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Summary  

This dissertation aims to speed up an existing read alignment program thus helping to solve the 

problem of DNA analysis. The bottleneck of most DNA analysis pipelines is read alignment 

which is the mapping of short sequences of DNA to a complete sequence of a species’ genetic 

information called a reference genome. The problem with these types of programs is that they 

have very long run times due to the large amounts of genetic data to be analysed. This 

dissertation introduces AWS-BWBBLE, an implementation of the existing program BWBBLE 

by Huang and Popic. It aims to optimize the program by distributing it on the Amazon cloud.  

A research question is posed asking if a straightforward approach exists that will give 

BWBBLE a linear speed-up when its work is distributed amongst a number of virtual machines 

on the cloud. There is a list of objectives presented which need to be accomplished in order to 

answer the posed question.  

As a dissertation for The School of Computer Science and Statistics in Trinity College Dublin, 

the area of bioinformatics will be introduced, and its biology influences will be explored in 

detail. This focusses at the areas of genetics and genomics which are central to the 

bioinformatics field. Next-generation DNA sequencing methods are discussed as well as the 

speeds they are reaching. The theoretical background of read alignment is explained with focus 

on the Burrows-Wheeler Transform and its use in read alignment programs.  

Other read alignment programs are investigated and compared to the BWBBLE program. 

BWBBLE is widely explored both theoretically and practically, with the code and its uses 

discussed. Previous work to parallelize alignment programs are presented and their results 

analysed, including a previous attempt to parallelize the BWBBLE program using Apache 

Spark on the Google cloud. Cloud computing and distributed systems are explained and the 

benefit of them on this program is discusses.  

The design of the program is presented with emphasis on the proposed architecture for the 

distributed system. The popularity of AWS is highlighted and several of their services are 

explored more closely. Amazon’s virtual machine instances and elastic file storage options are 

investigated, and pricing is presented for all decisions made.  
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Docker is introduced, and its growing world-wide interest explored. Containerization is 

compared with the standard virtual machine. Docker is explored in greater detail with focus on 

Docker containers and images. A method to share files between a container and its host 

machine is investigated.  

The implementation of the project is then discussed in detail starting with the modification of 

the BWBBLE code by adding a new set of optional parameters. The method of setting up the 

AWS services through the AWS Management Console is then explained, including the 

configuration of virtual machines and allowing network access to the shared file system. 

Finally, the automation of the system using a shell script with Amazon CLI commands is 

explained in great detail.  

The results are presented in three sections; the initial results, testing of the built-in 

multithreading and lastly, comparing the results to previous work. The results are separated as 

such due to encountering a problem with the original BWBBLE code which is also discussed 

in this section.  

The conclusion finds the project to have been a success as the methodology was kept 

straightforward while also achieving a linear speed-up using up to 4 VMs.  
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Abstract 

Parallel DNA Read Alignment Using the Amazon Cloud 

By Kayleigh McGinley | Supervised by Jeremy Jones  

Trinity College Dublin | School of Computer Science & Statistics  

Master in Computer Science  

Short-read alignment is the process of searching for short sequences of DNA within a species’ 

entire set of genes. Many short-read alignment programs exist, such as BWA1, SOAP22 and 

Bowtie3. However, these programs all have one thing in common; they use a single reference 

genome. The use of a single reference genome can lead to inherent biases and lower accuracy. 

BWBBLE was created to map short reads to a collection of genomes (a reference multi-

genome) with high accuracy. It handles genetic variants thus avoiding the inherent bias to one 

specific genome4.  

One major concern with BWBBLE is that it is up to 100 times slower than other read aligners 

due to the larger amount of data it processes. The aim of this project is to introduce a new 

version of BWBBLE, called AWS-BWBBLE that uses Amazon Web Services to distribute the 

work amongst a number of virtual machines. A small distributed network was successfully 

created in AWS using Elastic Compute Cloud instances (VMs) and Elastic File Storage. The 

parallelization is achieved by instructing each VM in the network to process a different subset 

of the reads file. This straightforward approach was a complete success as proved by the linear 

speed-up of the program using up to four VMs.  

  

                                                 
1 LANGMEAD, B., TRAPNELL, C., POP, M. & SALZBERG, S. L. 2009. Ultrafast and memory-efficient 

alignment of short DNA sequences to the human genome. Genome biology, 10. 
2 LI, H. & DURBIN, R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. 

Bioinformatics (Oxford, England), 25. 
3 LI, R., YU, C., LI, Y., LAM, T.-W., YIU, S.-M., KRISTIANSEN, K. & WANG, J. 2009. SOAP2: an 

improved ultrafast tool for short read alignment. Bioinformatics (Oxford, England), 25. 
4 HUANG, L. & POPIC, V. 2013. Short read alignment with populations of genomes. Bioinformatics (Oxford, 

England), 29. 
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Table of Abbreviations   

Abbreviation  Full Name Description 

AMI Amazon Machine Image Deployable image of the desired state of an 

EC2 instance 

AWS Amazon Web Services Amazon’s cloud computing services 

BWA Burrows-Wheeler 

Alignment  

Read alignment package based on backward 

search with Burrows-Wheeler Transform  

BWBBLE N.A.  BWT-based aligner 

BWT Burrows-Wheeler 

Transform 

A transform that rearranges a character string 

into runs of similar characters 

CLI Command Line Interface Provides control of AWS using the command 

line 

CPU Central Processing Unit  Piece of hardware that carries out the 

instructions of a computer program 

DNA Deoxyribonucleic acid A molecule that contains the instructions an  

organism needs to develop, live and 

reproduce 

DNS Domain Name System System to track and regulate internet domain 

names  

EC2  Elastic Computer Cloud Provides storage, processing, and Web 

services to customers via AWS 

EFS Elastic File Storage  Provides affordable, scalable storage via 

AWS 

FASTA N.A.  Text-based format for representing DNA or 

protein sequences  

GCP Google Cloud Platform  Google’s cloud computing services 

ID Identification/Identity Used to establish the identity of someone or 

something 

IFS Internal Field Separator  A shell variable for determine word splitting 

IP Internet Protocol Unique identifier for a computer  

NFS Network File System  Distributed file system protocol that allows 

access to files over a network 
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NGS Next-Generation 

Sequencing 

Umbrella term to describe modern 

sequencing technologies 

Occ Occurrence  An incident or event. In this case, refers to 

the Occ table BWT data structure  

PEM Privacy Enhanced Mail File format for cryptographic keys  

SCP Secure Copy Allows copying of files between two 

locations, e.g. from a local server to a remote 

server  

SSH Secure Shell  Network protocol for operating network 

services securely  

STDIN Standard Input  Input from the keyboard 

TLS Transport Layer Security Cryptographic protocol for end-to-end 

communication security over networks  

vCPU Virtual Central Processing 

Unit 

CPUs assigned to a virtual machine   

VM Virtual Machine  An emulation of a computer system 

VPC Virtual Private Cloud  Used to isolate desired elements of the AWS 
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1. Introduction   

This chapter is an introduction to the project, presenting its motivations and aims. It outlines 

the research question that this body of work will attempt to answer as well as the objectives 

that the project must achieve to accurately answer the proposed question.  

