
An Evaluation Of Features For Pose Estimation And

Its Application to Free Viewpoint Video

Corentin Térence Eloi Chéron

A dissertation submitted to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Intelligent Systems)

Supervisors: Dr Konstantinos Amplianitis and Prof Aljosa Smolic

August 2018

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Corentin Térence Eloi Chéron

28th August 2018

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Corentin Térence Eloi Chéron

28th August 2018

Acknowledgments

I would like to thank my academic supervisor, Dr Aljosa Smolic, for the support, the

precious feedback and the inspiration throughout my dissertation.

I am heartily thankful to my advisor Dr Konstantinos Amplianitis for his advice

throughout the year, for pushing me further and for guiding me through the CVPR

conference in Salt Lake City.

I would also like to thank my second reader, Dr Gerard Lacey, for his constructive

feedback.

Many thanks to the V-SENSE laboratory and the Volograms company for provid-

ing insights around free-viewpoint videos and a dataset with the associated camera

poses.

And finally, I would like to thank my family and friends for their continued sup-

port.

Corentin Térence Eloi Chéron

University of Dublin, Trinity College
August 2018

iii

An Evaluation Of Features For Pose Estimation And

Its Application to Free Viewpoint Video

Corentin Térence Eloi Chéron, Master of Science in Computer Science

University of Dublin, Trinity College, 2018

Supervisors: Dr Konstantinos Amplianitis and Prof Aljosa Smolic

As consumers start using augmented and virtual reality with personal devices, new
ways of creating high-quality 3D textured videos (free viewpoint videos) become ne-
cessary. Smartphone video clips of an actor from different viewpoints can affordably
produce FVV even in outdoor environments. However, the cameras need to be accur-
ately localised, and current methods require up to twelve cameras with small baseline
angles to produce high-quality models. In this dissertation, we evaluate the capacity of
different hand-crafted and learned features to estimate relative 3D pose, a critical step
in the Structure-from-Motion reconstruction process. We developed a unified work-
flow based on COLMAP to compare those features with the highest rigour and match
the FVV production pipeline. We evaluate various configurations for each of the SIFT,
ASIFT, Sift-Affine, LIFT and SuperPoint features against new wide-viewpoint datasets
with varying geometric complexity. The results show that the traditional hand-crafted
features SIFT and SIFT-Affine are the most efficient to estimate wide-baseline cam-
era poses regarding the number of keypoints. SuperPoint overtakes LIFT and reaches
state-of-the-art performances in some configurations and shows an impressive match
ratio in all the situations but fails to register cameras with the widest baseline. When
applied to an FVV dataset, SIFT provides the best speed due to its refined imple-
mentation. Using the latest work in semantic segmentation, we evaluate the effect of
matching feature regrouped semantically and show an improvement in the pose accur-
acy. The improvement observer from LIFT to SuperPoint and recent work on auxiliary
learning applied to camera relocalisation show good promises in designing a new deep
learning feature for wide-baseline applications.

Contents

Acknowledgments iii

Abstract iv

List of Tables viii

List of Figures ix

List of Abbreviations xii

Chapter 1 Introduction 1

Chapter 2 Related Work 4
2.1 Free-viewpoint videos . 4

2.1.1 Definition . 4
2.1.2 Applications . 5
2.1.3 Free viewpoint video creation pipeline 6

2.2 Camera pose estimation . 9
2.2.1 Pinhole camera models . 9
2.2.2 Pose estimation . 10
2.2.3 Structure from Motion . 12

2.3 Features . 13
2.3.1 Keypoints and descriptors . 13
2.3.2 Hand-crafted features . 13
2.3.3 Learned features . 16

2.4 CNN for pose estimation . 19

v

2.4.1 Known environment . 19
2.4.2 On new scenes . 20

Chapter 3 Method 21
3.1 Unified workflow . 21

3.1.1 COLMAP workflow . 21
3.1.2 Feature extraction and matching 22

3.2 Semantic segmentation . 25
3.2.1 Related work . 25
3.2.2 Improving local features . 26

3.3 Matches viewer . 26
3.4 Pose estimation using COLMAP . 27

3.4.1 Ground truth . 27
3.4.2 Evaluation . 28

3.5 Metric extraction . 29
3.5.1 Pose Error . 29
3.5.2 Matches . 30

3.6 Datasets . 31
3.6.1 Public dataset . 31
3.6.2 Own datasets . 31

Chapter 4 Results 38
4.1 Evaluation parameters . 38

4.1.1 Features . 38
4.1.2 Datasets and reference camera 39

4.2 Comparing SIFT implementations . 39
4.3 Wall dataset . 41
4.4 All feature configurations . 42

4.4.1 Match ratio . 42
4.4.2 Orientation error . 43
4.4.3 Maximum angle estimated . 43

4.5 Semantic classification . 44
4.6 Applications to FVV . 44

vi

4.6.1 FVV dataset . 44
4.6.2 Evaluation . 45

Chapter 5 Limitations & future work 53
5.1 Limitations . 53

5.1.1 Control of the number of keypoints 53
5.1.2 Orientation error . 54
5.1.3 Camera parameters . 54

5.2 Discussion . 55
5.3 Future work . 55

Chapter 6 Conclusion 56

vii

List of Tables

3.1 A summary of the features used in this study. 25

4.1 The detailed list of all the feature configurations evaluated in this study. 40

viii

List of Figures

2.1 The Structure-from-Motion pipeline used by COLMAP from [1]. 12
2.2 The scaling steps used by SIFT to generate scale invariant features [2]. 14
2.3 A geometric interpretation of affine decomposition from [3]. 15
2.4 Comparison of the Gaussian and KAZE scale space. 16
2.5 The LIFT feature extraction pipeline [4]. 18
2.6 The deep network architecture used by SuperPoint from [5]. 18
2.7 The novel method used for training the SuperPoint deep network [5]. . 19

3.1 The unified pose estimation workflow base on COLMAP. 33
3.2 The Graphical User Interface developed to visualise features and their

matches. 34
3.3 An example of a match matrix resulting of the exhaustive matches. . . 34
3.4 A scene representative of all the datasets that we study for Free-Viewpoint

Video. 35
3.5 The match matrix obtained is the evaluation of features. 35
3.6 The 3D representation of the Fountain dataset from [6]. 36
3.7 The Wall (left) and Ivy datasets. 36
3.8 The Statue dataset is a set of 110 frames of a statue. 37

4.1 Comparison of the SIFT implementations in COLMAP and OpenCV. . 41
4.2 Metrics obtained by running one configuration on the Wall-close dataset. 46
4.3 The match ratio for all the feature configurations. 47
4.4 The relative orientation error as functions of the number of keypoints. . 47
4.5 The relative orientation error as functions of the maximum baseline. . . 48

ix

4.6 The maximum baseline angle correctly estimated as a function of the
number of keypoints. 48

4.7 Examples of the semantic segmentation of two images from two of the
four datasets. 49

4.8 The effect of performing semantic classification of keypoints before the
matching averaged on all the datasets. 50

4.9 The first frames of the twelve hand-held smartphone videos from the
FVV dataset Rafa Dance. 51

4.10 The sparse 3D reconstruction of the five first frames of the Rafa Dance
dataset. 51

4.11 The pose estimation results on the FVV dataset Rafa Dance. 52

x

List of Abbreviations

AR Augmented Reality

ASIFT Affine-SIFT

CNN Convolutional Neural Network

CPU Central Processing Unit

CVPR Computer Vision and Pattern Recognition conference

DTU Technical University of Denmark

EPnP Efficient Perspective-n-Point

FVV Free-Viewpoint Video

GPU Graphics Processing Unit

IR Infrared

LIFT Learned Invariant Feature Transform

MPEG Motion Picture Experts Group

RANSAC Random Sample Consensus Scheme

RGB Red Green Blue

SfM Structure-from-Motion

SIFT Scale-Invariant Feature Transform

xi

SLAM Simultaneous Localisation and Mapping

SQL Structured Query Language

TF TensorFlow

TV Television

USB Universal Serial Bus

VR Virtual Reality

xii

Chapter 1

Introduction

Once reserved for professional applications, augmented reality (AR) is shifting to
broader consumer usage. New headsets and smartphones are developed to allow the
real-time rendering of 3D content inside real environments. Instead of being designed in
computed software, real persons or objects can be captured to create a type of realistic
3D videos called Free-Viewpoint Video (FVV).

Traditional techniques to create this type of content with high quality require an ex-
pensive acquisition studio with numerous camera rigs and expensive hardware for ac-
quiring and processing the content [7]. Recently, promising work [8] achieved excellent
results in creating FVV in outdoor environments using only hand-held smartphones.
In their set-up, up to a dozen video clips surrounding an actor are processed into
FVV. The creation of FVV by simple smartphone video clip could allow the public to
contribute by creating virtual content video games, social media or upcoming virtual
worlds.

One of the first steps in creating FVV from hand-held video clips is to compute the
relative pose of the cameras. This step is required to ensure quality in the triangulation
process used to create the 3D texture models using multi-stereo vision. The traditional
method to compute the relative pose of two cameras relies on finding geometric cor-
responding points in the two images. These correspondences are then processed using
different geometric algorithms to estimate and refine the camera poses as well as the

1

CHAPTER 1. INTRODUCTION

3D locations of the correspondences in a process called Structure-from-Motion (SfM).
SfM can estimate the pose and calibration of smartphone cameras as long as all the
images have enough 2D-to-2D points correspondences with other images.

The 2D correspondences between images are usually found using local features ex-
tracted from the images. Those features are composed of a keypoint that describe
the location of the feature and a descriptor that describe the local area around the
keypoint. Features are identified in an image in areas of significant contrast change
like corners or edges. Good feature extraction algorithms can extract keypoints from
multiple images of the same scene corresponding to the same 3D locations even if the
photos are taken from different viewpoints. In the same way, feature descriptors are
designed to be as invariant as possible to changes in the camera pose or the environ-
ment. Correspondences between two images are created by pairing features that share
similar descriptors.

This research will evaluate the most recent hand-crafted features and see how they
compare to the learned features developed using deep learning. Unlike previous articles,
this study will focus on camera pose estimation in wide-baseline scenarios (up to 180°)
using smartphone pictures. Current FVV creation methods require up to a dozen
cameras to reconstruct high-quality 3D models and finding new ways of estimating
wide-baseline camera poses with high accuracy could lead to a reduction of this number
of viewpoints. This study could also help find optimal usages of the currently available
features in term of quality and computing time.

Our evaluation will compare multiple hand-crafted and learned features over a wide
range of test datasets and real FVV smartphone videos. We will study the influence
of the number of keypoints for each feature on the pose accuracy, the widest baseline
angle that can be correctly estimated and the total processing time. Our goal is to
find whether learned features can provide better performances in the pose estimation
of FVV compared to hand-crafted ones.

We will construct a unified workflow that allows the fair comparisons of multiple ex-
isting features. We will evaluate them on newly acquired datasets that provide very
wide-baseline angles and test our results on a real FVV dataset provided by the V-
SENSE laboratory and the Volograms company.

2

CHAPTER 1. INTRODUCTION

This dissertation is structured as follow:

After the introduction to FVV and its applications, the second chapter details the
photogrammetric techniques for pose estimation and the most recent features used in
this evaluation. Some detail on the latest advances in end-to-end pose estimation using
deep learning are also presented.

The third chapter outlines the unified workflow that allows the precise comparison of
features in the different configurations and introduces the mathematical definition of
the metrics and the datasets used for the evaluation.

In the fourth chapter, we present the results of the evaluation with a comparison of
the different feature configurations and the analysis of bias due to different algorithm
implementations. We also conduct tests on a real FVV dataset.

In the fifth chapter, we discuss the results by highlighting some limitations of our study
and opening possible future research in the field of learned features for wide-baseline
pose estimation.

Finally, the sixth chapter concludes our research.

3

Chapter 2

Related Work

Before defining the challenges of camera pose estimation, we will present the domain
of the free-viewpoint videos and its applications in Augmented and Virtual Reality
(AR/VR). We will then introduce a pose estimation technique that originates from
photogrammetry and computer vision: Structure from Motion (SfM). We will detail
the state of the art keypoints and descriptors. Finally, we will see the recent advances in
using neural networks to estimate camera poses and how it can apply to free-viewpoint
videos.

2.1 Free-viewpoint videos

In this section, we will define the concept of free-viewpoint video (FVV), see what
applications can benefit from affordably producing them and we will detail the different
steps required to create them.

2.1.1 Definition

In the field of digital content, traditional 2D movies are acquired with a single video
camera. Recently, 360◦ videos became popular as smartphones can be used to visualise

4

2.1. FREE-VIEWPOINT VIDEOS CHAPTER 2. RELATED WORK

them naturally. In 360◦ video, the user can choose in which direction to look from a
spherical recorded video. This type of video is recorded using a special camera, usually
composed of multiple lenses. The camera can be moved during the recording, but,
while playing, the user can only change the view direction, not the viewpoint. FVV
correspond to a video where the user can not only look in different directions but can
also change the position where the camera stands during playback. As in video games,
FVVs can generate new views of a scene, based on the user input. FVVs require a
photo-realistic 3D-model of the scene (background, objects or persons) and camera
pose estimation is a key step in their creation. FVVs are stored as 3D textured model
animations. They are also called 4D videos or holographic videos.

