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1 SUMMARY 

Initially this report analyses the importance of mobile notifications for communicating 

information to users and how the ubiquity of mobile devices and increase in the number of 

incoming mobile notifications created cause for research into mobile specific notifications. 

This research highlighted how mobile notifications can have a negative impact on user 

emotions, reduce work effectiveness and decrease current task performance. Complexities in 

the reduction of notifications were also investigated such as the importance of fast messaging 

and high priority notification delivery despite their possible negative emotional impact, the 

management of “reminder notifications” which are not interacted with by users but still 

impart useful information, and the technical issues that can be caused by blocking or 

interrupting notifications which are required for app operation. 

For these reasons, mobile notification management systems (NMSs) were developed. The 

problems with currently implemented solutions such as OS level control, do not disturb mode 

and app specific importance learning were discussed, which lead to analysis what state-of-the-

art NMSs are currently being researched. 

Discussion of the current state-of-the-art systems developed by (Corno et al., 2015), 

(Mehrotra et al., 2017), (Pradhan et al., 2017), and (Huang and Kao, 2019) found gaps in 

research for both the areas of reinforcement learning in NMSs and the use of fully synthetic 

notification datasets for training and evaluation of NMS. The benefits of using a synthetic 

notification dataset include an increased level of privacy sensitivity when compared to other 

“in-the-wild” datasets and the ability to scale the size of the dataset for the use case. 

For this reason both a Q-Learning and Deep Q-Learning system were developed using a 

synthetic notification dataset created by (Fraser, 2018). These systems were implemented 

through Python scripts on a non-mobile computer to simplify their implementation and allow 

focus on a larger variety evaluation parameters and metrics.  An OpenAI Gym (OpenAI, 2019) 

environment was created to simulate the mobile device raising notifications to the machine 

learning systems.  

These systems were evaluated using 10-fold cross-validation for the metrics of precision, 

accuracy, recall, F1 Score and computation time. The training reward over time was also 

measured for each k-step of the 10-fold cross validation. 
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The parameters changed for evaluation were the size of the notification dataset and the 

number of features used to define the notification state space. Analysis of performance for 

different single feature spaces was also performed for the Q-Learning implementation. 

The results found that the Q-Learning and Deep Q-Learning systems obtained a maximum 

performance in machine learning metrics of precision, accuracy, recall and F1 Score of 

approximately 80%. The results also indicate that a Q-Table implementation should be used 

for small to medium datasets, a computation time requirement or the need for real-time 

implementation, whereas the DQN implementation should be used for large datasets, GPU 

optimized systems or large feature spaces particularly if there are memory constraints. 

Overall the project found an effective privacy conscious methodology for the training and 

implementation of mobile NMSs through the use of synthetic notification datasets. 
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2 INTRODUCTION 

Mobile notifications are the main method for communicating incoming information to the 

user for a variety of applications. Since mobile devices are present with users throughout their 

day in a variety of environments, the potential for disruption from mobile notifications is 

much higher than from other notification sources such as desktop computers. 

For this reason, research has been conducted into the area of mobile notification 

management systems (NMS) which aim to block or delay notifications which are not seen as 

useful or desired, while allowing important notifications to be delivered immediately. 

Currently the majority of these state-of-the-art systems are trained using real user notification 

data collected “in-the-wild” and implement some form of supervised learning. 

A current issue for the development of these systems is the lack of available mobile 

notification datasets taken “in-the-wild” from real users. The reasons for this are due to the 

highly privacy sensitive information contained in these notifications which often includes 

location, message content and mobile sensor information. For these reasons, research has 

been conducted into generating synthetic notification datasets which do not contain privacy 

sensitive information but provide useful features for designing mobile NMS systems. 

There is also scope for research into other areas of machine learning for designing mobile 

NMSs such as unsupervised and reinforcement learning. This paper aims to determine the 

effectiveness of a mobile NMS which implements reinforcement learning and is trained and 

evaluated using a synthetic notification dataset. By doing this the performance of using 

reinforcement learning for mobile NMSs is to be evaluated as well as the creation and 

implementation of a privacy conscious methodology for evaluating these systems. 
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3 LITERATURE REVIEW 

3.1 MOBILE NOTIFICATIONS 

3.1.1 Purpose of Notifications 

Mobile notifications play an important role in how smartphone users interact with their 

phones. A statement by (Iqbal and Bailey, 2010) defines a “notification to refer to a visual cue, 

auditory signal, or haptic alert generated by an application or service that relays information 

to a user outside her current focus of attention.” (Iqbal and Bailey, 2010). For mobile 

applications, they can take a wide variety of forms, from ringtones to flashing lights from the 

phone’s L.E.D. These notifications are used to “steer the user’s attention towards the newly-

arrived information” (Mehrotra et al., 2016) and this information can take a variety of forms 

from “the arrival of a message, a new comment on one of their social network posts, or the 

availability of an application update” (Shirazi et al., 2014). Since notifications are the primary 

mechanism for delivering updates and new information to the user, it is important that they 

are delivered effectively.  

3.1.2 Studies on Desktop Notifications 

Prior to research of notifications for mobile applications, there were extensive previous 

studies conducted into the area of desktop computer notifications and their effect on users. 

“The effect of notifications created by applications in the desktop workplace, such as email 

clients or instant messengers applications, has been studied thoroughly in previous work [4, 5, 

13, 16]” (Shirazi et al., 2014).  While there are many similarities between how users interact 

with desktop and mobile notifications, there are differences since mobile notifications “(1) are 

delivered to a highly unified mechanism, (2) inform about a much larger variety of events, 

ranging from messages to system events, and (3) became pervasive due to the omnipresent 

nature of current smartphones that are virtually always with the user [12, 21, 19].”(Shirazi et 

al., 2014).  

The pervasiveness of mobile devices throughout a users’ daily life is significant as this 

increases the ability for users to be disrupted by notifications. This idea is reinforced by (Pielot 

et al., 2014) who mention how “Since we carry our phone with us throughout the day, mobile 

notifications continually cross the boundaries of work and private life and as such have the 

potential to interrupt us in a wider range of situations and contexts.” (Pielot et al., 2014). 
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Since mobile notifications differ from conventional desktop computer notifications in these 

ways, there was a demand for research into notifications specifically within a mobile context. 

3.1.3 Quantity of Received Notifications 

A significant motivation for why the study of mobile specific notifications is an important area 

of analysis is the large number of mobile notifications which users receive daily. Studies by 

both (Pielot et al., 2014) and (Pradhan et al., 2017) have shown that users receive a high 

average number of notifications on a daily basis with these studies finding that users receive 

“63.5 notifications on average per day, mostly from messengers and email.” (Pielot et al., 

2014) and “an average user receives at least 60 notifications per day” (Pradhan et al., 2017).  

In addition, the study by (Pradhan et al., 2017) found “that 20% to 50% of the notifications 

generally get ignored by the users”(Pradhan et al., 2017) due to the high number of 

notifications received. Ignored user notifications are a detriment to both the app developer 

and the user. App developers do not want their application’s notifications to go unnoticed and 

mobile users do not want to miss notifications with important information. 

3.1.4 Distractive Effects of Notifications 

Another issue with poorly managed notifications is their potential for interruption and 

disruption of the user in their day-to-day work. 

Within the desktop notification context, a study by (Bailey et al., 2000) which analysed the 

effect of interruptions on task completion found that interruptions from outside sources to 

the work and tasks being carried out by individuals causes an increase in feelings of anxiety 

and annoyance for the individual and can cause “difficulty switching back to the previously 

suspended primary task” (Bailey et al., 2000).  

Within a smartphone context, similar results were found by (Leiva et al., 2012) where the 

duration of time spent on different phone app tasks was measured and compared to the 

duration spent on app tasks after being interrupted by a phone call. The study measured app 

usage from 3,611 users and found that “Phone call interruptions add a significantly high 

overhead on the interrupted application in comparison to those of app-switching” (Leiva et al., 

2012) and that after interruption, the interrupted application’s “runtime could be increased by 

up to four times” (Leiva et al., 2012). 

(Mehrotra et al., 2016) expands on the various impacts of interruptive notifications by stating 

that “previous studies have found that interruptions at inopportune moments can adversely 

affect task completion time [11, 12, 25], lead to high task error rate [8] and impact the 
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emotional and affective state of the user [5, 7]. Also, users might get annoyed when they 

receive notifications presenting information that is not useful or relevant to them in the 

current context [13]” (Mehrotra et al., 2016) 

 

In terms of notification frequency, (Pradhan et al., 2017) found that when “not managed 

properly, these notifications have the potential to disrupt an average user at least 4 times per 

hour of the productive part of their day.” (Pradhan et al., 2017).  

Given the frequency and high level of disruption that mobile interruptions have, poorly 

managed notifications can have a negative impact on work effectiveness in professional 

settings and on general task completion. 

Even though mobile notifications cause such distraction, the study by (Pielot et al., 2014) 

found that “notifications were typically viewed within minutes. Social pressure in personal 

communication was amongst the main reasons given.” (Pielot et al., 2014) 

In addition, the study by (Mehrotra et al., 2016) found that while some mobile notifications 

caused disruption “54% of these disruptive notifications were accepted (clicked) by the users, 

regardless of the fact that they caused disruption” (Mehrotra et al., 2016). The explanations 

given by the candidates were primarily related to the notifications being of high importance. 

Given the negative effect of disruptive notifications and the influence of social factors and 

level of importance on notification acceptance, a system which delays or blocks notifications 

which appear to be disruptive must also consider the level of importance the notifications 

have to the user. These important and social notifications must be delivered as usual without 

any delay or blocking by an NMS (notification management system). 

3.1.5 Impact of Notifications on User Emotions 

The reception of mobile notifications can have a variety of effects on the user’s emotions 

depending on different notification features. These emotional impacts can be both negative 

and positive depending on the context. 

