
Performance Evaluation Of Spam
Detection Techniques In Relation

To Stream Computing

Author: Hugh Lavery

Supervisor: Stephen Barrett

A Dissertation submitted in partial fulfilment

of the requirements for the degree of

MAI (Computer Engineering)

Submitted to the University of Dublin, Trinity College, April,

2019

Declaration

I, Hugh Lavery, declare that the following dissertation, except where otherwise stated,

is entirely my own work; that it has not previously been submitted as an exercise for a

degree, either in Trinity College Dublin, or in any other University; and that the library

may lend or copy it or any part thereof on request.

Signed: Date:

i

Summary

This research explores algorithmic adaption as an alternative to load shedding in stream

computing. Algorithmic adaption is a concept for altering the algorithm of computa-

tion in a stream computing system. Specifically, algorithmic adaption switches out the

computational algorithm in a stream computing system under load to one which is less

expensive to increase the throughput of messages.

To explore this concept, a number of machine learning algorithms for content based

spam filtering were implemented and evaluated with an eye to the performance and cost

requirements needed for algorithmic adaption to be feasible.

Spam emails is a continuing issue. A large portion of emails in circulation are spam

emails. Spam detection systems must keep the number of false positive predictions to a

minimum. False positive prediction corresponding to a real email being filtered out of a

users inbox. As such, detection techniques must minimise false positive rate and there

must be different costs associated with using different techniques.

This work finds that algorithmic adaption is a feasible solution to load shedding and

outlines the next stage in the research on algorithmic adaption.

ii

Abstract

This dissertation explores an alternative to load shedding in a stream computing environ-

ment. The hypothesis which leads this research states: “Is there viability to implement

adapting/switching out the computational algorithm in a stream computing system un-

der load, where the computations being done are sufficiently complex and alternatives

with a trade of in effectiveness and regained cost are available”. To explore this, the

application of content based spam detection was chosen as it fits a stream comput-

ing environment and requires sufficient computations. A number of machine learning

models were implemented and evaluated in terms of effectiveness and cost and conclu-

sions were drawn on the effectiveness of algorithmic adaption as an alternative to load

shedding.

iii

Acknowledgements

I would like to thank my supervisor Stephen Barrett for all the help and guidance he
has given me. He always kept me on track and helped keep the research moving
forward. I am incredibly grateful for all the time and effort he has put in to help me
and this dissertation would not have been possible without him.I would also like to
thanks my family and closest friends for their continued support in whatever I decide
to do.

iv

Contents

1 Introduction 1
1.1 Stream Computing . 1
1.2 Spam Detection Techniques . 2
1.3 Evaluation . 4
1.4 Key Findings . 5

2 State of The Art 6
2.1 Stream Computing . 6

2.1.1 Data Based Solutions . 7
2.1.2 Task Based Solutions . 9
2.1.3 Computational Shedding . 9

2.2 Machine Learning . 10
2.2.1 Cost/Loss Functions . 13
2.2.2 Optimisation Methods . 13
2.2.3 Regularisation . 16
2.2.4 Logistic Regression Classifier 16
2.2.5 Support Vector Machine (SVM) 19
2.2.6 Softmax Classifier . 20
2.2.7 Artificial Neural Networks . 22

2.3 Haskell . 26
2.3.1 Haskell and Machine Learning 26

2.4 Spam . 27
2.4.1 Spambase Data Set . 28
2.4.2 Related Work . 29

3 Design 33
3.1 Gathering Training/Testing Data . 33
3.2 Pre-Processing Training/Testing Data 34
3.3 Build model . 35
3.4 Train model . 35

v

3.5 Evaluate Performance . 35
3.5.1 Cross Validation . 36

4 Implementation 37
4.1 Haskell . 37
4.2 Machine Learning . 37
4.3 Time measurements . 38
4.4 Measurements . 39

4.4.1 Accuracy . 40
4.4.2 False Positive Rate . 40
4.4.3 Precision . 41
4.4.4 Recall . 41
4.4.5 F1 Score . 41

4.5 Model Parameters . 42

5 Results 43
5.1 Cross Validation . 43
5.2 Time Measurements . 43

5.2.1 Training Times . 45
5.2.2 Prediction Times . 45

5.3 Performance Measurements . 46
5.3.1 Accuracy . 46
5.3.2 Precision . 47
5.3.3 Recall . 48
5.3.4 F1 Score . 49
5.3.5 False Positive Rate . 50

6 Evaluation 52
6.1 Is Algorithmic Adaption a Feasible Solution? 52
6.2 Comparison to previous work. 53

6.2.1 Performance . 53
6.2.2 Cost . 54

7 Conclusion and Future Work 56

vi

List of Figures

2.1 Flow diagram of procedure for training supervised learning algorithms. . 12
2.2 Gradient descent step 1 . 14
2.3 Gradient descent step 2 . 15
2.4 Gradient descent step 3 . 15
2.5 Logistic Regression Probability Plot 18
2.6 2D Support Vector Machine . 19
2.7 Kernel Method . 21
2.8 Neural Network Structural Representation 24
2.9 SVM Results from (1) . 30
2.10 ANN Results from (1) . 30
2.11 ANN Results from (2). Columns are Accuracy, Precision, Recall, Accu-

racy and F1 score from left to right. 31
2.12 Results from (3) . 32

4.1 Confusion Matrix . 39

5.1 Neural Network 10 Fold Cross Validation Results 44
5.2 Training Times . 45
5.3 Prediction Times . 46
5.4 Accuracy . 47
5.5 Precision . 48
5.6 Recall . 49
5.7 F1 Score . 50
5.8 False Positive Rate . 51

vii

List of Tables

1.1 Measurements . 5

2.1 Neural Network Activation Functions 25
2.2 Different Types of Spam . 28

5.1 Time Measurements . 44
5.2 Performance Measurements . 47

viii

Nomenclature

SVM Support Vector Machine
NN Neural Network
ANN Artificial Neural Network
SM Softmax Classifier
GD Gradient Descent Optimisation
BFGS Broyden–Fletcher–Goldfarb–Shanno Optimisation
PCA Principal Component Analysis

ix

1 Introduction

The hypothesis which lead to this research came from the need for an alternative to
load shedding in stream computing environments. Some research has been done into
computational shedding which is the fine grained removal of computations in an
attempt to regain processor cycles. While computational shedding is effective in
certain situations there is a need for a more generalised approach in order to increase
the throughput of input data when a stream computing system is under load. The
proposed solution is called Algorithmic Adaption.

The hypothesis states: “Is there viability to implement adapting/switching out the
computational algorithm in a stream computing system under load, where the
computations being done are sufficiently complex and alternatives with a trade of in
effectiveness and regained cost are available”. To explore this hypothesis,
implementing a number of spam detection models to evaluate their performance when
detecting spam was chosen. Spam email fits a stream environment as mail servers
must deal with unpredictable email rates as they arise and the detection techniques are
sufficiently complex.

1.1 Stream Computing

Stream computing is a processing model which aims to provide a different approach to
processing large volumes of data. The traditional approach is batch processing where
the data is pulled by a Database Management System (DBMS). In a stream
computing system, data is pushed from one or more data source as the data becomes
available. Data sources such as these are real time data streams. Stream computing is
particularly useful in situations where the system has real-time constraints, and as such
and the output of the system needs to be continually computed.

Real time data streams pose a potential problem for stream computing systems. The

1

system will have a limited to the rate at which it can process data, typically a
combination of processor cycles, memory, and bandwidth. The system must be able to
cater for the possibility of the data stream exceeding the rate at which the system can
process the data. The typical solution to this is to drop input data at random from the
stream, which is known as load shedding. While this may be an acceptable
compromise for some systems it is definitely not in others.

This dissertation attempts to explore the viability of an alternative to load shedding to
avoid this explicit data loss. The proposed solution was algorithmic adaption. This
solution proposes changing the algorithm to one which is less computationally
expensive and typically less accurate during periods of increased data rates. The aim is
that there will be a number of algorithm switches possible where the decrease in
processing power is related to the accuracy loss. This alternative solution could then
be compared to a data shedding solution.

The solution of a stream computing model with algorithmic adaption will not always
be an applicable solution. For the purpose of this exploration I have chosen to take the
problem of spam email detection. While this is somewhat of a "solved" problem and
systems can deal with the current loads, it fits the stream computing model and there
are a number of algorithms of different complexity. The results of this system are
measurable, and comparable and will give valuable insight into the possibilities of
algorithmic adaption in stream computing systems.

1.2 Spam Detection Techniques

Spam has been an issue for as long as email has been in widespread use. Spam ranges
from annoying unsolicited emails to sophisticated phishing attacks which are ultimately
looking to steal data or money from the recipient. Spam can be difficult to spot,
particularly for those less experienced with technology. It has been reported that well
over half of email in circulation is spam. As spam is so varied and dynamic in its
content, rule based filters would not be effective. Machine learning models are able to
spot patterns in data and as such are much more effective at filtering out spam.

Spam detection filters use machine learning models to predict if a given email is spam
or not. These models must be trained with a labeled data set of spam and ham (non
spam) email. Early models used include Bayesian classifiers and Support Vector
Machines but more recently Neural Networks have been used due to their increased
performance.

2

The chosen programming language to implement the spam detection models was
Haskell. Haskell was chosen as it is a strong candidate for implementing both stream
computing systems and machine learning models. The Haskell machine learning
community is not as mature as that of Python or R, which poses its own issue but it is
certainly worth exploring machine learning and Haskell to see if it can meet these
expectations.

The machine learning models looked at were:

1. Support Vector Machine (SVM)

• Gradient Descent (GD) Optimizer

• Broyden-Fletcher-Goldfrard-Shanno (BFGS) Optimizer

2. Logistic Regression

• Normal Logistic Regression

• Logistic regression with Principal Component Analysis (PCA).

