
University of Dublin 
 
 
 

TRINITY COLLEGE 
 
 
 

 
 
 

Multiresolution Analysis of High 
Frequency Financial Time Series Data 

 
Daniel Lavelle 

14334496 
 

Supervisor: Dr. Khurshid Ahmad 
 

Submitted in partial fulfilment of the requirements for the degree of M.A.I. to the 
University of Dublin, Trinity College, April 2019 

 
 
 
 
 
 
 
 

School of Computer Science and Statistics 

O’Reilly Institute, Trinity College, Dublin 2, Ireland 

   



Declaration of Authorship 

I, Daniel Lavelle, declare that the following dissertation, except where otherwise stated, is 

entirely my own work; that it has not previously been submitted as an exercise for a degree, 

either in Trinity College Dublin, or in any other University; and that the library may lend or 

copy it or any part thereof on request. 

 

Signed: 

 

Date:   

     



Summary 

This dissertation explores the usefulness of multiresolution analysis when dealing with high 

frequency financial time series data. The method is firstly compared to traditional 

autoregressive methods used to model high frequency time series data. It is then used to 

examine the risk of Bitcoin, Ryanair and S&P 500 across different timescales. 

 

Multiresolution analysis involves decomposing a signal into its component parts such that 

each component part reflects activity in the signal at a different scale. This allows for features 

on different scales to be separated from one another and examined in isolation. Scale in this 

case refers to scale in time. For example, a signal could be decomposed into component 

signals where one of the component signals reflects daily activity, another weekly activity, 

another monthly activity and so on. It is a nonparametric modelling approach and as such 

does not require the creator of the model to make specifications to the model that are specific 

to the domain the model is being created for. 

 

It is compared to the autoregressive modelling approach due to the fact that the 

autoregressive approach relies heavily on the correct selection of its parameters.  Although 

the autoregressive method has achieved very significant results, it is limited by the fact that is 

a parametric approach. Whether or not the residuals in the autoregressive model have a strong 

relation to the results of the multiresolution analysis model was investigated. This was done 

with a view to the multiresolution analysis approach possibly providing a better alternative 

for isolating the noise in a signal. The results however were inconclusive. 

 

Multiresolution analysis was also used to measure the risk of Bitcoin, Ryanair and S&P 500 

across multiple scales. It showed that, as expected, Bitcoin is very risky over time periods 

greater than one day. However, the analysis showed that Ryanair was at least as risky as 

Bitcoin over periods less than one day. S&P 500 was shown to be have the lowest risk over 

time periods less than one day.  
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1. Introduction  

1.1. Complex Systems 

When dealing with signal output from a system, separately the signal from the noise is 

an infamously difficult task. There are two main reasons for why this is the case:  

 

1. The complexity of the system can often make it tough to make the distinction; 

there might be many factors that influence the system, however it might be difficult to 

determine what those factors are exactly.  

2. If factors are known to affect the system, it might be difficult to measure them.  

 

This dissertation deals with financial time series. Financial time series are certainly 

subject to these two limitations. Much work has gone into trying to explain the 

fluctuations of the stock market and the currency exchange however it is most likely an 

impossible task. The system that generates these prices is so complex, it is difficult to 

say for certain that any given variable doesn’t influence the system due to the wide 

range of unpredictable agents that influence the system. However, that does not mean 

that it is not worth creating approximations of what influences the system as these can 

give a greater understanding of how these systems work if not a complete one. 

 

1.2. Measuring the Unmeasurable 

One of the pieces of research that influenced this dissertation was based on sentiment 

being a factor that influences financial systems (Tetlock 2007). Sentiment in this case is 

an influence on one’s activity in the market that is not based on information about the 

market. Sentiment is known to be a big contributor in markets, the prominence of the 

field of marketing is a good example of this. Marketing is an effort to increase exposure 

of a product but also to increase positive sentiment about a product so that people buy 

that product over other similar products. However, sentiment can be quite difficult to 
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measure; how would the effect of an ad on public sentiment or the effect of a harshly 

written article on public sentiment be measured? It is a difficult task. 

 

1.3. High Frequency Series 

The usefulness of data is becoming more and more relevant in this day and age, all big 

companies now look for a data driven approach to decision making to ensure 

objectivity. The increased prevalence of machine learning and artificial intelligence has 

certainly contributed to this given that data is the fuel that determines the effectiveness 

of these algorithms; generally, the more data available, the more potential there is for an 

effective machine learning model.  

 

If the same logic is applied to financial time series models, more data would be 

desirable in order to increase the effectiveness of the model. There are two ways of 

doing this:  

1. Adding more features to the model. 

2. Increasing the sampling rate of the data in the model. 

High frequency data is a product of this approach of increasing the sampling rate in the 

hope that it will improve the effectiveness of models. Sampling of financial time series 

has increased to such an extent that traders often operate on models that are built on data 

that samples with a regularity in the region of milliseconds. 

 

The high frequency data dealt with in this dissertation is sampled every 5 minutes and 

has 288 values per day in the case of Bitcoin and 78 values per day in the case of 

Ryanair and S&P 500 (The difference in the sizes of the datasets is due to the trading 

hours being longer for Bitcoin). Having 288 values per day as opposed to one value per 

day, as is the case in traditional modelling, changes the range of the model significantly. 

1.4. Overcoming the Limitations of Linear Modelling 

There are two ways of modelling these financial assets, one of them is trying to gather 

as much data about the agents that contribute to the system and inputting them as factors 
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that contribute to the price of these assets. Another way is modelling it by trying to 

model the signal itself. That is the approach multiresolution analysis takes. 

 

Multiresolution analysis is built upon a signal transform called the wavelet transform. 

The wavelet transform allows for the ability to split a time series into multiple 

component time series, where each of those component time series represents features of 

a certain scale. Scale in this case could also be expressed as time horizon. The lowest 

scale resulting series of this multiresolution analysis will contain features that occur on 

the shortest possible time horizons and the highest scale series will contain features that 

occur on the longest possible time horizons. 

 

This allows for examination of features at different scales and allows for comparisons at 

these different scales that could perhaps help with further understanding of the dynamics 

of these systems.  

 

1.5. Flow of the Dissertation 

The assets chosen for analysis in this dissertation are Bitcoin, Ryanair and S&P 500. 

S&P 500 was chosen due to the fact it is relatively stable, Bitcoin was chosen as a point 

of comparison due to it being an interesting innovation in finance and Ryanair was 

chosen as it provides an interesting point of comparison from the perspective of 

innovative business practices. This dataset will be further explored in section  3.1. 

 

The wavelet and multiresolution analysis model is explored in section 3.2 and the 

autoregressive model is explored in section 3.3. These provide frameworks for 

nonparametric analysis and parametric analysis respectively. Ordinary least squares is 

introduced in section 3.4 as it is used in fitting trendlines to the data.   

 

The residuals of the autoregressive model are compared to the results of the 

multiresolution analysis in section 3.5.1. in an effort to find out if the noise in the 

autoregressive model can be extracted using this nonparametric method.   

5 
 



 

Multiresolution analysis is then used to compare the risk of the Ryanair stock, the S&P 

500 index and Bitcoin across multiple scales by comparing the variance of their 

volatility at these scales. The variance of volatility series of financial assets is used as a 

proxy for risk and allows for a case to be made for how risky these assets are at different 

scales and how they compare to one another. This is done in section 3.5.2.  

 

The flow of this analysis can be seen in figure 1.5. 

 

Figure 1.5. The flow of analysis for this dissertation.  

   

6 
 



2. Related Work 

As implied by the title of this dissertation, multiresolution analysis is at the core of the 

research that was conducted for this dissertation. As the name suggests, multiresolution 

analysis involves analyses that break an input signal down into components of different 

resolution or scale (scale is the terminology used in the literature of this subject). 

Analysing an input series at a particular scale in the sense that it is used here involves 

extracting certain frequencies from the input series. The tool used to split an input series 

up into different scales is called the wavelet transform.  

 

2.1. History of the Wavelet Transform and Multiresolution 

Analysis 

The history of the Wavelet Transform cannot be discussed without discussing the 

Fourier Transform. The Fourier Transform was first developed by Joseph Fourier in 

1807 (Polikar 1999) when he discovered that all periodic functions could be expressed 

as a weighted sum of basic trigonometric functions, this opened the door for a field of 

research exploring the possibility of representing signals in frequency rather than time. 

The Fourier Transform’s prominence grew greatly when (Cooley and Tukey 1965) came 

up with the Fast Fourier Transform algorithm, this allowed the transform to be 

computed in  rather than  time.  

 

The main limitation of the Fourier Transform however is that it does not give resolution 

in time, only resolution in frequency. It shows the strength of the frequencies present in 

the signal but not if and when the strength of these frequencies change, thus it is only 

suitable for analysing stationary series. Dennis Gabor tried to solve this problem with 

the short time Fourier transform (STFT) (Gabor 1946). In order to capture localisation 

in time and in frequency he split the signal up into time segments, computing the 

Fourier transform of each of these segments. This technique however relied on picking 

the right size of segments to split the signal into. If the task is to extract the lowest 
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frequencies in the signal, a large segment is needed however with a large segment, 

changes in the high frequencies will not be captured well. With the STFT, a choice must 

be made to either have good resolution of low frequencies or good resolution of high 

frequencies.  

