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Abstract 
 

Fake news is a topic which has been circulating through mainstream media for a number 

of years now. Fundamental flaws in social media ranking algorithms are being exploited. 

Football transfer speculation news is an area in which this problem has been present for a 

long time. Sports media outlets and individuals have predicted player transfers claiming 

to be “in the know”. This research is aimed to determine to what extent supervised 

machine learning approaches could be used in predicting the accuracy of a tweet or 

Twitter account in relation to a football transfer rumour. The research project involved 

three parts: data gathering; data labelling; classification experiments.  

 

The research details the steps involved in data collection, labelling the data and 

performing the classification experiments. Two distinct approaches were taken during the 

classification experiments. One classification approach using a simple multi-layer 

perceptron model showed promising evaluation metrics when run on unseen data. 

Another approach using a Separable Convolution Neural Network showed no capability 

of learning the features of the training data. The problems and causes of overfitting with 

each approach are also discussed. 

 

Potetential issues with the training set collected were considered. Mainly the concerns 

with potential biasing in the methods used for data collection. Furthermore, the steps 

taken to accurately labelling the training data are detailed.  

 

The findings of this research add to the extensive body of research in the area of fake 

news and football transfer markets. Possible sites for future work which builds on the 

findings are proposed. 
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1. Introduction 

 

Fake news is a phrase which has been circulating through popular media in recent years. 

Since the 2016 US presidential election the term has gained increasing traction and has 

been used to criticize all forms of media. The issue originated with small groups 

manipulating social media algorithms and online advertising for personal financial gain. It 

went onto spark worldwide debate about the credibility of the news sources we use today 

[1]. The term soon became a sound bite and theme coherent with the presidency of 

Donald Trump.   

 

This scandal exposed a series of vulnerabilities in these social media platforms. It became 

intertwined with other scandals such as alleged Russian Government and other 

organizations interfering with elections using fake social media profiles and the hacking 

of personal emails [2]. This coupled with news that political consulting firms like 

Cambridge Analytica were able to develop digital profiles that represented individuals of 

certain political beliefs and demographics provided a scary outlook for the everyday social 

media user [3].  

 

The fake news frenzy forced US, Irish and EU Government bodies to summon social 

media companies’ representatives before them and to seriously start thinking about 

heavier regulation for such companies. That being said these social media platforms are 

still being used daily by millions of users and the same vulnerabilities that were present 

before still exist today. The potential for personal financial gain still exists on these 

platforms and the efforts made so far by these companies involve large teams sifting 

through accounts rather an automated, more scalable approach [4].  

 

The ability to extract meaning or sentiment from a piece of text is something which has 

been made increasingly possible through natural language processing. In the last decade 

companies have turned toward Machine Learning solutions to attempt to solve 

classification and prediction problems. A potential solution to the issue of “fake news” on 

social media may be possible through the creation of a model capable of classifying social 

media posts as “fake” or “real” news [5]. 

 

An area where rumours and fake news is not new is in sport and particularly in relation 

to football transfers in the English Premier League. Twice a year there are transfer 
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window periods where clubs can buy and sell players amongst one another. This leads to 

a lot transfer rumour speculation amongst the press, increasingly on social media 

platforms such as twitter. There are numerous accounts which have been set up with the 

sole purpose of reporting on this, claiming to be the some of the first individuals to be “in 

the know” [6]. 

 

This area gives an ideal test case of a fake news in social media. By taking a specific 

transfer period in the past one can look at rumours posted on social media, specifically 

Twitter, and use them as ground truth to label whether this rumour actually became true. 

Twitter provides a medium to access the hundreds of thousands of rumours and true 

claims, all of which can be fact checked through official records of confirmed transfers. 

This gives a training set to potentially develop a model capable of determining the 

veracity of a new, unseen transfer rumour or a social media post.   

 

1.1 Research Question 

The purpose of this research project is to answer the following question: 

 

“To what extent can supervised machine learning approaches be used to predict the 

accuracy of a Tweet or Twitter account, in relation to a football transfer?” 

 

From this question the following research objectives were defined: 

 

- Data gathering and knowledgebase building: Create python scripts which handle 

the retrieval of football transfer Tweets. This process also involves creating a 

database of confirmed transfers which happened and collections of English 

premier league club names and synonyms. 

- A Natural Language Processing (NLP) technique for Name Entity Recognition 

(NER): This objective involves using existing models to extract information from 

the data in order to determine the meaning behind the text. This process is to be 

conducted to ensure the training set examples are labelled correctly. 

- Classification model development: This objective involves creating classification 

models using different supervised machine learning techniques, using the training 

data gathered in the previous stages. 
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1.2 Overview of this Dissertation 

 

The first section of this paper gives a background of the research and details the problem 

which it is trying to address. It also defines the research question itself. 

 

Section 2.0 gives an overview of existing research on the topic and separate topics which 

are related. It also gives our definition of “fake news”. 

 

Section 3.0 details the methodology of the research. The methodology of this research can 

be spilt up into three distinct sections: Data Gathering; Named Entity Recognition; 

Classification. 

 

The data gathering section details the process of gathering the corpus of transfer tweets, 

English football club names and past transfers which we know to have happened. In 

order to perform any supervised machine learning task suitable training data is necessary 

and this section details the steps taken in gathering this data.  

 

The named entity recognition (NER) stage involved extracting meaning from the tweets 

gathered in data gathering. In order to correctly label each tweet as “happened/didn’t 

happen” the ability to extract entities and names from the texts of tweets was needed. The 

NER section details the methods used in extracting entities and player names from the 

tweets gathered, and how they were labelled. 

 

Lastly, once the training set was available classification experiments were carried out to 

investigate the accuracy of different methods. The classification section details the 

different methods involved in constructing the feature set and the different model 

architectures used. 
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2. Existing Work 
 

2.1 Fake News 

 

2.1.1 Overview 

 

Manipulating news and media outlets for personal, political and financial gain is not a 

new concept, and has been around so far as news and media has itself [7]. However, in 

2016 we appeared to witness and ill-fitting combination between these practises and 

social media. The origin of the fake news social media as we have come to know it today 

can be traced back to the unlikely and infamous Macedonian town of Veles. In a town 

with an average monthly salary of $371, a group of young teens had figured out a way to 

make $16000 [8], around about the same time a report found that over one hundred pro-

Trump fake news websites were registered to Veles. These two happenings of course were 

not a coincidence and as it turned out this group of teens had found a way of exploiting 

social media websites such as Twitter and Facebook to generate thousands of clicks to 

their websites which would in turn lead to revenue via Google ads for themselves.  

 

This idea of enticing users to a click onto a website in the hope of revenue is also not 

new, and these so called “clickbait” tactics to generating clicks have emerged ever since it 

has been incentivised to prioritise clicks over good journalistic reporting [9]. However, its 

relevance has become increasingly important in this post-truth politics era, due to the 

easy access to advertising revenue and polarizing political beliefs. 

 

Aside from groups using these techniques for financial gain, a number of reports have 

alleged that states such as Russia have faced allegations of disseminated false information 

to influence the 2016 US presidential election [10].  

 

The phrase quickly turned into a sound bite to refer to the “lying press” for politicians as 

the social media fake news epidemic became mainstream news itself. Although many 

people primarily associate the phrase with political jargon, the problem of groups using 

fake news to exploit social media algorithms is still an ever-present issue [11]. Facebooks 

CEO Mark Zuckerberg even testified before the US Congress as a result. In late 2018 some 

of the world’s leading tech firms agreed upon a code of conduct to do more to tackle the 

spread of fake news.  However, as many reports have suggested this code of conduct 
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provided little transparency on how to implement it. Most efforts to deter these practises 

have come in the form of manual human labour of shutting down payments and 

preventing the setup of fake accounts. However, automated detection of fake news 

accounts and posts still poses a real challenge [4].  

 

2.1.2 Definition 

 

Irrespective of the research which has gone into the area, there does not seem to be one 

agreed upon definition of “Fake News”. However, the consensus from most studies is that 

it can be defined as news which includes false information designed at purposefully 

misleading readers [12], [13]. The core of the definition of Fake News definition is 

comprised of misinformation and intent. This is true for both articles and social media 

posts as the intent behind one binds it to the other. In other words, the sole reason for a 

fake news social media post is to generate clicks to the article linked in it. Therefore, for 

the purposes of this research, we define the definition of fake news as follows, 

 

Fake News: A social media post or news article that is created with the intention of 

misinforming the reader.  

 

2.1.3 Academic research 

 

In terms of fake news there have numerous studies conducted with the aim of 

investigating fake news and researching possible detection methods. One research paper 

using the BuzzFeed-Webis [14] fake news corpus investigation detailed the research into 

what mainly comprises of a fake news post. The report found that hyper-partisan and 

mainstream publishers all earned verified checkmarks (official account badge) with no 

favourable bias toward any one type earning the badge. The same report concluded that 

manual binary classification between fake and real news was infeasible, as most linked 

articles included true and false news. Despite this, it was noted that the majority of mixed 

fake/real news articles belonged to hyper-partisan “right-wing” sources. Another report 

aimed at defining fake news [12] also confirmed the mixed true/false news nature of 

articles in their corpus, as it was in the BuzzFeed-Webis report. 