3. Softmax Classifier

• Gradient Descent Optimizer

• Broyden-Fletcher-Goldfrard-Shanno (BFGS) Optimizer

4. Neural Network with Broyden-Fletcher-Goldfrard-Shanno (BFGS) Optimizer

Spam filtering was originally focused on content based filtering. Content based filtering
can be defined as parsing the raw text of the email and making a feature vector of key
features which are indicators of whether or not an email is spam, and using these
feature vectors to predict if the email is spam or not. Examples of these features
would be frequency of words which are indicative of spam or ham emails. Words such
as “free” or “winner” are often seen in spam emails, in contrast ham emails are more
likely to contain the recipients name or keywords related to their field of work.

Modern spam detection such as that done by Gmail incorporates a lot more
information than just the content of the email. A number of sources are used to build
a “spam score”. One of these sources is the raw email content, others include if the ip
source address of the email is within certain ranges associated with being a source of
spam email or if the sender is on the recipients contact list. Due to the difficulty of
access to this information it was decided that the research in this dissertation would be

3

entirely based on content filtering. This would still provide enough complexity to
evaluate if algorithmic adaption is a viable alternative to load shedding.

The data set used is called SpamBase and is available on UCI Machine learning
repository(4). It is a pre-processed data set which is a matrix of labeled feature
vectors, this allowed the focus to be on the machine learning aspect as opposed to
natural language processing. It was randomly shuffled once to ensure all models were
evaluated on a level playing field. 10 fold cross validation was used when training and
evaluating the models.

1.3 Evaluation

The main measurements used to evaluate the models can be seen in Table 1.1. These
measurements are standard evaluation metrics for binary classification machine
learning models such as those used for spam detection. Much of the research into
spam focuses mainly on accuracy. While that is important, the false positive rate has a
bigger impact on the effectiveness of the model as this is the number of real emails
being detected as spam and filtered out of the recipients inbox. This is a much bigger
issue than a false negative; it is generally accepted that one would rather receive a few
spam emails then to miss a real email.

Accuracy and false positive rate are good early indicators of the performance of each
model. Precision and recall are calculated from a confusion matrix of the number of
true positive, true negative, false positive and false negative predictions. Precision,
recall and their harmonic mean (F1 score) can be used to accurately compare the
performance of the different models.

After training and evaluating the models it was found out that the resulting prediction
times (effectively cost in stream computing) was very similar across most of the
models. This was not only true for the cost but also in terms of performance
(accuracy, false positive rate, and precision). This was quite a surprising result
particularly in terms of time complexity. It was expected that some of the models
would be similar in terms of performance but not so closely in terms of cost.

4

Type Description
Accuracy Percentage of the number of correct predictions to

total predictions.
False Positive Rate Percentage of the number of false positives to the

total number of positives. In this case the number
of ham emails being classified as spam over the total
number of spam emails.

Recall Number of real spam emails that were correctly iden-
tified as spam emails.

Precision Proportion of emails identified as spam (positive)
that are actually Spam emails.

F1 Score Harmonic mean of precision and recall. This combi-
nation is a good overall indicator of a models perfor-
mance and is the best measure for comparing differ-
ent models.

Training time Total time taken for model to be trained on entire
training set including any optimisation of the models.

Prediction time Time it takes for model to classify an email as spam
or ham. This is a key indicator of computational
cost.

Table 1.1: Measurements

1.4 Key Findings

There was a slight trend which makes algorithmic adaption plausible, but there is not
enough evidence to prove the hypothesis. This lead onto the next question about these
performances and if this is the expected performances of these models. While there is
a lot of research on the performance of spam detection algorithms there is very little
on their run time performances in any programming language let alone Haskell.

The final section of the analysis is an evaluation of the real time performance of the
models implemented. There is not much research in terms of practical or theoretical
times when it comes to models prediction times however a comparison is made with
what was available.

Alongside the analysis of the time performance of the models, the non time related
performance measurements mentioned earlier will be compared to other
implementations of these models in other programming languages. This combined
with the analysis of the time complexities of the models gives a good consensus of the
current state of machine learning in Haskell.

5

2 State of The Art

2.1 Stream Computing

Stream computing has been in steady development over the last 15 years as an
alternative to traditional batch processing systems. Early stream computing concepts
were concerned with real time monitoring systems. Early examples would be Aurora
and Borealis stream processing engines (5) (6). Aurora was a first generation stream
processing system. Borealis is a second generation stream processing system following
from the work done on Aurora. Borealis is a distributed system where processing takes
part on multiple physical distributed nodes. These early versions focused on defining a
new processing architecture for real time systems such as hospital monitoring or
financial analysis applications. These early systems used load shedding when the rate
of data being pushed by the stream exceeded the systems capabilities, and accept that
this may result in approximate answers.

The implementation and drawbacks of load shedding was explored in “Load shedding
in a data stream manager” (7). Two load shedding techniques were explored:
randomly dropping a fraction of input data (tuples) and dropping tuples based on their
perceived importance. The issue explored in (7) is when the system with a number of
push based data sources cannot satisfy the rate of incoming data as the arrival rates
can be high and unpredictable. The systems which that paper was based around were
all monitoring systems looking to detect critical situations, during which data rates can
exceed system capabilities. If this is not corrected, latency will increase due to the
queues being formed. For these systems the solution is to drop load; it is an attempt
to gracefully degrade the performance of the system while concentrating on key
quality-of-service information when making load shedding decisions.

While “Load shedding in a data stream manager”, makes a compelling argument for
the utility of load shedding in monitoring applications, it does not explore stream
computing systems which must process each piece of data. Regarding spam for

6

example, all emails are independent of each other and owing to the large percentage of
emails being spam, some emails will be "let through" unprocessed. Similarly in social
media content filtering posts must be checked to monitor hate speech among other
things. These classification problems require some processing and cannot accept load
shedding.

Unlike monitoring systems which have structured data from different streams,
classification systems deal with data of the same form and as such cannot use the
structure of source of the data as extra information. Due to this, later research
considered different approaches to handling bursty data stream events. These solutions
can be broken into two areas: data based solutions and task based solutions.

2.1.1 Data Based Solutions

Random Load Shedding

Data based solutions, aim to reduce the processing by reducing the number of data
units to be processed. These are typically some variation on load shedding, be it
statistically random or informed decisions. As such, a subsection of the input data is
not processed. These are explored in “Load Shedding on data streams” (8)

In load shedding solutions, the shedding needs to take place where it has the biggest
impact in reducing processing power. This reduction in processing power must be
balanced with minimising the number of data elements being dropped. This is
different than load shedding in systems such as computer networks, where shedding
takes place at any point where a bottleneck occurs across the network, and little
concern is placed on which packets are dropped as they can be resent. This would not
be efficient in stream processing as the amount of data being discarded is looking to
be minimised for a given return of processing power.

Early distributed stream computing systems used directed-acyclic-graphs (DAG), which
outline the flow of data through the stream processing node, in an attempt to
determine where to place a load shedder to have the biggest effect on reducing
processing requirements.

This was efficient for monitoring applications, which had an increase in accuracy when
data elements were partially processed before being discarded. In classification based
stream computing systems, if an element (email, social media post) was partially
processed before being dropped, this would result in wasted processing power with no

7

added classifications being made.

The exploration of load shedding and its consequences was lead by the research done
during the development of the Aurora and later the Borealis stream processing
engines. Because of the simple nature of the messages being processed by Aurora
(temperature measurements) and the simple operations performed, it was easy to
accurately measure the required process cycles for each message and as such, was easy
to determine when the system is in or approaching an overloaded state. This allowed
them to dynamically drop messages at processing engines which were overloaded until
the system could deal with the load.

Aurora used random load shedding. It treated all input messages with equal
importance and dropped messages at random. Borealis dropped messages in groups
depending on how overloaded the system was and messages were all treated with equal
importance.

In the case of Aurora, they describe using a greedy algorithm to perform load shedding.
This algorithm identifies types of messages whose output has the smallest negative
slope to the QoS (quality of service) graph. They then moved along the graph until
they found the second output which had the next lowest negative slope. From this it
chooses which output tuples to drop, resulting in the minimum decrease in overall
QoS. This solution can be done statically before the system is live or dynamically
during run time. The run time case looks to drop problematic outputs based on the
QoS graph and drops them until the system is no longer overloaded.

Semantic Load Shedding

The random load shedding solutions mentioned treat all messages equally and take no
regard for the impact of dropping certain messages on overall system performance.
Semantic load shedding looks to drop less important tuples.

Semantic load shedding is investigated in “QoS-Driven Load Shedding on Data
Streams” (9). These techniques look to control the performance degradation when the
system is under load by dropping input which is less relevant. They also look at
assigning Quality of Service (QoS) metrics to input messages so that when the system
is overloaded it can drop ones which have less of an effect on the QoS of the
system.

In terms of spam detection each email is as relevant as the next, as such no QoS
related information could be attached to the message. This is perhaps a possible

8

approach in the case of mail server providers, but not in content based filtering.

2.1.2 Task Based Solutions

To other solution to an overloaded stream computing system are task based
approaches. There are two approaches of note in distribute stream computing system.
The first being a form of load balancing where the system transfers tasks from
overloaded nodes to ones which are free to process or less overloaded. The second is
scaling the system, adding more nodes until the system can handle the current
increased load.

These solutions are explored in “Stormy: An Elastic and Highly Available Streaming
Service in the Cloud”(10). The load distribution approach requires a distributed hash
table to manage sharing of tasks when a node is overloaded. This is a decentralised
system and there is some overhead in this management meaning there is a delay in the
system responding to the overload. Stormy also explores the solution of “Cloud
bursting” which is bringing new nodes online when the system as a whole is
overloaded. This is a quite effective approach when the overload is long lasting but is
not effective for short lived overloads due to the time taken to bring a new node online
and routing tasks to it.