 

Morlet came up with the idea to use different segment, otherwise known as window, 

sizes for different frequencies (Grossmann and Morlet 1984). These windows were 

generated by dilation or compression of a function now known as a wavelet. Whereas 

the basis functions of the Fourier Transform are Cosine and Sine functions, the basis 

functions for the Wavelet Transform are dilations and compressions of this wavelet 

function. They did not know at the time however that the wavelet transform they 

developed was a rediscovery of work done by Alberto Calderon (Calderón 1964). 

 

It turned out that the basic functions that Morlet proposed had much redundancy; they 

could have been expressed in a simpler form. Orthonormal wavelet basis functions had 

been developed by Alfred Haar in 1909 which did not have this same redundancy 

(Polikar 1999).  Due to the fact that the Haar basis functions are orthonormal, they do 

not have the same redundancy as the Morlet basis functions. However, they are of little 

practical use due to their poor frequency localisation. 

 

The crown jewel of these wavelet functions was developed by Ingrid Daubechies in 

1988, these are the wavelets most commonly used today (Daubechies 1988). She 

developed a set of orthonormal basis functions that allow for a trade-off to be made 

between redundancy and frequency localisation depending on what is required.  

 

It was in 1989 that Mallat then published the framework for Multiresolution analysis 

(Mallat 1989). He described a technique of decomposing a discrete signal into its dyadic 

frequency bands by a series of low pass and high pass filters, this process of feeding a 

signal through a low pass and high pass filter is in its essence the discrete wavelet 

transform where the filters are extracted from the wavelet function used. This 

combination of Daubechies’ and Mallat’s work created the framework for how 

multiresolution analysis has been carried out since.  
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As can be seen in figure 2.1a, the growth in the use of the wavelet transform has 

coincided with a decline in the use of the Fourier transform, possibly due to the fact that 

it overcomes the limitations of the Fourier transform. 

 

 

Figure 2.1a A comparison of the appearances in books over time of the Fourier transform and the wavelet 

transform. The data is taken from Google Books Ngram Viewer. 

 

Due to the fact that Google Books Ngram Viewer only provides data up to 2008, this 

trend could not be compared up to present day. However, Google Trends was used to 

measure whether or not the interest in wavelet transforms has risen since, the results of 

this can be seen in figure 2.1b. Interestingly, search interest in the wavelet transform has 

been declining since 2004. 
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Figure 2.1b Interest over time worldwide in the phrase “Wavelet Transform” taken from 2004 to present 

day (2019). The above results are taken from Google trends. The following definition is Google’s 

description of what the metric represents: “Numbers represent search interest relative to the highest point 

on the chart for the given region and time. A value of 100 is the peak popularity for the term. A value of 

50 means that the term is half as popular. A score of 0 means that there was not enough data for this 

term.” 

 

2.2. Wavelet Methods in Finance 

In complex systems such as geophysical systems, stock markets or currency exchanges, 

the patterns that emerge are complex. It is difficult to decipher what periods these 

patterns obey by simply looking at the series; a more sophisticated tool is needed. The 

Fourier transform has often been that tool to provide further insight into the frequencies 

that are present in the input series. Given an input time series, the Fourier transform will 

return the associated strength of a range frequencies present in the signal. The problem 

with this is that it assumes that the strength of these frequencies doesn’t change over 

time; it assumes a stationary series.  

 

However, when dealing with time series data that is a response variable of these 

complex systems, the series is invariably non-stationary and thus the usefulness of 

Fourier transform is quite limited in this circumstance. The wavelet transform is a 

potential alternative to the Fourier transform, it is not limited by the stationary 
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assumption. It allows for resolution in frequency and time, it allows for analysis that 

accounts for these potential changes in frequency over time.   

 

The usefulness of wavelets in the world of finance was brought forward by Ramsey just 

over 20 years ago, he used wavelet decomposition as a tool to analyse U.S. stock price 

behaviour over multiple scales (Ramsey, Usikov, and Zaslavsky 1995) . Since then, 

there have however been several prominent papers using this method of wavelet 

decomposition to analyse financial time series, the papers discussed in the following 

section will be ones that have influenced the field of research that this dissertation is 

based on. 

 

This dissertation was heavily influenced by Ramazan Gençay, Faruk Selçuk and 

Brandon Whitcher. They produced multiple papers using wavelet decompositions to 

analyse financial time series. (Gençay, Selçuk, and Whitcher 2001b) investigated the 

scaling properties of foreign exchange volatility using wavelet decomposition. They 

showed that foreign exchange rate volatilities follow different scaling laws at different 

horizons. Particularly, there is a smaller degree of persistence in intraday volatility as 

compared to volatility at one day and higher scales. 

 

(Gençay, Selçuk, and Whitcher 2001a) introduces an interesting method to isolate 

intraday seasonalities from high frequency time series. It uses the wavelet 

decomposition method to extract the highest frequency components from the series and 

remove them so that they don’t interfere with the lower frequency components of the 

series (inter day components). As always with wavelet methods, it is a non-parametric 

approach and as such provides a general method for isolating the intraday seasonalities 

from the series. 

 

(Gençay, Selçuk, and Whitcher 2005) introduces a method of estimating the systematic 

risk of an asset using a multiresolution approach.  They argue that the CAPM of Sharpe 

(Sharpe 1964) and Lintner (Lintner 1965) is flawed as it assumes a linear relationship 

between scale and risk. However, they found that the empirical results from different 

economies show that the relationship between the return of a portfolio and its “beta” 
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becomes stronger as the wavelet scale increases. Beta is a proxy for risk that is 

calculated by measuring the volatility of an asset or portfolio in relation to the overall 

market.  

 

Another interesting use case of wavelet decomposition was shown by Vuorenmaa 

(Vuorenmaa, T.A., 2005) who used wavelet decomposition to analyse the scaling laws 

and long-memory in stock market volatility. Similarly to Gençay, they found that the 

scaling laws may not be time-invariant.  

 

2.2.1. Wavelet Methods to Determine Interdependence between Variables 

In & Kim conducted multiple studies to analyse the correlation between variables across 

different scales. For example, (In and Kim 2006) used wavelet analysis to examine the 

relationship between the stock and futures markets in terms of lead-lag relationship, 

correlation, and the hedge ratio. Among other conclusions, their empirical results show 

wavelet correlation between these two markets vary over investment horizons but 

remains very high. 

 

Gallegati and Gallegati use wavelet methodology to analyse the industrial production 

index of the G-7 countries (Gallegati and Gallegati 2007). The analysis is performed 

using a multi-scaling approach which decomposes the variance of the industrial 

production index and the covariance between the industrial production indices of two 

countries on a scale-by-scale basis.  

 

Gallegati used the maximal overlap discrete wavelet transform to compute the wavelet 

variance and cross-correlation between stock market returns and economic activity 

(Gallegati 2008). Their results showed that stock market returns tend to lead the level of 

economic activity, but only at the highest scales (lowest frequencies) corresponding to 

periods of 16 months and longer, and that the leading period increases as the wavelet 

time scale increases. 
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2.2.2. Wavelet Methods for Forecasting 

Wavelet methods for forecasting seem to involve a common idea: break the input series 

down into its components using a wavelet decomposition, model each of those 

components individually to make a forecast on each scale and finally, sum up the 

forecasts of all scales to form the final forecast. One method for doing this is to use an 

ARIMA model to forecast these individual components, this method was examined by 

Conejo for forecasting electricity prices . They found this method to be an effective 

method of forecasting (Conejo et al. 2005). Renaud devised a similar model using an 

AR model instead of an ARIMA model and found positive results also (Renaud, Starck, 

and Murtagh 2003).  

  

2.3. Other Areas of Influence 

Wavelets are the main tool used in this dissertation and as such provide the most amount 

of relevant theory and background. Given that this dissertation is for an engineering 

masters and not a finance masters, the emphasis will rightly be on the theory that 

approaches the problem from a signal processing and mathematical standpoint. 

However, there are some concepts central to this dissertation that are outside the realm 

of signal processing and mathematics but nonetheless must be explored and explained 

such that the reader understands the motivation for this research. In the following piece, 

the economics and finance material that has influenced this research will be discussed so 

that the reader can have a deeper understanding of the importance of this work. 

  

Part of this dissertation centres around the concept of noise, what does the noise 

represent and how does it manifest itself in mathematical models. The model of noise, in 

the context of financial markets, that is assumed to be true for this dissertation is that of 

Black (Black 1986). He describes financial markets as follows: 

 

In my basic model of financial markets, noise is contrasted with information. 

People sometimes trade on information in the usual way. They are correct in 
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expecting to make profits from these trades. On the other hand, people 

sometimes trade on noise as if it were information. If they expect to make profits 

from noise trading, they are incorrect. However, noise trading is essential to the 

existence of liquid markets. 

 

Essentially, there are two forces that control the price of an asset in a market, one is the 

force of the noise trader, influenced by noise that they believe to be information. The 

effect the noise trader has on the market is to increase the gap between the price of asset 

and the value of the asset. The other force is the force of the information trader. The 

effect of the information trader is to reduce the gap between the price of an asset and the 

value of an asset. The two forces fight against one another to produce something of an 

equilibrium.  

 

One of the interesting by-products of this hypothesis is that if one accepts it to be true, 

one must also accept that the noise that noise traders mistake for information has a 

similar effect on the market as the actual information. Traditionally, models that try and 

predict the price of an asset will only take into account information about the asset or 

information about the market. However, if the Black hypothesis is true, it is a very naive 

approach as it only accounts for one of the two aforementioned market forces. In reality, 

if one could effectively quantify this noise that influences these noise traders, one could 

in theory better predict the patterns in the market.  

