experience replay . 27

2.2.5 Distributed DRL . 28

v

Chapter 3 Design 30

3.1 Baseline . 30

3.2 Prioritized SAC-LSP . 33

3.3 Categorical SAC-LSP . 33

3.4 HER SAC-LSP . 34

3.5 Distributed SAC-LSP . 36

Chapter 4 Implementation 38

4.1 SAC-LSP . 39

4.2 Prioritized SAC . 39

4.3 Categorical SAC-LSP . 40

4.4 HER SAC-LSP . 41

4.5 Distributed SAC-LSP . 42

Chapter 5 Evaluation 44

5.1 Training specifications . 44

5.2 Prioritized SAC-LSP . 46

5.3 Categorical SAC-LSP . 48

5.4 HER SAC-LSP . 52

5.5 Distributed SAC-LSP . 54

5.6 Comparison . 56

Chapter 6 Conclusion 58

6.1 Main Contributions . 58

6.2 Future Work . 59

Bibliography 61

Appendices 66

Acronyms 68

vi

List of Tables

5.1 Averaged cumulative reward of SAC-LSP with single and 2-layer poli-

cies, and the respective prioritized variants. Below, the relative improve-

ment in comparison to the baseline . 48

5.2 Averaged cumulative reward of HER SAC-LSP variants 54

5.3 Averaged cumulative reward of SAC-LSP with single and 2-layers poli-

cies, and the respective distributed variants. Below, the relative im-

provement in comparison to the baseline 55

5.4 List of all the trained models performance and relative improvement in

comparison to the baseline. In the HER SAC-LSP entries, the first letter

indicates if the model uses a position-based goal (P.) or a speed-based

goal (S.), whereas the second letter indicates if the model used a binary

(B.), sum-augmented (S.) or proportionally-augmented (P.) reward. . . 57

vii

List of Figures

1.1 Basic taxonomy of reinforcement learning methods. Sourced from (

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html) 3

2.1 A scheme illustrating the basic functioning of the RL loop. Sourced from

(http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html) 10

2.2 DQN’s CNN is composed of some convolutional layers to understand

the content of the image and then some fully connected layers, with the

last one having the number of outputs equal to the number of possible

actions. Sourced from [1] . 14

2.3 Policy iteration converges to both the optimal policy and the optimal Q-

value function. Sourced from (http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

) . 16

2.4 Actor-critic learning loop. The actor (policy) receives the current state

from the environment and chooses what action to perform. Simulta-

neously, the critic (value function) receives the state and reward of the

transition and uses the error calculated to perform the updates. Sourced

from (http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html) . . 18

3.1 Probabilistic graphical model representing how to grow hierarchies of

policies. Sourced from [2] . 31

3.2 The hierarchy used in SAC-LSP. Sourced from [2] 32

3.3 Learned value distribution during a game of Space Invaders. In the

graph, different colors represent different actions. Sourced from [3] . . . 33

viii

3.4 The ape-x framework. Multiple executors (actors) generate experience,

and a central learner executes gradient descent and updates the network

parameters. Sourced from [4] . 36

4.1 Left, output layer of the standard value functions. Right, output layer

of the categorical value functions. Sourced from [5] 40

4.2 Ape-x framework’s implementation in Tensorflow. 42

5.1 Top: The ant agent in its environment. Bottom: Frames of the ant

performing locomotion. Sourced from [6] 45

5.2 Graph of the total return of an episode (y axis) against the number of

epochs passed (x axis). The baseline is in gray, while prioritized SAC-

LSP is in green. 46

5.3 Graph of the total return of an episode (y axis) against the number of

epochs passed (x axis). Single layer prioritized SAC-LSP is in green,

while the second layer of the hierarchy is in light blue. 47

5.4 Graph of the total return of an episode (y axis) against the number of

epochs passed (x axis). The baseline is in gray, while categorical SAC-

LSP is in green. 48

5.5 Standard deviation of Q-value function against the number of epochs of

categorical SAC-LSP. 49

5.6 Average of Q-value function against the number of epochs of categorical

SAC-LSP. 50

5.7 Standard deviation of Q-value function against the number of epochs of

categorical SAC-LSP. 50

5.8 Average of Q-value function against the number of epochs of SAC-LSP. 51

5.9 Graph of the total return of an episode (y axis) against the number of

epochs passed (x axis). The baseline is in gray, binary speed-based HER

SAC-LSP is in orange, and proportional speed-based HER SAC-LSP is

in red. For readability, only the learning curves of speed-based goals

models are plotted. The learning curves of position-based goals models

are comparable to their speed-based counterparts, and their performance

is reported in Table 5.2 . 52

ix

5.10 Graph of the total return of an episode (y axis) against the number

of epochs passed (x axis). The baseline is in gray, while distributed

SAC-LSP is in blue. 54

5.11 Graph of the total return of an episode (y axis) against the number of

epochs passed (x axis). Single-layer distributed SAC-LSP is in blue,

while the 2-layer hierarchy distributed SAC-LSP is in purple. 55

x

Chapter 1

Introduction

This dissertation explores the efficiency of Hierarchical Deep Reinforcement Learning

(HDRL) in a simulated locomotion environment. The main contribution is a novel

algorithm, in which a hierarchical framework takes advantage of popular techniques

like prioritized experience replay and distributed reinforcement learning. We first test

each technique singularly on the baseline, and then combine the best ones to create

our final algorithm. This chapter introduces the research by first explaining why Deep

Reinforcement Learning (DRL) is relevant and what motivates this work. It then lists

the main objectives of our research, and finally it explains the structure of the rest of

the dissertation.

1.1 Motivation

Artificial Intelligence (AI) is an immensely broad field with lots of challenging prob-

lems and application in many different areas. In the collective imagination though,

the first and main goal of artificial intelligence is the achievement of Artificial General

Intelligence (AGI) i.e. the creation of an AI able to carry out any function that a

human being can. Recent progress in machine learning seems to have narrowed the

gap between current technology and AGI, with deep neural networks that can perform

human-like tasks like understand the content of an image by looking directly at the

raw pixels, understand and translate the context of a text and even listen to human

vocal requests and answer coherently. Nevertheless supervised deep neural networks

1

are bound to certain constraints: huge amounts of labeled independent and identi-

cally distributed (i.i.d.) data are needed for the training phase, networks trained for a

specific task are usually unable to perform any different task, and the whole learning

process is essentially off-line. This kind of learning is similar to that of a student who

reads a book over and over until he has mastered its contents. The most common way

in which the human brain learns, though, is essentially on-line and interactive, storing

information about what is happening around it and reacting consequently, learning at

the same time from the mistakes made during the process.

Reinforcement Learning (RL) is the area of machine learning that deals with creat-

ing agents able to take the best actions in an environment with respect to a certain

goal. The paradigm of RL is based on a trial-and-error approach, in which learning

depends on negative and positive rewards obtained by performing actions in an envi-

ronment – the actions, or series of actions, that led to a positive reward will be repeated

more often, whereas those that led to a negative reward will be avoided in the future.

In recent years, DRL has allowed to tackle challenging problems like locomotion, classic

games, video games, manipulation and control, yielding previously unreachable results.

The main difference to classic RL, is that deep neural networks are used as function

approximators during the learning process. The introduction of deep neural networks

in the paradigm allows to learn directly from the “real” raw inputs, like a camera view

or the pixels of a screen. The high instability of reinforcement learning when approx-

imated with a nonlinear function like a neural network had in the past caused a halt

in the study of DRL. Since the seminal papers by Mnih et al. [7, 1], which analyzed

the causes of such instabilities and proposed effective methods to stabilize the learning

process, very significant results have been achieved [8]. DRL is currently evolving at

very fast pace, with papers that every few months are able to surpass the results of the

previous state-of-the-art by up to an order of magnitude.

2

Figure 1.1: Basic taxonomy of reinforcement learning methods. Sourced from (

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html)

RL can be naturally divided in a taxonomy of sub-categories depending on some core

characteristics which will be briefly explored in Section 2.1. Between those, HDRL is

often considered to be one of the categories with more potential. This intuition comes

from the way the human brain is able to learn primitive simple information and abstract

them to reason at more complicated levels. For example, to learn how to move an ob-

ject from one position to another, we first need to learn how to move our arms, and how

to use them to move an object in some direction. Once those two low-level concepts

are learnt, it is easy for the human brain to use them to learn how to move an object,

which is a way more complex action. Furthermore, it has been found that when deep

networks are applied to computer vision tasks, hierarchical structures tend to emerge

[9]. A DRL algorithm that is similarly able to automatically ”grow” and learn hierar-

chies, would also be able to obtain better results in sparse rewards environments. As

aforementioned, the learning process depends strictly on the rewards obtained. If such

rewards are very sparse, though, it is hard for an algorithm to figure out what actions

– out of the long sequence of actions it has taken – helped it to effectively obtain that

3

reward. For example, imagine a setting in which an agent has to navigate a maze of

rooms to search for a key and use it to escape from the maze. If a human explores until

finding the key the first time, it would be easy for him to understand what actions led

him to obtaining the key and repeat them the next time, even if rewards are obtained

only on collection and usage of the key. On the contrary, for an algorithm it would be

very hard to understand out of all the actions it took, which actions made him obtain

the key. If the algorithm is not able to back-propagate the reward to the right actions,

it will probably end up just trying to repeat the behavior he showed right before ob-

taining the key. A hierarchical understanding of the problem, could help the algorithm

to generate sub-goals to the task it must complete, like that in order to get to the key

it first needs to get to the room where the key is, and that in order to do that it must

move in a specific direction. Such sub-goals could be used for the learning of the lower

hierarchies of the algorithm, whilst the higher hierarchy keeps trying to solve the main

goal, i.e. to get to the key and use it. Nonetheless, it is still not clear how to to make

such hierarchies arise in the reinforcement learning paradigm. While in some cases

the researcher is able to define task-specific hierarchies and subgoals, the automation

and generalization of how to “grow” task-agnostic hierarchies is still an open problem.

Such reasons led us to choose Soft Actor-Critic with Latent Space Policies (SAC-LSP)

[2] as the baseline for this research. SAC-LSP is a HDRL algorithm that can construct

hierarchical representations in bottom-up layer-wise fashion. Each layer is augmented

with latent space variables, and since only invertible mappings from latent variables

to actions are used, all the layers remain unconstrained in their behavior, contrarily

to other HDRL algorithms which cripple or limit the expressiveness of some layers in

order to grow a hierarchy [10, 11, 12, 13]. Furthermore, since the higher layers of the

hierarchy use the latent variables of the policy layers below it as action space, the

hierarchies can be grown both automatically (using the same reward for all layers) or

using handcrafted lower-layers shaping rewards.

Although the different types of RL methods can differ substantially from an archi-

tectural point of view, many improvements in the field were obtained through the

introduction of techniques that are agnostic to the underlying architecture. Further-

more it has been recently proved that many of such optimizations are orthogonal to

each other and hence can be combined [14, 5]. It is our expectation that some of

4

these optimizations will become more and more common in most DRL algorithms, and

it is thus important to study their effectiveness on a still not deeply explored field

like HDRL. For such reason we choose four promising techniques and try to adapt

them to SAC-LSP. The first technique we try is categorical RL, which in recent works

[3, 15, 5, 14] yielded state-of-the-art results on a set of Atari 2600 games. While nor-

mally DRL algorithms try to learn the expected future reward, categorical RL tries

to learn the approximate distribution of rewards. This has different advantages, like

stabilizing the learning process and preserving multimodality in value distributions.

More generally, we can simply imagine that since we learn a whole distribution, our

algorithm produces at every step a set of auxiliary predictions. This means that even

if the main prediction the algorithm does is wrong, it is still able to learn thanks to

the auxiliary ones.

The second technique we try is probably one of the most famous. Prioritized ex-

perience replay [16] modifies the way mini-batches are sampled during the learning

phase, so that the most rare and unexpected experiences are sampled more often. This

allows for much better data efficiency, and the positive performance impact of utilizing

such technique has been demonstrated in different cases and on multiple algorihtms

[16, 14, 5].

