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Summary

Deep Convolutional Neural Networks (CNNs) has gained a great success in computer

vision tasks, and the success of training deep CNNs heavily depends on a significant

amount of labelled data. The recent research has found that neural style transfer al-

gorithm can apply the artistic style of an image to another image without changing its

high-level semantic content, so we think it is possible to employ the neural style transfer

algorithm as a data augmentation strategy. The contribution of this dissertation is a

thorough evaluation of the effectiveness of the neural style transfer as a data augmen-

tation method in the image classification task. We explore the state-of-the-art neural

style transfer algorithms and apply them as a data augmentation method on the Cal-

tech101 and Caltech256 image dataset and VGG deep neural networks, where we found

a 2% improvement from 83% to 85% of the image classification accuracy, compared

with traditional data augmentation strategies. We also combine this new method with

the conventional data augmentation approaches to further improve the performance of

image classification. This work shows the potential of neural style transfer in computer

vision field, such as helping us to reduce the difficulty of collecting sufficient labelled

data and improve the performance of generic image-based deep learning algorithms.
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Chapter 1

Introduction

1.1 Overview

Many image data augmentation techniques have been widely used in the state-of-the-

art Convolutional Neural Network (CNN) architectures [1][2]. These traditional data

augmentation techniques, such as flipping, rotation, and cropping, are found effective to

generate additional labelled images and avoid overfitting for a complex and deep CNN

model. But these techniques can only add limited noise to the original images. With

the fast development of deep CNN architectures, more effective data augmentation

techniques maybe needed for the future research.

In this dissertation, we research a data augmentation technique based on neural

image style transfer algorithm [3] and apply it on image classification tasks [4] to verify

its effectiveness. The recent research [5] has found that neural style transfer algorithm

can apply the artistic style of an image to another image, without changing the high-

level semantic content. In our data augmentation method, we employ the neural style

transfer algorithm to create new stylized images from the original image dataset to
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CHAPTER 1. INTRODUCTION

enlarge the training dataset and thus improve the performance and avoid overfitting

of the trained models. Since there are many different image styles, we also research if

different image styles have different effectiveness for image classification problems.

The datasets used in this project are the Caltech101 dataset [6] and Caltech256

dataset [7], which contain images from 102 categories and 257 categories respectively.

We split both datasets with 70% of images used for training, and 30% of images used

for validation. Pretrained VGG16 model and VGG19 model [2] are applied to perform

the image classification task. As a result, our style transfer augmentation technique

improves classification accuracy for both datasets on VGG16 and VGG19 models,

where we found around a 2% improvement of the image classification accuracy. We

also combine this method with the traditional data augmentation approaches to further

improve the performance of a CNN model. This dissertation shows the potential of

style transfer as a useful technique in computer vision field, helping us to reduce the

difficulty of collecting sufficient labelled data and improve the performance of generic

image-based algorithms.

1.2 Motivation

Deep Convolutional Neural Networks has gained a great success in computer vision

tasks since AlexNet won the ILSVRC competition in 2012 [1]. With the fast devel-

opment of the computing resources, such as GPU and CPU, the CNN models have

become more and more deep and complex [8]. Hence, successfully training a model

needs more and more labelled data, which is not easily accessible.

For many images and video machine learning projects, gathering raw data can

be very time-consuming and challenging. For some critical image-based tasks like

2



CHAPTER 1. INTRODUCTION

cancer detection [9] and cancer classifying [10], researchers are often blocked by the

lack of reliable data. What’s more, for many machine learning algorithms, if we only

use the raw data the model is easily to get overfitting and does not have enough

generalisation on unseen data. We realise that it is of great importance for people to

access a significant amount of reliable and labelled image data, hence exploring more

effective data augmentation techniques would be a valuable research and can help us

to find potential solutions to address the problems mentioned above.

The neural artistic style transfer has been found an effective way to apply the

artistic style to an image without changing the high-level content of the original images.

The basic idea of this algorithm is to jointly minimise the distance of the content

representation and the style representation learned on the layers of the convolutional

neural networks. Since it allows us to keep the main content of the original images

and add enough noise to the images, we think it can be an effective way to generate

new images and augment the training dataset. The figure 1.1 shows a style transfer

example where we apply the style of Sunflower (Van Gogh) on a photo.

In our design, we make use of neural style transfer to augment the dataset by

transferring styles of the images in the dataset to another style. We then explore and

propose another augmentation method where we combine style transfer and traditional

methods to further augment the dataset. Finally, we evaluate the performance on

validation dataset and use classification accuracy as the metrics to compare these

augmentation strategies to figure out how well the style transfer performs as a data

augmentation strategy.

3



CHAPTER 1. INTRODUCTION

(a) Raw Images

(b) Stylized Image

Figure 1.1: Style Transfer: The style of Sunflower (Van Gogh) is applied on the photo
and generate a new stylized image (b), which can keep the main content of the phone
but as well as contain the texture style from image Sunflower.

4



CHAPTER 1. INTRODUCTION

1.3 Dissertation Structure

The thesis is organised into six chapters, starting with an introduction to this research

and its motivation in Chapter 1. Then it is followed by a literature review on the

background of the deep neural network, development of style transfer and the art of

data argumentation strategies. We also touch upon the techniques and software used in

this dissertation in Chapter 2, such as Tensorflow and Keras. In Chapter 3, we present

our networks design for style transfer and image classification, and the mechanism

behind the design. Chapter 4 provide the implementation details and different models

we trained in this project. Chapter 5 gives a summary of the evaluation results from

multiple perspectives. We finally discuss the limitation and future works in Chapter

6.

5



Chapter 2

Background Research

This chapter presents a literature review on the development of neural style transfer

algorithms, including the descriptive model and the generative model. We then in-

troduce the usage and effectiveness of the state-of-the-art data augmentation methods

used in image classification tasks during the past few years. Finally, we look into the

development of the techniques and software used in this project.

