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Abstract

The aim of this research paper is to evaluate the chest compression rate (CCR) from the
bottom-up view using a smartphone placed flat on the floor facing upwards. The CCR is to
be evaluated in real-time during cardiopulmonary resuscitation (CPR) as a proof-of-concept
for the CPR Assistant project.

Out-of-hospital cardiac arrest (OHCA) is a leading cause of mortality globally, with more
than 350,000 incidents annually in the United States alone, and a low survival rate of 12%.
CPR performed by bystanders has been found to increase rates of survival to one month for
victims of OHCA. The rate of bystander CPR can be improved globally, and tools to aid
bystander CPR must be made conveniently available. Metrics such as the CCR and the chest
compression depth (CCD) are vital metrics for applying quality CPR.

This research paper explores the different aspects of CPR and the recommended procedures.
Investigation and analysis is also performed on existing methods of evaluating the CCR, out-
lining performance and the drawbacks that these solutions incur. This critical analysis justifies
the goal of this research paper.

Evaluation of the CCR was performed by developing an algorithm that employs computer
vision techniques. This algorithm uses the acceleration of pixels in real-time to detect chest
compressions. Artificial ventilation is also detected using the displacement of pixels as a
secondary objective.

The algorithm is robust and performs well, detecting 88% of chest compressions and 69% of
artificial ventilations in a mixture ideal and non-ideal test environments. This is suitable for
use in training scenarios, but must be further refined to realise its full potential. Methods to
achieve this are also outlined.
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1 Introduction

1.1 Goal

The primary goal of the cardiopulmonary resuscitation (CPR) assistant project in its entirety
is to develop a smartphone application that analyses the administration of CPR in real-time
using computer vision techniques while also providing resources for CPR training as a
secondary feature. As part of the CPR assistant project, this research paper explores the
evaluation of the chest compression rate (CCR) in real-time from the bottom-up view using
the front camera of a smartphone placed flat on the floor across the user.

Figure 1.1: The bottom-up view is defined as the perspective of the smartphone (bottom
right) when its front camera is used.
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1.2 Motivations

The CPR assistant project is motivated by the high global mortality rate of out-of-hospital
cardiac arrest and the potential to maximize the rate of bystanders performing CPR. In
2017, the annual report published by the Irish Out-of-Hospital Cardiac Arrest Register
recorded 2,333 incidents of out-of-hospital cardiac arrest (OHCA) in Ireland, equivalent to a
rate of 49 per 100,000 population [1]. The report also states that 50% of these incidences
were bystander-witnessed, with 80% of this subset receiving bystander CPR. The survival
rate remains relatively low, with only 6.5% of these patients discharged from the hospital
alive. In 2018, the American Health Association (AHA) reported a total of 356,461 cases of
OHCA in the United States, equivalent to a rate of 110.8 per 100,000 population [2]. Of
these cases, bystander CPR was performed on 45.7% in adults and 61.4% in children. The
Pan-Asian Resuscitation Outcomes Study clinical research recorded over 66,000 OHCA cases
from multiple Asian countries between 2009 and 2012, with bystander CPR rates ranging
from 10.5% to 40.9% and survival-to-hospital-discharge rates ranging from 0.5% to 8.5%
[3]. Although the rate of bystander CPR varies by country, in general such rates have ample
room for improvement and is relatively low in many countries.

Figure 1.2: One-month survival rate of OHCA patients who were administered bystander CPR
versus who were not, factoring in ambulance response time [4].

Bystander CPR has been proven to increase the rate of survival to one month versus
no-bystander CPR. In a study conducted in Japan from 2011 to 2012 consisting of 2,157
OHCA patients, a 9.3% survival rate to one month was observed for patients who received
compression-only bystander CPR, compared to 3.7% for those who did not [5]. This rate
rises to 25.9% for CPR with artificial ventilation, known as conventional CPR. A study in
Sweden between 1990 and 2002 revealed that OHCA patients who received bystander CPR
from laypeople had a 2.7% greater rate of survival to one month compared to no-bystander
CPR [6]. This difference increased to 7% when healthcare professionals administered the
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bystander CPR. In a study in Denmark between 2005 and 2011 involving 7,623 OHCA
patients, a 22.6% survival rate to one month was observed for those who received bystander
CPR within 5 minutes of cardiac arrest, versus 6.7% for those who did not (see Figure 1.2)
[4]. This difference tapers with increasing response time. However, the bystander CPR
survival rate remained higher than no-bystander for all response time intervals.