The third technique is similar to the previous one in that it goes to modify the expe-

rience replay mechanism. Hindsight experience replay [17] modifies the normal reward

system by adding auxiliary goals to achieve. These goals are derived from states that

the agent will reach in the future, and help the algorithm to learn even when the reward

is sparse or the state space dimensionality is very high. The intuition behind it is that

humans learn from failures as much as they learn from successes. By augmenting our

environment with auxiliary rewards, hindsight experience replay tries to give RL that

same ability to learn from failures. Furthermore, this technique can become particu-

larly interesting in the case of HDRL, like recently proved by [18].

The final technique we test is distributed RL. A lot of the recent advances in deep

learning have been possible thanks to the high parallelization that modern hardware

allows. Making good use of graphic cards and distributing the computation over more

5

machines allows to yield much better results in a fraction of the wall-clock time. Apply-

ing similar techniques to DRL has been one of the main objectives of research, although

results have often been limited respect to the one obtained by deep learning. This is

due to the sequential nature of reinforcement learning, that needs to act and collect

experience in order to learn from it. Ape-x [4] is a recent approach that was able to

greatly outperform all previous state-of-the-art methods. With this method, a number

of worker processes are created, each of which acts independently in its own copy of

the environment. By decoupling the classic RL learning loop into two different compo-

nents, the ape-x framework is able to efficiently parallelize the collection of experience

across multiple machines. This method allows for much greater data efficiency, as well

as it allows to take greater advantage of graphic cards and multi-processing. Further-

more, since each process collects data independently from the others, this allows for

greater exploration as also previously suggested in [19].

The choice of an adequately challenging and useful environment is essential to test

DRL algorithms. Since the aim is to create algorithms able to solve complicated tasks

while at the same time generalizing over a different number of problems, the environ-

ments must offer a vast number of tasks of varying difficulty with similar interfaces.

Although many are available, currently Atari Learning Environment (ALE) [20] and

MuJoCo [21] are the two main choices as learning environments for DRL. ALE is a suit

of Atari 2600 games, each of which has a RAM version (since all the logic about an

Atari 2600 game is loaded in the RAM during execution) and a raw-pixel version. The

latter is particularly interesting, because it forces the DRL algorithm to learn directly

from the game frames, which means that the algorithm has the same inputs a human

would, i.e., the screen and the controller buttons. Another important trait of ALE is

that games have discreet action space, since by pressing a button on a controller, a

specific action is performed. MuJoCo instead is a physics engine tailored to model-

based control. It allows for efficient and optimized forward and inverse dynamics, as

well as precise and realistic physics simulations. As such, it is commonly used in DRL

for robotic simulation and locomotion. In the first case, the usual environment is a

robotic arm that has to complete certain tasks like moving or stockpiling objects. In

the latter, a series of models with an increasing number of degrees of freedom are put

in a environment in which they have to learn to walk or even navigate a maze. The

6

main difference respect to ALE is that in MuJoCo the action space is continue and

much larger, as at each frame we must specify how much and in which direction we

are moving each joint of the model.

1.2 Objectives

SAC-LSP is an actor-critic off-policy algorithm, and its original implementation is de-

signed to be tested on a series of locomotion tasks based on the MuJoCo environments.

Such environments offer complex tasks to learn in a continuous action space environ-

ment. Our aim in this research is to try to extend SAC-LSP with previously successful

techniques. In further details our objectives are:

• To extend the algorithm to the categorical RL framework and test its perfor-

mance.

• To extend the algorithm to use prioritized experience replay and test its perfor-

mance.

• To extend the algorithm to use hindsight experience replay and test its perfor-

mance.

• To extend the algorithm to have a distributed computation similar to that of the

ape-x framework, and test its performance.

The details of such techniques and their advantages will be explained in Section 2.1

1.3 Roadmap

The second chapter of this dissertation is dedicated to a thorough review of the relevant

literature. As DRL is a recent and complex field, particular attention will be dedicated

in the first section of such chapter to explaining how the basics of DRL works, with

respect to some of the most successful DRL algorithms. The second part of this chapter

will instead talk about the state-of-the-art, although it will concentrate mainly on the

related work to not confuse the reader diverting his attention from the technologies

significant to our research.

7

Chapter 3 presents in greater details the design and functionalities of the chosen base-

line, and presents the modification proposed to extend its functionalities.

Chapter 4 dives into the details of the actual model implementation, presenting the

problems and limitations that we had to address during our research.

In chapter 5 we present an evaluation of the model extensions through a series of

experiments, first comparing each single extension to the baseline, and then summa-

rizing the results in a general performance comparison of all the models.

Finally, chapter 6 takes stock of the research presented, summarizing the contribu-

tion made and the most interesting results, as well as suggesting interesting directions

for future work.

8

Chapter 2

State of the Art

In this chapter we will review the state-of-the-art in Deep Reinforcement Learning. As

DRL is a wide field in full expansion, choices must be made regarding what technologies

and recent advances to mention in this chapter. To give the reader a good understand-

ing of the research presented, we will divide this chapter in two main sections. The

first section will explain how reinforcement learning works, and present some of the

main successes of DRL. The second section will instead present the related work, i.e.

the papers that inspired and influenced the most this research.

9

2.1 Background

Figure 2.1: A scheme illustrating the basic functioning of the RL loop. Sourced from

(http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html)

Before diving into the details of specific DRL algorithms, it is important to draw

the general picture about the reinforcement learning framework and define some basic

terminology. As briefly aforementioned, RL algorithms try to learn to perform a certain

task in an environment through a trial-and-error process. The basic idea is simple:

an agent is placed in an environment, where it will perform a random action and,

depending on the type of reward it will obtain from such action, it will keep or avoid

doing it in the future, so to try to maximize the total reward over time.

2.1.1 Terminology

Thus far, we have already informally introduced different main terms of reinforcement

learning. We will now list the more important ones, which will be from now on used

in the text with this specific meaning unless differently stated.

• Agent: The agent is the component that takes actions in the environment. In

the case of a video game it would be the controllable character, in a locomotion

scenario it is likely to be a real or simulated robot. In our tests, it will be a

simulated ant-shaped robot.

10

• Environment: The environment is the “world” in which the agent acts, like the

real world for a drone or the game logic for a video game. Nonetheless, when we

refer to the environment we usually refer to the representation of such environ-

ment given to the agent. The environment is therefore usually a function or class

that takes the agents current state and action as input, and returns as output

the agents reward and next state.

• Action: Unless stated differently, we will refer to sets with capital letters and

elements of such sets with the corresponding lowercase. A will then be the set of

all possible actions the agent can make in its current environment, and a will be

one of such actions. It is important to note that in many environments a no-op

– i.e. not doing anything for a timestep – is a valid action.

• Reward: An agent taking an action a at time t will receive a reward r at time

t+ 1. It is important though to understand that, depending on the environment

and the action, it is probable that the reward received is not the fruit of just the

last action taken, but of a set of actions executed in the past. In some cases, the

last action will not even have any relation with the reward obtained. Imagine

for example the classic Atari game Breakout, where we move a base to make a

ball bounce on some bricks. The rewards will be obtained when the ball hits

the bricks, although the actions just before that moment would normally just be

no-ops, and the only actions that were really imporant were the ones taken to hit

the ball with the base.

• State: A state s is the representation of the environment at a specific timestep.

It therefore represents the environment - comprised of the agent, what action it

is taking and what effect it has on the environment - at a specific moment and

place. An observation is the agents representation of the current state of the

environment. Although semantically they are slightly different, this two terms

will be used interchangeably.

• Policy: The policy π is the strategy that the agent employs to decide the next

action to take based on the current state. Thus, it is a function π(s) = a that

maps states to actions.

11

• Value: The value function Vπ(s) returns the sum of the expected cumulative

reward obtained from following a policy π from a state s onwards. To limit the

error introduced by using this prediction during learning, a discount factor γ is

applied to future state rewards.

• Q-value or action-value: The Q-value function Qπ(s, a) returns the expected

cumulative reward obtained from taking an action a in a state s, and following a

policy π from the next state s′ onwards. In other words

Qπ(s, a) = r(s, a) + Vπ(s′)

where r(s, a) is the reward obtained for taking action a at state s.

• Experience or transition: A single experience is a tuple (s, a, s′, r) which tells us

what action was taken in which state, what state we reached by performing that

action and what reward we received from it.

2.1.2 Reinforcement Learning

The goal of RL is to find the optimal policy π∗, i.e. the policy that given a state returns

the action that maximizes the future cumulative reward. This is achievable if we know

the optimal Q-value function

Q∗(s, a) = maxπ(Qπ(s, a)) (2.1)

which allows us to write the optimal policy simply as

π∗(s) = argmaxa(Q
∗(s, a)) (2.2)

Reinforcement learning can be formalized as a Markov Decision Process (MDP) or,

since often the environment in not completely observable – i.e. the observations do not

capture all the information about the current state of the environment – as a Partially

Observable Markov Decision Process (POMDP). An important feature of MDPs is

the Markov property, which states that the probability distribution of future states

depends only on the current state and not on the previous ones. This is equivalent

12

to saying that the current state contains all the “relevant information” about previous

states that could influence future ones, and the probability distribution of future states

is therefore independent from all states except the current one. Being able to formalize

RL problems as MDPs allows to use the Bellman equation [22] to write the Q-value

function recursively as

Qπ(s, a) = E
[
r(s, a) + γQπ(s′, π(s′))

]
(2.3)

Since we still don’t have policy at this point, we can indirectly derive it by acting

greedily on the Q-value. Choosing the highest Q-value across all possible actions at

each iteration gives us the following formula, called Q-value iteration

Q(s, a) = E
[
r(s, a) + γ maxa′Q(s′, a′)

]
(2.4)

that is the basis for Q-learning [23]

Q(s, a) = Q(s, a) + α
(
r(s, a) + γ maxa′Q(s′, a′)−Q(s, a)

)
(2.5)

which is proven to converge to Q∗. Q-learning is a model-free method, i.e., a method

that does not try to learn explicit models of the environment state transition and re-

ward functions, but derives an optimal policy. Model-free methods are used in the

cases where the MDP model is unknown or it is too big to use. If for example we are

building an RL method to control a drone, the model is well known since the drone

follows the laws of physics and kinematics, but building the model of all the transitions

dynamics would be simply infeasible. These particularly difficult problems are also the

ones usually tackled by DRL, and in fact most DRL methods are model-free.

13

2.1.3 DQN

Figure 2.2: DQN’s CNN is composed of some convolutional layers to understand the

content of the image and then some fully connected layers, with the last one having

the number of outputs equal to the number of possible actions. Sourced from [1]

We finally have the basics to introduce DQN [7, 1], the first algorithm able to learn

complex tasks like playing Atari 2600 games directly from raw pixels as input, and

even match or surpass the average human-expert score on most of the games. Mnih

et al. were not the first ones to try to use neural networks as functions approximators

in the RL field [24, 25] but research showed that Q-learning can hardly converge, and

sometimes even diverge, when a non-linear approximator like a neural network is used

[26]. Mnih et al. wanted to exploit the recent advances of deep learning and use a

Convolutional Neural Network (CNN) to learn directly from raw pixels and build an

algorithm able to generalize over different tasks. To do so, they introduced two main

modifications to Q-learning that essentially try to make RL ”look like” deep learning.

The differences between RL and DL are numerous. Deep learning takes large batches

14

of labeled i.i.d. data, and takes advantage of the hardware advances in GPUs and

CPUs to aggressively parallelize the gradients computation during learning. Reinforce-

ment learning instead has to work with data that are extremely correlated due to their

sequential nature. Furthermore the data labeling depends on the target network – i.e.

the maxed term in Equation 2.5 – and the data distribution depends on the policy of

the model. As such, both labels and data distribution change over time, leading to

learning instability and eventually to the inability to converge to an optimal policy.