2.1 Neural Style Transfer

The main goal of style transfer is to apply the texture synthesis from one image onto

another without changing the high-level content of the original image. During this

process, we need to find a stylized image that contains the semantic content of a

content image and texture style of an arbitrary image [11]. Recent works of image style

transfer with Convolutional Neural Networks (CNNs) allow us to split and combine the

representations of high-level semantic content and the style in an image [3], which leads

to a new approach for style transfer with CNNs. In this section, we will first understand

6



CHAPTER 2. BACKGROUND RESEARCH

the image content representations and reconstruction. Then we look into how to find

the texture style of images. Finally, we focus on the state-of-the-art style transfer

techniques based on image content reconstruction and style reconstruction.

2.1.1 Image Semantic Content

It is a tough task for computers to identify the semantic content of an image, which

therefore makes it difficult to render an image in different styles with high-level features.

The main limitation is that the computer can not understand the content and explicitly

identify the high-level semantic information from an image like human beings.

Many non-parametric algorithms can perform style transfer while preserving the

structure of the content image, but the major fundamental limitation for them is that

they only use low-level image features [3].

However, the recent research has shown that the high-level information of an image

can be learned by CNNs optimised for computer visions tasks [1][12]. A CNN model

trained with sufficient data on one task, such as image recognition, can generalise across

datasets and even tasks, such as texture classification and style classification [13].

CNNs usually have several to a hundred hidden layers, depending on the task and

the size of the dataset. Each layer in the network contains a set of filters learned by

the model. These filters become increasingly complicated when the network becomes

deeper. Given an input image, it will be encoded by the filters in each layer in a Con-

volutional Neural Network. By visualising the image information encoded at different

layers in a network, it is found that higher layers are more complicated than lower lay-

ers and contain more complex features [12]. Please refer to 2.1 to have a look at how

feature map looks like in different layers. In the later work, deconvolutional network

7
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(a) first layer (b) 5th layer

Figure 2.1: Feature Map: Typical-looking of the image information encoded in the first
layer (a), and the 5th layer (b). Source: Trained AlexNet looking at a picture of a cat.
Every single box shows a feature map of a specific filter in that layer [15].

is applied to visualise the features learned by a model [14]. The author found that

the feature maps can present only low-level features at low-level layers, such as object

edges or colours, but high-level layers can detect more circular features like faces and

eyes.

These findings show that images content can be represented and compared by the

feature maps stored in different layers in CNNs. In another work the author wants

to characterise the information in the model directly to analysis the representations of

the image [16]. To achieve that, an image needs to be reconstructed from the image

information encoded in the network, i.e., computing an approximate inverse from the

feature map. Given an image ~x, the image will go through the CNN model and be

encoded in each layer by the filter responses to it. We use F l to store the feature maps

in a layer l where F l
ij is the feature map of the ith filter at position j in layer l. Let P l

be the feature maps for the content image in layer l, and we can update the pixels of

8
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image x to minimise the loss L to make sure these two images have the similar feature

maps in the network and thus have the similar semantic content:

Lcontent =
1

2

∑
i,j

(F l
ij − P l

ij)
2

The loss is defined as squared-error in the original work. To minimise the loss

function, we can perform gradient descent on a blank image, which matches the feature

responses of the original image, to reconstruct the image from the image representations

and visualise the information left in different layers. The gradient of the above loss for

the feature maps in layer l equals:

∆Lcontent
∆F l

ij

=

 (F l − P l)ij F l
ij > 0

0 F l
ij < 0

2.1.2 Image Style

There are two basic texture-generating approaches. The first one is called non-parametric

resampling, which is to create new images by resampling pixels or whole patches of the

original image [17]. This method can not help us extract the style and build a textures

model from a given image, so we need to consider defining a parametric texture model.

Javier’s work presents such a parametric model for texture synthesis, which is based

on a set of pairwise joint statistics and it is probably the best parametric model [18].

In the later work [3], the author found that images that produce the same texture rep-

resentation in the neural network can have the same style, which enables us to create

new images of one style with the texture representation. Based on this finding, a new

approach to modelling textures with regard to CNNs is proposed. The feature maps

9
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in a few layers of a trained network are used for representing the texture by the cor-

relations between them. Instead of using these feature maps directly, the correlations

between the different channels of the feature maps are given by Gram matrix Gl, where

the Gl
i,j is the inner product between the vectorised ith feature map and jth feature

map in layer l:

Gl
i,j =

∑
k

F l
ikF

l
jk

The original texture is passed through the CNNs, and the Gram matrices Gl on the

feature responses of some layers are computed. If we want to create a new image based

on the texture information encoded in the networks, we can pass a white noise image

through the CNNs and compute the Gram matrics difference on every layer included

in the texture model as the loss. If we use the loss to perform gradient on the white

noise image and try to minimise the Gram matrics difference, we can find a new image

that has the same style as the original image texture. Figure 2.2 shows how texture

generation works. The loss is computed by the mean-squared distance between the

Gram matrix of two images. So let Al and Gl be the Gram matrix of two images in

layer l, the loss of that layer equal:

El =
1

4N2
l M

2
l

∑
i,j

(Gl
ij − Alij)2

and the loss for all chosen layers:

Lstyle =
L∑
l=0

wlEl

Where L is the collection of chosen style representations layers, wl are the weighting

10
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Figure 2.2: Style Generation. The original image ~x is passed through the convolutional
neural network and compute the feature maps for each layer l in the network. Gl is
used to represent the Gram matrics responses of a set of layers. The white noise image
~̂x is passed through the same network, and we compute the Ĝl. The loss function El

is computed on every layer based on the difference between two Gram matrices. The
total loss function L is a weighted sum of the contributions El from each layer. Finally,
gradient descent is used to update the pixel values on the noise image, and a new image
is found which produces the same Gram matrices Gl as the original texture does [19].

factors for each layer in the collection. When performing gradient descent on the input

images, the derivative can be computed:

∆El
∆F l

ij

=


1

N2
l M

2
l

(
(F l)T (Gl − Al)

)
ji

F l
ij > 0

0 F l
ij < 0

11
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2.1.3 Descriptive Neural Style Transfer

Current neural style transfer algorithms can be classified into two categories, descriptive

neural methods and generative neural methods [20]. In this section, we review both of

them and compare their performance in the different situations.