 

This is exactly what Tetlock did in his paper which is one of the motivators for this 

research (Tetlock 2007). Tetlock developed a sentiment proxy for the market using text 

analytics to look for words associated with certain sentiments. For example, words such 

as ‘profit’ or ‘increase’ would be associated with positive sentiment and words such as 

‘loss’ or ‘decrease’ would be associated with negative sentiment. He developed this 

using a popular Wall Street Journal article; “Abreast of the Market”.  He added this 

sentiment proxy as a variable in his VAR model (VAR models will be explained later in 

this dissertation) to see if it would have a positive effect on his predictions of the market 

returns. 
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His results conclusively show a relationship between sentiment and the residuals in the 

model. He found that high media pessimism predicts downward pressure on market 

prices followed by a reversion to fundamentals. This fits with Black’s model of the 

market; the noise traders mistake this Wall Street Journal article for information and as a 

result sell their stock, forcing the value down. Soon after, the information traders notice 

that as a result of the noise trader’s activity, there is now value to be found in the 

market, they then buy stock forcing the value back up to its original price. It is a clear 

example of Black’s equilibrium in practice and provides a convincing case for the truth 

of this hypothesis. 

 

Given that the autoregressive model involves input of so many parameters such as how 

many lags to account for and which other variables to account for (for example, Tetlock 

includes market volume as a variable in his autoregressive equation), it is quite reliant 

on domain knowledge and can be subject to the biases of the creator of the model. In an 

ideal world, a method would be used to isolate the residuals that is nonparametric in 

order to avoid these problems. 
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3. Method 

3.1. Data Used 

Three high frequency time series were chosen for analysis in this project. There were 

two criteria based on which the data was picked. Firstly, 5-minute interval data needed 

to be available for the series in question, 5-minute interval data is classified as being 

high frequency data for this dissertation. Secondly, series were picked that had different 

properties so that differences in results could be examined as a function of these 

different properties.  

 

The first series chosen was the Bitcoin series. Bitcoin is an interesting candidate to 

model given how new a concept it is and also given how volatile the series is. It seems 

to be as unpredictable as any asset and as such, further inspection could deliver useful 

insights. The data was taken from Kaggle.com where Bitstamp (a well renowned 

Bitcoin exchange platform) data had been collected for roughly the last 7 years up until 

November 2018. The high frequency data was available however there were a lot of 

missing values in the data as can be seen in figure 3.1. Based on figure 3.1, June 2017 

was chosen to be the cut-off for when the high frequency data became reliable. 

 

 

Figure 3.1 The missing values in the Bitcoin dataset sampled at 5-minute intervals from 2012 until 2019. 

The graph shows the consistency of the dataset improving significantly around mid 2017. 
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To complement this dataset, a series that was not so volatile or better understood was 

sought after. The S&P 500 index was used as it provides a good benchmark to compare 

against given that it is considered to be a reliable proxy for the movement of the market. 

The Ryanair data was also chosen due to its interesting feature of being an Irish 

company that trades on the NASDAQ stock exchange. The data for S&P 500 and 

Ryanair was generously provided by !QCL Solutions. 

 

Although the data for S&P 500 and Ryanair was available for the last 2 years, in order 

to standardise this research, data was only chosen from 1st June 2017 until 11th 

November 2018 as this was the time period in which the Bitcoin data was reliable. 

 

3.1.1. Dealing with Missing values 

A complete dataset for Ryanair and S&P 500 was available, so missing values weren’t a 

problem in that respect however there were a considerable number of missing values in 

the Bitcoin dataset and as such a method had to be decided on to deal with those missing 

values.  

 

The choice was between removing all missing data points from the set or interpolating 

so as to replace the missing values with values that best approximate what the real 

values might have been. When it comes to removing values: it is the safest approach as 

no assumptions are made about the data. However, when dealing with time series data 

and in particular, when dealing with splitting the time series data in terms of frequency, 

the sampling rate must be consistent. If a missing value was dropped in a time series 

sampled every 5 minutes, there would be a 10-minute gap between the values either side 

of that which would be inconsistent with the 5-minute sampling rate. This inconsistent 

sampling rate would have repercussions that would make it hard to be convinced of the 

results of the analysis given the input data does not obey the assumption of a constant 

sampling rate. 
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The alternative to dropping the missing values is to use interpolation. In this 

dissertation, linear interpolation was chosen as the method for dealing with missing 

values. Linear interpolation involves fitting a line to the two values either side of the 

missing values and setting the value of the missing values to whatever the corresponding 

point is on the line for that index. For example, if there was just one missing value , 

the value of  would be given as the average of  and . This was used for all 

missing values of the series and allowed for use of a time series with a consistent 

sampling rate in this analysis. 

 

3.1.2. Returns and Volatility 

Throughout this dissertation, the two metrics analysed are log returns and volatility. The 

log returns (often referred to as just “returns”) of the series were calculated as follows: 

 

where, 

-  is the price of the price of the series at time t 

-  is the returns at time t. 

 

Returns is a metric that measures whether or not the price is moving up or down. 

Volatility is taken to be the absolute value of the returns for this dissertation similar to 

the literature in (Gençay, Selçuk, and Whitcher 2001c) and is a metric that measures 

how much the price of the series is moving. 

 

3.1.3. Descriptive Statistics 

Descriptive statistics were calculated for the volatility and returns of each of the assets. 

The statistics calculated were mean, median, standard deviation, minimum, maximum, 

kurtosis and skew. While the mean, median, standard deviation, minimum and 

maximum are very common metrics, kurtosis and skew are less commonly known. 

Kurtosis is defined in the Oxford English Dictionary as the sharpness of the peak of a 
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frequency-distribution curve. A high kurtosis value is related to a sharply peaked 

distribution. While skew is defined as the state of not being symmetrical. Negative 

values of skew indicate that the distribution is skewed left while positive values of skew 

indicate that the distribution is skewed right. 

 

3.2. Wavelet Model 

The theory behind the wavelet model and multiresolution analysis will be presented in 

this section. This section was heavily influenced by (Percival and Walden 2006) and 

(Gençay, Selçuk, and Whitcher 2001c). The algorithms are described using linear 

filtering operations rather than matrix manipulations. 

 

3.2.1. The Frequency Domain 

When dealing with time series data, it is tough to understand the patterns of the series 

fully when looking purely in the time domain. It is difficult to detect and identify any 

seasonalities that are combinations of more than one sinusoidal function by merely a 

visual inspection. It would be possible to identify the period of a sine or cosine wave 

with the aid of a graphical representation but figuring out the individual periods of 

summations of these sinusoidal functions is very difficult without additional tools to 

help. In reality, when dealing with data such as stock market data, the patterns tend to be 

better modelled by the summation of multiple sinusoidal functions rather than just one. 

As such, tools are needed to help analyse these trends. The idea of looking at the series 

in the frequency domain is a useful idea and one that does give greater insight into these 

sinusoidal patterns.  

 

The standard way to view time series data is in the time domain with time on the x-axis 

and the value of the function of the y-axis. However, in the frequency domain, instead 

of time on the x-axis, frequency is on the x-axis and on the y-axis, the associated 

amplitude of these frequencies is represented. One of the tools that allows for 

representation of a time series in the frequency domain is the Fourier transform. 
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3.2.2. Fourier Transform 

The Fourier Transform decomposes a time series into its component frequency parts. 

The continuous Fourier Transform is defined as follows: 

 

where G(f) is the continuous Fourier transform of g(t). 

 

When dealing with discrete time series, as is the case in this dissertation, a transform 

that takes a discrete series as an input is needed. The discrete Fourier transform fits this 

criterion. It transforms a sequence of N complex numbers   

 

into another sequence of complex numbers, the discrete Fourier transform of : 

 

Which is defined by: 

 

where, 

- k is the frequency index, range from 0 to N-1 

 

3.2.3. Short time Fourier Transform 

One of the limitations of the Fourier Transform is that it assumes a stationary series. A 

stationary series is one where the frequencies are constant, it does not account for 

changing frequencies. It simply returns one value of amplitude for each frequency but 

no resolution in time. As long as the signal being analysed is a stationary series, this is a 

perfectly adequate tool but when dealing with non-stationary time series, the Fourier 

transform does not suffice. 
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One way of dealing with non-stationary time series is to use the short time Fourier 

transform. The short time Fourier transform splits the series up into equal chunks and 

computes the Fourier transforms for each chunk so as to get resolution in time as well as 

frequency. However, the problem with the short-time Fourier transform is it can be 

difficult to select the size of the chunks the original series is split into. The wavelet 

transform provides a more general method of getting resolution in frequency and time, 

using different window sizes for extracting different frequencies.   

 

The comparison between the domains of the input time series, Fourier transforms and 

wavelet transform is best captured in figure 3.2.3. Note that the wavelet transform has 

higher resolution for higher frequencies and lower resolution for lower frequencies as 

opposed to the short time Fourier transform which has the same resolution for all 

frequencies.  

