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Summary

The prediction of Quality of Experience of video in mobile networks can help with QoE adap-
tation, and thus is important to service providers and researches. This dissertation applies
machine learning algorithms to QoE prediction and uses network Quality of Service param-
eters as features for the machine learning models. This work also investigates the role of
wireless-specific QoS parameters in QoE prediction.
In current research QoE prediction is typically done in two main ways: with media-layer param-
eters and with network QoS parameters. Media-layer parameters are features and impairments
of the output video signal, the computation of which would make such models too resource-
intensive for in-service usage. Works that focus on network QoS parameters typically limit
their feature space to a few QoS parameters and rarely feature any wireless-specific parame-
ters in their models.
To collect the QoS parameters an LTE simulation was created that attempts to accurately
emulate the current and future LTE background traffic landscape and the general environment
of video transmission. Quality of Service parameters are collected during the simulation for
the target video being transmitted. After the simulation, the transmitted video is objectively
evaluated for QoE by the VQM tool. This tool has high correlation with subjective QoE MOS
and is widely used in research.
Quality of Service parameters collected and the Quality of Experience scores are used as
features and labels respectively in four machine learning models. These models are Support
Vector Machines, Random Forest, Gradient Boosted Trees and a Feedforward Neural Network.
The performance of these algorithms was evaluated, and all the algorithms achieved RMSE
of around 0.1, which is a tolerable error with respect to the MOS scale. SVM performed
the poorest on the task of QoE prediction, with Random Forest and Gradient Boosted Trees
performing well. Feature importance of wireless-specific parameters was evaluated, and it was
found that the number of UE connected to an eNB and the % of the UE streaming video
have high importance, while the other wireless-specific parameters have a small influence on
QoE prediction. New models of the four algorithms were created which used either delay,
jitter and packet loss to predict QoE or the wireless-specific parameters alone, and both of
the models performed reasonably well, with the RMSE being only slightly larger for both than
in the original model.
It was discovered that machine learning can be successfully applied to QoE prediction. Some
wireless-specific parameters were found to have a large impact in QoE prediction, and it was
also found that they could be used alone to predict QoE. However, that would not provide
and advantage to using delay, jitter and packet loss in QoE prediction models. The poten-
tial future works include conducting a subjective study to verify the accuracy of the models,
extending the work to TCP video and applying incremental learning techniques for potential
in-service deployment of machine learning for QoE prediction.
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Using Machine Learning to Predict Quality of
Experience of Video in LTE Networks

Daria Tsaregorodtseva

Abstract
With the rapid growth in mobile network usage and video streaming being the most popular
service, Quality of Experience of video in mobile networks is of extreme importance to both
service providers and their customers. The ability to effectively predict Quality of Experience
of video is key for QoE adaptation and higher levels of customer satisfaction.
In this work machine learning algorithms were used to create models that predict QoE with
network QoS parameters, including wireless-specific and LTE-specific parameters. An LTE
simulation that reflects the current mobile traffic landscape was created to obtain the data
set for training. An objective tool for video QoE evaluation was used to gather QoE data
necessary to train the prediction models. Support Vector Machines, Random Forest, Gradient
Boosted Trees and Neural Networks were chosen as the machine learning algorithms for
Quality of Experience prediction, and it was shown that they achieve high accuracy. Influence
of wireless-specific parameters on QoE prediction was also investigated, and it was discovered
that they are suitable for use in Quality of Experience prediction models.
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1 Introduction

Quality of Experience is a metric that describes user satisfaction with a given service. The

ability to predict and monitor Quality of Experience of video streaming in LTE networks

could help achieve higher overall levels of mobile video Quality of Experience by way of

timely QoE adaptation. It could also potentially give an insight into which parameters affect

QoE the most.

1.1 Motivation

In recent years it has become impossible to ignore the rapid increase in global mobile traffic.

It has been estimated that mobile traffic data in 2018 equaled over 225 exabytes, which is

an almost 60% increase from 2017. By the end of 2022 that figure is predicted to grow to

nearly a zettabyte [11]. In North America and Western Europe alone, the compound annual

growth rate of mobile traffic is predicted to amount to 40 % from 2017 to 2022 [11].

With the rapid increase in demand of mobile traffic comes the challenge for service providers

to be in step with the growth and to consistently ensure a high quality service. This is

particularly crucial for video streaming as it is currently responsible for 58% of all mobile

traffic and is also an especially demanding service. It is estimated that the percentage of

mobile traffic used for video streaming will grow to 79% by 2022 [12].

Not only is it difficult to provide a service that ensures high quality video delivery, but it has

also been shown that users are especially impatient when it comes to online video.

According to recent findings, it only takes 2 seconds of playback stalls for 25% of viewers to
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abandon a video, and over 50% of viewers abandon a video after 30 or more seconds of

buffering [13], which illustrated just how important Quality of Experience of video is for both

service providers and their customers.

In the wake of all of these challenges service providers need to be able to keep up and keep

customer satisfaction rates high with high Quality of Experience of all services, but

especially the predominant service of video streaming.

Quality of Experience prediction could be one of the methods to help service providers

improve video QoE in LTE networks. Machine learning algorithms are frequently used to

predict QoE of video by using either media-layer or network-layer Quality of Service

parameters. Models that use network QoS parameters are more practical for in-service

usage, however wireless-specific parameters are rarely included in these models. The usage

of such parameters for QoE prediction could give a better insight into adaptation

possibilities for QoE of video in LTE networks

1.2 Research Objectives

The main objective of this work is to apply machine learning techniques to video Quality of

Experience prediction in an LTE network. A few machine learning algorithms have been

previously applied to QoE prediction in wireless networks, but the works are very limited and

typically only focus on a few parameters for QoE prediction. This work aims to train several

machine learning models on an adequately large data set of network QoS parameters and

their respective video QoE scores. The data used for QoE prediction should competently

reflect real-world data, both in terms of QoS parameters and QoE scores, to ensure robust

and accurate prediction models. Another objective is to infer the influence of

wireless-specific parameters on prediction of QoE of video in LTE networks. This aspect is

often neglected in related research despite how tied it is to the setting of the research.
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1.3 Dissertation Structure

Chapter 2 of this dissertation provides the necessary background and discussion of related

research. In Chapter 3 the design and implementation of this work are presented in detail.

Chapter 4 provides the results and evaluation of the work and Chapter 5 discusses the

conclusions and potential for future work.
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2 Background

Unmet expectations of quality can be frustrating for customers and devastating for service

providers, especially when it comes to the most popular service. Being able to successfully

monitor and predict Quality of Experience of Video in mobile networks is a critical need for

the network operators. Many approaches to QoE prediction in wireless networks have been

developed, including intrusive and non-intrusive models as well as models that use machine

learning or other techniques.

In this chapter Quality of Experience of mobile video and its assessment methods are

described, related work on QoE prediction is presented and background on LTE networks

and the machine learning algorithms used in this work is given.

2.1 Quality of Experience

Quality of Experience is a metric used to describe the users’ satisfaction with a service and

their perception of the service’s quality. The essence of Quality of Experience is purely

subjective as it is only concerned with the users perspective and not with any technical

quality metrics. However, Quality of Experience can be measured both subjectively and

objectively. For a subjectively measured QoE, user surveys are required to gather subjective

evaluations of a given service. Such surveys are generally costly and time-consuming, and

require a variety of demographics and context scenarios to be as accurate as possible. In

addition, they typically provide feedback on a post hoc basis.

The most commonly used metric for subjective multimedia QoE evaluation is Mean Opinion
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MOS Quality
5 Excellent
4 Good
3 Fair
2 Poor
1 Bad

Table 2.1: MOS scale

Score (MOS). MOS is an ITU standardized 5-point scale [14], on which the values 1-5

correlate to bad, poor, fair, good and excellent, as shown in Table 2.1

The usefulness and accuracy of Mean Opinion Score is debated, mainly in terms of how it is

obtained from the users and how it should be interpreted [15]. It still remains the most

widely metric used in research and also in industry, for example by Skype, which uses a MOS

post-service to measure perceived quality of the call.