1.1. Motivation   

This dissertation focusses on parallelizing an existing read alignment program using the 

Amazon cloud. The project lies within the area of bioinformatics which uses computer 

science to help solve complicated biological problems. Short-read alignment is a common 

first step during genomic data analysis and plays a critical role in medical and population 

genetics (Huang and Popic, 2013). The term describes the process of locating reads within 

a large reference genome. Reads are short sequences of DNA and the reference genome is 

a representation of the entire set of genes for a species.  

The speed of next-generation sequencing is expected to increase 3 to 5 times each year. 

This equipment is responsible for generating the reads that are then mapped using alignment 

tools. Current alignment tools are not capable of dealing with this growing amount of data, 

some even taking days to process the data (Arram et al., 2017). Read alignment is complex 

because both exact and inexact matches may occur during the alignment process. Since 

sequenced data is too complex for the human-eye to accurately analyse there is a growing 

strain on the computing systems. Short-read alignment is the bottleneck of most of these 

sequence analysis pipelines, making it the most obvious target for improvement (Arram et 

al., 2017). 

In 2015 an international research project announced that it had successfully sequenced 1000 

human genomes. The project set out to provide a comprehensive description of human 

genetic variation by sequencing the genomes of a diverse set of 1000 individuals (The 

Genomes Project, 2015). Most read aligners are run against a single genome which means 

that they are not taking the genetic variants that were found during this project into account. 

This project will explore BWBBLE which was created in 2013 while the 1000 Genome 

Project was in progress. This program accounts for genetic variations by processing a 

reference multi-genome opposed to a singular genome. Although BWBBLE has much 

slower run times to some other alignment tools, it is found to be a much more efficient 

solution than running a single-aligner multiple times on a collection of genomes (Huang 

and Popic, 2013).  
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There is a need for alignment tools to achieve greater speeds to keep up with the growing 

amount of sequenced data. This is a common issue in bioinformatics where computational 

approaches are needed to solve a problem. A lot of processing power will be required to 

speed up read alignment, so this research will investigate utilising cloud computing. Cloud 

computing gives access to remote servers over the internet and can be used for storage and 

computing power. Amazon Web Services was chosen as the cloud computing provider for 

this project due to its overall command of the cloud computing market and its existing use 

within bioinformatics.  

1.2. Research Question   

The main intention of this research is to answer the following question:  

 “Does a straightforward approach exist that will give the BWBBLE DNA analysis program 

a linear speed-up when it’s work is distributed amongst a number of virtual machines on 

the Amazon Cloud?”  

The project will take the existing BWBBLE program and attempt to distribute the work 

amongst a number of virtual machines on the Amazon cloud. The research question 

highlights that the project will keep the design and implementation as straightforward as 

possible. The project anticipates that for each machine added to the cloud cluster, the run-

time should decrease in a linear motion.  

  



3 

 

1.3. Research Aims   

BWBBLE is a bioinformatics program using graph-based read alignment to analyse DNA. 

It is written in the C programming language and is used to locate the positions of many 

millions of short DNA read sequences in a reference genome. Since the human reference 

genome contains approximately 3 billion base pairs (Human Genome Sequencing 

Consortium, 2004) it can take a long time for the alignment process to complete. The aim 

of this dissertation is to see if it is possible to attain a satisfactory speed-up of the BWBBLE 

DNA analysis program by running it on the Amazon Cloud using a straightforward 

approach.  

This project aims to achieve a linear speed-up by parallelizing the read alignment process. 

This will be done by distributing the work amongst several worker nodes. Each worker 

node will be given a subset of the reads to align and will produce their own output file of 

the locations of those reads. The reads and reference genome will be stored on a shared file 

system to avoid duplicating the data on each machine. Each VM will be instructed as to 

which section of reads they must process. The output files will be collected when the 

processes have completed and combined, producing a final output file.  

1.4. Research Objectives  

To accomplish the stated research question and aims of this dissertation the following 

computational objectives must be achieved:    

1. The BWBBLE code modified to accept start and end points of the reads file as 

parameters for the alignment.  

2. A shared file system set up to be accessed by the VMs in the distributed system.  

3. A deployable machine image created with access to the shared file system with the 

BWBBLE code built and ready to run inside.   

4. An automated script created to fully automate the system using the existing machine 

image and shared file system.   

5. The results file downloaded to the host machine for access after the distributed 

system is shut down.  
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1.5. Overview of This Report  

The remainder of the dissertation is broken down into the following chapters:  

Chapter 2 explores the background of the area of genetics and bioinformatics. In 

particular, it looks at the burrows-wheeler transform that the BWBBLE program is 

based off. It exists to give the reader a basic understanding of the field and purpose of 

this research.  

Chapter 3 explains relevant read alignment programs and prior work to parallelize and 

optimize these programs. It also looks at the project that inspired this research.  

Chapter 4 describes the design decisions made for the project. It investigates a 

distributed cloud network is created and displays the research completed on relevant 

services from AWS. Docker is introduced and discussed in this chapter.  

Chapter 5 details the implementation of the proposed design outlined in chapter 4. It 

describes the cluster preparation and deployment. It explains the set-up of Docker and 

AWS as well as the distribution of work and the merging of the results files.  

Chapter 6 discusses the final results. These results are compared to similar programs 

to see if the project has been satisfactory. The run time is evaluated to determine if a 

sufficient speed-up has been achieved.  

Chapter 7 holds the final remarks on the project. It reflects on the design, 

implementation and results of the project and finally concludes whether the project has 

been a success.  
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2. Background   

The subject area of this dissertation is known as Bioinformatics. This is the interdisciplinary 

field of Computer Science and Biology. It involves using computers to help solve complex 

biological questions. Genetics and genomics are common research areas within 

bioinformatics due to them focussing on DNA and genomic data. This chapter will explore 

these areas to give the reader a better understanding of the problem at hand.  

2.1. Genetics and Genomics  

Genetics is the central to biology since all living things have genes. Genes are comprised 

of DNA and each person’s genes are a combination of both their parent’s sets of genes. A 

genome is a complete set of genes. Genomics is the science of obtaining and analysing the 

sequences of genomes. Complete genomic DNA sequences have been defined for many 

viruses and organisms, including humans (Russel, 2010). There is a large and rapidly 

growing amount of sequenced DNA data available (Dale et al., 2012).  

2.1.1. DNA and Nucleotides  

DNA are large molecules that consist of many smaller 

molecules called monomers. The monomers in DNA are 

called nucleotides and consist of a base. Bases are 

represented by one of the four characters A, T, G or C 

which stand for adenine, thymine, guanine and cytosine 

respectfully. As seen in figure 1, these bases pair up to 

form the DNA double helix. The adenine and thymine 

bases are always paired together just as the guanine 

bases always pair with cytosine. The nucleotide 

sequence is the most detailed information that can be 

obtained about DNA. When complete sequences are 

compared, they can tell us how closely related two 

organisms are (Russel, 2010).  