Barriers for bystander CPR include fear of doing it incorrectly, fear of liability and fear of
endangering one’s self [7]. In interviews with 684 bystanders who witnessed OHCA, 37.5%
stated panicking as a reason for not performing CPR [8]. Furthermore, 9.1% perceived that
they would not be able to do CPR correctly. In a 2017 study conducted in China involving
1,841 laypeople, 74.4% responded as not trained in CPR and 44.4% were worried about
inadequate knowledge and skill if faced with the decision of performing CPR [9]. It is clear
that the lack of confidence and knowledge is a significant barrier faced by laypeople, and
suggests that a solution must be developed to aid in overcoming this barrier.

While survival to one month does not imply survival to hospital discharge, it is an important
milestone for long-term survival. It is therefore essential that the rate of bystander
participation in CPR be maximised to further improve survival rates for victims of cardiac
arrest. Education and training provided by a smartphone application to boost knowledge and
confidence coupled with the large rates of smartphone ownership are to be leveraged by the
CPR assistant project to achieve this goal, with the ultimate intention of saving lives.
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2 Background

2.1 Performing CPR

CPR is an emergency lifesaving procedure performed on those who have suffered cardiac
arrest. Cardiac arrest occurs when the heart fails to pump blood, resulting in a sudden loss
of blood flow. CPR serves as a procedure to manually pump the heart in order to partially
restore the flow of blood to vital organs such as the brain until the return of spontaneous
circulation (ROSC) is achieved via defibrillation. The AHA published guidelines for CPR that
details the suggested algorithm and technique to be followed in CPR to maximise the
chances of survival in cardiac arrest scenarios [10]. Updates to these guidelines were made in
2015, 2017 and 2018.

Figure 2.1: CPR being performed on a patient, accompanied by an automated external de-
fibrillator (AED). Photo courtesy of www.cprconsultants.com.

2.1.1 Chest Compressions

The purpose of chest compressions in CPR is to manually pump the heart for partial
restoration of blood flow. There are several aspects of chest compressions that must be
considered for effective CPR.

For CPR on adults, the heel of one hand is to be placed in the centre of the patient’s chest.
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The heel of the other hand is then placed on top of it, with the fingers interlaced together.
The administrator then pushes down with force on the chest, effectively “compressing” it.
For infants, two fingers are placed on the breastbone instead. Straight arms must be
maintained during this movement and the patient’s chest must be allowed to rise completely
before the next compression [11].

2.1.2 Artifical Ventilation

Artificial ventilation (or rescue breaths) are performed to provide oxygen to the patient. The
suggested technique is the head-tilt-chin-lift manoeuvre. This is done by placing the palm of
one hand on the patient’s forehead, gently tilting the head back. The other hand is then
used to gently lift the chin forward to open the airway [12].

Figure 2.2: Head-tilt-chin-lift manoeuvre. Photo courtesy of www.cpr-test.org.

2.1.3 Chest Compression Depth (CCD)

Based on the latest updates made to CPR guidelines in 2018 [13], the AHA recommends
that compressions be performed at a depth of at least 2 inches or 5 centimetres for adults,
while avoiding a depth exceeding 2.4 inches or 6 centimetres. This depth is referred to as
the chest compression depth (CCD). For infants, children and adolescents, the recommended
depth is greater than one third of the anteroposterior diameter of the chest. Optimal CCD is
important to ensure that enough force is being applied to pump blood to vital organs.

2.1.4 Chest Compression Rate (CCR)

The AHA recommends a rate of 100 to 120cpm (compressions per minute) [13]. This rate is
referred to as the chest compression rate (CCR). The CCR is an extremely important aspect
of effective CPR. A CCR that is too low provides insufficient blood flow to vital organs. A
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CCR that is too high is found to compromise CCD [14], which also may lead to insufficient
blood flow.

2.2 Types of CPR

2.2.1 Conventional CPR

Conventional CPR combines chest compressions and artificial ventilation. The AHA suggests
that artificial ventilation be performed if the administrator of CPR is trained in conventional
CPR [15]. It is also recommended that chest compressions and artificial ventilation be
performed at a ratio of 30:2 for adults in cardiac arrest.

2.2.2 Compression-only CPR

Compression-only CPR does not employ the use of artificial ventilation. The AHA
recommends performing this type of CPR for those who are untrained or for those who are
trained solely in this type of CPR [15].