In the study by (Pielot et al., 2014), “The amount of emails received during a day was 

correlated with increased self-reports of negative emotions. Both, subjective and objective 

email count, lead to higher feelings of being stressed ( … ), interrupted ( … ), and annoyed ( … 

)” (Pielot et al., 2014). 
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“In contrast we found that receiving more messages is significantly correlated with increased 

feelings of being connected with others ( … ). The same positive correlation was found for the 

amount of social network updates and feeling connected to others ( … )” (Pielot et al., 2014). 

These findings emphasise that notification type and context have a strong impact on users’ 

receptivity to notifications. The variance in emotional impact between receiving an email 

notification and an instant messaging notification can be explained by the type of content 

each medium generally delivers. Emails most often contain information which requires further 

action and is of a professional or important nature, leading to increased stress. By contrast, 

instant messages are most often used for social interaction which explains why their reception 

leads to feelings of being socially connected. 

While the interruptions from email and other notifications which carry important information 

can cause negative emotional effects, the feeling of missing important information can have a 

similar negative impact.  

In the study of mobile phone use by (Oulasvirta et al., 2012), the users’ “Descriptions of the 

use of e-mail were mainly related to checking e-mails and, thus, achieving a sort of awareness 

that nothing important is missed, as opposed to actively writing messages to others” 

(Oulasvirta et al., 2012). In the study, this awareness of notification events was noted as one 

of the three main motivators for creating mobile use habits. 

The associated negative emotional impact of missing important notifications such as 

important emails reinforces the previous findings on the disruptive effects of notifications, 

whereby notifications of importance should be delivered to the user without interruption. If 

they have high importance to the user, then they should be delivered immediately even if the 

user is otherwise occupied or the delivery time may appear disruptive. 

3.1.6 Challenges in Acquiring Notification Data and Measuring User Interactions with 

Notifications 

There are many different and subtle complexities in measuring and predicting users’ 

interactions with notifications. In (Pradhan et al., 2017) a system was developed to monitor 

the user’s interactions with notifications. One of the ways in which this interaction was 

measured was the idea that if the notification drawer is be opened, then the notification 

present will be regarded as more useful. The assumption made is that “a user responds to a 

useful notification in a meaningful manner” (Pradhan et al., 2017), however there are cases 

where a notification could be useful or important but it does not require any further 
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interaction from the user once it has been raised. An example would be a calendar application 

presenting a notification to the user reminding them about an upcoming event. Even though 

the user would detect the notification and register the notification as useful, no further 

interaction with the notification would be required. This shows one of the ways in which 

attempting to discern user intent from information on how they interact with their phone is a 

complex process.  

3.1.6.1 Feature Space 

Another challenge with creating a mobile NMS is the wide variety of input feature types. 

Mobile devices have a wide variety of sensors and metrics which can be used to better 

determine the user context.  Some of these measured by the study by (Pradhan et al., 2017) 

include “appusage, screen on/off, Wi-Fi status, headphone status, coarse location using 

cellular towers, battery level, notification events (post, clear, action), notification properties 

(time, title, id, style, modality), notification shade opening or duration (through accessibility 

service), ringer mode, calendar event, raw data from accelerometer, gyroscope, proximity 

sensors (only 10 seconds of data recorded after notification posting to save energy) and audio 

features of decibel and pitch …”(Pradhan et al., 2017). While it would be complex to 

implement a designed system which uses these features together to determine the user 

context effectively, a machine learning based system would be able to use all these features 

together due to its ability to utilize large feature spaces. For this reason, a machine learning 

approach for designing a mobile NMS should be considered. 

3.1.6.2 Technical 

A more technical difficulty is the different ways in which notifications are used by applications 

for functionality purposes. One example given by (Shirazi et al., 2014) is how notifications are 

generated by the Skype application. “When a user is voice chatting using the Skype app, for 

example, the app shows and updates the current duration of the ongoing call in the 

notification bar. The app achieves this by generating a new notification each second until the 

call is ended” (Shirazi et al., 2014). If these notifications were blocked or delayed by an NMS, it 

would make the application appear as if it was malfunctioning.  

There is even disparity in how notifications are used between the same type of application. 

While the Skype app raises notifications throughout a call, “… the Kakao Talk app, for example, 

shows only a single notification when a user voice chats.” (Shirazi et al., 2014). The impact of 

blocking or delaying notifications which are integral to the functionality of an application is an 

important consideration during the development of the mobile NMS.  
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Users can also interact with notifications in a wide variety of ways. “As suggested by Clark 

[10], users can respond to an interruption in four possible ways: (i) handle it immediately; (ii) 

acknowledge it and agree to handle it later; (iii) decline it (explicitly refusing to handle it); (iv) 

withdraw it (implicitly refusing to handle it)” (Mehrotra et al., 2016). The number of different 

interaction methods makes the act of determining user context even more complex as 

different notifications will require different levels of interaction. For example, an email may 

require opening the email application to send a response, whereas a calendar reminder may 

only require viewing to impart its information. 

These factors mean that simply measuring one aspect of user interaction with notifications is 

not enough to provide a full user context for determining which notifications are useful to the 

user. 

3.1.6.3 Privacy and Ethics 

There are privacy and ethical difficulties surrounding the development of systems for user 

notifications. Notifications can contain sensitive information such as private message content 

and location data and as such require ethics permission for collection and storage.  

Storage of this sensitive data requires high levels of data security and strict user access 

restrictions so that only individuals who are authorized to use that data have access to it. If a 

data breach were to occur with user notification data it would infringe on the privacy of the 

users who participated in data collection. 

Some analyses of notifications forego using the notification content for privacy reasons. The 

study by  (Shirazi et al., 2014) “did not collect any information about the content of 

notifications due to the high sensitivity of the information that can be included in 

notifications” (Shirazi et al., 2014). This necessity for protection of user privacy increases the 

difficulty in obtaining high quality notification datasets for developing NMSs. 

The impacts user notification data transmission and associated ethical considerations are 

discussed in further detail below in section 3.5 Privacy and Ethics Considerations. 

3.1.7 Notification Delivery Time 

There are contrasting results on how much impact the time of notification delivery has on the 

receptiveness of the user.  “According to a field study with 11 co-workers by Fischer et al. [14], 

the user’s receptiveness is determined by message content, i.e. how interesting, entertaining, 

relevant, and actionable a message is. The time of delivery, in contrast, did not affect 

receptivity.” (Pielot et al., 2014).  
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By comparison, “Iqbal and Bailey [19] showed that delivering emails at so-called breakpoints, 

i.e. events when a person has just mentally finished a task, reduces frustration and makes 

users react to them faster” (Pielot et al., 2014). These two findings seem to contradict each 

other in how important they determine the time of delivery for notification delivery. 

An explanation for this is mentioned in the results of (Mehrotra et al., 2016). “… the value of 

content is used for deciding whether to click or dismiss a notification. Moreover, the users 

very rarely state that they were busy and thus had to dismiss a notification. This could indicate 

that the users give precedence to a notification over the primary task, but only if the content 

is valuable.” (Mehrotra et al., 2016). 

This further reinforces the idea that if the notification has a high enough importance to the 

user its delivery takes precedence over any interruption it may cause. It also highlights how 

low importance notifications should be managed by delivering them at times where the user is 

not occupied with other tasks. 

3.1.8 Difficulties with Reducing the Number of Incoming Notifications 

A possible approach to reduce overall interruption due to notifications is to simply reduce the 

number of notifications raised to the user. However, the work by (Pielot et al., 2014) 

emphasises that “Given that our participants typically viewed messages and social networks 

updates within minutes, and given that muting notifications had no effect on those viewing 

times, we would expect that even if these notifications are reduced, it’s likely that mobile 

users will check their phones more frequently to make sure that no “important” or “urgent” 

message has been missed” (Pielot et al., 2014). While a simple notification blocking NMS gives 

more user control over deciding the times when they interact with their phones, feelings of 

stress will most likely increase from the potential to miss important notifications as mentioned 

in the 3.1.5 Impact of Notifications on User Emotions section of this literature review. For this 

reason, an NMS design focused on notification importance instead of notification reduction 

should be considered. 

3.1.9 Business and User Incentives for NMSs 

There is a business incentive for mobile application developers to develop or use notification 

management systems in their apps. In (Felt et al., 2012) it was found that in the case of a 

mobile app causing unwanted disruption to users such as phone vibration and L.E.D. flashing 

“The most common recourse was to uninstall the application” (Felt et al., 2012). The 

implementation of a mobile NMS will help applications to remain on users’ phones while also 

delivering notifications which the user finds useful. 
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There is also a direct user demand for development of a mobile NMS. The survey of over 400 

users by (Pradhan et al., 2017) found that “92% of users check notifications on smartphones 

and only 25% of them are completely satisfied with the current notification systems” (Pradhan 

et al., 2017). This leaves a large market for a high-performance NMS. 

3.1.10 Conclusions About Notifications 

The ability for mobile notifications to be raised in a variety of contexts and at a wider range of 

times throughout the day when compared to desktop notifications gave reason for specific 

research into notifications form mobile devices. The large quantity of notifications received by 

smartphone users in combination with their potential for disruption and negative emotional 

impact gives a strong incentive for the development of an effective mobile NMS. In addition, 

there are direct user and app developer incentives for the development of an NMS due to 

users’ dissatisfaction with existing notification systems and a high quantity of ineffective 

notifications obscuring other notifications.  

The development of such a system has many challenges to overcome and complexities that it 

needs to address. The first mentioned is the difficulty in measuring notifications and 

attempting to control them. There is great difficulty in determining user intent solely from the 

interaction users have with their smartphones and obtaining detailed notification data has 

significant privacy and ethics concerns.  

The effect of notification importance on delivery time was also highlighted where low 

importance notifications should be delivered when the user is not occupied, and high 

importance notifications should be delivered immediately. 