The next part will present some applications of FVVs.

2.1.2 Applications

3D television content

With the development of 3D television, the industry started the development of devices
allowing the rendering of geometric videos [9] based on technologies that also allow
FVV. These developments touched both hardware components [10] and full system
for view synthesis [11]. In 2010, the concept of free-viewpoint television (TV) was
introduced [12]. Smolic [13] presented the technology requirements to acquire and
store FVV using new coding standards (MPEG-4 model-based FVV).

In 2018, the hype for 3D TV has fallen, and their sells are down as manufacturers
stopped developing new models for multiple reasons [14]. However, the lack of content
might have contributed to their demise. FVVs might, in the future, be displayed on
3D TV and offer a wider variety of content.

Sport events

Another application that is referred to frequently for FVVs is the re-transmission of
sport events [15, 16, 17, 18]. FVV allow the user to watch sports games with more

5

2.1. FREE-VIEWPOINT VIDEOS CHAPTER 2. RELATED WORK

flexibility as before, by allowing them to choose the point of view and the location of
the camera. For example, in a football game, the user can watch a goal with the same
perspective as the goalkeeper.

Mixed reality

The domain of mixed reality is defined as the fusion of the physical reality and the
digital reality [19]. It can be seen as a type of virtual reality that includes a digital
version of real-world objects or persons. The company DoubleMe1 proposes to create
FVV of humans performing different actions. They call the captured representation
holograms and use them for video games, 3D animations or 3D printing.

The Irish start-up Volograms2, a spin-out from the V-SENSE laboratory at Trinity Col-
lege Dublin, is providing technology for high-quality volumetric videos for applications
in mixed reality. Volumetric videos, or volograms, are animated texture 3D objects.
One of the key advantages of its systems is that it is capable of using different camera
configurations, both indoor and outdoor [20]. One example uses a set of smartphones
held by humans to record videos and generate FVV of an outdoor scene, which is not
possible with other methods [8].

Recently, O’Dwyer et al. [21] presented a new way of experiencing a theatre play using
FVV and 6 degrees of freedom sounds.

2.1.3 Free viewpoint video creation pipeline

Cameras setup

Most of the camera setup rely on fixed sets of cameras positioned around a scene to
capture an actor. In [22], the authors have set up multiple cameras on the walls and the
ceiling surrounding an object at the centre of the scene. The cameras are mounted on
a rigid frame and are calibrated before doing the 3D reconstruction of the actor. The

1DoubleMe: http://www.doubleme.me/
2Volograms: http://www.volograms.com/

6

http://www.doubleme.me/
http://www.volograms.com/

2.1. FREE-VIEWPOINT VIDEOS CHAPTER 2. RELATED WORK

calibration consists in determining both the internal and external camera parameters,
as presented in Section 2.2. [7] also use fixed cameras mounted on a rig around the
scene. They use 53 RGB cameras and 53 infrared (IR) cameras with unstructured
lamps to achieve the best accuracy in the reconstructions.

In this dissertation, we are interested in situations where smartphones are used for
acquiring the video data, as presented in [8]. In this setup, the cameras are hand-held
during the recording and are located around a target. The number of cameras used
for the reconstruction goes from 6 to 12. This number and their positions impact the
quality of the reconstruction. In this dissertation, we analyse the effect of the baseline
angle between cameras on the pose estimation accuracy.

Pre-processing

Whereas [7, 23, 24] use a centralised system connected via Ethernet or USB to synchron-
ise the different cameras, [8] require the individual smartphone videos to be manually
synchronised to extract sets of frames taken at the same time for each cameras.

Pose estimation

Traditional photogrammetry requires input images taken while respecting overlap and
minimal baseline parameters [25, 26]. For FVV, the input dataset is composed of mul-
tiple video cameras that have a nearly complete overlap in their view but can have
large relative angular baselines with regards to the target. Also, for each camera, the
video frames overlap with each other for the full length of the video. This configura-
tion creates a very complex matching graph that renders SfM techniques inefficient.
Indeed, the SfM algorithm proposed by [1], with the default parameters, requires an
exponential duration to complete with regards to the number of frames of the FVV.
As an example, 10, 20 and 30 frames with 12 cameras take respectively 8, 25 and 116
minutes. The full 120 frames would take days to complete. Another difficulty with
pose estimation of FVV images is that successive frames are capturing moving elements
(mainly the actors in the foreground) that need to be matched only with frames taken
at the same time. Failure to do so would create geometric inconsistencies.

7

2.1. FREE-VIEWPOINT VIDEOS CHAPTER 2. RELATED WORK

[8] overcomes those difficulties by taking only one frame per second, and by doing so,
reduces the number of input images by 30. This subset of images is then much lighter,
and their poses can be estimated using SfM techniques such as [1]. The foreground
can be isolated from the static background using the segmentation employed for the 3D
reconstruction. The remaining frames have their poses estimated using a perspective
pose algorithm like the Efficient Perspective-n-Point (EPnP) [27] by using feature
matching between successive frames. However, this approach relies on the fact that
the angular baseline between the neighbouring cameras will be small enough to allow
correct feature matching. It has been shown in [28], while traditional feature matching
using SIFT gives high accuracy for two cameras with a small baseline angle, it fails in
situations where the angle reaches 90° or higher.

3D reconstruction

Once the poses of the images taken at a specific frame have been estimated, the next
phase consists in computing a 3D textured model of the target actor. The quality
of this phase is dependent on the accuracy of the camera poses from the previous
step.

In [8], the actor is first segmented from the background using a semi-supervised method
relying on CNN [29]. Then a dense point cloud is generated using the segmentation
mask as a probabilistic prior and multi-view stereo technique from [30]. The point cloud
of the actor is combined with a voxel-based 3D model that is independently generated
using Shape-from-Silhouette taking into account a 3D skeleton Zarean and Kasaei [18]
of the human as a probabilistic prior, to overcome strong occlusions resulting from
the sparsity of the cameras. It is also possible to add constraints to the 3D objects
to follow non-rigid changes from frames to frames to obtain better consistency of the
objects shapes Dou et al. [31].

Finally, all the images from a frame are blended to make a consistent and photo-realistic
texture of the model [32, 33].

8

2.2. CAMERA POSE ESTIMATION CHAPTER 2. RELATED WORK

2.2 Camera pose estimation

2.2.1 Pinhole camera models

A camera projects a scene from a 3D environment (World) to a plane (the 2D picture).
The pinhole camera approximates the complex optic behaviour of a camera by assuming
that all rays of light go through a single point in space, located at the camera centre
and intersecting the projection plane, located at the focal length (f) distance from
the origin. A camera has internal (intrinsic) and external (extrinsic) parameters. The
intrinsic parameters correspond to the optical properties of the camera, whereas the
externals correspond to the position and orientation.

The pinhole projection, as defined in [34], transforms a point Xcam = (x, y, z)ᵀ to the
image plane Ximg = (fx/z, fy/z, f)ᵀ .

This simplistic model is completed by adding additional sensor parameters: pixel skew
(s), optical axis position on the image plane (principal point p) and difference in focal
length on the x and y axis of the image plane. We use homogeneous coordinates to
allow matrix multiplication:

Ximg =

fxx+ sy + zpx

fyy + zpy

z

 =

fx s px 0

0 fy py 0

0 0 1 0

x

y

z

1

 = K[I | 0] Xcam (2.1)

With Xcam the point in the camera coordinate system and K, the camera calibration
matrix, defined as:

K =

fx s px

0 fy py

0 0 1

 (2.2)

Now, we consider that the camera is at position C and has a rotation R with regards
to the world coordinate frame. We can transform a point X from the world coordinate

9

2.2. CAMERA POSE ESTIMATION CHAPTER 2. RELATED WORK

system to the camera frame with:

Xcam = R(X− C) (2.3)

Together with the projection formula we get:

Ximg = KR [I | −C] X (2.4)

Often, we introduce the term t = −RC to simplify the notation:

Xcam = RX− t (2.5)

Ximg = K(RX + t) = K [R | t] X (2.6)

Finally, depending on their quality, camera lenses introduce distortion to the projected
image. A first order correction models the lens by introducing radial distortions. This
step happens after the projection. We consider a point Ximg = (x, y)ᵀ projected using
the linear projection (eq. 2.6), X̂img = (x̂, ŷ)ᵀ the corrected coordinates and (xc, yc) the
principal point or centre of the radial distortion. We have from [34, Chapter 7]:x̂ = xc + L(r)(x− xc)

ŷ = yc + L(r)(y − yc)
(2.7)

With L(r) = 1+k1r+k2r
2+k3r

3 for a radial distortion model of degree three and r, the
distance from the point Ximg to the principal point r =

√
(x− xc)2 + (y − yc)2.

2.2.2 Pose estimation

The pose of the camera corresponds to its position and orientation in the World refer-
ence system. The pose corresponds to 6 degrees of freedom: 3 coordinates for position
and 3 for orientation. In practice, to simplify computation and prevent gimbal lock,
orientation is stored using quaternions. As a consequence, finding the pose corresponds
to finding seven real values. In SfM, the cameras poses are estimated incrementally,
starting with 2D-to-2D correspondences to estimate the initial scene (cameras and 3D

10

2.2. CAMERA POSE ESTIMATION CHAPTER 2. RELATED WORK

points) and then using 3D-to-2D correspondences to estimate the poses of the following
cameras. Bundle adjustment is used throughout SfM as a way to refine the poses, 3D
points locations and camera parameters.

2D-to-2D

It is possible to compute the relative pose of two cameras with a minimum of 5 2D-to-
2D correspondences from the two images. However, finding those corresponding points
or matches is a difficult task subject to noise (see Section 2.3). As a consequence, [35]
combines the five-point algorithm with a random sample consensus scheme (RANSAC)
[36] applied on a larger set of matches. This method is effectively robust against outliers
in the matches. This 5-point algorithm relies on a priori knowing the focal lengths of the
two cameras and is usually the first step of SfM to initialise the reconstruction.

3D-to-2D

After the reconstruction has started, it is possible to iteratively estimate the pose of
new cameras based on existing 3D points. 3D-to-2D correspondences are computed
from matches with previous cameras: 2D matches from previous cameras are linked to
the 3D points, and the 3D-to-2D algorithms take as input a set of 3D points and their
projections in the new camera.

The Perspective-n-Point problem finds the position and orientation of a camera from
a set of n 3D points and their projection in the image. Lepetit et al. [27] solves this
problem by requiring at least four world points and has linear complexity.

Bundle adjustment

The 2D-to-2D and 3D-to-2D methods usually require the camera to be pre-calibrated.
Those methods work with approximate intrinsic parameters (only an estimate of the
focal length) and estimate the positions and orientations of the camera and 3D points.

11

2.2. CAMERA POSE ESTIMATION CHAPTER 2. RELATED WORK

Figure 2.1: The Structure-from-Motion pipeline used by COLMAP from [1].

A method, called bundle adjustment, is used to compute the intrinsic parameters and
refine even more the 3D points location and camera external parameters.

As presented in [37]: ‘Bundle adjustment is the problem of refining a visual reconstruc-
tion to produce jointly optimal structure and viewing parameter estimates.’

Bundle adjustment is a nonlinear least-squares problem, for which the cost function is
formulated to allow efficient removal of outliers [38]. Bundle adjustment also requires
efficient use of the problem sparseness to ensure rapid convergence.

2.2.3 Structure from Motion

Structure-from-Motion is a process to reconstruct the 3D shape of a scene from a set
of photos. In the process, both 3D points belonging to the scene and the camera
parameters (extrinsic and intrinsic) are recovered. SfM can work with unordered
images without any previous location information and can apply to both small objects
and larger scenes like a city and can use ground or aerial images [25].

SfM relies on finding good correspondences between images and uses the pose estima-
tion techniques seen in the part 2.2.2. After the first phase of correspondence finding,
the reconstruction of the cameras is incremental by successively computing the pose
of the cameras (registration), computing 3D points, and optimising all the parameters
using bundle adjustment. See Figure 2.1 for a detail of the pipeline used by COLMAP
[1].

12

2.3. FEATURES CHAPTER 2. RELATED WORK

2.3 Features

2.3.1 Keypoints and descriptors

As seen previously, the various methods for pose estimation rely on 2D correspond-
ences between two images. Instead of matching images on a pixel level, which would
have very high complexity, images are first transformed into a feature space. Fea-
tures are composed of two elements: a keypoints extractor and a method to compute
descriptors.

The keypoints extractor tries to find image points on contrast areas (usually on edges
or corners) to find the same keypoints in different images of the same scene. Finding
keypoints is essential in image matching, as it allows to get a simplified representation
of the image with only a few thousand points.