2.2.3 Two-rescuer CPR

Two-rescuer CPR involves the participation of a second rescuer in CPR. The task of
providing chest compressions and artificial ventilation is divided between the two rescuers.
The onset of rescuer fatigue in CPR over time significantly affects the correctness of chest
compressions, and it is recommended that rescuers swap every two minutes to mitigate the
effects of fatigue [16, 17].

Figure 2.3: Two-rescuer CPR. Photo courtesy of www.emsworld.com.
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2.3 Prior Work

Previous work exists in the domain of CCR evaluation. These employ the use of technologies
such as computer vision and smartphone accelerometers.

2.3.1 Using Computer Vision

A 2018 research by Corkery successfully evaluates the CCR from a smartphone video taken
from the front view, marking the beginning of the CPR assistant project [18]. This solution
employs the use of a computer vision technique known as dense optical flow. Using the
displacement of pixels calculated by this algorithm, compressions and artificial ventilations
were recognised by the solution. proved to be performant and effective, possessing a total
accuracy, precision and recall of 0.99 for chest compression detection. Detection of artificial
ventilations had a total accuracy, precision and recall of 0.96, 0.96 and 1, respectively. In
addition to this, Corkery implemented an Android application that evaluates the CCR from
the front view using the same solution logic as a proof-of-concept. This application also has
additional secondary features such as visual feedback, audio feedback and progress tracking.
However, the front-view that the algorithm required implies that the smartphone must be
propped or held by a third-party to capture the subject. Additionally, the algorithm was not
tested in non-ideal scenes and was only tested in ideal scenes containing trivial noise.

Solutions also exist to evaluate the CCR from a bottom-up view using computer vision. A
study from 2014 used a video from the bottom-up view taken from a smartphone placed
between the manikin and user to evaluate the CCR [19]. The solution implemented by this
study used the sum of pixel values for every video frame to create an oscillatory signal for
evaluating the CCR. Accuracy of the classification of CCR (correct, too low or too fast)
ranged from 80% to 90%. The position of the smartphone however, does not allow the user
to view live feedback and information.

A study from 2016 also used a video from the bottom-up view taken from a smartphone to
detect the CCR [20], but was placed across the user and manikin instead of between the
user and manikin. This position allowed the user to view feedback and information from the
phone. The implemented solution used the evaluation of the power spectral density to
evaluate the CCR. The algorithm worked well in both ideal and non-ideal situations, but was
ineffective if the subject had long loose hair.
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2.3.2 Using Accelerometers

Accelerometers are devices used to measure acceleration. Signals from chest acceleration
were found to be a very robust and effective method to evaluate the CCR as well as the
CCD. A study from 2016 evaluates the CCR using a dedicated accelerometer that was also
placed in-between the administrator’s hands and the manikin’s chest [21]. A displacement
sensor was installed in the manikin, and data from this sensor was used as reference for
evaluating the accelerometer’s output. The acceleration signal was processed using three
distinct signal processing techniques: linear filtering, detection of zero-crossing in the
velocity signal, and spectral analysis of the acceleration signal. The highest median error
rate was 1.7cpm using linear filtering.

A study from 2013 evaluates the CCR through the use of a smartphone’s accelerometer [22].
The CCR was evaluated by measuring the time between compressions from the resulting
displacement waveform. The root mean square error was 4.53cpm with the phone under the
hands, and 4.19cpm using the armband. While this approach is very accurate, it cannot
provide live visual feedback and information to the user if the phone is placed under the
hands. In addition, it faced issues with accidental presses of hardware buttons. If the
armband is used, then it is implied that the purchase and setup of this equipment will be
required before use.

2.3.3 Analysis

Although the previous work in this domain provide viable solutions to evaluating the CCR,
they face significant logistical impracticalities that impedes the ease of use. The evaluation
of the CCR from the bottom-up view using a smartphone placed across the user and
adjacent to the patient is the optimal approach, as it enables the user to view live feedback
and information. It also does not require purchase and setup of any additional equipment.
While a solution already exists using the same position and view, its reliability falters when
long loose hair is introduced as a factor. These problems suggest that a more practical and
robust solution to evaluate the CCR must be developed, which is what this research paper
attempts to provide.
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3 Implementation

3.1 Overview

A solution was created by harnessing the acceleration and displacement of pixels and
applying thresholds to detect chest compressions and artificial ventilation. Computer vision
techniques provided by the OpenCV library [23] were used extensively in implementation.
Implementation was completed using Python 3.