2.1.2. Reference Genomes 

A reference genome is a representation of a species’ full set of genes. These reference 

genomes are assembled by scientists and can take years to sequence. The Human 

Genome Project was an international scientific research project that started in 1990 and 

spanned 6 countries and 20 institutions (Lee, 1991). Its goal was to sequence the entire 

Figure 1 Stylized Diagram of 

DNA (Russel, 2010) 

 

Stylized Diagram of DNA 

(Russel, 2010)  
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human genome.  The genomes of other well-studied organisms such as, e. coli, the fruit 

fly and the mouse were also partially sequenced as trial runs during the project (Russel, 

2010). The project was complete in 2003 when the group successfully sequenced the 

human genome. The human reference genome is about 3 billion base pairs in length.  

2.2. DNA Sequencing and Analysis  

2.2.1. Sequencing and Sequenced Reads  

DNA sequencing is the process of determining the order of the nucleotide bases that 

make up DNA. Next-generation sequencing equipment is used to generate reads and is 

expected to increase 3 to 5 times in speed each year. The latest NGS platforms are 

capable of generating terabytes of data in a single run (Arram et al., 2017). This 

sequenced data is too complex for the human-eye to accurately analyse so computer 

programs are being created to help with this.  

2.2.2. Read Alignment   

Read alignment is the process of finding the location of reads within a reference 

genome. It is essentially a fuzzy search for a substring within a much larger string. 

Figure 2 gives an idea of the substantial difference in size between the human reference 

genome and the reads. A common analogy is to imagine the reads as jigsaw puzzle 

pieces and the reference genome as the image of the completed puzzle on the cover of 

the box (Stratford, 2018).  

 

Figure 2 Comparing the Size of The Human Reference Genome and Reads 

Short-read alignment is the bottleneck of most sequence analysis programs. Current 

alignment tools can take days to process the sequenced reads (Arram et al., 2017). 

Improvement is needed for these alignment tools to keep up with the growing amounts 

of sequenced data.  
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2.3. Burrows-Wheeler Transform   

The Burrows-Wheeler Transform is a reversable permutation of a string and was initially 

used as a compression algorithm. It allows large texts to be search efficiently in a small 

memory footprint (Huang and Popic, 2013). The transform takes a string as input with ‘$’ 

appended to denote the end of the string. This section will explain how the BWT is created 

as well as the indexed data structure that is used in real-world applications using a sample 

string of bases as an example (“GATCGTACC$”).  

2.3.1. The Suffix Array   

 

Figure 3 Generating Suffix Array For "GATCGTACC$" 

A suffix array is a sorted array of all the suffixes of a string. A suffix is the end of a 

string from a given position. To create a suffix array, all the suffixes of that string are 

listed and then sorted alphabetically. Binary search is used to locate a substring using 

the suffix array. Binary search is a well-known search algorithm for locating the position 

of an object within a sorted array. It starts by comparing the target value to the element 

in the middle of the array, it then deciphers which half of the array the value lies within 

and discards the other half of the array. This method continues until a match is found or 

in this case, until a suffix is found that begins with or equals the substring we are 

searching for.  
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2.3.2. The Transform   

 

Figure 4 Burrows-Wheeler Transform of "GATCGTACC$" 

The transform is found using the suffix array. The preceding character of each suffix 

makes up the BWT. The letters in the BWT text hold the same relative positions as in 

the original text. Meaning that the nth instance of a letter in the BWT is the nth instance 

of that letter in the original text. Figure 5 demonstrates this more clearly.  

 

Figure 5 BWT "First-Last Property" 

As seen above, the first ‘C’ in the BWT corresponds to the first ‘C’ in the sorted suffixes. 

For example, if you take the first instance of ‘C’ in the BWT and concatenate it with its 

corresponding suffix (“$”) it will equal the first suffix beginning with ‘C’ (“C$”). The 

same is highlighted in the figure for the first instance of ‘T’ and the second instance of 

‘C’. The same holds for all characters in the BWT. This is known as the “First-Last 

Property” (Filion, 2016).  
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2.3.3. Backwards Search   

 

Figure 6 Backwards Search Example 

Backwards search is named as such because it begins the search with the last character 

in the string and works towards the first. Figure 6 shows an example of backwards 

search looking for the substring “GTA” within the sample string “GATCGTACC$”. 

Since backwards search starts at the end of the string, we first search the suffix array for 

a suffix that begins with ‘A’. All instances of ‘A’ as the first letter of a suffix are noted. 

Backwards search makes use of the BWT when searching as it holds the preceding 

character to the first character of each suffix. As we can see in the figure, the only suffix 

with ‘T’ preceding ‘A’ is that at index 7 meaning that the substring will be at an index 

below 7. We then continue with our search to find that ‘G’ is present in the BWT 

preceding ‘T’ at index 6. Finally, we see that the substring is present at index 5.  
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2.3.4. The Occ Table 

 

Figure 7 The Occ Table for the BWT "CTGCAT$CGA" 

The data structure that is used in real-world applications is called the Occ table. The 

table contains the cumulative number of occurrences of each character in the BWT 

(Filion, 2016). As shown in figure 7, there is a column for each nucleotide character in 

alphabetical order. The numbers correspond to the occurrences of the character at that 

position. For example, the ‘A’ column remains at 0 until the first occurrence of ‘A’ in 

the BWT which is the fifth character, it then holds the value of 1 until the next 

occurrence which is the last character where the value is increased to 2. The Occ table 

is accompanied by an array called the C array which holds the index of the first 

occurrence of each character in the sorted text (Filion, 2017).  

 

Figure 8 Correlation Between C Array and Sorted Suffixes 

The C array corresponds to the first character in the sorted suffixes. It can be said that 

𝐶[𝑋] is the position of the first 𝑋 in the suffix array (Filion, 2017). Furthermore, 𝐶[$] 

will always be 0 and 𝐶[𝐴] will always be 1 since there should only ever be one 

occurrence of ‘$’ in a string.  
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2.3.5. Use in Read Alignment  

The Burrows-Wheeler Transform is commonly used in read alignment programs. It is 

used transforms a genome into an indexed data structure which brings the run time of 

programs from about the length of the genome down to about the length of the read. 

Read alignment programs will usually pre-calculate the BWT of a single reference 

genome and then map the sequenced reads to it using a variant of the BWT backwards 

search (Huang and Popic, 2013).  

 

Figure 9 Comparing Run Time of Alignment Program with and Without BWT 
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3. State of the Art  

This chapter discusses some of the existing read alignment programs and the motivations 

behind their creation. It focusses on the existing state of the BWBBLE program and some of 

the previous attempts to parallelize the program.  

3.1. Single Genome Read Alignment Programs  

3.1.1. Burrows-Wheeler Alignment 

Burrows-Wheeler Alignment (BWA) is an alignment tool based on backward search 

with Burrows-Wheeler Transform. The motivation behind BWA was to create a read 

alignment program that supports gapped alignment for single-end reads. Gapped 

alignment allows the algorithm to match sequences that have minor differences. 