For each keypoints, we then compute a descriptor which corresponds to a unique high
dimension vector describing the feature. Descriptors are designed to minimise the
distance (typically the L2-norm) of vectors corresponding to the same point in the
scene while being far from other points. Descriptors try to be invariant to changes of
camera viewpoint (size, rotation, affine transformation) or the environment (lighting,
noise).

In the following subsection, we will see different types of feature detectors and their
descriptors: the traditional hand-crafted features and the more recent learned fea-
tures.

2.3.2 Hand-crafted features

SIFT

The Scale-Invariant Feature Transform (SIFT) [2] is by far the most famous feature
used in computer vision. Developed in 2004, it provides the best performances in term
of matching accuracy in many situations [39, 40].

13

2.3. FEATURES CHAPTER 2. RELATED WORK

 Scale
 (first
 octave)

Scale
(next
octave)

Gaussian
Difference of
Gaussian (DOG)

. . .

Figure 2.2: The scaling steps used by SIFT to generate scale invariant features [2].

SIFT uses Difference of Gaussian in a pyramid scale-space to find keypoints and his-
tograms of gradients to compute the descriptors. SIFT is constructed to be invariant
in scale, position and rotation. While changes in rotation of the input images are nor-
malised (by computing the direction of highest gradient histogram), changes in scale
are simulated by scaling the image (see Figure 2.2).

However, SIFT does not have any specific mechanism for handling changes in viewpoint
in the input image.

ASIFT

The Affine-SIFT (ASIFT) [41, 42] feature was developed in 2009 to overcomes the
limitation of SIFT by adding viewpoint invariance. ASIFT extends SIFT by simulating
all the views corresponding to affine transformations. This affine transformation can be
decomposed in changes of camera viewpoint by three rotations ψ, φ and θ (see Figure
2.3).

After simulating all the possible affine transformations (with a discrete step), the image
has an area increased by a factor of 13.5. The same increase goes to the number of SIFT
keypoints generated and the time required to generate them. The resulting matching

14

2.3. FEATURES CHAPTER 2. RELATED WORK

Figure 2.3: A geometric interpretation of affine decomposition from [3].

performances exceed the state-of-the-art methods [43, 44, 45, 46] for images with very
high changes in viewpoint, however, the computation of the matches can be 180 times
slower than for the traditional SIFT.

While initially applied to the SIFT features, the ASIFT technique of simulating view-
points can also apply to other types of features.

Affine shape

The affine shape estimation is an alternative to the high complexity of the ASIFT ap-
proach that was presented by Mikolajczyk and Schmid [43] in 2002. Instead of simulat-
ing all the views corresponding to affine transformations, this method estimates the af-
fine skew and stretch and normalises the images before extracting the descriptors.

Initially, the applied to the Harris detector [47], the method was called Harris-Affine.
More recently, after SIFT was developed, the Harris-Affine descriptor was found not
as good as ASIFT [42]. However, a promising implementation of this method applied
to the SIFT algorithm is available in the VLFeat Library [48] used by COLMAP [1] to
create the SIFT-Affine descriptor.

15

2.3. FEATURES CHAPTER 2. RELATED WORK

Figure 2.4: Comparison between Gaussian scale space (first row) and the nonlinear
scale space technique used by the KAZE features (second row) for different evolution
times ti [49].

AKAZE

KAZE is a type of feature presented by Alcantarilla et al. [49] in 2012 that works in
nonlinear scale spaces. It was designed to improve the accuracy of the localisation and
the distinctiveness of the features by using an adaptive blurring algorithm that respects
objects boundaries (see Figure 2.4).

The KAZE features present good results when matching deformable surfaces which
make them candidates for matching changes in viewpoint. A more recent version of
KAZE, called AKAZE [50] improves the speed of the feature detection and introduces
a more efficient binary descriptor.

2.3.3 Learned features

With the advent of deep learning in computer vision, convolutional neural networks
(CNN) have been applied with success to various tasks like image classification [51, 52,
53], object detection [54] or image semantic segmentation [55].

In this part, we will see two features generated using CNN that take advantage of the
speed and the robustness of deep learning.

16

2.3. FEATURES CHAPTER 2. RELATED WORK

LIFT

The Learned Invariant Feature Transform (LIFT) [4] was developed in 2016 and is
composed of three successive CNN that generate the keypoints locations, orientations
and descriptors. This approach is the first to combine the three steps of detecting
keypoints, computing their orientations and outputting their descriptors. Previous
work in this domain worked on each aspects independently [56, 57, 58, 59].

The first network takes as input an image patch and detects a region of interest cor-
responding to the keypoint. Then the second network estimates the orientation of the
keypoint, and finally, the third network computes a descriptor. The Figure 2.5 shows
the full LIFT pipeline.

The LIFT networks are trained using different outdoor datasets used for 3D recon-
struction. SfM using SIFT features is first ran on the datasets, and images patches are
extracted in locations where SfM finds matches. Negative examples are also extracted
for locations without SIFT features.

The LIFT features exceed state-of-the-art results in term of matching score on the
Strecha Fountain [6] and the DTU [60] datasets which correspond to picture of a
scenes from different viewpoints.

The code of the LIFT networks implemented using Tensorflow [61] is available online 3

and the authors provide weights for the networks trained on a dataset acquired at the
Piccadilly Circus in London [62].

SuperPoint

SuperPoint [5] (2018) is the most recent learned feature presented at CVPR. Super-
Point is generated using a CNN that produces both keypoints and descriptors in a single
forward pass. Designed for Simultaneous Localisation and Mapping (SLAM), the net-
work is capable of running in real-time while performing better than state-of-the-art
at repeatability and similarly to SIFT at matching.

3TF-LIFT is available at https://github.com/cvlab-epfl/tf-lift

17

https://github.com/cvlab-epfl/tf-lift

2.3. FEATURES CHAPTER 2. RELATED WORK

Figure 2.5: The LIFT feature extraction pipeline [4].

Figure 2.6: The deep network architecture used by SuperPoint from [5].

SuperPoint uses a CNN composed of two detectors connected to a shared encoder
that compresses the input image. The first detector outputs a heat map of potential
keypoints; the second output the corresponding descriptors (see Figure 2.6).

SuperPoint is trained using a self-supervised method. It uses synthetic images to
initiate the keypoints detection, before going through a new approach, called Homo-
graphic Adaptation, that allows domain transfer and improves repeatability (see Figure
2.7).

A Pre-trained network and the TensorFlow code for inference are published4.
4SuperPoint: https://github.com/MagicLeapResearch/SuperPointPretrainedNetwork

18

https://github.com/MagicLeapResearch/SuperPointPretrainedNetwork

2.4. CNN FOR POSE ESTIMATION CHAPTER 2. RELATED WORK

Figure 2.7: The novel method used for training the SuperPoint deep network [5].

2.4 CNN for pose estimation

In this section, we will present deep learning approaches to pose estimation, first for a
previously known environment, and then the more generic approaches that do not rely
on scene-specific learning.

2.4.1 Known environment

In the last two years, many researchers have focused on camera relocalisation using
CNN. PoseNet Kendall et al. [63] was the first end-to-end network to estimate the 6
degrees of freedom of a monocular camera. The resulting pose error was around one
order of magnitude higher than the state of the art hand-crafted method.

PoseNet triggered many research on camera localisation: using RGB-D cameras in
night conditions [64], using LSTM Walch et al. [65], using synthetic data for training
[66] or using temporal smoothness of a video stream to improve accuracy [67]. PoseNet
was then improved [68, 69] and a new loss function allowed the pose error to be reduced
by a factor two.

In 2017, CNN approaches for relocalisation reached the same accuracy than the hand-
crafted state-of-the-art methods [70]. Recently, VlocNet and VlocNet++ [71, 72] were
able to achieve a 67% improvement over state-of-the-art by combining learning the
pose and the semantic segmentation. Learning multiple tasks at the same times allows

19

2.4. CNN FOR POSE ESTIMATION CHAPTER 2. RELATED WORK

better generalisation and reduces over-fitting of the network.

While presenting excellent pose accuracy, those techniques rely on acquiring a signific-
ant amount of data from the scene beforehand and are thus not compatible with the
scenario of hand-held acquisition in an unknown environment.

2.4.2 On new scenes

Recently a few papers presented research on the domain of 3D reconstruction using deep
learning. [73] presents a way to train a CNN in an unsupervised way to estimate depth
from stereo cameras. Also on the depth topic, [74] computes high-quality disparity
maps from multiple images with known camera poses.

In the domain of SLAM, where the successive camera movements are small, [75] presen-
ted an end-to-end visual odometry CNN, and [76] present a CNN for both depth and
pose estimation from SLAM keyframes.

These approaches, while good advances, relies on small camera movements and cannot
be used for wide-baseline pose estimation using multiple hand-held cameras.

20

Chapter 3

Method

In this chapter, we will present the workflow used to evaluate the different hand-
crafted and learned features in wide-baseline situations. After presenting a unified
workflow developed around an SfM software, we will see the development of a graphical
user interface used to visualise the features and their matches. Then we will detail
the process of extracting the metrics from the reconstructed scenes. Finally, we will
introduce the four datasets used in this research.

3.1 Unified workflow

While traditional methods [4, 42] evaluate features on their matching capabilities level
only, we decided to study the influence of the features in real FVV situations of camera
pose estimation using the SfM software COLMAP [1].

3.1.1 COLMAP workflow

As seen in Section 2.2.3, COLMAP is an open-source SfM software developed initially
by Schönberger and Frahm at the Department of Computer Science of the ETH Zürich.
It regroups functionalities to extract and match SIFT features, camera pose estima-

21

3.1. UNIFIED WORKFLOW CHAPTER 3. METHOD

tion, 3D points triangulation and bundle adjustment, and finally, dense 3D multi-view
reconstruction, which we will not use in this evaluation. We chose COLMAP as the
main tool on which to develop our feature evaluation workflow as it presents multiple
functionalities that are required by our study.

Firstly, COLMAP is a reference in the SfM open-source software, as a recent and
very accessible one: It includes a graphical interface that is useful when debugging
to visualise the camera poses and the 3D point clouds. It also has a command line
interface to nearly all the functionalities, on a fine-grained level, with many parameters
directly accessible. Besides, while written in C++, it is based on an SQLite database1

which allows easy interface with any language. Furthermore, a set of helper functions
in Python are available which allow easy creation, access, modification or extension of
the SfM pipeline. Finally, The COLMAP documentation2 is quite exhaustive.

Secondly, COLMAP integrates the SIFT features with many options. For the fastest
execution, COLMAP uses a GPU implementation (SiftGPU3) of the SIFT feature
extraction as well as a feature matching brute-force algorithm. SiftGPU is limited in
the number of features for extraction and matching to the memory available on the
GPU. On the NVIDIA 980 GTX graphic card used, the limit is 23, 000 features.

Finally, for more advanced feature algorithms, COLMAP uses the VLFeat library [48].
VLFeat provides an implementation of the Affine-Hessian shape algorithm seen in the
Section 2.3.2. VLFeat algorithms run on the Central Processing Unit (CPU) only,
and while they are optimised to use all the CPU cores, they are at least one order of
magnitude slower than SiftGPU on a six-core i7-5820K.

3.1.2 Feature extraction and matching

As we need a unified way of estimating poses from 2D correspondences for all the
features that we will evaluate, we insert the results of each feature matching into the

1SQLite is a public domain Structured Query Language (SQL) database engine: https://www.
sqlite.org/

2The COLMAP documentation is available online at https://colmap.github.io/
3SIFT-GPU is available at https://github.com/pitzer/SiftGPU

22

https://www.sqlite.org/
https://www.sqlite.org/
https://colmap.github.io/
https://github.com/pitzer/SiftGPU

3.1. UNIFIED WORKFLOW CHAPTER 3. METHOD

COLMAP database before running the pose estimation. We also save the keypoints and
descriptor information of all the features into the database for two reasons: it allows
interrupting the process after each step, and also, reading the database to extract
statistics and visualise the keypoints. To reach this goal, we have developed a Python
interface to the database that we use for each step (see Figure 3.1).

Extraction

The feature extraction is the process of finding keypoints in an image and computing
a local descriptor for each of them. The local descriptor is designed to be as invariant
as possible to many acquisition or environmental factors.

For each feature, we set up a parameter that allows changing the number of features
extracted. Ideally, we want to have exact control on this number, to be able to make the
fairest comparisons. However, the actual implementation of the feature extractor varies
in their possibilities. The OpenCV [77] implementation of ASIFT and the LIFT code
are quite precise as they extract more features and then keeps only the n strongest. The
COLMAP implementations of SIFT, both with VLFeat or with SiftGPU uses rough
increment in the Gaussian scale space to find at least n features. Finally, SuperPoint
and AKAZE do not come with any method to control the features directly. We con-
trol the number of feature by changing the input image resolution or the threshold
respectively. Those methods provide a quite unstable number of keypoints within a
dataset and between datasets. Some images with low contrast can end-up with fewer
keypoints than expected. The Table 3.1 summarise the libraries used for extracting
the features.