 

 

Figure 3.2.2.3, figure taken from (Gençay, Selçuk, and Whitcher 2001c) showing the localisation of a 

signal in time and frequency for the Fourier transform, the short time Fourier transform and the wavelet 

transform. Note the changing window size in the wavelet transform.  
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3.2.4. Wavelets 

In order to describe the wavelet transform, wavelets must first be described. Wavelets 

are compact oscillations in time, the most obvious way in which they differ from sine 

and cosine functions is that they have compact support. A function has compact support 

if it is zero outside of a compact set (Rowland, Todd and Weisstein, Eric W). Sine and 

cosine waves do not have compact support as the signals continue oscillating no matter 

what the time frame chosen is. Wavelets can vary in properties such as length and 

symmetry but have a common property of resembling a brief oscillation in time. Figure 

3.2.4 shows an example of multiple wavelets for reference.  

 

Figure 3.2.4 An illustration taken from (Godfrey et al. 2008) showing 8 examples of wavelet functions. 

Notice the compact support of each of these functions.  

 

In order to qualify as a wavelet, the function ψ(t) must obey the admissibility condition: 

 

where, 

-  is the Fourier transform of  

 

To guarantee that ,   must be imposed, which is equivalent to: 
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Equation 3.2.4a 

 

A secondary condition imposed on a wavelet is function is unit energy where the energy 

of a function is defined to be the squared function integrated over its domain: 

 

Equation 3.2.4b 

 

Effectively what equations 3.2.4a and 3.2.4b imply is that the entries of the function 

must sum to zero but also have non zero entries. 

 

3.2.5. Wavelet Transform 

The wavelet transform is performed by convolving a wavelet with the input series at 

various different scales and translations. Each of these different scales of wavelets looks 

to isolate different frequencies present in the signal and each of these different 

translations looks to extract these frequencies at different points in time.  The result of 

the transform is an output series that has high resolution for high frequencies and low 

resolution for low frequencies.  

 

The formula for the continuous wavelet transform is as follows: 

 

where, 

- a is a scaling value,  

- b is a translational value,  

-  is a continuous function in both the time domain and the frequency domain 

called the mother wavelet.  
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Figure 3.2.5a Illustration taken from (Pinello 2011) visualising the concept of convolving two signals.  

 

Figure 3.2.5a is an example of a wavelet of a certain scale and translation being 

convolved with the input series; this would return a single value. In order to obtain the 

rest of the values in time for that particular wavelet scale, the wavelet would be 

translated across the series, convolving with the series for each translation. In order to 

obtain the rest of the values for the various other scales, the scale of the wavelet would 

be made larger to capture lower frequencies and smaller to capture higher frequencies.  

 

Similarly to the Fourier transform, a discrete version of this formula is needed to work 

with real world discrete time series data.  

 

3.2.6. Discrete Wavelets 

In order to develop a model for a discrete wavelet transform, a model for discrete 

wavelets is needed. The discrete wavelet is defined in terms of a wavelet filter, h, and a 

scaling filter, g. These two filters act as high pass and low pass filters respectively. A 

high pass filter is a method of filtering in digital signal processing that has the effect of 

not allowing frequencies lower than a certain threshold through the filter; it is a method 

of extracting frequencies above a certain threshold. Conversely, a low pass filter is one 

that extracts frequencies below a certain threshold. The constraints for the wavelet filters 

are as follows: 
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where, 

- L is the length of the wavelet filter, 

- n is any nonzero integer. 

 

In words, the wavelet filter must sum to zero, have unit energy and must be orthogonal 

to even shifts. The scaling filter g must obey the second two properties specified 

however it must sum to either  or : 

  or   

 

3.2.7. Discrete Wavelet Transform 

The discrete wavelet transform (DWT) of a signal is calculated by passing the signal 

through these low pass and high pass filters. The coefficients of these low and high pass 

filters are extracted from the wavelet bases used. The output of the low pass filter in the 

DWT is commonly called the smooth coefficients ( ) and the output of the high pass 

filter in the DWT is commonly called the detail coefficients ( ). In order to capture the 

effect of the doubling of the scale of the wavelet, the series is down sampled by 2 during 

the wavelet transform. 

 

The formula for the calculating the values  and  is as follows: 
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where, 

- h is an array of high pass filter coefficients,  

- g is an array of low pass filter coefficients, 

- L is the length of the array of the filter coefficients, also known as the size of the 

wavelet used, 

- x is the input series, 

- t = 0, 1, … , N/2 - 1. 

 

Note that the down sampling of the series is captured in the indexing of .  

 

Figure 3.2.7 A diagram taken from (Gençay, Selçuk, and Whitcher 2001c) showing the high pass and low 

pass filter effect of the DWT. H(k/N) and G(k/N) are the high pass and low pass filters respectively.  

signifies a down sampling of the signal by 2. For a given discrete signal x, down sampling the signal by 

two would result in dropping every second value in the signal.  

 

Figure 3.2.7 demonstrates this process of passing the series through low and high pass 

filters and then down sampling to give  and  where  contains the features of the 

higher frequencies present in  and  contains the features of the lower frequencies 

present in . It is important to note however that there is no such thing as an ideal high 

pass or low pass filter and as such the frequencies that pass through the filter aren’t 

exactly what is desired, this will be further examined in section 3.2.11. 
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3.2.8. Maximal Overlap Discrete Wavelet Transform 

The maximal overlap discrete wavelet transform (MODWT) is another type of wavelet 

transform that is computed by not down sampling the output from the low pass and high 

pass filters. The MODWT gives up the orthogonality of the DWT to gain features that 

the DWT does not possess. The following properties are important in distinguishing the 

MODWT from the DWT (Percival and Mofjeld 1997): 

 

- The MODWT can handle any sample size N, while the  order partial DWT 

restricts the sample size to a multiple of  

- The MODWT is invariant to circularly shifting the original time series. Hence, 

shifting the time series by an integer unit will shift the MODWT detail coefficients and 

smooth coefficients the same amount. This property does not hold for the DWT. 

 

In the case of the DWT, the effect of the wavelet scaling is achieved by down sampling 

the signal at each iteration. However, in the case of the MODWT, the scaling effect is 

achieved by the up sampling of the vector of wavelet and scaling coefficients each time.  

 

The detail coefficients and smooth coefficients of the MODWT are commonly referred 

to as  and  respectively. In order to compute  and  for the wavelet transform at 

decomposition j, the following equations are used: 

 

Equation 3.2.8a 

 

Equation 3.2.8b 

where, 

-  is an array of high pass filter coefficients rescaled by dividing h by , 

- j is the decomposition number of the transform, 

-  is an array of low pass filter coefficients rescaled by dividing g by , 
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- L is the length of the array of the filter coefficients, 

-  is the vector of smooth coefficients at decomposition j, 

-  is the vector of detail coefficients at decomposition j, 

- t = 0, 1, … , N - 1, 

-  is the original series . 

 

The MODWT is quite desirable as it does not require the signal to be of length , this 

is quite a restrictive limitation of the DWT and the MODWT overcomes this. However, 

compensating for this is the fact that there is much redundancy in the filter coefficients 

used due to the fact that they are up sampled by the transform. This trade-off was made 

for this dissertation and as such, the MODWT was used in place of the DWT for all 

analyses. 

 

The inverse maximal overlap discrete wavelet transform (IMODWT) is calculated using 

both the smooth coefficients and detail coefficients: 

 

where the notation is the same as equations 3.2.8a and 3.2.8b. 

 

3.2.9. The Pyramid Algorithm 

In order to extract information about the input series across more than one scale, 

multiple DWTs, or MODWTs must be applied. Applying the DWT or MODWT only 

once will only result in acquiring the detail coefficients and smooth coefficients for one 

range of frequencies or one scale which doesn’t give the resolution in frequency that is 

desired. In order to obtain this resolution in frequency, the transforms must be applied 

more than once. Each decomposition uses the smooth coefficients from the previous 

decomposition to produce the results for that decomposition level. The name of this 

algorithm is called the pyramid algorithm.  The flow of the decomposition can be seen 

in figure 3.2.9.  
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Figure 3.2.9 A diagram illustrating the process of the pyramid algorithm. Each operation where the 

signal, be it  or the original series, is passed through a pair of filters, this is equivalent to the MODWT 

being performed.  and  represent the detail coefficients and smooth coefficients respectively  

 

where, 

- ,  and  reflect the detail coefficients at different scales, 

- ,  and  reflect the smooth coefficients at different scales. 

 

3.2.10. Multiresolution Analysis 

Using the DWT or the MODWT, a decomposition can be formulated such that the sum 

of the decompositions equals the series decomposed. In this model, for a given point t, 

the value of x at point t will be given as follows: 

 

where, 

-  is the value of the wavelet detail at decomposition j and time t, 

-  is the value of the wavelet smooth at decomposition J and time t. 
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Similarly, the whole series can be decomposed as follows: 

 

where, 

-  is the wavelet detail at decomposition , 

-  is the wavelet smooth at decomposition . 

 

In order to get to the details and the smooths from the detail coefficients and smooth 

coefficients, the following formulae are used: 

 

 

where, 

- N is the length of the original series , 

-  is obtained through periodizing   to length N, 

-  is the detail coefficients at decomposition level j and time t, 

-  is obtained through periodizing   to length N, 

-  is the smooth coefficients at decomposition level j and time t, 

 

In effect, this is equivalent to applying the IMODWT numerous times with vectors of 

zeros (Percival and Walden 2006), this flow is shown in figure 3.2.10.  
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Figure 3.2.10 The flow of producing the details. Each box represents an IMODWT.  J 0 represents the 

maximum decomposition reached in the process. 0k , k=1, …, j, is a vector of N zeros. 