There was some analysis into the problems associated with a system that simply blocks 

notifications from a certain app or during a specific time of day where the user is busy. The 

possibility of missing an important notification may increase the time a user is interrupted 

since they are likely to check their phone more often to prevent them from missing an 

important notification. In addition, certain notifications are important to the functionality of 

apps and blocking these would result in problems in the app’s operation. For these reasons a 

system dedicated to managing mobile notifications has cause for development. 
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3.2 MOBILE NOTIFICATION MANAGEMENT SYSTEMS 

3.2.1 Problems with User Management of Notifications 

In determining how to develop an effective mobile NMS, currently available options should be 

analysed as to their effectiveness. The first of these is direct user management of 

notifications. While notifications can be handled by the user, these notifications “can go 

unnoticed when a user does not register an alert.”(Mehrotra et al., 2016) and “non-persistent 

notifications may be forgotten about - a user riding a bicycle, might decide to attend to a 

notification once they arrive at the destination, yet forget to do so.”(Mehrotra et al., 2016). 

This means that notification management should not be left solely to the user to manage 

themselves. 

3.2.2 Currently Implemented Systems for Managing Notifications on Mobile 

In (Pradhan et al., 2017), existing mobile supported user options for managing notifications 

are discussed. The paper mentions existing approaches to notification control such as OS-level 

control, do not disturb mode, and importance learning. OS level control of notifications is used 

by a large portion of users (42% of the 400+ users in their online survey (Pradhan et al., 2017)) 

and can be viewed as the default method of managing notifications. The problem with OS 

level control is identified by the paper as “limited flexibility” (Pradhan et al., 2017) in that 

there are different notification types within each individual app. The example given is the 

Facebook app which generates “a variety of notifications, such as birthday alerts, new 

message alerts, and so on” (Pradhan et al., 2017) and all of these would require separate 

management within the Facebook application. 

Do not disturb mode disables all notifications while the setting is enabled. “22% of the 

surveyed users use this mode as their first choice mechanism to avoid notifications” (Pradhan 

et al., 2017). This system is not ideal as it removes all notifications including important ones, 

and as previously mentioned a direct reduction in notifications can lead to increased user 

stress and more frequent checking of their smartphone. 

The last system discussed is one based off importance learning. These systems use machine 

learning to determine notification importance and raise notifications only when the 

importance is high enough. The issue with current implementations of these systems 

highlighted by the paper is that “this approach requires developers of each app to develop 

their own custom experience-sampling approach and a prediction algorithm for their 

notifications” (Pradhan et al., 2017). If each app implemented their own NMS, there would be 
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a large variation in the effectiveness of each system due to different development 

environments.  

An application-specific NMS would also raise privacy concerns if it attempted to access 

notification data outside of its app’s scope, and as a result would be less effective than a 

generalized system which would have access to a larger quantity and variety of notification 

data from multiple applications. Also if a large variety of app developer created NMSs were 

used, there is a higher chance that one of these would be mishandling user notification data 

than if a single common framework was implemented. 

The problems with the above systems identify a motivation for creating a generalized mobile 

NMS framework for use in different applications. 

3.3 STATE OF THE ART SYSTEMS 

In recent years, there has been significant development in the area of mobile NMS research 

with a variety of different systems being proposed. This section is focused on analysing the 

different state of the art NMSs, describing how they operate, and discussing their 

effectiveness.  

3.3.1 A Context and User Aware Smart Notification System (2015) 

The NMS developed by (Corno et al., 2015) was created to provide features for managing 

notifications from a variety of sources and determining which location they should be 

delivered to. The focus of this system is on the optimal delivery method to reduce 

notifications being sent to multiple devices when the user has already seen the notification. 

This system is designed for distributed Internet of Things (IoT) systems, however many of the 

same principles for notification management and delivery still apply in the smartphone 

notification context. 

The system operates by deciding “a) who should receive an incoming notification; b) what is 

the best moment to show the notification to the chosen user(s); c) on which device(s) the 

chosen user(s) should receive the notification; d) which is the best way to notify the incoming 

notification.” (Corno et al., 2015). While the system’s purpose diverges from the aim of this 

project since it is more focused around notifications in a general IoT space instead of a single 

mobile device, it does demonstrate machine learning for analysis of notifications and the use 

of a synthetically augmented dataset to train an NMS using different notification 

characteristics as the input feature space. 



21 
 

The study analyses three different supervised machine learning algorithms (Support Vector 

Machines, Gaussian Naïve Bayes, and Decision Trees) to determine which results in the best 

performance accuracy. The input features for these systems compose of “user personal 

sensors”, “environment sensors”, and “general IoT sensors” (Corno et al., 2015). 

3.3.2 Interpretable Machine Learning for Mobile Notification Management (2017) 

In the area of mobile NMSs, PrefMiner (Mehrotra et al., 2017) was created to automatically 

extract rules about notification delivery based on users’ interaction with those notifications. 

The rules generated are then proposed to the users for their acceptance or rejection. This is to 

make the system “intelligible and interpretable for users, i.e., not just a “black box” solution” 

(Mehrotra et al., 2017) by providing these rules in a human interpretable manner. The rules 

for this system are made human interpretable “by replacing each notification type with the 

most frequent words of the relevant notification cluster” (Mehrotra et al., 2017). As a result, 

PrefMiner demonstrates an implementation of interpretable machine learning on a mobile 

device. 

PrefMiner operates by determining not only the best times to deliver certain notifications, but 

to also “stop notifications that are not useful, or are uninteresting or irrelevant for the user” 

(Mehrotra et al., 2017).  

To determine which notifications to block “… the system learns the different types of 

interruptions that users explicitly refuse by dismissing notifications” (Mehrotra et al., 2017). 

From this, “PrefMiner can identify the notifications that are not useful for the users in specific 

situations and stop the operating system from triggering alerts related to them” (Mehrotra et 

al., 2017).  A difficulty with using this approach alone is that by blocking notifications that are 

dismissed by the user, the effectiveness of certain notification types could be negatively 

affected. This was previously mentioned in 3.1.6 Challenges in Acquiring Notification Data and 

Measuring User Interactions with Notifications where dismissal of a calendar notification after 

it has been raised does not signify that the notification is not important. 

For this reason, the first step of the PrefMiner system identifies these “reminder notifications” 

which are defined as “a particular class of notifications that are always dismissed but they 

should be shown to users in any case“ (Mehrotra et al., 2017). These reminder notifications 

are identified so that rules are not created to prevent their display. One possible difficulty 

with this classification is that for a given new generic application, it can be difficult to identify 

which of its notifications are reminder notifications without knowing the details of the app’s 

function.  
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After reminder notification filtering, the second step of the PrefMiner system takes the 

remaining notifications and “performs clustering by considering their titles” (Mehrotra et al., 

2017). This demonstrates an implementation of unsupervised learning for notification 

classification in an NMS. 

The third and final step is to create association rules based on the input features. These 

features are “notification response (i.e., the user’s response to a notification), notification 

type, arrival time, activity, and location of the user when the notification arrived” (Mehrotra 

et al., 2017). Out of these features, the study “found that the association rules that are 

constructed by using the notification response, type and location perform better than rules 

constructed with other combinations” (Mehrotra et al., 2017). The conclusion is that there is 

“evidence that the user’s preference for receiving notifications does not depend on the 

activity and arrival time, but on the type of information it contains and the location of the 

user.” (Mehrotra et al., 2017). These “rules are constructed every day when the phone is in 

charging mode and not in use” (Mehrotra et al., 2017). 

While it is possible that improved clustering could have been tested if notification content was 

used in conjunction with other features, there are corresponding privacy concerns for the 

system users providing this training data to the system even if the users were anonymized. 

When implemented, PrefMiner takes a given notification as input, finds the corresponding 

rule(s) and determines the output for each rule which is whether to accept or dismiss the 

given notification. “The rules are extracted by calculating the ratio between the number of 

times X and Y co-occur and the ( … ) support and the ( … ) confidence” (Mehrotra et al., 2017). 

One benefit of this method is that for classes of notification with frequent occurrence, strong 

rules can be created with a high level of confidence in their prediction based off previous 

experience. 

The system was designed by trying to reduce false-negatives to prevent useful notifications 

from being filtered. The paper mentions that obtaining a high recall value was not possible 

since some important non-reminder notifications were “dismissed because they do not 

require any further actions, such as the final message of a chat conversation” (Mehrotra et al., 

2017). This is mentioned as “a fundamental trade-off in the design of this class of 

systems”(Mehrotra et al., 2017).  

 “During the 15-day study, PrefMiner suggested 179 rules to the participants out of which 102 

rules (i.e., 56.98%) were accepted. Overall, around 70% of the users accepted 50% (and 
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above) of the suggested rules. The results also show that the average number of notifications 

that are successfully filtered everyday is 12 (with the standard deviation equal to 8) and, thus, 

PrefMiner minimizes the perceived disruption for handling irrelevant notifications” (Mehrotra 

et al., 2017). This shows that PrefMiner is effective in reducing the number of disruptive 

notifications which are delivered to the user, however there is a significant level of direct user 

interaction required to validate the rules it generates. 

3.3.3 Understanding and Managing Notifications 2017 

For this study by (Pradhan et al., 2017), a supervised classification approach was taken to 

predict notification importance. This system operated on determining notification importance 

with “a combination of user-control method and a passive monitoring of user engagement 

with any notification to implicitly infer its importance” (Pradhan et al., 2017). 

The first step that was performed was to determine the “user perceived importance” of the 

feedback they received from the users. Prior to this stage “explicit feedback of importance 

from users regarding the notifications using Snotify app [6]” (Pradhan et al., 2017) was 

collected.  

Using this data, certain apps were seen to provide notifications which were always important 

and other apps raised notifications which were never important. The study proposed 

providing “a user with an interface where they can identify the set of apps whose notifications 

are always (or never) important for them.” (Pradhan et al., 2017). This simplifies the 

notification classification problem significantly as notifications from these apps can be 

classified simply into immediately reject (never important) and accept (always important). 

One downside of this method is that direct user interaction with the system is required, and 

changes in user context are not automatically accounted for. An example of where this could 

be problematic would be if a user decided that notifications from a region-specific app should 

always be blocked since the user is planning to travel abroad, but upon returning they forget 

to unblock the given app’s notifications. 

The remaining apps with notifications of varying importance are analysed using a rule-based 

system. The notifications with neutral responses were removed from the dataset, as well as 

the notifications already covered by the per-app classification mentioned above. From the 

remaining notifications, a “rule-based classifier that classifies a notification as important if one 

of the following conditions is met” (Pradhan et al., 2017) was created. The rule-based classifier 

had an accuracy of 86.29%. 
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The second step performed was to extract the features to use for training the machine 

learning system. A set containing 22 different features which are grouped into different types. 