Alternatively, objective models are also used to estimate QoE and attempt to do so without

human interaction. Objective models are reproducible, more predictable and also are more

suited for in-service usage for real-time service monitoring and adaptation, however due to

their nature they are likely to be less accurate than subjective models.

2.1.1 Objective Video QoE Assessment

Objective video QoE assessment techniques are necessary to objectively evaluate human

perception of video quality and produce a reliable QoE score that would reasonably correlate

with a subjectively obtained QoE score. The most popular methods most commonly rely on

the input and the output video to assess QoE. A few such methods are currently in use by

researchers who study objective Quality of Experience to avoid having to resort to surveys or

crowdsourcing especially if large data sets of videos are involved. These include:

Peak Signal to Noise Ration (PSNR) is a dated but traditional metric for evaluating

objective QoE. It can be mapped to MOS through the ITU-T J.144 [16] standardized

formula and is quite simple to understand and compute. However, it is widely accepted in

current research that PSNR does not accurately reflect subjective QoE scores [17, 18] as it

only evaluates the changes in the output video compared to the input video and does not
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take into account any aspects of human perception.

Structural Similarity Index Metric (SSIM) [19] is a video quality assessment metric

that assesses video quality based upon brightness, contrast and structure. Originally SSIM

was developed for images, however it was later extended to video [20]. MultiScale SSIM is

an extension of the original metric which incorporates analysis of image details at different

resolutions and performs better than standard SSIM [21, 22, 23].

Video Quality Metric (VQM) was developed by the National Telecommunications and

Information Administration (NTIA) to measure perceptual video quality [24]. It has been

standardized by ITU-T [16] and works by performing feature extraction and video quality

assessment through parameters such as blurriness, block distortion and noise. Studies have

shown that VQM has a high correlation with subjective scores [25, 26].

Video Multimethod Assessment Fusion (VMAF) is a perceptual video quality metric

developed by Netflix [1]. The tool relies heavily on machine learning, namely Support Vector

Machines (SVM) to maximize its correlation with subjective MOS and does so by using

image fidelity metrics as features for the algorithm. Independent studies have shown that

VMAF does correlate strongly with subjective MOS scores, but regularly overestimates MOS

[27].

Netflix has conducted its own comparison of PSNR, SSIM, VQM_VFD (a version of VQM

that employs Neural Networks), and VMAF on four public video datasets: NFLX-TEST [28],

LIVE database [29], the VQEGHD3 collection of the VQEG HD database[30] and LIVE

Mobile database [31]. In this comparative study it was shown that VQM performs similarly

to VMAF, sometimes outperforming it. The root-mean-squared error of the 4 methods

applied to the 4 data sets is shown in Figure 2.1. As a result of this study and other similar

works it was decided to use VQM in this work to objectively asses QoE of transmitted videos

and use them as labels for the machine learning models.
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Figure 2.1: RMSE Comparison of four tools for objective QoE evaluation[1]

2.1.2 QoE Evaluation With VQM

The VQM tool was developed by the National Telecommunications and Information

Administration (NTIA), which is a US agency, to most accurately evaluate human

perception of video quality [32]. The General VQM model is included as a normative

method in the ITU J.144 recommendation [16]. There are a few steps performed in VQM to

estimate the QoE:

1. Reduced-reference calibration of the target video is performed. This is achieved by

estimating the valid region of the video to prevent non-picture areas such as borders

from affecting the QoE estimation, determining and correcting spacial and temporal

shifts, as well as gain and level offset.

2. Extraction of quality features is implemented by first enhancing particular properties of

perceived quality of both the original and the target video streams by applying

perceptual filters. Then various mathematical functions are used to extract the
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features from spatial-temporal sub regions of the target video. The quality features

extracted in this step contain information on noise, unnatural motion and jerkiness,

blurring, blocking, colour distortion and other similar elements that affect human

perception of video quality. A threshold is applied to prevent measurement of

imperceptible impairments.

3. Quality parameters are calculated from the quality features to represent overall video

distortion by comparing quality features of the original and the target videos. The

General VQM model calculates seven independent quality parameters.

4. VQM General Model takes the quality parameters calculated in the previous step to

compute VQM. The score produced by the model ranges from 0, which signifies no

perceptible quality impairments, to 1, which represents the maximum perceived quality

impairment.

Experiments to validate the VQM General model were conducted with 1536 subjectively

measured video sequences, and resulted in an overall Pearson linear correlation coefficient of

0.948 between the subjective scores and objective scores obtained with the VQM model.

The VQM score maps linearly to MOS.

Seven years after the General VQM model was developed, NTIA came out with a VQM

Variable Frame Delay model [33]. This model is of particular interest due to the use of

Neural Networks in the model and its increased accuracy.

The implementation of the VQM VFD model is very similar to the General model. The steps

detailed above are all present, with the first main difference being that there is an extra

quality parameter calculated which represents the impact repeated and dropped frames have

on perceived video quality. The other, arguably more impactful change is the application of

Neural Networks in mapping the calculated quality parameters to the final VQM value. The

Neural Network used was implemented in Matlab and was trained on 9000 video clips of

different sizes and their subjective ratings.

This model generally achieves a higher degree of accuracy in predicting subjective scores

[1, 23, 33], which is the reason why it was chosen as the objective QoE evaluation tool for
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this work.

2.2 Related Work in QoE Prediction

The ability to predict the customers’ Quality of Experience would enable service providers to

carry out efficient and timely resource allocation and adaptation to ensure a higher quality

service with reduced cost. In particular, it would allow them to focus only on parameters

that affect the users perception of the service and reduce the need for maximization of all

QoS. Most recent approaches for QoE prediction rely on statistical and probabilistic

techniques as well as machine learning and artificial intelligence, and use different types of

features for QoE prediction.

Quality of Experience prediction models can be intrusive and non-intrusive, where intrusive

models predict QoE by extracting features from the output signal, either on its own or by

comparing it with the input signal [34], while non-intrusive models rely on network and

application parameters [14, 35].

The most common models of multimedia QoE prediction in wireless networks in current

research can be roughly split into Media-Layer models and Parametric models, which are two

of the five types of QoE evaluation models specified in ITU J.144 [14]. Media-Layer models

are intrusive models which typically rely on output multimedia signal features for Quality of

Experience prediction in mobile setting. In these works most popular parameters used to

predict Quality of Experience are buffering ratios [36, 37, 38], video playback stalls [39, 40]

and ratio of uninterrupted viewing [37, 39, 40]. These models frequently employ small scale

studies to get subjective QoE scores, and Decision Trees and Random Forest seem to be

very popular machine learning algorithms in Media-Layer QoE prediction [36, 37, 38, 39].

These models do achieve high accuracy in predicting QoE, but are predictively too resource

intensive for in-service deployment. They also do not take into account the wireless nature

of the multimedia signal transmission.

The Parametric Models use network Quality of Service parameters for Quality of Experience
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prediction. They are more suited for in-service QoE monitoring and prediction and give a

better insight into possible QoE adaptation.

This dissertation focuses on network Quality of Service parameters for Quality of Experience

prediction, and thus can be considered a Parametric model, so it is be beneficial to describe

related work in more detail.

2.2.1 Parametric Models

As mentioned above, parametric models rely on network Quality of Service parameters for

Quality of Experience prediction. In the context of telecommunications, Quality of

Experience (QoE) and Quality of Service (QoS) of networks are closely related but are

recognizably separate from each other. Quality of Service is a term that characterizes the

technical aspects of the service’s performance while Quality of Experience only describes the

users perception of a service’s quality.

QoS cannot be exclusively used in assessing a service’s end user experience since QoS does

not linearly map to the users perception of quality as it does not take into account any

human-related factors. Different Quality of Service might end up resulting in the same QoE

due to the context, device, type of service or human inability to distinguishing small changes

in quality.

Network Quality of Service can be more thoroughly described as a set of methods,

parameters and characteristics that manage a network flow. QoS is the main instrument to

reaching a desired QoE and is what QoE relies on the most.