Figure 3.1: A high-level architecture overview of the pipeline.

The solution processes video in real-time. At every frame the following logic is executed (see
Figure 3.1 for reference):

1. The current frame is smoothed using a 3x3 blur kernel to reduce image noise.

2. A displacement vector is calculated for every pixel using the previous and current
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frame, resulting in a matrix of displacement vectors.

3. A threshold is applied to the displacement matrix to reduce noise.

4. The displacement matrix is masked using normalized weights to isolate the
region-of-interest.

5. The displacement matrix are separated into vertical and lateral displacement matrices
by the direction classifier.

6. The vertical and lateral displacement matrices are pushed into a buffer.

7. The chest compression and artificial ventilation classifiers independently read the
buffer to detect chest compressions and artificial ventilation, respectively.

8. The vertical displacement matrix is passed into the weighting function to calculate
new weights for masking the next frame.

3.2 Detecting Motion

The first stage in the pipeline detects movement. Movement in the scene is exploited and
forms the basis of detecting chest compressions and artificial ventilation.

3.2.1 Dense Optical Flow

Optical flow is described as the apparent motion vector of objects or surfaces in a scene. It
relies on the brightness constancy constraint, which states that a moving pixel in a frame
will have the same intensity in the next frame. It also relies on the assumption that adjacent
pixels will have similar motion. Given a pixel with intensity I, co-ordinates x and y at time t,
it moves with ∆x and ∆y over time ∆t. Following the brightness constancy constraint, its
intensity remains the same (Equation 1).

I(x , y , t) = I(x + ∆x , y + ∆y , t + ∆t) (1)

A Taylor-series approximation of the right-hand side, removal of common terms, and division
by ∆t results in the following equation (Equation 2) [24].

fxu + fyv + ft = 0 where fx =
∂f

∂x
; fy =

∂f

∂y
; u =

∆x

∆t
; v =

∆y

∆t
(2)

This resulting equation is known as the optical flow equation. In this equation, f x and f y

10



are known as the image gradients. f t is known as the gradient over time. However u and v
are unknowns, and the presence of two unknown variables indicate that this singular
equation is non-trivial to solve.

In computer vision, there are two suggested approaches for solving the optical flow equation.
Sparse optical flow (known as the Lucas-Kanade method) calculates the optical flow between
two frames using a sparse feature set. This feature set is predetermined using feature
detectors. In contrast, dense optical flow calculates the optical flow for all pixels between two
frames. OpenCV’s implementation of dense optical flow uses Gunnar Farneback’s algorithm
[25]. For every pixel in every frame, a displacement vector (u, v) is calculated. The resulting
vector matrix is used in detecting chest compressions and artificial ventilation.

Figure 3.2: A visualization of dense optical flow during CPR. Hue denotes direction and its
brightness denotes magnitude. The change in hue indicates a change in direction. [25]

Dense optical flow was chosen due to the priority of maintaining a high degree of accuracy,
and forms the core of the implemented solution. Due to its computationally expensive
nature, the optical flow of all pixels in the original frame are not required. Frames were
scaled down to a resolution of 256x144 pixels before calculation. This was found to be a
good compromise between accuracy and performance.

3.2.2 Noise Reduction

Raw camera video is prone to image noise, which is detected as false movement by the
dense optical flow algorithm. To mitigate the effects of image noise on the output of this
algorithm, the image is smoothed using an average blur kernel of size 3x3 pixels. After
calculating optical flow, thresholding is applied to discard any displacement vectors that
have a magnitude of 0.2 pixels or less. A magnitude of such value is considered to be noise
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or movement that is not strong enough to be passed on to the next stage in the pipeline. A
mask is also applied to the displacement vectors to isolate the region-of-interest, which is
the region of the user in the frame.

3.3 Classifying Motion

The second stage in the pipeline detects chest compressions and artifical ventilation by using
the displacement vectors calculated from the previous stage to classify motion.

3.3.1 Direction

The motion of chest compressions during CPR can be described as a vertical movement. In
comparison, the motion required for artificial ventilation can be described as a lateral
movement. In order to classify motion as chest compressions or artificial ventilation,
displacement vectors must first be classified by its direction before proceeding with further
classification. Using polar angles, a direct upward direction (north) is classified as 90 degrees
relative to the positive x-plane. From this, a set of filters were implemented (Table
4.1).

Figure 3.3: Polar angles in the 2D plane [26].