2.1.3 Computational Shedding

Guerin’s PhD “Computational Shedding in Stream Computing” (11) explores stream
computing models which have to deal with infrequent but intense bursty events (i.e
short lived increase in input rate above the systems capabilities). In this context the
task and data based solutions are not acceptable. The event is too short lived for the
tasked based solutions to be viable and the system cannot accept data loss through
load shedding. Guerin proposes computational shedding by temporarily disabling sub
tasks, so each input message/event has lower processing cost. This is effective when
the computations has sub tasks which can be excluded without a large sacrifice to the
accuracy of the system.

While Guerin’s solution is effective in some solutions it raises the question is there a
more generalised approach to reducing the computational cost of a message/event
through substituting the computational algorithm being used. As with Guerin’s work,
there would be some sacrifice in accuracy by switching to a less accurate model. If the
sacrifice in accuracy corresponds to reduced processing cost of a message and is less

9

than the accuracy loss due to load shedding, then it could be a viable solution to load
shedding.

2.2 Machine Learning

Machine learning is a type of Artificial Intelligence that has been in development since
the late 1950s. Machine learning is based on statistical models which have been
present for hundreds of years. Machine learning techniques work by finding patterns in
data and making inferences from these. There are three categories of machine
learning;

• Reinforcement Learning

• Supervised Learning

• Unsupervised Learning

Machine learning has seen a major resurgence since the early 2010s when neural
networks started to out perform other machine learning algorithms and computation
power was becoming cheaper and more widely available. The first occurrence of neural
networks drastically outperforming other models was when Alex Krizhevsky created a
convolutional neural net which won the ImageNet challenge in 2012 (12). This caused
a sharp increase in the research being done on Neural Networks and since then they
have been shown to be able solve more complex problems that traditional machine
learning models could not.

Reinforcement Learning

Reinforcement learning models complete a goal or task (action) in a live environment,
and based of the results of this action they are fed in a reward in a feedback loop(13).
Based on how good or bad the result and the magnitude of it, the model iteratively
learns if it is making good actions or bad. Unlike the other categories of models,
reinforcement learning models continue to learn as they are deployed. Reinforcement
learning is good for applications where the problem being solved is likely to change
over time and is non static. Where other models are trained offline, reinforcement
algorithms learn live as they are deployed.

Reinforcement learning is most commonly used in gaming applications. It also has uses

10

in robotics where the robot is interacting with the environment around it or
personalised recommendation systems where the model learns if users choose its
recommendations. Reinforcement learning is not an ideal for natural language
processing tasks such as spam detection so there are no reinforcement learning models
investigated in this dissertation.

Unsupervised Learning

Unsupervised learning is the branch of machine learning which is concerned with
labelling or classifying unlabelled data. These types of models do not learn from
feedback such as labels in training data or responses from an environment.
Unsupervised learning relies on identifying commonalities between data points and
clustering the data points based on these commonalities. It has some use cases in
statistics and customer segmentation (based off buying history/key words in social
media posts).

As spam detection can be done from labelled data sets, unsupervised learning would
not be an optimal choice for spam detection so no unsupervised learning techniques
are investigated in this dissertation.

Supervised Learning

The final category of machine learning is supervised learning. It is by far the category
with the most research and has the largest number of different models available. It
relies on having a label associated with each feature vector and is used for both
classification and regression applications.

As this dissertation focuses on classifying spam email I will be focusing on supervised
learning techniques for classification. Supervised learning models build an inferred
function form the set of data vectors and accompanying labels. This function can then
be used to predict classes of unseen data vectors without an accompanying
label/class.

The typical approach to training supervised learning algorithms is to get a set of
labelled training data. This data is then split into a training set and testing set. A
common ratio to split the training data is 70% training and 30% testing data. Once
the model has been trained with the training set, the performance of it is evaluated
based on the model’s predictions for the testing set versus the real values.

11

Figure 2.1: Flow diagram of procedure for training supervised learning algorithms.

Different models have different optimisation algorithms and loss function, and in the
case of neural networks activation functions. I will investigate these in the following
subsections where I describe the supervised learning algorithms investigated for this
dissertation. These optimisation algorithms, activation functions, and loss functions
have parameters which need to be tuned for each specific use case of the models.
Figure 2.1 shows the typical development flow of supervised learning algorithms. I will
explore how to evaluate machine learning models in the section 4.4 on
measurements.

Supervised machine learning models can be broken into two categories; probabilistic
and deterministic. Probabilistic models build a probability distribution over the training
set of data for each class and use this to predict the class of unseen data.
Deterministic models separate the vectors from the training set in the feature space
and associates these spaces with a class. They do this by defining a hyper-plane. New
feature vectors can then be classified from this.

In the following subsections I will first outline the cost functions, optimisation
methods, and regularisation which are common across all the models. I will then
outline the following algorithms which were investigated for this dissertation, including
any other techniques which are unique for each of these models.

1. Logistic Regression

2. Support Vector Machine (SVM)

12

3. Softmax Classifier

4. Neural Network

2.2.1 Cost/Loss Functions

Each model has cost/loss function. The loss function takes the prediction for a given
input and calculates the error in relation to the real value for the input (during model
training). The size of the error term is then used to teach the model how wrong or
right its prediction was. Optimisation methods use the result of the loss function
during training to tune the parameters of the model in such a way to minimize the
loss.

Examples of loss function include cross entropy loss (used in softmax classifier) and
hinge loss (used in SVM). Other examples include mean square error loss, negative log
likelihood, logistic, and cosine proximity.

2.2.2 Optimisation Methods

The following optimization techniques can be used during the training stage of all
machine learning models. There are a number of optimization techniques but they all
look to minimize a loss function to its minimum by changing the models parameters
during the model training.

Gradient Descent

Gradient descent looks to minimise the loss function of a given model to its local
minimum. Gradient descent and its variations are described in (14). Gradient descent
starts with initial parameters for the loss function, or in the case of neural networks
random weights for each node. It then computes the gradient at that point and takes
a step in the direction opposite the ascending gradient. It iterates until it hits the
minimum of the loss function. Due to the possible presence of a number of local
minimums it is not guaranteed to converge on the global minimum. See figure 2.2 -
2.4 for an example of gradient descent steps converging on a local minimum.

The size of the step taken in gradient descent is decided by the learning rate. The
smaller the learning rate the smaller the step take. If the learning rate is too big it is

13

Figure 2.2: Gradient descent step 1

possible to overshoot the local minimum. With a very low learning rate you are
guaranteed to converge on the closest local minimum to the starting point but it could
take a very long time to converge. Typically very small values such as 0.001 are
used.

Broyden–Fletcher–Goldfarb–Shanno (BFGS)

The other optimization method looked at was the BFGS method. As with gradient
descent, BFGS looks to find the point where the gradient is zero. This optimisation
technique falls into the family of hill climbing optimization techniques, specifically a
quasi-Newton method(15). A quasi-Newton method is one which is similar to
Newton’s method for finding local minimum/maximums but without having to
compute the Hessian (matrix of second order partial derivatives). Instead the Hessian
is approximated from the gradient.

As with gradient descent, BFGS looks to find the minimum of the loss function.
Gradient descent relies on computing the first derivative of the loss function whereas
BFGS relies on the second derivative. After each iteration of training, gradient descent

14

Figure 2.3: Gradient descent step 2

Figure 2.4: Gradient descent step 3

15

will adjust all the parameters in the loss function where hill climbing techniques such
as BFGS adjusts one parameter at a time.

BFGS performs well when the feature space is relatively flat but is more expensive in
terms of time and memory.

2.2.3 Regularisation

Regularisation helps to avoid overfitting the model to the training data. This term
helps reduce the variance of the model by simplifying it such that is does not represent
the training data too closely. This is done to help combat noise in the training
data.

The most common regularisation terms are L1 and L2 regularisation. L1 terms adds a
penalty which is equivalent to the value of the magnitude of the coefficients. L2
regularisation is equal to the square of the magnitude of the coefficients.

L1 Regularisation:
λ‖~w‖

L2 Regularisation:
λ‖~w‖2

L2 term has been shown to be more effective at reducing overfitting. As described by
Yichuan Tang(16) in his paper on deep learning using SVMs “L2-SVM is differentiable
and imposes a bigger(quadratic vs. linear) loss for points which violate the margin”
resulting in reducing the effect of noise in the training set. As such, L2 regularisation
is used in all the models evaluated.

2.2.4 Logistic Regression Classifier

Logistic regression is the oldest machine learning classifier and was discovered long
before the term “Machine Learning” was coined. The original discovery of logistic
regression is attributed to Pierre-François Verhulst in 1845. It wasn’t until 1920 when
it was rediscovered independently by Raymond Pearl and Lowell Reed that it began to
gain momentum in the statistics community(17).

The form of logistic regression used in spam detection is a binomial regression. There

16

are two possible outcomes; 1 - email is spam, or 0 - email is not spam. However there
are extensions to logistic regress for the case where there is multiple classes in the
data-set. Logistic regression is a probabilistic model. It is an extension to linear
regression which is used for predicting continuous values (not classes).

Logistic function:

Logistic(n) =
1

1 + exp (−n)

Where n is:

n = β0 + β1x1 + β2x2 + ... + βf xf

and f is the number of features used to represent the underlying thing being classified.
And

βi

are the parameters from the trained model.

Logistic regression predicts the probability that a given email is spam. The resulting
probability curve can be seen in Figure 2.5, in this example with only 1 feature.

In addition to a normal logistic regression classifier being implemented one was
implemented after Principal Component Analysis (PCA) was performed on the data
set prior to the model being trained.