 

Aside from research into investigating the contents of fake news and defining it, research 

has also gone into possible methods of fake news detection. Fake news detection using a 

naïve Bayes classifier [15] on the same BuzzFeed data set named above produced 
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interesting results. The implementation aimed to correctly classify the BuzzFeed article 

dataset as True or Fake news. The research showed that even using a simple classification 

approach can yield classification accuracy of 75.4%. Despite having a precision value of 

0.71 and a high classification accuracy, the classifiers recall value was only 0.13. Each 

research paper using this corpus of articles reported the presence of mixed true/fake news 

articles and this low recall value further backs up their claim. The aforementioned paper 

results suggest that machine learning techniques could be successful in tackling this 

problem. 

 

Another research papers approach [16] to the detection issue was to extract linguistic 

features and create linguistic feature sets. Then using said feature sets define and SVM 

classifier with five-fold cross validation was used in the experiment.  This approach 

showed promise, with one classifier producing accuracy scores of 0.73 and 0.74 on 

different datasets. The input features were a combination of punctuation, n-grams, syntax 

and readability features. The same models achieved recall value of 0.74 and 0.73 

respectively.  

 

Previous academic research into defining fake news and fake news classification methods 

provides confidence that further advancements can be made through the use of 

supervised machine learning techniques to addressing the detection of fake news. 
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2.2 Football Transfer Rumours 

 

2.2.1 Overview 

Fake news within reporting on football transfers has is also prevalent. During each 

January transfer and Summer transfer window journalists and supposed sports media 

accounts report on player transfers, of which they claim to be “in the know”, in advance 

of the deal being confirmed. Tactics used during the election are also at play here, 

however it has not undergone the same scrutiny. Nonetheless, the thousands of football 

transfer rumour tweets available gives the opportunity to investigate the feasibility of a 

model capable of classifying the veracity of a rumour, or the account which posted it.  

 

 

2.2.3 Academic research  

In terms of football transfers themselves there has been numerous cites of research. One 

frequent point of research within the area Is the relationship between club expenditure 

and success [17]. Research into the increasing prices of players and even using transfer 

markets to investigate labour mobility and globalization [18] have been conducted. 

 

There have also been research projects more related to the topic of rumour dissemination 

and transfer likelihood prediction. Ireson and Ciravegna [53] detail the potential 

opportunity to measure the likelihood of a transfer using data collected from twitter in 

conjunction with Football Whispers [19]. The research also details the process of named 

entity recognition practises, in order to identify clubs and players in the tweet. The paper 

does not however provide a methodology or any classification experiments. 

 

Caled and Silva [52] also detail the opportunity experiments on a dataset of rumours can 

have for rumour detection. They detail the ongoing efforts with the FTR-18 collection. 

This is football transfer rumour collection comprised of mostly transfer rumour 

publications. The entries in this dataset mainly consist of newspaper excerpts. Transfer 

rumours from the Pheme [20] dataset is also included. This is a dataset containing 

rumours related to nine “breaking news” events, which are labelled “true”, “false” or 
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“unverified”. The research however did not provide an implementation into twitter 

rumour classification or detection. 

 

Most noteworthy is the research done by Xavier [54] into investigating the natural 

language processing techniques and statistical analysis in determining the accuracy of 

certain Twitter accounts in predicting football transfers. The project defined a system to 

identify account which are “most accurate” in predicting transfers. 

The project also explored machine learning approaches to rumour detection. A support 

vector machine (SVM) algorithm was implemented. The results suggested that this 

approach was not useful at all in predicting the veracity of a rumour. The research also 

stated that the feature set used of uni-grams (n-grams of length=1) were not complex 

enough. On top of this the paper provided a clear process for retrieving tweets. The 

project details the process of gathering Tweets using the GetOldTweets open source 

library.  
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3. Methodology 
 

3.1 Introduction 

 

This section details the methodology of this research. The methodology can be split up 

into three distinct sections. The first section is the data gathering section. This involved 

gathering the tweets to be used as the training set for performing the classification 

experiments. It also involved gathering additional information about football transfers. 

The second section involved Named Entity Recognition (NER). This section involved 

ensuring that the data gathered was labelled correctly, in other words was a tweet about a 

past transfer correctly labelled “happened” or “didn’t happen” (fact/rumour). The last 

section involved constructing different feature sets using different methods. It also 

involved constructing different classification models using different supervised machine 

learning approaches.  

 

3.2 Data Gathering 

 

3.2.1 Overview 

The tweets required for this research had some distinct characteristics. Firstly, for any 

given tweet in the data set, the tweet had to be talking about a potential football player 

transfer. Figure 3.1 illustrates an example of this. It had to be talking about a player either 

transferring to or from and English Club from another team, whether it eventually 

happened or not.  
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                 Figure 3.1 

 

It also had to have been posted during a specific transfer window period. During section 

three if the transfer in a tweet was confirmed to have happened, the tweet had to be 

checked against the official transfer confirmation date. If the tweet took place after this 

date, then it was discarded from the dataset as it was not speculation. 

 

In order to perform named entity recognition (NER), other information had to be 

gathered. To check if the entities (clubs) extracted from the tweet text contained an 

English club, a database of English teams had to be constructed. Also, as people tend to 

use nicknames and synonyms for English clubs this information needed to be retrieved 

also. In order to check if transfer tweet was in fact a rumour or not, a database of known 

transfers to have happened during these transfer periods also needed to be constructed.  

 

3.2.2 Methods Used 

 

BeautifulSoup is an open source python library which was used in this stage to scrape 

information from web pages in order to store information about confirmed transfers, club 

names and club synonyms. The library allows you to parse the html of a given URL into a 

tree of Python objects [21]. From here one can extract the elements of the html they 

want.   

 

The gathered tweets and information were stored on a local database. In order to have 

fast access to transfer tweets, known transfers, club names and club synonyms a database 

program called Mongo DB was used. Mongo DB is a NoSQL database program which 
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allows one to store JSON-like documents [22]. The attraction to Mongo DB is that it 

allows for fast access to database information, while providing a simple method for 

defining a database schema and making entries. It also allows for easy deployment in any 

location and has extensive documentation. For the purpose of this project Mongo DB was 

deployed to a local machine using PyMongo, a python driver for MongoDB. This allowed 

for information to be scraped from the source websites and then be saved directly into a 

database collection. The “reset_collections” method in the “db.py” module is set up that 

so as long your local machine has MongoDB installed, the method will scrape and store 

locally the transfer information corresponding to the provided links.  

 

Twitter provides the means to search through the history of tweets posted on their site 

through the Twitter API [23], however the tweets retrieved is limited to tweets within 

the last 7 days for non-paying users. “GetOldTweets” is an open source project which 

allows one to bypass this [24]. This project takes advantage of the JSON loader used by 

modern web browsers and allows you to query tweets that go as far back as Twitters 

beginning. The tool allows you to pass in a query term or sentence along with date 

parameters so one can choose the specific period to retrieve tweets from. This tool was 

used to build the training data set. 
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3.2.3 Implementation 

 

Gather Confirmed Transfer Information 

 

The first information collected was the known confirmed transfers to have happened. For 

known transfers the source used was Wikipedia [25].  

 

Each transfer window Wikipedia page contains a table of transfers and loans which 

happened during a given window. The first information that was scraped and stored were 

confirmed transfers. Using BeautifulSoup this information was parsed, extracted and 

written to a local database. A MongoDB database was created for the whole research 

project called “transferdb”, and a collection (table) was created in this to store confirmed 

transfers. As detailed in section 3.3 this information was eventually used to check if the 

transfer being discussed in a tweet actually happened or not.  

 

Gather Known True Tweets 

 

Two types of transfers tweets needed to be retrieved. Tweets which contained transfer 

speculation which eventually went onto becoming confirmed (true tweets), and tweets 

containing transfer speculation which never ended up happening (rumours). 



 

 14 

GetOldTweets allows you to execute the script with command line arguments, as shown 

in figure 3.2. 

 

 
Figure 3.2 

 

Figure 3.2 shows an example which will return all tweets containing the word “hello”, 

from the 1st – 31st January 2018, limiting them to the most recent 4000 and outputting the 

results to res.txt. 

 

Due to the massive amount of content on Twitter the quality of the content returned 

from GetOldTweets solely depends on the querysearch parameter. Vague query terms 

lead to unrelated tweets being returned. In other words, terms like “in the know” or 

“deadline”, which are usually associated with football transfer content, returned tweets 

completely unrelated to football when used by themselves.  

 

The first approach taken was to take the known transfers which had been retrieved 

earlier and using them generate a query containing the name of the player and club. This 

way the results returned would be narrowed down to specific tweets talking about a 

specific football transfer.  Figure 3.3 shows the commands generated for a given know 

transfer. The methods in the db.py module were responsible for generating commands 

like these. 

 

 
Figure 3.3 

 

This was done for every known confirmed transfer for a given window. Many of the 

functions present in relations.py module were created with the intention of iteratively 
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going through each confirmed transfer, generating the query terms for that transfer and 

writing the GetOldTweets command corresponding to it to a bash script. The “—until” 

flag of the command was set to the day before each transfer was officially announced, this 

way only speculative tweets would be retrieved and not tweets after the transfer had 

been confirmed.  

The realations.py module handled all of this and created a bash script containing all the 

confirmed transfer GetOldTweets commands. The functions in the module were set up to 

write a “wait” command every ten lines, so the script could run ten Python processes 

whilst not slowing the operating system of the machine. This way, upon running the 

script, ten different GetOldTweets commands with different query variations would 

execute and write their result to a shared text file. Figure 3.4 shows a snippet from the 

bash script generated for summer 2015 confirmed transfers. 