Jitter, delay, latency and packet loss are some of the most popular parameters that are used

to measure and describe network Quality of Service and are relied on heavily for QoE

prediction in wireless networks, however most often only a few Quality of Service parameters

are used and wireless-specific parameters especially are used very rarely.

Works that use QoS parameters for QoE prediction commonly use Machine Learning and

can be split by the type of algorithm they choose to use.
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Non-Machine Learning approaches

There are some recent works on QoE prediction in wireless networks that do not use machine

learning. Khan et al. [41] proposes a model for QoE estimation based on content clustering

and linear regression. This is a hybrid model, using both media-layer and network QoS. The

prediction focuses mainly on video attributes, namely the video content type, which is

extracted with content clustering. Then linear regression is used to design an equation which

calculates MOS based on content type, the sending bitrate, the frame rate and the packet

error rate. According to the results presented in the paper, video content type has a

significant effect on Quality of Experience. However, very few QoS parameters were used in

the model which can prove to be ineffective as it is not sufficiently exhaustive. In the case of

[41] the addition of other QoS parameters might offer an improvement in QoE prediction.

CaQoEM is an approach developed by Mitra et al. [42] that uses Bayesian Networks, which

is a type of probabilistic model, and utility theory to predict QoE in mobile networks. The

work focuses heavily on context variables, such as user location and the type of device the

video is viewed on. Context can be an influential factor in the user’s Quality of Experience

[43], but it has not been shown to be more important than the QoS. In [42], Quality of

Service parameters such as jitter and delay were reduced to three states: ’good’, ’fair’, and

’poor’ and their influence on Quality of Experience was not widely explored, as they were not

the main focus of the research.

Reinforcement Learning Approaches

Reinforcement Learning (RL) is a machine learning technique that employs an agent which

learns how to act in an environment based on the rewards and punishments it receives for its

actions. Reinforcement learning is particularly suitable for problems that require decision

making and has been successfully applied to several networking problems [44, 45, 46].

Canale et al. [47] applied Reinforcement Learning to Quality of Experience prediction by

having the RL agent make changes to QoS affected parameters, and then receive a reward

based on the resulting QoE, which was measured by a MOS. QoS is represented by a
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function that maps the usual QoS parameters (bandwidth, delay, jitter etc.) to a value in

the range of [0, 1], with a higher QoS corresponding to values close to 1. This study

provides a way to model the QoS/QoE relationship based on user behavior, but does not

provide a deeper look into the effect of specific QoS parameters on QoE.

Neural Networks Approaches

A Neural Network is a Machine Learning method that is loosely inspired by the structure of

the human brain. Neural Networks learn to transform inputs into higher level features useful

for the task they are being trained on. Of particular relevance for this work is the fact that

they are suitable for mapping non-linear relationships, such as the one between QoS and

QoE.

Begluk, Husić and Baraković [48] used a FeedForward Neural Network to create a model for

predicting MOS for wireless video transmission. The NN approach has also been one of the

components of the MLQoE tool [49], which has a high performance rate in the VoIP QoE

calculation in IEEE802.11. Neural Networks have also been used in non-wireless QoE

prediction [50], [51]. In [48] The LENA NS3 module was used to simulate the network, and

the EvalVid framework was utilized to evaluate the MOS of each transmitted video. The

EvalVid framework relies on PSNR for MOS calculation. Delay, jitter and packet loss were

chosen as features for training the Neural Network, as they are the most common

parameters for QoE prediction in research. To verify the MOS predictions, a small-scale

subjective study was also performed. The main contribution of [48] is the implementation of

real-time optimization of MOS prediction by the NN, which was shown by this study to be

reasonably effective in the conditions of this study. Further research is needed to verify the

effectiveness of the proposed prediction approach when expanding MOS prediction to

include more QoS parameters and using a more reliable MOS calculation method.

He et al. [52] proposed using a Probabilistic Neural Network(PNN) to estimate the QoE of

Video transmission over an LTE network. A PNN is a Feedforward Neural Network with two

hidden layers and is commonly used in classification problems. The network was simulated in
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OPNET, and MOS was used to quantify the Quality of Experience. In the work, end-to-end

delay, delay jitter, packet loss rate and mean loss burst size were calculated for each

transmitted video, and were used as features for the PNN. The Mean Opinion Scores were

collected by a small-scale subjective study. PNNs are fitting for the task as they are well

suited to pattern recognition and non-linear mapping problems. In addition, their fast

training times make them a good candidate for online deployment. This approach seems to

have highly accurate results, however, it is heavily dependant on MOS scores collected from

a small group and only uses a few QoS parameters for QoE estimation.

Decision Trees

Decision Trees have also been successfully applied to modelling the QoS/QoE relationship.

Menkovski et al. [53, 54] have considered Support Vector Machines and Decision Trees for

QoE prediction, and have ultimately decided that decision trees are more suitable for the

task. Other work in the wired domain seems to support this choice [55]. Menkovski et al.

have developed an Online Learning model based on Hoeffding Option Trees, which are a

type of Decision Tree that enables Online Learning due to the training data being processed

one datapoint at a time with no need for the training set to remain in memory. The method

uses real-time user feedback in its online learning, and is one of the few works on Quality of

Experience prediction that takes a fully online approach. However, they only use video

received bitrate, audio received bitrate and framerate as features for their algorithm, as well

as using a binary score of "acceptable" and "unacceptable" for QoE measurement, which is

a very simplified way of measuring how real users view QoE.

Decision Trees are also used as one of the methods in MLQoE [49], which is a modular

approach to QoE assessment that utilizes multiple machine learning algorithms to assess

QoE of VoIP in wireless networks. Average Delay, packet loss, average jitter and other

similar metrics are used as features for the models, and in the work Decision Trees generally

performed at a similar level with Neural Networks. This work is quite unique due to creating

a modular system, and is geared towards VoIP and WiFi.
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Other Supervised Learning Approaches

In the work by Aggarwal et al. [56] a tool called Prometheus was developed. It is a

prototype that predicts QoE and playback stall periods of mobile video and VoIP based on

network parameters such as packet loss rate and throughput. The video quality parameters

are collected from applications installed on the user device. A slightly modified MOS scale is

used for QoE evaluation, and LASSO regression is the technique chosen for QoE prediction.

A comprehensive number of network QoS parameters is used in the model,however the

methods of collecting video quality parameters from apps would be impractical for service

providers due to the ever-growing number of apps providing video-on-demand and VoIP

services, as well as the possible unwillingness of these apps to provide access to their data.

2.3 LTE Overview

2.3.1 LTE Mobile Network Overview

Long-Term Evolution (LTE) is a 4th Generation (4G) mobile communications standard

developed by 3GPP. It provides high peak data rates, low latency and flexible bandwidth

operation. The architecture of the LTE Network is shown in Figure 2.2.

The Evolved Packet System (EPS) is the central part of the LTE network that consists of

the Evolved Packet Core (EPC) and the Evolved Universal Terrestrial Radio Access Network

(E-UTRAN). The EPC is the core network of LTE and consists of various telephony

switches, which connect the mobile devices and the mobile network to the Internet [57]. The

EPC consists of the following five main nodes:

• The Serving GateWay (SGW) connects the E-ULTRAN to the EPC and is

responsible for connecting the user terminals to the external IP networks. It is

connected to the PGW and they are commonly combined in the same physical network

device.
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Figure 2.2: LTE Architecture
Based on materials from 3GPP [2] and figures in [3]

• The PDN GateWay (PGW) connects the EPC to the external IP networks, or

Packet Data Networks, and is responsible for routing the traffic between them. It also

deals with tasks such as IP address allocation, packet filtering and policy enforcement.

• The Policy and Charging Rules Function (PCRF) deals with charging in the

EPC and real-time policy rules control.

• The Home Subscriber Server (HSS) is the database that contains

subscriber-related data and other data relating to mobile users. It also performs

actions such as user authentication and call and session setup.