Table 3.1: Filters for classifying displacement vectors by direction.

Condition (deg) Classification

30 ≤ θ ∧ θ ≤ 150 Up
210 ≤ θ ∧ θ ≤ 330 Down
160 ≤ θ ∧ θ ≤ 200 Left
340 ≤ θ ∨ θ ≥ 20 Right

12



Directions are classified as a range of angles (in degrees), as the movement of the user is not
guaranteed to be perpendicular. A boundary of 10 degrees exists between the vertical and
horizontal ranges to account for error caused by false classification. Calculation of the
horizontal and vertical resultants of each displacement vector was attempted initially to
evaluate the true magnitude in each plane, but was considered an unnecessary expense of
computation for precision that was not needed. For each direction, the displacement
vectors are summed to denote the total displacement in that direction for the
current frame. The sums for each direction are then pushed to a FIFO buffer
with a size equivalent to a user-defined time period in frames. This time period
was chosen to be 325ms.

3.3.2 Chest Compressions & Artificial Ventilation

Once the sum in each direction is pushed to the buffer, the contents in the buffer are
utilized to detect chest compressions and artificial ventilation. A chest compression can be
described as a strong downward movement followed by a strong upward movement in a very
short period of time. Movement for artificial ventilation is a strong lateral movement,
followed by a strong lateral movement in the opposite direction (when returning to the
position for giving chest compressions). Averages are calculated using the buffer, after which
thresholding is applied to detect chest compressions and artificial ventilation.

Using displacement to detect artificial ventilation

Displacement is a vector defined as the overall change in position, and is the output of dense
optical flow. It is suitable for detecting artificial ventilation as it is characterised as a strong,
infrequent lateral movement. Given the leftward displacement sleft and the rightward
displacement sright , the total lateral displacement s for a frame is calculated:

s = sleft + sright

This lateral displacement value is computed and pushed to the buffer for every frame. The
artificial ventilation classifier then computes an average of the lateral displacement values
stored in the buffer. Given a buffer of size t frames and lateral displacement matrix s, the
average lateral displacement S̄lat over t frames is calculated as follows:

S̄lat =
Σt−1

n=0sn
t − 1

For the purposes of this research, an average lateral displacement of 3000 pixels over
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325ms is classified by the program as artificial ventilation. This state is held
continuously until a chest compression is detected.

It was observed that using displacement alone to detect chest compressions was unsuitable
when looking from the bottom-up view. The low magnitude of displacement observed from
this perspective means that a low threshold value must be used to detect chest
compressions. Use of a low threshold value greatly increased the probability of detecting
false positives due to noise and unwanted disturbances. Usage of a high threshold value
would result in missed compressions. The range of possible threshold values was found to be
extremely limited for this case. Thresholds required a flexible range of values so that they
may be adjusted depending on the characteristics of the environment e.g. when a scene is
noisy the threshold value must be high so as not to detect false positives, but not too high
that it will miss compressions.

Using acceleration to detect chest compressions

Chest compressions can be alternatively described as periodic bursts of acceleration.
Acceleration is a vector defined as the rate of change in displacement with respect to time.
Given the upward displacement sup and the downward displacement sdown, the resultant
vertical displacement s is calculated:

s = sup − sdown

A negative value denotes a resultant displacement in the downward direction. This resultant
value is pushed to the buffer, similar to the artificial ventilation classifier. Using these values,
the average vertical displacement S̄vert is then calculated over buffer size t:

S̄vert =
Σt−1

n=0sn
t − 1

This value is also pushed to the buffer. The vertical velocity Vvert over t frames is then
calculated by computing the change in average displacement between the start and end of
the buffer:

Vvert = S̄0 − S̄t−1

This value is also pushed to the buffer to derive acceleration. The vertical acceleration Avert

over t frames is finally calculated by computing the change in velocity between the start and
end of the buffer:
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Avert = V0 − Vt−1

A negative acceleration value denotes an acceleration in the downward direction. A
downward acceleration of 1,500 pixels/s2 followed immediately by an upward
acceleration of 500 pixels/s2 is classified by the program as a chest compression.
Once a strong downward acceleration is detected, a window of 750ms is given to detect a
strong upward acceleration. This value was chosen for detecting slower rates of CCR. If this
window passes and no upward acceleration is detected, it is discarded as noise and the
program returns to its original state. The usage of pixel acceleration to detect compressions
is suitable as it allowed for a greater range of possible threshold values, due to the
significantly higher magnitude observed.