 

 
Figure 3.4 

 

Figure 3.4 shows three different commands. All commands query terms contain the 

player “N’Golo Kanté”. However, each query term differs in that they all contain 

different transfer talk phrases appended at the end. Each of these commands with 

different “–querysearch” parameters ran in parallel and wrote their results to the shared 

text file. Also note the “–until” parameter is set to the day before this signing’s official 

announcement date of August 3rd, 2015. The transfer talk phrases appended to each query 

term was a set of phrases. This set was constructed after manually reading through known 

transfer news Twitter accounts and observing the most common words used in these 

Tweets. 

 

After running the bash script for each transfer window period, a collection of known true 

tweets were returned. Although they were retrieved using query terms generated from 

known true transfers, they were not labelled true until the named entity recognition 

methods were performed, as detailed in section 3.3. The results text file generated from 
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running this bash script was then written to a database collection using methods 

constructed in the db.py module. 

 

Gather Rumour Tweets 

 

The previous process resulted in gathering tweets which mainly contained claims of 

transfers which happened. However as stated before, for a balanced training set you need 

examples of transfers which didn’t happen (rumours). 

Generating the query terms for these GetOldTweets commands provided to be much 

more difficult. For this, three main approaches were used. It’s important to note that 

none of the tweets could be labelled as a false rumour until the named entity recognition 

methods described in section 3.3 were performed, so in many ways there was a lot of back 

and forth between the two sections. 

 

The first approach was to observe the already gathered tweets and determine the most 

frequently occurring Twitter accounts in the collection. In other words, identify accounts 

that actively tweeted about football transfers. By doing so one can retrieve all the tweets 

they sent within a given period using the GetOldTweets “–username” flag instead of using 

a query phrase. Pandas [26] is Python Library which allows you read data into a 

Dataframe structure. This structure has a range of functions and operations associated 

with them to extract data or operations on the data contained in it [26]. Using this the 

“find_top_tweeters” method was constructed in the relations.py module, which read the 

collection of tweets gathered in the previous section and returned the top N tweeting 

accounts. Then using the account usernames, each account’s tweets within a transfer 

window time period were retrieved. This method was somewhat effective but lead to the 

retrieval of unrelated, non-transfer related tweets. Despite having methods dedicated to 

filtering out non-transfer talk in section 3.3, there still were un wanted Tweets which 

slipped through the filtering. Also, the larger the corpus that had to be filtered the longer 

this process took, so having a data gathering method which retrieved as much useless 

information and useful information was massively inefficient. 

 

The second approach involved creating general “transfer talk” query terms and passing 

them as the “—querysearch” parameter to the GetOldTweets command. These query 

terms contained transfer phrases such as “in the know”, “having a medical”, “close to 

signing”. The idea was that a corpus of Tweets would be stored, and the methods defined 

in 3.3 would filter out the Rumours and True Tweets. Similar to the previous approach, 
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this returned numerous Tweets unrelated to transfers, or containing vague material not 

talking about an exact player transfer. For the same reasons mentioned in the previous 

approach this would require spending time filtering a corpus of Tweets primarily 

consisting of useless entries, some of which would make it through the filtering phase. 

 

The third method used, and most effective for retrieving Tweets containing the most 

amount of rumours, was by using an approach similar to the first. The initial query terms 

were generated using known confirmed transfers, the same method was applied here. 

However, given that rumours are in fact rumours and didn’t end up happening there 

were no transfer relationships to make the query terms. For this reason, synthetic 

relationships (false relationships) were generated. These were essentially a mapping of a 

player to a club during a transfer window which was known not to have happened. These 

relationships were mainly generated using manual research into the top transfer rumours 

during certain periods. Football Whispers [19] provided as an excellent resource to find 

recent transfer rumours. An example of these relationships can be seen in figure 3.5, 

where a given player is mapped to several clubs. These relationship mappings were then 

used to generate query terms, and from this GetOldTweets commands could be 

generated. The transfer language phrases appended to the query terms were the same 

ones used in generating the commands for the “known true” tweets. This method resulted 

in a large corpus of possible rumour tweets about the synthetic (known false) transfers 

generated.  

 

 

 
Figure 3.5 

 

 

Gather Clubs Names 
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 In order to extract possible entities from a tweet’s text field, a collection of the entities 

being searched for was necessary. Unless the results of the NER model used in section 3.3 

could check the possible club names of the tweet text with actual club names then its use 

would be futile. A Wikipedia page consisting of a table of all English football clubs and 

their respective divisions was used as the scraping source for this [27]. The source was 

updated to the current season (2018/2019). Due to the number of clubs and the tendency 

of the media and individuals to tweet about club transfers in the higher divisions, the top 

four divisions of English football were used for the purpose of this research paper. The 

table also included each club’s official nickname which was stored with each club entry, 

as club nicknames are commonly used to refer to clubs.  

 

During this stage there was also effort put into generating club “abbreviations”. Its 

common practise for fans, individuals and media outlets to use abbreviations when 

referring to a club. For example, a club like “A.F.C Bournemouth” is commonly referred 

to as just “Bournemouth”. The “generate_syns” function in db.py was created to handle 

this, and each club name entry into the collection also contained abbreviations to ensure 

all club names, nicknames and abbreviations were stored for the NER phase. This was 

done by essentially splitting the club name on whitespace. Abbreviations that such as 

“FC”, “AFC” were not included as they are common to many club names. Figure 3.6 show 

and example database entry associated with a club name. 

 

 

 

 

 

Entry: Wolverhampton Wanderers 

 

Figure 3.6 

 

3.2.4 Issues 

 

Making the queries themselves provided some issues and concerns. Coming up with a 

method of generating suitable query terms for the GetOldTweets commands proved 

id name league nicknames 

5c85e7f2 “Wolverhampton 

Wanderers” 
1 “Wolverhampton”, 

Wanderers”,“Wolves” 
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difficult. The primary concern at this stage was if the differing methods used in retrieving 

true transfer tweets and rumour tweets would infer some sort of a bias. The relationships 

defined to generate the synthetic false transfers were heavily influenced by manually 

searching reports from media outlets. The concern was that less tweeted about rumours 

would be missed in this data gathering phase due to the focus on “more newsworthy” 

rumours about top players. 

 

Due to the “retweet” feature on twitter there were many duplicate entries in the data set. 

There were also tweets from different accounts with the exact same text where several 

accounts were all quoting the one source. During this stage there was deliberation as to 

whether this was an issue or not. On one hand, during classification, if the model is 

seeing the same tweet text frequently that is not ideal. On the other hand, if the model 

was to have several other input features like “retweets” and “likes” then It may be useful 

to research the relationship between identical tweet texts with different reach. The 

decision was made to remove duplicate entries. However, after making these efforts to 

removing duplicates some still remained, due a slight character difference. 

 

 

 

 

 

 

 

 

 

 

3.3 Data Labelling 

 

3.3.1 Overview 

This stage involved labelling the tweets gathered in section 3.2 as a “true transfer” or 

“rumour”. In section 3.2 transfer tweets, club names and club synonyms were gathered. 

This section details the process of taking all this information and creating a module which 

could take all this information and correctly label the data. Writing a module to do so 
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involved a lot of different parts. The module which primarily handled all of this is called 

ner.py. It handles all of the filtering, and labelling of the gathered tweets. For the training 

of the classification models it was important to ensure that the examples it was being 

trained on were labelled correctly. 

 

3.3.2 Named Entity Recognition 

In order to determine whether or not a past tweet was a rumour or a true claim, or if it 

was even talking about transfers at all, a method for extracting this information was 

needed. Figure 3.7 shows a sample tweet. The tweet is clearly about Zlatan Ibrahimović 

moving from Manchester United to LA Galaxy. However, this needed to be done for 

every tweet in a dataset of over 140’000 entries. Given the confirmed transfers and 

English club names for each window were gathered in section 3.2, the information 

was present to verify this claim, and label it correctly. 

 

 

 
Figure 3.7 

 

 

This is where Natural Language Process (NLP) techniques were used. Natural Language 

processing is an area which is concerned with how programs can process and analyse 

large amounts of data. Powerful toolkits have been developed in the area to process text 

by tokenizing it, tagging it (part-of-speech tagging), and recognising entities in it [28]. 
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In order check if a tweet contained an English football club the potential entities had to 

be extracted from the text. In order to confirm whether a transfer or not happened, 

potential clubs and player names needed to be extracted.  

There were two main approaches to extracting entities from tweets in this stage.  

 

The first approach was to perform part-of-speech tagging on a tweets text using the 

Natural Language Toolkit (NLTK) [29]. Part-of-speech tagging (POS tagging) is the 

process of marking up a word in a text as corresponding to a part of speech [30]. NLTK is 

an open source Python module which provides NLP methods such as tokenization, 

stemming and part-of-speech tagging. The initial approach to recognising entitles was 

using NLTKs POS tagging function and from there separating the NN’s and NNP’s (nouns, 

nouns plural). This however resulted in a lot of miss tagging of the tweet text. 

 

The second approach involved using a different library called SpaCy. SpaCy is an open 

source NLP library that provides a wide range of pre-trained models and extensive 

documentation on retraining existing models [31]. Spacy aims to provide production 

ready models over research implementations, so integrating it with existing code in the 

project was a seamless process. SpaCy provides a NER model which was trained on the 

OntoNote 5 text corpus [32]. This was is a corpus comprised of various different text 

documents from news, telephone speech and blog in three different languages. It was a 

collaborative effort by the University of Colorado, University of Pennsylvania and the 

University of Southern California. The SpaCy NER recognition model attempts to extract 

possible entities from a text corpus and does so by returning a tokenized and tagged 

object. There are several entity types which it supports, including: “PERSON”, “ORG” 

(organisation), “NORP” (national or religious political group), “GPE” (Countries, cities), 

“DATE” and “MONEY”. The SpaCy NER recognition model was integrated with the 

ner.py module. Figure 3.8 shows the result of the NER model on a particular tweet text 

field. 