• The Mobility Management Entity (MME) is the core control node in the EPC

and performs mobility, roaming and tracking management functions among others.

The E-UTRAN controls the radio connections between the Evovled Node B (eNB or

EnodeB) and the user terminals, or UE (User Equipment). The eNBs’ are the base stations

that connect the users’ mobile devices to the EPC via a radio interface.
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Figure 2.3: LTE QOS Bearers, Recreated with reference to [4]

Quality of Service in LTE

The Quality of Service mechanism in LTE attempts to provide seamless connectivity by

means of prioritizing various packets in the network based on their type of service. For

example, Voice over LTE (VoLTE) and mobile gaming get higher priorities due to them

being more sensitive to delay, jitter, etc. than Email or web browsing. The LTE QoS is

implemented between the UEs and the PDN and is achieved with the help of bearers. A

bearer is a concept that describes a set of configurations for the transmission of a particular

traffic flow between LTE network interfaces.

An EPS bearer refers to a bearer between PDN and UE and is a concatenation of bearers

that exist between User Equipment and eNB (Radio Bearer), eNB and SGW(S1 bearer), and

SGW and PGW (S5/S8 bearer) [57]. A QoS Class Identifier (QCI) is assigned to each

bearer and determines the priority of the bearer’s traffic, its packet delay and packet loss

budgets as well as whether the bearer has a Guaranteed Bit Rate (GBR) or not. There are 9

QCI’s in total, each with a different priority [10]. These are detailed in Table 2.2.

When an LTE UE first attaches to the network a default bearer is established, and it has

QCI 9 and all of this QCI’s related parameters, including the lowest priority and no GBR. A

dedicated bearer can be assigned on top of the default bearer for services that require a

higher priority, like Voice over LTE or video streaming. 4 out of 9 QCI’s provide a
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QCI Resource Priority Packet Packet Error Example
Type Delay Budget Loss Rate Services

1

GBR

2 100 ms 10-2 Conversational Voice
2 4 150 ms 10-3 Conversational Video (Live Streaming)
3 3 50 ms 10

-3 Real Time Gaming
4 5 300 ms 10-6 Buffered Non-Conversational Video
5

Non-GBR

1 100ms 10-6 IMS Signalling
6 6 300 ms 10-6 Buffered Video, TCP-based services
7 7 100 ms 10-3 Voice, Live Video, Interactive Gaming
8 8 300 ms 10-6 Buffered Video, TCP-based services
9 9 300 ms 10-6 TCP-based services

Table 2.2: QoS Class Identifier Values [10]

Guaranteed Bit Rate. The mapping between QCI, its priority and the services it is assigned

to has been determined by 3GPP [10]. Guaranteed Bit Rate values are not determined by

3GPP, and instead are set by the service provider.

2.4 Machine Learning Overview

Machine learning algorithms are powerful tools in creating prediction models. To choose the

algorithms to use in this work, four popular supervised learning algorithms that are suited to

non-linear mapping problems were chosen. These algorithms were Support Vector Machine

(SVM), Random Forest, Gradient Boosting and Neural Networks. Each of these algorithms

and its application is going to be described in detail in this section.

2.4.1 Support Vector Machines

Support Vector Machines (SVM) is a popular supervised learning algorithm. SVMs are

maximum margin classifiers. In particular, linear SVMs seek to find a hyperplane in the

dataspace that separates the data into its respective classes and maximizes the distance

between the data points of different classes that are closest to this separating hyperplane.

For example, when there are two classes and the data is two-dimensional, this would consist

of finding a line which separates the data into the two classes and where the two vectors of
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Figure 2.4: Linear SVM [5]

different classes closest to the line are furthest away from each other [58]. This is shown in

Figure 2.4.

Most real world data sets cannot be linearly separated. To tackle these data sets with

SVMs, the data can be projected into a higher dimensional space and then the separating

hyperplane can be learned in this space. Figure 2.5 shows an example of projecting data into

multi-dimensional space so that it becomes linearly separable. However, finding this

separating hyperplane in high dimensional space would quickly become computationally

intractable when done naively. This can be avoided by using what is called a kernel trick,

where the algorithm is reformulated so that there is no need to explicitly represent the

higher dimensional space [59].

A separating hyperplane can be efficiently learned with the kernel trick. In order to use the

kernel trick, a kernel, which is a function of two vectors k(x , y) and which gives a measure

of distance between two vectors must be specified. A popular kernel is the RBF kernel which

enables learning an infinite dimensional separating hyperplace while only ever computing dot

products in the original dataspace [60].
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Figure 2.5: Example of data projected into 3 dimensions for classification with SVM. Recreated
from [6]

2.4.2 Random Forest

Random forest is a supervised learning algorithm where the model is created by an ensemble

of Decision Trees. In short, a Decision Tree works by formulating a set of rules to use for

prediction from the features and labels of the training data set. It can be described as a

flowchart of ’yes’ or ’no’ questions that eventually lead to a predicted class or continuous

value. The specifics of how the questions, or splits of nodes, are elected is dependant on the

type of Decision Tree. Most commonly in cases of classification, the splits of nodes are

chosen to maximize the reduction in Gini Impurity of their answers. Gini Impurity is a

relatively simple mathematical concept that represents the probability of a randomly chosen

element of the set being incorrectly labelled if it was labeled by a distribution of samples in

the set. In cases of regression, mean squared error (MSE) is commonly used to measure

quality of a split [61]. In a Decision Tree, at each node the algorithm searches through all of

the possible features to find the one which would result in the greatest Gini Impurity or MSE

reduction, and then chooses it to split on. This splitting procedure is repeated recursively

until the tree reaches maximum depth, which is when each node only contains samples of

one class and is completely pure or has the lowest possible MSE.

An issue with decision trees is that they are high variance methods and can fit noise in the

dataset well, resulting in very different trees being learned for moderately different splits in

the dataset. This results in severe overfitting to the training data and poor generalization
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Figure 2.6: Random Forest with two estimators. Created with refernce to [7]

performance [62].

An approach to countering overfitting for high variance machine learning models is bagging,

where an ensemble of models are trained on different random samples of the dataset.

Random Forests is the application of bagging to decision trees. The algorithm selects a

random subset of training data for each Decision Tree, and selects a random subset of

features for splitting nodes. When a tree in a Random Forest picks a random sample of

training data points they are drawn with replacement, which is known as bootstrapping, and

the predictions of each tree in the Random Forest are averaged at test time. This procedure

is known as bootstrap aggregation, or bagging [63]. An illustration of Random Forest with

two estimators is shown in Figure 2.6

2.4.3 Gradient Boosted Trees

Gradient boosting is a general technique similar to bagging that can be used to create an

ensemble of models. While bagging is used to reduce overfitting of high variance models,

Gradient Boosting is used to increase the power of high bias i.e. weak models that fail to fit
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the data well when used individually.

Unlike in bagging, for Gradient Boosting the ensemble of models is trained sequentially

rather than in parallel. In the case of Gradient Boosted Trees, which is the algorithm used in

this work, Decision Trees are used as the weak model [64].

What sets Gradient Boosted Trees apart from the Random Forest algorithm is that the trees

are not random and independent of each other, but rather they are built sequentially, and

each new tree attempts to minimize the loss function, for example MSE, of all the trees

combined. It is often the case that individual models in the ensemble become good at

explaining data in a particular subspace of the dataspace anda good fit to the full dataspace

can be achieved by combining all of these specialized models. Gradient Boosted Trees are

quite efficient and do not use a lot of memory.

2.4.4 Neural Networks

Neural Networks (NN) are a long established machine learning algorithm that have recently

become very popular as it has become possible to train very large Deep Neural Networks. A

Neural Network can be made up of several layers, which are in turn made of nodes. The

nodes are supposed to roughly model human brain neurons in their function. A node in the

Neural Network receives inputs, which have associated weights that represent the input’s

importance relative to the other inputs to this node and then the node computes its output

based on its Activation Function(e.g. a sigmoid) using inputs and their weights [65].