The feature types are temporal, user device activity, location, sensor data, and notification-

based features. Each of the 22 features were then ranked “based on the information gained 

by adding it for predicting the notification importance” (Pradhan et al., 2017). 

The feature ranking “results show that the temporal features like hour of the day or 

temporally local event-based feature like last app use are the most important features. 

Furthermore, notification property driven features, location and calendar events are also 

relatively important features in terms of information gain results. However, activity level or 

sensor based features are not that important …” (Pradhan et al., 2017). This is in contrast with 

the PrefMiner system which found that notification response, type and location were the 

most important features and that temporal data was not as effective in determining user 

notification preference. 

The third step performed was to train the machine learning system. Multiple machine learning 

algorithms were used to determine which algorithm was most effective. The different types of 

algorithm were “Random Forest with 100 trees, Decision Tree, Support Vector Machine 

(SVM), and Linear Regression models for predicting notification engagement classes, 

i.e.interacted and ignored.” (Pradhan et al., 2017). 

Evaluation of the systems was conducted by its ability “to predict two classes interacted and 

ignored” (Pradhan et al., 2017). This ability was measured through measuring the accuracy, 

precision, recall and f-score of the overall predictions. A “k-fold cross validation approach with 

k = 10” was used for each user. 

The results found that the “Overall average accuracy of prediction is more than 87%. The 

result also shows that precision and recall are more than 87%” (Pradhan et al., 2017). 

“Random Forest performs best in terms of all four metrics and also shows comparably less 

variation across users. On the other hand, decision tree model performs best in terms of time 

without compromising too much on accuracy. Therefore, it has been selected for our 

smartphone prototype implementation. In comparison, SVM is the slowest.” (Pradhan et al., 

2017). This study emphasises the priority of faster processing over slight improvements to the 

evaluation metrics. This priority is important for developing machine learning systems for 

deployment on mobile devices. 
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The paper then compares the performance of systems trained on three different formats of 

user data: user’s personal data, multiple users’ data and clustered user data. The user data is 

clustered using the k-means algorithm with features of “number of applications used, number 

of unique locations visited, number of notifications received, and number of each engagement 

levels” (Pradhan et al., 2017).  

3.3.4 C-3PO: Click-sequence-aware DeeP Neural Network (DNN)-based Pop-uPs 

RecOmmendation 

While the previously mentioned notification management systems have been focused on 

improving user experience by reducing the impact of unwanted or unimportant notifications, 

a very recent system by (Huang and Kao, 2019) has been developed with an advertising focus.  

The aim of this system was to increase the click-rate of advertising notifications and the 

retention rate for the corresponding apps. The retention rate is defined as “the number of 

users that logs in the app at least once in the following seven days over the number of new 

users on that day” (Huang and Kao, 2019). 

The system also raises notifications to inform users of “their smartphone operating 

condition”, such as high phone temperature and junk files, so that the system “can increase 

the open rate” of the notification drawer, resulting in the display of more advertising 

notifications. 

The system operates by taking input features from the user’s phone about their current 

context and phone state, sending the feature data to a remote server to train a Deep Neural 

Network (DNN), and uses this trained model to determine a score for a given notification 

which determines whether it is displayed or not. 

One downside of this architecture is that due to the large feature space, their system 

specifications and the implementation of a DNN, there is a high hardware requirement to train 

this network. This means that the system cannot be implemented on-device, and as such 

there is a “need to upload the value of the features from client application” (Huang and Kao, 

2019), instead of storing the notification features locally. This results in a privacy concern 

since it requires transmission of highly sensitive notification data, and storage of this data on a 

remote server. 

While the implementation decreases notifications that were deemed troublesome to users, 

this was implemented primarily to help “increase the click-through rate of push 
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notifications/pop-ups” (Huang and Kao, 2019) for advertising by removing unwanted 

advertising notifications instead of being implemented to improve user experience.  

This system resulted in increased app retention by around 2%-2.7%, a reduction in the 

number of notifications raised to the user and an increased click-rate of notifications. It 

demonstrates how a mobile NMS can be used to implement user personalized advertising 

through mobile notifications, in a similar manner to existing forms of online personalized 

advertising.  

From an ethics perspective, it will be very important in the future to distinguish NMSs that are 

intended for user experience and NMSs which are intended for increased advertising 

effectiveness.  
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3.4 COMPARISON OF SOA SYSTEMS 

The table below summarizes the main features of the state-of-the-art systems discussed. It 

displays whether real user data was used for the system, if the system operates in real time, if 

the system was deployed on a mobile device, and the type of machine learning used.  

Table 1: State-of-the-art mobile NMSs and their features 

 Real User 

Data? 

Real Time 

Analysis? 

Deployed 

on-device? 

Type of ML 

used? 

A Context and 

User Aware Smart 

Notification 

System (Corno et 

al., 2015) 

Synthetic 

information 

added to 

augment real 

user dataset 

Separate training 

and classification 

stages. Training 

can take 

significant time 

depending on 

algorithm used. 

No. Using 

Python 

script 

Supervised 

(Support Vector 

Machine (SVM), 

Gaussian Naïve 

Bayes, and 

Decision Trees) 

PrefMiner 

(Mehrotra et al., 

2017) 

Yes Rules constructed 

when not in use. 

Rules 

implemented in 

real time. 

Yes Rule-based (with 

unsupervised 

learning for 

notification 

clustering) 

Understanding 

and Managing 

Notifications 

(Pradhan et al., 

2017) 

Yes No  No. Uses 

Weka, 

Matlab and 

vowpal-

wabbit 

Supervised 

(Random Forest, 

Decision Tree, 

SVM, Linear 

Regression) 

C-3PO (Huang and 

Kao, 2019) 

Yes Yes No. On 

remote 

server 

Supervised (Deep 

Neural Network) 

 

As can be seen by this table there are no NMSs that have been implemented using 

reinforcement machine learning with most opting to utilise supervised machine learning. In 

addition, there are no systems implemented using exclusively synthetic data, with the closest 

being the system by (Corno et al., 2015) which uses feature synthesis to augment existing 

data. This shows a gap in research in both the areas of NMS training on synthetic data and 
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NMSs implementing reinforcement learning. In addition, out of all of these systems, Prefminer 

was the only system which was deployed fully on-device for mobile. 

3.5 PRIVACY AND ETHICS CONSIDERATIONS 

One of the future goals for NMSs is to have a system that can be deployed on mobile devices 

directly. The reasoning for this is that an on-device mobile NMS would require no transmission 

of sensitive mobile notification data to a remote server and would not require storage of that 

data on that server.  

Another difficulty with transmitting sensitive data from a mobile device is the difficulty in 

determining whether sensitive data is being transmitted to malicious applications. 

Applications such as AppIntent (Yang et al., 2013) highlight the difficulty in identifying whether 

transmitted data is user intended or is a privacy breach. By implementing an NMS which does 

not transmit user sensitive data, this problem is avoided. 

3.6 SYNTHETIC NOTIFICATION DATASETS 

A synthetic notification dataset was used for the training and evaluation of the machine 

learning system developed as part of this project. The creation and evaluation of this dataset 

is described fully by (Fraser, 2018). 

3.6.1 Utility and Benefits of a Synthetic Notification Dataset 

Due to the privacy concerns surrounding the collection of “in-the-wild” user notification data, 

there are “there are few, if any open-source mobile notification datasets in existence”(Fraser 

et al., 2017) and those that do exist are usually restricted to exclusive research use and 

specific institutions. 

One of the benefits of using a synthetic notification dataset is that it reduces some of the 

impact on users’ privacy since the direct content of the notifications is not used. By generating 

data based on the main features of the notifications such as app, category of app and time of 

day, many of the privacy sensitive notification details such as message content and user 

location are not divulged in the synthetic dataset. This provides a dataset with a reduced 

impact on user privacy. 

However, by implementing a synthetic notification dataset, there is a trade-off between the 

amount of privacy and the detail of the notifications. Since notification content, location data, 

names of users and other similarly privacy sensitive notification features are not available in 
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the synthetic notification dataset, the set of features available to the machine learning system 

is reduced.  

A synthetic dataset also allows a larger quantity and variety of data to be generated, however 

the variety of data is dependent on the generation method and the diversity of the dataset 

used to create the synthetic data. 

3.6.2 How “In-the-Wild” Data was Collected 

The dataset by (Fraser, 2018) was created from “in-the-wild” notifications collected from 

mobile users. This collection of notification data was conducted using the WeAreUs app 

(Fraser, 2019). The app used two methods for collecting user data, a “background-sensing 

method” and an “experience sampling method”. The background-sensing method used the 

Android SDK’s Notification Listener Service (Google LLC, 2019a) and hourly logging of the 

mobile device’s sensor states to collect relevant data without direct interaction with the user. 

Most of the data obtained was from this method of collection. 

The experience sampling method used more active interaction with the user to obtain 

information. This included prompting users to answer questions “pertaining to the notification 

and their current context” (Fraser, 2018) after interacting with a notification and prompting 

users to “answer questions regarding their current state-of-mind and their immediate 

context” (Fraser, 2018) when they unlocked their screen. While this data makes up the 

minority of the data collected, this data contains higher quality details regarding the user’s 

context and their reaction to the notifications. 

These data sampling methods resulted in an “in-the-wild” dataset from “15 participants (2 

Female and 13 Male), ranging in ages from 21 to 64” (Fraser, 2018) containing “Over 30,000 

in-the-wild notifications […] as well as 4,940 smartphone general-usage logs and a total of 291 

ESM questionnaires […] answered by participants” (Fraser, 2018). 