 

 

 

 

 

Tweet text: “Zlatan Ibrahimović set to leave Manchester United imminently and to join 

MLS side LA GALAXY” 

 

Terminal output: 
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Figure 3.8 

 

3.3.3 Implementation 

The ner.py module was developed to take the data set of gathered Tweets in previous 

stage and label them correctly, as a rumour or true, by performing named entity 

recognition and verifying the clubs and players mentioned in the tweet using the 

database of confirmed transfers and English football cubs. Figure 3.9 illustrates the 

filtering process each Tweet went through before being labelled. 

 

 

 

 

 Figure 3.9 

 

 

The “process_tweet” function in ner.py is the focal point of the module. From here the 

gathered data is read and one by one each tweet is processed and labelled. Figure 3.9 

conceptually breaks down what’s happening here as there are many functions in the 

module which handle of this. 

 

For a given tweet the elements of the Tweet are separated, namely the username and the 

tweet text field contents. Then the entities are extracted using the SpaCy’s NER model. 
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These entities are then passed to other functions which attempt to extract potential 

players and clubs from the entities. Next the “confirmed transfers” database is queried to 

see if the potential players are present. 

Then the four filters mentioned in figure 3.9 are applied. Stage 1 checks whether or not 

and English was present in the entities. If not, this tweet is skipped as this research 

project is only concerned with transfers involving English football clubs. Stage 2 

separated out known keywords which are predominant with tweets which aren’t talking 

about transfers but are similar enough to be picked up the data gathering phase. Examples 

of these tweets are matchday line-ups, betting odds, injury news and contract extensions. 

Stage 3 ensures that some of a small set of transfer phrases are present in the Tweet. The 

keywords in this filter were constantly adjusted to cater to a more lenient or strict 

filtering process.  

 

If a tweet past the first three stages of filtering it was then time to determine whether it 

was a rumour or not. If there was a player mentioned in the Tweet text that was present 

in our database, then check if the club the player moved to was present in the Tweet 

Text. If so, if this tweet is talking about a transfer which happened, label “True” and store 

it in the corresponding database collection. Else, if there were no known club names or 

club nicknames associated with our database records then label this Tweet as “False” 

(rumour) and store it in the corresponding database collection. If there were initially no 

known players in the Tweet text that were in the database, check if there were still 

potential players in the text. If so, store as rumour, if not discard Tweet. 
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Below is a pseudo code implementation of the filtering and labelling described previously.  

 
def process_tweet(): 

    transfers = datebase.read() 

    for i in transfers: 

        tweet_text = i["text"] 

        username = i["username"] 

        entities = get_entities(tweet_text) 

        potential_players = get_potential_players(entities) 

        potential_clubs = get_potential_clubs(entities) 

        db_result = check_confirmed_transfers(x) 

 

        if english_club_check(pclubs): 

            if noise_filter(tweet_text): 

                if transfer_talk_check(tweet_text): 

                    if len(db_result)>0: 

                        if(already_confrimed(db_result, 

tweet_text)): 

                            true_database.store(i) 

                        else: 

                            false_datababse.store(i) 

                    else: 

                        if len(pplayers)>0: 

                            false_datababse.store(i) 
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3.3.4 Issues 

 

Not picking up clubs as entities 

 

The first predominant issue was that the SpaCy NER model wasn’t picking up some 

English football clubs as entities. The NER model used was trained on a corpus of news 

and conversational text. The entity words in these examples are different to the entity 

words of football teams. For example, if we take the football club “Arsenal F.C”. In the 

context of football an individual with background knowledge of English football clubs 

could easily identify this as a London club. However, Arsenal in the context outside of 

football could be referring to military artillery or guns. This happened for numerous 

other examples.  

 

The solution to this was to manually read through Tweets where no entity had been 

identified. Usually there were several examples of a football clubs not being picked up as 

an entity’s in numerous different tweets. SpaCy provided mechanisms for retraining their 

models. Therefore, retraining methods were implemented in ner.py to retrain the SpaCy 

standard English NER model. After the functions were implemented the clubs which 

were recognised had to be collected along with examples of them being used in a 

sentence or piece of text. Using this the NER model was retrained and the previously not 

recognised clubs were recognised as entities.  

 

The exact same issue happened for players whereby the NER model would not recognise 

some players as a person. The same process was used to retrain the model. Naturally, 

there’s a trade-off to retraining a model for an example and the frequency of that 

example. For this reason, only some examples were chosen to be fixed. In other words, 

retraining a model for a player or club which was only present in less than ten tweets 

would not be an efficient use of time. 

 

Ambiguous non-specific transfer tweets 

 

Upon inspection, the line drawn between “true” and “rumour” is not clear cut. Ambiguity 

lies on where some examples fall into the “true” or “rumour” category. An example of this 

kind of tweet was a transfer that had sensationalised language, a link to a page or article 

but wasn’t talking about a specific transfer. Many of the tweets implied a certain player 

transfer by naming their nationality but without specifying their actual name. 
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Another ambiguous type were tweets which contained transfers which were known to be 

true but other transfers which were known to be false, as shown in figure 3.11. Many 

tabloid publications seemed to group current transfer rumours in a “round up” or 

“summary” tweet and provide a link to an article on their website. 

 

 

 
Figure 3.10 

 

These examples provided uncertainty as to whether they should be included in either 

dataset. The worry was that by labelling these examples as false or true during this phase 

it could end up effecting the model weights during training in section 3.4. 

 

To tackle this issue random samples from the labelled data were selected and manually 

checked. The tweets which contained a mix of true and false transfers claims ended up 

labelled “true” as the stage 4 filter picked up a confirmed transfer in the text. The decision 

was made to keep some of the tweets in the dataset labelled as they were on the basis that 

a tweet claiming to know about a transfer which never happened still falls under our 

definition for “fake news”. Some tweets were the exception to this, mostly in cases where 

the rumour was the minority compared to the other true transfers present in the tweet, 

and they were removed. 

 

In the case where no explicit player name was mentioned in the tweet, these examples 

were removed. The functions created in db.py removed any occurrence of the parameter 

passed, and usually there were many occurrences of the same tweet from different 

accounts with this example case. This is most likely because tabloid news outlets 

frequently use tactics like an “implying headline” but not give any information to the 

reader until they clicked the re-directing link to their site. Although this re-direction 

sounds like the “fake news” definition defined in this research, there was no automated 

way of accurately labelling these tweets unless a player was mentioned which could be 

cross referenced with the database of known transfers. 

 

Incorrectly Labelled False 

 

Another issue which arose in the early stages of NER was the issue of incorrectly labelling 

tweets as “false” even though they were true transfers. This issue arose from the lack of 

filtering and poorly trained initial SpaCy NER model. It’s important to note that the 
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decisions to implement the filtering stages and retraining of the model were not 

methodologies planned from the outset but rather a result of checking the labelled data 

and seeing they were necessary. 

 

 

Label Accuracy 

 

All the observations and conclusions described above about the accuracy observed and 

the issues which arose was a result of manual checks. When developing the ner.py 

module consistent checks of samples of the tweets were performed to check the accuracy 

of the data labelling.  

 

The final testing was performed by taking 7 random sets of 100 from a corpus of 3000 

labelled Tweets. 

 

Results: 

 

Correctly labelled Ambiguously Labelled Incorrectly Labelled 

74% 17% 9% 

 

Due to the data gathering methods used it tended to be “false” rumours which were 

labelled more incorrectly. This is most likely due to the specific query construction 

mechanisms in retrieving “true” transfer tweets, and the synthetic query generation of 

the “false” transfer tweets retrieval. 

 

Due to the limited time frame of the research project the decision was made to accept the 

accuracy and falsely labelled scores of the filtering stage and make a best effort to clean 

the corpus of known ambiguously labelled tweets. 
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3.4 Classification Experiments 

 

3.4.1 Overview 

 

This stage involved taking the labelled corpus of tweets from section 3.3 and performing 

different text classification experiments. Text classification is an aspect of supervised 

machine learning (ML). Text classification is implemented in many different web 

applications today, from email spam filtering to review sentiment analyses. Classification 

where something is sorted into a topic, such as an email being “spam” or “not spam”, is an 

example of topical classification. Sentiment analysis is another form of text classification, 

whereby the goal is to the determine the polarity of the texts content. This could be a 

binary or multi-class classification process. Essentially sentiment analysis provides a 

mechanism to take a logistic regression approach to text classification and output a 

probability score that a piece of text belongs to a certain class. 

 

The training data collected in this research project was separated into one of two classes, 

“true” or “false”, depending on whether the football transfer spoken about in the tweet 

was verified to have happened or not in section 3.3. This dataset provides a basis to 

examine the prediction performance of different models trained on our football transfer 

tweet dataset. 

 

There were two main approaches to text tokenization, vectorization and model 

architecture during this research project. This section details the two different approaches 

taken and the reason behind the them.  It also aims to provide the implementation of 

each process in chronological order and the reasoning behind both approaches. For the 

sake of this research topic we will refer to the two different approaches as approach A 

and approach B. 