  

3.2.11. Making Sense of the Results of Multiresolution Analysis 

The results of a multiresolution analysis can be difficult to interpret given that this 

concept of scale or decomposition is not easy to relate to other concepts. It can be 

difficult to understand what the details describe for a given scale. In this section, the 

meaning of the details at a given scale will be explored. The meaning of the scales is 

described in (Gençay, Selçuk, and Whitcher 2001c) and goes as follows:  

 

If a series is sampled with a sampling rate of period k seconds, the first detail accounts 

for features of the series with period  to , the second detail accounts for features of 

the series with period  to , the third detail accounts for features of the series with 

period  to  and so on. The upper and lower bounds for the band of frequencies 

described by the details at decomposition j are given as follows: 

 

Equation 3.2.11a 

 

Equation 3.2.11b 

where, 

-  is the period of the sampling rate, 
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-  is the decomposition number. 

 

Figure 3.2.11 gives an example of this band pass concept in the context of the details. 

Using the MODWT, the original signal of Bitcoin returns sampled hourly was 

decomposed three times. The power spectrum of the original signal and each of its 

composite series was calculated. The power spectrum is calculated by calculating the 

Fourier transform of the series and then squaring the values of the Fourier Transform. It 

describes the strength of the frequencies present in the signal. 

 

As can be seen from figure 3.2.11, the first decomposition  includes the frequencies 

in the original signal that range from having period two hours to period four hours.  

includes frequencies that range from having period four hours to period eight hours.  

includes frequencies that range from having period eight hours to period sixteen hours. 

 accounts for the rest of the frequencies. It is interesting to note however that these 

aren’t strict thresholds.  

 

It is quite clear in all four of the composite series that the frequencies in the series aren’t 

confined to just the frequencies within the lower and upper bounds. This is a result of 

the wavelet transform not being a perfect band pass filter and this should be kept in 

mind when looking at the results.  
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Figure 3.2.11 The power spectrums for the original series and 3 decompositions. The series used in this 

case was bitcoin returns sampled hourly from 1/6/2017 - 11/11/2018. The graphs labelled  

are the power spectrum of the details are decomposition level 1, 2 and 3 respectively while the graph 

labelled  is the power spectrum of the smooth at decomposition level 3.   It is a demonstration of how 
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the details accounts for an approximate band of frequencies, with the upper and lower bound of this band 

increasing exponentially a function of J, the decomposition number. Note, the plots only account for 

frequencies with periods up to 36.2 hours to make the graphs easier to read.  

 

This dissertation will later refer to the details accounting for a certain frequency band at 

decomposition j; in this case, the frequency band specified is that band contained by the 

bounds specified in equations 3.2.11a and 3.2.11b.  

 

This dissertation also later talks of details accounting for a single frequency.  This 

simplification is made in order to make it easier to interpret the results intuitively and in 

this case, that single value of frequency refers to the mean of the lower and upper 

bounds mentioned in equations 3.2.11a and 3.2.11b respectively.  Note, the labelling of 

these series with these values is not precise and the results should be considered with 

this in mind. 

 

3.2.12. Wavelet Variance 

The wavelet variance as it is described here is as described in (Percival and Walden 

2006). For the DWT, it can be shown that energy is preserved in the multiresolution 

analysis, and as such can be reproduced after the decomposition: 

 

where ||x||2 is the energy of signal x. 

 

As the energy is proportional to variance (variance is the energy divided by the length of 

the series), this reasoning is also true for the variance. However, this relationship does 

not hold for the MODWT and as such, the detail coefficients must be used rather than 

the details themselves to calculate the wavelet variance. Although energy is not 

conserved in the process of calculating the details, it is conserved in the calculation of 

the detail coefficients: 
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where, 

-  is the energy of series x. 

 

In order to calculate the variance at these different scales, the following method is used: 

 

 

where, 

- L is the length of the wavelet filter used, 

-  is the detail coefficients at scale j 

- j is the index of the decomposition, j=1 being the decomposition at the lowest 

scale, 

- N is the length of the series, 

- Nj is calculated as follows: 

. 

 

3.2.13. Implementation 

All results of the multiresolution analysis were obtained using functions written in 

Python. Numpy [6], Pandas [7] and Matplotlib [8] were libraries used to aid the 

development of the software but the wavelet logic was written without using third party 

libraries except to verify the results. The functions are attached in the Appendix. The 

results of these functions were cross checked using three well known wavelet libraries 

mentioned in section 5.4. 

   

35 
 

https://www.codecogs.com/eqnedit.php?latex=%7C%7Cx%7C%7C%5E2%0
https://www.codecogs.com/eqnedit.php?latex=%5Csigma%5E2(%5Ctilde%7BW%7D_j)%20%3D%20%5Cfrac1%7BN_j%7D%5Csum_%7BL_j-1%7D%5E%7BN-1%7D%5Ctilde%7BW%7D_j%5E2%0
http://www.texrendr.com/?eqn=L_j%3D(2%5Ej-1)(L-1)%2B1%250
https://www.codecogs.com/eqnedit.php?latex=%5Ctilde%7BW%7D_j%0
https://www.codecogs.com/eqnedit.php?latex=N_j%3DN-L_j%2B1%250


3.3. Autoregressive Model 

An autoregressive model (AR) is a model that seeks to explain the value of a time series 

 as the summation of k previous values of that series from  to , where k is 

the number of lags taken into account. A different weight is assigned to each of these 

lags from 1 to k to form a linear model from these lagged values. The notation for an 

autoregressive model is defined by the number of lags used; AR(k) would be an 

autoregressive model using k lags. The formula for the model is as follows: 

 

where,  

-  is the values of the series at time t, 

-  is the weight for a given lag, these weights are called the autoregression 

coefficients, 

-  is the residual at time t. 

 

It is built upon the assumption that the signal x holds memory of its previous values. 

The residuals ε are assumed to be Gaussian white noise. The signal is assumed to have 

zero mean, however if that assumption is not made, which is the case for the model used 

in this dissertation, a constant value is added into the model also. 

 

The problem to be solved is finding the values of β that best fit the series x. One of the 

ways of estimating these β values is to use unconditional maximum likelihood. This 

was the method used in this dissertation and is explained well for an ARMA 

(Autoregressive moving average) model in (Conejo et al. 2005). The basic idea of the 

method is to transform the model into a probabilistic model and select the coefficients 

that maximise the likelihood of the data subject to the constraints of the model.   

3.3.1. Applying an Autoregressive Model 

A vector autoregressive model (VAR) is an autoregressive model which is composed 

using lags of multiple variables instead of just one. The VAR model used by Tetlock 
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was calibrated for a sampling frequency of 1-day and that makes it slightly different to 

the model dealt with here as the data in this dissertation is sampled at a 5-minute 

sampling rate.  His model was defined as follows: 

 

where, 

-  is the returns of the Dow Jones index at time t, 

-  is the summation of 5 lags of variable x, 

-  is the sentiment proxy used, generated from the column “Abreast of 

the Market” from the Wall Street Journal, 

-  is the detrended log of the daily volume on the New York Stock 

exchange, 

-  includes five lags of the detrended Dow residuals to proxy for past 

volatility, dummy variables for day-of-the-week and January to control for other 

potential return anomalies, and a dummy variable for the October 19, 1987 stock market 

crash to ensure the results were not driven by this single observation.

 

Given that all of these variables assume daily sampling frequency, the model had to be 

trimmed down completely in order to get a model that dealt with high frequency data. 

The model used instead was just a simple 5 lags of returns: 

 

where, 

-  is the returns at time t, 

- c is a constant, 

-   is the weight on lag n, 

-  is the residual at time t. 

 

3.3.2. Implementation 

The model was implemented using the statsmodels library in Python[9]. 
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3.4. Ordinary Least Squares 

Ordinary Least Squares (OLS) is a method of fitting a model to data that aims to 

minimise the squared difference between the model’s approximation of the data and the 

data itself. It is used by Tetlock to fit the VAR model and also in this dissertation to fit 

lines of best fit that will be mentioned later.  

 

Suppose a model is defined as follows with N observation and p variables: 

 

This can be represented in vector form as 

 

where, 

-  is the value of the response variable at observation i, 

-  is the value of variable k at point observation i, 

-  is the coefficient of variable k, 

-  is a column vector of length p of all variables in the equation at observation i, 

-  is a vector of length p containing the coefficients of all variables. 

-  is the residual at observation i. 

 

Using matrix notation, the entire model can be written as: 

 

where, 

-  is a vector of length n containing the value of the response variable for every 

observation, 

-  is a nxp matrix containing the n observations of all p variables, 

-  is a vector of length p containing the coefficients of all variables. 

-  is a vector length n containing the residuals for all N observations. 
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The goal of OLS it to choose the parameters  such that the value of the squared errors 

 is minimised. It can be shown that this value of  that minimises the squared errors 

is obtained with the following equation [1]:  

 

3.4.1. Implementation 

OLS was used to fit the trend lines used in section 4.5. The Numpy [6] Python library 

was used to calculate the line of best fit via OLS. 