Principal Component Analysis (PCA)

Principal component analysis is a technique to reduce the dimensions of the features
used when a model is trained and when it predicts a value. It deduces which features
are contributing to the variance in the model. PCA looks to maximise this variance. It
reduces the input features into a set of principal components which help improve the
performance of the model by effectively removing some features which are noisy and
do not positively contribute to predictions.

It is important that this same selection of principal components is done to feature
vectors that are used outside of training the model. This must be done so that the
same principal components are used when predicting the class of unseen data. This
increases the performance of the model it will increases the training and prediction
times as extra pre-processing must be done.

17

Figure 2.5: Logistic Regression Probability Plot

18

Figure 2.6: 2D Support Vector Machine

2.2.5 Support Vector Machine (SVM)

Support Vector Machines can be used for both linear and non-linear classification(18).
This is a deterministic model. Consider the simplified example of an SVM in Figure
2.6. The data points are 2 dimensional and there is two classes of data. The support
vectors are the data points which define the width of the margin for the hyper-plane.
Unseen data-points are classified by where they plot on the feature space (i.e which
side of the hyper-plane they are on). The hyper-plane is the set of points
satisfying

~w · ~x − b = 0

and
~w

is the normal vector to the hyper plane.

The Support Vector Machine separates the data while maintaining a the largest
margin as possible. This is an example of classifying linear data. If the data is non
linear then a kernel method is used to transform the data into a different dimensional

19

space where there is a clear hyper-plane between the data points.

If the data is linear separable then there is said to be a hard margin and the aim is to
define the hyper-plane such that there is a maximum distance between the support
vectors of each class and its hyper-plane. The function to minimize in this situation
is:

yi(~w · ~xi − b) ≥ 1 (1)

Where b is the current prediction and the actual target/label/class for vector i is

yi

If the data is not linearly separable then the hinge loss function is used. Hinge loss is
typically still used when the data is linearly separable as it has increased
performance.

[
1

n

n∑
i=1

max (0, 1− yi(~w · ~xi − b))

]
+ λ‖~w‖2

The second term is the L2 regularisation term.

Kernel Functions maps data points from one dimensional space to another. These are
necessary when the data is not linearly separable. An SVM can only separate linear
data so a kernel function must be used to make the data into a feature space where it
is linearly separable. Examples of more popular kernel function would include Gaussian
radical basis function (RBD) and sigmoid kernel functions. See figure 2.7 for an
example of a kernel method in a 2 dimensional space. As the data set used in this
dissertation is linearly separable no kernel functions are used.

2.2.6 Softmax Classifier

The softmax classifier is very similar to the SVM in structure. The hinge loss function
in SVM gives you the margin separating the two classes of data, where as the loss
function for softmax is cross entropy loss. The cross entropy loss function is:

20

Figure 2.7: Kernel Method

Lyi = −fyi + log
∑
j

e fj

where fj is the jth element of vector and the softmax function is:

j(z) =
ezj∑
k e

zk

Finally, the cross entropy between the estimated distribution q and true distribution p
is as follows:

H(p, q) = −
∑
x

p(x)logq(x)

This allows the classifier to minimize the cross entropy between the true distribution
and estimated class probabilities.

The performance of the softmax classifier and SVM are very similar. However, due to
the fact that the softmax computes the probability that a feature vector belongs to a
class its output also allows us to determine the confidence it has in the prediction. If
both and SVM and Softmax classifier predicted the probability that two vectors are in
a class the results would be something like:

Softmax = [0.89, 0.11]

SVM = [43.52,−19.63]

21

2.2.7 Artificial Neural Networks

Artificial Neural networks (or just Neural Networks) were first introduced in 1943 when
Warren McCulloch and Walter Pitts came up with a computational model for neural
networks(19). The model is based off how biological neural networks in the brain
function.

An artificial neural network lays out the structure of how to build a model but uses
other machine learning algorithms internally. As such, it is more of a framework for
machine learning solutions as opposed to being an algorithm itself. Each node in a
neural network represents a neuron in the brain. Each of these neurons takes a
weighted sum of its inputs, adds some bias and passes these through its activation
function to decide if that particular neuron “fires” (brain related term applied to
machine learning). A neuron firing or not determines the inputs to the next layer of
neurons. The weights and biases get configured during the optimization phase of the
models training.

Research into artificial neural networks stagnated in 1969 when Marvin Minsky and
Seymour Papert discovered two major issues with computations and artificial neural
networks(20). The first issue was that computers at the time just did not have the
computational power required to solve large neural networks (networks with many
layers and/or large number of nodes), due to this networks at the time were only single
layered networks called perceptrons. The other issue was that these perceptrons could
not process the exclusive-or function, which boiled down to being a constraint of
perceptrons. This lead to the introduction of multi-layered networks, but due to
processing constraints it was a number of years before these could be explored
further.

Research into neural networks advanced again in 1974 when Paul J. Werbos released
his thesis which introduced the backpropagation algorithm(21). The backpropagation
algorithms is key to computing gradient of the loss function in neural networks.

Backpropagation

Backpropagation is a technique which takes the error computed at the output of the
model and propagates this back up through the layers of the models and adjust the
weights at each node. This makes training a neural network a two stage training.
Firstly the training vectors are forward propagated through the nodes and the output is
used to predict the class of that vector. The error on this is calculated against the true

22

value of the class. This error is then propagated to update the weights
accordingly.

Backpropagation uses the chain rule to calculate the gradient for each layer in the
network. This gradient can then be used by an optimization technique such as
gradient descent to update the weights of each node in the layer. Backpropagation
helps the network to learn the internal structure (weights) to learn a mapping of the
feature inputs to output classes.

Neural Network Structure

A neural network must have at least two layers. These are the input and output layers.
The input layer contains the same number of neurons/nodes as there are features in
the feature vector. In the case of the spambase (see 2.4.1) data set 57 nodes with an
optional 1 bias node. The output layer consist of 2 node which output the predicted
probability of the feature vector being spam and ham respectively.

The other layers are called the hidden layers. There can be any number of hidden
layers and each of these layers can have a different number of nodes. There is a lot of
debate over the number of hidden layers to use, with arguments that two layer
networks are sufficient for most problems but other examples show networks with 120
or even 1000 layers being most effective for image classification such as those used in
resNet(22). The width of the layers (number of nodes) is also debated but the general
consensus is that keeping the layers narrower is better. Narrower layers have quicker
training times and their performance is comparable to much wider ones.

See Figure 2.8 for a representation of an example binary classification neural network
with 4 input features, 2 hidden layers with 8 and 5 nodes, and an output layer with 1
node.

Activation Functions

The activation function is applied to each node in the network. The activation
function decides the output of a given node based on its inputs. The inputs to a node
have their nodes weights applied, these inputs are summed up and applied to the
activation function and the result is the output of that node which in turn acts as
inputs to the nodes in the next layer.

When neural networks were originally created the heaviside function was used as it

23

Figure 2.8: Neural Network Structural Representation

24

Function Formula
Heaviside

f (x) =

{
0 for x < 0

1 for x ≥ 0

TanH

f (x) = tanh(x) =
(ex − e−x)

(ex + e−x)

Sigmoid
f (x) = σ(x) =

1

1 + e−x

Rectified Linear Unit
(ReLU)

f (x) =

{
0 for x < 0

x for x ≥ 0

Leaky rectified linear unit
(Leaky ReLU)

f (x) =

{
0.01x for x < 0

x for x ≥ 0

Table 2.1: Neural Network Activation Functions

approximated the function of neurons in the brain. The heaviside function is the unit
function where the output is zero for negative inputs, and one for positive inputs. This
was to represent a neuron in the brain firing or not. This worked fine for linear
classification problems but is not as effective for non-linear problems.

The other activation functions output a range of values typically between either -1,1 or
0,1 but these can be normalised into the required range.

Some commonly used activation functions can be seen in table 2.1. As mentioned x is
the sum of the inputs with their weights applied. Normalisation is not necessary
between layers but can help performance.

This dissertation covers artificial neural networks but does not consider convolutional
neural networks (CNN) and recurrent neural networks (RNN). CNNs and RNNs have
been shown to perform extremely well on more complicated tasks such image
recognition but are unnecessarily complex for NLP tasks such as content based spam
filtering.

25

2.3 Haskell

2.3.1 Haskell and Machine Learning

Haskell is a purely functional programming language. It has a strong type system. Due
to this strong type system and Haskell’s compiler, a lot of bugs are caught at compile
time that would only be caught at run-time in other languages.

Python and R would be the standard languages for machine learning. They benefit
from having a big machine learning community with a lot of well supported libraries
and tutorials. This makes it very easy for those from a data science background to be
able to quickly build machine learning models.

A lot of Machine learning is concerned with transformations over unchanging
(immutable) data points. Performing transformations like these is very easily expressed
in Haskell and the mathematical operations are written in pure functions. Pure in this
context means that the function cannot have any side effects. In other works, when a
pure function is evaluated the state of the program remains unchanged and the same
input is guaranteed to provide the same output.

Haskell also supports concurrency out of the box, making it easy to make the kind of
scalable solutions. Scalable solutions are particularly necessary in more complicated
machine learning application such as convolutional neural networks and recurrent
neural networks.

Another feature of Haskell which makes it a strong candidate for machine learning
applications is lazy evaluation. Laziness ensures that only what is needed at a given
point in time is evaluated. This leads to efficient data pipelines and avoids doing
unnecessary work.

While there are some benefits to doing machine learning in Haskell the community is
quite young. Because of this there is not the same support for libraries as the other
languages mentioned. At the time of writing this there are a few machine open source
learning libraries which implement some things well but they are all in a relatively
incomplete stage and in the best scenario only implement a subset of loss,
optimisation, and activation functions. Due to the current status of supporting
libraries, if one was familiar with machine learning but not experienced with Haskell it
would not be encouraging to use Haskell. There is a small dedicated community under
the name of “Data Haskell”(23) who are working towards building the supports

26

necessary for Haskell to be used in data science.