Introducing these gaps can allow an alignment algorithm to match more terms than a 

gap-less algorithm. (Li and Durbin, 2009) 

3.1.2. SOAP2 

This alignment program was created to replace the preceding short oligonucleotide 

alignment program (SOAP). SOAP uses excess memory compared to other alignment 

programs as it loads full reference sequences into memory. It uses a hash look-up table 

to increase alignment speeds which is also stored in memory. (Li et al., 2008) SOAP2 

aimed to both increase alignment speeds and reduce computer memory usage. It 

introduces a new BWT compression index that was not used in the previous version 

that reduces the memory usage by indexing the reference sequence in main memory. 

This caused the memory usage to reduce from 14.7 to 5.4 gigabytes and alignment 

speeds to improve by 20-30 times. (Li et al., 2009) 

3.1.3. Bowtie  

Bowtie is known as the ultrafast, memory-efficient alignment program. It’s speed and 

minimal memory usage is due to its use of the Burrows-Wheeler index along with a 

backtracking algorithm that allows mismatches. In read alignment mismatching allows 

for the alignment of a read even if some of the bases do not match. Unlike many other 

alignment programs, Bowtie creates a permanent index of the reference genome that 

can be used for future runs of the program. It uses very little memory (1.3 GB) meaning 

that it can be run on a basic PC with as little as 2 GB of RAM. Bowtie does not support 

pair-end or gapped alignment. (Langmead et al., 2009)  
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3.2. BWBBLE  

BWBBLE uses graph-based read alignment to analyse DNA. As discussed above, many 

efficient short-read alignment programs already exist. However, these programs all use a 

single reference genome which can lead to inherent biases and lower accuracy. BWBBLE 

was created to map short reads to a collection of genomes (a reference multi-genome) with 

high accuracy. It handles genetic variants thus avoiding the inherent bias to one specific 

genome (Huang and Popic, 2013). BWBBLE supports both gapped alignment and 

mismatching.  

One major concern with BWBBLE is that it is very slow in comparison to other aligners. 

BWBBLE is almost 100 times slower than BWA (Huang and Popic, 2013). This is due to 

it mapping to multiple reference genomes instead of just one, which is a lot more work for 

the program. However, to achieve the same result with BWA, it would have to be run 

multiple times to process each genome in the collection. When this is considered, BWBBLE 

is a much more efficient method and guarantees much more accuracy than the other 

programs due to its lack of bias. There is also an optional mode for aligning to a single 

genome in BWBBLE which is a lot faster but not utilized in this project.  

3.2.1. The BWBBLE Code 

The program is written in the C programming language and is available on GitHub 

(Huang and Popic, 2015). The program consists of two subdirectories; the “mg-ref” by 

Huang contains scripts to create the reference multi-genome in the standard FASTA 

format. A sample reference multi-genome is provided by the project which is used 

during testing. The second subdirectory is the “mg-aligner” which was created by Popic 

and contains the alignment code of BWBBLE which operates in three steps:  

1. Reference Indexing  

This is the creation of the indexed data structure using BWT.  It is run with the 

reference genome file as a parameter using this command:  

𝑏𝑤𝑏𝑏𝑙𝑒 𝑖𝑛𝑑𝑒𝑥 < 𝑠𝑒𝑞_𝑓𝑎𝑠𝑡𝑎 >   

2. Read Mapping  

The BWBBLE read alignment algorithm is based on BWT backwards search to 

locate reads in the reference multi-genome. BWBBLE expanded upon BWA’s 

inexact search algorithm to allow for mismatches and gaps (Huang and Popic, 2013).  
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The following command is used to run the alignment of the reads to the reference 

multi-genome:  

𝑏𝑤𝑏𝑏𝑙𝑒 𝑎𝑙𝑖𝑔𝑛 [𝑜𝑝𝑡𝑖𝑜𝑛𝑠] < 𝑠𝑒𝑞_𝑓𝑎𝑠𝑡𝑎 > 

        < 𝑟𝑒𝑎𝑑𝑠_𝑓𝑎𝑠𝑡𝑞 > < 𝑎𝑙𝑛_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 > 

Where;  

• < 𝑠𝑒𝑞_𝑓𝑎𝑠𝑡𝑎 >: The reference multi-genome.  

• < 𝑟𝑒𝑎𝑑𝑠_𝑓𝑎𝑠𝑡𝑞 >: The reads file.  

• < 𝑜𝑢𝑡𝑝𝑢𝑡_𝑎𝑙𝑛 >: The specified file to send the output results of the read 

alignment.  

• [𝑜𝑝𝑡𝑖𝑜𝑛𝑠]: The possible input parameters to the alignment (see figure 10). 

 

Figure 10 BWBBLE Read Alignment Options 

The figure above shows the in-built options of BWBBLE. This allows the user to 

change various options when running the alignment command. The most interesting 

of these options is the in-built multithreaded option. This is implemented using a 

read counter (𝑟𝑒𝑎𝑑𝑠−> 𝑐𝑜𝑢𝑛𝑡) that is initialized when the reads file is first read 

and incremented for every read processed. This counter is used to split the reads into 

batches for each thread.  

3. Alignment Results Evaluation & Reporting  

This command converts the alignment output to the standard SAM format: 

𝑏𝑤𝑏𝑏𝑙𝑒 𝑎𝑙𝑛2𝑠𝑎𝑚 < 𝑠𝑒𝑞_𝑓𝑎𝑠𝑡𝑎 > < 𝑟𝑒𝑎𝑑𝑠_𝑓𝑎𝑠𝑡𝑞 > 

        < 𝑎𝑙𝑛_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 > < 𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑎𝑚 > 
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3.3. Parallelized Programs  

3.3.1. SparkBWA   

BWA is one of the most widely adopted read alignment tools. A mentioned in section 

3.1.1, it is based on backward search with BWT (Li and Durbin, 2009). SparkBWA 

exploits the capabilities of Apache Spark, a cluster computing framework, to boost the 

performance of BWA. BWA consists of many algorithms that that were created 

specially to deal with the alignment of short reads. SparkBWA doesn’t modify BWA, 

but instead adds on the exiting code to maintain compatibility (Abuín et al., 2016). 

SparkBWA was designed with the intension to outperform BWA and other BWA-based 

aligners. Figure 11 compares the speed-up achieved with SparkBWA with that of 

another BWA-based aligner, BigBWA. BigBWA is a similar program that was 

previously created by the authors of SparkBWA. However, it uses the Big Data 

technology Hadoop, a distributed computing framework, to boost the performance of 

BWA (Abuín et al., 2015). Hadoop is the predecessor to Spark and both offer similar 

functionalities.  

 

Figure 11 Comparing Speed-Up Times of SparkBWA and BigBWA 

The graph above shows the speed-up achieved from both SparkBWA and BigBWA as 

well as a linear line to show the desired linear speed-up from such a program. It is clear 

from the graph that SparkBWA achieved some speed-up when compared to its 

predecessor but neither program is achieving the linear speed-up that is believed to be 

possible.  
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3.3.2. SparkBWBBLE   

SparkBWBBLE was created for a Bachelor of Computer Science thesis in 2018 by 

Trinity College Dublin alumnus, Ben Stratford (Stratford, 2018). The project aimed to 

replicate the design of SparkBWA using the BWBBLE program. During this project, 

BWBBLE was successfully deployed on a Google Dataproc cluster using Apache 

Spark. Google Dataproc is a service from the Google Cloud Platform that manages 

Spark and Hadoop services.  