   

39 
 

https://www.codecogs.com/eqnedit.php?latex=%5Cbeta%250
https://www.codecogs.com/eqnedit.php?latex=%5Cvarepsilon%5ET%5Cvarepsilon%250
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta%3D(X%5ETX)%5E%7B-1%7DX%5ETy%250


3.5. Applications 

3.5.1. Investigating the Relationship Between the Wavelet Model and the 

Residuals of the AR Model 

Tetlock showed that using a sentiment proxy he could account for a large portion of the 

noise in the vector autoregressive model for modelling the returns of the DOW Jones 

index (Tetlock 2007). This was a very effective way of showing the impact a sentiment 

proxy can have on the model, but it also shows the importance of noise in the model. 

There may be many more features of interest contained in the residuals that are 

unexplored and this makes the residuals series alone one worth investigating. In this 

section, a model is constructed to compare the AR approach of isolating the residuals to 

the details produced in a multiresolution analysis. 

 

The multiresolution analysis splits the input series up into its details at various different 

scales, each one representing the activity of a certain band of frequencies. This model 

looks to examine which detail represents the residuals most closely. Intuitively, one 

would think that the highest frequency component contains most of the noise just by 

looking at the time series.  

 

The details of the S&P 500 return series were extracted by carrying out a 

multiresolution analysis using the MODWT for 6 decompositions. The least asymmetric 

Daubechies wavelet of length 8, often referred to as “la8”, was used as the basis 

function for this analysis due to the fact that it is the basis most widely used in Gençay, 

Selçuk and Whitcher’s work. The coefficients for the wavelet and scaling filter of that 

wavelet can be seen in table 3.5.1 

 

The residuals of the AR model of the S&P 500 returns were extracted using the model 

described in section 3.3. Five lags of returns were used as features in the model and the 

model was fitted using unconditional maximum likelihood.  
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In order to compare the details with the residuals, a histogram was plotted comparing 

the distribution of the residuals with the distribution of the details for each 

decomposition from one through six. A correlation plot was also plotted to examine the 

correlation between the residuals and the details. A correlation plot in this case is a plot 

such that a point on the plot represents a time t. The x-coordinate of that point is given 

by the z score of the residuals of the AR model at that time t and the y-coordinate of that 

point is given by the z score of the details,  at that time t. Each value of t is 

represented on the plot. 

 

The flow of this analysis is seen in figure 3.5.1 

 

Table 3.5.1 The coefficients of h and g, the wavelet and scaling filters respectively of the LA8 wavelet. 

Index h (Wavelet Filter) g (Scaling Filter) 

0 0.032223 -0.075766 

1 0.012604 -0.029636 

2 -0.09922 0.497619 

3 -0.297858 0.803739 

4 0.803739 0.297858 

5 -0.497619 -0.09922 

6 -0.029636 -0.012604 

7 0.075766 0.032223 
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Figure 3.5.1. The flow of the comparison between the residuals and the details 

3.5.2. Comparing Risk Across Scales 

One of the ways in which multiresolution analysis is used in this dissertation is in 

analysing the variance of the component series at all of these scales. The variance of the 

volatility is thought of as a good proxy for risk, this makes it a useful metric to use to 

compare the behaviour of assets. Using the wavelet variance, the variance of the 

volatility can be examined across multiple scales which can yield interesting results: see 

(Gallegati and Gallegati 2007) and (Gençay, Selçuk, and Whitcher 2001a). Bitcoin is 

considered to be a very risky asset and S&P 500, being a proxy for the market, is 

considered a safer asset to invest in. This analysis seeks to discover if those 

considerations are represented in the data. 

 

The wavelet variance was calculated at twelve scales for all three datasets for both 

returns and volatility. The returns were plotted as well as volatility for comparison, a 

linear relationship was expected for returns in order to verify that it obeys a linear 

scaling law.   

 

3.5.2.1. Scaling Laws 

The motivation for this work was based on a curiosity in how risky Bitcoin would 

appear over the long run relative to the more well known, safer assets in Ryanair and 
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S&P 500. However, it was also influenced by a curiosity about the scaling laws of risk 

in finance. (Gençay, Selçuk, and Whitcher 2001b) and ( Vuorenmaa, T.A., 2005) have 

shown a break in the scaling law for foreign exchanges and the stock market. As per the 

CAPM of (Sharpe 1964) and Lintner (Lintner 1965), risk is expected to scale linearly 

with time. However, Gençay and Vuorenmaa observed that the relationship was not 

linear and that there was a break in the linear relationship after scales greater than one 

day.  The analysis in this part of the dissertation was carried out in order to find out 

whether or not the assets analysed display this same property. 

 

In order to test whether or not this variance break occurs, the same methodology that 

produced figure 7.10 in (Gençay, Selçuk, and Whitcher 2001c) was used. This involves 

calculating the wavelet variance for multiple scales and fitting a line to the scales of one 

day or less and fitting a separate line to scales greater than one day on a log scale. This 

was done using the ordinary least squares technique described in section 3.4 of this 

dissertation.   
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4. Results  

4.1. Data Used 

Table 4.1 Descriptive Statistics for S&P 500, Ryanair and Bitcoin returns and volatility. The darker the 

shade of green the higher the value relative to other values of that metric in the dataset. 

 Mean Median 

Standard 

Deviation Min Max Kurtosis Skew 

S&P 500 

Returns 0.000005 0 0.000838 -0.01759 0.017291 42.28 0.42 

Ryanair 

Returns -0.000007 0 0.002139 -0.132016 0.059857 641.77 -9.497 

Bitcoin 

Returns 0.000007 0.000031 0.002675 -0.040147 0.055213 19.72 0.049 

S&P 500 

Volatility 0.000476 0.000274 0.00069 0 0.01759 75.73 6.07 

Ryanair 

Volatility 0.001033 0.000659 0.001873 0 0.132016 1044.55 21.61 

Bitcoin 

Volatility 0.001589 0.000897 0.002152 0 0.055213 35.087 4.26 

 

 

Shown in table 4.1 is the descriptive statistics of the dataset. Note Bitcoin has the 

highest standard deviation for both returns and volatility while S&P 500 has the lowest 

in both returns and volatility. The kurtosis of Ryanair returns and volatility are very high 

with respect to the other two assets while the absolute skew of Ryanair returns and 

volatility are high with respect to the other two assets. Ryanair also has the highest max 

and the lowest min.  
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4.2. AR Model  

The results of the autoregressive model are shown in table 4.2. The 1st, 2nd and third 

lag are statistically significant at a 95% confidence level. The first and third lags have a 

negative coefficient.  

 

Table 4.2 Model information of a 5 lagged returns autoregressive model fitted to S&P 500 returns. It can 

be seen that 3 of the lags proved to be statistically significant. 

Variable  Coefficient Value  P value  Significant at 95% confidence level 

Constant  0.000  0.310  No 

1 Lag Returns  -0.033  0.000  Yes 

2 Lag Returns  0.015  0.010  Yes 

3 Lag Returns  -0.019  0.001  Yes 

4 Lag Returns  0.002  0.766  No 

5 Lag Returns  -0.001  0.841  No 

 

The autocorrelation plot is shown in figure 4.2, the autocorrelation plot shows the 

correlation between the series and its k lags where k is equal to 5 in this case. As can be 

seen in the figure 4.2, the 1st, 2nd and 3rd lags are statistically significant, similarly to 

the 1st, 2nd and 3rd lags being statistically significant to the AR model in table 4.2.  

 

 

Figure 4.2 Autocorrelation plot of S&P 500 returns. The lags on the x-axis are 5 minutes long 

corresponding to the 5-minute sampling rate. The dark blue zone shows the bounds outside which the 
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correlation is significant at a 95% confidence level. Similarly, to the results in table 4.2., lags 1, 2 and 3 

prove significant.  

4.3. Wavelet Model  

The results of the wavelet decomposition are shown in figure 4.3. Due to the noisy nature of the 

signal, it is difficult to deduce any information from these graphs alone regarding these 

components’ relationship to the residuals of the AR model. 
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Figure 4.3. The wavelet decomposition of S&P 500 5-minute returns. D1-D6 show the wavelet details and 

S6 shows the wavelet smooth. On the x-axis is the sample number; this was chosen as the x-axis as 

opposed to datetimes as there were no values on the weekends and as such there would be jumps in the 

graph that might be misleading. Note the larger scale on the y-axis for the original series plot relative to 

the rest of the plots and the larger scale on the y-axis of D1-D4 relative to D5-S6. The decomposition was 

carried out using the MODWT and the least asymmetric Daubechies wavelet of length 8.  

 

Table 4.3 shows the meaning of each of the decomposition levels. Rough bounds of the 

periods of the frequencies represented in the details are provided however they are not 

strict bounds as per section 3.2.11. As can be seen in the table, all of these details 

contain frequencies of period less than 1 day.   

 

Table 4.3 The corresponding frequency bands for each decomposition number. The days are taken to be 

6.5 hours long as that is the length of time that the stock market is most commonly open for (9:30 am until 

4:00 pm EST). 

Decomposition 

number (J) 

Lower 

bound 

(mins) 

Upper 

bound 

(mins) 

Lower 

bound 

(hours) 

Upper 

bound 

(hours) 

Lower 

bound 

(days) 

Upper 

bound 

(days) 

1 10 20 0.2 0.3 0.0 0.1 

2 20 40 0.3 0.7 0.1 0.1 

3 40 80 0.7 1.3 0.1 0.2 

4 80 160 1.3 2.7 0.2 0.4 

5 160 320 2.7 5.3 0.4 0.8 

6 320 640 5.3 10.7 0.8 1.6 
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4.4. Investigating the Relationship Between Wavelet 

Decomposition and Residuals of the AR Model 

In this section, results are presented from the attempted comparison of the details of the 

multiresolution analysis and the residuals of the AR model. Figures 4.4a, 4.4b and 4.4c 

show histogram comparisons of the details and the residuals. Based on these histograms 

and the histograms of the remaining details, it seems that the higher the decomposition, 

the sharper the peak of the distribution. As is apparent from these visualisations, the 

histogram of D1 appears to be the most comparable to that of the residuals.  