2.4 Spam

Spam email is said to be well over 50% of the emails in circulation. Spam
encompasses any unwanted email and ranges from merely annoying unwanted
advertising to quite dangerous attacks. While some spam emails are quite common
and easily recognisable, others can be almost impossible to tell apart from genuine
emails (when the spam is pretending to come from a known source to the recipient).
Table 2.2 outlines some of the more common types of spam seen today.

One particular example of a con artist scam has been coined “grandparent scam" as
typically it is an older person who falls for it. The “grandparent scam" is some
variation of the hacked user being on holidays and being mugged or in hospital and
needing money urgently. It is typically the more venerable/less tech savvy who fall prey
to these types of spam.

One way or another Spam is looking to trick people out of personal details/money or
install malware (through attachments) onto their computer. Spam is constantly
evolving and needs patter finding machine learning algorithms to filter spam from real
email.

27

Type Description

Unsolicited Spam Emails These emails can either come from a source that is
known to the recipient, or unknown but are gener-
ally just unwanted advertisement and are not of a
dangerous nature.

Spear Phishing Emails These emails attempt to pretend to come from an
official, recognised company and often one the recip-
ient uses (common examples include Paypal or other
banks). It wants the user to click on a link to an imi-
tation website to enter personal details such as login
information or bank details.

General Phishing Emails This spam comes in many shapes and sizes. One
way or another it wants the user to click on a link
to download something malicious or enter personal
details. Examples would be emails offering to sell
adult content or weight loss pills/Viagra.

Con Artist Scam These emails can come from a known contact (in-
dividual as opposed to a company) who has been
hacked or unknown contact. They are trying to trick
the recipient out of money by impersonating their
contact or outright claiming to have sensitive infor-
mation which will be distributed unless they are paid
out. One way or another they want the recipient to
send money through some anonymous method.

Failed delivery Spam
/Bounce back Spam

This type of spam pretends to be a failed delivery
notification of an email sent from the users mailbox.
It hopes to confuse the user to open the attached
file. This along with other types of spam have exe-
cutable attachments which install some type of mal-
ware when opened.

Table 2.2: Different Types of Spam

2.4.1 Spambase Data Set

The Spambase data set was chosen as the data set to evaluate the models. It is
available on the UCI machine learning repository (4), the data set was originally
donated by George Forman of Hewlett Packard Labs in 1999 and has been used in

28

various papers in relation to spam detection.

The data set consists of 4601 instances (emails) which have been pre-processed into
feature vectors of 58 features. This corresponds to 57 attributes of an email and one
class label to identify if the email is spam (1) or ham (0).

The 57 features correspond to the following information for a given email:

• 48 features correspond to word frequencies. These are values in the range of
0-100 and correspond to percentage of words in the email that correspond to a
given word (i.e 1 of these attributes is percentage occurrence of “telnet” in the
email).

• 6 features correspond to character frequencies. This is also in the range 0-100
and corresponds to percentage of characters that match a given character (i.e 1
of these is percentage occurrence of “#” in the email).

• 1 feature corresponds to average length of uninterrupted sequence of capital
letters.

• 1 feature corresponds to longest sequence of uninterrupted capital letters.

• 1 feature corresponds to total number of capital letter in the email.

2.4.2 Related Work

The spambase data set is used in a number of papers on spam filtering with machine
learning. Salwa Adriana Saab’s, Nicholas Mitri’s and Mariette Awad’s paper titled
“Ham or spam? A comparative study for some content-based classification algorithms
for email filtering”(1) compares the performance of two SVM models to an Artificial
Neural network model.

The results in figure 2.9 show the best performing SVM marked in bold. It is worth
noting that the c parameter is related to the regularisation term used. This shows the
SVM performing very well in both accuracy and precision.

The results in figure 2.10 show the results for their ANN implementation. This shows
a neural network outperforming the SVM implementation in terms of accuracy but not
precision. Notably though they referenced another paper which reports an ANN with
precision of 94.332% which exceeds all precision results in (1).

29

Figure 2.9: SVM Results from (1)

Figure 2.10: ANN Results from (1)

30

Figure 2.11: ANN Results from (2). Columns are Accuracy, Precision, Recall, Accuracy
and F1 score from left to right.

The paper cited in (1) is “Adaptive Approach for Spam Detection” by Sharma and
Arora (2). Figure 2.11 shows the result for their Multi-Layer Perceptron (alternative
name for ANN). This shows an ANN outperforming the SVM in regards to the key
evaluation metric (precision). This gives reason to believe that an ANN can
outperform the more traditional techniques.

Another related work to be mentioned is Idris paper “Spam Classification With Artificial
Neural Network and Negative Selection Algorithm” this paper looks at a particular
optimisation technique called “negative selection” (24). While Idris doesn’t specifically
cite the SpamBase data set he does mention the spam rate, number of instances and
number of features in the data set which all correlate to SpamBase. Idris work shows
an ANN trained with the negative selection algorithm achieving 94% accuracy and
notably 0.299% false positive rate, by far the lowest presented in related work.

The final paper reviewed is “Ham and Spam E-Mails Classification Using Machine
Learning Techniques”(3). This paper explores the models seen in Figure 2.12. This
paper shows random forest performing the best followed by artificial neural network
and logistic regression. Most notably the random forest shown here is the best
performing presented in terms of accuracy and precision. Upon further inspection of
the figures in 2.12, the authors give the number of true positives, false positives, false
negatives, and true negatives predictions who’s values raise a question. These sum up
to 4601 for each of the models, which is the number of instances of emails in the data
set. This means their computed metrics for the models include prediction of feature
vectors (emails) used when training the models. Due to overfitting a given model will
always perform better on data it is trained with, meaning these reported results are
inflated.

31

Figure 2.12: Results from (3)

32

3 Design

This chapter focuses on the design aspect of the research undertaken. Due to the
focus being on the performance of different machine learning models each model was
built individually. Once they were working the measurements were added in. The final
application sequentially runs each of the models and outputs their performance
metrics. The application was built for experimental purposes to investigate the
hypothesis of this dissertation.

The differences the between models lies in the implementation of the algorithms
looked at in the state of the art, but the overall structure of any system implementing
these models would be the same. This allows us to look at one of the models in detail
but gain an understanding how all the models were implemented.

The following sections cover each of the stages of building, learning, and evaluating a
machine learning model.

3.1 Gathering Training/Testing Data

The first step in building a machine learning model is to gather your training/testing
data. For supervised learning classification problems these must be labeled data sets.
Whatever the underlying issue being evaluated is, the training set must be a matrix
where each row represents the problem being modeled (i.e an email that may be spam)
and the number of columns correspond to the features you are representing (57 in the
case of the spambase data set), these columns holding numerical values only. There
must be a corresponding class label vector that is 1 column wide which has numbers
corresponding to each class of data (i.e 1 indicates email is spam, 0 indicates
ham).

See the feature matrix and corresponding class labels below for an example of a
training/testing set.

33

1 5 0 43 1
6 23 53 3 41
.
.
.

134 523 23 4 2
5 1 3 599

1
0
.
.
.
1
1

Typically when training a model, the training/testing data is gathered in one set and
then randomly split into a training set and testing set. Normally around 70% of the
data is used for training and the other 30% is used for testing (evaluating) the trained
model. Or, as in this research when the size of the training set is small, cross
validation can be used as outlined in Section 3.5.1.

3.2 Pre-Processing Training/Testing Data

After gathering the training and testing data pre-processing can then occur. While it is
not absolutely necessary it can drastically improve the performance of a model.

Before training each of the models in this study the features were first normalised and
then a bias dimension was added to the input. Normalisation scales the values of the
features such that they are all within the same range but maintaining the differences in
their original values. It is particularly effective when the data set has values that
represent very different things and are in very different ranges. For example in spam
detection, one feature may represent number of capital letters in an email and has a
value of 121, another feature may represent percentage of occurrences of “free” in an
email and may be 0.05. Not normalising these values would make the capital letter
feature have a much bigger effect on what prediction a model makes.

The bias dimension (or node) is added to the input layer and always outputs a value of
1. This dimension gives flexibility to the model by effectively shifting the activation
function to the right or left. Consider the case where all input features have a value of
zero. The bias node (in combination with its positive or negative weight) ensures that
the next layer produces a non-zero output. Bias provides the same functionality as a
constant b in the linear function y = mx + b, ensuring that the line does not pass
through the intercept (0,0) in the case where x is 0 and b is non zero.

34

3.3 Build model

The next section is the model building stage. In the case of the SVM or Softmax, this
involves declaring the number of classes in the model and initializing the starting
weights.

In the case of declaring the neural network there are a number of steps. Firstly the
topology must be declared. This is the number of nodes in each of the layers in the
system. After the topology is declared the activation and loss functions must be
chosen. Finally, the weights for each node must be initialized to a random value.

3.4 Train model

After the data has been pre-processed and the model has been declared it is ready to
be trained. The final parameters to be declared are the optimization method (e.g
Gradient Descent, BFGS, etc) and the regularization term (L2/L1).

The training data is fed into the model in batches (size dependent on optimization
method) which learns the weights such that the error in predictions is minimized
across the training data. As the initial weights are random and there is the possibility
of the optimisation methods to get stuck in a local minima, each of the models are
trained a number of times and the best performing of these models is chosen. To
ensure results are comparable, each model is allowed 100 iterations to adjust weights
during 1 training run, and each model is trained 5 times with the optimal solution
being chosen.

The trained model can then be used to make predictions on unseen feature
vectors.

3.5 Evaluate Performance

The final stage in training a model is to evaluate its performance so that models can
be compared, whether that be against other models of the same type but with
different activation/loss functions or models of a completely different type. The
labeled testing set is used for this.