Figure 3.4: Example of a vertical displacement signal (dotted, black line) and its derivatives:
velocity (dashed, blue line), and acceleration (solid, red line). Note how acceleration has the
greatest amplitude. This can be exploited for a greater range of possible threshold values.

Figure 3.5: Output graph of vertical acceleration over a segment of footage. Negative values
denote a downward direction.
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3.3.3 Calculating CCR

The CCR is calculated in real-time at every detected compression and uses the time
difference between the latest detected and the previous detected compression. Given the
time (in seconds from epoch) of the previous detected compression T n−1 and the time of
the latest detected compression T n, the formula to calculate the CCR (in compressions per
minute) at the nth compression is:

CCRn =
60

(Tn − Tn−1)
where n > 1

3.4 Weighted Region-of-Interest Model

Figure 3.6: The weighted mask after several seconds of CPR time. Note the increasing weight
in the region of the user and diminishment of the non-moving area on the bottom-right.

To mitigate the effects of noise, Corkery’s weighted region model [18] was utilised and
extended as an effective form of retrieving the region-of-interest. This model gives a greater
weighting to regions with a higher density of movement as the CPR procedure progresses.
Given the magnitude of vertical displacement uvert , learning rate L, and old weight w old , a
new weight wnew is calculated as follows:

wnew = W + (uvert ∗ L) where W = wold ∗ (1− L)

New weights are calculated for every pixel in every frame using a learning rate experimentally
chosen to be 0.0065. New weights are not calculated when the program detects a state of
artificial ventilation. The set of newly calculated weights is normalized and used as a mask
for the next frame. This ensures that the unwanted effects of any background noise will be
mitigated.
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Preloaded weights were also implemented as an experimental improvement to Corkery’s
model. Weights can be saved optionally after a CPR session ends and can be reused
optionally at the start of another session. All weights that are preloaded are initialized at
half-strength. It also becomes an input in the weighting function as follows:

wnew = W + (uvert ∗ L) where W = wold ∗ (1− L) + (wpre ∗ L)

The preloading of weights is intended to reduce the effects of noise during the earlier stages
of the CPR procedure when the weights have not been fully adjusted by the algorithm. In
addition, it also serves as an effective heat-zone for detecting movement should the user’s
position in the frame deviate over time.
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4 Evaluation

4.1 Ground Truth

Footage of CPR using a manikin was recorded for evaluation. 13 sessions of CPR totalling
approximately 20 minutes of footage were recorded, each aiming for ratio of 30 chest
compression to 2 artificial ventilations. For each session, two videos at 30 frames per second
were recorded using smartphones (Figure 5.1). Videos of the bottom-up view and the front
view were recorded simultaneously at resolutions of 1280x720 pixels and 1920x1080 pixels,
respectively. Both videos were synchronized by switching on a light during the start and end
of the session. The video was then subsequently trimmed using these two events so that
they were of the same length. Data was then extracted from the front view to serve as
ground truth. Similarly, data was extracted from the bottom-up view using the implemented
solution. This data was compared to ground truth for evaluation.

Figure 4.1: Recording CPR footage. A video of the front view was recorded (left) to serve as
ground truth. A video of the bottom-up view was recorded for the solution (right).

The required ground truth data that was retrieved from the front view videos are the frame
numbers of the lowest point in each chest compression. In each ground truth video, a ball
strapped to the subject’s wrist was used to extract the required information. The Hough
circle detection technique [27] was then used to detect the centre of the ball and its
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coordinates (see Figure 5.2). Frames were annotated as a chest compression when the
y-coordinates of the centre of the ball reached a local maximum (see Figure 5.3). Frames
were annotated as artificial ventilation immediately after the frame in which the subject
completes the final chest compression in a set, up to before the next chest compression
frame. Annotations for both chest compressions and artificial ventilation were verified by
manually iterating through the video on a frame-by-frame basis. By synchronizing and
maintaining the same frame rate across both videos, events will occur at almost the exact
same frame between the two videos. The latency error created through the syncing of the
videos was observed to be 1 or 2 frames, which is trivial.

Figure 4.2: Using Hough circle detection to determine ground truth. The green outline
denotes the detected circle, and the red dot is its centre. The Y-value on the top left is the
Y-coordinate of the red dot in the frame.