 

 

Figure 4.4a A histogram plot comparing the distributions of the first detail and the residuals of the AR 

model, both extracted from the S&P 500 returns.  

 

Figure 4.4b. A histogram plot comparing the distributions of the second detail and the residuals of the AR 

model, both extracted from the S&P 500 returns. 

49 
 



 

Figure 4.4c A histogram plot comparing the distributions of the third detail and the residuals of the AR 

model, both extracted from the S&P 500 returns. 

 

 

The correlation plots of D1, D2, D3 and the residuals are shown in figures 4.4d, 4.4e 

and 4.4f. The correlation between all three details and the residuals is a positive one 

with D1 having the highest Pearson’s correlation coefficient at 0.75.  

 

Figure 4.4d. Plot of the z score of the first detail (D1) vs the z score of the residuals for the AR model. A 

point on this graph is formed by getting the value of the z score for D1 for some time t and mapping it to 

the value of the z score for the residuals at that same time t. Pearson’s correlation coefficient for these 

two series is 0.75. 
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Figure 4.4e. Plot of the z score of the second detail (D2) vs the z score of the residuals for the AR model. 

A point on this graph is formed by getting the value of the z score for D2 for some time t and mapping it to 

the value of the z score for the residuals at that same time t. Pearson’s correlation coefficient for these 

two series is 0.63. 
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Figure 4.4f. Plot of the z score of the third detail (D3) vs the z score of the residuals for the AR model. A 

point on this graph is formed by getting the value of the z score for D3 for some time t and mapping it to 

the value of the z score for the residuals at that same time t. Pearson’s correlation coefficient for these 

two series is 0.44. 

 

4.5. Comparing Risk Across Scales 

Figures 4.5a, 4.5b and 4.5c show the plot of wavelet variance of returns against scale. The 

results are plotted on a log scale. In all three plots a linear relationship is observed. 

 

Figure 4.5a  Wavelet variance of S&P 500 returns across 11 decompositions.  
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Figure 4.5b Wavelet variance of Ryanair returns across 11 decompositions 

 

Figure 4.5c Wavelet variance of Bitcoin returns across 11 decompositions 

 

Figures 4.5d, 4.5e and 4.5f show the plots of wavelet variance of volatility against scale. There 

is a trend line fitted to the intraday frequencies and separately to the frequencies associated with 

larger periods. All 3 plots show a break in the variance trend after one day. Interestingly, the 

S&P 500 variance break appears to be the most severe. The variance of the bitcoin volatility 

series appears to break twice, once at decomposition 8 and then again at decomposition 12.  

 

Figure 4.5d Wavelet variance of S&P 500 volatility across 11 decompositions. A trend line was 

fitted to the first 6 levels and separately to the last 5 levels using Ordinary Least Squares. The 
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first 6 levels represent activity of frequencies with a period equal to or less than one day, the 

last 5 represent activity of frequencies with a period greater than one day. 

 

Figure 4.5e Wavelet variance of Ryanair volatility across 11 decompositions. A trend line was 

fitted to the first 6 levels and separately to the last 5 levels using Ordinary Least Squares. The 

first 6 levels represent activity of frequencies with a period equal to or less than one day, the 

last 5 represent activity of frequencies with a period greater than one day. 

 

Figure 4.5f Wavelet variance of Bitcoin volatility across 14 decompositions. A trend line was 

fitted to the first 8 levels and separately to the last 6 levels using Ordinary Least Squares. The 

first 8 levels represent activity of frequencies with a period equal to or less than one day, the 

last 6 represent activity of frequencies with a period greater than one day. 

 

 

Figures 4.5g, 4.5h and 4.5i show a comparison between the wavelet variance of the 

three series. It is interesting to note that bitcoin has a much higher variance over long 

time horizons however a smaller variance than Ryanair over horizons less than one day. 

Although, S&P 500 has the lowest variance across the majority of scales, Ryanair 

climbs above it for the last two scales. Based on Figure 4.5i, it appears that the second 

variance breaks of Bitcoin and Ryanair line up with the one-month mark.  
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Figure 4.5g Wavelet variance of the volatility of S&P 500, Ryanair and Bitcoin with the x-axis 

transformed to represent days rather than decompositions. This is to account for the fact that 

Bitcoin has a 24-hour day as opposed to the other datasets which have 6.5-hour days. A red line 

shows the one-day mark. The periods given here are approximate periods of the frequencies 

contained in the details, taken as the average of the lower bound and the upper bound discussed 

in table 3.2.2.11. 

 

Figure 4.5h Wavelet variance of the volatility of S&P 500, Ryanair and Bitcoin with the x-axis 

transformed to represent weeks rather than decompositions. This is to account for the fact that 

Bitcoin has a 7-day week as opposed to the other datasets which have 5-day weeks. A red line 

shows the one-week mark. The periods given here are approximate periods of the frequencies 

contained in the details, taken as the average of the lower bound and the upper bound discussed 

in table 3.2.11. 
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Figure 4.5i Wavelet variance of the volatility of S&P 500, Ryanair and Bitcoin with the x-axis 

transformed to represent months rather than decompositions. A red line marks the one-month 

mark. This was done in order to see if the apparent second breaks line up with monthly 

frequencies. The periods given here are approximate periods of the frequencies contained in the 

details, taken as the average of the lower bound and the upper bound discussed in section 

3.2.11.   

56 
 



5. Discussion 

5.1. Data Used 

The results of the descriptive statistics fit with what was expected. Bitcoin was expected 

to vary the most and S&P 500 was expected to vary the least and the standard deviation 

scores back that up. What is most interesting about these statistics is that Ryanair has by 

far the highest kurtosis for both returns and volatility, it also has the highest max and the 

lowest min. The kurtosis in particular suggests that Ryanair has a very high number of 

outliers.  So, although Bitcoin varies more in general, Ryanair produces more extreme 

values relative to its distribution.  

5.2. Investigating the Relationship between Wavelet 

Decomposition and Residuals of AR model 

The generation of the noise in an autoregressive model requires a parametric approach; 

it requires the user to generate a model which they feel models the input series well. 

This will generally require domain knowledge and will require the creator of the model 

to make several judgement calls such as how many lags to take into account and which 

other variables to include in the equation. For this reason, the results of this method can 

be affected quite significantly by biases of the creator of the model. 

 

The wavelet approach is a non-parametric approach. It requires no domain knowledge as 

it is simply a signal transform. It also requires minimal data pre-processing as outliers in 

the data don’t have a huge impact on the model. It is a more general way of breaking 

down a signal into its component parts.  

 

The residuals of the AR model correlate positively with all details examined. Based on 

the correlation coefficient and the similarity of the histograms, it seems D1 represents 

the residuals best. However, the degree to which it represents the residuals is unclear. 

The fact that there is a relatively strong correlation for all three correlation plots shown 
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suggests that although D1 has the highest correlation, it certainly doesn’t provide a 

complete picture of the noise as a lot of the noise is captured in other details. Due to this 

uncertainty over the similarity, the results of the investigation are inconclusive.  

 

5.3. Comparing Risk Across Scales 

The results of this section provide interesting findings regarding the comparison of the 

three assets examined. It would make sense after a visual inspection of the trend of 

Bitcoin since its inception to suspect that Bitcoin is a very volatile series over long 

periods. The results of this analysis certainly back this up. The figures in the results of 

section 4.5 show it having a much higher variance of volatility at higher scales than the 

other two assets. This makes sense as the value of Bitcoin is almost impossible to gauge 

while Ryanair being a company with many assets will always have its price revert over 

the long run due to the fact that it is tied to valuable assets.  

 

Having said that, values of the wavelet variance of the volatility of Bitcoin and Ryanair 

are quite similar over scales of one day or less, much higher than the values for S&P 

500. From this we can conclude that although Bitcoin is riskier if you are trading over 

long horizons, Ryanair and Bitcoin are both very risky at short horizons relative to S&P 

500.  

 

It was interesting that the analysis was able to replicate the results of (Gençay, Selçuk, 

and Whitcher 2001b) in showing that a variance break occurs for all three assets at the 

one-day mark. This variance break was expected but the fact that the break occurs in the 

Bitcoin series is of interest as it was hard to expect what its behaviour might look like 

given how short a lifespan it has so far. In contrast, Figures 4.5a, 4.5b and 4.5c show the 

wavelet variance of the returns scaling linearly for all three assets. 

 

It was also interesting to see that a second variance break seems to occur at the 

one-month mark for Bitcoin and Ryanair. However, given this is an engineering 
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dissertation rather than an economics dissertation, the hypothesising as to why that 

might be will be left to the better educated in this area.   