 

3.4.2 Tokenisation/Vectorisation. 
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In order to feed the training data into a ML model it must be in a format the model 

understands. For typical linear regression and logistic regression problems the data will 

already tends to be in numeric form, whereas text examples retrieved will be in their text 

form. For example, if one was trying to construct a model to predict the housing price in 

an area, the training data would likely be a set of house prices from the area. Our training 

is not in numeric form. It is tweets with text fields, usernames, retweet numbers and date 

values. This means that the text field values need to be converted in to numerical vectors. 

 

There are two steps to this process, tokenisation and vectorisation. 

 

Tokenisation: This is the process of dividing the text into sub texts which are called 

“tokens”. This enables a generalization of the relationship between data and label. Tokens 

can be divided as small as words, groups of words, or even whole sentences. This process 

determines the vocabulary of the dataset.  

 

Vectorisation: This is the process of defining a numeric measure to characterize the texts 

in the dataset. 

 

Approach A 

 

Tokenisation 

 

In this approach the tokenization was performed using n-grams. N-grams are sequences 

of adjacent items, which in our case are words. If we take the sentence “Ben Watson 

poised to sign deal with Nottingham Forest” the subsequent n-grams are as follows: 

 

N=1 (unigram) :  [ “Ben”, “Watson”, “poised”, “to”, “sign”, “deal”, “with”, “Nottingham”, 

“Forest”] 

 

N=2 (bigram) :  [ “Ben Watson”, “Watson poised”, “poised to”, “to sign”, “sign deal”, “deal 

with”, “with Nottingham”, “Nottingham Forest” ] 

 

N=3 : [ “Ben Watson poised”, “Watson poised to”, “poised to sign”, “to sign deal”, “sign 

deal with”, “deal with Nottingham”, “with Nottingham Forrest”] 
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With n-gram representation word order and grammar is discarded to an extent. N-grams 

with n>1 can maintain some partial ordering but a larger value of n runs the risk of 

overfitting [33]. This approach was used in conjunction with a model which does not take 

ordering into account, as detailed in section 3.4.3. This is called the “bag-of-words” 

approach and is considered a simplified approach to tokenization. 

 

 

 

 

 

 

Vectorisation 

 

Term frequency – inverse document frequency (Tf-idf) is a measure that reflects how 

important a word is in a corpus. Tf-idf score increases with the amount of times a word 

appears in an example and is offset by the number of examples in the corpus. This 

penalizes words which appear frequently in all documents, words which are not unique 

to an example document.  

 

This was the approach used for vectorisation in approach A. Scikit-learn [34] is an open 

source machine learning library containing many features from text vectorization to 

classification algorithms. They provide a tf-idf vectorizer which converts a corpus into a 

matrix of tf-idf features, and vectorizes words based on this. 

 

Over 140’000 tokens were present after Tf-idf vectorization. Not all tokens contribute to 

label prediction, especially if they occur very rarely in the dataset. In order to calculate a 

feature “importance score” in predicting the output, an ‘f_classif” function was used to 

select the top K important features in the dataset. F_classif is Scikit-learn’s 

implementation of the Anova F ratio, which calculates the ratio between two mean 

square values [35]. K was set at a value of 20’000 based on a similar text classification 

implementation [36]. Varying values for K were tested form this point. 

 

Approach B 

 

Approach A’s text vectorisation approach and model, which is discussed in section 3.4.3, 

are implementations which do not take word order into account. Approach B’s 
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vectorisation and model architecture was implemented to take sequences into account. It 

was done so on the belief that order matters in tweets. For example  

“Ben Watson poised to sign deal with Nottingham Forest” can only be fully understood 

when read in that order.  

 

Tokenisation 

 

For this approach tokens were represented as words. This was done on the basis that you 

can map the semantic similarities between words but the frequency of phrase consisting 

of numerous words would be low, especially in a data set of 140’000 Tweets. The Keras 

standard text pre-processing tokenizer was used to split these texts into words [37]. 

 

Vectorisation 

 

Vectorisation for approach B was done using word embeddings. Sequence models like 

convolution neural networks (CNNs) can infer meaning from an order or sequence. The 

use of word embeddings in text classification have been adopted for their capability to 

extract semantic similarities [38]. The idea behind a word embedding is that a word can 

be represented in a vector space, and semantically similar words can be located closer to 

each other.  This way the location and distance between two points can represent how 

similar or different they are semantically, as represented in figure 3.1. 

 

 
Figure 3.11 Preparing data [36] 

 

For approach B this vectorization technique was used by having an embedding layer 

present in the model architecture, as detailed in section 3.4.3. 
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3.4.3 Model Architecture 

 

As detailed in the previous section the text tokenisation and vectorisation approaches in 

A and B differed mainly in disregard and regard for sequence respectively. The 

architectures of the models followed suit. 

 

Approach A 

  

A multilayer perceptron model (MLP) was used for approach A. An MLP model is an 

artificial neural network which consists of at least three layers. This simple model does 

not take into account sequences and requires low computation. MLPs have also been 

shown to provide high accuracy scores in text classification. Some research suggests that 

MLPs can match hidden Markov model accuracy levels, which are widely used in speech 

recognition [39]. 

 

Approach B 

 

Unlike approach A, the model defined in approach B was done so to take advantage of the 

adjacency of tokens. A model which does so is referred to as a sequence model. 

Convolutional Neural Networks (CNN) have been at the forefront of image classification 

when it comes to machine learning. A CNN is a deep learning algorithm which takes an 

image as an input and uses techniques in convolution layers to reduce the image into a 
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form easier to process. It does this without losing the important features which are used 

to make a good prediction [40]. Research into CNNs for text classification has also been 

prevalent and has shown promising results for tasks such as sentiment analysis [41]. 

 

Depthwise Separable Convolutional Neural Networks is a CNN implementation with 

separable convolutions. A depthwise convolution is one where the input channels are 

kept separate and the two-dimensional filter is applied across each channel, as oppose to a 

regular convolution where the filter can be as deep as this input. Figure 3.13 shows the 

difference between a Basic and depthwise convolution with 4 dimensions. 

 

 

 

 

 

 

 

Depthwise Convolution         Basic Convolution 

 

   
 

Figure 3.12 Depthwise separable convolutions for machine learning [55] 

 

A depthwise separable convolution involves one extra step to the depthwise convolution 

described above. An additional step is performed across all channels as shown in figure 

3.13 

 

Input 

Filter 

Channels 
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Figure 3.13 Depthwise separable convolutions for machine learning [55] 

 

Depthwise separable convolutions in model architectures have shown increased 

classification performance when compared to Inception V3, a network architecture 

which had been favoured considerably for optimum CNN performance [42]. For this 

reason, the separated CNN model architecture was chosen for this approach. 

 

The embedding layer was set up using a Keras layers. The model architecture was set up 

so pretrained embeddings or fine-tuned embeddings could be used. Pre-trained 

embeddings are when embeddings learnt from another dataset is transferred into a 

model’s embedding layers. This has the possibility of giving the model a “head start” on 

training, but equally could be counter intuitive if the embeddings were learnt from a 

different context. 

 

 

3.4.4 Implementation 

 

The experiment process for both approaches was the same. Define an architecture based 

off previous research and the previous experiment iteration. Train the model and observe 

the accuracy, area under the curve (AUC) and loss scores during training and validation. 

Tune the models hyperparameters based on values observed. Once the model and 

parameters used showed promising training results, evaluate the model on the test set. 

 

A hyperparameter is a parameter of a model whose value is set before the learning process 

begins. Its common practice in ML to choose initial hyperparameters based off other 

related research. However, the first choice for these values will not ensure the best 

results. The hyperparameters tuned for both approaches were different, as detailed in 

figure 3.14, and figure 3.15 explains the role of each parameter. 
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Approach A Approach B 

Learning Rate Learning Rate 

Epochs Epochs 

Batch Size  Batch Size 

Layers Layers 

Units Units 

Dropout Rate Dropout Rate 

 Filters 

 Kernel Size 

 Embedding Dimensions 

 Pool Size 

Figure 3.14 

 

 

 

 

 

 

 

 

 

 

 

 

Hypermeter Description 

Learning Rate The learning rate (“step size”) determines the amount the weights are 

updated during training.  

Epochs Number of times all the training vectors are used once to update the 

weights. 

Batch Size Number of training examples used in one iteration. 

Layers Layers refers to the number of hidden layers in the model, excluding 

input and output layers. 

Units The number of nodes in each hidden layer 

Dropout Rate Regularization form. Number of units who have their activations 

randomly dropped for a gradient step. 

Filter Dimensions of filter applied to input which produces convoluted feature. 

Kernel Size Window dimensions of convolution.   
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Embedding 

Dimensions 

Dimensions of embedding vectors. 

Pool Size Pooling size. Reduces the dimensions of feature map whilst retaining 

important information.   

Figure 3.15 

 

Jupyter Notebook is an open-source web application which allows for the output of code 

snippets to be displayed in the browser window [43]. This environment was used for the 

classification stage of this research project. 

 

The final corpus of tweets gathered contained 140’000 Tweets. The number of samples 

per class was almost spilt exactly evenly between “true” and “false” rumours. The dataset 

was therefore balanced.  

 

Common practise in ML is to split your gathered data into set for training and testing. 

The set you should set aside for training should be further divided into “training” and 

“validation” sets in a ratio of 80:20. Figure 3.16 shows the breakdown of the of the data 

set for this research project. 

 

Data set size: 140’000 

 

 
Figure 3.16 

 

The data was loaded straight from the local mongo database into Pandas dataframes. 