While most of the features take from a few seconds to a minute to extract the features
for each of the datasets, the code of the LIFT feature extraction (see Section 2.3.3) is
quite slow due to the patch algorithm and to the poor optimisation and takes around
one minute per image. To reduce the total time required to evaluate the LIFT feature
on hundreds of images, we implement a caching mechanism that saves the LIFT features
for each dataset and number of features n. We used the H5py4 Python library to save

4H5py (www.h5py.org) is a Python interface to the HDF5 (www.hdfgroup.org) binary storage
format.

23

 www.h5py.org
www.hdfgroup.org

3.1. UNIFIED WORKFLOW CHAPTER 3. METHOD

the LIFT keypoints and descriptors in a binary format on the disk. Caching the LIFT
features saved a few days of computation time throughout the project.

Matching

The matching of keypoints is the process of finding corresponding features between mul-
tiple images. We use the L2 and hamming distances for finding the closest descriptors
when they are respectively n-dimension vectors or binary representation.

For each feature, we perform feature matching by following the ratio of the distance
to the 2nd closest point, as described in [2]. To ensure consistency in the matches, we
use the same ratio parameter in the OpenCV code as in COLMAP with a value of
0.8. After finding correspondences with the ratio test, we perform a cross-check test
to ensure that the closest match is the same in both directions.

For images with fewer than 15, 000 features, we use either the COLMAP or OpenCV
brute-force matcher, as they provide the best accuracy with limited computation time.
For more features, and especially for the ASIFT algorithm that can provide up to
500, 000 keypoints, we use the OpenCV interface to the Fast Library for Approximate
Nearest Neighbours (FLANN) [78] which provides up to two orders of magnitude speed-
up in the nearest neighbours search.

After the matches between two images are computed, we perform geometric filtering
by keeping the matches that follow a fundamental matrix model with a threshold of
4 pixels. The fundamental matrix is found using the RANSAC [36] algorithm. We
used the same threshold in COLMAP and the OpenCV implementation. To prevent
unstable cases and as present in COLMAP by default, we set a minimum to the number
of matches to fifteen inliers.

The Table 3.1 shows a summary of the matching algorithms used for each feature.

24

3.2. SEMANTIC SEGMENTATION CHAPTER 3. METHOD

Feature Library for extraction Library for matching Matching algorithm
SIFT SiftGPU SiftGPU Brute Force
SIFT-Affine VLFeat SiftGPU/COLMAP Brute Force
ASIFT OpenCV OpenCV FLANN
AKAZE OpenCV OpenCV Brute Force/FLANN
LIFT lift-tf OpenCV Brute Force
SuperPoint SuperPoint Numpy Brute Force

Table 3.1: A summary of the features used in this study, their libraries used for ex-
traction and matching and the corresponding matching algorithms.

3.2 Semantic segmentation

3.2.1 Related work

Soon after applying deep CNN to image classification [51], new research was able to use
the same machinery to the task of assigning a class to every pixel of an image: semantic
segmentation. While the first implementation where working on a pixel level and were
quite slow [79, 80], implementations using fully convolutional networks appeared soon
after [81, 82].

Recently, semantic segmentation has been added to other localisation tasks and has
been shown to improve the results. Indeed, performing multiple tasks helps a neural
network to generalise the concepts more efficiently. For example, [83] improves the
accuracy of a SLAM algorithm by providing per pixel class using a CNN. Zhao et al.
[84] presents a fully end-to-end CNN that combines visual odometry and semantic
segmentation using RGB-D images. Mustafa and Hilton [85] presents a framework
for multi-view segmentation and 3D reconstruction and show that co-segmentation
between multiple views improves the 3D reconstruction of complex scenes. Finally,
recent work on multitask learning [71, 72] combines image semantic segmentation,
visual odometry and global pose estimation in a joint CNN architecture and shows
that adding semantic to the training divides by two the localisation error.

25

3.3. MATCHES VIEWER CHAPTER 3. METHOD

3.2.2 Improving local features

As seen previously, adding semantic information to a localisation task can improve the
accuracy. In this work, we study the influence of adding semantic classes to feature
descriptors on the accuracy of the camera pose estimation.

First, we compute a per pixel semantic segmentation using a CNN trained to identify
150 classes [55] for which the source code5 is available for the framework PyTorch. We
use a pre-trained network called ResNet-50-deepsup6. The network reaches 80% pixel
accuracy on the ADE20K dataset7.

Then, we classify each feature depending on the class of the nearest pixel of the centre
of the keypoint.

Finally, when matching features from two images, we first group features belong-
ing to the same class and then perform the same brute-force matching among each
group.

3.3 Matches viewer

During the development of the unified workflow (see Section 3.1), it appeared a need
to visualise information stored in the SQLite database. In response to this need, this
study includes the development of a Graphical User Interface (GUI) for visualising the
matches. This Viewer was developed using the library PyQt8 and has the following
functionalities:

• Connect the SQLite database and load all images and matches information.

• In a first list, select one of the images from the dataset and see a second list
displays all the images matched to the first one.

5https://github.com/CSAILVision/semantic-segmentation-pytorch
6http://sceneparsing.csail.mit.edu/model/pytorch/baseline-resnet50_dilated8-ppm_

bilinear_deepsup/
7http://groups.csail.mit.edu/vision/datasets/ADE20K/
8https://sourceforge.net/projects/pyqt/

26

https://github.com/CSAILVision/semantic-segmentation-pytorch
http://sceneparsing.csail.mit.edu/model/pytorch/baseline-resnet50_dilated8-ppm_bilinear_deepsup/
http://sceneparsing.csail.mit.edu/model/pytorch/baseline-resnet50_dilated8-ppm_bilinear_deepsup/
http://groups.csail.mit.edu/vision/datasets/ADE20K/
https://sourceforge.net/projects/pyqt/

3.4. POSE ESTIMATION USING COLMAP CHAPTER 3. METHOD

• Show some statistics about the matches: the number of keypoints of each image,
number of matches and geometrically verified matches

• Display both images side by side and show the keypoints, the matches and the
geometrically verified overlaying the images.

The Figure 3.2 shows a screen capture of the GUI where we can see the menu with the
options and the geometric matches of SIFT-Affine features for two images.

3.4 Pose estimation using COLMAP

We use the COLMAP SfM software for computing the pose of the cameras both for
computing the ground truth and for evaluating the features. The datasets that we use
(see Section 3.6) are all composed of images taken in a circle around a scene, with all
the cameras pointing at a target (see Figure 3.4).

3.4.1 Ground truth

In this evaluation, we do not use any external method to compute the ground truth
poses of the cameras. Instead, we rely on the densely sampled viewpoints to generate
robust pose estimates that we use as references for our evaluation. We call those
references ground truth to prevent confusion with the reference camera used to compute
relative poses.

To compute the ground truth poses, we use the SIFT-Affine features with 10, 000

keypoints and then compute matches for all the input image pair combinations. This
method provides a robust way to estimate the pose as both wide and small viewpoints
matches are added to the optimised model. It is possible to run the match computation
of all the pair combinations on the input images as our larger dataset (see Section 3.6)
has only n = 110 images which correspond to n!

(n−2)!2!
= 5995 combinations. Besides, to

speed up the computation, we use the Graphics Processing Unit (GPU) implementation
of the Brute Force matcher.

27

3.4. POSE ESTIMATION USING COLMAP CHAPTER 3. METHOD

The Figure 3.3 shows the match matrix resulting from the computation of the matches
for the ground truth of a dataset. The matrix, generated with COLMAP, shows the
number of matches between all the image pairs where the rows and columns correspond
to the pair images, ordered by angle computed from the normal of the planar surface.
For the ground truth computation, the matrix is nearly full, with only the most extreme
cameras having fewer than a dozen matching images. All the images have a total of
more than a thousand matches with other images.

The last stage of the ground truth computation is to run the reconstruction process
that includes pose estimation, point triangulation and camera intrinsic parameters
refinement using bundle adjustment. The bundle adjustment is run until convergence
is reached and, as a result, the relative pose estimations of the images are considered
accurate enough to be considered ground truth.

3.4.2 Evaluation

In this study we consider the relative pose estimation using 2D correspondences of
two images. We consider that, in a real process, both 2D-to-2D or 3D-to-2D corres-
pondences can be used for the initial pose estimation and that the final accuracy is
achieved using bundle adjustment. The camera intrinsic parameters are also refined in
the process. To evaluate the robustness of the features in pose estimation, we evaluate
the pose of a test camera i relative to a reference camera that is either normal to the
wall or have an angle of 45° (see Figure 3.4). We compute the matches of every camera
i with the reference camera. Figure 3.5 shows resulting match matrices.

In our unified workflow, we generate a list of the match pairs which is fed to the Feature
Matching block (see Figure 3.1). After the matching is finished, COLMAP runs the
pose estimation and computes the poses of all the cameras at once. This process allows
evaluating quickly multiple sets of parameters while using only the correspondences
between each image and the reference image.

At the end of the bundle adjustment, the cameras pose, intrinsic parameters and the
3D points minimise the reprojection error between the cameras [37] and are ready to
be analysed.

28

3.5. METRIC EXTRACTION CHAPTER 3. METHOD

3.5 Metric extraction

Now that the poses have been computed, we can extract interesting information from
the SQLite database for the features and matches and from a binary output set of files
called the sparse model.

3.5.1 Pose Error

The first metric that we evaluate on the feature is the relative pose error between two
cameras. This error is composed of the relative translation error terror and the relative
orientation error Rerror. To compute this error, we extract the camera pose from the
output model. We convert the binary spare model into a text format using the model
converter in COLMAP. The resulting text files contain the camera poses for all the
images that were correctly registered. The COLMAP workflow rejects images with too
few or noisy matches before writing them to the output files.

We call the evaluation model, the set of camera poses computed using the feature
and parameters that we are evaluating. Similarly, we call the ground truth model,
the camera poses computed using the ground truth method (see Section 3.4.1). We
compare the relative pose between two cameras (a and b) from the evaluation model
to the relative pose of the same cameras in the ground truth model. For each image,
the camera pose is saved as a quaternion (convertible in a rotation matrix) and a
translation vector equivalent to R and t as defined in Equation 2.5. We write Rea

and tea the rotation matrix and translation in the camera reference for the evaluation
camera a. We use the same notation for camera b, and we substitute e by gt for the
ground truth.

For each camera, we compute the camera position in the world coordinate using:

tW = −RT t (3.1)

Then, we compute the relative translation from camera a to b in the ground truth and

29

3.5. METRIC EXTRACTION CHAPTER 3. METHOD

evaluation models as:
∆tWe = −Re

T
b teb + Re

T
a tea

∆tWgt = −Rgt
T
b tgtb + Rgt

T
a tgta

(3.2)

Finally, we compute the relative translation as the following scalars:

terror =
∥∥∆tWe −∆tWgt

∥∥
2

(3.3)

For the relative orientation error, we first compute the relative rotations:

∆Rgt = RgtaRgt
T
b (3.4)

∆Re = ReaRe
T
b (3.5)

From which we compute the orientation error as:

Rerror =
∣∣Angle(∆Re(∆Rgt)

T)
∣∣ (3.6)

where Angle is the function that extracts the rotation angle from a rotation mat-
rix.

3.5.2 Matches

The second metric that we evaluate is the match ratio which corresponds to the ratio
between the number of matches and the number of keypoints extracted by the feature.
The match ratio is a metric that summarises the capacity for the feature to detect the
same keypoints in images from different viewpoints and to match them correctly.

From the SQLite database, we extract the number of keypoints for each image and
the number of geometrically verified matches for all the image pairs. We compute the
match ratio mr(a, b) between two images a and b as:

mr(a, b) =
valid(a, b)

min(keypointsa, keypointsb)
(3.7)

With valid(a, b) the number of geometrically verified matches between the image a and

30

3.6. DATASETS CHAPTER 3. METHOD

b.

3.6 Datasets

For this study, we want to have datasets that can challenge to most viewpoint invariant
features and be similar to FVV situations with densely sampled viewpoints, taken
outdoor with smartphones and with relative baselines going up to 180°. However,
previous research on wide viewpoint focused either on angles smaller than 80° [60] or
on indoor figurine scenes only [86]. To match our needs, we selected a public dataset
and chose to acquire three new datasets with varying level of difficulties.

3.6.1 Public dataset

The first dataset that we will use in this study is a set of photos of a fountain taken
with a digital camera with a resolution of 6 Mpix [6]. The dataset is composed of
25 images and span over 115°. See Figure 3.6 for a 3D representation of the dataset
Fountain. This dataset can be considered easy as it presents a wide planar surface with
stones that create a very sharp texture.

3.6.2 Own datasets

We acquired three different datasets using two different hand-held smartphones to
create images close to those encountered in FVV.