 

Figure 12 Speed-Up of SparkBWBBLE 

The project suggests that the method of using Spark for the parallelization of BWBBLE 

is not the best approach. This conclusion is drawn from the difficulties encountered 

throughout the project and the final results not meeting the expectations of the project. 

Figure 12 shows the speed-up of the SparkBWBBLE program on a growing number of 

VMs. These results are inadequate when compared to the linear speed-up that the project 

was aiming to achieve. This project was the inspiration for the straightforward approach 

described in this dissertation.  
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4. Design  

This chapter explains the design of the distributed system and how it makes use of various 

services from AWS. It also introduces Docker and its purpose for the project.  

4.1. Cloud Computing  

Cloud computing aims to give access to large amounts of computing power in a fully 

virtualized way. For computing to be considered fully virtualized it must allow computers 

to be built from distributed components such as processing, storage, data and software 

resources. Cloud computing has become an umbrella term to describe a category of on 

demand computing services, such as those offered by Amazon (AWS), Google (GCP) and 

Microsoft (Microsoft Azure) (Buyya et al., 2011).  

4.1.1. Distributed Cloud Computing  

A distributed system is a collection of independent but interconnected computers that 

appear as one single coherent system. These systems of multiple computers can achieve 

the workload of a high-performance supercomputer. Cloud computing systems consist 

of virtual machines which facilitate distribution and parallelization. All the VMs can be 

controlled by a single physical machine. Distributed computing on the cloud offers a 

lot of flexibility (Mahajan and Shah, 2013). 

Distributed computing is the method of executing different parts of a program on 

multiple machines at the same time. Meaning that it requires the program to be 

separated into executable pieces that can be run concurrently (Rehman, 2018). The 

splitting of work is important as it ensures the program is making full use of each of the 

VMs in the network.  

4.1.1.1. Distribution of Reads 

This project deals with an embarrassingly parallel problem. Since the reads file is 

processed sequentially from start to end, there will be absolutely no overlap in the 

work if the reads file is split and distributed to different VMs. There are two possible 

methods to do this; physically split the file and generate a number of smaller files to 

be sent to the VMs, or, send location pointers to each VM to identify which portion 

of the reads file to process. As I will later discuss, the project made use of a shared 

file system within AWS. This meant that the full reads file could be stored in this 

system and accessed from each machine. Accordingly, the latter option to send 



18 

 

location pointers was chosen. This meant small modifications to the BWBBLE code 

which is discussed in section 5.2.  

4.2. Amazon Web Services   

AWS is the world’s largest cloud computing platform, ahead of Google Compute Cloud, 

Microsoft Azure and IBM Cloud. It commands about 40% of the cloud computing market 

share, almost twice as much as its three biggest competitors combined (Synergy Research 

Group, 2017). AWS is also the platform that is most commonly used within genomic 

research (Kaur and Kaur, 2015). This section describes the design of the distributed cloud 

system that will be set up and run on AWS. The system involves a number of VMs with 

access to a shared file system that are controlled from a local machine.  

4.2.1. Elastic Compute Cloud  

EC2 is Amazon’s provider of virtual machines. These machines are incredibly 

customizable and cost effective. They are secured using public-key cryptography 

meaning a key-pair is needed to access the machine. Key-pairs consist of a public key 

which Amazon stores and a private key that the user stores. Together, they give the user 

secure access to the instance. Amazon has several general-purpose instances including 

their t2 instances. Due to my intention to test the program using BWBBLE’s built-in 

multithreaded option, I chose a machine with 4 vCPUs.  I used a t2.xlarge instance 

which costs 17c per hour.  

 

Table 1 t2.xlarge instance details 

It is possible to save the state of an EC2 machine for later deployment. This is known 

as an Amazon Machine Image. When created, an AMI will hold all installations, files 

and programs that are on that EC2 instance. The Amazon account will be charged for 

the storage space used to hold the AMI in its current state but not for the actual creation 

of the AMI.  

  

 

Name vCPUs RAM (GiB) CPU Credits/hr On-Demand Price/hr 

t2.xlarge 4 16.0 54 $0.1856 
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4.2.2. Elastic File Storage  

EFS is one of Amazon’s cloud storage systems. It was designed to allow users to only 

pay for the storage space they are using. The storage is scalable and expands as the user 

adds more data to the system. EFS was chosen for this project because it can be used as 

a shared file system. It is possible to access a single EFS from multiple VMs 

concurrently making it ideal for use in a distributed system. EFS storage costs about 29c 

per GB per month. The test files are stored in this EFS and take up 0.54 GB, costing just 

16c per month.  

4.2.3. Command Line Interface  

CLI is a unified tool that can be used to control and manage all of AWS. This is an 

alternative to using the AWS Management Console which is the browser-based console 

for manual control of AWS. CLI uses shell commands to control AWS from a command 

line or shell script. Commands exist for all possible interactions with AWS, for example, 

launching an EC2 instance or mounting an EFS. CLI also allows for automation of a 

system using shell scripts to hold a collection of commands.  

  



20 

 

4.3. Docker 

Docker is an open-source computer program for OS-level virtualization (Boettiger, 2015). 

It is the most-popular containerization platform in the world and is one of the fastest 

growing new-technologies of the past few years. With this in mind, I decided to explore 

Docker as part of this dissertation. In particular, I wanted to see if integrating Docker into 

the project would have any benefits on the overall design.  

4.3.1. Comparison of Docker Containers and Virtual Machines 

 

Figure 13 Comparing Virtual Machine and Docker Container Architectures 

Docker is used for running applications in an isolated environment called a container. 

These containers are similar to virtual machines, the difference being the virtualization 

of the operating system. Virtual machines have their own operating system, including 

the kernel which is the core of every operating system. The kernel provides the file 

system, CPU scheduling, memory management, and other operating system functions 

through system calls (Silberschatz and Gagne, 2018). Comparatively, containers use the 

host machine’s kernel and multiple containers can share the same kernel. Each container 

can be constrained to use a defined amount of resources available in the host machine 

(Preeth et al., 2015). All other aspects of containers are like that of a virtual machine. 

Because of this inherent difference, Docker containers start up in seconds and use less 

resources and memory.  
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4.3.2. Docker Images 

 

Figure 14 Docker File to Image to Container 

Docker images are read-only templates which are used to run Docker containers (Preeth 

et al., 2015). There is an online repository (Docker Hub) where over 2 million existing 

images are available. About 150 of these are official Docker images and include 

essential OS such as Ubuntu and CentOS which are the most popular base images as 

they provide a good starting point for users.  

Docker images can also be run by building a Dockerfile. These are plain-text files that 

are used to specify the steps to create the desired Docker image. They can be used to 

configure the OS, install necessary packages and software, set default commands to run 

when the container has started and more. This project makes use of an existing Ubuntu 

Docker image so Dockerfiles were not required.  