Pandas [26] is a Python library for data manipulation and analysis, which offers a 

dataframe object with many different methods. After separating the data in to their 

respective sets, the sets were shuffled to ensure an even distribution of classes. 

 

The MLP model was defined using Keras layers. The “mlp_model” function is designed to 

take in layer, units, dropout rate, input shape and class number as parameters and create a 

model accordingly. The main activation function used was Relu. Sigmoid was also 

experimented with but the initial and final activation function used was Relu. The Relu 

activation function has been favoured in NNs because of its ability to solve the “vanishing 
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gradient” problem and accelerated convergence speed [44]. A dropout rate was set at each 

layer and different values were experiment with. Dropout is a form of regularization used 

in neural networks [45]. It works by randomly dropping unit activations for a single 

gradient step, at a predefined rate. 

 

The hyperparameters used in the MLP model were also used in creating the sepCNN 

model, with the addition of other parameters specific to CNN’s. The first layer defined in 

the sepCNN was an embedding layer followed by the convolution blocks. The pooling 

values for each convolution was also experimented with but as described in section 5.0 a 

set model was defined for the purposes of tuning other hyperparameters. The set pooling 

was max one-dimensional pooling in all hidden convolutions with the exception of 

average pooling in the convolution before the output layer. 

 

On top of the functions created to define the two models, there were ones created to 

measure the performance metrics. Training and validation loss and accuracy functions 

were created, as well as a function for plotting the receiver operating characteristic curve.  

 

 

 

 

 

 

 

4. Results 
 

4.1 Overview 

 

This section details the results of the classification experiments performed in section 

3.4.4. It also explains the metrics used to evaluate the classification performance of both 

approaches.  

 

4.2 Metrics Used 
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4.2.1 Accuracy 

Accuracy is defined as the number of correct predictions out of the total number of 

predictions [46]. For binary classification accuracy can be calculated as shown in figure 

4.1. Accuracy essentially tells us the fraction of predictions which the model got correct. 

 

 
Figure 4.1 

 

Where TN = True Negatives, TP = True Positives, FP = False Positives, and FN = 
False Negatives. 

 

In a problem where there is class imbalance accuracy can be misleading. In other words, 

if class A represents 99% of the set then a binary classification model could have a bias to 

always predict for class A. Here a high accuracy score may be achieved but it doesn’t 

mean the model is good at predicting whether or not an example belongs to a specific 

class. The training set for this research topic is almost perfectly balanced, therefore we 

can rely on accuracy as a good evaluation metric.  

 

4.2.2 Loss 

Loss is an indication of how bad a model is performing on an example. Binary cross 

entropy (Log loss) was the loss function used for this experiment. This loss function 

measures the performance of model whose output is between 0 and 1 [47]. Essentially the 

loss value increases as the predicted probability moves away from the examples label.  
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Figure 4.2 

 

4.2.3 Area Under Curve  

A classification threshold is the threshold a model uses for separating an example into a 

given class. For example, if we set the classification threshold for our model to 0.70, it 

means we would only mark an example as true if the output of our model exceeded the 

0.70 mark. True negatives, true positives, false positive and false negative give us a useful 

error categorizing tool. They give us two important more metrics: True positive rate 

(TPR); False positive rate (FPR). 

 

 

 
Figure 4.3 

 

While training a model it may not be clear what the classification threshold should be. A 

receiver operating characteristic curve (ROC Curve) is a graph showing the performance 

of the model at different classification thresholds [48]. It’s a created by plotting the TPR 

against the FPR. 
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Figure 4.4 Classification: ROC Curve and AUC [56] 

 

Evaluating the model at different classification thresholds would give these values but it 

would be very inefficient. By calculating the area under the curve (AUC) we get an 

aggregate measure for performance across all thresholds. This is much more efficient than 

evaluating the model several times with difference thresholds. 

 

4.2.4 Machine Learning metrics 

 

It’s important to note that common practise amongst ML approach evaluations is to not 

solely rely on one metric to measure performance. Section 4.2.1 details how accuracy may 

be misleading. The same goes for loss. Loss can be an indication as to how well your 

model is fitting the training data, but the loss value in testing may be completely 

different. This is a common occurrence called “overfitting” which essentially happens 

when the model learns features of the training data too well.  

In essence one of these metrics alone isn’t sufficient to determine how good a model is. 

Multiple metrics need to be taken into account when evaluating model performance.  
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4.3 Approach A 

 

4.3.1 Overview 

 

The approach and results for each iteration of model design and hyperparameter change 

is be detailed in this section. In each iteration several variations were tried, and the 

results were taken from the most promising models. Discussion and explanation of said 

results is detailed in section 5.0. It’s important to note that for all training and testing the 

data was shuffled and randomly selected from the training data. It’s also important to note 

that the AUC scores were calculated using test data rather than training data. The reason 

for this was training accuracy and loss tended to be very high and low respectively. For 

this reason, it was decided that the test data would a more accurate prediction of 

classification performance at different thresholds.  

 

It’s also important to note that a constant batch size of 64 and learning rate of 0.001 was 

set. These values were found by trial and error. The learning rate of a model is different 

for each use case, depending on the gradient of the loss function. Too high and the 

minimum point may never be found. Too low the model would take too long to learn. 
 

For text classification problems a starting dropout rate of 20%-50% has been cited as a 

good starting point [49]. Several research experiments have shown value in this range to 

perform well with text classification approaches [50], [51]. All iterations for each 

approach started with a dropout rate of 40%, and this value was adjusted from there. 

 

4.3.2 Iteration 1.0 

 

This iteration involved an MLP model with a relatively large number of hidden layers 

and units per layer in relation to this project. The following are the sample results from 

training and testing of several variations. 
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1.1 

 

Hidden Layers = 6, Units/layer = 8, Dropout = 0.40, Learning Rate = 0.001 

Run Validation Acc Validation Loss Test Loss Test Acc AUC 

1 0.989722 0.034 0.790 0.79 0.812 

2 0.9861 0.070 0.780 0.82 0.636 

3 0.9891 0.041 0.796 0.82 0.635 

4 0.9873 0.055 1.522 0.812 0.699 

5 0.98577 0.063 0.725 0.826 0.479 

 

Mean AUC Mean Test Acc Mean Test Loss 

0.6522 0.81 0.922 

 

 

 

1.2 

 

Hidden Layers = 6, Units/Layer = 16, Dropout = 0.40, Learning Rate = 0.001 

Run Validation Acc Validation Loss Test Loss Test Acc AUC 

1 0.990 0.034 1.275 0.805 0.801 

2 0.989 0.036 0.940 0.796 0.690 

3 0.989 0.035 1.033 0.835 0.441 

4 0.9890 0.0372 1.14 0.795 0.767 

5 0.988 0.040 1.21 0.803 0.536 

 

 

Mean AUC Mean Test Acc Mean Test Loss 

0.64 0.80 1.12 
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1.3 

 

Hidden Layers = 5, Units/Layer = 8, Dropout = 0.40, Learning Rate = 0.001 

Run Validation Acc Validation Loss Test Loss Test Acc AUC 

1 0.989 0.055 1.15 0.774 0.54891 

2 0.98 0.045 0.92 0.785 0.4636 

3 0.98 0.04 1.503 0.76 0.654 

4 0.98 0.049 1.352 0.81 0.4660 

5 0.98 0.049 0.94 0.79 0.751 

 

Mean AUC Mean Test Acc Mean Test Loss 

0.57 0.7778 1.172 

 

 

Sample learning performance curves: 

 

 
Figure 4.5 
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Figure 4.6  

 

 
Figure 4.7 
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4.3.3 Iteration 2.0 

 

2.1 

 

Hidden Layers = 2, Units/Layer = 8, Dropout = 0.4, Learning Rate = 0.001 

Run Validation Acc Validation Loss Test Loss Test Acc AUC 

1 0.989388 0.034 0.6852 0.830 0.7894862 

2 0.99055 0.0294 1.032 0.819 0.562368 

3 0.99  0.0316 0.8206 0.80 0.69813825 

4 0.99061 0.028 1.143 0.8054 0.560691 

5 0.989 0.03 0.85 0.825 0.57902 

 

Mean AUC Mean Test Acc Mean Test Loss 

0.63 0.81 0.90 

 

 

2.2 

 

Hidden Layers = 2, Units/Layer = 8, Dropout = 0.25, Learning Rate = 0.001 

Run Validation Acc Validation Loss Test Loss Test Acc AUC 

1 0.9911 0.02 0.94 0.8024 0.868 

2 0.990722 0.03 0.93 0.82 0.68 
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3 0.9892 0.028 0.7620 0.9905 0.9123 

4 0.990388 0.02 0.69 0.831 0.59 

5 0.989 0.03 0.39 0.835 0.626 

 

Mean AUC Mean Test Acc Mean Test Loss 

0.74 0.815 0.74 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 

 

Hidden Layers = 2, Units/Layer = 16, Dropout = 0.4, Learning Rate= 0.001 

Run Validation Acc Validation Loss Test Loss Test Acc AUC 

1 0.991055 0.027 0.879 0.809 0.889323 

2 0.989 0.0304 0.94 0.8160 0.787072372 

3 0.99038 0.03059 0.872 0.8020 0.72313 

4 0.9906 0.0260 0.879 0.822 0.634843 

5 0.9905 0.0276 0.977 0.816 0.7479936 

 

Mean AUC Mean Test Acc Mean Test Loss 

0.75 0.81 0.9094 

 

 

2.4 

 