Two datasets were acquired in Maynooth, in front of the walls of old buildings (see
Figure 3.7). The first one, called Wall, is taken in front of a stone wall and is also
considered simple as the texture is sharp with many corners. The second one, called
Ivy, is a set of pictures of the wall of a building covered with Ivy. Both datasets span
180° and are taken from two different distance from a reference target. The Ivy dataset
is considered of medium difficulty as the Ivy leaves have very complex shapes that are

31

3.6. DATASETS CHAPTER 3. METHOD

very sensitive to viewpoints. Each dataset is divided in two subset called close and far
respectively.

The last dataset, called Statue, is a set of 110 frames extracted from a movie of a statue
taken in the park Carton House9. The smartphone video frames span 360° around the
statue at a relatively constant distance and offer the smallest baseline angle step of
around 3.6°. This dataset differs from the previous as there is no vertical planar surface
and most of the texture is on the floor with gravels and stones. As the frames were
extracted from a movie taken while walking, some of them present motion blur. This
dataset is considered to be the hardest of the set and pushes the limits of wide-baseline
situations where two cameras can have baseline angles of up to 180°.

9www.cartonhouse.com

32

www.cartonhouse.com

3.6. DATASETS CHAPTER 3. METHOD

Feature Extraction

SIFT
SIFT-Affine

SQLite COLMAP Database

Feature Matching

BruteForce
SiftGPU/

Eigen

Geometric
verification

Cross
matching

Feature Extraction

LIFT
(TensorFlow)

SuperPoint
(TensorFlow)

Feature Matching

FLANN
2-neareast
neighbours

Geometric
verification

Cross
matching

Pose estimation

5 point
algorithm

Perspective-n-
Point

Bundle
Adjustment

Camera pose
and

3D points

Visualisation and
metric extraction

ASIFT
AKAZE

(OpenCV)

C
O

LM
AP

 W
or

kfl
ow

Ex
te

ns
io

n
fo

r t
he

 s
tu

dy

Python Interface

Figure 3.1: The COLMAP workflow for feature extraction and pose estimation is
centred on the SQLite database. We extend by following the same scheme and adding
new hand-crafted and learned features using OpenCV and TensorFlow.

33

3.6. DATASETS CHAPTER 3. METHOD

Figure 3.2: The Graphical User Interface developed to visualise features and their
matches. The green circles correspond to the geometrically validated matches between
SIFT-Affine features for the left and right images.

Figure 3.3: An example of a match matrix resulting of the exhaustive matches com-
puted for the ground truth pose estimation of one of the datasets. Each cell of the
matrix corresponds to the number of matches for a pair of images corresponding to the
row and column. The colours code the number of matches from blue, for the lowest,
to red, the highest.

34

3.6. DATASETS CHAPTER 3. METHOD

Figure 3.4: A scene representative of all the datasets that we study for Free-Viewpoint
Video where a set of photos are taken around a planar surface (here a wall) pointing
at a target. The relative pose is computed between a camera i and a reference camera
chosen to be normal to the wall or with a 45° angle.

Figure 3.5: The match matrix obtained is the evaluation of features. The cross shape
of the matrix indicate that the matches are computed only with a reference camera.
The left matrix corresponds to the normal reference camera with a high number of
keypoint where all but two cameras have matches. The same situation with fewer
keypoints (middle) and another reference camera (right) are also presented.

35

3.6. DATASETS CHAPTER 3. METHOD

Figure 3.6: The 3D representation of the Fountain dataset from [6], comprising 25
images taken around a fountain attached to a stone wall. The 3D view of the sparse
point cloud is taken from the zenith and the image locations are the red triangles.

Figure 3.7: The Wall (left) and Ivy datasets taken in Maynooth comprise 41 and 56
images respectively and span two half circles around a target point on two buildings.

36

3.6. DATASETS CHAPTER 3. METHOD

Figure 3.8: The Statue dataset is a set of 110 frames extracted from a movie taken
around a statue. The point cloud shows the texture areas where the features were ex-
tracted and matched during the processing of the ground truth Structure-from-Motion.

37

Chapter 4

Results

In this chapter, we present the results of the various evaluation configurations. After a
summary of the evaluation parameters, we will compare different implementations of
SIFT that are used for either ASIFT, SIFT-Affine or when using the GPU for feature
extraction and matching. Then, we see the first accuracy results on one dataset before
analysing averaged results for all the datasets. We continue by showing the impact of
the semantic classification of features. Finally, we apply the best feature configurations
to a real FVV dataset.

4.1 Evaluation parameters

4.1.1 Features

For each of the following features: SIFT, ASIFT, SIFT-Affine, LIFT and SuperPoint,
we study the influence of the number of keypoints to the pose estimation.

Table 4.1 details the features parameters and the number of keypoints extracted for
each of them. We can see that LIFT is the most stable, followed by SIFT, SIFT-Affine
and ASIFT. AKAZE and SuperPoint are the most unstable feature. Overall, all the
implementations apart from LIFT are unable to compute a precise number of keypoints.

38

4.2. COMPARING SIFT IMPLEMENTATIONS CHAPTER 4. RESULTS

The SIFT implementations overestimate the number of keypoints, which results in
higher matching quality and computation time whereas AKAZE and SuperPoint can
underestimate dangerously the number of keypoints resulting in complicated matching.
Good implementations are needed to overcome image change in contrast, viewpoint and
luminosity and to provide a stable number of keypoints. Knowing this limitation, we
will plot the real number of keypoints averaged for all the images of a dataset in the
subsequent evaluations.

4.1.2 Datasets and reference camera

As the Ivy and Wall datasets are both split in two for evaluation, grouping images
at a similar distance from the target, the 31 feature configurations from Table 4.1 are
evaluated against six datasets with two reference cameras (90° and 45° from the planar
surface) resulting in 372 evaluation configurations and around ten thousand relative
pose evaluated.

4.2 Comparing SIFT implementations

In our evaluation, we use different implementations of SIFT for low and high numbers
of SIFT features (SIFTgpu and COLMAP/VLFeat), ASIFT (OpenCV) and SIFT-
Affine (COLMAP/VLFeat) which are extensions of the original SIFT. In this section,
we study the difference between implementations of the original SIFT algorithm in
OpenCV, SIFTgpu and COLMAP/VLFeat. The comparison tests both the feature
extraction and the matching and uses the Ivy dataset with a reference camera normal
to the wall.

The Figure 4.1 shows the results in term of match ratios, orientation errors of the
estimated poses and computing times. While OpenCV outperforms the two other in
matching ratio, it aligns images with lower baseline angles; this effect might originate
from the way of selecting features when limiting the number of keypoints and is not
present when using the highest number of keypoints. SIFTgpu uses some simplifications
that result in slightly higher error rates compared to VLFeat. Finally, there is a clear

39

4.2. COMPARING SIFT IMPLEMENTATIONS CHAPTER 4. RESULTS

Table 4.1: The detailed list of all the feature configurations evaluated in this study.
For each feature, the parameter indicates how the number of feature is controlled and
the minimum and maximum number of keypoints extracted in all the images from the
four datasets are computed to show the stability.

Name Feature Parameters Min/Max features
SIFT250 SIFT max_feature= 250 252/670
SIFT500 SIFT max_feature= 500 500/1, 109
SIFT1000 SIFT max_feature= 1, 000 1, 000/2, 154
SIFT2000 SIFT max_feature= 2, 000 2, 000/4, 262
SIFT4000 SIFT max_feature= 4, 000 4, 000/8, 508
SIFT10000 SIFT max_feature= 10, 000 10, 000/22, 589
SIFT40000 SIFT max_feature= 40, 000 15, 513/96, 165
SIFT-Affine250 SIFT affine shape max_feature= 250 244/392
SIFT-Affine500 SIFT affine shape max_feature= 500 498/808
SIFT-Affine1000 SIFT affine shape max_feature= 1, 000 980/1, 729
SIFT-Affine4000 SIFT affine shape max_feature= 4, 000 3, 981/6, 675
SIFT-Affine10000 SIFT affine shape max_feature= 10, 000 10, 028/18, 845
SIFT-Affine40000 SIFT affine shape max_feature= 40, 000 13, 163/76, 919
ASIFT500 ASIFT max_feature= 500 20, 758/21, 504
ASIFT1000 ASIFT max_feature= 1, 000 40, 338/42, 986
ASIFT4000 ASIFT max_feature= 4, 000 89, 850/171, 759
ASIFT10000 ASIFT max_feature= 10, 000 92, 653/428, 058
AKAZE0.5 AKAZE threshold= 0.0005 6, 340/65, 840
AKAZE AKAZE threshold= 0.001 3, 038/50, 052
AKAZE2 AKAZE threshold= 0.002 1, 375/30, 176
AKAZE4 AKAZE threshold= 0.004 485/10, 801
AKAZE6 AKAZE threshold= 0.006 214/4, 508
AKAZE8 AKAZE threshold= 0.008 108/3, 124
LIFT500 LIFT num_keypoint= 500 445/495
LIFT1000 LIFT num_keypoint= 1, 000 910/987
LIFT4000 LIFT num_keypoint= 4, 000 3, 727/3, 911
LIFT10000 LIFT num_keypoint= 10, 000 4, 266/8, 916
SuperPoint4 SuperPoint image_size= (640, 480) 365/1, 535
SuperPoint5 SuperPoint image_size= (800, 600) 535/2, 227
SuperPoint7 SuperPoint image_size= (1120, 840) 900/3, 589
SuperPoint9 SuperPoint image_size= (1440, 1080) 1, 414/5, 065

difference of computation time, with nearly one order of magnitude between SIFTgpu
and OpenCV and also between OpenCV and VLFeat.

We can conclude that COLMAP SIFTgpu and VLFeat provides relatively similar res-

40

4.3. WALL DATASET CHAPTER 4. RESULTS

ults and that OpenCV implementation also provides similar performances for high
numbers of keypoints as it is the case for ASIFT.

103 104

Number of features (log scale)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Va
lid

 m
at

ch
 ra

tio

Ivy Tune SIFT COLMAP Match ratio
COLMAP-SIFT
COLMAP-SIFT-GPU
OpenCV-SIFT

20 40 60 80 100 120
Maximum angle correctly estimated

2

3

4

5

6

7

Av
er

ag
e

or
ie

nt
at

io
n

er
ro

r (
de

gr
ee

s)

Ivy Tune SIFT COLMAP Error vs maximum angle
COLMAP-SIFT
COLMAP-SIFT-GPU
OpenCV-SIFT

101 102 103

Time (s) (log scale)

0

200

400

600

800

1000

Nu
m

be
r o

f v
al

id
 m

at
ch

es

Ivy Tune SIFT COLMAP Number of matches vs time
COLMAP-SIFT
COLMAP-SIFT-GPU
OpenCV-SIFT

Figure 4.1: Comparison of the SIFT implementations in COLMAP (VLFeat and SIFT-
gpu) and in OpenCV applied to the Ivy dataset for pose estimation, using a reference
camera normal to the wall. The ratio of valid matches is plot against the number of
features extracted (top left). The relative orientation error is shown in function of the
maximum viewpoint angle correctly estimated (top right). The feature extraction and
matching is evaluated by comparing the time taken to compute different numbers of
valid matches (bottom).

4.3 Results on the Wall dataset

Before running all the evaluations configurations, we first select one dataset and one
configuration per feature in order to find the most interesting metrics.

41

4.4. ALL FEATURE CONFIGURATIONS CHAPTER 4. RESULTS

Figure 4.2 shows the results obtained by choosing the feature configuration closest
to 4, 000 keypoints for each type of feature on the Wall-close dataset. For the ASIFT
dataset, we choose 500 keypoints as the parameter before doing the affine augmentation,
which results in around 20, 000 keypoints. In term of match ratio, SuperPoint performs
best for all angles, followed by Sift-Affine. ASIFT is the less efficient feature with the
lowest match ratio for all relative viewpoint angle.

When looking at the relative position error, we see an error directly proportional to the
viewpoint, which also corresponds to the relative camera distance. This error seems to
come from error in the estimation of the focal length in the intrinsic parameter of the
camera. Indeed, in the evaluation situation, the focal length is not constrained enough
and can be optimised to different values by then bundle adjustment. As a result, the
scale of the 3D scene can change from one reconstruction to the other and renders the
relative distance between two cameras inadequate as a metric.

From the match ratio and the relative orientation error, we find that relative angles
between −30° and 30° are not very relevant as most of the features perform very well in
this range. For the rest of the study, we decide to compute the average of the metrics
by keeping only relative angles for which the absolute values are above 30°.

4.4 Comparison of all the feature configurations

In this section, we will compare all the feature configurations (see Table 4.1) against all
the datasets using two reference cameras at 90° and 45° from the planar surface. The
metrics will only include cameras with relative baseline angles larger than 30° from the
reference to emphasis on the wide baselines.