The first descriptive neural model for style transfer was proposed in 2016 [3]. The

author proposed to use Gram matrices to represent the style information and use

feature maps to store the content information. During the experiments, the VGG

network is used to reconstruct the stylized image by minimising the loss by gradient

descent with backpropagation. The input image is passed through the CNN, and some

filtered images are computed at each layer. The filtered images become smaller as

along the processing hierarchy since there is some downsampling process such as max-

pooling layer and average-pooling(fig 2.3). The basic idea of this work is to jointly

minimise the distance of the feature representations of a white noise image from the

image content representation and the painting style representation defined on some

layers of the Convolutional Neural Networks. The author considers style transfer to

be successful if the generated image looks like the style image as well as presents the

principal objects of the content image.

This work firstly demonstrated the capacity of CNNs in creating artistic images by

reconstructing the image content and style separately. Some other interesting findings

are also proposed in this work. The author found that replacing the max-pooling

operation by average-pooling can create slightly more appealing results. Besides, this

work makes it possible for us to work out the trade-off between style and content to

create the images we like. What is more, the author also performed some experiments

on the initialisations, and he found that different initialisation methods do not impact

12
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Figure 2.3: Style representations and content representations in a Convolutional Neural
Network (CNN) in different layers [21].

the outcome of the synthesis produced in this work. Since then, this creative method

has received increasing attention, and many improvements have been made upon it.

2.1.4 Generative Neural Style Transfer

Although the descriptive neural style transfer model can produce impressive stylized

images, there are still some efficiency issues since the work is based on image iteration.

Every time we want to generate a new image we need a forward and backward pass

through the trained network. As we are going to employ the style transfer as a data

argumentation strategy, the performance is of great importance during the training

process.

Based on the descriptive model, fast neural style transfer methods have been pro-

13
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posed recently. Instead of using image iteration method, these algorithms with higher

efficiency are based on model iteration. In these works, the authors trained models

that can generate stylized images directly so that we can get stylized images quickly.

This method is called Generative Neural Style Transfer [5].

In a Generative Neural Style Transfer system, there are mainly two components: an

image transformation network and a loss network. The image transformation network

is usually a deep residual convolutional neural network parameterised by weights. It

is used to transform input images into output images, which will be fed to the loss

network. The loss function in the loss network computes a scalar value to measure the

difference between the output image and a target image, including content reconstruc-

tion loss and style reconstruction loss.

2.1.5 N-Styles FeedForward Network

Johnson’s work [5] opens the door to generative models in style transfer field. This

new method is much faster than descriptive ones, but the limitations are also apparent:

each generative network is trained for a single style, which means that we need to train

multiple networks for different styles, hence it is still time-consuming and inflexible

when different styles are involved. Based on this observation, an algorithm [22] that

can train a conditional style transfer network for multiple styles is proposed. Their

work comes from the observation that many styles can share the computation to some

degree. If we train different networks for different styles, the shared computation is

thrown away.

Based on this point, the author trains the generative model T (c, s) with abundant

paintings of set artistic styles. This model can produce new stylized images when given

14
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Figure 2.4: The feature maps x is normalized across both spatial dimensions and
subsequently scaled and shifted using style-dependent parameter vectors γs , βs. s
marks the style we want to apply [11].

an input image and the identity of the style. To share the convolutional weights of

the model across many styles, a method named conditional instance normalisation is

proposed. The purpose of this method is to transfer the feature maps x of a layer

into z specific to a style s. If there are N styles and C feature maps, we will get a

N ×C matrices. We use γ and β as hyperparameters so following formula can achieve

a transformation on a specific style:

z = γs

(
x− µ
σ

)
+ βs

In this formula, µ and σ are the mean value and standard deviation of x from spatial

axes, while γ and β are selected from the matrices according to the style s (Figure 2.4).

With this normalisation, we can use only one feed forward pass through the network

to stylize the input image into N different styles.
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2.2 The Art of Data Augmentation

For many computer vision tasks, data augmentation is an important approach to en-

large the training dataset and avoid overfitting. In this section, we will introduce the

most common data augmentation methods used in computer vision tasks in recent

years.

2.2.1 Traditional Data Augmentation

The label-preserving transformations can be used to generate additional images so

that CNNs can infer the transformation invariance from the dataset [23]. These trans-

formation strategies are considered the most natural and universal method to reduce

overfitting for training a neural network on images [1], including flipping, rescaling,

and cropping, etc. Many deep learning frameworks also provide a set of APIs, allowing

us to easily augment the dataset on the fly. Figure 2.5 shows that traditional data aug-

mentation can generate new training instances but does not change the main content

in the original images, hence the CNNs can learn these images as well.

In the research back to 2012[1], the author applied two kinds of argumentation

methods to improve the performance of their model. The first one is horizontal re-

flections, without which their network would get substantial overfitting with only five

layers. The second method is to perform PCA on the RGB values of the image pixels

in the training set, and a few found principal components are used for training, which

can reduce over 1% on the top-1 error rate. Similarly, The ZFNet [14] and VGGNet [2]

also apply multiple different crops and flips for each training image to boost training

set size and improve the performance of their models. These well-known CNNs archi-

tectures achieved outstanding results in the ILSVRC competitions, and their success
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(a) Original Image (b) Augmented Images

Figure 2.5: Traditional Data Augmentation: applying transformations on the original
image doesn’t change the fact that this is still a cat image [24].

demonstrated the effectiveness and importance of data augmentation when training a

deep neural network.

2.2.2 Advanced Data Augmentation

Since data augmentation has been shown an effective way to increase the performance

of training a CNN model, there is also much research on more advanced data augmen-

tation techniques.

In the work [25], the author explores to use Generative Adversarial Nets [26] to

generate stylized images to augment the dataset. Their work is called neural augmen-

tation, which makes use of CycleGAN [27] to create new stylized images for each of the

examples in the dataset. This method is finally tested on a 5-layer network with the

MNIST dataset and performs better than most of the traditional approaches. They

also explored to combine neural nets with the images classification network to build a

new system, where the transformation neural nets can be trained with the classification
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loss so that they can identify the best augmentations for a given dataset.