Hidden Layers = 2, Units/Layer = 16, Dropout = 0.25, Learning Rate = 0.001 

Run Validation Acc Validation Loss Test Loss Test Acc AUC 
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1 0.9910 0.026 0.955 0.817 0.886483 

2 0.990 0.0282 0.890 0.8281 0.769487 

3 0.98855 0.0340 0.8202 0.830  0.6089 

4 0.991 0.02512 0.968 0.871 0.746 

5 0.971 0.028 0.948 0.850 0.836 

 

Mean AUC Mean Test Acc Mean Test Loss 

0.76 0.831 0.902 

 

Sample learning performance curves: 

 
Figure 4.8 

 

 
Figure 4.9 
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Figure 4.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.4 Iteration 3.0 

 

3.1 

 

Hidden Layers = 4, Units/Layer = 4, Dropout = 0.4, Learning Rate = 0.001 

Run Validation Acc Validation Loss Test Loss Test Acc AUC 

1 0.9893 0.1239 1.302 0.7933 0.72 

2 0.9863 0.0999 1.33 0.8220 0.80 

3 0.988 0.0600 0.463 0.815 0.82 

4 0.987 0.052 0.449 0.822 0.73 
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5 0.9763 0.070 0.449 0.798 0.63 

 

Mean AUC Mean Test Acc Mean Test Loss 

0.74 0.8078 0.7898 

 

 

3.2 

 

Hidden Layers =4, Units/Layer=4, Dropout=0.25, Learning Rate= 0.001 

Run Validation Acc Validation Loss Test Loss Test Acc AUC 

1 0.9893 0.067 0.6919 0.8461 0.87613 

2 0.9896 0.0647 0.715 0.8475 0.616897 

3 0.9901 0.055 1.11 0.814 0.7141914 

4 0.989 0.0815 0.538 0.82 0.8551531 

5 0.9878 0.064 1.33 0.8062 0.75282 

 

Mean AUC Mean Test Acc Mean Test Loss 

0.76 0.82 0.87 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 

 

Hidden Layers = 4, Units/Layer = 16, Dropout = 0.4, Learning Rate= 0.001 

Run Validation Acc Validation Loss Test Loss Test Acc AUC 

1 0.9884 0.03755 1.15 0.80 0.8879 

2 0.9896  0.0358 1.30 0.81 0.57818 
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3 0.9902 0.033 1.08 0.822 0.7490 

4 0.9898 0.035 1.236 0.7859 0.6359 

5 0.9911 0.0317 1.303 0.778 0.5242 

 

 

Mean AUC Mean Test Acc Mean Test Loss 

0.675 0.79 1.213 

 

 

3.4 

 

Hidden Layers =4, Units/Layer=16, Dropout=0.25, Learning Rate= 0.001 

Run Validation Acc Validation Loss Test Loss Test Acc AUC 

1 0.99155 0.02893 1.2909 0.8186 0.7688 

2 0.99083 0.03238 1.25 0.8240 0.4545 

3 0.991 0.033 1.31 0.7837 0.6500 

4 0.990 0.03636 1.251 0.8248 0.8788 

5 0.9912 0.0321 1.278 0.8177 0.6381 

 

Mean AUC Mean Test Acc Mean Test Loss 

0.678 0.81376 1.28 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5 
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Hidden Layers =4, Units/Layer=32, Dropout=0.25, Learning Rate= 0.001 

Run Validation Acc Validation Loss Test Loss Test Acc AUC 

1 0.990 0.03547 1.3 0.80 0.66209 

2 0.9908 0.0342948 1.266 0.812 0.6260 

3 0.9917 0.03258 1.3310 0.8014 0.7224 

4 0.991055 0.034 1.319 0.7993 0.6362 

5 0.99144 0.030 1.2164 0.813 0.52402 

 

Mean AUC Mean Test Acc Mean Test Loss 

0.63 0.8026 1.26 

 

 

Sample learning performance curves: 

 

 
Figure 4.11 

 

 
Figure 4.12 
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Figure 4.13 

 

 

4.3.3 Top K 

 

As mentioned in section 3.4.2 a feature importance function was applied to the feature 

set. The top K features were used in training as not all of the set will contribute to the 

output prediction. The initial value used was 20’000, which significantly reduced the size 

of the feature set to from over 140’000.  Several values for K were experimented with, 

ranging up to 40’000 and down to 2500. The experiment found that increasing the value 

for k didn’t have much effect on the accuracy of any of the models but reducing it below 

the 5000-threshold led to a lower performance.  

 

4.3.4 N-Gram length 

 

The N-gram length was limited to uni-grams (n=1), and bigrams (n=2) for the purpose of 

this research. The reason was due to low character limit on Tweets, the sentences and 

expressions contained in the data set was small. Therefore, having n-grams of a large 

length would lead to the model learning sentences as features rather than aspects of 

language used in a tweet. Experimental runs with n set to high values, such as three, four 

or five, led to extremely poor performance in testing.  
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4.4 Approach B 

 

4.3.1 Overview 

 

The experiments performed for approach B took the same format as approach A’s 

experiments. Iterations were performed with different hyperparameters and the 

performance metrics were recorded. However, due to the metric scores retrieved early on 

in training this approach was not investigated to the extent approach A was. This 

approach provided much less promising results. It’s important to note that the layers 

hyperparameter here represents a convolution block. For example, a “layers=2” would 

correspond to two blocks of separable convolutions. Its also important to note the 

training results were so poor there was no testing evaluations carried out on the models 

constructed approach B’s iterations.  

 

4.3.2 Iteration 1.0 

 

Batch size=64, Layers=2, Kernel size=2, Dropout =0.2 

Run Validation Acc Validation Loss AUC 

1 0.4990 0.693 0.5718053 

2 0.5011 0.693 0.453859 

3 0.4981 0.6931 0.518 

 

 

Sample learning performance curves: 

 

 
Figure 4.14 
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Figure 4.15 

 

 
Figure 4.16 
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4.3.3 Iteration 2.0 

 

Batch size=64, Layers=4, Kernel size=4, Dropout =0.2 

Run Validation Acc Validation Loss AUC 

1 0.49672222 0.70099701 0.47 

2 0.498777 0.693 0.59747 

3 0.499833 0.693 0.567 

 

Sample learning performance curves: 

 

 
Figure 4.17 

 
Figure 4.18 
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Figure 4.19 
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5. Evaluation of Results 

 
5.1 Overview 

 

The following section provides evaluations of the results generated in section 4.0. This 

section details the causes for the varying results corresponding to the different model 

hyperparameters. 

 

5.2 Approach A 

 

5.2.1 Iteration 1.0 

 

The first iteration of the MLP were deep models with many units in each layer. This 

research found that this model design performed the worst out of the other iterations on 

our sample set. The reasons for this are detailed as follows. 

 

Overfitting 

 

Overfitting was a problem in every iteration. The training and validation accuracy scores 

were very high, and they converged quite quickly. The model was also able to minimize 

loss to a low level after only two or three epochs on average. This indicated that the 

model was learning features specific to the training set, and this was confirmed when 

compared to the testing metrics. 

 

From the sample runs variation 1.1, 1.2 and 1.3 all provided low AUC values, indicating a 

high number of false positives for low classification thresholds.  

This indicates that the model is largely incapable of distinguishing between the two 

classes, despite all iterations having high test accuracy scores. The testing loss scores for 

all three variations were high. This research found this attributed to the high value of 

dropout regularisation used in training. All variations started with a dropout value of 0.40 

to compensate for the model’s ability to learn features specific to the training set. The 
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motivation behind this high dropout value was to penalize the model for learning 

training set specific features. Whilst this slightly increased the model’s accuracy scores in 

testing, the model’s capability to adapt to new unseen data still suffered. The trade off to 

having lower dropout values led to worse accuracy scores in testing. 

 

This iteration found that the research projects training set features could be overfit too 

easily by complex MLP designs. From this, the decision was made to make the following 

iterations consist of less layers.  

 

5.2.2 Iteration 2.0 

 

Due to the nature of the results in iteration 1.0 the second approach consisted of less 

complex models. For starters all variations in iterations 2.0’s design only had two hidden 

layers as oppose to the previous iterations design. 

 

On top of high testing accuracy, all variations had higher AUC scores than the models in 

Iteration 1.0. High AUC scores indicated that all models would be able to maintain a high 

TPR with a low FPR at a higher classification threshold than iteration 1.0. Variations 2.1, 

2.3 and 2.4 had higher loss scores than variation 2.2. The research attributed this to 

variations 2.1 and 2.3 having a higher dropout value than variation 2.2. Variation 2.4 had 

the same dropout value as variation 2.2, however it did not achieve as low loss values. As 

the complexity of NNs increases its ability to pick more specific features does. A larger 

number of units per hidden layer can lead to the model picking up training set specific 

features and overfitting data. This research attributes the high loss values in variation 2.4, 

despite a lower dropout rate, to the higher number of units per layer learning training set 

specific feature which are present in the test data.  

 

The decision to lower the dropout rate in variation 2.2 was to compensate for 2.1’s high 

loss scores. A NN’s ability to adapt to unseen data is shown by its ability to minimize loss 

in testing. This is just as important as achieving high accuracy scores in testing when 

ensuring it can perform on unseen data. 

 

Whilst lowering the dropout rate provided better loss values in testing, variations such as 

2.3, were carried out to test if it were possible to still use dropout regularization. 

Although efforts to keep training and testing data completely separate this project 

acknowledges that features specific to the training set may also be present in testing, and 
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not in outside examples. Therefore, efforts to define a model with this in mind were 

made. 