3.6.3 Data Generation 

A Generative Adversarial Network (GAN) was used to generate the synthetic notifications by 

using the WeAreUs dataset as the real data. Prior to implementing the WeAreUs dataset, the 

users of the WeAreUs app were surveyed about their notification behaviour. “The responses 

show that in 27 of the 41 cases (65.6%), participants believed their behaviour of engagement 

toward the notification was good” (Fraser, 2018). The other “34.4% embodied poor 

behaviour” (Fraser, 2018) and so were filtered out of the dataset before it was used for the 

GAN. 
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Synthetic notifications were created by the generator component of the GAN, and the 

discriminator component was “given alternating real and generated values”(Fraser, 2018). The 

aim is for the synthetic and real data to be similar so that the discriminator cannot 

differentiate between which data is real or synthesised. At this point, the generator “can be 

used to generate data which mimics the distribution of real data”(Fraser, 2018) and so can 

create a realistic synthetic mobile notification dataset. 

3.6.4 Evaluation of this Dataset 

The dataset was evaluated by training a neural network and a random forest classifier on the 

synthetic data and evaluating their performance when classifying real world data using the 

metrics of accuracy, precision, recall and F1-Score. A random classifier was also used for 

comparison. “While neither classifier was able to reach the same performance height of those 

trained using real data, there is still value in the predicted results with performance nearing 

70%”(Fraser, 2018) across all performance metrics. The random classifier’s performance was 

around 50%. 

3.6.5 Possible Downsides of Using a Synthetic Dataset 

The downsides mentioned by (Fraser, 2018) describe how subtle nuances in the data were 

lost. “… it is clear that the synthetic dataset is less nuanced than the real dataset. The number 

of unique subjects, places and apps found in the dataset are much lower than that of the real 

dataset suggesting that the generative model was unable to learn a holistic view of these 

features. However, the top subject/apps/places were still identifiable and their engagement 

rates generally accurate, hence the dataset is an adequate representation of real world data 

for the purposes of this study” (Fraser, 2018). This reflects the trade-off previously mentioned 

between the level of precision possible and the amount of privacy specific information 

divulged. 

3.6.6 Conclusion 

The slight performance trade-offs displayed in the evaluation of this dataset were considered 

to be worth the large improvement in privacy consideration and data accessibility compared 

to a similar “in-the-wild” dataset, hence this synthetic dataset was used for this project.  
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4 METHODOLOGY 

4.1 MACHINE LEARNING SYSTEMS 

As mentioned in the literature review, there has been little research conducted in the area of 

reinforcement machine learning for mobile NMSs. In addition, purely synthetic datasets have 

not been used for training and evaluating mobile NMSs in the literature discussed. The 

following sections describe the methodology used for implementing the reinforcement 

learning algorithm and the evaluation of the system. 

4.2 REINFORCEMENT LEARNING ALGORITHMS 

4.2.1 General Design 

The system design for a reinforcement learning system follows the general layout shown 

below (Figure 1). It operates based on the interactions between the agent and the 

environment. The agent performs an action on the environment and the environment returns 

what the environment has changed to after that action (State, St) and how effective that 

action was in working towards the system’s overall goal (Reward, Rt). The overall aim of the 

reinforcement learning system is to maximise the overall reward by choosing the ideal actions 

based on the previous environment state. In other words to create a policy that the agent 

should follow in order to choose the optimal actions for a given state. This implementation of 

states, actions and rewards is referred to as the Markov Decision Process.  

 

Figure 1: Agent-Environment diagram of a reinforcement learning system (Ashraf, 2018) 
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Different reinforcement learning algorithms were considered as to their effectiveness for the 

project. First, it was determined whether a model-based or model-free algorithm should be 

used. Then  

4.2.2 Model-Based vs Model-Free 

The two types of reinforcement learning algorithm are model-based and model-free. Model-

based algorithms require some way of determining which states are going to occur in the 

future and how they will react to chosen actions. Model-free algorithms are based on 

environments where their reaction to different actions and the different state transitions that 

occur cannot be predicted. 

Since this project involves the prediction of user actions based on mobile notifications, it is 

impossible or infeasible to create a model which determines the next notifications which will 

be raised based on a current action and state. As a result, a model-free system must be used 

for this project. 

Popular model-free systems include Monte Carlo reinforcement learning, Temporal Difference 

learning and Q-Learning. 

4.3 TYPES OF REINFORCEMENT LEARNING ALGORITHMS 

4.3.1 Monte Carlo 

Monte Carlo Reinforcement Learning operates on the idea that by taking enough random 

starting states, taking actions for each of these states until some defined end and seeing the 

corresponding rewards for the actions for a given state, a policy can be determined. In the 

game example given in a blog by (Salloum, 2018) the Monte Carlo system plays “an episode of 

the game starting by some random state (not necessarily the beginning) till the end, record 

the states, actions and rewards that we encountered then compute the V(s) […] for each state 

we passed through” (Salloum, 2018) where V(s) is the value function  

While other algorithms involve the calculation of multiple state-action paths, Monte Carlo 

requires the execution of these paths until some end state is reached and does not update the 

system until those end states are reached.   

This is not optimal for implementing a mobile notification management system since 

notifications will be received on a constant basis and a system which could update in real-time 

without retraining on the full dataset would be ideal. Users interact with their phones on a 

continuous basis and there is no end state for this interaction.  
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Another issue is that this method can miss possible states and actions in determining its policy 

due to its random nature in choosing its initial states. This means that the final implemented 

policy for action estimation may be missing information on which action to take for certain 

states. 

4.3.2 Temporal Difference and Q-Learning 

Both Q-Learning and Temporal Difference learning are similar in their implementation in that 

they calculate a Q-value which determines for a given state which action should be taken. 

However, for a given state Q-Learning updates the Q-value for only the previous state 

whereas Temporal Difference learning updates the Q-values for all states in past steps. By only 

updating the most recent state, there is a weaker dependence on the order in which 

notifications arrive in training.  

A Q-Learning approach was chosen for this project over Monte Carlo due to its ability to 

guarantee the incorporation of all of the training data in the dataset. Q-Learning was chosen 

over Temporal Difference learning since the reduction in order dependence simplifies the 

system’s analysis by not having training notification order as a system parameter with strong 

influence on the system. This simplifies the implementation of evaluation mechanisms for the 

system. 

There is also a version of Q-Learning called Deep Q-Learning which can be implemented to 

compare the two system types as to their performance.   

In this project, the environment was implemented as an OpenAI Gym (OpenAI, 2019) 

environment through a Python script and the Q-Learning/Deep Q-Learning agent was 

implemented as a Python script which interacts with that environment. The code for both 

agents can be found at (Sutton, 2019b) with the corresponding Gym environment at (Sutton, 

2019a). 

4.4 Q-LEARNING IMPLEMENTATION 

4.4.1 State, Action and Reward 

The Q-Learning algorithm follows the Markov Decision Process as shown in (Figure 1). The 

states for the Q-Learning and Deep Q-Learning implementation used in this project were the 

different possible combinations of feature values from the synthetic notifications. For 

example, if the features of app package and app category were used with 3 possible app 
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packages in the dataset and 4 possible app categories, there would be a total of 12 

notification states. 

The action for each state was defined as whether the user interacted or did not interact with 

the notification. Each notification in the synthetic dataset contained a feature which stated 

whether that notification had been interacted with by the user or not. The action space of 

user interaction was used since it had this corresponding ground truth value in the synthetic 

dataset which could be used for determination of reward values and evaluation of 

performance. While it was previously mentioned how the direct blocking or acceptance of 

notifications based on a single aspect of user interaction has a variety of associated problems, 

this action space could be expanded on in the future to incorporate more complex actions 

such as interaction with high importance or messaging notifications.  

The reward values for the system are determined by comparing the action value predicted by 

the agent for a given notification to the action value stored in that notification. If the two 

match, then a positive reward signal of “1” is sent from the environment to the agent. 

Otherwise a zero reward signal is sent. 

4.4.2 Exploration vs Exploitation 

Initially the reinforcement learning algorithm will have no information on which action to 

take, however over time it will learn which actions give a higher reward for a certain state. In 

training both Q-Learning and Deep Q-Learning systems it would be ideal if the trained system 

was incorporated into the training over time. For this reason, there is an “exploration vs 

exploitation” trade-off where the initial stages of training will have the system choose random 

actions (exploration) and over time these random actions will instead be replaced by the 

actions predicted by the system (exploitation).  

The value epsilon is used to denote the proportion of exploration actions to take versus the 

number of exploitation actions to take. A larger epsilon means that for a given state, there is a 

higher probability that a random exploration action will be taken instead of a trained system 

exploitation action. The training of these systems is organised so that the initial value of 

epsilon is 1 and this value decays exponentially as more training steps are performed. These 

training values are shown in the later System Training Metrics sections in section 5. Findings. 

4.4.3 Q-Tables 

Q-Learning operates by creating a Q-Table (Figure 2) where each column represents a 

different action in the action space, and each row represents a different state in the state 
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space. The values stored in each cell of the table represent how strong the system believes 

that the action at that column will maximise overall reward given the state for that row. From 

a trained table of these Q-values, the Q-Learning algorithm can determine what the optimal 

action to take is for a given state. An example of this is shown in Figure 2 below where if the 

state corresponding to the second row of the Q-Table (S1) was presented to the trained Q-

Learning algorithm, then the system would choose the action corresponding to the second 

column (A1) since it has a larger Q-value than the action at column one (A0). 

 

Figure 2: Visualization of the Q-Table decision process given state S1 

For this project, the Q-table had two columns, one to show no user interaction with the 

notification and the other for user interaction. The number of rows was dependent on the 

combination of notification features. 

These Q-values are determined by using the Bellman Equation (Figure 3) which determines 

the new Q-value (𝑁𝑒𝑤𝑄(𝑠, 𝑎)) in the Q-Table for the current state (s) and the action to take 

(a). The action (a) is determined randomly if exploration is currently being used (i.e. a random 

number between 0 and 1 is less than epsilon) or from the Q-Table process shown above if 

exploitation is being used (i.e. the random number is greater than epsilon). 