4.3.3. Docker Bind Mount  

Docker possesses a similar functionality to the mounting of an EFS on an EC2 instance. 

This is called a bind mount and it allows a machine to run a Docker container with a file 

or directory mounted onto it. This functionality is used when first running the Docker 

container. The mount type is specified along with the source file/directory on the 

machine and the target path within the container. In the case of this project, the EFS on 

the EC2 instance can be the source directory of the bind mount thus giving the Docker 

containers access to the EFS.  

 

Figure 15 Showing EFS Access From Docker Container 
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5. Implementation   

This chapter explains the implementation of the project. It describes the code modifications 

made to BWBBLE, the setup of the distributed system and finally, the automation script that 

runs AWS-BWBBLE.  

5.1. Generation of Test Files  

The BWBBLE GitHub repository contains a folder of files for testing the program. This 

includes the chromosome 21 multi-reference genome which is used during the development 

and testing of the AWS-BWBBLE program. It also contains a reads file with 100 reads. 

The problem with using this file for testing is that the file completes the read alignment 

process too quickly to clearly see how much of a difference is made when distributing the 

reads onto multiple machines. The alignment runs on every read in the file regardless of 

any duplicate reads. Meaning that if the same information is duplicated several times within 

one file, the program will take a lot longer to process the data. Using this method, I 

generated a file with 2,048,000 reads that took the original program almost 2 minutes to 

run. This made it a lot easier to evaluate the difference in run times when the distributed 

system is used.  

5.2. Code Modification  

 

Figure 16 BWBBLE Updated Read Alignment Options 

There is a ready-defined list of ‘options’ that can be used when running the read alignment 

command in BWBBLE. These options include the ability to use the multithreaded version, 

as discussed in section 3.2.1, as well as modifying factors such as the mismatch penalty and 

differences allowed in the alignment (see figure 16 for all alignment options). The original 

list was expanded upon to add the functionality of indicating a subset of the reads file to 

process. I chose the letters ‘b’ and ‘f’ to indicate “beginning” and “finish”, these were 
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chosen because an instruction already existed for both ‘S’ and ‘e’, the desired letters for 

“start” and “end”.  

There is an object in the program called ‘aln_params_t’ which stores the alignment 

parameters. This object stores the default values for each of the possible options unless an 

option is inputted by the user. An integer was added to this type definition for both the start 

and end positions. When setting the default parameters, I chose to set the default of both to 

-1. It is good practice to set them to a negative integer since the only accepted values are 

positive integers. These parameters are checked when the reads file is initially processed. 

If both parameters contain -1, the program will run as normal. However, if they are 

populated with acceptable data the program will only process the reads within the specified 

interval. This interval includes the read at the start position and excludes the read at the end 

position, this is to ensure that a read will not be read twice when the code is later being run 

on multiple nodes. Acceptable data for these parameters are positive integers between 0 and 

the length of the file minus 1, with the start position being a lower value than the end 

position.  

 

Figure 17 Sample of reads file 

Figure 17 shows a sample from the reads file used in the testing of the project. This is the 

standard format for these files in read alignment programs. When reading the file in 

BWBBLE there are defined steps for each of the four lines of each read. This meant that to 

get the number of reads in a file the system simply counts the number of lines in the program 

and divides by four. Therefore, the division of the reads using the new parameters was not 

too complicated and to get a read at a given point, it just must be multiplied by 4.  

In the main function of the program, any parameters (options) passed with the alignment 

instruction are parsed with a switch statement. To allow the new options to be accepted, 

they had to be added to this switch statement (see appendix 1). This is where the alignment 

parameters are set when a user indicates an option. If the switch statement recognises one 

of our new options in the argument list, it converts the inputted string to an integer and 

stores it in the corresponding alignment parameters object.  
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5.3. AWS Setup  

This section outlines how the components that make up the distributed network are set up. 

The design of the system is discussed in section 4.2 along with descriptions of each 

component.  

5.3.1. Elastic File Storage  

EFSs are created on the File Systems dashboard on the AWS Management Console. 

Amazon’s Virtual Private Cloud is used to isolate the desired elements of the AWS 

cloud. The VPC for this project allows access to the ‘eu-west’ availability zones. There 

is a VPC ID associated with every EC2 instance. The file system’s VPC ID must match 

that of the EC2 instances that will be mounted to it. The file system’s access is 

configured by creating mount targets in the VPCs availability zones so that EC2 

instances is any of these zones will be able to mount to the EFS.  

 

Figure 18 EFS File System Access 

5.3.1.1. Populating the EFS  

To populate the EFS with the reads and reference genome I launched a temporary 

EC2 Ubuntu instance. Once running, I created a directory on the VM to hold the 

files. I used WinSCP on my PC to transfer the test files to the new directory on the 

VM. With the necessary files in a directory, I was able to mount these to the EFS 

using the following command:  

𝑠𝑢𝑑𝑜 𝑚𝑜𝑢𝑛𝑡 − 𝑡 < 𝑣𝑚_𝑑𝑖𝑟_𝑝𝑎𝑡ℎ >  −𝑜 𝑡𝑙𝑠 < 𝑒𝑓𝑠_𝑖𝑑 >:/ < 𝑒𝑓𝑠_𝑑𝑖𝑟_𝑝𝑎𝑡ℎ > 

Where −𝑡 stands for target and is followed by the path of the mount target and the 

added option (−𝑜) of TLS adds the encryption of the data when it’s in transit.  

5.3.2. Amazon Machine Image  

It is possible to create a personalised AMI from a running EC2 instance. I wanted to 

have an AMI available for deployment with the modified BWBBLE program inside a 

Docker container. As a basis for this, I launched a t2.xlarge instance from the AWS 

Management Console using an Ubuntu 16.04.4 LTS machine image. When an instance 

is launched the user is prompted to create a new key pair or select an existing one. At 
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this point I created a new key pair and saved it on my local machine as ‘𝑎𝑤𝑠 −

𝑏𝑤𝑏𝑏𝑙𝑒 − 𝑘𝑒𝑦 − 𝑝𝑎𝑖𝑟’ for use with this and future instances.  

5.3.2.1. Testing the Connection with EFS  

On first attempt, the instance failed to mount to the EFS. This was due to the security 

groups for the instance and the EFS not being configured correctly. These security 

groups provide security at the protocol and port access level. The rules attached to 

the security groups allow for traffic flow which is necessary between EC2 and EFS. 

By default, all outbound traffic is allowed but no inbound traffic is permitted. To 

allow for file sharing an inbound connection is opened on the NFS port (2049). This 

new security group is added to both the EC2 instances and the EFS.  

5.3.2.2. Docker on the EC2 Instance  

To install Docker on the instance the following command was run:   

𝑠𝑢𝑑𝑜 𝑎𝑝𝑡 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑑𝑜𝑐𝑘𝑒𝑟. 𝑖𝑜 

The user of the instance needs to log out of their account and then back in before 

Docker will work. This is to allow Docker to access the user permissions and allow 

the user to communicate with the Docker engine.  