To limit the instability introduced by the target network, DQN keeps the weights of

the target network fixed, copying them from the learned network at regular intervals.

This allows for both labels and policy to change more slowly without introducing extra

computation. Arguably the most important modification they introduced, though, was

the utilization of experience replay [27]. The underlying idea behind is very simple:

every time the algorithm takes a step, it stores the transition in a ring buffer in the

form of a (s, a, s′, r, t) tuple, where t is simply a boolean saying whether the transition

is the last of an episode or not. Then every time it has to execute a gradient update,

a random batch is sampled from the experience buffer. This breaks the correlation of

the training samples reducing the variance of the updates, as well as allowing for much

greater data efficiency since the same transition is potentially used in different weight

updates. As aforementioned, a CNN is used to approximate the Q-value function. To

use it, the loss function is written in the form of

L(θ) = E
[(

E
[
r(s, a) + γ maxa′Q(s′, a′; θ−)

]
−Q(s, a; θ)

)2
]

(2.6)

where θ represents the network parameters and θ− indicates the fixed weights of the

target network. Differentiating the loss function with respect to the weights, we finally

derive the gradient used in the final algorithm:

∇θL(θ) = E
[(
r(s, a) + γ maxa′Q(s′, a′; θ−)−Q(s, a; θ)

)
∇θQ(s, a; θ)

]
(2.7)

2.1.4 Actor-critic methods

The main ideas of DQN have been used in most of the DRL algorithms that followed it.

A part of the research concentrated on improving the performance of DQN, introducing

modifications to the function approximator that would reduce the biases introduced by

15

the Q-value function approximation [28, 29]. DQN (and its evolutions) falls into the

category of value-based methods, i.e. methods that do not try to learn a full model

nor they try to learn directly a policy, but instead learn a value-function from which

it is possible to indirectly derive a greedy policy. This implies some drawbacks, like

the biases introduced by the Q-value function approximation or the difficulty to apply

such methods to a continuous action environment due to the curse of dimensionality.

Thus another part of the research focused on adapting the main ideas of DQN to other

RL methods, like policy-based and, primarily, actor-critic methods.

Figure 2.3: Policy iteration converges to both the optimal

policy and the optimal Q-value function. Sourced from (

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html)

Policy-based methods directly learn a policy. Having an explicit policy allows to utilize

the Q-value iterative function as in Equation 2.3, which means we eliminate the non-

linear max operator that was limiting us to discrete spaces. We can then use the

Q-value function we just estimated to improve our policy, simply doing

π′(s) = argmaxaQ(s, a) (2.8)

This brings us to the policy-iteration algorithm [30], which alternates policy evaluation

(Equation 2.3) and policy improvement (Equation 2.8). The policy improvement step,

though, uses an argmax, which is just as problematic as the max operator of Equation

16

2.4. To obviate such problems, policy gradient methods perform direct policy search.

To be able to directly improve our policy in policy space, we need to define a measure

of the ”goodness” of a policy. We can do that defining a score function as the expected

cumulative reward of following a policy from the first state. To extend the score

function to continuous environments, we take the average per-time step of the expected

reward, ending up with the following formula

J(φ) = E[Vπ(s)] =
∑
s

d(s)
∑
a

π(a|s ;φ) r(s, a) (2.9)

where φ are the parameters of the parametrized policy, d(s) is the probability of being

on state s given policy π, and π(a|s ;φ) is the probability of taking action a by following

policy π in state s. Using the policy gradient theorem [31], we are now able to write

the policy gradient as

∇φJ(φ) = E[∇φ log π(a|s ;φ) rt] (2.10)

where with rt we indicate the actual cumulative return of an episode. This approach is

also known as Monte Carlo policy gradient or REINFORCE [32]. As aforementioned,

policy-based methods have different advantages. They work well in continuous action

environments and with very large action spaces. Furthermore, while a value-based

method is optimizing the value (or Q-value) function, a policy-based method is opti-

mizing the “right” problem, i.e., the expected cumulative reward of a policy, which

helps to converge faster. Nonetheless, being the gradients dependent on the sampled

cumulative return of an episode, they suffer from high variance. Furthermore, policy

gradients methods tend to get stuck on a local optimum.

17

Figure 2.4: Actor-critic learning loop. The actor (policy) receives the cur-

rent state from the environment and chooses what action to perform. Simul-

taneously, the critic (value function) receives the state and reward of the tran-

sition and uses the error calculated to perform the updates. Sourced from (

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html)

Actor-critic methods combine value functions and explicit policy representations, there-

fore trading off between the advantages of the two methods. As the name suggests,

actor-critic methods are composed of two main components: an actor, represented by

a policy network that decides how to act, and a critic, represented by a Q-network that

decides how good an action was. One of the most important families of actor-critic

methods derives from Deterministic Policy Gradient (DPG). In [33] Silver et al. are in

fact able to demonstrate that the policy gradient can be obtained from the expected

gradient of the Q-value function using the DPG theorem:

∇φJ(φ) = E[∇φπ(s;φ) ∇θQπ(a|s ; θ)] (2.11)

This allows for DPGs to be estimated much more efficiently than the usual stochastic

policy gradients. Furthermore, since they don’t need to integrate over the action space

18

but only over the state space, they tend to require fewer samples in large action spaces.

This work was followed a couples of year later by Deep Deterministic Policy Gradients

(DDPG) [34], which applies the main features of DQN to DPG. First of all, the policy

and Q-value functions where implemented with a CNN to be able to work directly on

raw pixels as input. Since DPG is an off-policy method, it is also straightforward to

implement an experience replay buffer similarly to DQN. In order to obtain a good

learning stability and avoid divergence, the network parameters updates where slightly

changed respect to DQN. Apart from fixing the weights of the Q-value network that

produces the Q-value targets, also the policy network that calculates the policy targets

had to be fixed. Furthermore, instead of performing the normal hard update and just

copying the newer network parameters into the target networks, a soft update was

introduced in the form of

θ′ = τθ + (1− τ)θ′ (2.12)

where θ′ are the weights of a target network, and τ � 1, so that the values updates are

ensured to change slowly. Although this may slow down the convergence, it stabilizes

notably the learning process and makes RL looks even more like DL.

This section was not intended to lecture about DRL in general, but rather to give

the reader the knowledge necessary to understand the learning process of a generic

DRL algorithm and the techniques that will be introduced in the next section. We

consider the two algorithms described above, together with the RL jargon and the-

oretical basics introduced, to be enough to comprehend the rest of this work. This

is why other very important DRL algorithms like A3C [19] or TRPO [35], that are

roughly contemporary to DQN and DDPG and also had a similar impact on the future

development of the field, will not be treated here. We refer the interested readers to

the references for further information.

2.2 Related Work

In this section we will introduce some state-of-the-art DRL algorithms. The focus will

be on the papers that inspired this research, therefore we will describe the algorithms

that we used as a baseline and the ones that introduced the techniques experimented

19

in this work.

2.2.1 Maximum entropy framework

The main baseline for this work is SAC-LSP [2] a hierarchical deep reinforcement

learning algorithm that directly evolved from previous works by the same authors,

namely Soft Q-Learning [36] and the Soft Actor-Critic (SAC) [37]. These algorithms fall

in the so called maximum entropy framework, which augments the standard maximum

reward reinforcement learning objective with an entropy maximization term. This

means that while the network will be trying to maximize the expected reward, it

will also be trying to maximize its entropy. In this way, the agent tries solve the

task proposed while acting as randomly as possible. Maximum entropy framework

algorithms have been shown to have an improved exploration and to be able to capture

multiple modes of near-optimal strategies, the latter of which entails also better results

in transfer learning. The standard objective of a RL algorithm is to learn the optimal

policy of Equation 2.2, which in the most general form can be written as

π∗ = argmaxπ
∑
t

E[r(st, at)] (2.13)

The entropy augmented optimal policy will then be defined as

π∗MaxEnt = argmaxπ
∑
t

E[r(st, at) + αH(π(·|s))] (2.14)

where α is a temperature hyperparameter that weights the relative importance of

entropy and reward. Using a deep energy-based policy representation of the form

π(a|s) ∝ exp(−E(s, a)) (2.15)

where E is an energy function represented by a universal function approximator like

a deep neural network, the policy is ensured the freedom to be able to represent any

20

distribution π(a|s). Once the soft Q-value function is defined as

Q∗soft(s, a) = E
[∑

l

γl
(
r(st+l, at+l) + αH(π(·|st+l))

)]
(2.16)

and the soft value function is defined as

V ∗soft(s) = α log

∫
A

exp
(1

α
Q∗soft(s, a

′)
)
da′
]

(2.17)

it is demonstrated [36] that the optimal maximum entropy policy is given by

π∗MaxEnt(a|s) = exp
(1

α
(Q∗soft(s, a)− V ∗soft(s))

)
(2.18)

Using such formulation, it is possible to write the soft Q-function of a stochastic policy

π as

Qπ(s, a) = r(st, at) + γ E[Vπ(s′)] (2.19)

and the soft value function as

Vπ(s) = E
[
Qπ(s, a)− log π(a|s)

]
(2.20)

and prove that they still satisfy the soft Bellman equation. This allows us to the define

the soft Bellman backup operator, which is the core of Soft Q-learning, as Q ← TπQ,

with

TπQ = r(st, at) + γ E[Qπ(s′, a′)− log π(a′|s′)] (2.21)

In SAC [37] the maximum entropy framework is adapted to an actor-critic setting.

Using policy iteration (remember Figure 2.3) as base to enable theoretical analysis and

convergence guarantees, the soft Bellman backup operator (Equation 2.21) becomes

the policy evaluation step and the policy improvement step is defined as

πnew = argminπ′∈Π DKL

(
π′(·|s) || (Qπold(s, ·)− log Zπold(a|s))

)
(2.22)

21

where the restriction π′ ∈ Π is used to ensure the policies are part of a set of tractable

parametrized parameterized family of distributions like Gaussians, and DKL(x||y) is

the Kullback-Leibler divergence, which projects the new policy in the set of desired

policies. This can now be adapted to a DRL setting using a parametrized function

approximator for the value function V (s ; ψ), the Q-value function Q(s, a ; θ) and the

policy π(a|s ; φ). It is in theory not necessary to have a different network for the

value function since it could be derived from the Q-value function, but in practice this

increases the stability of the training [37]. With this, it is possible to derive the new

goals and gradients for all the three function approximators. The soft value function

is trained to minimize the squared residual error

JV (ψ) = E
[1

2
(V (s ; ψ)− E[(Q(s, a ; θ)− log π(a|s ; φ)])2

]
(2.23)

and its gradient takes the form

∇ψJV (ψ) = ∇ψV (s ; ψ)
(
V (s ; ψ)−Q(s, a ; θ) + log π(a|s ; φ)

)
(2.24)

The Q-value function is trained to minimize the soft Bellman residual

JQ(θ) = E
[1

2
(Q(s, a ; θ)− (r(s, a) + γ E[V (s ; ψ)]))2

]
(2.25)

and its gradient takes the form

∇θJQ(θ) = ∇θQ(s, a ; θ)
(
Q(s, a ; θ)− r(s, a)− γ V (s ; ψ)

)
(2.26)

Finally, the policy parameters are learned by minimizing the KL divergence of Equation

2.22, and its gradient can be estimated using a likelihood ratio gradient estimator in

the form of

∇φJπ(φ) = ∇φlog π(a|s ; φ)
(
log π(a|s ; φ)−Q(s, a ; θ)− V (s ; ψ)

)
(2.27)

The learning loop of SAC alternates between collecting experience from the environ-

ment with the current policy and updating the function approximators. The updates

are performed with the stochastic gradients listed above on batches sampled from a

22

replay buffer, resulting in an off-policy method. Furthermore the algorithm is agnostic

to the parameterization of the policy, as long as it can be evaluated for any arbitrary

state-action tuple. The suggested parametrization is based on Gaussian mixtures mod-

els, for which we refer the reader interested on further details to the original paper [37].