Another method proposed recently [28] also shows an improvement in the accuracy

for image classification task, compared with traditional data augmentation strategies.

Their work is named SamplePairing. The basic idea of this technique is to synthesize

a new image from two images randomly picked from the training set. The synthesizing

method is simple: a new image is created based on the average value of each pixel

of two images. This sample data augmentation technique is quite easy to implement,

but it is very effective for image classification tasks. Since this method can generate

lots of new images quickly, it is especially useful when the number of image examples

available for training is limited, such as medical computer vision tasks.

2.3 TensorFlow and Keras

This section briefly describes the software and tools involved in the experiments. With

the development of technologies, there are many platforms and tool available for train-

ing CNNs, but we finally choose Tensorflow, Python, and Keras as the tools, since

there are many advantages.

We choose Tensorflow as the essential framework. TensorFlow is a high-performance

numerical computation and machine learning library. There is a set of Python APIs

which enables us to build deep learning models and algorithms easily and quickly.

Besides, as the architecture of Tensorflow is very flexible, its portability allows us to

run and deploy our models across CPU, GPU and TPU. Not just for PC or a cluster

of servers, we can also deploy the models on mobile and edge devices [29].

In Tensorflow, the model is represented by data flow and the mathematical operators

are represented by a node, and the edges between two nodes can carry tensors (multi-
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Figure 2.6: TensorFlow dataflow: reading data, preprocessing, training, and check-
pointing state [30].

dimensional arrays). With the data flow graph built by nodes and edges, the user can

compose the layers of a model with high-level scripting interface. Tensorflow hold the

execution until the entire program is available, so it can optimise the program using

global information. With Keras, high GPU utilisation is achieved by using the graph’s

dependency structure to issue a sequence of kernels to the GPU without waiting for

intermediate results [30]. The training pipeline of Tensorflow can be found in figure

2.6.

Keras is the one of the most popular model-level neural network libraries based on

Tensorflow. It does not handle low-level operations such as tensor manipulation and

differentiation. Many primary platforms for CNNs like CNTK and Theano are also

supported by Keras. It is of great importance that we can go from idea to result with

the least possible delay to perform proper research, so the goal of Keras is to enable

the researcher to do fast experimentation [31].

Keras has a simple and consistent interface optimised for common use cases. The

error logs are also very clear which makes it easy for its users to debug. Besides, any

piece of code that you write with Keras can be run with any of these backends without

having to change anything in the system [32]. Figure 2.7 shows the hardware stack of

Keras.
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Figure 2.7: The hardware stack for Keras: Model level and cross-platform [32].
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Chapter 3

Design

The chapter introduces the high-level design of the style transfer model and the image

classification models (VGG16 and VGG19). The first section explains the architecture

and the mechanism of the fast style transfer model used in this project. Then we

describe the architectures of image classification models. The last section gives an

overview of how to employ the style transfer as an image augmentation strategy to

improve the performance of two VGG models.

3.1 Style Transfer Architecture

In the previous work for texture synthesis, the author produces high-quality stylized

images with optimising the input image based on a forward and backward pass through

the trained network [3]. This method is time-consuming and needs massive compu-

tation for each single input image. The goal of this dissertation is to verify if style

transfer can be used as a data augmentation strategy, so we need to style transfer

model that can generate new images efficiently.
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In our design, we choose a generative neural style transfer networks, where we train

a feed-forward network named as transformation network for each style which can

generate stylized images quickly without backward pass through the network.

3.1.1 Transformation Network

To successfully train a generative style transfer model, we need two neural networks in

the architecture. The first network is named as the transformation network, which is

used to generate new images based on input images. And the second network is a loss

network used to evaluate the generated images and compute the loss. We then use the

loss function to optimise the transformation network to generate better images. The

overview of the whole architecture can be found in figure 3.1.

We can treat the transformation network as fW (x). We use deep residual convolu-

tional neural network [33] to build the transformation network, and more implemen-

tation detail will be introduced in Chapter 4. The network can be fed an input image

x and transfer it to an output image ŷ through the network ŷ = fW (x). This network

is trained with stochastic gradient descent [34] to minimise a weighted combination of

loss functions. We can treat the overall loss as a linear combination of the two the

content reconstruction loss and style reconstruction loss, and the weights of two losses

can be modified and fine-tuned. By minimising the overall loss, we can get the model

well trained with weights W ∗:

W ∗ = argmin
W

Ex,{yi}

[∑
i=1

λi`i(fW (x), yi)

]
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Figure 3.1: System overview: image transformation network is trained based on the
loss computed by a pretrained loss network [5].

3.1.2 Loss Network

Since we already define the transformation network that can generate stylized images,

we also need to create a loss network that is used to represent several loss functions to

evaluate the generated images and use the loss to optimise the transformation network

based on stochastic gradient descent.

We use a deep convolutional neural network θ pretrained for image classification on

imageNet dataset [35] to measure the texture and content differences between the gen-

erated image and the target image. The recent work has shown that deep convolutional

neural networks can encode the texture information and high-level content information

in the feature maps [19][16]. Based on this finding, we define a content reconstruction

loss `θc and a style reconstruction loss `θstyle in the loss network and use their weighted

sum to measure the total difference between the stylized image and the image we want

to get. For every style, we train the transformation network with the same pretrained

loss network, which means the loss network will stay the same throughout the training

process.
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Content Reconstruction Loss: The images with similar features should have

similar feature representations computed by the deep CNN loss network [16]. We use

θj(x) to represent the jth layer of the loss network θ for processing image x and the

content image, which should be the shape of Cj ∗Hj ∗Wj. Then we use the Euclidean

distance to represent the content reconstruction loss. Our goal is to find a generated

image from the transformation network that can minimise the content reconstruction

loss so that we can finally get the θj(ŷ) that has the similar high-level semantic features

but does not have to be the same with the content target image:

`θ,jcontet(ŷ, y) =
1

CjHjWj

‖θj(ŷ)− θj(y)‖22

Style Reconstruction Loss: We also want the generated images to have the

similar texture synthesis with the style target image, so we want to penalise the style

differences with the style reconstruction loss. More specifically, the work [19] found that

we can use the Gram Matrix from the feature map to calculate the texture difference

between the two images.