35

To evaluate the performance of the models the measurements outlined in table 1.1 in
the introduction are used. To calculate these (non time related measurements), the
model makes a prediction for each of the vectors in the training set. These predictions
can be used to calculate the number of true positive, true negative, false positive and
false negative predictions in the set. From these a confusion matrix is built and the
other measurements are calculated of this. The resulting measurements can then be
used to compare these results.

For the time related measurements, each training/prediction being measured was run a
number of times and then a statistical method called bootstrapping is used. This
allows accuracy, variance and confidence intervals to be calculated for the timing
measurements.

3.5.1 Cross Validation

To ensure the results were statistically significant 10 fold cross validation was used.
Cross validation is a re-sampling method which tests how well a model generalises to
unseen data after training, and it can identify when a model is prone to over-fitting
the training data. It is particularly useful when the size of the training/testing set is
not large.

10 fold cross validation works by splitting the training/testing set into 10 sub sets.
Each model is trained 10 times. Each time 1 of the subsets is used for testing the
model and the other 9 are used to train the model. These results can then be
averaged giving a more accurate estimation of how a given model will respond to
unseen data. In essence, cross validation allows the models to be evaluated on more
unseen data (each of the 10 sets is unseen during training in 1 of the runs).

36

4 Implementation

This chapter outlines the implementation of the research including the main tools used
and some examples of the source code. The application was developed and run on a
Macbook pro with a 2.7 GHz Intel Duel Core i5 processor.

4.1 Haskell

Stack version 1.9.3 was used as the build management tool for the project. This eases
the burden of managing packages which use different underling versions in their
dependencies. Stack uses the Glasgow Haskell Compiler (GHC) to compile the source
code. Dependency management as well as other configurations are managed through
.yaml configuration files.

The resolver defines a set of packages (libraries) which are verified to work together to
use as a base for the application. Packages needed outside of this are defined in the
extra-dependencies field in the configuration file. The resolver is used as a base layer,
with the extra project’s dependencies being added on top of it. The resolver lts-9.21
was chosen for this project based off the required dependencies.

4.2 Machine Learning

When choosing a library to work with there was limited choice and some
considerations to take into account. The first thing to consider was that the nature of
the research includes covering a number of machine learning models. Secondly, the
models should be written in purely Haskell. The “Data Haskell” group list the best
library for machine learning applications. While there are a number of libraries that
implement 1 model, the goal was to find one which had a number so that it could be

37

investigated properly as opposed to working with a number of libraries with shallow
knowledge of how they work.

There were three potential choices. The first, which has the most support is bindings
to tensor-flow. This is bindings from Haskell to tensor-flows underlying c++
implementation. This library had the most support when compared to the others.
While some people claim that it is good for machine learning as you get the type safety
and high level functional design from Haskell and efficient computations in c++, it did
not fit the requirement of being a pure Haskell machine learning library.

The second option is called Hlearn and it looked like a good candidate. Its readme in
its github repository claims it to be a “high performance machine learning library” with
aims to be “as fast as low-level libraries written in C/C++” while also being “as
flexible as libraries written in high level languages like Python/R/Matlab” (25). After
looking further into it however, I found comments from the author on threads related
to machine learning in Haskell saying that he has stopped development on it and
recommends that no one uses it. He also claims that he stopped developing it due to
Haskell’s type system not being as flexible as he would like, and that he intends to
return to the project in a few years time.

This left one final option called “mltool”(26). This library provides a number of
supervised and unsupervised learning models as well as a small number of cost and
activation functions. It could use some extensions in terms of the models it offers as
well as more activation and loss functions. It is written entirely in Haskell and is
currently the best library available in Haskell for machine learning. This library was
chosen to implement the models after some experimentation with the other possible
libraries.

4.3 Time measurements

To accurately measure the training and prediction times for the various models a
Haskell benchmarking tool called Criterion(27) was used. It is the standard tool for
benchmarking Haskell functions. It provides support for timing both IO and pure
functions.

The code snippet in listing 1 shows an example of benchmarking a trained SVM
making predictions on the matrix of training and testing features called xTraining and
xTesting respectively.

38

Figure 4.1: Confusion Matrix

Each of these function is executed between 10-10000 times and the resulting times are
then performs bootstrapping to give a 95% confidence interval for the times. A nice
feature of Criterion is that it can tell if the results are inflated due to outliers, and
outputs the percentage inflation in results due to this. The underlying cause to this is
usually other processes on the computer taking CPU time. Because of this
measurement it was possible to rerun the results when they were inflated to ensure the
final timing results were accurate.

1 defaultMain
2 [bgroup
3 "Svm"
4 [bench "training" $ nf (predictYSvm svm thetaSvm) xTraining
5 , bench "testing" $ nf (predictYSvm svm thetaSvm) xTesting
6]

Listing 1: Criterion Benchmark Example

4.4 Measurements

To evaluate the performance of the models, each of the predictions are classified into 4
categories. These are false positive, false negative, true positive and true negative
classifications. These can be displayed in a confusion matrix in figure 4.1.

Listing 2 shows the code for calculating the number of false positive, false negative,
true negative and true positive predictions respectively. These were then used to

39

calculate the performance measurements.

1 calculateFP :: T.Vector -> T.Vector -> T.R
2 calculateFP yExpected yPredicted = V.sum discrepancy
3 where discrepancy = V.zipWith f yExpected yPredicted
4 f y1 y2 = if round y2 - round y1 == 1 then 1 else 0
5

6 calculateFN :: T.Vector -> T.Vector -> T.R
7 calculateFN yExpected yPredicted = V.sum discrepancy
8 where discrepancy = V.zipWith f yExpected yPredicted
9 f y1 y2 = if round y2 - round y1 == -1 then 1 else 0

10

11 calculateTN :: T.Vector -> T.Vector -> T.R
12 calculateTN yExpected yPredicted = V.sum discrepancy
13 where discrepancy = V.zipWith f yExpected yPredicted
14 f y1 y2 = if (round y1 == 0) && (round y2 == 0) then 1 else 0
15

16 calculateTP :: T.Vector -> T.Vector -> T.R
17 calculateTP yExpected yPredicted = V.sum discrepancy
18 where discrepancy = V.zipWith f yExpected yPredicted
19 f y1 y2 = if (round y1 == 1) && (round y2 == 1) then 1 else 0

Listing 2: Classification Rates Calculations

4.4.1 Accuracy

Accuracy is the first measurement considered as it is the most intuitive. It is the
percentage of correct predictions across the testing set. Accuracy is a good evaluation
criteria when the number of positive and negative classes in the test set are equal (or
close to). However, in the training set used here there are 814 Ham emails and 566
Spam emails. Other measurements are needed in this case to evaluate
performance.

Accuracy =
TP + TN

TP + TN + FP + FN

4.4.2 False Positive Rate

False positive rate is the rate at which ham emails are classified as spam. This is a
particularly important metric for spam filters as this is important to be kept at a
minimum.

40

False Positive Rate =
FP

FP + TN

4.4.3 Precision

Precision is the ratio of correctly predicted spam email to the total number of spam
predictions. As the number of false positives should be as small as possible, a well
performing model in that regard should have very high precision.

Precision =
TP

TP + FP

4.4.4 Recall

Recall is the ratio of spam predictions to the actual total number of spam emails in
the set. It is important that this is high but it is not as critical as precision as a few
spam emails getting through the filter is acceptable.

Recall =
TP

TP + FN

4.4.5 F1 Score

F1 score is the harmonic mean of recall and precision. Although it is not as intuitive as
accuracy it provides a better overall indication of the performance as it not only takes
into account false positives and false negatives and the ratios of them. F1 score gives
an indication of which model is keeping both false positive and false negative rates
low.

F1 Score =
2× (Precision × Recall)

Precision + Recall

41

4.5 Model Parameters

The table below outlines the optimisation techniques, loss functions and other
parameters used for each of the models trained. Note that L2 regularisation and
normalisation of features is common across all models.

Model Optimisation Technique Loss function Other
SVM BFGS Hinge Loss N/A

SVM GD Hinge Loss N/A

SM BFGS Cross Entropy Loss N/A

SM GD Cross Entropy Loss N/A

Logistic BFGS Least Squared Loss N/A

Logistic BFGS Least Squared Loss PCA

ANN BFGS Logistic Loss Relu Activation Function.
58 nodes input later,

two hidden layers with 50 nodes,
1 output layer with two nodes.

42

5 Results

5.1 Cross Validation

Each model was trained and evaluated 10 times to perform a 10 fold cross validation
as described in 3.5.1. The results of each of the runs is used to calculate the
performance measurements. These are then averaged so they can be compared across
models. Section 5.3 contains the comparison of the averaged metrics. Figure 5.1
shows the results for 10 runs of the neural network as an example.

5.2 Time Measurements

This section covers the two time measurements taken. The first being model training
time and the second being prediction times. These times correspond to 1 run of the
cross validation, training on 4140 (90%) of emails in training set. Prediction times
correspond to the cost in a stream computing application. Prediction time is measured
for each model making predictions across the whole testing set, these results were
scaled up to 1 million predictions for comparison purposes. As training times are done
in advance of deployment, training times are include for comparative purposes
only.

The Table 5.1 shows the mean training time as well as the lower bound (LB) and
upper bound (UB) for the 95% confidence interval as calculated by the bootstrap
method.