Using Mujoco as testing environment, SAC substantially outperformed DDPG in both

sample efficiency and final performance, and it has been seen to learn much faster than

TRPO [35]. Overall, SAC yielded state-of-the-art results and an increased stability

respect to methods like DDPG and TRPO.

SAC-LSP [2] extends the soft actor-critic to HDRL by using latent space policies. We

already said that SAC is agnostic to the policy parametrization, and by using latent

variables to determine how the policy maps states into actions, it is possible to build

a hierarchy of policies in bottom-up layer-wise fashion. In this hierarchy, the latent

variables of each layer act as the action space for the layer above, creating a hierarchy

in which each layer can try to solve the main task and, even if it is not fully able to

do so, it still makes the simplifies the task for higher layers. Furthermore, since the

transformation from latent variables to actions is ensured to be fully invertible, all the

layers of the hierarchy maintain complete expressiveness. Imagine for example that we

want to make a humanoid robot learn how to navigate a maze. A possible tactic could

be to train the lowest layer of the hierarchy on a simpler task in which the algorithm

has to learn locomotion, and then train a second layer on the real maze-navigation

task. It is possible in this case for the lowest layer policy to learn to maximize the

speed, so that the agent will always try to move as fast as possible. This behavior

might not be desirable in the maze-navigation task, since it might result almost im-

possible for the simulated humanoid to turn without falling when it is running at max

speed. Normally, in a bottom-up layer-wise HDRL algorithm – in which first the lowest

layer is trained and then is frozen in order to train higher layer – this behavior might

prevent our algorithm to learn to perform the desired task. Due to the invertibility of

the transformations from latent variables to actions, hough, the second layer will be

able fix the behavior of the lower policy. This, united with the advantages of the max-

imum entropy framework, makes SAC-LSP a stable and expressive algorithm, capable

of achieving state-of-the-art results in a multitude of continuous control benchmarks

[2]. For further information on the design of this algorithm, we refer the reader to the

23

next chapter.

2.2.2 Prioritized experience replay

As it should be clear by now, in DRL one of the main features for stabilizing the

learning process and making the algorithm data efficient, is experience replay. The two

main advantages that this technology brings are the possibility to break the temporal

correlations between the experiences thanks to the uniform random sampling of past

transitions for the updates, and the fact that rare and valuable experience will be used

for more than one update, thus improving the data efficiency. The second advantage

hints at the question: wouldn’t it be better if instead of sampling uniformly, we sampled

“rare and valuable” experience more often? Prioritized experience replay [16] does

exactly that, modifying the experience buffer to sample more often the transitions with

high expected learning progress. The ideal measure for the importance of a transition

would be the expected learning progress, which is an information that we do not posses

while learning. A good estimate of such value can be the magnitude of the Temporal

Difference (TD) error of that transition. The TD error has been already introduced

informally using Q-values estimates in Equation 2.5, as it is the difference in expected

return before and after taking one step, more formally

TD(0) = (r(s, a) + γV (s′))− V (s) (2.28)

This tells us how far the expected return of a transition is from its next-step boot-

strap estimate, or in other words how much our estimate of the future reward changes

after taking a step. Using the TD error as a priority factor, we are able to sample

“surprising” experience more often, and since the TD error changes during the learn-

ing process, as long as we update the TD error of a transition, we will always sample

useful transitions to learn from. Since a normal experience buffer usually contains

around one million transitions, though, it is not feasible to update all the TD errors

at each update, thus only the sampled ones get updated. Sampling greedily only the

high-priority transition would bring a number of disadvantages, like the fact that the

initial TD error estimates will strongly influence the learning, sampling too often tran-

sitions with an overestimated TD error and never replaying rare experiences with an

initially underestimated error. To atone for this, prioritized experience replay uses a

24

stochastic sampling method that interpolates between greedy and uniform sampling.

The probability of sampling a transition then becomes

P (i) =
pαi∑
j p

α
j

(2.29)

where α is a hyperparameter defining how much prioritization to use. The priority can

be proportional to the TD error

pi = |TDi(0)|+ ε (2.30)

where ε is a small constant to avoid transitions to have TD error equal to 0, or rank-

based

pi =
1

rank(i)
(2.31)

where rank(i) is the position of transition i when the buffer’s ordering is based on the

TD error. In order to converge to the right solution when performing the estimation of

the expected return with stochastic updates, we need the distribution of the transitions

visited and the distribution of the transition sampled for the updates to be the same.

Hence in order to compensate the bias introduced by prioritized sampling, weighted

Importance Sampling (IS) is used in the updates in the form of

wi =
(1

N
· 1

P (i)

)β
(2.32)

where N is the replay buffer size and β is an hyperparameter that we anneal during

the training towards one, since at β = 1 the IS completely compensates for the bias

introduction, and the influence of this bias is much stronger in the late stages of train-

ing. Prioritized experience replay can boost the data efficiency of a DRL algorithm

considerably, and in the original paper prioritized DQN outperformed normal DQN in

41 out of 49 games. Furthermore, more recently an ablation study on Rainbow [14] –

a state-of-the-art algorithm that combines many different optimizations – has proven

prioritized experience replay to be the most influential of the optimizations proposed.

25

2.2.3 Categorical RL

Categorical RL [3, 15, 38] is a framework that augments the signal learned by the value

functions. While classic DRL algorithms learn the expected return, categorical RL

learns the distribution of the random return received by the agent. This brings different

advantages, since it preserves multimodality in value distributions and alleviates the

effects of learning from nonstationary policies. Furthermore if the value functions

return a distribution rather than a single value, each probability of the distribution will

naturally work as an auxiliary prediction. To put it in simpler terms, we are basically

giving our algorithm the ability to keep multiple options in mind when predicting the

return. This ultimately stabilizes the learning and increases the performance of the

algorithm. We can write the distributional Bellman equation as

Z(s, a)
D
= R(s, a) + γZ(S ′, A′) (2.33)

where Z is the distribution whose expectation is the Q-value, the capital letters are used

to indicate random variables, and
D
= means that the two distribution are equivalent. To

represent the value distribution Z, a discrete distribution parameterized by the number

of supports is proposed in [3]. More specifically, we define a set of atoms

{zi = Vmin + i∆z : 0 ≤ i ≤ N}, ∆z =
VMAX − VMIN

N − 1
(2.34)

where each atom is a potential return, and the probability of each atom is given by a

parametric model θ such that

Z(s, a; θ) = zi with probability p(s, a) =
eθi(s,a)∑
j e

θj(s,a)
(2.35)

Using a discrete distribution like this has different advantages, since it is easy to com-

pute, highly expressive and allows us to use cross-entropy to calculate the difference

between two distributions. In order to use cross-entropy though, we need to ensure

that both our target distribution and our current distribution have the same set of

supports. Hence, we project the target distribution obtained by applying Equation

2.33 onto the supports of our current distribution, and only after that we calculate the

difference between the two distributions. We refer the reader interested in the exact

26

nature of the projection function or on further theoretical details about the categorical

RL framework to the references. Categorical RL was originally applied to DQN, but

was later expanded to DDPG-style actor-critic methods in [5] by defining the policy

gradient as

∇Jφ = E
[
∇φπ(s;φ)E[∇aZ(s, a; θ)]

]
(2.36)

C51 [3] Rainbow [14] and D4PG [5] are a few examples of algorithms that where able

to yield state-of-the-art results using categorical RL.

2.2.4 Hindsight experience replay

Hindsight Experience Replay (HER) [17] is a promising technology that allows to aug-

ment the reward signal and data efficiency of the algorithm. As briefly mentioned in

Section 1.1, the inspiration comes from the ability of humans to learn even from our

failures. Imagine a simple setting in which we need to throw a ball at a target. If the

target gets hit one point is given, otherwise zero. If an algorithm manages to throw

the ball, but misses the target by some margin to the right, it will just infer that the

sequence of actions it just performed led to a failure. This makes the algorithm learn

nothing from this experience, whereas a human could have easily inferred that if the

target would have been more to the right, the throw would have been a success. To

try to achieve this kind of reasoning, HER augments the reward signal introducing

goals. Taking inspiration form the Universal Value Function Approximators (UVFA)

framework [39], HER trains policies and value functions which take as input not only

a state but also a goal. To define such goals, it is assumed that there is a predicate

fg : S → {0, 1} that maps states into 0 or 1, and the goal of the agent becomes to reach

a state such s such that fg(s) = 1. This slight modifications allow to train universal

policies by giving a reward of -1 when fg(s) = 0 and 0 otherwise. This method results

to not be very efficient in reality due to the sparsity and little information given by the

reward function. To solve this problem, HER implements a simple strategy to make

better use of off-policy learning. The agent will start acting in the environment, adding

each transition to the experience buffer like usual. In addition to that though, every

time an episode finishes, we sample a set of additional goals for every transition of the

episode and add all the variants to the experience buffer as well. Multiple strategies

to sample the new goals are suggested, but the best performing one consist in deriv-

27

ing the new goal from a random state reached by the agent in that episode, but in a

transition successive to the one we are currently considering. HER is is able to learn

complex behaviors even in sparse and binary rewards, where normally techniques like

DDPG would fail. Furthermore it has much space for further experimentation, since it

is orthogonal to other techniques like prioritized experience replay, distributional RL

and entropy-regularized RL, which makes interesting testing its effects in conjunction

with such techniques [40].

2.2.5 Distributed DRL

We have already mentioned more than once that one of the more common trends in

DRL is to try to make it as similar as possible to deep learning. This is because we

currently have a much better understanding of how to optimize and stabilize deep

learning than we have with DRL. One of the main causes of success of deep learn-

ing is that it is possible to highly parallelize the computation, exploiting not only the

advantages of modern graphic cards to the fullest, but also the computational power

that distributed systems with many processors can guarantee. Usually the main way

to take advantage of distributed systems for training neural networks is to parallelize

the computation of gradients, so that the network parameters can be optimized more

quickly. Although some successes in applying distributed asynchronous parameter up-

dates where achieved also in DRL [41, 42], most of the research has concentrated on

asynchronous parameter updates and parallel data generation within a single machine

[19, 43, 44, 45]. This is partially due also to the necessity of ensuring low latency com-

munication, which is essential in a context like DRL, where gradients becomes quickly

outdated and the data collected depends heavily on the network parameters.

The ape-x framework [4] takes a different approach, distributing data collection instead

of gradient calculation. To do this, it decomposes the standard DRL computation in

two components, an actor and a learner. This is a common decomposition in distri-

butional DRL, although the exact nature of this components slightly changes between

different methods [4, 41, 44]. To avoid confusion with the actor of actor-critic methods,

which has no connection to the actor of the ape-x framework, from now on we will refer

to the latter as executor. In ape-x, the executor is a process with its own copy of the

28

environment. The executor takes a step in the environment using the policy network

to choose the best action to take, and then stores the transition in a shared replay

buffer. The learner retrieves batches of data from the replay buffer and updates the

network parameters. Another interesting feature of this framework, is that it was built

to extend prioritized experience replay. To allow it to be highly scalable, the way pri-

orities for new transitions are initialized is modified. In vanilla prioritized experience

replay, priorities are initialized to the highest priority seen so far, and updated only

when they are sampled for the first time. Due to the amount of experience that ape-x

allows to collect, this strategy does not scale well as it would introduce a bias towards

the most recent data collected. The executors though already calculate the loss while

evaluating their local copies of the policy. Using it to calculate online estimates of the

priorities allows to obtain more realistic estimates without extra computation. The

ape-x framework is agnostic to the DRL algorithm being used, as long as it is off-

policy. Using half of the wall-clock time, 376 cores and 1 GPU, ape-x applied to DQN

improves the median results over ALE of more than five times, doubles the results of

a state-of-the-art algorithm like Rainbow, and collects a number of transitions that is

two order of magnitude higher than all previous methods.