Same as above, with a feature map θj(x) in jth layer of shape Cj ∗ Hj ∗Wj, the

Gram matrix are defined as Gθ
j(x) to be a Cj × Cj matrix:

Gθ
j(x)c,c′ =

1

CjHjWj

Hj∑
h=1

Wj∑
w=1

θj(x)h,w,cθj(x)h,w,c′

The Style Reconstruction Loss can be represented as the squared Frobenius norm

between the Gram matrics from two different images:

`θ,jstyle(ŷ, y) =
1

CjHjWj

‖θj(ŷ)− θj(y)‖2F
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We do not require the ŷ and y to have the same size since their activations at θj(x)

are of the same shape in the deep convolutional neural network.

Terms Balancing: As we have above definitions, generating an image ŷ can be

seen as solving the optimising problem in figure 3.1. We initialise the image with

white noise, and the work [3] found that the initialisation has a minimal impact on the

final results. λc, λs, and λTV are hyperparameters that we can tune according to the

monitoring of the results. To get the stylized image, we need to minimise a weighted

combination of two loss functions:

ŷ = argmin
y

λc`
θ,j
content(y, yc) + λs`

θ,J
style(y, ys) + λTV `TV (y)

3.2 Image Classification Network

To evaluate the effectiveness of this design, we also need to perform image classifica-

tion tasks with the stylized images. When performing image classification, for each

given image, the programs or algorithms need to produce the most reasonable object

categories [4]. The performance of the algorithm will be evaluated based on if the

predicated category matches the ground truth label for the image. Since we will pro-

vide input images from multiple categories, the overall performance of an algorithm is

the average score of overall test images. The score usually is Top-1 accuracy or Top-5

accuracy.

Once we train the transformation network that can generate the stylized images,

we will apply it on the training dataset to create a larger dataset. The stylized images

are saved on the disk with the ground truth categories. We then use them with their

original images to train the neural networks to solve the image classification problems.
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Figure 3.2: Receptive Field Overview [24].

In this research, the model we chose is VGGNet, which is a simple but effective model

[2]. Their team got the first place in the localisation and the second place in the

classification task in ImageNet Challenge 2014. This model strictly used 3 × 3 filters

with stride and pad of 1, along with 2 × 2 max-pooling layers with stride 2. 3 3 × 3

convolutional layers back to back have an effective receptive field of 7 ∗ 7. Compared

with one 7 × 7 filter, 3 × 3 filter size can have the same effective receptive field with

fewer parameters. Figure 3.2 shows the overview of the receptive field.

VGGNet also uses scale jittering as one of the data augmentation techniques. In

the original work, this model took a long time to train on 4 Nvidia Titan Black GPUs

for two to three weeks. But with the development of GPU and smaller dataset, we can

train the model within hours based on Caltech dataset, which is acceptable for this

research. There are two different architectures of VGGNet. The first one is VGG16

that has 16 convolutional layers, while the other one, VGG19, has 19 convolutional

layers and slightly better performance than VGG16. The high-level architecture of

VGG16 and VGG19 can be found in figure 3.3
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Figure 3.3: VGGNet Overview: Strictly use 3× 3 filters with 2× 2 max-pooling layers
[36].

27



CHAPTER 3. DESIGN

3.3 Experiments

Our goal of this research is to explore how useful style transfer can be compared and

combined with other traditional approaches for data augmentation.

To fully understand the effectiveness of the style transfer on VGGNet for image

classification problem, we need to do experiments from multiple perspectives. The first

experiments are to use traditional transformations alone. For each input image, we

generate a set of duplicate images that are shifted, rotated, or flipped from the original

image. Both the original image and duplicates are fed into the neural net to train the

model. The classification performance will be measured on the validation dataset as

the baseline to compare these augmentation strategies.

The second experiments are to apply the well-trained transformation network to

augment the training dataset. For each input image, we select a style image from a

subset of different styles from famous artists and use the transformation network to

generate new images from the original image. We store the newly generated images

on the disk, and both original and stylized images are fed to the image classification

network. For the chosen styles, we try to select the images that look very different.

The pipeline can be found in figure 3.4

Furthermore, to explore if we can get better results, we go further to combine two

approaches and generate more duplicated images. More details about the combination

will be described in Chapter 4.

28



CHAPTER 3. DESIGN

Figure 3.4: The pipeline of the overall architecture.
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Chapter 4

Implementation

In this chapter, we introduce the experiments and the specific implementation details

of neural style transfer networks and image classification networks, following the design

laid out in Chapter 3. We discuss the implementation of Augmentation Module firstly.

Next, we talk about the image classification network (VGGNet). Finally, we combine

the transformation network and VGGNet and show the overall pipeline of the system.

The entire implementation code and datasets can be found on the attached CD.

4.1 Augmentation Module

Before any stylized images are created, we need to train a transformation network

for each given style. As designed in Chapter 3, to successfully train a transformation

network we need two different deep neural networks (see figure 3.1). We describe the

implementation of these two different networks one by one in this section.
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4.1.1 Transformation Network

The first network is named transformation network, which is trained to be a generative

network that can generate stylized images based on the given style image. We follow

the state of the art implementation from [37] and [38], with some enhancement based

on our experiments.