This work uses a simple Feedforward Neural Network. A fully-connected Feedforward

Neural Network, or a Multi-Layer Perceptron, usually consists of an input layer, hidden

layer(s) and an output layer. The input layer does not perform any computation and just

passes the information onto the hidden layer. Hidden layers and output layers do perform

computation, with the last hidden layer’s nodes passing their outputs to the output layer,

which produces the final result value. In a Feedforward Neural Network nodes from adjacent

layers are linked by weighted connections, or edges, and the information only goes in the
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Figure 2.7: Feedforward Neural Network. Recreated with reference to [8]

forward direction, from one layer to another, hence the name Feedforward Neural Network.

A simple illustration of a Feedforward Neural Network is show in Figure 2.7. Neural

Networks typically use Back Propagation to learn the weights of the Network. In Back

Propagation, the weights start off being random. Every input in the training data set is

propagated through the NN, and the output is compared with the corresponding label[66].

Then, based on the error the weights are adjusted using the gradient descent optimization

algorithm. This process repeats until the error is low enough, and after it terminates the NN

has learned all of its weights and can be used for its intended purpose .

2.4.5 Background Summary

Quality of Experience is a complex metric that can be measured both objectively and

subjectively. Prediction and monitoring of QoE in wireless networks is a relatively popular

topic in research due to its potential usefulness in improving customer satisfaction, especially

in multimedia streaming. Machine Learning algorithms have been applied to QoE prediction

to aid in modelling of the relationship between QoS parameters and QoE. Supervised
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Learning algorithms are mainly used, especially Neural Networks and Decision Trees. Most

works on the topic that follow the non-intrusive approach only use a few QoS parameters and

do not usually include any wireless-specific QoS parameters, and very few works elaborate on

feature impact, both of which could be important factors in QoE in wireless networks.

LTE and the LTE QoS mechanism was explained in this chapter, along with an overview of

the machine learning algorithms used in this work, which are Support Vector Machines,

Random Forest, Gradient Boosted Trees and Neural Networks.
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3 Design and Implementation

Quality of Experience prediction is a complex task. There are a wide variety of ways to

design and implement a QoE prediction model, depending on the domain, application type,

goals and the type of data chosen for the prediction. In this chapter the approach chosen for

use in this work will be presented and detailed.

3.1 Design Overview

Since Video Streaming has been recognized as the key domain for Quality of Experience

prediction, it was necessary to be mindful of this when designing the evaluation system at

the core of this work. Overall, the system consists of the following components:

1. Wireless Network Simulation: The chosen wireless environment was a 4G cellular

technology, LTE. In order to be able to train a Machine Learning model a data set of

features and labels is required. In this work a data set of QoS parameters and

respective QoE scores was obtained in an LTE simulation environment.

2. Output Video Quality Evaluation: After the video is transmitted over the

simulated network, its has to be evaluated to produce a reference QoE score to have

the ability to train the Machine Learning Model. For this work, the NTIA VQM QoE

evaluation metric was chosen.

3. Machine Learning Models: Several Machine Learning algorithms were applied to

QoE prediction, namely Support Vector Machines (SVM), Random Forest, Gradient

Boosted Trees and a Feedforward Neural Network. The performance of these
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algorithms was then compared and evaluated.

3.2 LTE Simulation

For this project a simulation of an LTE wireless network was created to gather the data

necessary for predicting video Quality of Experience, however it is important to point out

that simulation is not the only method of getting the data necessary for QoE prediction.

The works that fall under media-layer models of QoE prediction described in the previous

chapter frequently employ public video databases and subjective studies to evaluate the QoE

of the videos from those databases [38, 39, 40]. As mentioned in the previous chapter, this

type of intrusive approach is not particularly realistic for in-service deployment, and also

does not explore the effect network parameters and configurations have on QoE.

It is also possible to acquire access to a public data set of QoE and its corresponding

Influence Factors, however using a public data set would set strict boundaries in terms of the

QoS parameters it has available and the type of QoE metric it provides.

The choice of wireless network was motivated by was the desire to keep the findings topical

and relevant. LTE was ultimately chosen due to several factors. Firstly, according to several

US studies cellular networks have overtaken WiFi in popularity. This is attributed to the

prevalence of affordable unlimited data plans [67]. LTE also has the primary share of all

cellular traffic, and it is predicted to stay this way for the next five years at the least. In

contrast, 5G is predicted to only account for 3.4 percent of all mobile connections by 2022

[11].

There are a number of network simulation frameworks available [68, 69] that provide tools

for LTE simulation, however NS-3 [70] was chosen for this work as it includes all of the

necessary features and models. In addition it has a longstanding reputation within the

networking community. The LENA LTE module was used with NS-3 for LTE

simulation.
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3.2.1 NS-3 Overview

NS-3 is a discrete-event network simulator that is mostly used for research and educational

purposes. It is open source and is available for commercial and non-commercial use under

the GNU GPLv2 license. NS-3 provides a simulation platform for networking and is designed

as a set of software libraries that can be linked to the user program to create the simulation

[71]. The user programs should be written in C++, or, if all the used libraries support it, it

can also be written in Python.

NS-3 is the successor of the very popular NS-2 network simulation tool. NS-3 is not an

extension of NS-2, but rather a tool written from scratch to better adhere to the

requirements of network modelling for research purposes. NS-3 was designed with a goal of

making its elements similar in operation and implementation to the real thing, and to make

sure that simulation results diverge as little as possible from experimental results [68].

NS-3 is composed of various modules which consist of models of network elements that can

be found in computer networks. Some notable examples of such models are Network Nodes,

Network Devices, Communication Channels and Communication Protocols. It also provides

helper objects, such as attributes for network element configuration, random variables and

trace object facilities to aid in the creation of the simulation and result analysis. The

Applications module provides resources to create traffic on the network and can be installed

on nodes and configured to provide the desired traffic pattern.

The creation of a C++ NS3 simulation begins with creating the network topology. This

involves creating and configuring all of the elements in the desired simulation such as nodes,

devices and channels by instantiating the corresponding C++ objects. Creation of data

demand on the network is the next step. To achieve this the necessary network application

models should be created to simulate sending and receiving information as well as the

creation and processing of packets. Next, the simulation can be assigned a stop time and

then executed.
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Figure 3.1: LENA LTE Model [9]

3.2.2 LENA NS-3 LTE Module

The LENA LTE Module is an open-source software module for NS-3 that provides the library

to simulate the LTE-EPC model. The simulation model consists of two components, the

LTE Model which exists within the UE and eNB nodes, and the EPC model which simulates

the core network and its entities, interfaces and protocols [9].

The LTE model allows scaling up to tens of eNBs and hundreds of UE, as well as provides a

Resource-Block level granularity at the radio level. In general, the level of detail of the LTE

model allows for correct evaluation of QoS-aware Packet Scheduling and Radio Resource

Management. It can be used alone in the simulation, or together with the EPC model.

The EPC model allows for simulation of an end-to-end IP network over the LTE model and

allows Internet connectivity for UEs. The LENA LTE Model is presented in Figure 3.1.

There are some simplifications of a typical LTE core network in the EPC model. Namely,

only IPV4 PDN is supported, the SGW and PGW functionality has been combined into one

node and the EPC control plane is modeled in a simplified way by implementing direct

interaction between some simulated entities through just one pair of interfaces. This was

done, for example, for the MME and SGW. However, the EPC model provides the means for

simulating end-to-end performance of realistic applications working on top of UDP or TCP

and provides the ability for UEs to have application with different QoS profiles. The data

plane of the EPC in general is implemented in great detail.

The LENA module also provides several models to achieve more realism in the simulation,
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such as the Propagation model which allows the addition of buildings and more realistic

path loss and fading to the LTE simulation.

3.2.3 LTE Simulation Implementation

The LTE simulation for this work was written in C++ using the NS-3 network simulator and

the LENA LTE-EPC Module described above. It was designed with the goal of closely

modelling the current mobile network landscape and to most realistically emulate the

environment in which a video is streamed over an LTE Network. The simulation was

required to produce the QoS parameters and the video traces of the network flow that

transmitted the target video.