29

Chapter 3

Design

This chapter describes in detail the design of our HDRL algorithm. Since this research

expands the SAC-LSP algorithm with four different techniques, we will first explain

in further details how our baseline works, and then explain how the optimizations we

have chosen have been applied to it.

3.1 Baseline

Our baseline is an off-policy, model-free, maximum entropy, actor-critic, HDRL algo-

rithm. SAC adapts the maximum entropy framework to a DDPG-style actor-critic.

With SAC-LSP the authors are interested in building hierarchies of policies, which

means that using Gaussian Mixture Models to represent stochastic policies like SAC

does would be limiting. As a matter of fact, while Gaussian Mixture Models are suffi-

ciently expressive in medium-dimensional action spaces, as a sub-policy they can only

provide a limited number of behaviors for the higher layers, namely the number of

mixture elements. This limits the expressiveness of higher layers of the hierarchy, po-

tentially preventing them from solving the task.

30

Figure 3.1: Probabilistic graphical model representing how to grow hierarchies of poli-

cies. Sourced from [2]

To obtain a framework able to grow hierarchies in bottom-up layer-wise fashion, SAC-

LSP casts the optimal control problem of learning a policy that optimizes the future

reward, to an inference problem, as can be seen in Figure 3.1a. Each state and action

is conditioned on a binary optimality variable O, which says whether that state-action

couple was optimal or not with respect to a certain reward function. Incorporating the

reward function by setting p(O|s, a) = exp(r(s, a)) allows to re-derive the maximum

entropy objective of Equation 2.14, giving at the same time a probabilistic graphical

model on which we can easily define a hierarchy. A stochastic base policy is defined as a

latent variable model composed by two factors, namely a conditional action distribution

π(a|s, h) with h latent random variable, and a prior p(h). In this setting, to sample an

action we first need to sample h from the prior and then sample an action conditioned

on h, bringing us to the graphical model of Figure 3.1b. Finally, by marginalizing out

the actions and conditioning the model on a new optimality variable P – which can

represent either the same task or a different higher level task – we obtain the graphical

model of Figure 3.1c, that is structurally identical to the one of Figure 3.1a with the

exception of h taking the role of the actions a. This new model incorporates the base

policy into the transition model of the MDP, exposing at the same time a higher level

set of actions h. This allows to train a new, higher level policy by conditioning it on

our new optimality variable P . Furthermore, this process can be repeated arbitrarily,

31

integrating at each new hierarchy layer the lower level policy into the MDP’s transition

dynamics, and learning a new higher level policy that uses the latent space of the lower

level policy as action space.

Figure 3.2: The hierarchy used in SAC-LSP. Sourced from [2]

The only thing left is to choose the policy representation, which should be tractable

in order to be able to maximize its log-likelihoood, expressive enough to not reduce

the freedom of higher levels of the hierarchy, and deterministic since the higher levels

will view each conditional factor as part of the environment. To ensure these three

characteristics, SAC-LSP represents policies as bijective transformations from latent

variables to actions. Such transformations are represented with real-valued non-volume

preserving (real-NVP) neural networks [46], an unsupervised learning techniques that

allows to learn bijective transformations in a computationally effective method. The

specifics of real-NVPs are out of the scope of this research, hence we refer the interested

reader to the references. In Figure 3.2 we can finally see the actual hierarchy proposed

in SAC-LSP. The hierarchy is composed of two levels, although as we said we can

build an arbitrary number of layers if desired. Each level takes in input the current

observation and a latent vector from the level above, and produces in output a latent

vector, which in the case of the lowest layer is equivalent to the action chosen.

32

3.2 Prioritized SAC-LSP

Prioritized experience replay is one of the easiest techniques to adapt to new algorithms.

This technique increases the data efficiency by modifying the sampling strategy of the

experience buffer. Hence, it can be easily applied to most off-policy algorithms, as long

as they use an experience buffer. We follow the design proposed in the original paper

[16], opting to define the priority of a trainsition in its proportional form (Equation

2.30). Prioritized experience replay has three main operations to take into account:

insertion of new experience, sampling of new experience and priority update. In order

to be able to execute such operations efficiently, we represent our experience buffer as

a sum-tree. We still introduce a bit of latency, but the performance increase strongly

justifies it. Finally, we multiply the TD error of the Q-function updates utilizing the

weighted IS as calculated in Equation 2.32.

3.3 Categorical SAC-LSP

Figure 3.3: Learned value distribution during a game of Space Invaders. In the graph,

different colors represent different actions. Sourced from [3]

We want to extend SAC-LSP to the categorical RL framework. Augmenting the signals

received by our policies, value functions or reward functions is a common trend in DRL

research, since it helps to boost the performance of our algorithm even in the hardest

33

sparse-reward environment. Our baseline falls in the maximum entropy framework,

which as we saw in Section 2.2 augments the optimal policies with a policy entropy

signal that we aim to maximize, yielding better exploration and performance. The

categorical RL framework instead augments the return of the value functions, which

instead of returning the expected future reward, return the value distribution. In Sec-

tion 2.2 we have already shown the modifications that each of those frameworks brings,

offering for both frameworks an overview based on their application to a DDPG-style

actor critic, in order to highlight the similarities between the methods and make the

discussion more readable. Nonetheless, when a new DRL framework is created, loss

functions and gradient updates must be re-derived from scratch in order to obtain a

method that is both tractable and proven to converge to an optimal solution. Unfor-

tunately this is a long process, which exceeds the time constraints and scope of this

research. Therefore, we opt for a more naive approach, substituting the value functions

in the SAC-LSP updates with their distributional versions. More precisely, we modify

Equation 2.25 so that the new Bellman error is

JQ(θ) = E
[1

2
(Z(s, a ; θ)− (r(s, a) + γ E[Vd(s ; ψ)]))2

]
(3.1)

where Z is the distributional Q-value function and Vd is the distributional value func-

tion. Moreover we modify Equation 2.23 to be

JV (ψ) = E
[1

2
(Vd(s ; ψ)− E[(Z(s, a ; θ)− log π(a|s ; φ)])2

]
(3.2)

3.4 HER SAC-LSP

To extend SAC-LSP with hindsight experience replay, we need to modify the reward

to be goal-based. Following the UVFA framework, we assume there is a predicate

fg : S → {0, 1} which is well defined for every state s ∈ S. This is not limiting since

rewards are always based on reaching a state in which certain conditions are satisfied.

We therefore need to define a mapping m : S → G such that fm(s)(s) = 1. If we want

our agent to simply reach a certain state, we can define m as an identity mapping,

since in this case the predicate simplifies to fg(s) = [s == g]. Since the state in a

Mujoco environment is a list of data relative to the simulated robot like its position,

34

speed and the angle of its joints, reaching a specific state might result to hard. We

therefore define m as a function that returns the position of the agent, and the goal

to be a position that the agent must reach. Moreover, we also experiment with m as

a function that returns the speed of the agent, in which case the goal is to reach that

speed. Similarly to [17] we test multiple possible rewards. The first one is the standard

goal utilized by HER, in which rg(s, a) = −1 ifthe goal is reached, and 0 otherwise.

This reward makes sense for environments with binary and sparse reward, which are

the ones at which HER is mainly aimed at. As already explained in Section 2.2.4,

the underlying idea of HER is to instill a hindsight thinking mechanism into an RL

agent by sampling extra sub-goals based on future states for each transition. Often

though, the reward signal of an environment can contain useful information that we

do not want to loose. We therefore also test two further alternatives in which instead

of substituting the standard environment reward with our goal-based one, we augment

the environment reward with the goal-based reward. The first augmentation tactic is

the sum of the two rewards, i.e.

r(s, a) = renv(s, a) + rg(s, a) (3.3)

If the scale of the environment reward and the goal-based reward do not match or the

environment reward is very dense, the final reward will likely be instable or dominated

by one of the two. Thus, we also test a proportional reward, more formally

r(s, a) = renv(s, a) + (rg(s, a) ∗ 0.1 ∗ renv(s, a)) (3.4)

Finally, we modify our value function, Q-value function and policy to take also the goal

as input.

35

3.5 Distributed SAC-LSP

Figure 3.4: The ape-x framework. Multiple executors (actors) generate experience,

and a central learner executes gradient descent and updates the network parameters.

Sourced from [4]

Our baseline has many good qualities like stability, good exploration and the possibility

to build hierarchies of policies in bottom-up fashion without the need of hand-designed

task-specific features. Nonetheless, it runs on a single processor, which limits its scal-

ability. We want want therefore to expand it to a distributed framework, so that it is

able to make better use not only of distributed systems, but also of classic multi-core

computers. We choose to use the ape-x framework [4] for multiple reasons. First,

this method yielded results that completely outperformed previous state-of-the-art al-

gorithms, showing that this method can scale up well even with distributed systems

composed of hundreds of machines. Furthermore, since it distributes the experience

collection, it brings enhanced data efficiency – a key factor for every successful DRL

method – with minimum computational overhead. This is a feature in which we are

particularly interested, since we aim to test this method on a single multi-core machine.

Finally, this method is designed to take further advantage of prioritized experience re-

play, and the improvements that yield combining this two methods have already been

documented [4]. This allows us to build this extension directly on top of Prioritized

SAC-LSP. The classic learning loop of an off-policy DRL algorithm consist of an agent

taking an action in the environment, adding the experience just gained to the ex-

36

perience buffer, then sampling a mini-batch of experience and using it calculate the

gradients and update the network parameters. The ape-x framework decouples this

process into two independent components, the executor and the learner. Figure 3.4

represents the separation of concerns introduced by the ape-x framework. Each execu-

tor is a process with an independent copy of the environment and access to the current

policy. Using the policy, the executor takes actions in the environment and adds the

experience gathered in a shared experience buffer. Multiple executors asynchronously

act in their own environment, all using the same policy and adding the experience to

the same experience buffer. The learner is instead a single process, which takes batches

of experience from the shared buffer and uses it to update the policy and value func-

tions networks. All the processes in the original ape-x framework run asynchronously,

which ensures that no single process will act as bottleneck of the framework. While

this is advantageous in a distributed system, in a single multi-core machine this can

significantly slow down the learning process. This is due to the fact that the many

executor processes tends to overcome the learner, which ends up being executed rarely.

To fix this, we introduce a synchronization mechanism that ensures that each executor

can take no more than one step per each learner step. This significantly reduces the

latency introduced by the ape-x framework, although also reducing the data collection.

To further boost the exploration, originally every executor should have a different ex-

ploration policy. We find this to not be strictly needed in our case, thanks to the

stochastic nature of SAC-LSP policies. Finally, as aforementioned in Section 2.2.5, we

take advantage of the errors calculated by each executor when evaluating its policy to

insert experience in the buffer with a good estimate of its priority, without requiring

extra computation. This ensures once again that the agent is able to scale well also to

very high numbers of executors.

37

Chapter 4

Implementation

In this chapter we enter into the details of how our baseline and its extensions have

been implemented. All our programs are written in Python 3.5 and all our models are

developed in Tensorflow [47, 48], an open source software library to develop machine

learning applications. Tensorflow uses multidimensional data arrays called tensors to

store variables, and data flow graphs to represent computations. In these graphs each

node is a mathematical operation, and the edges represent the path that the tensors

will follow during the computation. This architecture makes Tensorflow a powerful

and flexible tool, able to efficiently run computation on CPU, GPU and distributed

systems. Furthermore, it is currently the most used library for DRL applications,

therefore using it allows us to take inspiration from the multiple collections of open

source implementations of DRL algorithms available [49, 50, 51]. We use the rllab [50]

framework to develop and evaluate our DRL algorithms. This framework offers a set of

continuous control tasks, interfaces to develop and extends DRL algorithms, and full

compatibility with the other major DRL framework, OpenAI gym [52]. This allows us

to have access to a wide range of both discrete and continuous tasks – many of which

based on the ALE and the Mujoco environment – with the same interface.