Five residual blocks are used in the transform net to avoid optimisation difficulty

when the network gets deep [33]. For each residual block, we give an input tensor

x. After a series of convolution layer, batch normalisation layer and ReLU layer, we

get the output F (x) from the residual block. Then we sum the output tensor and

the input tensor into H(x) and feed it to following up layers. Other none residual

convolutional layers are followed by Ulyanov’s instance normalisation (we do not use

batch normalisation) and ReLU layers. At the output layer, we use a scaled tanh to

get an output image has pixels in the range from 0 to 255. The exact outlook of the

transform net architectures can be found below:

conv1 = _conv_layer(image, 32, 9, 1)

conv2 = _conv_layer(conv1, 64, 3, 2)

conv3 = _conv_layer(conv2, 128, 3, 2)

resid1 = _residual_block(conv3, 3)

resid2 = _residual_block(resid1, 3)

resid3 = _residual_block(resid2, 3)

resid4 = _residual_block(resid3, 3)

resid5 = _residual_block(resid4, 3)

conv_t1 = _conv_tranpose_layer(resid5, 64, 3, 2)

conv_t2 = _conv_tranpose_layer(conv_t1, 32, 3, 2)
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conv_t3 = _conv_layer(conv_t2, 3, 9, 1, relu=False)

preds = tf.nn.tanh(conv_t3) * 150 + 255./2

We use 9 × 9 filter size at first and last layers, and all other convolutional layers

use 3 × 3 filters. With small filters, we can make a deep neural network and in the

original VGGNet work the author has found that a deep neural network with small

filters outperforms a shallow net with larger filters [2].

4.1.2 Loss Network

The output images from the transformation network are fed to the second network

named as Loss Net. We use the pretrained VGG19 on ImageNet as the loss network. As

described in Chapter 3, we sum the content reconstruction loss and style reconstruction

loss into the final loss of the evaluation:

total loss = content loss+ style loss+ tv loss

The network generally follows the architecture presented in figure 3.3. Here we give

each of the layers a name for the convenience of loss analysis. The names for each layer

from bottom to above are:

conv1 1 conv1 2 pool1

conv2 1 conv2 2 pool2

conv3 1 conv3 2 conv3 3 conv3 4 pool3

conv4 1 conv4 2 conv4 3 conv4 4 pool4

conv5 1 conv5 2 conv5 3 conv5 4 pool5
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We do not name the last three fully connected layers since we do not use them in

the loss network.

Content Reconstruction Loss: Content reconstruction loss is calculated at layer

relu4 2 of the VGG19 loss network. In Johnson’s implementation [5], relu2 2 is em-

ployed. Since the previous work shows that higher layers are more complex than lower

layers and present more complex features, we use higher layer relu4 2 in our imple-

mentation.

Style Reconstruction Loss: Style reconstruction loss is calculated at layer relu1 1,

relu2 1, relu3 1, relu4 1 and relu5 1 of the VGG19 loss network, which are shallower

than in the original implementation, because it leads to larger scale style features in

transformations during the implementation [37].

4.1.3 Dataset

The transformation network is trained on the COCO 2014 train collection [39], which

contains more than 83k training images and is enough to get the transformation network

well trained. Since these images are used to feed the transformation network, we do

not need the label information. Before going through the transformation network, all

the images are resized to 256× 256.

4.1.4 Training

After we define the networks, we need to start the training process. All the models are

coded with Tensorflow and Keras in Python. The platform is Ubuntu 16.04 with one

single GTX 1080 GPU and Intel i7 7700k CPU.

For the code part, the batch size is 4 with two epochs over the training images.
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Adam is applied as the optimizer [40]. The learning rate is set at 1 × 10−3. We use

these default values following the original work and found that they work well for

generating new stylized images [5], so we keep these values the same during all the

training process.

We select eight different style images that look different from each other to get

eight different transformation network for later usage(augment the image classifica-

tion dataset). The style images are presented in Appendix A. It takes 4 to 6 hours

on the given machine to get a transformation network well trained. More detailed

documentation has been put in the code in the attached CD.

4.2 Image Classification Network

For image classification tasks we use two different datasets and pretrained VGG16 and

VGG19 networks on ImageNet [4]. The architecture can be found in figure 3.3. For

both networks, the original dataset has 1000 classes. Since we only have 102 categories

and 257 categories in the dataset we chose, we add one more dense layer on the top

of the last Fully Connected layer to make sure the output of our network is located

in the correct categories. These two networks are also trained in the same platform

mentioned above: Ubuntu 16.04 with one single GTX 1080 GPU and Intel i7 7700k

CPU. All the information about the training process as well as the results are stored

in the Tensorboard and can be found in the attached CD.

4.2.1 Configurations

Stochastic gradient descent is used as an optimiser with learning rate at 1× 10−4. We

choose accuracy as the metrics. The default number of epochs is 70, but we also use
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EarlyStopping provided by Keras to stop the training when we find no improvement

of the validation loss after ten epochs. The highest test accuracy at all the epochs is

reported as the best score. The batch size is 32 for both training and validation process.

In the original VGGNet implementation, the image size for training is 224 × 224, so

we also resize the input image to the same size.

4.2.2 Dataset

We’re using 2 different datasets in our experiments, caltech101 [6] and caltech256 [7].

We keep training and testing on a fixed number of images and repeating the experiment

with different augmented data and compare the results with others. The images are

divided by a 70:30 split between training and validation for both datasets. Please refer

to table 4.1 for the information summary of the two datasets.

Caltech101: This dataset was collected by choosing 101 object categories from

Google Images. There it contains 102 classes as there is one more background category.

The total image number is 9144. For each class, there are 40 to 800 images, and images

are roughly 300x200 pixels in size.

Caltech256: This dataset has more than 30 thousands images. Compared with

Caltech101, there are several improvements. Firstly, the category number more than

doubled. And then the minimum amount for each class is increased to 80. Since this

dataset has much more images, it takes more time to train the classification network

on this dataset.

Name Published Date Total Categories Images
Caltech101 2003 102 9144
Caltech256 2006 257 30607

Table 4.1: Image Classification Dataset
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4.3 Experiments

For the chosen styles, we try to select the images that look very different. Finally,

eight different images are chosen as the style input to train the transformation network.

Please find appendix for the information of 8 style images.

Once we obtain the augmented images, we feed them into a neural net that does

classification. The output of the VGGNet is a score matrix for the weights for each class.