4.4.1 Match ratio

In this part, we compare the ratio between the number of matches and the number of
keypoints averaged to all image pairs evaluated. The Figure 4.3 shows the results as a
function of the number of keypoints for both reference angles. For every feature, the

42

4.4. ALL FEATURE CONFIGURATIONS CHAPTER 4. RESULTS

match ratio follows a decreasing trend with the increasing number of features. While
ASFIT has the lowest match ratio with a stable 1%, SuperPoint presents an impressive
ratio with nearly the double of SIFT for both reference cameras.

4.4.2 Average relative orientation error

The accuracy of the relative pose estimation is evaluated using the relative orientation
error. Figure 4.4 presents the relative orientation error for all the feature configurations.
For both reference angles, it is difficult to extract clear trends. There is a bias in
those graphs as the error is measured only for images whose pose is estimated. The
images with no match or that do not have enough inliers in the bundle adjustment are
removed.

As a result, the more keypoints are extracted for a feature, the more images with wide-
baseline angles are considered in the averaged error. We can also consider that wider
baseline image pairs have weaker feature matches and thus larger pose estimation error.
This hypothesis confirms the trend that is observed.

To improve the analysis of the error, instead of drawing it as a function of the number
of keypoints, we will use the maximum baseline angle correctly estimated (Figure 4.5).
There is a general trend that all features have an orientation error proportional to the
maximum angle estimated. On both the 90° and 45° references, SIFT, SIFT-Affine and
SuperPoint outperform the other features.

4.4.3 Maximum angle estimated

To understand more precisely the capacity for a feature to compute a correct wide-
baseline pose estimation, we compare the maximum baseline angle estimated as a
function of the number of features in Figure 4.6. On both reference angles, we can see
a hard limit with the shape of a logarithmic curve. All features need an exponential
number of features to estimate the pose of the highest baseline angles correctly. While
SIFT and SIFT-Affine are the best for less than 1, 000 features, SuperPoint has the
highest values for a few thousand keypoints. The AKAZE feature displays results in

43

4.5. SEMANTIC CLASSIFICATION CHAPTER 4. RESULTS

the lower range for all number of features. Finally, SIFT, SIFT-Affine and ASIFT
provide the highest results when using more than a few tens of thousands of keypoints.
Overall, handcrafted features are well suited for a wide range of feature number and
reach up to 110° of camera baseline angle.

4.5 Semantic classification

Using the semantic segmentation algorithm presented in Section 3.2, we classify every
pixels of the dataset images and regroup the features in the same classes based on their
location. The Figure 4.7 shows four examples of the resulting classifications, for the
simple Wall and the more complex Statue datasets.

The Figure 4.8 presents a comparison of the pose estimation metrics with and without
the feature semantic classification. The classification can either slightly improve the
accuracy or, for two feature configurations, more than double the error. For all the
configurations, the classification decreases the match ratio and the maximum angle
estimated. This effect comes from the fact that the classification is only reducing the
number of matches and as a result improves the average matches accuracy.

Overall, the effect of the semantic classification of the features provides a slight im-
provement in the pose estimation accuracy.

4.6 Application to free-viewpoint video

In this chapter, we evaluate the results of the features for pose estimation on a real
FVV dataset.

4.6.1 FVV dataset

The dataset Rafa Dance (provided by Volograms) is composed of twelve different hand-
held smartphones videos of an actor dancing in an outdoor city environment. Figure 4.9

44

4.6. APPLICATIONS TO FVV CHAPTER 4. RESULTS

shows the first frames of the twelve video clips. The images have a Full HD resolution
and span on a half circle around an actor dancing (see Figure 4.10). Out of the 271

frames available for each camera, we select only the five first frames and create a subset
of sixty images. Once the poses are correctly estimated for this subset using SfM, other
techniques could be used to estimate the pose of the remaining frames.

4.6.2 Evaluation

For the FVV, we remove LIFT from the features set as the pose estimation results
are lower than the other features for all the metrics considered. We evaluate the
FVV image pose estimation by emphasising on the metrics relevant for commercial
applications. The pose estimation is evaluated in the number of images registered as
a function of the processing time to find the fastest method available. As the pose
accuracy is also essential for the final model accuracy, we also compare the relative
orientation error with a set of camera poses provided by Volograms and computed
using the method described in [8]. Instead of using a reference camera for computing
the relative orientations, we compute the average error over all the images pairs.

Figure 4.11 shows that SIFT is the fastest algorithm for any number of images. It is
followed by SIFT-Affine, AKAZE and ASFIT. SuperPoint lies in the middle in term
of speed but fails to register images from two cameras with the widest angle gaps from
the main group of cameras.

In term of accuracy, all the feature provide an average relative orientation error lower
than 1° except for two configurations with the lowest number of keypoints. SIFT-Affine
provides the lowest and most stable errors for every number of features.

45

4.6. APPLICATIONS TO FVV CHAPTER 4. RESULTS

100 75 50 25 0 25 50 75
Camera viewpoint difference (degrees)

0

2500

5000

7500

10000

12500

15000

17500

20000

Nu
m

be
r o

f k
ey

po
in

ts

maynooth-nexus5X_close best ref 90° Number of keypoints

AKAZE2
ASIFT500
LIFT4000
SIFT-affine4000
SIFT4000
SuperPoint9

80 60 40 20 0 20 40
Camera viewpoint difference (degrees)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Va
lid

 m
at

ch
 ra

tio

maynooth-nexus5X_close best ref 90° Valid match ratio
AKAZE2
ASIFT500
LIFT4000
SIFT-affine4000
SIFT4000
SuperPoint9

80 60 40 20 0 20 40
Camera viewpoint difference (degrees)

0

1

2

3

4

Re
la

tiv
e

po
sit

io
n

er
ro

r (
ar

bi
tra

ry
 u

ni
t)

maynooth-nexus5X_close best ref 90° Position error

AKAZE2
ASIFT500
LIFT4000
SIFT-affine4000
SIFT4000
SuperPoint9

80 60 40 20 0 20 40
Camera viewpoint difference (degrees)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
la

tiv
e

or
ie

nt
at

io
n

er
ro

r (
de

gr
ee

s)

maynooth-nexus5X_close best ref 90° Orientation error
AKAZE2
ASIFT500
LIFT4000
SIFT-affine4000
SIFT4000
SuperPoint9

Figure 4.2: Metrics obtained by running one configuration with around 4, 000 keypoints
for the six features evaluated in this study on the Wall-close dataset with a reference
camera normal to the wall. The graphs shows the number of keypoints (top left),
the match ratio (top right), the relative position error (bottom left), and the relative
orientation error (bottom right) as a function of the relative camera viewpoint angle.

46

4.6. APPLICATIONS TO FVV CHAPTER 4. RESULTS

103 104 105

Number of features (log scale)

0.02

0.04

0.06

0.08

0.10

0.12

Va
lid

 m
at

ch
es

 ra
tio

All datasets Keypoints vs accuracy sup30° 90° Matches ratio
SuperPoint
SIFT-affine
SIFT
ASIFT
LIFT
AKAZE

(a) Reference camera at 90°

103 104 105

Number of features (log scale)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Va
lid

 m
at

ch
es

 ra
tio

All datasets Keypoints vs accuracy sup30° 45° Matches ratio
SuperPoint
SIFT-affine
SIFT
ASIFT
LIFT
AKAZE

(b) Reference camera at 45°

Figure 4.3: The match ratio for all the feature configurations, averaged over all the
datasets, and for two reference cameras.

103 104 105

Number of features (log scale)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

or
ie

nt
at

io
n

er
ro

r (
de

gr
ee

s)

All datasets Keypoints vs accuracy sup30° 90° orientation error

SuperPoint
SIFT-affine
SIFT
ASIFT
LIFT
AKAZE

(a) Reference camera at 90°

103 104 105

Number of features (log scale)

1

2

3

4

5

Av
er

ag
e

or
ie

nt
at

io
n

er
ro

r (
de

gr
ee

s)

All datasets Keypoints vs accuracy sup30° 45° orientation error

SuperPoint
SIFT-affine
SIFT
ASIFT
LIFT
AKAZE

(b) Reference camera at 45°

Figure 4.4: The relative orientation error as functions of the number of keypoints for
all the feature configurations averaged over all the datasets for two reference cameras.

47

4.6. APPLICATIONS TO FVV CHAPTER 4. RESULTS

40 50 60 70 80
Maximum angle estimated

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

or
ie

nt
at

io
n

er
ro

r (
de

gr
ee

s)

All datasets Keypoints vs accuracy sup30° 90° Error vs maximum angle

SuperPoint
SIFT-affine
SIFT
ASIFT
LIFT
AKAZE

(a) Reference camera at 90°

40 50 60 70 80 90 100 110
Maximum angle estimated

1

2

3

4

5

Av
er

ag
e

or
ie

nt
at

io
n

er
ro

r (
de

gr
ee

s)

All datasets Keypoints vs accuracy sup30° 45° Error vs maximum angle
SuperPoint
SIFT-affine
SIFT
ASIFT
LIFT
AKAZE

(b) Reference camera at 45°

Figure 4.5: The relative orientation error as functions of the maximum baseline angle
correctly estimated on all the feature configurations, averaged over all the datasets and
for two reference cameras.

103 104 105

Number of features (log scale)

40

50

60

70

80

M
ax

im
um

 a
ng

le
 e

st
im

at
ed

All datasets Keypoints vs accuracy sup30° 90° maximum angle

SuperPoint
SIFT-affine
SIFT
ASIFT
LIFT
AKAZE

(a) Reference camera at 90°

103 104 105

Number of features (log scale)

40

50

60

70

80

90

100

110

M
ax

im
um

 a
ng

le
 e

st
im

at
ed

All datasets Keypoints vs accuracy sup30° 45° maximum angle

SuperPoint
SIFT-affine
SIFT
ASIFT
LIFT
AKAZE

(b) Reference camera at 45°

Figure 4.6: The maximum baseline angle correctly estimated as a function of the
number of keypoints on all the feature configurations, averaged over all the datasets
and for two reference cameras.

48

4.6. APPLICATIONS TO FVV CHAPTER 4. RESULTS

(a) Wall

(b) Statue

Figure 4.7: Examples of the semantic segmentation of two images from two of the
four datasets. The classes are represented by colours. The Wall images have a stable
segmentation with only two main classes whereas the Statue images have up to a
dozen classes and present many classification errors. Here, the statue of the person is
associated with two different classes.

49

4.6. APPLICATIONS TO FVV CHAPTER 4. RESULTS

103 2 × 103 3 × 103 4 × 103 6 × 103

Number of features (log scale)

0

2

4

6

8

10

12

Av
er

ag
e

or
ie

nt
at

io
n

er
ro

r (
de

gr
ee

s)

All Semantic keypoints 45° orientation error
semanticSuperPoint
semanticSIFT-affine
semanticSIFT
semanticAKAZE
SuperPoint
SIFT-affine
SIFT
AKAZE

(a) Orientation error

103 2 × 103 3 × 103 4 × 103 6 × 103

Number of features (log scale)

50

60

70

80

90

100

M
ax

im
um

 a
ng

le
 e

st
im

at
ed

All Semantic keypoints 45° maximum angle

semanticSuperPoint
semanticSIFT-affine
semanticSIFT
semanticAKAZE
SuperPoint
SIFT-affine
SIFT
AKAZE

(b) Maximum baseline

2 × 103 3 × 103 4 × 103 6 × 103

Number of features (log scale)

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Va
lid

 m
at

ch
 ra

tio

All Semantic keypoints 45° Match ratio
semanticSuperPoint
semanticSIFT-affine
semanticSIFT
semanticAKAZE
SuperPoint
SIFT-affine
SIFT
AKAZE

(c) Match ratio

Figure 4.8: The effect of performing semantic classification of keypoints before the
matching averaged on all the datasets. The hollow markers shows the results with the
semantic classification.

50

4.6. APPLICATIONS TO FVV CHAPTER 4. RESULTS

Figure 4.9: The first frames of the twelve hand-held smartphone videos from the FVV
dataset Rafa Dance ordered from the most right-hand side of the subject to the most
left-hand side. The cameras 2, 10 and 11 were taken in landscape orientation and are
cropped here for easier presentation.

Figure 4.10: The sparse 3D reconstruction of the five first frames of the Rafa Dance
dataset. The cameras span over more than 180° around the target. While most of the
cameras form are grouped in a packed area, three of them are quite isolated.

51

4.6. APPLICATIONS TO FVV CHAPTER 4. RESULTS

101 102 103 104

Time (s) (log scale)

0

10

20

30

40

50

60

Nu
m

be
r o

f i
m

ag
es

 re
gi

st
er

ed

FVV_Rafa_5 FVV Number of images vs time

SuperPoint
SIFT-affine
SIFT
AKAZE
ASIFT

(a) Number of images registered

103 104 105

Number of features (log scale)

0

1

2

3

4

5

Av
er

ag
e

or
ie

nt
at

io
n

er
ro

r (
de

gr
ee

s)

FVV_Rafa_5 FVV orientation error
SuperPoint
SIFT-affine
SIFT
AKAZE
ASIFT

(b) Average orientation error

Figure 4.11: The pose estimation results on the FVV dataset Rafa Dance. The number
of images whose pose are correctly estimated is displayed as a function of the total
processing time, from feature extraction to pose estimation (a). The average orientation
error compared to the reference provided by Volograms are display as a function of the
number of keypoints (b).