38

4.1 SAC-LSP

The code of SAC-LSP was published online by the authors for reproducibility1. It is

built in Python and Tensorflow using the rllab framework. Due to the reliability of the

implementation and the extensibility that using rllab entails, our research uses such

implementation as baseline. The networks that represent the value functions are im-

plemented as a Multilayer Perceptron (MLP), feed-forward neural networks composed

entirely of fully connected layers. MLPs are often considered less powerful than CNNs,

mostly because their fully connected nature prevents them to scale to very large inputs.

When a DRL algorithm has to learn directly from pixels, like in the case of a task based

on ALE, CNNs are imperative to represent the policy and the value functions. Since

the observations in a Mujoco environment are composed of data relative to the agent’s

locomotion, though, we can use a MLP, which also results much faster to train. Both

the value function network and the Q-value function network are composed of two lay-

ers of 128 neurons each, plus a final layer with just one neuron. A ReLU non-linearity

is applied to the hidden layers, whereas a tanh non-linearity is applied to the output

layer. In the case of the Q-value function, which takes both an observation and an

action as input, the corresponding tensors are concatenated before being fed to the

first layer of the network. As illustrated in Figure 3.2, the observation embedding on

which the policy is conditioned is composed of an MLP with 2 fully connected layers of

128 neurons. The output layer has size equal to the degrees of freedom of the simulated

robot, e.g. 16 for the the ant model. The policy itself is represented with a real-NVP

bijector composed of two coupling layers. The Adam optimization algorithm is used

to execute the network parameters updates, with a learning rate of 3e-4. When calcu-

lating the TD error, we utilize a discount factor of 0.99, and the soft network updates

(recall Equation 2.12) have τ = 1e-2.

4.2 Prioritized SAC

The standard replay-buffer is composed of five numpy arrays of length 1M, one for

each element of the tuple (state, action, reward, next state, terminal). Therefore, re-

trieving experience i is as simple as creating the tuple (state[i], action[i], reward[i],

1https://github.com/haarnoja/sac

39

next observation[i], terminal[i]). The arrays are used like ring-buffers, which means

that once the array is full, each new transition will overwrite the oldest one. Imple-

menting prioritized experience replay with this data structure, although theoretically

possible, would entail a lot of latency. This is because for each batch sampled we would

need to search for the highest priorities in the buffer. Since we are using the propor-

tional priority defined in Equation 2.30, we can take advantage of a data structure

similar to a binary heap, the sum-tree. In a sum-tree, the internal nodes store the sum

of its children. We store the transition priorities in the leaf nodes. In this way, the root

node contains the sum of all the priorities, which must be always accessible to calculate

the probability to sample a transition (Equation 2.29). To sample a batch of k transi-

tions, we divide the range [0, ptotal] – where ptotal is the sum of all the priorities – into

k equal sub-ranges. We then uniformly sample one priority from each sub-range, and

using the index of those priorities we can retrieve the corresponding experiences from

the actual experience buffer. In this way we do not change the buffer storage tactic

(which is still based on numpy arrays that act as ring buffers), and by using a sum-tree

to hold the priorities and linking them to the corresponding stored transitions, we can

obtain O(logN) complexity for updates and sampling, and O(1) for insertion. We will

use an annealing parameter of β = 0.4, which will be annealed uniformly towards one

at each new epoch. Finally, we use a prioritization exponent of α = 0.5.

4.3 Categorical SAC-LSP

Figure 4.1: Left, output layer of the standard value functions. Right, output layer of

the categorical value functions. Sourced from [5]

40

Categorical RL’s value functions must return parametrized distributions. Since the

value functions are represented by MLPs, we modify the output layer to have a number

of outputs equal to the number of atoms of our parametrized distribution. Moreover,

we change the activation function of the output layer to be a softmax non-linearity. The

softmax function assigns decimal probabilities to each class in a multi-class problem,

therefore using it as activation function of our last layer outputs the probabilities of

each discrete support of our value function Z. Finally, we make sure to project the

target value functions on the supports of the current value functions, and modify the

gradient updates as shown in Equation 3.2 and Equation 3.1. Following the successful

results of [3, 5], we implement a distribution with 51 atoms. To set sensible values for

VMIN and VMAX , we first observe what values the value function outputs during the

training, and consequently chose VMIN = −100 and VMAX = 5000., which are the two

extremes observed.

4.4 HER SAC-LSP

To extend SAC-LSP to utilize HER, we need to modify our value function, Q-value

function and policy to take a goal as additional input. Our neural network already sup-

ports multiple inputs as explained in Section 4.1, therefore we just need to concatenate

the goals with the observations (and actions where appropriate) before feeding the input

to the first layer of the networks. To introduce the hindsight thinking mechanism, we

need to be able to sample new goals from future states. In order to do that, we create an

episode buffer – a list populated with (observation, action, reward, next observation,

terminal, goal) tuples throughout each episode, and cleared at its end. This allows us,

at the end of each episode, to re-visit each transition and sample new sub-goals from

a random state the agent will reach in the future. As mentioned in Section 3.4, the

observations in Mujoco are basically a list of information relative to the position and

speed for each of the agent’s joints. After inspecting the Mujoco environment class,

it is easy to derive the position or speed of the model from it. We can then define a

new goal as a random position or speed (using the same format used in the Mujoco

environment model) and sample new goals from future states easily. To ensure that

the goals that we create at the beginning of each episode assume reasonable results,

we first inspect the values that such parameters assume when simulating a previously

41

trained policy, and then sample only values inside the range of values observed. We

can now define the distance between the current state and our goal as the L2 norm

of the two vectors, i.e., the Euclidean distance between the two positions or the two

speeds. A goal is then considered to be reached if the L2 norm is lower than a certain

threshold. We sample k = 4 new goals for each transition, and use a threshold of 3.0

when using a speed-based goal and a threshold of 10.0 when using a position-based

goal.

4.5 Distributed SAC-LSP

Figure 4.2: Ape-x framework’s implementation in Tensorflow.

The ape-x framework is composed of many executor processes and one learner process.

No communication is needed between executors, whereas each executor must send the

experience collected to the shared experience buffer, and the learner must communicate

the parameters update to each executor. Figure 3.4 gives a good idea of the main

components of the framework and the main communications between such components.

Nonetheless, the actual implementation of the framework takes a slightly different form,

as illustrated in Figure 4.2. In Tensorflow, a “cluster” is a set of “tasks” that have access

to the same execution graph. Each task is a different process, and tasks can be grouped

by “jobs”. Our framework has two jobs, the worker and the parameter server. The

42

parameter server stores and updates the network parameters, furthermore all processes

communications pass through it. The workers are of two types, executor and learner.

Each executor has its own copy of the environment, and adds the experience it collects

to a priority queue held by the parameter server. The queue has fixed size, and an add

operation to a full queue will block the executor until there is enough space to execute

the insertion. The learner holds the experience buffer, which it populates by retrieving

minibatches from the priority queue. Since the learner is responsible for computing

the parameter updates, we want it to be able to run as frequently as possible. Hence,

since the dequeue operation is blocking when the priority queue is empty, we always

check if the queue has enough elements before trying to retrieve data from it. Workers

and learner do not need to program specific operations for updating their local copies

of the networks, as all network operations will automatically be synchronized with

the parameter server under the rug. The “global step” is a shared variable that gets

incremented every time there is a network update performed by the learner. Using that

variable, we are able to synchronize the executors so that they do no perform more

than one environment step per each network update. We utilize a total of 10 processes:

one parameter server, one learner, and eight executors.

43

Chapter 5

Evaluation

In this chapter, we present the experiments run to evaluate the four extensions we

tried on SAC-LSP. We first present some general information regarding the training

of the algorithm and the tasks that it has to solve. Then, we show the results of each

extension in comparison to our baseline, and present an interpretation explaining the

reasons behind the successes and the failures.

5.1 Training specifications

We run all our experiments on a single machine equipped with an Intel i7-7700K CPU

at 4.20GHz, 16 GB of DDRAM and a GPU nVidia GTX 1080. As explained in Section

4.1, we only utilize small networks in our algorithm. We tested running the base-

line on both CPU and GPU, and due to the small sizes of our networks, running all

computation on CPU resulted faster. Therefore, all the experiments presented in this

chapter have been run on the CPU unless explicitly stated otherwise. To compare the

performances of the different extensions, all of them will have to learn the same task.

Specifically, we choose the Mujoco ant environment. The ant agent is composed of 4

legs attached to the main torso, and each leg is composed by two joints.

44

Figure 5.1: Top: The ant agent in its environment. Bottom: Frames of the ant

performing locomotion. Sourced from [6]

The goal of the task is to learn locomotion, therefore rewards are given proportionally

to how fast the ant will run and how far it will reach. This environment has been

chosen because it offers a good trade-off between the task difficulty and acceptable

training times for a single machine with our hardware. As a matter of fact, while

the environment is challenging due to the complexity of the simulated robot – which

has 8 joints and 16 degrees of freedom –, it is still possible with our configuration to

train vanilla SAC-LSP for 10,000 epochs in roughly 12 hours. Each epoch is composed

of 1,000 learning steps. During a learning step, the algorithm takes an action in the

environment, adds the current transition to the experience buffer, samples a batch of

transitions from it and executes the networks updates. We sample batches of 128 tran-

sitions and update the target networks at each learning step. This does not influence

the stability of the program since we perform soft network updates (Equation 2.12).

45

After each epoch, we evaluate our agent by running one episode with the current pol-

icy. Furthermore, we save our model on disk each 1,000 epochs. These models can

later be used both for further evaluation and to train the second layer of the hierarchy.

Following the example of [2], we train the second layer of the hierarchy on a policy

trained for 6,000 epochs, and train it for further 4,000 epochs. This allows us to see the

improvement that the two layer hierarchy yields over the single layer hierarchy, while

maintaining the total number of epochs at 10,000.

5.2 Prioritized SAC-LSP

Figure 5.2: Graph of the total return of an episode (y axis) against the number of

epochs passed (x axis). The baseline is in gray, while prioritized SAC-LSP is in green.

Figure 5.2 plots the online evaluation produced during learning. This shows the im-

provement in performance of the algorithm with respect to the amount of training

performed. The online evaluation of the algorithm is subject to extremely strong os-

cillations, as can bee seen in the light-colored lines of the graph, which plot the real

learning curve of the algorithm. This is due to the stochastic nature of our policies, and

the fact that at each evaluation step we only run one episode. To have a more precise

evaluation of the learning curve, we should average the cumulative return of multiple

episodes at each evaluation step. However, this would introduce further latency in our

46

algorithm, and due to the time-constraints of this research we prefer to avoid that.

Instead, we use tensorboard’s inbuilt smoothing utility to have more readable learning

curves, and the results are the full-colored lines of Figure 5.2. We can notice how pri-

oritized SAC-LSP is comparable to the baseline, which tells us that the optimization is

able to effectively learn the task and that further evaluation will probably yield similar

results. Due to the promising results of the single-layer prioritized SAC-LSP shown in

Figure 5.2, we also train train a second layer of the policy.

Figure 5.3: Graph of the total return of an episode (y axis) against the number of

epochs passed (x axis). Single layer prioritized SAC-LSP is in green, while the second

layer of the hierarchy is in light blue.

In Figure 5.3 we can see that training the second level of the hierarchy yields moderate

improvements. The light blue curve starts at 6,00 epochs since it uses the policy

trained by prioritized SAC-LSP as lower level policy. This helps to visualize how much

a simple two-level hierarchy – in which the lower-level policy is trained for 6,000 epochs

and the higher-level policy is trained for 4,000 epochs – improves the performances of

a single-level hierarchy trained for 10,000 epochs. In other words, the improvements

that we achieve by training the two-level hierarchy comes at no extra time compared

to training a single-level hierarchy for the same total amount of epochs. To achieve a

more accurate estimation of the performance of our algorithm, we evaluate the final

47

models for 200 episodes and average their cumulative rewards. Table 5.1 shows the

results of these tests. Prioritized SAC-LSP with a single layer is able to improve the

performance of the corresponding baseline by 35%, and the 2-level hierarchy boosts

the performances even further.