We can also replace VGGNet with more complex network such as ResNet that can

predict image classes or other states of the art network and do the similar experiment

in the future work. Figure 4.1 shows the stylized images created by the transformation

network.

4.3.1 Stylized Image Overview

To test the effectiveness of various augmentation techniques, we run multiple experi-

ments on the Caltech dataset with a single style, combined styles and we even combine

our approach with the traditional augmentation strategies.

4.3.2 Content Weights

We also want to explore if the content weights and style weights impact the per-

formance of our approach, we change the portion of the content weights and style

weights to train a new transformation network for Wave style. The original portion

is Content Weight : Style Weight = 9 : 100. We increased the content weight to

Content Weight : Style Weight = 9 : 80. The output is compared in figure 4.2. Then

we use the new stylized images to train the classification network and compare the

performance with the original setting.
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Style Name Airplane Butterfly Chair Cup Watch

None

Snow

Wave

Your Name

La Muse

Rain Princess

Scream

Sunflower

Figure 4.1: Stylized images created by the transformation network of 8 different styles.
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Style Name Airplane Butterfly Chair Cup Watch

Wave 1

Wave 2

Figure 4.2: Stylized images with the same style and different content weights. Wave 2
has more content weight than Wave 1
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Evaluation

This chapter presents the evaluation results of this project. We evaluate the results

from multiple perspectives based on the image classification Top-1 accuracy of the

VGGNet. The results of experiments on traditional augmentation are collected as the

baseline. We then do experiments on every single style and further combined styles.

We also combine the traditional methods with style transfer method together to verify

the effectiveness and see if we can get better results. The Tensorboard that presents

all the results can be found on the attached CD.

5.1 Traditional Image Augmentation

We first train the VGGNet without any data augmentation. Since the VGGNet applied

in this research is pretrained based on ImageNet, we did not get any overfitting issue

and reached a classification accuracy at 83.34% in one hour training time. We also

apply two different traditional image augmentation strategies, Flipping, and Rotation,

to train the VGGNet. Finally, we combine Flipping and Rotation. Detailed results
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can be found in table 5.1. We found the model itself works the best without any

augmentation. And Rotation with Flipping can only reach the 77% accuracy. Besides,

the time required for training is quite different. For Node and Flipping, training only

takes less than one hour. But for FlippingRotation it takes around four hours. During

the following experiments, we can still find that Rotation works poorly and the model

converges slowly.

Traditional Image Augmentation
Style Name Best Accuracy Training Time
None 0.8334 1h
Flipping 0.8305 41mins
FlippingRotation 0.77 4h

Table 5.1: Traditional Image Augmentation

5.2 Single Style

We select eight different styles that look different from each other to train the transfor-

mation network(all styles can be found in Appendix A). For each image in the training

set, it is resized to 224 * 224, and then we feed it to the well-trained transformation

network to generate one stylized image for each style. Both the original images and the

stylized images are fed to VGGNet to compute the classification loss. Then we collect

the validation accuracy of each training. Only the best accuracy value is collected, and

the results can be found in table 5.2. Compared with the traditional strategies, we can

see that 7 out of 8 styles work better than the traditional strategies. It can also be be

seen that the Snow style works the best, reaching an accuracy of 85.26%. YourName

style only reaches 82.61%. I think the reason is that the snow style adds to much

noise and colour to the original images. The figure 5.1 give a comparison between the
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(a) Original Images (b) Snow (c) Your Name

Figure 5.1: Comparison between the original image(airplane) and two different stylized
images. Your Name add too many colours and shapes on the original image, which
may lead to a bad performance in terms of the image classification accuracy.

original image(airplane) and two different stylized images.

Single Style with VGG16 and Caltech101
Style Name Best Accuracy Training Time
Scream 0.849 54mins
Wave 0.8468 1h 17 mins
Udnie 0.8404 54mins
Snow 0.8526 1h24mins
Your Name 0.8261 51mins
Sunflower 0.8461 1h2mins
RainPrincess 0.8494 1h19mins
LAMuse 0.8436 1h8mins

Table 5.2: Single Style Transfer Augmentation

5.3 Combined Methods

Firstly, We combine two different styles to verify if we can get better results. In this

experiment, we take the original images and feed them to two different transformation

networks and generate two stylized images for each input image. We then merge the

stylized images and original images to compose the final training dataset, so we finally
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have three times the number of the original dataset. We use this augmented data set to

train the VGGNet. Meanwhile, we also try to combine the traditional augmentation

methods with style transfer together to see if we can get better performance. The

results can be found in table 5.3.

Combined Method With VGG16 and Caltech101
Traditional
Method

Style Name Best Accuracy Training Time

Flipping None 0.8305 41mins
Flipping Scream 0.8454 50mins
Flipping Wave 0.8486 56mins
Flipping ScreamWave 0.845 2h22min
FlippingRotation None 0.7521 1h7min
FlippingRotation Wave 0.7837 1h48mins
FlippingRotation Scream 0.7862 1h45mins
FlippingRotation ScreamWave 0.7942 2h42mins

Table 5.3: Combined Style Transfer Augmentation

We can see that, compared with traditional methods(Flipping and Rotation), the

combined style(ScreamWave) has considerably better performance but has similar per-

formance with single style method. Since there are more training images, the training

takes almost two hours. Another finding is that any training that involves Rotation

cannot get a good performance.

5.4 Content Weights Change

We also change the proportion of content weights as well as style weight to figure out

if the content weights in transformation network impact the performance. The original

proportion is Content Weight : Style Weight = 9 : 100. We increased the content

weight to Content Weight : Style Weight = 9 : 80.
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(a) Original Images (b) Wave2 (c) Wave

Figure 5.2: Comparison between the original image(airplane) and stylized images with
different content weights. The images look similar to each other.

As can be seen from the table 5.4, there is no significant change, and we get the

similar results. The figure 5.2 shows that the images look very similar to each other,

so the content weight change has a minimal impact on our experiments. Maybe in

the future, we can add more content weight and see how the stylized images change

accordingly.