43

Figure 5.1: Neural Network 10 Fold Cross Validation Results

NN SVM
BFGS

SVM
GD

SM
BFGS

SM GD Logistic
Regres-
sion

Logistic
Regres-
sion
with PCA

LB 1 Mill
Predictions
(s)

5.6005 2.3042 2.5064 2.4451 2.5064 2.7485 2.4925

Ave 1 Mill
Predictions
(s)

5.6826 2.3592 2.5450 2.4975 2.5450 2.8052 2.5611

UB 1 Mill
Predictions
(s)

5.7707 2.4196 2.5940 2.5366 2.5940 2.8661 2.6263

LB Training
Times (s)

17.46 14.9 11.83 7.556 14.98 2.647 5.498

Ave Train-
ing Times
(s)

18.5 15.53 11.91 7.577 15.09 2.658 5.508

UB Train-
ing Times
(s)

19.18 16.94 11.95 7.586 15.24 2.677 5.523

Table 5.1: Time Measurements

44

5.2.1 Training Times

The training Times in figure 5.2 show that the neural network takes the most time to
train as expected at 18.5 seconds. This is followed by SVM with BFGS optimisation at
15.53 seconds and SM with gradient descent at 15.08 seconds. Interestingly the SVM
trains quicker with gradient descent optimization where the softmax classifier trains
quicker with BFGS optimization. The training time for logistic regression with PCA
was about half of training without PCA, but the PCA itself took about 4 seconds.
Logistic regression models train significantly quicker than the other models.

Figure 5.2: Training Times

5.2.2 Prediction Times

The prediction times in figure 5.3 show another expected trend with the neural
network being at least twice as expensive when making a prediction. This is expected
due to the increased complexity of this model.

The other times however are much closer than expected. The range in prediction times
across the other modes is only 0.446 seconds (difference between logistic regression

45

and SVM with BFGS), however as this is across 1 million predictions, this would result
in the SVM making 1,189,047 predictions against logistic regression making 1,000,000
which is somewhat significant in 2.8 seconds. Even slight variations in their
performance would have a big impact on the number of correctly classified emails over
aa given period of time.

Figure 5.3: Prediction Times

5.3 Performance Measurements

Table 5.2 shows the performance measurements from the cross validation. Accuracy is
calculated as a percentage. The other measurements are calculated as a ratio in the
range of 0-1 as described section 4.4. The following sections identifies the key results
of each measurement.

5.3.1 Accuracy

Figure 5.4 shows each of the accuracies plotted against prediction times. In terms of
accuracy all models perform well. The neural network is marginally the best, closely

46

NN SVM
BFGS

SVM
GD

SM
BFGS

SM GD Logistic
Regres-
sion

Logistic
Regres-
sion
with PCA

Accuracy
(%)

94.84 94.69 92.61 94.65 90.9365 93.79 93.87

Precision 0.9346 0.9357 0.9431 0.9345 0.9355 0.9462 0.9459
Recall 0.9332 0.9282 0.8639 0.9282 0.8277 0.8931 0.8963
F1 Score 0.9339 0.9319 0.9018 0.9313 0.8783 0.9189 0.9204
False Posi-
tive Rate

0.0416 0.0410 0.0337 0.0417 0.0369 0.0330 0.0334

Table 5.2: Performance Measurements

followed by SVM and SM with BFGS. The range in results between the neural
network, SVM and SM models with BFGS is less than 0.2%.

Figure 5.4: Accuracy

5.3.2 Precision

The precision results in figure 5.5 show an interesting results. Again all the models
perform well. Logistic regression performs the best closely followed by logistic with

47

PCA and then SVM with GD. The neural network and SM with BFGS perform the
worst. This shows the more straight forward model (logistic regression) performing the
best as the most complex model (neural network) performing the worst in this
context.

As precision corresponds to the ratio of true spam emails to predicted spam emails it is
incredibly important this measurement is as high as possible. As any decrease in
precision corresponds to more ham emails being classified as spam.

Figure 5.5: Precision

5.3.3 Recall

The recall results can be seen in figure 5.6. This shows a similar result as accuracy,
with neural network performing the best followed by SVM and the SM with BFGS. In
an ideal world recall should be as high as possible only in the case where there is no
sacrifice to precision. Sacrificing recall for increased precision on the other hand is
definitely an acceptable trade off in the context of spam detection.

48

Figure 5.6: Recall

5.3.4 F1 Score

F1 scores in figure 5.7 show an incredibly similar graph to accuracy in figure 5.4. The
models are ranked in the same order as in accuracy with Neural Network performing
the best closely followed by tightly grouped SVM and SM with BFGS models.

49

Figure 5.7: F1 Score

5.3.5 False Positive Rate

The final measurement can be seen in figure 5.8. As this directly correlates to the
ratio of falsely predicted spam emails to the total number of actual ham emails, it is
very important in spam detection and should be as low as possible. Logistic performs
the best followed by logistic with PC and SVM with GD. The neural network performs
the worst in this regard. Although the neural network correctly identifies the most
emails overall, it also incorrectly classifies the most ham emails.

50

Figure 5.8: False Positive Rate

51

6 Evaluation

The results section show an interesting result. In regards to performance, in many
binary classification contexts the neural network would be chosen as the best model as
it tops both the accuracy and F1 score graphs by making the highest percentage of
correct classifications. In the context of spam detection however, due to the fact the
neural network is performing the worst in both precision and false positive rate it can
be immediately ruled out when choosing a model to use. With the neural network
ruled out the best performing model for spam detection would be the logistic
regression models followed by the SVM with GD.

6.1 Is Algorithmic Adaption a Feasible Solution?

For Algorithmic Adaption to be a valid solution to load shedding in stream computing
there are two trends that must be seen in the models evaluation. Firstly, there needs
to be some variation in the prediction times of different model. Secondly, there must
be a correlation between increased prediction time and models performance (i.e
decreased false positive rate / increased precision).

In regards to the first trend, there is variation between different models prediction
times. Most notably neural network taking over twice as long to make 1 million
predictions when compared to the next quickest model. Leaving the neural network
aside, the other models are within 0.446 seconds of each other. While this is quite
close, this is for 1 million predictions and as such even slight variations in false positive
predictions would have a massive impact on the number of incorrectly classified emails
over a number of seconds.

Due to the neural network under performing the other models in the key performance
criteria, while being the model with drastically increased prediction times, the proposed
hypothesis of algorithmic adaption looks disproved under these conditions. To further

52

evaluate this though the best performing models need to be looked at in further detail,
namely logistic regression and SVM with GD. Table 6.1 compares the predictions made
2.545 seconds when the system, has to deal with 1,102,239 emails, taking the rate of
spam as the same as the rate of spam in spambase data set at 39.4%. This means
there would be 669,958 actual ham emails and 434,282 actual spam emails.

Model Spam emails in inbox Ham emails in spam
folder

Logistic Regression
(load shedding excess)

46,424 (FP) + 40,282 (ex-
cess) = 86,706

22,108

SVM GD 58,280 22,577

If the system is overloaded such that it needs to process 1,102,239 emails in a given
2.545 seconds and logistic regression is used then 102,239 emails would be
unprocessed (load shedded) and let into recipients inboxes. This would result in
28,426 extra spam emails being let into recipients inbox if the logistic model is
continued to be used compared to the SVM GD model. In the same time period only
an extra 469 ham emails would be incorrectly misclassified as spam. This matches the
second trend needed for algorithmic adaption to be feasible.

With these results an argument could be made that the proposed hypothesis is in fact
true as there is a trade of between filtering approximately an extra 32% of spam emails
from inboxes incorrectly classifying approximately 2% extra ham emails as spam.
However, due to the issue of false positives being critical in spam email and the
prediction times of these models being quite close relatively speaking there is not
enough evident to state the hypothesis is proved.

6.2 Comparison to previous work.

6.2.1 Performance

The previous work covered in 2.4.2 shows Saab’s, Mitri’s and Awad’s(1) study finding
an SVM to have accuracy and precision of 93.5% and 93.4% respectively beating their
ANN model which achieved accuracy and precision of 94% and 92.9% respectively.
These results show a comparable trend seen in this research with the neural network
achieving the best accuracy but SVM beating neural network in terms of
precision.

53

Sharma’s and Arora’s (2) paper showed a different story as it they presented a basic
ANN achieving 93.28% accuracy but 94.332% precision, giving reason to believe the
ANN could outperform other models in precision. This is not consistent with the
results of this research. Arora’s and Sharams’s research, as with Saab’s, Mitri’s and
Awad’s research, present precision values of various models which all underperforming
what one of the oldest classification techniques, logistic regression, was shown to
perform in this research.

The comprehensive comparison of models in the paper “Ham and Spam E-Mails
Classification Using Machine Learning Techniques”(3) have an interesting result. This
research shows the random forest to perform the best. While there are some questions
around their work as outlined in 2.4.2, the random forest could still be a good
candidate for this data set.

In comparison to Idris’ work (24), the results cannot be directly compared due to the
different optimisation techniques explored. However Idris’ work does show that there is
the potential to increase the performance of the neural networks to above that of the
other models. Due to it underperforming the logistic regression in this work it could
not be considered for algorithmic adaption however if results similar to Idris’ are
possible it could have proved the proposed hypothesis to be correct.

In relation to the models evaluated, their performance in their Haskell implementations
in this research was shown to be on par if not exceeding that seen in the related work.
Excluding Idris’ work, the other related works do not give enough information on the
optimization methods, regularisation terms used, and if normalisation was performed
on the data set. As such there is not enough information to evaluate if the differences
seen are due to implementation details specific to the languages used or if its due to
the chosen optimization techniques and pre-processing during development.

6.2.2 Cost

Prediction time is the cost parameter in terms of stream computing. In both the work
referenced in this dissertation and all others reviewed during the research the only one
that includes prediction related time measurements is Saab’s, Mitri’s and Awad’s work.
In general, there seems to be no work of note into either the theoretical or practical
time complexities of machine learning models when looking at prediction times. There
is some work in regards to training times but that is not of much relevance when
looking at machine learning from a stream computing context.