The formula also takes the previous Q-value at “s, a”, the reward (𝑅(𝑠, 𝑎)) from the 

environment for taking the action (a) for the state (s), and the maximum expected Q-value for 

the next state (s’) out of any possible actions for that state (a’). This maximum expected Q-

value for s’ can be determined by finding the maximum Q-value in the s’ row of the Q-Table.  
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Figure 3: The Bellman Equation (Simonini, 2018b) 

To implement this algorithm, system training was performed for 1000 training episodes. Each 

training episode involved the training methodology described above and used every 

notification in the chosen synthetic notification dataset once. Between episodes, the order of 

the synthetic notifications presented by the environment to the agent was randomized. A 

learning rate of 0.7 and a discount rate of 0.618 was chosen for this project’s implementation. 

In a mobile implementation of this system, more notifications could simple be appended to 

the dataset before a training episode to implement those notifications in real-time. 

4.4.4 Testing Implementation 

For testing the trained system, the process described above for Figure 2 was used after being 

presented with the training notification dataset. Due to the different possible orders of state 

paths, 100 episodes were used for testing the algorithm however in practice there was little 

difference in performance between episodes. 

4.5 DEEP Q-NETWORK IMPLEMENTATION 

4.5.1 Difficulties with Q-Tables 

As can be seen for the Q-Learning example, the size of the Q-Table can become very large for 

a high number of notification features and number of feature values. For implementations 

with n features and approximately m different values for each feature, the complexity of this 

algorithm and number of rows in the Q-Table is approximately O(n×m). 

A possible solution is to use a Deep Q-Network instead. This in effect replaces the Q-Table 

with a Deep Neural Network which takes in a state and outputs the possible actions with their 

corresponding Q-values. A trained system would then perform the action with the largest Q-

value. 
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Figure 4. Differences in the overall system structure between Q-Learning and Deep Q-Learning (Simonini, 2018a) 

Each possible notification state is one-hot encoded so that input notifications can be encoded 

and used for the neural network.  

4.5.2 Huber Loss Equation 

In order to train this system, a loss equation is required for training the neural network 

weights. The loss equation used for this project was the Huber Loss function (Figure 5) which 

takes the difference between the predicted (y) and actual (𝑓(𝑥)) values for the reward for a 

given state-action pair and outputs the corresponding loss value to be minimized by the 

neural network. 

 

Figure 5: The Huber Loss function 

The delta value determines the cut-off for the piecewise function. This project used a delta 

value of 1. While training episodes were used for the Deep Q-Network (DQN) training, only 

ten of these episodes were used instead of the 1000 used for the Q-Table. This was done to 

achieve comparable performance times between the two algorithms.  

4.5.3 Replay cache 

Since the neural network will decrease the loss value based on the most recent notifications 

used for training, past changes to the network’s weights can be “overwritten” by training on 
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more recent notifications. This is not a desirable effect as it means the network “forgets” the 

training on the initial sets of data and instead fits more strongly to recent notifications.  

To combat this, a replay cache is used where past notifications are stored in a cache and every 

time a new notification is used to train the network, some notifications are randomly selected 

from the cache to train the network as well. The replay cache batch size determines how 

many notifications are chosen from the cache per new notification. 

4.6 EVALUATION METHODOLOGY 

4.6.1 K-Fold Cross-Validation 

The systems implemented a k-fold cross validation approach for the input datasets. The 

purpose of this was to reduce the amount of bias in measuring system performance metrics 

such as accuracy and recall. 

K-fold cross validation operates by splitting the dataset into k parts and selecting the first part 

to be the testing data. The rest of the data is used to train the machine learning algorithm and 

the trained system is then evaluated on the selected testing data part. The algorithm then 

iterates to the next part where the second part of the initial dataset now becomes the testing 

data and the remainder becomes the training data. This continues until all parts of the dataset 

are used as testing data. Figure 6 below shows this process for a k value of five. 

 

Figure 6: Diagram of 5-Fold Cross-Validation over an entire dataset (Graz University of Technology, 2006) 

Provided that the dataset used is representative of the data encountered in the system’s 

implementation, k-fold cross-validation reduces bias in the data. For example, if there is a 
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small streak of one type of data in the dataset, training solely on that data will result in poor 

performance when it is tested against the rest of the data. 

The choice of k-value is important as “… there is a bias-variance trade-off associated with the 

choice of k in k-fold cross-validation.” (James et al., 2013). 

“Typically, given these considerations, one performs k-fold cross-validation using k = 5 or k = 

10, as these values have been shown empirically to yield test error rate estimates that suffer 

neither from excessively high bias nor from very high variance” (James et al., 2013). 

The system developed by (Pradhan et al., 2017) also uses this method to “… evaluate the data-

driven prediction models by testing with the k-fold cross validation approach with k = 10” 

(Pradhan et al., 2017). For these reasons, a k-value of 10 was used for this project’s cross-

validation. 

4.6.2 Metrics Used 

For evaluating the performance of the system in terms of its ability to correctly predict the 

users’ interaction with the notifications the metrics of precision, accuracy, recall and F1 score 

were used. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁) 

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) 

These metrics were measured for each k-step in the 10-fold cross validation evaluation and 

were averaged across the 10 k-steps for brevity and presentation purposes. In order to 

encapsulate any differences or variation in measurements between different k-steps, the 

standard deviation was also calculated for these metrics across the 10 k-steps.  

For evaluating the computational performance of the system, the time taken for the system to 

fully train and to evaluate the system were both measured using the timeit library in Python. 

Information regarding the systems training process was also recorded in the change of the 

epsilon value and percentage training reward for each episode in the training process. The 

percentage training reward shows which percent of the training notifications were predicted 

correctly during the system’s training process and is evaluated as the number of positive 

reward signals in that episode divided by the total number of notification states used in that 
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episode. The epsilon value corresponds approximately to the percentage of actions taken by 

the system which are chosen randomly instead of using the machine learning system. 

4.7 DATA CLASS IMBALANCE 

The initial problem encountered from running the system was that there was significant class 

imbalance in the data, with most of the data having no user interaction. To deal with this, 

either oversampling or undersampling was needed. 

Oversampling operates by generating extra data of the underrepresented class in order to 

have a class balanced dataset. However, if oversampling were to be used for this project then 

there would be the issue that synthetic data is being generated from synthetic data using a 

separate process. This would further distance the data from being similar to the “in-the-wild” 

equivalent dataset. 

The alternative is undersampling which reduces the number of samples of the 

overrepresented class. Since a synthetic dataset is being used, more synthetic data can be 

generated and then undersampled to obtain a class-balanced dataset of a desired size. This is 

a benefit of synthetic datasets in that they can create as much data as desired, however care 

needs to be taken in generating large datasets as the diversity of notifications is based on the 

diversity of the “in-the-wild” dataset used in the generative adversarial network. 

The end result of this is a synthetic dataset with approximately the same number of 

notifications with direct user interaction as there are notifications with no user interaction. 

Undersampling would not be used in practice to balance the datasets since there is a low 

amount of user data available and the system would want to maximise its utilization of the 

user dataset. More likely that a synthetic data generation process similar to the one used for 

this dataset would be used to oversample. While it would be simpler to replicate or retrain on 

notifications of the less common class, this would introduce strong bias towards that action 

value for notifications with those notification feature values.  

This shows a disparity in the way in which synthetic and real-world data can be treated for this 

type of system. 
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5 FINDINGS 

5.1 SIZE OF DATASET USED 

One factor in evaluating the performance and behaviour of the two algorithms is the size of 

the notification dataset which they use for training and testing. The analysis of performance 

versus dataset size is an important factor as it corresponds to the number of notifications 

required by the system for it to start achieving a high level of classification performance. 

Note that the dataset sizes shown are the sizes of the overall notification dataset used in the 

10-fold cross-validation. As a result, the training and testing set sizes are 90% and 10% of the 

overall dataset size respectively. In addition, all tests for these systems were performed on an 

Intel i7-7700HQ 2.8GHz CPU with 16GB of system RAM. 

5.1.1 Machine Learning Evaluation Metrics 

5.1.1.1 Q-Table 

The plot below (Figure 7) shows how precision, accuracy, recall and F1 Score are affected by 

the number of notifications in the notification dataset used for 10-fold cross-validation of the 

Q-Table system. The standard deviation of these results is shown below in Figure 8.  

 

Figure 7: Average metrics across 10-fold cross-validation for the Q-Table implementation and their change with 
dataset size 
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Figure 8: Standard deviation of the metric results from Figure 7 

 

5.1.1.2 Deep Q-Learning 

As with the Q-Learning algorithm, the Deep Q-Learning algorithm was evaluated on the same 

metrics of performance for various dataset sizes. 

 

Figure 9: Average metrics across 10-fold cross-validation for the DQN implementation and their change with 
dataset size 
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Figure 10: Standard deviation of the metric results from Figure 9 

 

For dataset sizes below 500 notifications, there were lower values for all metrics in both 

systems. In particular, the DQN system found very low recall and F1 Score values which 

indicates that for low numbers of training notifications, the DQN system was predisposed 

towards guessing the negative action (no user interaction) for most notifications when 

implemented. 

The performance of both systems seems to level off from 500 to 2500 notifications after 

which it increases in the metrics of recall, F1 Score and accuracy for 5000 notifications. 

For 5000 notifications, the Q-Table system displays a high accuracy of 76.5%, a very high recall 

value of 85.8% and high F1 score of 78.2%.  The DQN system showed even better results with 

an accuracy of 79.1%, a recall of 90.1% and an F1 Score of 81.0%. 

There were high standard deviation readings for all notification datasets below 250 

notifications which indicates that the training sets used for these dataset sizes were not 

representative of the overall testing dataset, leading to high variation in performance 

between different k-steps. 