 

5.4. The Python Implementation 

In order to ensure that the Python implementation of the wavelet theory used in this 

dissertation was consistent with the literature, the results produced were compared with 

four packages:  

1. Waveslim: a wavelet package in R written by Brandon Whitcher,[2] 

2. PyWavelets: a wavelet package in Python,[3] 

3. The Wavelet Toolbox package provided in the default packages in MATLAB, 

[4] 

4. Gretl was also used to verify the results of the AR model. [5] 

These packages allowed for cross examination and verification of the results.   
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6. Conclusion 

It is unclear whether or not there is a strong relationship between the residuals of the AR 

model and the wavelet model. The fact that AR models of returns series in finance only 

account for a small percentage of the variance (In Tetlock’s VAR model, negative 

sentiment only explained 1.52% of the residual variation and was the highest of any 

variable of in the model) means that although they can provide information on what 

features help contribute to a better model and thus give a better understanding of what 

effects the market, the residuals largely reflect the data that is used to produce the 

model. I suspect that is the reason that the residuals correlate with all of the details 

however I cannot be sure about this suspicion. 

 

The results of the variance analysis are a little more interesting, this method of using 

multiresolution analysis to investigate the risk of assets across different timescales is an 

effective one and produced interesting results that confirmed suspicions regarding how 

risky Bitcoin is over long time periods. It also demonstrated how stable S&P 500 is over 

short timescales which makes sense given it is an aggregation of multiple different 

assets.  

 

Both of these applications show the worth of multiresolution analysis in finance. 

Although the results of the multiresolution analysis can be difficult to interpret, the 

nonparametric approach means that the model does not get influenced by biases that are 

inherently incorporated into traditional financial models. This detachment from biases is 

a feature that is very desirable in a world filled with influences that make it hard to stay 

objective. 

6.1. Future Work 

One of the ways this research could be taken forward is to compare more companies 

using the method proposed in the section 3.5.2 of this dissertation. Given only three 

assets were examined in this analysis, the comparison was not as comprehensive as it 
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could have been. It would be interesting to see how other cryptocurrencies compare to 

Bitcoin; are they as risky over long time periods? The answer to that question could 

provide some interesting insights into the dynamics of these new age assets.  

 

There is certainly room for the wavelet method and the autoregressive method to be 

compared using a different autoregressive model. The model used in this dissertation 

was very simple and as such, it perhaps didn’t capture the data as well as it might have 

done. It would be interesting to see if more complex models have a similar relationship 

to the details of the multiresolution analysis. 
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8. Appendix 

Imports 

pandas as pd 

numpy as np 

MODWT 

def  modwt(input_series, filter_length=2, j= 1, 

       g=[ 1/np.sqrt( 2), 1 /np.sqrt(2)], 

       h=[ 1/(np.sqrt( 2)), - 1/(np.sqrt( 2))]): 

   """ 

   Function that computes the modwt of the input series 

   Default wavelet is the haar wavelet 

   Args: 

Input_series: Series modwt will be performed on 

Filter_length: length of wavelet filter basis  

J: decomposition number 

g: scaling coefficients 

h: wavelet coefficients 

   returns: 

   (cD, cA) 

   """ 

   gtilda = np.array(g)/np.sqrt( 2) 

   htilda = np.array(h)/np.sqrt( 2) 

 

   vj = np.zeros(input_series.shape) 

   wj = np.zeros(input_series.shape) 

 

   N = input_series.shape[ 0] 

 

   for t in range(N): 

       k = t 

       wj[t] = htilda[ 0]*input_series[k] 

       vj[t] = gtilda[ 0]*input_series[k] 

       for  n in  range(1, filter_length): 

           k = k - 2**(j- 1) 

           if k < 0 : 
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               k = k%N 

           wj[t] += htilda[n]*input_series[k] 

           vj[t] += gtilda[n]*input_series[k] 

   return wj, vj 

 

IMODWT 

def  imodwt(W, V, filter_length= 2, j=1 , 

       g=[ 1/np.sqrt( 2), 1 /np.sqrt(2)], 

       h=[ 1/(np.sqrt( 2)), - 1/(np.sqrt( 2))]): 

   ''' 

   Function that takes in the detail and smooth coefficients and returns the 

parent series 

   using an imodwt 

   Default wavelet is the haar wavelet 

   Args: 

W: detail coefficients 

V: Smooth coefficients 

Filter_length: length of wavelet filter basis  

J: decomposition number 

g: scaling coefficients 

h: wavelet coefficients 

   Returns: 

Smooth Coefficients of previous decomposition level 

   ''' 

   if len(W) == 0: 

       W = np.zeros(V.shape) 

   if len(V) == 0: 

       V = np.zeros(W.shape) 

   v_output = np.zeros(W.shape) 

   N = W.shape[ 0] 

   htilda = np.array(h)/np.sqrt( 2) 

   gtilda = np.array(g)/np.sqrt( 2) 

  

   for t in range(N): 

       k=t 

       v_output[t] = W[k]*htilda[ 0] + V[k]*gtilda[ 0] 

       for  n in  range(1, filter_length): 

           k += 2**(j- 1) 

           if k >= N: 

               k = k%N 
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           v_output[t] += W[k]*htilda[n] + V[k]*gtilda[n] 

   return v_output 

 

 

Decomposition stopping at obtaining the detail/smooth 

coefficients 

def  cmra(input_series, num_decompositions, h, g, L, verbose= False): 

   """ 

   Perform decomposition for coefficients using modwt 

   Args: 

       input_series: the series to be decomposed 

       num_decompositions: The number of times the modwt will be performed 

       h: The coeffs of the high pass filter of the wavelet 

       g: The coeffs of the low pass filter of the wavelet 

       L: The length of the wavelet 

  

   Returns: 

       List of the series in order cd1,cd2,...,cdj,caj 

   """ 

   results = [] 

   cA = input_series 

   for i in range(num_decompositions): 

       cD, cA = modwt(cA, j=i+1 , filter_length=L, h=h, g=g) 

       results.append(cD) 

  

   results.append(cA) 

   return results 

 

Multiresolution Analysis 
def  mra(input_series, num_decompositions, h=None, g= None , L= None): 

   """ 

   Perform mra using modwt 

   Args: 

       input_series: the series to be decomposed 

       num_decompositions: The number of times the modwt will be performed 

       h: The coeffs of the high pass filter of the wavelet 

       g: The coeffs of the low pass filter of the wavelet 

67 
 



       L: The length of the wavelet 

  

   Returns: 

       Dictionary of "D1, D2,. ..., SN" 

   """ 

   results = {} 

   if h == None : 

       la8 = pd.read_csv( "../datasets/la8.csv", index_col=0) 

       h = la8.h 

       g = la8.g 

       L = 8  

  

  

   cA = input_series 

   for i in range(num_decompositions): 

       cD, cA = modwt(cA, j=i+1 , filter_length=L, h=h, g=g) 

       cD = imodwt(cD, [], j = i+ 1, filter_length=L, h=h, g=g) 

       for  j in  range(i, 0, -1): 

           cD = imodwt([], cD, j = j, filter_length=L, h=h, g=g) 

       results[ "D"+str(i+ 1)] = cD 

  

   for j in range(num_decompositions, 0, -1 ): 

       cA = imodwt([], cA, j=j, g=g, h=h, filter_length = L) 

   results[ "S" +str(num_decompositions)] = cA 

  

   return results 

 
 
 

Wavelet Variance 

def  wavelet_variance(series, J, L): 

   """ 

   Computes the wavelet variance for a given series, scale and wavelet length 

  

   Args: 

       series: the series of detail/smooth coefficients the variance is being 

computed for 

       J: the level to which that series has been decomposed by the wavelet 

transform 

       L: the length of the wavelet used to decompose the series 

68 
 



  

   Returns: 

       A floating point value; the wavelet variance 

  

   """ 

   L_j = ( 2**J - 1)*(L- 1) + 1 

   s = 0 

   N = series.shape[ 0] 

   N_j = N-L_j+ 1 

   for t in range(L_j - 1 , N): 

       s += series[t]** 2 

   s = s/N_j 

   return s 

 

Brick wall function 

def  bw(series, j, L): 

   """ 

   Sets the first n values of the series to nan. This is due to problems 

associated with computing the variance using boundary values. 

  

   Args: 

       series: The input series 

       j: the level to which that series has been decomposed by the MODWT 

       L: The length of the wavelet filter used 

  

   Returns: 

       The series with the first n values set to nan 

  

   """ 

   up_to_value = (2 **j -1 )*(L-1 ) 

   series[:up_to_value] = np.nan 

   return series 

 

Wavelet Variance for multiple decompositions 
def  complete_wavelet_variance(input_series, num_decompositions, fil="la8" ): 

   """ 

   Calculates the wavelet variance for the input series across multiple 

scales. Assumes the wavelet coefficients are stored in ../datasets 
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   Args: 

input_series: series to be decomposed 

Num_decomposition: number of times the series will be decomposed 

fil: Wavelet filter used 

   Returns:  

Dictionary of D1_var, D2_var....  

   """ 

   la8 = pd.read_csv( "../datasets/la8.csv", index_col= 0) 

  

   if fil == "haar" : 

       haar = pd.read_csv( "../datasets/haar.csv", index_col= 0) 

       h = haar.h 

       g = haar.g 

       L = 2 

   elif fil=="la8" : 

       h = la8.h 

       g = la8.g 

       L = 8  

   coeffs = cmra(input_series, num_decompositions, h, g, L) 

   results = {} 

   for i in range(num_decompositions): 

       bw_i = bw(coeffs[i], i+1 , L) 

  

       var = wavelet_variance(bw_i, i+ 1, L) 

       results[ "D"+str(i+ 1)+"_var"] = var 

   return results 
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