54

In Saab’s, Mitri’s and Awad’s work the only overlapping model which includes
prediction times is the SVM. They title it “Testing time” in Figure 2.9. They do not
specify if “Testing Time” is just the time for the model to make predictions on the
testing set, or if it includes evaluating the model. Assuming that it is just the
predictions, following that they performed a 10 fold cross validation, the assumption is
made that these times correspond to making 4140 predictions (90% of data set). They
cite the SVM testing time taking from between 0.1204 - 0.0581 seconds as seen in
Figure 2.9. Based on the SVM with GD in this research making 1 million predictions in
2.5450 seconds, it would take approximately 0.0105 seconds for the model to make
4140 predictions. This is a significant increase in the time taken in Saab’s, Mitri’s and
Awad’s which was performed in MATLAB 2009b on a 2.4 GHz quad processor. Due to
the lack of information on what exactly these time measurements include and the lack
of reference to prediction times (theoretical or practical) in other research there is not
enough evidence to evaluate how Haskell performs in this regard to other languages. If
the assumptions made are true, the Haskell is outperforming Matlab implementations
for these models. However as these are assumptions and are the only reference to
prediction times in literature, so there is not enough evidence to make this claim yet.

55

7 Conclusion and Future Work

To be able to fully prove the hypothesis presented there are two possible approaches to
future work of this research. The first would be to continue investigating the
hypothesis with this data set and look at different optimisation techniques for neural
networks, or include a random forest model as it has been shown to perform well on
this data set. As presented in the related work on this data set, there is evidence to
indicate that neural networks have the potential to beat all other models in terms of
minimising false positives. If this result was achieved with the neural network, due to
its increased false positive rate and big trade off in increased prediction times, it would
likely prove the proposed hypothesis.

While that would be a valid result, the alternative approach is much more likely to
produce a more significant result. The spambase data set was shown to be linearly
separable due to models such as logistic regression and SVM (without kernel function)
performing well at classifying the data. If a non linearly separable data set was used,
then SVM with kernel function and more complex variations on neural networks such
as convolutional neural networks or recurrent neural networks would have much higher
performance and cost then the models looked at in this research. In particular, if
recurrent neural networks performed well on a data set it is likely that networks of
different depth are likely to perform and evaluate differently on top of SVM with kernel
function performing adequately. Under these conditions it is likely that algorithmic
adaption with a number of switches possible would be shown to be effective at
degrading the performance of a stream computing system under load better than the
alternative of load shedding.

In conclusion, this research has shown that the proposed hypothesis is plausible in this
context but the real value of algorithmic adaption lies with more difficult applications
(i.e non linear data sets). This research has also shown that Haskell is a good
candidate for machine learning. Although machine learning in Haskell is currently more
challenging than the more popular alternatives due to the lack of support, Haskell’s
high level abstractions and ability to catch many bugs at compile time combined with

56

Haskell’s power when building highly scalable solutions make it a prime candidate for
the types of highly distributed machine learning applications we are likely to see in the
future.

57

Bibliography

[1] Mariette Awad, Salwa Saab, and Nicholas Mitri. Ham or spam? a comparative
study for some content-based classification algorithms for email filtering. 04
2014. doi: 10.1109/MELCON.2014.6820574.

[2] S Sharma and A Arora. Adaptive approach for spam detection. IJCSI
International Journal of Computer Science Issues, 10:23–26, 01 2013.

[3] M. Bassiouni, M. Ali, and E. A. El-Dahshan. Ham and spam e-mails classification
using machine learning techniques. Journal of Applied Security Research, 13(3):
315, 2018. ISSN 19361610. URL http://elib.tcd.ie/login?url=http://

search.ebscohost.com/login.aspx?direct=true&db=edb&AN=129717057.

[4] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL
http://archive.ics.uci.edu/ml.

[5] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian
Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik.
Aurora: A new model and architecture for data stream management. The VLDB
Journal, 12(2):120–139, August 2003. ISSN 1066-8888. doi:
10.1007/s00778-003-0095-z. URL
http://dx.doi.org/10.1007/s00778-003-0095-z.

[6] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch
Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alexander
Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B. Zdonik. The
design of the borealis stream processing engine. In CIDR, 2005.

[7] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and Michael
Stonebraker. Load shedding in a data stream manager. In Proceedings of the
29th International Conference on Very Large Data Bases - Volume 29, VLDB ’03,
pages 309–320. VLDB Endowment, 2003. ISBN 0-12-722442-4. URL
http://dl.acm.org/citation.cfm?id=1315451.1315479.

58

http://elib.tcd.ie/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=129717057
http://elib.tcd.ie/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=129717057
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1007/s00778-003-0095-z
http://dl.acm.org/citation.cfm?id=1315451.1315479

[8] N Tatbul, Ugur Cetintemel, Stan Zdonik, M Cherniack, and M Stonebraker. Load
shedding on data streams. 01 2003.

[9] Nesime Tatbul. Qos-driven load shedding on data streams. volume 2490, pages
779–783, 11 2002. doi: 10.1007/3-540-36128-6_36.

[10] Simon Loesing, Martin Hentschel, Tim Kraska, and Donald Kossmann. Stormy:
An elastic and highly available streaming service in the cloud. In Proceedings of
the 2012 Joint EDBT/ICDT Workshops, EDBT-ICDT ’12, pages 55–60, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1143-4. doi:
10.1145/2320765.2320789. URL
http://doi.acm.org/10.1145/2320765.2320789.

[11] David Guerin. Computational Shedding in Stream Computing. PhD thesis,
University of Dublin, Trinity College, 2018.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012. URL
http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

pdf.

[13] Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.
URL http://people.csail.mit.edu/lpk/papers/rl-survey.ps.

[14] W.A. Gardner. Learning characteristics of stochastic-gradient-descent algorithms:
A general study, analysis, and critique. Signal Processing, 6(2):113 – 133, 1984.
ISSN 0165-1684. doi: https://doi.org/10.1016/0165-1684(84)90013-6. URL
http:

//www.sciencedirect.com/science/article/pii/0165168484900136.

[15] J.L. Morales. A numerical study of limited memory bfgs methods. Applied
Mathematics Letters, 15(4):481 – 487, 2002. ISSN 0893-9659. doi:
https://doi.org/10.1016/S0893-9659(01)00162-8. URL http:

//www.sciencedirect.com/science/article/pii/S0893965901001628.

[16] Yichuan Tang. Deep learning using linear support vector machines. In In ICML,
2013.

59

http://doi.acm.org/10.1145/2320765.2320789
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://people.csail.mit.edu/lpk/papers/rl-survey.ps
http://www.sciencedirect.com/science/article/pii/0165168484900136
http://www.sciencedirect.com/science/article/pii/0165168484900136
http://www.sciencedirect.com/science/article/pii/S0893965901001628
http://www.sciencedirect.com/science/article/pii/S0893965901001628

[17] J.S. Cramer. The Origins of Logistic Regression. Tinbergen Institute Discussion
Papers 02-119/4, Tinbergen Institute, December 2002. URL
https://ideas.repec.org/p/tin/wpaper/20020119.html.

[18] J. A. K. Suykens and J. Vandewalle. Least squares support vector machine
classifiers. Neural Process. Lett., 9(3):293–300, June 1999. ISSN 1370-4621. doi:
10.1023/A:1018628609742. URL
https://doi.org/10.1023/A:1018628609742.

[19] Warren S. McCulloch and Walter Pitts. Neurocomputing: Foundations of
research. chapter A Logical Calculus of the Ideas Immanent in Nervous Activity,
pages 15–27. MIT Press, Cambridge, MA, USA, 1988. ISBN 0-262-01097-6. URL
http://dl.acm.org/citation.cfm?id=65669.104377.

[20] Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to
Computational Geometry. MIT Press, Cambridge, MA, USA, 1969.

[21] P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. PhD thesis, Harvard University, 1974.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[23] Data haskell - organization devoted to enabling reliable and reproducible data
science and machine learning by leveraging the haskell programming language.
https://www.datahaskell.org/. Accessed: 2019-04-09.

[24] Ismaila Idris. Spam classification with artificial neural network and negative
selection algorithm. 2011.

[25] Izbicki Mike. Hlearn. https://github.com/mikeizbicki/HLearn, 2016.

[26] Ignatyev Alexander. mltool. https://github.com/aligusnet/mltool, 2018.

[27] Criterion - haskell benchmarking tool.
https://hackage.haskell.org/package/criterion. Accessed: 2019-04-09.

60

https://ideas.repec.org/p/tin/wpaper/20020119.html
https://doi.org/10.1023/A:1018628609742
http://dl.acm.org/citation.cfm?id=65669.104377
https://www.datahaskell.org/
https://github.com/mikeizbicki/HLearn
https://github.com/aligusnet/mltool
https://hackage.haskell.org/package/criterion

	Introduction
	Stream Computing
	Spam Detection Techniques
	Evaluation
	Key Findings

	State of The Art
	Stream Computing
	Data Based Solutions
	Task Based Solutions
	Computational Shedding

	Machine Learning
	Cost/Loss Functions
	Optimisation Methods
	Regularisation
	Logistic Regression Classifier
	Support Vector Machine (SVM)
	Softmax Classifier
	Artificial Neural Networks

	Haskell
	Haskell and Machine Learning

	Spam
	Spambase Data Set
	Related Work

	Design
	Gathering Training/Testing Data
	Pre-Processing Training/Testing Data
	Build model
	Train model
	Evaluate Performance
	Cross Validation

	Implementation
	Haskell
	Machine Learning
	Time measurements
	Measurements
	Accuracy
	False Positive Rate
	Precision
	Recall
	F1 Score

	Model Parameters

	Results
	Cross Validation
	Time Measurements
	Training Times
	Prediction Times

	Performance Measurements
	Accuracy
	Precision
	Recall
	F1 Score
	False Positive Rate

	Evaluation
	Is Algorithmic Adaption a Feasible Solution?
	Comparison to previous work.
	Performance
	Cost

	Conclusion and Future Work