5.1.2 Computational Performance Metrics 

The training times (Figure 11 and Figure 13) and testing times (Figure 12 and Figure 14) were 

measured for these algorithms to give an indication of how the computational performance 

changed with the size of the notification dataset.  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1000 2000 3000 4000 5000 6000

St
an

d
ar

d
 D

ev
ia

ti
o

n
 o

f 
M

et
ri

c

Notification Dataset Size

DQN Standard Deviation of Metrics vs 
Notification Dataset Size

Precision Accuracy Recall F1 Score



44 
 

5.1.2.1 Q-Learning 

 

Figure 11: The effect of notification dataset size on system training time 

 

Figure 12: The effect of notification dataset size on system testing time 
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5.1.2.2 Deep Q-Learning 

 

Figure 13: The effect of notification dataset size on system training time 

 

Figure 14: The effect of notification dataset size on system testing time 

For both systems there is a linear relationship between the size of the notification dataset and 

the time taken to train and implement the system. While the training time for the DQN system 

was around twice as long as the Q-Table system, there was a higher ratio difference in the two 

systems’ testing times with the Q-Table system running around 40 times faster than the DQN.  
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5.1.3 System Training Metrics 

5.1.3.1 Q-Learning 

Below are graphs showing the epsilon and percentage reward values during the training 

process. These metrics were taken for each episode of the 1000 training episodes used. They 

were measured to give insight into the training process of the system and how this changes 

with dataset size. 

 

Figure 15: Q-Table training parameters for 50 notification dataset (5 training notifications) 

 

Figure 16: Q-Table training parameters for 250 notification dataset (25 training notifications) 
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Figure 17: Q-Table training parameters for 1000 notification dataset (100 training notifications) 

 

Figure 18: Q-Table training parameters for 5000 notification dataset (500 training notifications) 

As can be seen by the training graphs above (Figure 15 to Figure 18), as the number of training 

notifications is increased, the variation in the training reward between training episodes 

decreases. This supports the previous theory that by using a larger training dataset, the results 

are more representative of the overall dataset. 

5.1.3.2 Deep Q-Learning 

The training metrics are shown below for the ten training episodes used by the Deep Q-
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Figure 19: DQN training parameters for 50 notification dataset (5 training notifications) 

 

Figure 20: DQN training parameters for 100 notification dataset (10 training notifications) 
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Figure 21: DQN training parameters for 500 notification dataset (50 training notifications) 

What can be seen in the above training graphs for the DQN (Figure 19 to Figure 21) is that the 

epsilon value decays faster as the number of notifications in the dataset increases. This means 

that for large datasets, the training of the system is strongly predisposed to exploitation for 
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process per episode can change. 

Despite this there is little difference in the value of percentage reward performance between 

the DQN trained on different dataset sizes. 

5.1.4 Comparison of Systems 

Both systems display similar performance in terms of the machine learning evaluation metrics 

for notification datasets between 500 and 2500 notifications. The DQN shows worse 

performance than the Q-Table system for very small datasets since the DQN was heavily 

biased towards negative results for small datasets. However slightly higher performance is 

shown by the DQN for the very large dataset of 5000 notifications. 

The Q-Table showed training times around twice as fast as the DQN and implementation times 

around 40 times faster. 
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5.2 NUMBER OF NOTIFICATION FEATURES 

The previous metrics measured for different notification sizes used the three features of app 

package, app category and time of day. To see if the number of features used to define the 

notification states had an impact on the system, different numbers of features were chosen 

for evaluation according to the table below (Table 2). An overall dataset size of 1000 

notifications was chosen for each of the following feature spaces. 

Table 2: Number of features used for notification states and their corresponding features 

Number of 

Features 

Feature Types Number of Possible 

Notification States 

4 app package, app category, time of day, 

and day of the week 

2240 

3 app package, app category and time of 

day 

320 

2 app package and app category 80 

1 app package 16 

 

5.2.1 Machine Learning Evaluation Metrics 

Since the features have varying numbers of states, the following plots show the performance 

relative to the number of possible states (state space) for that number of features, instead of 

relative to the number of features 
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5.2.1.1 Q-Learning 

 

Figure 22: Average metrics across 10-fold cross-validation for the Q-Table implementation and their change with 
the number of possible notification states 

 

Figure 23: Standard deviation in results from Figure 22 
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5.2.1.2 Deep Q-Learning

 

Figure 24: Average metrics across 10-fold cross-validation for the DQN implementation and their change with the 
number of possible notification states 

 

Figure 25: Standard Deviation of measurements in Figure 24 
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The standard deviation values for the DQN metrics were very low for all state spaces with 

values not exceeding 0.14 for any metric. 

5.2.2 Computational Performance Metrics 

5.2.2.1 Q-Learning 

 

Figure 26: The effect of notification state space size on system training time 

 

Figure 27: The effect of notification state space size on system testing time 
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5.2.2.2 Deep Q-Learning

 

Figure 28: The effect of notification state space size on system training time 

 

Figure 29: The effect of notification state space size on system testing time 
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5.2.3 System Training Metrics 

5.2.3.1 Q-Learning 

The training metrics for one feature are near identical for those of two features so their graph 

has been omitted for brevity. 

 

Figure 30: Q-Table training parameters using two notification features 

 

Figure 31: Q-Table training parameters using three notification features 
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Figure 32: Q-Table training parameters using four notification features 
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5.3.1 Machine Learning Evaluation Metrics 

 

Figure 33: Average metrics across 10-fold cross-validation for the Q-Table implementation and their change with 
the choice of single feature space 

 

Figure 34: Standard deviation values for the measurements in Figure 33 
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poor behaviour an F1 Score below 40% and a recall below 30%. Similar to the results from 

small dataset sizes for the DQN, these low recall values indicate that the system was heavily 

biased towards guessing the negative action for each testing decision. 
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5.3.2 Computational Performance Metrics 

Variations in testing and training time with changes in the number of features were very small 

and independent of the feature chosen. 

5.3.3 System Training Metrics 

All metrics for training were very similar to the ones previously investigated, with the 

exception of the category feature which is shown below (Figure 35). 

 

Figure 35: Training measurements when the only feature used is app category 

The training metrics here show near random training performance when only the category 

feature is used. This can be explained by the category feature not imparting distinctive 

information for many notifications. From the 2500 notification dataset, 2065 of the 

notifications had the category “unknown”, and 383 had the category “msg”. Since around 80% 

of the notifications had insufficient data to distinguish between them, conclusions about 

notifications from the same category but with different interaction values could not be made. 
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6 ANALYSIS AND DISCUSSION 

6.1 SYSTEM PARAMETERS 

6.1.1 DQN Performance Issues 

Initially, training the DQN with 1000 training episodes and a replay batch size of 32 lead to 

very slow computation. The number of training episodes was reduced accordingly to 10 and 

performance was still far slower than the Q-Table equivalent. For example, a single k-step of 

the 50-notification dataset using only 10 training episodes required around 40 seconds to 

train. In an attempt to improve performance, the number of nodes in the neural network 

layers was reduced from 24 to 16, and later reduced to 8 and then 2. This reduction had little 

effect on the computation time. Afterwards, the number of nodes was returned to 24 and the 

batch size for the replay cache was changed instead. Changing the batch size from 32 

notifications per new notification to 2 notifications, reduced the training time from around 40 

seconds to 2-3 seconds, significantly improving the computation time. Reducing the batch size 

in this way did not seem to have any significant impact on the classification performance of 

the system. Since the replay cache is used once for each notification in the training set, 

replaying two of the past notifications for each new training notification seemed sufficient 

when compared to the performance trade-off of replaying 32 per new notification.  

6.1.2 DQN Epsilon Rate and Dataset Size 

As mentioned before for the DQN system, larger datasets reached low epsilon values in fewer 

episodes than smaller datasets due to the use of a static epsilon decay multiplier with no 

correlation to the overall number of replay iterations. This means that there was a lower 

proportion of exploration taken in larger datasets than smaller ones. For future 

implementations of this form of system, the epsilon decay value should be correlated to the 

size of dataset used. 

6.1.3 System Learning Parameters 

There is further potential for investigation into the impact that changing the system learning 

parameters such as epsilon decay rate, learning rate, and discount rate has on overall 

classification performance as these were not analysed in this report. 
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6.2 STATE AND ACTION SPACES 

6.2.1 State Space 

There is a trade-off in the choice of feature space size for reinforcement learning systems. If a 

large number of features to define each notification state is used, this results in a very sparse 

Q-Table where few new notifications are of a state matching one of the trained notification 

states. By comparison, a lower number of features means that new notifications are more 

likely to be encapsulated by previous training data, but edge case notifications are not 

properly accommodated. For example, a Q-Table has been trained to predict that a 

notification with time of day “morning” and category “unknown” should be interacted with. 

However, if a notification of this state is interacted with 70% of the time, the Q-Table system 

only using these two features will learn on average that the user will interact and predict 

incorrectly 30% of the time.  

These probabilities are encapsulated in the different Q-values of the Q-Table however to make 

a binary decision on which action to take, the maximum argument is used. A DQN has similar 

issues surrounding this since the notification input is one-hot encoded for each state space. 

There is a balance here where differences in notifications with similar feature values are 

accommodated, but the features are not too fine grain that uncommon notification states 

encountered in the future will encapsulated in existing trained data. 

6.2.2 Action Space 

The choice of user interaction as the action space was done to have a ground truth for 

comparing performance and validity of the systems’ predictions which also had a basis in the 

data generated for the synthetic dataset. In a real-world implementation of these systems, 

user interaction alone would not be used as the action space due to reasons previously 

mentioned in 3.1.6 Challenges in Acquiring Notification Data and Measuring User Interactions 

with Notifications, such as reminder notifications which require delivery even though they are 

not interacted with. Instead an extended action space could be  

6.3 COMPARISON TO STATE OF THE ART 

6.3.1 System Analysis 

The table below (Table 3) shows both the Q-Table and Deep Q-Network implementations 

compared to the other state of the art systems discussed in 3.3 State of the Art Systems.  
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Table 3: State of the art systems with Q-Table and DQN systems 

 Real User 

Data? 

Real Time Analysis? Deployed 

on-device? 

Type of ML used? 

A Context and 

User Aware Smart 

Notification 

System (Corno et 

al., 2015) 

Synthetic 

information 

added to 

augment real 

user dataset 

Separate training 

and classification 

stages. Training can 

take significant time 

depending on 

algorithm used. 

No. Using 

Python 

script 

Supervised 

(Support Vector 

Machine (SVM), 

Gaussian Naïve 

Bayes, and 

Decision Trees) 

PrefMiner 

(Mehrotra et al., 

2017) 

Yes Rules constructed 

when not in use. 