To create a Docker container with the AWS-BWBBLE program I initially ran an 

Ubuntu Docker container using the command:  

𝑑𝑜𝑐𝑘𝑒𝑟 𝑟𝑢𝑛 − 𝑑𝑖𝑡 𝑢𝑏𝑢𝑛𝑡𝑢 

Where −𝑑𝑖𝑡 is the concatenation of the three commands;  

• −𝑑: Run Docker in detached mode, meaning the container is run in the 

background.  

• −𝑖: Run Docker in interactive mode which keeps the container’s STDIN 

open even when in detached mode.  

• −𝑡: Run Docker with a virtual terminal within the container.  

We can view our Docker images and containers using the following commands:  

Images = 𝑑𝑜𝑐𝑘𝑒𝑟 𝑖𝑚𝑎𝑔𝑒𝑠 

Containers = 𝑑𝑜𝑐𝑘𝑒𝑟 𝑝𝑠 
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5.3.2.3. AWS-BWBBLE in Docker Container  

To get the AWS-BWBBLE program running inside the container, I needed to access 

the container’s terminal. When a container is run without the −𝑑 option the user 

automatically has access to the container’s terminal. In other words, it is run in the 

attached mode. To change to this mode and enter a running container’s terminal we 

use:  

𝑑𝑜𝑐𝑘𝑒𝑟 𝑎𝑡𝑡𝑎𝑐ℎ < 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟_𝑛𝑎𝑚𝑒 > 

To clone the AWS-BWBBLE program inside the container I ran this set of 

commands:  

𝑎𝑝𝑡 − 𝑔𝑒𝑡 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑔𝑖𝑡 

𝑔𝑖𝑡 𝑐𝑙𝑜𝑛𝑒 ℎ𝑡𝑡𝑝://𝑔𝑖𝑡𝑙𝑎𝑏. 𝑠𝑐𝑠𝑠. 𝑡𝑐𝑑. 𝑖𝑒/𝑘𝑚𝑐𝑔𝑖𝑛𝑙𝑒/𝑎𝑤𝑠 − 𝑏𝑤𝑏𝑏𝑙𝑒. 𝑔𝑖𝑡 

To build and run the program inside the container I had to install the ‘build-essential’ 

(GCC compilers and make utility) and ‘libgomp1’ (GCC OpenMP support library) 

packages.  

With the program running successfully from the container’s command line, the next 

goal was to get the program running inside the Docker container by sending a 

command from outside the container i.e. from the EC2 instance’s terminal. The 

following Docker command exists for exactly this purpose:  

𝑑𝑜𝑐𝑘𝑒𝑟 𝑒𝑥𝑒𝑐 < 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟_𝑛𝑎𝑚𝑒 > < 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 > 

With the program successfully running inside the container I saved the state of the 

container as a Docker image using the command:  

𝑑𝑜𝑐𝑘𝑒𝑟 𝑐𝑜𝑚𝑚𝑖𝑡 < 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟_𝑛𝑎𝑚𝑒 > < 𝑖𝑚𝑎𝑔𝑒_𝑛𝑎𝑚𝑒 >: < 𝑖𝑚𝑎𝑔𝑒_𝑡𝑎𝑔 >  
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5.3.2.4. Docker Bind Mount Using EFS 

The next challenge was that the EFS was mounted onto the EC2 instance, but this 

data was not being shared to the Docker container. As mentioned in section 4.3.3, a 

bind mount can be used to solve this. The following command is used to run a 

Docker container with a bind mount:  

𝑑𝑜𝑐𝑘𝑒𝑟 𝑟𝑢𝑛 − 𝑑𝑖𝑡 

   − − 𝑐𝑝𝑢𝑠 =< 𝑛𝑢𝑚_𝑐𝑝𝑢𝑠 > 

   − − 𝑛𝑎𝑚𝑒 < 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟_𝑛𝑎𝑚𝑒 > 

   − − 𝑚𝑜𝑢𝑛𝑡 𝑡𝑦𝑝𝑒 = 𝑏𝑖𝑛𝑑, 𝑠𝑜𝑢𝑟𝑐𝑒 =< 𝑠𝑟𝑐_𝑝𝑎𝑡ℎ >, 𝑡𝑎𝑟𝑔𝑒𝑡 =< 𝑡𝑎𝑟𝑔𝑒𝑡_𝑝𝑎𝑡ℎ > 

   < 𝑖𝑚𝑎𝑔𝑒_𝑛𝑎𝑚𝑒 >: < 𝑖𝑚𝑎𝑔𝑒_𝑡𝑎𝑔 > 

5.3.2.5. Create AMI  

At this point, the AWS-BWBBLE program can be run inside a container using the 

𝑑𝑜𝑐𝑘𝑒𝑟 𝑒𝑥𝑒𝑐 command from the EC2 terminal. The reads and reference genome 

can be accessed in the EFS. This is the desired state of the machine. The EC2 

Dashboard in the AWS Management Console displays the instances, to create an 

AMI of a running instance you simply select the instance and choose the option to 

create an image (see figure 19).  

 

Figure 19 Create AMI in AWS Management Console 
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5.4. Parallelizing BWBBLE   

5.4.1. Allocating CPUs in Docker and EC2   

The main parallelization functionality of the AWS-BWBBLE program is achieved with 

the distribution of work to the EC2 instances. With this in mind, I wanted to ensure that 

each virtual machine was making use of the available vCPUs. As discussed, I chose 

t2.xlarge EC2 instances which have access to 4 vCPUs. The BWBBLE program is the 

only thing running on the VMs at any time, so it can be given full access to the vCPUs. 

Since the program is run within a Docker container it is also necessary to ensure that 

the containers have access to all available vCPUs. This is done by using the ‘− − 𝑐𝑝𝑢𝑠’ 

parameter when running the Docker containers.  

𝑑𝑜𝑐𝑘𝑒𝑟 𝑟𝑢𝑛 − 𝑑𝑖𝑡 

   − − 𝑐𝑝𝑢𝑠 =< 𝑛𝑢𝑚_𝑐𝑝𝑢𝑠 > 

   − − 𝑛𝑎𝑚𝑒 < 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟_𝑛𝑎𝑚𝑒 > 

   < 𝑖𝑚𝑎𝑔𝑒_𝑛𝑎𝑚𝑒 >: < 𝑖𝑚𝑎𝑔𝑒_𝑡𝑎𝑔 > 

5.4.2. Multithreaded Version of BWBBLE  

To further parallelize the system, I wanted to make use of the in-built multithreaded 

option in BWBBLE. As discussed in section 3.2.1, this is implemented using a read 

counter (𝑟𝑒𝑎𝑑𝑠−> 𝑐𝑜𝑢𝑛𝑡) that is initialized when the reads file is first read and 

incremented for every read processed. The modification of the BWBBLE code to accept 

start and end positions of the reads file does not affect the functionality of the in-built 

multithreading. This is due to the read counter being incremented for each read 

processed, not each read in the file.  