Figure 4.3: A graph visualizing ground truth data over a segment of footage. Chest compres-
sions occur at the peaks due to a flipped coordinate system while using OpenCV.
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4.2 Evaluation Metrics

4.2.1 Accuracy, Precision & Recall

The metrics used to evaluate the performance of the solution are accuracy, precision and
recall. These metrics were found to be suitable for evaluation due to the solution’s binary
data classification model [28]. For example, the chest compression classifier determines if
acceleration data is a chest compression or not, which is binary. This logic also applies to
the artifical ventilation classifier. Evaluation classes were retrieved from the confusion
matrix, a table used for evaluating classification performance. The number of instances per
evaluation class were counted and substituted into the relevant formulae.

Table 4.1: Evaluation classes used [28]. True negatives are not applicable for this solution.

Class Meaning

TP True Positive An actual chest compression that occurred and was de-
tected by the solution.

TN True Negative A chest compression that did not actually occur and was
not detected by the solution (not applicable).

FP False Positive A chest compression that did not occur but was detected
by the solution.

FN False Negative An actual chest compression that occurred but was not
detected by the solution.

Accuracy =
TP

TP + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

4.2.2 Mean CCR

The mean CCR was calculated for both the ground truth and the solution. These were
compared to evaluate similarity. The formula to calculate the CCR at the nth chest
compression given the time (in seconds from epoch) of the previous detected compression
T n−1 and the time of the latest detected compression T n:
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CCRn =
60

(Tn − Tn−1)
where n > 1

Note that the CCR requires two points in time, so the CCR at the first encountered chest
compression cannot be evaluated. Using the aforementioned equation, the mean CCR
(denoted by µCCR) over k chest compressions is calculated by summing the CCR values
calculated at every chest compression, then dividing the sum by k minus the first chest
compression:

µCCR =

∑k
n=2 CCRn

k − 1

4.3 Test Cases

Footage was recorded with different real-world cases to test the solution’s robustness. These
cases were also combined with each other in some videos to add rigour.

Table 4.2: Letter codes to denote a condition in the CPR footage.

Code Test Case

L Subject has long, loose hair.
S Subject has short hair.
B Background disturbances wholly intended to disrupt performance.
C Crop at neck-level (the subject’s neck-level and below is cropped out).

Figure 4.4: Different test cases and their letter codes. Disturbances consist of individuals
waving, vaping and/or moving in the background (top right).
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4.4 Results

Visualizations for results are available online at
http://cpr-assistant.herokuapp.com/.

4.4.1 Chest Compressions

Table 4.3: Accuracy, precision and recall for chest compressions.

Dataset TP FP FN Accuracy Precision Recall

L.1 89 6 1 0.93 0.94 0.99
L.2 86 15 3 0.83 0.85 0.97
L.3 83 9 1 0.89 0.90 0.99
S.1 89 7 1 0.92 0.93 0.99
S.2 88 4 2 0.94 0.96 0.98
S.3 89 8 1 0.91 0.92 0.99
S.4 88 5 2 0.93 0.95 0.98
LB.1 89 11 1 0.88 0.89 0.99
LB.2 88 13 1 0.87 0.87 0.99
LB.3 85 10 5 0.85 0.89 0.94
SB 84 8 6 0.87 0.92 0.94
SC 76 5 14 0.80 0.92 0.84
SCB 86 4 4 0.92 0.96 0.96

Overall 1120 105 42 0.88 0.91 0.96

Table 4.4: Mean CCR values (in cpm) for ground truth and solution.

Dataset µCCRGT µCCRSLTN Difference

L.1 102.77 99.92 2.85
L.2 112.2 108.17 4.03
L.3 83.49 81.53 1.96
S.1 71.52 71.95 0.43
S.2 109.09 107.42 1.67
S.3 103.49 99.98 3.51
S.4 112.1 108.25 3.85
LB.1 104.36 98.28 6.08
LB.2 120.43 114.24 6.19
LB.3 117.57 112.86 4.71
SB 110.59 104.48 6.11
SC 103.67 95.85 7.82
SCB 99.81 96.05 3.76

µ 4.07
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The results for chest compressions are good, but there is room for improvement. Given the
low magnitude of movement observed from the bottom-up view, the solution detects chest
compressions at a relatively high degree of accuracy even in non-ideal environments. The
average of the differences in mean CCR for every video was 4.07cpm, which is fairly good
given that the window of ideal CCR is 100cpm to 120cpm. False negatives were attributed
to movement not meeting the threshold, due to disturbances or weak movement. False
positives mostly occurred in videos testing the case of long, loose hair because of the hair
accelerating in the same pattern of movement as chest compressions. Some false positives
were attributed to movements before and after sets of compressions when the subject is
moving into position for the next compression or when switching on the light at the start
and end of the video for syncing.