Different Content Weights With VGG16 and Caltech101
Traditional
Method

Style Name Best Accuracy Training Time

None Wave 0.8468 1h17mins
Flipping Wave 0.8486 56mins
N/A Wave2 0.8417 1h12mins

Table 5.4: Different Content Weights

5.5 VGG19

We also did the same experiments on VGG19 and got more observations to see if our

approach can generalise well for more network architectures. The results can be found

in table 5.5.
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Experiments on VGG19
Dataset Traditional

Method
Style Name Best Accu-

racy
Training
Time

Caltech101 None None 0.8450 42mins
Caltech101 Flipping None 0.8367 43mins
Caltech101 None Wave 0.8425 1h
Caltech101 Flipping Wave 0.8581 58mins
Caltech101 None Scream 0.8446 1h5mins
Caltech101 Flipping Scream 0.8465 49mins
Caltech101 Flipping

Rotation
ScreamWave 0.8029 3h

Caltech256 None None 0.62 2h26mins
Caltech256 Flipping None 0.6666 2h9mins
Caltech256 None Scream 0.6313 3h7mins
Caltech256 Flipping Scream 0.6728 2h52mins
Caltech256 None Wave 0.6272 2h57mins
Caltech256 Flipping Wave 0.6632 2h58mins
Caltech256 Flipping

Rotation
None 0.5853 3h47mins

Table 5.5: Experiments on VGG19 with both Caltech101 and Caltech256

The baseline classification accuracy for Caltech101 is 84.5%. Based on this number,

there are some interesting findings in line with the VGG16.

Using Wave or Flipping itself does not improve the performance of VGG19, but if

we combine Flipping with Wave we can get a considerable improvement, with accuracy

reaching 85.81%. And more complex combination(FlippingRotation with ScreamWave)

leads a decrease of the classification accuracy to 80.29%.

Similar result has been found in Caltech256 with VGG19. The single Flipping has

an accuracy of 66.66%, while that of the single Screamstands at 63.13%. But if we

combine the Flipping with Scream we can get a 67.28% accuracy. The combination

between Flipping and Wave gets a 66.32% which is still higher than the single Wave

augmentation. Again, if we bring in Rotation as a kind of data augmentation strategy,
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the performance is not good, with accuracy at only 58.53%, which is even lower than

None augmentation.

The experiments performed on VGG19 show that the style transfer is still an ef-

fective data augmentation method, and we can also combine it with some traditional

approaches to further improve the performance.
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Conclusion

In this thesis, we proposed a new data argumentation approach based on neural style

transfer algorithm. This approach is proven to be an effective way to increase the per-

formance of CNNs on image classification tasks. The accuracy for VGG16 is increased

to 85% from 83% while for VGG19 the increase is from 84.50% to 85.81%. We also

found that we can combine this new approach with traditional methods like Flipping.

Due to the limited time allowed for this dissertation, there exist certain limitations and

some future works remains to be done.

6.1 Limitations

In this section, I would like to describe some limitations of this dissertation.

Limited Tasks: We only tested our method on image classification task. Since

there are many different kinds of tasks in the Computer Vision field, we can also apply

for style transfer as a data augmentation method on tasks like image segmentation and

image recognition. We may test more CNN architectures and datasets to verify the
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ability of generalisation of this approach.

Styles Category: Even we tried to select images of different styles, we did not

classify the images according to their category. We do not know if an image is Abstract,

Classical or Expressionism. Maybe in the future, we can choose several images that

belong to one category to test if the category has an impact on the image classification

performance, or if different images in the same category have different effectiveness.

Slowness: Compared with traditional data augmentation methods, neural style

transfer is much slower. The slowness can be attributed to two reasons. Firstly,

it takes around 5 hours to get a transformation network well trained with a decent

GPU and CPU. But this training can be done once and for all, as long as we have

a transformation network we can share it with other researchers and use it for many

more experiments. Secondly, creating the stylized images is still slower than traditional

methods. For Caltech101, it took around five minutes to augment the whole dataset

while the traditional methods can complete it in a few minutes. So it is still very

important to find more efficient style transfer algorithms.

6.2 Future Work

As we have many limitations in this dissertation, one of the major future works is to

spend more time to solve them. Besides, another future work we can do is to use image

classification loss to optimize the transformation network. During our experiments, we

did figure out how content weights impact the augmentation performance. But if we

consider the image classification accuracy as a way to update the transformation net-

work, we may have a way to identify the uncertain hyper parameters or even optimize

the weights for the transformation network. For example, when training VGGNet for

47



CHAPTER 6. CONCLUSION

Figure 6.1: The process of using classification loss to optimize the transformation
network

image classification, we only perform backpropagation with the training loss on the

VGGNet itself. But we think it is possible that we use the same backpropagation to

train the transformation network and thus to identify the best weights and even hyper

parameters that suit the dataset as well as the specific task best. Figure 6.1 shows the

process of how a transformation network learns augmentations that best improve the

ability to classify images correctly.

Another future work is to explore how data augmentation impacts the training

time of an image classification algorithm. As mentioned in Chapter 5, the table 5.1

shows that the training time is quite different for different approaches. For Node and

Flipping, training only takes less than one hour, but for FlippingRotation it takes

around 4 hours. If given more time, we can look into how the model converges during
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the training process and understand the algorithm to figure out if we can reduce the

training time.
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Appendix A

Image Styles

Figure A.1: The Great Wave off Kanagawa, Hokusai, 1829 - 1832
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Figure A.2: A Snow picture from the Internet, simple but beautiful

Figure A.3: The Muse, Pablo Picasso, 1935
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Figure A.4: Rain Princess, a painting by Leonid Afremov

Figure A.5: Sunflower from one of Van Gogh’s series of paintings
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Figure A.6: A typical udnie painting

Figure A.7: A screenshot from the Japaness Animation: Your Name (2016)
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Figure A.8: The Scream, Edvard Munch, 1893 - 1910
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Appendix B

GitHub Link

The entire implementation code can be found on GitHub: https://github.com/

zhengxu001/neural-data-augmentation.

60