 

It’s important to note that the mean of sample training runs does not tell the whole story 

of an iteration. Another considerable measure is the variance in values. The variance for 

all variations in iterations 2.0 is quite high. This coupled with high loss values in testing 

were the two main aspects aimed to be addressed in iteration 3.  

5.2.3 Iteration 3.0 

 

This was the final iteration of the MLP model design. The efforts made in this iteration 

were due to the findings in iteration 1.0 and iteration 2.0. The aim was to develop an 

iteration with more layers than iteration 2.0 but less than 1.0, in hope of providing a 

model capable of performing better than the two previous iterations. As observed in 

iteration 2.0, larger number of units in each hidden layer led to the model’s inability to 

adjust to unseen data.  

 

After testing several NN depth values it became apparent that a model with four hidden 

layers was providing promising results. Variation 4.1 was a simple design of four layers 

and four units. It provided as high AUC score as most of the variations in Iteration 2.0, 

whilst providing a low loss value in testing as well.  

 

Although the accuracy scores achieved here matched the ones of previous iterations, the 

loss scores in testing and variation in all testing metrics was not fixed by the new design. 

 

Iterations 3.3, 3.4, and 3.5 furthered the research’s statement that the more units added to 

each hidden layer the more the model will overfit the training data.  

 

 

5.2.4 Summary 

 

The results from approach A indicate that less complex models were more capable at 

performing well on unseen data than ones which tended to have a high number of layers 

or units. The research attributes the performance of the MLP models to several reasons. 

 

Overfitting  
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The reason overfitting occurred in training for each iteration can be attributed to the 

nature of the data used. The final data set used was over 140’000 entries, however this 

proved to be not big enough. Efforts were made in the data gathering stage to eliminate 

duplicates but its common practise on Twitter to “retweet” someone’s original tweet. This 

involves essentially quoting this tweet to all of one’s followers, but it is a built-in feature 

to Twitter and commonly used. Many situations arise where an individual will retweet 

someone else’s tweet and add a small comment of their own, usually in relation to the 

tweet. Upon inspection of the data gathered this common practise allowed for essentially 

the same tweet in slightly different form to by-pass the projects duplicate tweet filtering. 

This in turn led to the MLP model seeing more or less the same tweet numerous times in 

testing, and thus leading to overfitting.  

This research also acknowledges that the relatively small size of the training set compared 

to MLPs capabilities of learning non-linear features was quite small. Perhaps with a larger 

training set less overfitting would occur. 

 

N-grams 

 

The partial ordering maintained in representing the input features as n-grams also 

contributed to the model’s ability to learn training set specific features, which did not 

appear outside of training. Although the size of n was kept at a relatively low value of one 

and two (n=1, n=2), the results imply this led to overfitting. In order to explain this, 

consider the following example.  

 

Tweet Text: “Transfer News: Liverpool to sign Karim Benzema, #Benzema #Liverpool” 

 

This is a transfer rumour from 2017, Liverpool did not sign Karim Benzema. Our system 

would label this tweet false accordingly and it would be added to the training data. 

 

As an n-gram input feature, where n=2, we would have the following n-grams as input 

features.  

 

N-grams: [“Transfer News:”, “News: Liverpool”, “Liverpool to”, “to sign”, “sign Karim”, 

“Karim Benzema”, “Benzema, #Benzema”, “#Benzema #Liverpool” ] 

 

The n-gram in red font colour is an example of the issue in question. Its suspected the 

cause of overfitting the training data is the models tuning their weights to player to club 
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relationships, rather than the language in all of the tweet. A rumour about a high-profile 

player transferring to a high-profile club would be tweeted and retweeted a lot. When 

the model continuously saw player to club relationships in the text during each epoch it 

likely updated its weights accordingly to the player name and club, rather than to the 

type of language used. 

Player second names themselves are quite unique and irregular to normal text, so the 

models also likely tuning their weights to them alone during training. This gives rise to 

potential future work which is detailed in section 7. 

 

 

 

5.3 Approach B 

 

5.3.1 Overview 

 

The results in all approach B’s iterations tell the same story. The sample learning 

performance curves summarise both iteration’s struggles with approach B. The training 

accuracy curve showed that the accuracy levels in training all lay around the 0.5 mark. 

The loss curve also shows the model didn’t at all converge to the training data. 

Immediately this was alarming as approach A showed stark signs of overfitting in training 

immediately, in all iterations of the model. The results for both iterations in approach B 

showed that this model architecture was essentially guessing the label for the training and 

validation examples. The sample ROC curve’s shown in figures 4.15, 4.17 show that the 

model performance almost perfectly aligns with a random classifier, showing that this 

architecture cannot distinguish between its respective classes. 

 

5.3.2 Summary 

 

The results show that this approach was far too complex for the problem at hand.  

The models were not able to learn any features of the data. The idea behind using word 

embedding for this research project was to attempt to make a connection between the 

language used and the label prediction. In other words, try and model the sensationalised 

language used in fake news tweets.  This research found that the model could not make a 

connection between the semantics of the vocabulary used and the predicted label.  
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This research identifies the small vocabulary size as the reason for this. The vocabulary 

used was not big enough to provide embeddings worth representing in a dense vector 

space. Furthermore, when pretrained embedding were used, they still did not provide 

useful in classifying the examples. This implies that the approach itself was too complex 

for the problem issue. 

 

 

 

 

 

 

 

 

6. Conclusions 

 
6.0 Conclusion 

 

This research builds on a significant body of research in to fake news detection and 

football transfer market prediction. The question this research project asked was:  

 

“To what extent can supervised machine learning approaches be used to predict the 

accuracy of a tweet or Twitter account, in relation to a football transfer?” 

 

The research indicates that supervised machine learning approaches can be taken to 

predict the accuracy of a tweet or Twitter account in relation to a football transfer. The 

findings show that one approach, dubbed approach A, is capable of making accurate 

predictions on unseen data. Out of the two approaches taken the less complex and less 

computationally expensive approach provided more promising testing scores. It’s 

important to note that variations of this method imply that its performance can be 

attributed to the data set used. Despite this, one variation of the method showed 

promising performances on unseen data.  

 

Significantly the dataset collected has similarities with the BuzzFeed-Webis corpus [14], 

and the Pheme [20] corpus. The dataset collected during this research had entries which 
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had a mix of rumours and true transfers similar to how the Buzzfeed-Webis corpus 

contained entries which were a “fake” and “true” news mix. Also, the Pheme dataset had 

a third set of “unverified” entries, which didn’t fall into the “true” or “false” category. 

 

The research also indicates that the dataset used in the approaches is relatively small in 

the context of the problem. To make a more definitive conclusion about the research 

question more experiments, with a more varied and larger data set, are needed.  

 

Furthermore, the attempts made to construct the dataset used in the classification 

experiments provide useful insights. The main insight which can be taken from this is 

careful consideration should be taken in data gathering and labelling for future work as to 

not bias the data set.  

 

It’s also significant to note that an approach aiming to take into account word ordering 

and semantics, dubbed approach B, performed much worse on the same data set as 

approach A. The results from this approach outline one approach which is certainly not 

suitable when trying to answer the research question.  

 

The machine learning approaches for fake news classification of Buzzfeed-Webis corpus, 

mentioned in section 2.1.3, provided high accuracy but low recall values. The finding of 

the approach A build on this as high testing accuracy was accompanied with a high loss 

value and fluctuating AUC values.  

 

Furthermore, the results from approach A contradict Xavier’s [54] claims that unigrams 

may not be a complex enough input feature. They do however build upon that a different 

approach to support vector machines is suited to the use case. 

 

To conclude, the results imply that supervised machine learning approaches are capable 

of predicting the accuracy of tweet or twitter account in predicting a football transfer. 

The research acknowledges the results may have been affected by a bias in the data set, 

and the size of the data set. The research identifies another clear approach which is not 

capable of predicting a transfer rumours accuracy. Despite this further work is needed to 

make a definitive statement on the research question. 
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6.1 Future Work 

 

The results of this experiment found some interesting insights into the data used and the 

approaches taken. These findings should be taken into consideration for future 

experiments in order avoid similar outcomes.  

 

Entity freezing 

 

The results showed a tendency to overfit the data in the training of the models. Even the 

most promising model architecture overfit the data in training. The research attribute this 

to the neural networks learning player names and player to club relationships. One 

potential improvement on this would be to use the same data set but with all the player 

names and clubs removed or replaced with a variable name. The following is an example 

of this. 

 

Tweet text: “Eden Hazard confirmed to be joining Real Madrid this summer, sources close 

to the player have confirmed !!!!! http://www. dailymail.co.uk/sport/football /article-

604488” 
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Entities removed: “_ confirmed to be joining _ this summer, sources close to the player 

have confirmed !!!!! http://www. dailymail.co.uk/sport/football /article-604488” 

 

Notice how the player (Eden Hazard) and the club (Real Madrid) were replaced with 

underscores and the rest of the tweet was left. Instead of giving the model a chance to 

learn unique player to club connections to the predicted label, we could focus on training 

it to recognise features of the language used. 

 

This way we could ensure the model would only try to predict based on words in the text 

around the players and club. Perhaps this might result in model being able to pick up on 

sensationalised fake news/tabloid style language in tweets.  
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NER Named Entity Recognition 

SVM Support Vector Machine 

CNN Convolutional Neural Network 

MLP Multilayer Perceptron 

sepCNN Separated Convolutional Neural Network 

NN Neural Network 

DB Database 

ML Machine Learning 
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