Topology

The topology of the simulation is relatively simple. The EPC and the LTE models are

instantiated and linked. One eNB is created. Then, a random number of UE nodes, from 3

to 70 is created and they are attached to the eNB. All of the UE nodes are placed various

distances away from the eNB and are configured to be mobile and be moving in random

directions.

Network Traffic

After the topology is created, traffic needs to be generated on the network. This includes

transmitting the video for which the QoS data will be collected and creating background

traffic.

First, the UEs are split into groups based on their application type. One UE, which can be

considered the main UE, is going to be streaming the video which will be later evaluated for

QoE, and the QoS data of the flow will be collected during the simulation. The rest of the

UE are creating background traffic.

A random percentage of the UE are streaming video. The percentage range is between 30%
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and 80% to reflect the current and future mobile traffic landscapes [12]. 0% to 20% are

VoLTE nodes, and the rest are generating other regular web traffic.

To create all of this traffic remote hosts are created for each UE. Internet connectivity is

created between the remote hosts and the EPC PGW node, and the IP stack is installed on

all UEs. For the main UE’s video transmission the Gercom’s Evalvid model for NS-3 is used

[72]. The Evalvid client is installed on the UE, and the Evalvid server is installed on a

remote host, specifying the video trace file to be transmitted to the main UE.

The NS-3 Evalvid module works in a similar manner to a typical NS-3 Application and

facilitates the transmission of video over the network from a remote host to a UE through

UDP sockets. The video is transmitted in the form of a frame trace file. The process of

creating the trace file from a viewable video is detailed later in this chapter. The Evalvid

NS-3 module was chosen over other NS-3 tools for LTE main video transmission since it

produces the receiver frame trace file which makes recreating the received video

straightforward.

The goal of the background traffic in the simulated network was to create a realistic

simulation scenario of video streaming in a cellular network. For this reason the traffic on

background UEs was created to be as realistic as possible. For the background video

streaming nodes, the NS-3 UdpTraceClient class was used to enable video streaming for

every node. UdpTraceClient dynamically changes its generation rate based on a frame trace

file of an MPEG4 video to emulate a video streaming application and is perfect for scenarios

that do not require the transmitted video to be recreated. The frame trace file chosen was

from a video frame trace library created by the Telecommunication Networks Group at the

Technische Universität Berlin [73]

VoIP traffic in NS-3 can be modelled by the OnOffApplication, which generates traffic in an

On/Off pattern, where traffic is generated during the On times and no traffic is generated

during the Off times. The implementation was based on the model by Hassan et al. [74]

which states that voice traffic typically has an active ON period with mean duration of 0.352

seconds and and inactive OFF period of 0.65 seconds. We assume that the codec used is

G.711, which produces output of 64kb and that packetization delay is 20ms, which would
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QoS parameters Possible Values
Number of UE 3 - 70
% Video UE 30-80 %
% Voice UE 0-10

GBR 40 - 400 kbps
QCI 4, 6, 8

Lost Packets N/A
Delay (seconds) N/A

Cumulative Jitter (seconds) N/A

Table 3.1: QoS parameters collected during the simulation

result in a packet with 160 byte payload and 12 RTP header bytes, overall 172 bytes [75].

This is used as the payload attribute in the OnOFF Application.

The traffic on the UEs is supposed to loosely emulate web traffic, where packets are send at

random intervals simultaneously in the uplink and in the downlink directions.

The Lena module allows for the configuration of bearer-lever QoS. It allows for the creation

of a bearer with a specified GBR, MBR and QCI. In Table 2.2 it was shown that 3GPP

allows for 3 possible QCI priorities for Buffered Video Streaming, only one of which provides

a Guaranteed Bit Rate. A dedicated bearer is created for the main UE, which is then

configured to be randomly assigned one of the 3 QCI’s. In the case of it being QCI 4, the

GBR is also randomly assigned in the range of 40kbps to 400kbps, which is an extreme

range not quite representative of actual industry GBR values, however it was decided to have

this range mainly to see the full effects of GBR on QoE, especially since GBR specification is

determined by the LTE service providers.

The FlowMonitor module was used to collect some of the Quality of Service parameters.

These include packet loss, the cumulative jitter and delay of the main video streaming

application. All of the parameters collected during the simulations were streamed into a CSV

file. For each simulation the parameters collected are presented in Table 3.1.

Jitter, delay and packet loss are very obvious parameters to use for QoE prediction and are

always present in QoE prediction models. The other parameters are wireless-specific and

their effect on QoE is one of the aspects investigated in this work. The number of UE per

eNB and the percentage of those using popular high-priority services allows an insight into

how possible congestion and different levels of priority per eNB affect Quality of Experience
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of a particular user. The GBR parameter is especially intriguing since it is set by service

providers and thus is fully under their control and can be used for QoE adaptation. The QCI

affects the priority with which the flow is treated and thus can provide an insight into how

that affects video QoE, since buffered video streaming can be assigned one of 3 possible QCI.

Some other parameters were also considered at different stages of the design process. One

of them was Maximum Bit Rate (MBR), which is the maximum allowed bitrate of a

dedicated GBR bearer. It was found that its presence did not affect QoE in several iterations

of the QoS parameter set through both simple elimination and feature importance extraction

from Random Forest and Gradient Boosted Trees. Some media-layer parameters were also

considered early on, but were dropped to maintain the non-intrusive approach.

Certain simulation parameters were configured for increased realism. The propagation loss

model was configured to follow the Okumura-Hata propagation loss model in an urban

mode. The Okumura-Hata model is considered one of the most accurate models for path

loss prediction in urban areas [76].

The creation of the simulation was a particularly challenging part of this work. Arguably

NS-3 has a very steep learning curve, and together with a lack of a lot of detailed

documentation or community resources getting the simulation right was a difficult challenge.

The simulation went through a lot of iterations before it was finally in a state where it

performed as planned.

3.3 Video QoE Evaluation

To use QoE scores as labels for the machine learning models and to compare their

effectiveness, it is necessary to obtain QoE scores for all of the videos that were transmitted

in the simulation. QoE can be evaluated subjectively and objectively. Subjective evaluations

combined with the LTE simulation would be very restrictive in terms of data set size. It is

extremely challenging to survey enough people to get a comprehensive data set, let alone

while doing that in a controlled environment as employing remote crowdsourcing can add

further impairments to the videos and therefore may produce erroneous results. The studies
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that have used surveys to get QoE scores usually end up with less than 50 subjects, most

often with just over 20 [37, 38, 39]. This number of subjects is not realistic for a data set

with over 3000 videos, therefore it was decided to go with objective QoE evaluation.

There are many tools for objective QoE evaluation. The four most popular ones in literature

are PSNR, SSIM and VQM, as well as VMAF which is a newer tool that is steadily gaining

popularity. These tools were described in Chapter 2, where it was shown based on related

works that PSNR is considered to be the least accurate technique, while VQM and VMAF

have relatively high correlation with subjective QoE scores.

3.3.1 Initial QoE Evaluation Approach

Early on during the implementation the Evalvid [77] tool was used to evaluate video QoE.

Though this tool has the same name as the NS-3 module used in the simulation, they are

not formally connected or distributed together, with the NS-3 module being developed much

later than the original Evalvid tool. The original Evalvid tool is a simple command line tool

which compares the original video to the transmitted video and provides data on lost frames,

delays and jitter as well as the MOS. It also provides a few other capabilities which are

described later in the chapter. This tool was initially chosen due to its seeming prevalence in

research and due to its ease of use.