52

Chapter 5

Limitations and future work

In this chapter, we present some limitations of our work and discuss the results. Finally,
we detail possible future work.

5.1 Limitations

5.1.1 Control of the number of keypoints

As we have seen in the previous Chapter, the implementations of the features detectors
that we have used in this study do not allow fine control of the number of keypoints
extracted from images. Image sharpness, exposition and texture impact the number of
keypoints extracted for each algorithm differently. While some algorithm present dif-
ferent algorithms to control the number of features, other need to have their thresholds
tuned manually. Moreover, for the SuperPoint feature, the number of features extrac-
ted and the accuracy of their localisation is dependent on the input image resolution
that was limited in this evaluation by the GPU memory.

As a result, some features might have presented a lower number of matches or reduced
location accuracy in some of the configurations evaluated. This problem could be
solved by improving the implementation of the feature detectors to be more adaptive

53

5.1. LIMITATIONS CHAPTER 5. LIMITATIONS & FUTURE WORK

to the image at the cost of increased computation time.

5.1.2 Orientation error

In the SfM algorithm implemented in COLMAP that we use for the pose estimation,
a set of parameters determine whether a pose is correctly estimated or not. We used
the default values for the maximum reprojection error and the minimum number of
inliers to filter the images. Also, images that have no match with the reference image
are eliminated.

As a result, the average error is computed on a different number of images for the
different configurations tested. Defining a metric per image could have solved this
issue.

5.1.3 Camera parameters

In the targeted application of FVV, the scene is acquired by different cameras for
each viewpoint. Each smartphone camera has its own set of intrinsic parameters that
need to be estimated during the pose estimation. As each camera is not moving much
during the recording, the radial distortion might be difficult to estimate as the 3D
configuration might not constraint it.

In the dataset that we use in the evaluation, all the images share the same intrinsic
parameters which simplify the pose estimation and improves the accuracy.

One way of improving the datasets, without having to use tens of different smart-
phones, could have been to acquire higher resolution images, apply random distortions
that match those of smartphones and then resize the images to match the final video
resolution.

54

5.2. DISCUSSION CHAPTER 5. LIMITATIONS & FUTURE WORK

5.2 Discussion

We have evaluated multiple hand-crafted and learned features over a wide range of
test datasets and real FVV smartphone videos to answer our research question. In all
the scenarios, the hand-crafted algorithms, namely SIFT and SIFT-Affine, provide the
best performances, both in term of pose accuracy, maximum baseline and speed. The
hand-crafted features have been refined over the years to provide optimum robustness
when put in production in a wide range of situations. In contrast, the learned features
have been developed more recently, shows some limitations, either in the number of
features or in computing time, and do not provide enough performances to allow direct
use in production for FVV.

5.3 Future work

We have seen that current learned features have not yet reached the level of the best
hand-crafted features. However, in the field of camera relocalisation (see Section 2.4),
recent work has pushed the boundaries of the hand-crafted features and has allowed
learned CNN to reach new standards in term of pose accuracy. While this work requires
to train a network for each situation, it provides good insight on the possibilities of
CNN for pose estimation.

Future work could use these research directions to design a new type of learned feature
in the hope to overcome the current limitations. The new feature could combine ideas
from the following research:

• Allow easy unsupervised training of the feature using geometric consistency [73],

• Create a hierarchical representation of features with increasing resolution to refine
the matching accuracy [87],

• Take advantage of auxiliary learning of the semantic information to improve the
generalisation and improve the features description [71, 72].

55

Chapter 6

Conclusion

In this research, we have compared the capacities for hand-crafted and learned features
to estimate the relative pose of cameras from images spanning a circle around a target.
We evaluated whether learned features could beat traditional hand-crafted features in
term of position accuracy, maximum relative baseline angle or computing speed.

Over a wide range of specifically acquired datasets, the results showed the superior-
ity of the hand-crafted features on a wide range of numbers of keypoints in term of
accuracy, maximum baseline angle or speed of the poses estimation. Learned features
have improved over the last years and reach now state-of-the-art results in some con-
figurations. An additional analysis presented the advantages of classifying the features
based on the image semantic as it helps filter the keypoints and improves the pose
accuracy.

This evaluation helps identify the best feature configuration depending on the speed,
accuracy or camera baseline used in an application like free-viewpoint video creation.
Surprisingly, the SIFT feature, introduced in 2004, still outperforms the more recent
ones in many scenarios.

The feature configurations studied in this research were limited by the computing
resources and the current implementations of the algorithms which reduced the span of
evaluation for some features. Besides, the evaluation metrics were averaged to simplify

56

CHAPTER 6. CONCLUSION

the presentation of the numerous data points which resulted in some bias when the
poses were filtered during the bundle adjustment step.

This research shows that learned features still need some work before exceeding the tra-
ditional hand-crafted ones. Recent studies on camera relocalisation using deep learning
give good examples on how to combine image semantic and self-supervised learning to
create a new type of learned feature that could be easily trained to create hierarchical
descriptors invariant in wide-baseline scenarios.

57

Bibliography

[1] J. L. Schönberger and J. M. Frahm, “Structure-from-Motion Revisited,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun.
2016, pp. 4104–4113.

[2] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Inter-
national Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004.

[3] C. Wang, Y. Zhang, and X. Zhou, “Robust Image Watermarking Algorithm Based
on ASIFT against Geometric Attacks,” Applied Sciences, vol. 8, p. 410, Mar. 2018.

[4] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua, “LIFT: Learned Invariant Feature
Transform,” in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Cham: Springer International Publishing, 2016, pp. 467–483.

[5] D. DeTone, T. Malisiewicz, and A. Rabinovich, “SuperPoint: Self-Supervised In-
terest Point Detection and Description,” in CVPR Deep Learning for Visual SLAM
Workshop, 2018.

[6] C. Strecha, W. v. Hansen, L. V. Gool, P. Fua, and U. Thoennessen, “On bench-
marking camera calibration and multi-view stereo for high resolution imagery,” in
2008 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2008,
pp. 1–8.

[7] A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Calabrese, H. Hoppe,
A. Kirk, and S. Sullivan, “High-quality Streamable Free-viewpoint Video,” ACM
Trans. Graph., vol. 34, no. 4, pp. 69:1–69:13, Jul. 2015.

58

BIBLIOGRAPHY BIBLIOGRAPHY

[8] R. Pagés, K. Amplianitis, D. Monaghan, J. Ondřej, and A. Smolić, “Affordable
content creation for free-viewpoint video and VR/AR applications,” Journal of
Visual Communication and Image Representation, vol. 53, pp. 192–201, May 2018.

[9] H. M. Briceño, P. V. Sander, L. McMillan, S. Gortler, and H. Hoppe, “Geometry
Videos: A New Representation for 3d Animations,” in Proceedings of the 2003
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ser. SCA
’03. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 2003, pp.
136–146.

[10] P. K. Tsung, P. C. Lin, K. Y. Chen, T. D. Chuang, H. J. Yang, S. Y. Chien,
L. F. Ding, W. Y. Chen, C. C. Cheng, T. C. Chen, and L. G. Chen, “A 216fps
4096x2160p 3dtv set-top box SoC for free-viewpoint 3dtv applications,” in 2011
IEEE International Solid-State Circuits Conference, Feb. 2011, pp. 124–126.

[11] Canon Europe, “Canon announces development of the Free Viewpoint Video
System virtual camera system that creates an immersive viewing experience -
Canon Press Centre,” Sep. 2017. [Online]. Available: https://www.canon-europe.
com/press-centre/press-releases/2017/09/free-viewpoint-video-system/

[12] M. Tanimoto, “Free-Viewpoint Television,” in Image and Geometry Processing for
3-D Cinematography, ser. Geometry and Computing. Springer, Berlin, Heidel-
berg, 2010, pp. 53–76.

[13] A. Smolic, “3d video and free viewpoint video—From capture to display,” Pattern
Recognition, vol. 44, no. 9, pp. 1958 – 1968, 2011.

[14] R. Silva, “TV Makers End 3d TV - What You Need To Know,” May 2018.
[Online]. Available: https://www.lifewire.com/why-3d-tv-died-4126776

[15] G. A. Thomas, “Real-Time Camera Pose Estimation for Augmenting Sports
Scenes,” in The 3rd European Conference on Visual Media Production (CVMP
2006) - Part of the 2nd Multimedia Conference 2006, Nov. 2006, pp. 10–19.

[16] O. Grau, G. A. Thomas, A. Hilton, J. Kilner, and J. Starck, “A Robust Free-
Viewpoint Video System for Sport Scenes,” in 2007 3DTV Conference, May 2007,
pp. 1–4.

59

https://www.canon-europe.com/press-centre/press-releases/2017/09/free-viewpoint-video-system/
https://www.canon-europe.com/press-centre/press-releases/2017/09/free-viewpoint-video-system/
https://www.lifewire.com/why-3d-tv-died-4126776

BIBLIOGRAPHY BIBLIOGRAPHY

[17] J. Y. Guillemaut, A. Hilton, J. Starck, J. Kilner, and O. Grau, “A Bayesian
Framework for Simultaneous Matting and 3d Reconstruction,” in Sixth Interna-
tional Conference on 3-D Digital Imaging and Modeling (3DIM 2007), Aug. 2007,
pp. 167–176.

[18] A. Zarean and S. Kasaei, “Human body 3d reconstruction in multiview soccer
scenes by depth optimization,” in 2016 24th Iranian Conference on Electrical En-
gineering (ICEE), May 2016, pp. 1591–1596.

[19] Y. Ohta and H. Tamura, Mixed Reality: Merging Real and Virtual Worlds, 1st ed.
Springer Publishing Company, Incorporated, 2014.

[20] R. McHugh, “Irish company brings Virtual Reality technologies to mar-
ket Technology, news for Ireland, Exporting,Ireland,Technology„” Jun.
2018. [Online]. Available: https://www.businessworld.ie/technology-news/
Irish-company-brings-Virtual-Reality-technologies-to-market--570960.html

[21] N. O’Dwyer, N. Johnson, E. Bates, R. Pagés, J. Ondrej, K. Amplianitis, D. Mon-
aghan, and A. Smolic, “Virtual Play in Free-viewpoint Video: Reinterpreting
Samuel Beckett for Virtual Reality,” in 16th IEEE International Symposium on
Mixed and Augmented Reality (ISMAR). IEEE Xplore digital library, Oct. 2017.

[22] I. Kitahara, R. Sakamoto, M. Satomi, K. Tanaka, and K. Kogure, “Cinematized
reality: Cinematographic camera controlling 3d free-viewpoint video,” in The 2nd
IEE European Conference on Visual Media Production, 2005. CVMP 2005, Nov.
2005, pp. 154–161.

[23] S. Würmlin, E. Lamboray, O. G. Staadt, and M. H. Gross, “3d Video Recorder:
a System for Recording and Playing Free-Viewpoint Video†,” Computer Graphics
Forum, vol. 22, no. 2, pp. 181–193, 2003.

[24] C. Kuster, T. Popa, C. Zach, C. Gotsman, and M. Gross, “FreeCam: A Hybrid
Camera System for Interactive Free-Viewpoint Video,” in Proceedings of Vision,
Modeling, and Visualization (VMV), 2011.

60

https://www.businessworld.ie/technology-news/Irish-company-brings-Virtual-Reality-technologies-to-market--570960.html
https://www.businessworld.ie/technology-news/Irish-company-brings-Virtual-Reality-technologies-to-market--570960.html

BIBLIOGRAPHY BIBLIOGRAPHY

[25] M. Pepe, L. Fregonese, and M. Scaioni, “Planning airborne photogrammetry and
remote-sensing missions with modern platforms and sensors,” European Journal
of Remote Sensing, vol. 51, no. 1, pp. 412–435, Jan. 2018.

[26] I. M.-E. Zaragoza, G. Caroti, A. Piemonte, B. Riedel, D. Tengen, andW. Niemeier,
“Structure from motion (SfM) processing of UAV images and combination with
terrestrial laser scanning, applied for a 3d-documentation in a hazardous situ-
ation,” Geomatics, Natural Hazards and Risk, vol. 8, no. 2, pp. 1492–1504, Dec.
2017.

[27] V. Lepetit, F. Moreno-Noguer, and P. Fua, “EPnP: An Accurate O(n) Solution to
the PnP Problem,” International Journal of Computer Vision, vol. 81, no. 2, p.
155, Jul. 2008.

[28] J. L. Schönberger, M. Pollefeys, A. Geiger, and T. Sattler, “Semantic Visual Loc-
alization,” in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2018.

[29] S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixé, D. Cremers, and L. V.
Gool, “One-Shot Video Object Segmentation,” in Computer Vision and Pattern
Recognition (CVPR), 2017.