Figure 4.5: Scatter plots of true vs detected chest compressions over time, with CCR. From
top to bottom: S.2, LB.2 and SC.

4.4.2 Artificial Ventilation

The results for artificial ventilation are fairly good. No artificial ventilations were missed,
which resulted in a perfect recall of 1. False positives were attributed to the lateral
movement of long, loose hair being recognised by the solution as a lateral movement for
artificial ventilation. The main point to note is that evaluation of artificial ventilation is a
secondary objective of this research paper. The artificial ventilation classifier operates
independently of the chest compression classifier and does not affect the CCR if an incorrect
detection occurs.
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Table 4.5: Accuracy, precision and recall for artificial ventilation.

Dataset TP FP FN Accuracy Precision Recall

L.1 2 0 0 1 1 1
L.2 3 3 0 0.5 0.5 1
L.3 3 3 0 0.5 0.5 1
S.1 2 0 0 1 1 1
S.2 2 0 0 1 1 1
S.3 2 0 0 1 1 1
S.4 2 0 0 1 1 1
LB.1 3 1 0 0.75 0.75 1
LB.2 3 4 0 0.43 0.43 1
LB.3 3 3 0 0.5 0.5 1
SB 2 0 0 1 1 1
SC 2 0 0 1 1 1
SCB 2 0 0 1 1 1

Overall 31 14 0 0.69 0.69 1
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5 Conclusion

5.1 Critical Analysis

5.1.1 Strengths

• Robust and performs well in non-ideal environments. The solution was tested
in non-ideal environments and maintained a relatively high degree of accuracy. This is
a good start towards a solution that will operate in real-life OHCA scenarios where not
all environments will be ideal.

• Works well with low-resolution images. This could be vital for performance on
low-powered devices such as smartphones, where the frames will have to be scaled
down from the native resolution to achieve acceptable frame rates.

• Allows two-rescuer CPR to be performed. The position of the smartphone
combined with the robustness of the solution means that two-rescuer CPR may be
performed freely and with predictably similar accuracy, though the logic of artificial
ventilation classification may require slight modifications.

5.1.2 Weaknesses

• The position may crop out essential parts of the user. Accuracy suffers if
insufficient movement is provided by the user, most especially if parts of the user are
cropped out due to, for example, the presence of the patient’s arms. The user may
have to exaggerate movement if the shoulder-level and below is cropped out due to
such obstructions or incorrect placement. This could potentially affect the user’s
technique in performing chest compressions.
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5.2 Viability

Based on results, it is indeed viable to evaluate the CCR from the bottom-up view at a
relatively high degree of accuracy. However, parameters for detecting chest compressions
and artificial ventilation need to be tuned for optimal performance. The thresholds used for
classification were manually chosen through trial-and-error and observation of outputs using
the videos. In spite of this, the slight inaccuracies outweigh the benefits of the smartphone’s
position during use. It allows CPR to be performed easily without any setup and also allows
for visual feedback to be displayed to the user. An important point to note is that it is
intended for use in training scenario, therefore a certain degree of error can be accepted.
While its viability is proven, the solution requires more testing and tuning to harness its full
potential.
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6 Future Work

6.1 Adaptive Thresholding

Parameters such as the threshold values that are used by the chest compression and artificial
ventilation classifiers are constant. These thresholds should be adjusted on a per-scene
basis, since not all environments are the same. These parameters should be changed
dynamically depending on the characteristics of the scene e.g. depending on the noise
observed in the scene, the program may choose to increase the threshold value to a more
optimal value that will mitigate the risk of false positives.

6.2 Mobile Application

The solution should be ported to mobile platforms such as Android and iOS in the form of a
mobile application with features similar to Corkery’s proof-of-concept [18]. This will require
rigorous testing and adjustment so that it is optimized for different chipsets. Not all
smartphones have the same hardware, and due to the fact that this is a computer vision
problem, slight modifications may be needed to ensure the same performance across all
devices.

6.3 CCD Evaluation

The evaluation of the CCD from the same view could be investigated. This would require
the use of a front-facing camera that has depth detection. The combination of CCR and
CCD detection from the bottom-up view’s position coupled with audiovisual feedback could
be a revolution in CPR training.
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