Table 5.1: Averaged cumulative reward of SAC-LSP with single and 2-layer policies,

and the respective prioritized variants. Below, the relative improvement in comparison

to the baseline
SAC-LSP Prioritized SAC-LSP 2L SAC-LSP 2L Prioritized SAC-LSP

Avg. reward 3157.40 4278.88 4255.05 4821.40

Rel. impr. 1 1.36 1.35 1.53

5.3 Categorical SAC-LSP

Figure 5.4: Graph of the total return of an episode (y axis) against the number of

epochs passed (x axis). The baseline is in gray, while categorical SAC-LSP is in green.

Categorical SAC-LSP, as clear from Figure 5.4, fails to learn the task. Throughout

the training, the algorithm’s performance always remains in the range (0, 500). This

is the same range that a randomly initialized policy would achieve, and we can notice

48

from the graph that the performance remains stable throughout the 10,000 epochs of

learning. It is clear that our naive implementation of categorical SAC-LSP is not able

to solve the task. To try to understand why, we take a look at the values that the

Q-value function assumes during training.

Figure 5.5: Standard deviation of Q-value function against the number of epochs of

categorical SAC-LSP.

49

Figure 5.6: Average of Q-value function against the number of epochs of categorical

SAC-LSP.

Figure 5.7: Standard deviation of Q-value function against the number of epochs of

categorical SAC-LSP.

50

Figure 5.8: Average of Q-value function against the number of epochs of SAC-LSP.

Normally, both the standard deviation and the average of the Q-value function have a

stable growth, assuming values in the same order of magnitude, as visible in Figure 5.7

and Figure 5.8. This is expectable, since the Q-value function outputs the expected

return from taking a specific action and the following the current policy from the next

state onwards. This means that while the policy improves, the Q-value function will

predict higher and higher values, since following a better policy entails obtaining a

higher cumulative reward. Nevertheless, with categorical SAC-LSP such values suffer

extreme fluctuations, and differ by up to three orders of magnitude as can be seen in

Figure 5.5 and Figure 5.6. If the algorithm was simply not able to learn because of the

complexity of the problem, the predicted expected returns would have remained in a

range similar to that of the average cumulative rewards. Instead, the values that the

Q-value function returns tells us that the loss formulated in Equation 3.1 is wrong, i.e.,

the Q-value function updates do not converge towards the optimal Q-value function.

Although we present the results of the Q-value function, inspecting the value function

yields the same results. It is important to clarify that this results do not preclude

51

maximum entropy frameworks and categorical frameworks to be effectively combined.

Deriving the soft bellman updates from scratch, taking into consideration that we are

modeling categorical value functions and that we can express their difference in terms

of KL divergence, is a potential approach to solve the problems present in our design.

5.4 HER SAC-LSP

Figure 5.9: Graph of the total return of an episode (y axis) against the number of

epochs passed (x axis). The baseline is in gray, binary speed-based HER SAC-LSP

is in orange, and proportional speed-based HER SAC-LSP is in red. For readability,

only the learning curves of speed-based goals models are plotted. The learning curves

of position-based goals models are comparable to their speed-based counterparts, and

their performance is reported in Table 5.2

HER is the technique for which we experiment the most. As a matter of fact we try

two types of goal. The first is a position-based goal, which means that the goal of the

agent is to reach a specific position. The second goal is speed-based, which means that

the goal of the agent is to move at a certain speed. Furthermore for each goal type we

test a binary reward as expected by the UVFA framework, a sum-augmented reward as

defined in Equation 3.3 and a proportionally-augmented reward as defined in Equation

3.4. Although HER modifies the reward signal of the task, during the evaluation we

52

use the standard environment reward in order to be able to compare the performances

of HER SAC-LSP with our baseline.

With both goal types, we find the algorithm to be unable to learn locomotion when

using a binary reward. Simulating the policy learned using the position-based reward,

we notice that at each episode the agent simply takes one step and then stalls. From

this behavior we can infer that the combination of the complexity of the task and the

sparsity of the reward introduce a bias towards the first states that the agent visits in

the environment. Due to the complexity of the task, and considering that an episode

terminates if the agent falls, the first episodes last a very small amount of time. More-

over due to the sparsity of the reward, learning how to take the first steps is even

harder, which means the amount of short episodes we will experience will be higher. If

to these two factors we add the hindsight thinking mechanism, which re-samples extra

goals from future states, this causes the algorithm to receive rewards signals almost

only from the earliest states, thus introducing a bias. In the case of the goal-based

reward then, the algorithm will learn to reach an very close position and stay there,

as already mentioned. In the case of the speed-based reward, it will receive rewards

signals almost only from speeds close to zero, so the agent will not learn to maximize

speed and ultimately learns to just stand still. It is interesting to note how these results

are very different from those of categorical SAC-LSP. As a matter of fact, while cate-

gorical SAC-LSP has a wrong formulation which prevents the algorithm from learning

an effective policy, in this case the algorithm is able to actually learn but gets stuck

on a local minimum at the earliest stages. It is possible that further fine-tuning of

the threshold hyper-parameter and the goal generation strategy might help to solve

the problem, but we argue that this partially defies one of the main objectives of this

method, which is to be able to learn in difficult environments without the need to to

engineer complicated task-specific reward functions.

The rewards we define augmenting the environment reward are able to learn loco-

motion to a certain degree, but yield considerably lower performances compared to

vanilla SAC-LSP. We argue that this is because the reward augmentation introduced is

not expressive enough to justify the increase in complexity that having to use the goal

implies. As a matter of fact, utilizing a goal increases the dimension of the input of all

53

the networks, but still gives very sparse rewards. In an environment like Mujoco ant,

where the standard reward is already dense and expressive, the addition of the goal

based framework increases the complexity of the task without bringing enough extra

information to justify it. In conclusion then, we see that HER only deteriorates the

performance of our algorithm in the environment tested. Nonetheless, this does not

preclude HER SAC-LSP to yield better results in a different environment, especially if

it is characterized by binary and sparse reward. The averaged cumulative return of an

episode for each of the variations proposed can be seen in Table 5.2

Table 5.2: Averaged cumulative reward of HER SAC-LSP variants

HER Binary Sum-augmented Proportionally-augmented

Position-based 25.05 1020.32 1345.33

Speed-based 32.85 1146.52 1595.57

5.5 Distributed SAC-LSP

Figure 5.10: Graph of the total return of an episode (y axis) against the number of

epochs passed (x axis). The baseline is in gray, while distributed SAC-LSP is in blue.

The last optimization we test is distributed SAC-LSP. We can see from Figure 5.6 that

its learning curve is very close to that of the baseline, which tells us that the algorithm

54

is able to learn and achieve results comparable to that of the baseline. We therefore

choose to test distributed SAC-LSP on our standard 2-level hierarchical policy, as

already done in Section 5.2.

Figure 5.11: Graph of the total return of an episode (y axis) against the number of

epochs passed (x axis). Single-layer distributed SAC-LSP is in blue, while the 2-layer

hierarchy distributed SAC-LSP is in purple.

The results of training a higher-level policy starting from the 6,000th epoch can be

seen in Figure 5.11. Once again, the hierarchy introduction helps to further boost the

performances of the algorithm. As mentioned before, due to the type of online evalu-

ation performed, the learning curve plotted above is mainly an indication of whether

the algorithm is able to learn and a rough estimate of how well. To evaluate the actual

performance of the algorithm then, we simulate the trained policies and average the

cumulative reward of 200 episodes.

Table 5.3: Averaged cumulative reward of SAC-LSP with single and 2-layers policies,

and the respective distributed variants. Below, the relative improvement in comparison

to the baseline
SAC-LSP Distributed SAC-LSP 2L SAC-LSP 2L Distributed SAC-LSP

Avg. reward 3157.4 4425.76 4255.0 5173.40

Rel. improv. 1 1.40 1.35 1.64

55

Distributed SAC-LSP is able to further boost the results obtained by prioritized SAC-

LSP, albeit just slightly. This comes at the cost of an increased latency of the training,

which takes roughly three times the wall-clock time required to train the baseline.

Nonetheless, this is still a very good result especially if we consider that instead of

running the algorithm asynchronously with hundreds of executors on a distributed

system, we are running 8 executors synchronously on a single machine. This means that

the simple collection of 8 times the normal amount of experience yields an improvement

between 3% and 7% respect to prioritized SAC-LSP.

5.6 Comparison

We evaluated 4 different extensions against the baseline. Of those four extensions,

one failed to learn the desired task (categorical SAC-LSP), one yielded poor results

(HER SAC-LSP) and two where able to improve the results over the baseline. Our

research has to cope with two main limitations. The first one is the hardware, which

being limited to a single machine prevents us from training more than one model at a

time, and in the case of distributed SAC-LSP introduces a considerable latency. The

second limitation comes from the time-constraints of this research. Researching ma-

chine learning requires time for experimentation and parameter tuning. Although the

latter is slightly less important in DRL since models are expected to be able to gen-

eralize to multiple tasks without the need of fine-tuning, a certain level of parameter

research is still needed. All the models, baseline included, suffered from extreme os-

cillations during the training phase. This is unexpected, since SAC-LSP is presented

as a “surprisingly stable” ([2]) method. Furthermore, the performance of a model can

be strongly influenced by the seed used to randomly initialize the network parameters.

In [2], the results reported are the mean of the performance of the model trained with

5 different random seeds. Performing such thorough analysis was infeasible for this

research, therefore we only train each model once. Furthermore, to avoid parameter

research, for each hyperparameter we either use the most common value in the liter-

ature, or we use simple heuristics to choose sensible values. An example of the latter

method is how we chose the the values of VMIN and VMAX in Section 4.3. In Table 5.4,

we summarize the performance of each model we trained.

56

Table 5.4: List of all the trained models performance and relative improvement in

comparison to the baseline. In the HER SAC-LSP entries, the first letter indicates if

the model uses a position-based goal (P.) or a speed-based goal (S.), whereas the second

letter indicates if the model used a binary (B.), sum-augmented (S.) or proportionally-

augmented (P.) reward.

Average reward Rel. improvement

SAC-LSP 3157.4 1

2L SAC-LSP 4255.05 1.35

Prioritized SAC-LSP 4278.88 1.36

2L Prioritized SAC-LSP 4821.40 1.53

Categorical SAC-LSP 237.02 0.08

P.B. HER SAC-LSP 25.05 0.008

P.S. HER SAC-LSP 1020.32 0.32

P.P. HER SAC-LSP 1345.33 0.42

S.B. HER SAC-LSP 32.85 0.01

S.S. HER SAC-LSP 1146.52 0.36

S.P. HER SAC-LSP 1595.57 0.51

Distributed SAC-LSP 4425.76 1.40

2L Distributed SAC-LSP 5173.40 1.64

Our final model is distributed SAC-LSP, which combines prioritized experience replay

with a distributed experience collection mechanism. The single-layer distributed SAC-

LSP model outperforms the single-layer baseline by 40%, while two-layer distributed

SAC-LSP outperforms the two-layer baseline by 22%.

57

Chapter 6

Conclusion

This chapter concludes the dissertation by summarizing the main contributions pre-

sented in this research. We then discuss possible future works, outlining what could

be done to continue the research and further improve the model we created.