Rules implemented 

in real time. 

Yes Rule-based (with 

unsupervised 

learning for 

notification 

clustering) 

Understanding 

and Managing 

Notifications 

(Pradhan et al., 

2017) 

Yes No  No. Uses 

Weka, 

Matlab 

and 

vowpal-

wabbit 

Supervised 

(Random Forest, 

Decision Tree, 

SVM, Linear 

Regression) 

C-3PO (Huang and 

Kao, 2019) 

Yes Yes No. On 

remote 

server 

Supervised (Deep 

Neural Network) 

Q-Table 

Implementation 

No. Synthetic 

dataset from 

GAN 

Could use real-time 

training and testing 

No. Using 

Python 

script 

Reinforcement 

Learning (Q-

Table) 

DQN 

Implementation 

No. Synthetic 

dataset from 

GAN 

Training times 

most likely too long 

for real-time CPU 

implementation 

No. Using 

Python 

script 

Reinforcement 

Learning (Deep 

Q-Network) 

 

6.3.2 Feature Analysis and User Interaction 

When comparing the findings on which features were most important for classification,  

(Pradhan et al., 2017) found that “temporal features like hour of the day or temporally local 
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event-based feature like last app use are the most important features” (Pradhan et al., 2017), 

whereas (Mehrotra et al., 2017) found that notification response, type and location were most 

important. 

The findings from the 5.3 Single Feature Analysis section indicated that the app package and 

day of week were the most performant features for classification, however the category 

feature used in this dataset contained very little useful data since most notifications were of 

category “unknown”. 

A benefit of the DQN and Q-Table implementations is that they require minimal user 

interaction when compared to previous systems such as PrefMiner which required direct user 

verification of rules. 

6.4 CONSEQUENCES OF USING A SYNTHETIC NOTIFICATION DATASET 

All analysis and evaluation of the Q-Table and DQN systems is based on the effectiveness of 

the synthetic notification dataset. The systems trained on the notification dataset showed the 

ability to determine useful classification features such as app package and time of day as well 

as demonstrating reasonable performance for action prediction with maximum performance 

for the metrics measured of approximately 75% to 80%.  

A possibility for why the performance of the systems starts to level off after 500 notifications 

could be the simplicity of feature space. To preserve user privacy, the simplified feature space 

was used for synthetic notification generation and the maximum performance of the DQN and 

Q-Table systems may have been limited by this. As mentioned in 6.2.1 State Space simplified 

feature spaces may not be able to fully encapsulate the reason why certain notifications were 

accepted and others were rejected, leading to notifications with the same state having 

different action values. This means that some of the notifications in the dataset could not be 

correctly classified without the use of additional features which impart information regarding 

user interaction. 

Increasing the feature space size has a privacy trade-off however, since the inclusion of 

additional features in combination with others already available in the dataset increases the 

chance that privacy sensitive information from the original “in-the-wild” dataset could be 

gleaned.  

Diversity of data within a synthetic notification dataset is important as well. It is possible that 

large synthetic datasets generated from a smaller sample of “in-the-wild” data could 
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encapsulate all variation present in the original data, leading to reduced variation in 

notification states across the whole synthetic dataset. However for this synthetic dataset 

there were “31,239 notifications logged in the background service of the WeAreUs 

application” (Fraser, 2018) which provided a large enough “in-the-wild” dataset space when 

compared to the size of synthetic datasets used for evaluation in this project.   

6.5 COMPUTATIONAL PERFORMANCE AND MOBILE DEPLOYMENT 

Results for computation time against state space size for the Q-Table implementation 

contradicted my initial assumption that there would be a liner relationship between the two. 

This assumption was made on the basis that as the Q-Table grew in size, there would be a 

corresponding computation time trade-off. Instead there was a minor increase in computation 

time from 18 seconds for 16 states to 25 seconds for 2240 states. 

This in combination with the results for notification dataset size against computation time 

support the idea that the Q-Table size was less important than the number of update and 

query function calls. 

An important point to note is that both systems were trained on CPU architecture. Neural 

network systems display higher performance when deployed on GPU architecture and for 

mobile specific deployment, TensorFlow Lite (Google LLC, 2019b) is currently available and can 

implement deep neural networks on mobile devices. 

A Q-Table system could be deployed using any conventional programming language for 

mobile applications. There is the potential for future research to be conducted into the 

performance effectiveness of both DQN and Q-Table systems when deployed on mobile 

devices. 

6.6 CHANGE IN USER CONTEXT 

When reacting to a change in user context, the speed at which the two systems could react is 

based on a few parameters. For the Q-Table system, it would depend on the size of the 

training notification dataset relative to the size of the new context notification set. For the 

DQN, the size of the replay cache would be the main factor in determining adaptability to 

context change. A larger cache would cause the system to change more slowly, but also 

incorporate notification data from further in the past, whereas a smaller replay cache would 

respond more quickly to recent changes.   
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With this in mind, the DQN system with an appropriately chosen replay cache size would be 

more adaptable than the corresponding Q-Learning system. 

6.7 SYSTEM COMPARISONS 

Both the Q-Table and DQN implementations have application depending on the use case. For 

systems which can use very large datasets, the DQN system would be preferred as shown by 

its improved classification metrics for the 5000 notification dataset (precision 73.9%, accuracy 

79.1%, recall 90.0%, F1 Score 81.0%) when compared to the Q-Table (precision 72.6%, 

accuracy 76.5%, recall 85.8%, F1 Score 78.2%). If the DQN system is also able to use a GPU to 

increase performance, further potential for improvement over the results shown in this 

project. 

If the size of the dataset is rather small in the order of 500 notifications or less, neither system 

is ideal although the Q-Table system shows significantly better performance than the DQN 

system. A Q-Table system would also be used if a real-time training and implementation was 

desired, or if there were constraints on the computation time for the implementation since 

the Q-Table implementation is 40 times faster than the DQN implementation on CPU. 

If a very large feature space is used there may be memory constraints on the maximum size of 

Q-Table that could be created. A DQN would avoid these problems by having a relatively fixed 

memory requirement. 
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7 CONCLUSION 

7.1 OVERVIEW 

This project has highlighted the issues surrounding mobile notification managements and the 

call for NMSs to reduce their negative impacts. Four systems were analysed on their 

implementation and effectiveness as well as the main findings from their respective papers. 

From this, gaps in research were found in the areas of reinforcement learning for NMSs and 

the use of synthetic notification datasets for their training and evaluation. Two reinforcement 

learning systems implementing Q-Learning and Deep Q-Learning were then developed and 

evaluated using a synthetic notification dataset. 

This paper demonstrated how the development of a reinforcement learning mobile NMSs 

could be conducted in a privacy sensitive manner with consideration for the privacy of 

notification dataset contributors. 

7.2 MAIN FINDINGS 

The Q-Learning and Deep Q-Learning systems implemented were found to be effective with 

maximum performance in machine learning metrics of precision, accuracy, recall and F1 Score 

of approximately 80%. While higher performance would be required for the full 

implementation of a system such as this to avoid interruption of important notifications, 

further performance gains could be obtained from optimization of the reinforcement learning 

system parameters. Additional notification features could also be used, although using 

additional features may encompass a corresponding trade-off in user privacy. 

The project overall found that reinforcement learning algorithms could be implemented 

effectively for mobile NMSs and were found to be performant when evaluated against 

synthetic notification data. 

7.3 WEAKNESSES AND LIMITATIONS 

All results are based on the effectiveness of the synthetic dataset used and any biases or 

inconsistencies within this dataset would reflect in the results. The synthetic dataset also 

implements simplified feature spaces which may have reduced the effectiveness of 

classification as mentioned in 6.4 Consequences of Using a Synthetic Notification Dataset. 
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In terms of performance testing, the results measured for both systems are highly dependent 

on the hardware used for those tests. Since the systems were not deployed on mobile devices, 

the assumption being made is that high performance in desktop computer environments will 

translate to similar performance on mobile devices. The system parameters for each system 

were also not strongly optimized and further performance improvements between the 

systems could be obtained. 

If a DQN system were to be developed for use by mobile users, it would definitely use some 

form of GPU implementation. The DQN system for this project was trained on CPU to provide 

direct parallels with the Q-Table implementation and because performance results on a 

desktop GPU would be heavily dependent on the GPU device used. The only way to obtain 

effective understanding of the DQN’s performance on mobile GPUs would be to deploy the 

system on mobile. 

7.4 RECOMMENDATIONS 

From these results, the recommended system to implement is heavily dependent on the use 

case. The Q-Table implementation would be recommended for systems with small to medium 

datasets, a computation time requirement or the need for real-time implementation. The 

DQN implementation by contrast would be better for large datasets and large feature spaces 

and could be further improved if significant leverage of GPU devices is possible. The DQN also 

has a relatively fixed memory requirement when compared to the O(n) scaling of the Q-Table 

size with number of notification states, and so would be recommended for systems with 

memory constraints.  

These use of synthetic notification datasets is also recommended since they demonstrated the 

ability to determine performant features and compare the performance of different NMSs for 

a variety of dataset parameters. Using such systems could be useful for NMS design before 

they are implemented to assuage privacy concerns surrounding the collection and storage of 

“in-the-wild” notification data for system design. 

7.5 FURTHER RESEARCH 

There is potential for further research in the parameter optimization of both the DQN and Q-

Table systems to improve classification and computation performance further as the system 

parameters were not heavily optimized in this project. 
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There is also the area of mobile deployment which requires further investigation for both 

systems. The Q-Table system could be implemented via the mobile platform’s corresponding 

programming language whereas the DQN system could be implemented through Tensorflow 

Lite (Google LLC, 2019b) for the neural network component of the system. 

An important area of research would be to compare the performance of reinforcement 

learning systems trained on “in-the-wild” data to those trained on a synthetic notification 

dataset with comparable features. If strong correlations between the performance of systems 

trained on synthetic data with their performance using “in-the-wild” data can be made, it 

would further reinforce the effectiveness of synthetic datasets for mobile NMS system design 

and evaluation. 
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