The MOS provided from the Evalvid tool is based on peak signal-to-noise Ratio (PSNR) and

its direct mapping to MOS specified in ITU J.144 [16]. This mapping is presented in the

table below

PSNR(dB) MOS

≥ 37 5 (Excellent)

31 - 37 4 (Good)

25-31 3 (Fair)

20-25 2 (Poor)

≤ 20 1 (Bad)
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The Evalvid tool was a good starting point, however after some further consideration it was

decided to move on to a more accurate tool. PSNR works by simply performing a

byte-to-byte comparison of the original video with the target video and is measured in

decibels, with a higher value corresponding to a higher degree of similarity between the two

videos. No viewer bias is taken into account when calculating PSNR. While this might be

enough for some applications that exclusively deal with objective measures of video quality,

PSNR has been shown to be significantly inaccurate when compared to subjective QoE

scores [78, 79]. Therefore, it was decided that a different methodology for QoE evaluation

was needed, and VQM was eventually chosen due to its accuracy.

3.3.2 QoE Evaluation Process

To send a video over the network it is first necessary to pick the videos to send. The videos

chosen were videos of animals from the Consumer Digital Video Library [80]. The videos are

in Common Intermediate Format (CIF), which signifies that the size of the video is 352x288

pixels. The frame rate of the videos are 30 fps, the lengths are around 20 seconds, they are

of excellent quality and have no scene cuts or audio.

While CIF is not the maximum possible resolution for mobile video, it is reasonable enough

and is commonly used in mobile video evaluation. A higher resolution would also negatively

impact the simulation execution times as well as the QoE evaluation times which would have

resulted in a much smaller data set. It was important for the original video to be of excellent

quality to make sure the resulting QoE score would be adequately computed since VQM

requires a reference original video.

To transmit the video over the wireless network it was necessary to create the trace file of

the video due to the requirements of sending it over the NS-3 simulated network. The frame

trace file contains four columns: frame index, frame type, frame size, number of segments in

the case of frame segmentation and the time the frame was generated by the encoder. An

excerpt from the trace file is presented in Table 3.2

MPEG4 [81] is one of the codecs supported by the Evalvid NS-3 module, so it was chosen
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Frame Index Frame Type Frame Size Segment Number Time Sent
1 H 15535 16 0.019
2 P 12305 13 0.036
3 P 13548 14 0.081
4 P 13111 13 0.115
5 P 14077 14 0.134
6 P 15105 15 0.166
7 P 14250 14 0.216

Table 3.2: Video Trace Frame File

for trace file generation. The videos, originally in AVI format, were converted to MP4 with

an MPEG4 codec by the FFMPEG command line tool [82], saving all of the original quality

parameters, like size, frame rate and bit rate.

Using the trace generation tool from the Evalvid toolset [77], the trace of the original video

was obtained. Then, using the FFMPEG tool, the source MP4 video was converted to raw

YUV since it is the format used for video evaluation.

When the video is transmitted, the Evalvid NS-3 module produces a receiver trace file,

which consists of three columns: the time received, the frame id and the payload size. With

the Evalvid toolset the transmitted video is recreated in MP4 format by reference to the

original frame trace and the original MP4 video. It is then also converted to raw YUV with

FFMPEG. This routine had to be performed for each simulation, so it was automated with

bash scripts.

To evaluate the videos the VQM VFD tool that was described in Chapter 2 was used. NTIA

VQM software is free for commercial and non-commercial use and can be downloaded from

their website. The batch processing tool can only be used with a GUI where the YUV clips

to be evaluated are selected, the original clip is specified and finally the type of VQM model

is chosen, which for this work was VQM VFD. Through experiments it was found that the

tool is unable to handle more than 500 clips, and took around five to six hours to complete.

The output provided was a comma-separated file with VQM scores for every clip.
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Figure 3.2: Left Half of Example Random Forest Tree

Figure 3.3: Right Half of Example Random Forest Tree

3.4 Application of Machine Learning

The four Machine Learning Algorithms picked for this work were Support Vector Machines,

Random Forest, Gradient Boosted Trees and Neural Networks. The details of these

algorithms are described in Chapter 2.

The first three models were implemented using the sci-kit learn Python library[83]. The QoS

data and the corresponding QoE MOS were split randomly into 70% for training and 30%

for testing, and the QCI classes were one-hot encoded and data was normalized. For the

SVM implementation, the Support Vector Regression model was used with the RBF kernel.

While classification might seem like a good fit since the MOS scale is discrete and has 5

possible values, this problem is more suited to regression algorithms since the MOS values

were left fractional to keep them more granular and descriptive. The model was trained on

the training data set and then tested.

For the Random Forest implementation feature scaling or one-hot encoding is not important

so the data was left as is. To tune the model a grid search was performed to find the most

optimal number of estimators (number of trees) and the maximum depth of a tree. An

example of a tree created by the Random Forest algorithm after training on the QoS

parameter data set is presented in Figure 3.2 and Figure 3.3.

A similar process was performed for Gradient Boosted trees, except that the learning rate
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Figure 3.4: Example GBT estimator

parameter also had to be tuned. An example of a GBT estimator from training on the QoS

parameter data set is presented in Figure 3.4. It should be noted that no significant boost in

error minimization was achieved through parameter tuning, but neither was it expected. It

was mainly performed to make the model perform as well as possible, even if it was just a

gain in a couple of percent of accuracy.

For the Neural Network implementation Tensorflow [84] and Keras API [85] were used. All

of the data was first normalized to aid the training process. Then, with the help of the Keras

API a Neural Network with four layers was built, including two densely connected hidden

layers using the Rectified Linear Unit (ReLU) activation function, which is a simple and

computationally fast activation function [86], and an output layer with one node. The Mean

Squared Error loss function was specified, which is commonly used for regression problems.

The model was then trained with the normalized training data set, which only took a few

minutes since the data set is reasonably small, which resulted in a Feedforward Neural

Network model ready to be tested.

3.5 Design and Implementation Summary

An LTE simulation with the NS-3 simulation framework and the LENA LTE module was

created, which aims to recreate a realistic video transmission scenario. QoS parameters were

collected during the simulation, and the transmitted videos were objectively evaluated for
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QoE with the NTIA VQM tool. Four machine learning algorithms models, namely Support

Vector Machines, Random Forest, Gradient Boosted Trees and a Feedforward Neural

Network were created, tuned and trained for video QoE prediction. The results and analysis

are presented in the next chapter.
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4 Results and Evaluation

This chapter provides a detailed discussion of the results of QoE prediction of the four

machine learning models. The importance of wireless-specific features in QoE prediction is

also examined. The evaluation of the results and the work in general is also provided in this

chapter.

4.1 Results

The four algorithms used for QoE prediction in this work are Support Vector Machines,

Random Forest, Neural Networks and Gradient Boosted Trees.

The models were trained on the data set that contained network QoS data of video

streaming collected during LTE simulations and the QoE MOS of each streamed video. All

of the four models created for this work performed reasonably well on the task of Quality of

Experience prediction and showed high degrees of accuracy. In Figure 4.1 the Mean Absolute

Percentage Error (MAPE) scores of the models are shown. Mean Absolute Percentage Error

is a metric that provides relative error and is calculated by dividing the absolute error by the

target value [87]. MAPE is a metric that allows simple comparison of performance of

different machine learning models. Shown in Figure 4.1 is the Mean Absolute Percentage

Error subtracted from 100 to show the accuracy of the models. Only the Neural Network

managed to score over 90%, however other models also performed decently, with Support

Vector Machines performing the poorest with less than 85% accuracy.

In Figure 4.2 the Root Mean Square Error(RMSE) scores are shown. RMSE is the sample
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Figure 4.1: Accuracy Comparison of the four ML models

Figure 4.2: RMSE Comparison of the four ML models
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Figure 4.3: Influence of number of training samples on RMSE

standard deviation of the predicted values and target values. RMSE is measures in the same

units as the label data and is very commonly used to evaluate regression model performance.

The lower the RMSE, the better the model is at prediction. It shows a slightly different

picture than MAPE due to the fact that RMSE punishes larger errors more severely than

smaller ones. It is evident that SVM performs the worst out of the four algorithms. Random

Forest and Gradient Boosted Trees achieve just under 0.1 RMSE, which is very reasonable in

terms of the MOS scale. The RMSE of Neural Networks is not critical, however it is not

fully desirable either.