6.1 Main Contributions

In this research we studied the importance of deep reinforcement learning, explaining

the advantages that studying HDRL can bring to the field. We then chose a flexible and

powerful HDRL algorithm, which can create hierarchies of policies in bottom-up layer-

wise fashion, composed of an arbitrary number of layers. We use SAC-LSP, the HDRL

algorithm just mentioned, as a baseline for four different extensions. The extension we

tested are all orthogonal to each other, allowing to potentially combine them all in a

unique algorithm. Furthermore, to our knowledge such techniques have had little to

no application to HDRL algorithms so far. Our main contribution is distributed SAC-

LSP, an algorithm that extends the baseline with prioritized experience replay and

distributed experience collection. This algorithm is obtained by applying a slightly

modified version of the ape-x framework, where the number of executors running is

very limited, there is a synchronization mechanism that avoids the executors to take

more than one environment step per learning step, and the algorithm runs on a single

multi-core machine. Although our implementation is limited respect to the original

ape-x framework, distributed SAC-LSP is able to outperform vanilla SAC-LSP by up

58

to 40% in our tests. The other two optimization tested, namely categorical DRL and

HER, do not make it into our final model since they fail to improve over the baseline’s

performance. Nonetheless, our analysis of the results leaves margin for further study

of how to improve on those two optimizations, as we will discuss in further details in

Section 6.2. In particular, our study of HER tried to apply it to an environment with

a very different reward signal respect to the one this kind of technique was originally

meant for. We prove that HER if applied to very complex tasks and with little fine-

tuning can introduce a bias towards the first states visited that ultimately makes it

get stuck on a local minimum. Furthermore, trying to expand HER to be a auxiliary

reward mechanism, we propose two different reward augmentation tactics. HER SAC-

LSP with environment reward augmentation are able to surpass the local minimum on

which binary HER SAC-LSP got stuck, but ultimately even the best performing vari-

ation – namely HER SAC-LSP with speed-based goals and proportionally-augmented

reward – yields results 49% lower to that of vanilla SAC-LSP.

6.2 Future Work

Distributed SAC-LSP is our main contribution, and although it is able to increase the

performance of our baseline, most of the improvement is due to the use of prioritized

experience replay as it is clear by comparing Table 5.1 with Table 5.3. As matter of

fact the difference between prioritized SAC-LSP and distributed SAC-LSP is between

3% and 7%. We speculate that this is due to the modifications we applied to the ape-x

framework, which effectively limit the full potentiality of the method. Although such

modifications resulted necessary to train the algorithm on our configuration and within

our time-constraints, they can easily be lifted when using a distributed system. There-

fore, one of the easiest yet more interesting directions to pursue in the future would be

to eliminate such limitation and test the full potentiality of distributed SAC-LSP on a

distributed system.

In this research we tried a naive application of the categorical DRL framework to

SAC-LSP, which ultimately led to a wrong formulation of the loss functions. Never-

theless, categorical DRL remains a very promising technique and trying to combine

it with the maximum entropy framework on which SAC-LSP is based remains a very

59

interesting problem. A possible approach to do so would be to follow the formulation

of the maximum entropy framework as presented in [36, 37], but taking into account

from the beginning that the value functions we want to learn are categorical and that

the distance between two distributions can be defined as the cross-entropy or the KL

divergence between the distributions.

Although HER is the technique with which we experiment the most, it still leaves

margin for further study. Firstly, it would be interesting to test HER SAC-LSP on

more suited environments, like the robot-arm tasks used in [17] and the maze nav-

igation task used in [2]. Furthermore, HER is particularly interesting if applied to

HDRL methods, as proven in HAC[18], a recent HDRL algorithm that applies the

hindsight thinking mechanism of HER not only to goals, but also to actions generated

by a higher-level policy. Applying a similar idea to SAC-LSP is certainly a promising

direction to pursue in the future.

Finally, it would be interesting to test the performance of both our baseline and

distributed SAC-LSP on an environment like ALE. Atari environments in fact are

substantially different from Mujoco environments, since their action space is discrete

and their observation space are the game frames. Moreover, games like Montezuma’s

Revenge are still a challenge to DRL algorithms, due to the sparsity of the reward and

the amount of exploration that the algorithm must perform. As mentioned in Section

1.1, HDRL algorithms are expected to improve the performances in such environments,

and both stochastic policies and distributed DRL improve the action-state exploration.

This makes distributed SAC-LSP a particularly interesting algorithm to test on this

kind of environments.

60

Bibliography

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level

control through deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529,

2015.

[2] T. Haarnoja, K. Hartikainen, P. Abbeel, and S. Levine, “Latent space policies for

hierarchical reinforcement learning,” arXiv preprint arXiv:1804.02808, 2018.

[3] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos, “Distributional rein-

forcement learning with quantile regression,” CoRR, vol. abs/1710.10044, 2017.

[4] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. Van Has-

selt, and D. Silver, “Distributed prioritized experience replay,” arXiv preprint

arXiv:1803.00933, 2018.

[5] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, A. Mul-

dal, N. Heess, and T. Lillicrap, “Distributed distributional deterministic policy

gradients,” arXiv preprint arXiv:1804.08617, 2018.

[6] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel, “High-

dimensional continuous control using generalized advantage estimation,” CoRR,

vol. abs/1506.02438, 2015.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint

arXiv:1312.5602, 2013.

61

[8] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering

the game of go with deep neural networks and tree search,” nature, vol. 529,

no. 7587, p. 484, 2016.

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

p. 436, 2015.

[10] P.-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture.,” in AAAI,

pp. 1726–1734, 2017.

[11] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is all you need:

Learning skills without a reward function,” CoRR, vol. abs/1802.06070, 2018.

[12] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and

K. Kavukcuoglu, “Feudal networks for hierarchical reinforcement learning,” arXiv

preprint arXiv:1703.01161, 2017.

[13] C. Florensa, Y. Duan, and P. Abbeel, “Stochastic neural networks for hierarchical

reinforcement learning,” CoRR, vol. abs/1704.03012, 2017.

[14] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney,

D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining improvements

in deep reinforcement learning,” arXiv preprint arXiv:1710.02298, 2017.

[15] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective on

reinforcement learning,” CoRR, vol. abs/1707.06887, 2017.

[16] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,”

arXiv preprint arXiv:1511.05952, 2015.

[17] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. Mc-

Grew, J. Tobin, O. P. Abbeel, and W. Zaremba, “Hindsight experience replay,”

in Advances in Neural Information Processing Systems, pp. 5048–5058, 2017.

[18] A. Levy, R. P. Jr., and K. Saenko, “Hierarchical actor-critic,” CoRR,

vol. abs/1712.00948, 2017.

62

[19] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,

and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”

in International conference on machine learning, pp. 1928–1937, 2016.

[20] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning

environment: An evaluation platform for general agents,” Journal of Artificial

Intelligence Research, vol. 47, pp. 253–279, jun 2013.

[21] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based

control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pp. 5026–5033, Oct 2012.

[22] R. Bellman, “The theory of dynamic programming,” tech. rep., RAND Corp Santa

Monica CA, 1954.

[23] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4,

pp. 279–292, 1992.

[24] M. Riedmiller, “Neural fitted q iteration–first experiences with a data efficient neu-

ral reinforcement learning method,” in European Conference on Machine Learning,

pp. 317–328, Springer, 2005.

[25] G. Tesauro, “Temporal difference learning and td-gammon,” Communications of

the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[26] J. N. Tsitsiklis and B. Van Roy, “Analysis of temporal-diffference learning with

function approximation,” in Advances in neural information processing systems,

pp. 1075–1081, 1997.

[27] L.-J. Lin, “Reinforcement learning for robots using neural networks,” tech. rep.,

Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, 1993.

[28] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double

q-learning.,” in AAAI, vol. 2, p. 5, Phoenix, AZ, 2016.

[29] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Freitas,

“Dueling network architectures for deep reinforcement learning,” arXiv preprint

arXiv:1511.06581, 2015.

63

[30] R. A. Howard, “Dynamic programming,” Management Science, vol. 12, no. 5,

pp. 317–348, 1966.

[31] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient

methods for reinforcement learning with function approximation,” in Advances in

neural information processing systems, pp. 1057–1063, 2000.

[32] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist

reinforcement learning,” Machine learning, vol. 8, no. 3-4, pp. 229–256, 1992.

[33] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deter-

ministic policy gradient algorithms,” in ICML, 2014.

[34] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,

and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv

preprint arXiv:1509.02971, 2015.

[35] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy

optimization,” in International Conference on Machine Learning, pp. 1889–1897,

2015.

[36] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning with

deep energy-based policies,” arXiv preprint arXiv:1702.08165, 2017.

[37] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor,” arXiv

preprint arXiv:1801.01290, 2018.

[38] M. Rowland, M. G. Bellemare, W. Dabney, R. Munos, and Y. W. Teh, “An

analysis of categorical distributional reinforcement learning,” arXiv preprint

arXiv:1802.08163, 2018.

[39] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value function ap-

proximators,” in International Conference on Machine Learning, pp. 1312–1320,

2015.

[40] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell,

J. Schneider, J. Tobin, M. Chociej, P. Welinder, V. Kumar, and W. Zaremba,

64

“Multi-goal reinforcement learning: Challenging robotics environments and re-

quest for research,” CoRR, vol. abs/1802.09464, 2018.

[41] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. Pan-

neershelvam, M. Suleyman, C. Beattie, S. Petersen, et al., “Massively parallel

methods for deep reinforcement learning,” arXiv preprint arXiv:1507.04296, 2015.

[42] N. Heess, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang,

A. Eslami, M. Riedmiller, et al., “Emergence of locomotion behaviours in rich

environments,” arXiv preprint arXiv:1707.02286, 2017.

[43] A. V. Clemente, H. N. Castejón, and A. Chandra, “Efficient parallel methods for

deep reinforcement learning,” arXiv preprint arXiv:1705.04862, 2017.

[44] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz, “Ga3c: Gpu-based

a3c for deep reinforcement learning,” CoRR abs/1611.06256, 2016.

[45] K. Shirahata, Y. Coppens, T. Fukagai, Y. Tomita, and A. Ike, “Gunreal: Gpu-

accelerated unsupervised reinforcement and auxiliary learning,” International

Journal of Networking and Computing, vol. 8, no. 2, pp. 408–423, 2018.

[46] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real NVP,”

CoRR, vol. abs/1605.08803, 2016.

[47] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, G. Irving, M. Isard, et al., “Tensorflow: a system for large-scale machine

learning.,” in OSDI, vol. 16, pp. 265–283, 2016.

[48] S. S. Girija, “Tensorflow: Large-scale machine learning on heterogeneous dis-

tributed systems,” 2016.

[49] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Rad-

ford, J. Schulman, S. Sidor, and Y. Wu, “Openai baselines.”

https://github.com/openai/baselines, 2017.

[50] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking

deep reinforcement learning for continuous control,” CoRR, vol. abs/1604.06778,

2016.

65

[51] M. Lapan, Deep Reinforcement Learning Hands-On: Apply Modern RL Methods,

with Deep Q-Networks, Value Iteration, Policy Gradients, TRPO, AlphaGo Zero

and More. Packt Publishing, Limited, 2018.

[52] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba, “Openai gym,” 2016.

66

Appendix

The original code of SAC-LSP can be found at this link:

https://github.com/haarnoja/sac

The implementation of our research, can be found at the following link:

https://github.com/Stefa-no/Extending-SAC-LSP

67

Acronyms

AGI Artificial General Intelligence.

AI Artificial Intelligence.

ALE Atari Learning Environment.

CNN Convolutional Neural Network.

DDPG Deep Deterministic Policy Gradients.

DPG Deterministic Policy Gradient.

DRL Deep Reinforcement Learning.

HDRL Hierarchical Deep Reinforcement Learning.

HER Hindsight Experience Replay.

i.i.d. independent and identically distributed.

IS Importance Sampling.

MDP Markov Decision Process.

MLP Multilayer Perceptron.

POMDP Partially Observable Markov Decision Pro-

cess.

real-NVP real-valued non-volume preserving.

RL Reinforcement Learning.

SAC Soft Actor-Critic.

SAC-LSP Soft Actor-Critic with Latent Space Policies.

TD Temporal Difference.

UVFA Universal Value Function Approximators.

68