[30] J. L. Schönberger, E. Zheng, J.-M. Frahm, and M. Pollefeys, “Pixelwise View
Selection for Unstructured Multi-View Stereo,” in Computer Vision – ECCV 2016,
ser. Lecture Notes in Computer Science. Springer, Cham, Oct. 2016, pp. 501–518.

[31] M. Dou, S. Khamis, Y. Degtyarev, P. Davidson, S. R. Fanello, A. Kowdle, S. O.
Escolano, C. Rhemann, D. Kim, J. Taylor, P. Kohli, V. Tankovich, and S. Izadi,
“Fusion4d: Real-time Performance Capture of Challenging Scenes,” ACM Trans.
Graph., vol. 35, no. 4, pp. 114:1–114:13, Jul. 2016.

[32] D. Casas, M. Volino, J. Collomosse, and A. Hilton, “4d video textures for interact-
ive character appearance: 4d video textures for interactive character appearance,”
Computer Graphics Forum, vol. 33, no. 2, pp. 371–380, May 2014.

[33] R. Pagés, D. Berjón, F. Morán, and N. García, “Seamless, Static Multi-Texturing
of 3d Meshes,” Comput. Graph. Forum, vol. 34, no. 1, pp. 228–238, Feb. 2015.

61

BIBLIOGRAPHY BIBLIOGRAPHY

[34] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,
2nd ed. Cambridge University Press, ISBN: 0521540518, 2004.

[35] D. Nister, “An efficient solution to the five-point relative pose problem,” in 2003
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2003. Proceedings., vol. 2, Jun. 2003, pp. II–195–202 vol.2.

[36] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated Cartography,”
Communications of the ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981.

[37] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle Ad-
justment — A Modern Synthesis,” in Vision Algorithms: Theory and Practice,
B. Triggs, A. Zisserman, and R. Szeliski, Eds. Berlin, Heidelberg: Springer Ber-
lin Heidelberg, 2000, pp. 298–372.

[38] C. Zach, “Robust Bundle Adjustment Revisited,” in Computer Vision – ECCV
2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Cham: Springer
International Publishing, 2014, vol. 8693, pp. 772–787.

[39] J. L. Schonberger, H. Hardmeier, T. Sattler, and M. Pollefeys, “Comparative Eval-
uation of Hand-Crafted and Learned Local Features,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI: IEEE, Jul.
2017, pp. 6959–6968.

[40] L. Zheng, Y. Yang, and Q. Tian, “SIFT Meets CNN: A Decade Survey of In-
stance Retrieval,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 40, no. 5, pp. 1224–1244, May 2018.

[41] G. Yu and J.-M. Morel, “A fully affine invariant image comparison method,” in
2009 IEEE International Conference on Acoustics, Speech and Signal Processing,
Apr. 2009, pp. 1597–1600.

[42] ——, “ASIFT: An Algorithm for Fully Affine Invariant Comparison,” Image Pro-
cessing On Line, vol. 1, pp. 11–38, Feb. 2011.

62

BIBLIOGRAPHY BIBLIOGRAPHY

[43] K. Mikolajczyk and C. Schmid, “An Affine Invariant Interest Point Detector,”
in Proceedings of the 7th European Conference on Computer Vision-Part I, ser.
ECCV ’02. London, UK, UK: Springer-Verlag, 2002, pp. 128–142. [Online].
Available: http://dl.acm.org/citation.cfm?id=645315.649184

[44] ——, “Scale and affine invariant interest point detectors,” International Journal
of Computer Vision, vol. 1, no. 60, pp. 63–86, 2004.

[45] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline stereo from
maximally stable extremal regions,” Image and Vision Computing, vol. 22, no. 10,
pp. 761–767, Sep. 2004.

[46] P. Musé, F. Sur, F. Cao, Y. Gousseau, and J.-M. Morel, “An A Contrario Decision
Method for Shape Element Recognition,” International Journal of Computer Vis-
ion, vol. 69, no. 3, pp. 295–315, Sep. 2006.

[47] C. Harris and M. Stephens, “A combined corner and edge detector,” in In Proc.
of Fourth Alvey Vision Conference, 1988, pp. 147–151.

[48] A. Vedaldi and B. Fulkerson, “VLFeat: An Open and Portable Library of
Computer Vision Algorithms,” 2008. [Online]. Available: http://www.vlfeat.org/

[49] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “KAZE Features,” in Eur. Conf.
on Computer Vision (ECCV), Fiorenze, Italy, 2012.

[50] P. F. Alcantarilla, J. Nuevo, and A. Bartoli, “Fast Explicit Diffusion for Accelerated
Features in Nonlinear Scale Spaces,” in British Machine Vision Conf. (BMVC),
Bristol, UK, 2013.

[51] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” in Advances in Neural Information Processing
Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.
Curran Associates, Inc., 2012, pp. 1097–1105.

[52] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-
Scale Image Recognition,” arXiv:1409.1556 [cs], Sep. 2014.

63

http://dl.acm.org/citation.cfm?id=645315.649184
http://www.vlfeat.org/

BIBLIOGRAPHY BIBLIOGRAPHY

[53] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recog-
nition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2016, pp. 770–778.

[54] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in 2017 IEEE
International Conference on Computer Vision (ICCV), Oct. 2017, pp. 2980–2988.

[55] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Scene Parsing
through ADE20k Dataset,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

[56] K. M. Yi, Y. Verdie, P. Fua, and V. Lepetit, “Learning to Assign Orientations
to Feature Points,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2016, pp. 107–116.

[57] S. Zagoruyko and N. Komodakis, “Learning to Compare Image Patches via Con-
volutional Neural Networks,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2015.

[58] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg, “MatchNet: Unifying
feature and metric learning for patch-based matching,” in IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2015. IEEE Computer Society,
Oct. 2015, pp. 3279–3286.

[59] Y. Verdie, K. M. Yi, P. Fua, and V. Lepetit, “TILDE: A Temporally Invariant
Learned DEtector,” in Proceedings of the Computer Vision and Pattern Recogni-
tion, Boston, Massachusetts, USA, 2015.

[60] H. Aanæs, A. L. Dahl, and K. S. Pedersen, “Interesting Interest Points,” Interna-
tional Journal of Computer Vision, vol. 97, no. 1, pp. 18–35, Mar. 2012.

[61] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,

64

BIBLIOGRAPHY BIBLIOGRAPHY

and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[62] K. Wilson and N. Snavely, “Robust Global Translations with 1dsfm,” in Computer
Vision – ECCV 2014, ser. Lecture Notes in Computer Science. Springer, Cham,
Sep. 2014, pp. 61–75.

[63] A. Kendall, M. Grimes, and R. Cipolla, “PoseNet: A Convolutional Network for
Real-Time 6-DOF Camera Relocalization,” in 2015 IEEE International Confer-
ence on Computer Vision (ICCV), Dec. 2015, pp. 2938–2946.

[64] R. Li, Q. Liu, J. Gui, D. Gu, and H. Hu, “Night-time indoor relocalization using
depth image with Convolutional Neural Networks,” in 2016 22nd International
Conference on Automation and Computing (ICAC), Sep. 2016, pp. 261–266.

[65] F. Walch, C. Hazirbas, L. Leal-Taixé, T. Sattler, S. Hilsenbeck, and D. Cremers,
“Image-Based Localization Using LSTMs for Structured Feature Correlation,” in
2017 IEEE International Conference on Computer Vision (ICCV), Oct. 2017, pp.
627–637.

[66] P. Purkait, C. Zhao, and C. Zach, “SPP-Net: Deep Absolute Pose Regression with
Synthetic Views,” arXiv:1712.03452 [cs], Dec. 2017.

[67] R. Clark, S. Wang, A. Markham, N. Trigoni, and H. Wen, “VidLoc: A Deep Spatio-
Temporal Model for 6-DoF Video-Clip Relocalization,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 2652–2660.

[68] A. Kendall and R. Cipolla, “Modelling uncertainty in deep learning for camera re-
localization,” in 2016 IEEE International Conference on Robotics and Automation
(ICRA), May 2016, pp. 4762–4769.

[69] ——, “Geometric Loss Functions for Camera Pose Regression with Deep Learning,”
in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Jul. 2017, pp. 6555–6564.

65

https://www.tensorflow.org/

BIBLIOGRAPHY BIBLIOGRAPHY

[70] E. Brachmann and C. Rother, “Learning less is more - 6d camera localization via
3d surface regression,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[71] N. R. Abhinav Valada and W. Burgard, “Deep Auxiliary Learning For Visual Loc-
alization And Odometry,” in Proceedings Of The IEEE International Conference
On Robotics And Automation (ICRA), May 2018.

[72] N. Radwan, A. Valada, and W. Burgard, “VLocNet++: Deep Multitask Learn-
ing for Semantic Visual Localization and Odometry,” arXiv:1804.08366 [cs], Apr.
2018.

[73] C. Godard, O. M. Aodha, and G. J. Brostow, “Unsupervised Monocular Depth
Estimation with Left-Right Consistency,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 6602–6611.

[74] P.-H. Huang, K. Matzen, J. Kopf, N. Ahuja, and J.-B. Huang, “DeepMVS: Learn-
ing Multi-View Stereopsis,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[75] S. Wang, R. Clark, H. Wen, and N. Trigoni, “End-to-end, sequence-to-sequence
probabilistic visual odometry through deep neural networks,” The International
Journal of Robotics Research, vol. 37, no. 4-5, pp. 513–542, Apr. 2018.

[76] M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and A. J. Davison,
“CodeSLAM — Learning a Compact, Optimisable Representation for Dense
Visual SLAM,” in The IEEE Conference on Computer Vision and Pattern Re-
cognition (CVPR), Jun. 2018.

[77] Itseez, “Open Source Computer Vision Library,” 2015. [Online]. Available:
https://github.com/itseez/opencv

[78] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic
algorithm configuration,” in International Conference on Computer Vision Theory
and Application VISSAPP’09). INSTICC Press, 2009, pp. 331–340.

66

https://github.com/itseez/opencv

BIBLIOGRAPHY BIBLIOGRAPHY

[79] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning Hierarchical Fea-
tures for Scene Labeling,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 8, pp. 1915–1929, Aug. 2013.

[80] P. Pinheiro and R. Collobert, “Recurrent Convolutional Neural Networks for Scene
Labeling,” in International Conference on Machine Learning, Jan. 2014, pp. 82–90.

[81] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in 2015 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), Jun. 2015, pp. 3431–3440.

[82] H. Noh, S. Hong, and B. Han, “Learning Deconvolution Network for Semantic Seg-
mentation,” in 2015 IEEE International Conference on Computer Vision (ICCV).
Santiago, Chile: IEEE, Dec. 2015, pp. 1520–1528.

[83] J. McCormac, A. Handa, A. Davison, and S. Leutenegger, “SemanticFusion: Dense
3d semantic mapping with convolutional neural networks,” in 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), May 2017, pp. 4628–4635.

[84] C. Zhao, L. Sun, and R. Stolkin, “A fully end-to-end deep learning approach for
real-time simultaneous 3d reconstruction and material recognition,” in 2017 18th
International Conference on Advanced Robotics (ICAR), Jul. 2017, pp. 75–82.

[85] A. Mustafa and A. Hilton, “Semantically Coherent Co-Segmentation and Recon-
struction of Dynamic Scenes,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Jul. 2017, pp. 5583–5592.

[86] A. Baumberg, “Reliable feature matching across widely separated views,” in Pro-
ceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR
2000 (Cat. No.PR00662), vol. 1, 2000, pp. 774–781 vol.1.

[87] A. Resindra Widya, A. Torii, and M. Okutomi, “Structure from motion using
dense CNN features with keypoint relocalization,” IPSJ Transactions on Computer
Vision and Applications, vol. 10, May 2018.

67

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	List of Abbreviations
	Chapter Introduction
	Chapter Related Work
	Free-viewpoint videos
	Definition
	Applications
	Free viewpoint video creation pipeline

	Camera pose estimation
	Pinhole camera models
	Pose estimation
	Structure from Motion

	Features
	Keypoints and descriptors
	Hand-crafted features
	Learned features

	CNN for pose estimation
	Known environment
	On new scenes

	Chapter Method
	Unified workflow
	COLMAP workflow
	Feature extraction and matching

	Semantic segmentation
	Related work
	Improving local features

	Matches viewer
	Pose estimation using COLMAP
	Ground truth
	Evaluation

	Metric extraction
	Pose Error
	Matches

	Datasets
	Public dataset
	Own datasets

	Chapter Results
	Evaluation parameters
	Features
	Datasets and reference camera

	Comparing SIFT implementations
	Wall dataset
	All feature configurations
	Match ratio
	Orientation error
	Maximum angle estimated

	Semantic classification
	Applications to FVV
	FVV dataset
	Evaluation

	Chapter Limitations & future work
	Limitations
	Control of the number of keypoints
	Orientation error
	Camera parameters

	Discussion
	Future work

	Chapter Conclusion