In total 5000 simulations were run, and each model was trained on 75% of the total data

set. Figure 4.3 shows the relationship between the number of training samples and Root

Mean Square Error. The number of training samples has dramatically decreased error in the

case of Support Vector Machines and Neural Networks, however has not affected the other

two quite as much. In general, Neural Networks and SVM require larger training data sets

for more accurate prediction.
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Figure 4.4: GBT Feature Importance

Figure 4.5: RF Feature Importance

4.2 Feature Importance

Feature Importance extraction is provided by both Random Forest and Gradient Boosted

Trees. The feature importances provide a score for how influential a particular feature was

when determining splits in the model. Figure 4.4 and Figure 4.5 show the feature

importances of the Gradient Boosted Trees and the Random Forest models respectively.

The feature importances are quite different in the two models, which is most likely due to

the different methods of split determination in the two models. Packet loss, delay and jitter

seem to be influential in both models. Out of the background traffic parameters, the

influence of the number of VoIP users was too negligible to even feature on the graph. Even
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Jitter Delay Packet Loss
Number of UE 0.95 0.90 0.91
% of Video UE 0.9 0.82 0.83

GBR 0.22 0.23 0.24

Table 4.1: Pearson Correlation of wireless-specific parameters and delay, jitter and packet loss

though VoIP does have a higher priority than video, the low ratio of background VoIP traffic

must have not affected QoE of video streaming in the same cell. QCI seems to have also not

been important in QoE prediction.

The total number of UE and the video streaming UE feature as having importance in both

models. Particularly, in Gradient Boosted Trees, percentage of UE streaming video seems to

have a lot of influence over QoE. In Random Forest, the number of UE’s connected to the

eNB is more influential than other wireless-specific parameters. Based on the two figures

GBR seems to have had some influence in QoE prediction, but not a considerable amount.

Number of UE per eNB and the percentage of UE streaming video seem to clearly be the

most influential out of the wireless-specific QoS parameters.

One thing this model have not considered is the correlation between some of the

parameters. In particular, delay, jitter and packet loss can be affected by the number

connections and the percentage of video streams in those connection. To assess this,

Pearson correlation was calculated between delay, jitter and packet loss, and number of UE,

% of UE streaming video and GBR. The values are shown in Table 4.1. Number of UE and

% of Video UE have quite high correlations, which would imply that there is a potential

linear relationship between the values, which in turn could mean that only one set is

necessary for QoE prediction.

To assess this hypothesis, all the models were re-trained on the two separate feature sets,

one featuring delay, jitter and packet loss and the other all of the wireless-specific

parameters. The RMSE of the results are shown in Figure 4.6.

None of the RMSE have increased dramatically from the model with all of the features.

This would indicate that two sets could potentially be used for QoE prediction independently

from each other.
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Figure 4.6: RMSE of Wireless vs Delay, Jitter, Packet Loss Parameters

4.3 Evaluation

The results presented are promising and do indicate that machine learning techniques can be

used for QoE prediction. Out of the wireless-specific parameters the number of UE per eNB

and the number of these UE streaming video seem to be the most influential in QoE

prediction, however they are not more important than delay, jitter and packet loss. The

finding that a reasonably performing model is possible without delay, jitter and packet loss

parameters and using only wireless-specific parameters, in particular number of UE per eNB

and the percentage of the UE per eNB streaming video, is helpful in cases where only

specific types of data is available or is more easily obtained. However, high accuracy QoE

prediction of video is possible without wireless-specific parameters. There is no clear winner

among the machine learning algorithms used, however Random Forest and Gradient Boosted

Trees have the lowest RMSE values, as well as fast training times.

The fact that LTE QoS-specific parameters did not have much effect on the performance of

the QoE models is a big disappointment. GBR in particular is set by the service providers,

and thus could have been effectively used in QoE adaptation .

One particular note about the simulation is that the MOS of the videos transmitted in the

simulation seem to be distributed around two values as shown in Figure 4.7. It is also of

note that no MOS of 1 were collected, which would be an issue if this model is presented

with data that was not created by this simulation. It is also an indicator that the current

LTE simulation parameters cannot cause extreme distress to a video. However, even in
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Figure 4.7: Distribution of MOS scores

subjective studies the amount of true MOS of 1 is quite low. [88] created a data set of

impaired videos specifically for subjective MOS evaluation, but only 20 videos out of over

1200 were given a MOS of 1, so the absence of these scores might not be a particularly

critical issue. In turn, the absence of many values of MOS 2 is generally slightly concerning

in terms of the ability of this model to predict all QoE. This indicates that more focus

should have been placed on getting the edge cases when creating the simulation. However,

this distribution also speaks to the non-linear relationship between QoS and QoE.

It is also important to point out that the models rely fully on an external tool to objectively

evaluate QoE. Despite VQM being widely used in research and highly regarded, the use of

objective QoE scores could put the model at a disadvantage when used in real-world

scenarios, and subjective QoE scores are needed to verify the accuracy of the models

presented in this work.

Finally, in terms of the work in general a lot of time was spent on creating the LTE

simulation. While this is helpful for model performance in terms of feature quality, in

hindsight using a public data set would allow for more time for a deeper exploration of

machine learning algorithms, specifically for incremental and online learning.

Overall, machine learning algorithms were successfully applied to QoE prediction. It was

discovered that Support Vector Machines are the least suited out of the four for QoE
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prediction and that Random Forest and Gradient Boosted Trees achieve the lowest RMSE

scores. Wireless-specific parameters were found to affect QoE prediction, and Number of UE

per eNB and % of UEs Video streaming could be used for relatively precise QoE prediction if

needed, however such models do not provide an advantage over just using delay, jitter and

packet loss for QoE prediction.
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5 Conclusion

In this work an approach was developed that uses network Quality of Service parameters for

video Quality of Experience prediction with machine learning algorithms. An LTE simulation

was created to provide the means for collecting a data set of network QoS parameters of

video streaming. The LTE simulation was designed to reflect a realistic scenario of video

transmission, including realistic background traffic and transmission environment. The

parameters collected during each simulation included QoS parameters that are typically used

to describe a service, such as delay, jitter and packet loss, but also wireless-specific and

LTE-specific parameters that are often neglected in related research.

The data set of video QoE scores was gathered by objectively evaluating each video

transmitted in each simulation, with a tool that has high correlation with subjective QoE

scores. The data together was used for training four Machine Learning models: Support

Vector Machines, Random Forest, Gradient Boosted Trees and Feedforward Neural Network.

After evaluating the results of these models, it was discovered that all but Support Vector

Machines perform adequately and achieve relatively low error. These results can still be

achieved even when the models are trained exclusively on wireless-specific parameters, thus

showing that these parameters have effect on video QoE and should be considered for

Quality of Experience prediction in wireless networks. In particular, the number of UE

connected to an eNB and the percentage of them streaming video are two wireless-specific

parameters that are especially influential in QoE prediction. However, using the

wireless-specific parameters alone for QoE prediction does not provide an advantage over

using delay, jitter and packet loss alone
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5.1 Future Work

In the current implementation, the LTE simulation only allows for the evaluation of UDP

video streaming. It might be of interest to extend the simulation to TCP video streaming

since Quality of Experience of TCP and UDP video is affected differently by QoS

impairments [89], and a lot of modern mobile video is TCP-based.

The models presented in the work would benefit from subjective QoE scores. A

reasonably-sized data set of QoE scores would allow for proper model accuracy verification.

A large-scale study for subjective QoE evaluation of all videos in the set would be extremely

beneficial for the models’ accuracy and potential real-world application, however it might be

particularly ambitious and potentially unachievable due to the number of videos in the data

set.

Extending the models to be used for online QoE prediction and monitoring in its present

state could be possible if the pre-trained models are used to predict QoE. However, this

approach would not be considered fully online since it would not be learning real-time and

would be reliant on data it was initially trained on for QoE prediction. It would be of interest

to explore the use of incremental learning models, such as Incremental Support Vector

Machines [90] or Gaussian Process regression [91] for more insight on in-service deployment.
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