Appendix 2 contains the C code of the function that loads the read sequences from the 

file. The processed reads are stored in an array within the ‘𝑟𝑒𝑎𝑑𝑠_𝑡’ object. When a 

valid start and end position is entered, this function only processes the subset within 

these parameters. Since the reads counter is incremented within a conditional statement 

that checks that the read is inside these parameters, it will be equal to the amount of 

reads we intend to process whether the start and end options are being used or not. 
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5.5. Automation  

A shell script contains commands to automate the AWS-BWBBLE program. It makes use 

of the AMI and EFS that were previously created. It incorporates existing Linux 

commands as well as many Amazon CLI commands. 

5.5.1. CLI Configuration   

The CLI functionality can be downloaded on any machine. I used my Windows PC to 

create and run the shell script for automating the project. There is a windows installer 

available on the Amazon website to download the CLI for use in a bash terminal on a 

Windows machine. When download, the CLI must be configured. This is done by 

running the ‘𝑎𝑤𝑠 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑒’ command which will prompt the user for four pieces of 

information: 

𝑨𝑾𝑺 𝑨𝒄𝒄𝒆𝒔𝒔 𝑲𝒆𝒚 𝑰𝑫 [𝒏𝒐𝒏𝒆] : < 𝑎𝑐𝑐𝑒𝑠𝑠_𝑘𝑒𝑦_𝑖𝑑 > 

𝑨𝑾𝑺 𝑺𝒆𝒄𝒓𝒆𝒕 𝑨𝒄𝒄𝒆𝒔𝒔 𝑲𝒆𝒚 [𝒏𝒐𝒏𝒆] : < 𝑠𝑒𝑐𝑟𝑒𝑡_𝑎𝑐𝑐𝑒𝑠𝑠_𝑘𝑒𝑦 >  

𝑫𝒆𝒇𝒂𝒖𝒍𝒕 𝒓𝒆𝒈𝒊𝒐𝒏 𝒏𝒂𝒎𝒆 [𝒏𝒐𝒏𝒆] : < 𝑟𝑒𝑔𝑖𝑜𝑛_𝑛𝑎𝑚𝑒 >  

𝑫𝒆𝒇𝒂𝒖𝒍𝒕 𝒐𝒖𝒕𝒑𝒖𝒕 𝒇𝒐𝒓𝒎𝒂𝒕 [𝒏𝒐𝒏𝒆] : < 𝑓𝑜𝑟𝑚𝑎𝑡 > 

The access key ID and secret access key are the credentials associated with the user’s 

AWS account. The configuration of the user’s credentials is necessary before any CLI 

commands will be successful as each request to AWS will check that the credentials 

match that of the user. The default region name determines the AWS Region, all 

requests will be sent to this region by default. It is recommended to set this to the nearest 

region which in my case is 𝑒𝑢 − 𝑤𝑒𝑠𝑡 − 1. However, it can be set to any desired region 

and can even be reconfigured for individual commands. The default output format 

determines the way any output will be presented on the terminal. The possible formats 

are json, text and table. The ‘[𝑛𝑜𝑛𝑒]’ indicates that this is the first time the CLI is being 

configured, these will get populated with the inputted values if the configure command 

is run again. This is a future reminder for user as to what the values are set to.  
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5.5.2. Shell Script  

5.5.2.1. Launch Instances  

The following command is used to launch EC2 instances. The < 𝑖𝑚𝑎𝑔𝑒_𝑖𝑑 > is the 

ID of the AMI that was previously created. By using the ‘𝑐𝑜𝑢𝑛𝑡’ parameter, a 

number of identical machines can be created at the same time which is ideal for this 

system. As mentioned, the chosen instance type t2.xlarge. I used the ‘𝑎𝑤𝑠 −

𝑏𝑤𝑏𝑏𝑙𝑒 − 𝑘𝑒𝑦 − 𝑝𝑎𝑖𝑟’ that I previously downloaded to my local machine with each 

of the instances. Finally, the security groups must be passed to the command using 

their unique IDs to ensure each instance will be able to contact the EFS over the 

network.  

𝑎𝑤𝑠 𝑒𝑐2 𝑟𝑢𝑛 − 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 

        − − 𝑖𝑚𝑎𝑔𝑒 − 𝑖𝑑 < 𝑖𝑚𝑎𝑔𝑒_𝑖𝑑 > 

        − − 𝑐𝑜𝑢𝑛𝑡 < 𝑛𝑢𝑚_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 > 

        − − 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑡𝑦𝑝𝑒 < 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_𝑡𝑦𝑝𝑒 > 

        − − 𝑘𝑒𝑦 − 𝑛𝑎𝑚𝑒 < 𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑘𝑒𝑦_𝑛𝑎𝑚𝑒 > 

        − − 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 − 𝑔𝑟𝑜𝑢𝑝 − 𝑖𝑑 < 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦_𝑔𝑟𝑜𝑢𝑝𝑠 > 

5.5.2.2. Get Instance Details  

Some of the later commands require the instances’ IPs, IDs or DNS addresses. I used 

the ‘𝑎𝑤𝑠 𝑒𝑐2 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒’ command to extract this information. Below is the 

command being used to extract the instance IDs. The filter option accepts name-

value pairs and can be used to refine the result. I used two name-value pairs to get 

my desired result. The first extracts the instances that match my specified instance 

type (‘𝑡2. 𝑥𝑙𝑎𝑟𝑔𝑒’) and the second looks at the state of these instances and returns 

only those that are in the process of starting up (‘𝑝𝑒𝑛𝑑𝑖𝑛𝑔’) or those that are already 

running. This allows the shell script to see all the instances we have launched even 

if they have not completed the start-up process when a command like this is run.  

    𝑖𝑑𝑠_𝑠𝑡𝑟 = $(𝑎𝑤𝑠 𝑒𝑐2 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒 − 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠  

    − − 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 "𝑁𝑎𝑚𝑒 = 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑡𝑦𝑝𝑒, 𝑉𝑎𝑙𝑢𝑒𝑠 =< 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_𝑡𝑦𝑝𝑒 > "  

    − − 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 𝑁𝑎𝑚𝑒 = 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑠𝑡𝑎𝑡𝑒 − 𝑛𝑎𝑚𝑒, 𝑉𝑎𝑙𝑢𝑒𝑠 = 𝑝𝑒𝑛𝑑𝑖𝑛𝑔, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔  

    − − 𝑞𝑢𝑒𝑟𝑦 "𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠[∗]. 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠[∗]. 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐼𝑑"  

    − − 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑡𝑒𝑥𝑡) 
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In the example on the previous page, ‘𝑖𝑑𝑠_𝑠𝑡𝑟’ will equal a string of the instance 

IDs each separated by a tab. The same command is run with ‘𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐼𝑝𝐴𝑑𝑑𝑟𝑒𝑠𝑠’ 

replacing ‘𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐼𝑑’ for the IP addresses and ‘𝑃𝑢𝑏𝑙𝑖𝑐𝐷𝑛𝑠𝑁𝑎𝑚𝑒’ to extract the 

DNS addresses. The position of the data in each string corresponds to the same 

instance since the data is retrieved in the same manner. That is, the first IP, ID and 

DNS all correspond to the same instance.   

5.5.2.3. Wait for Status Checks  

As mentioned, some commands can run while the EC2 instances are still pending. 

To ensure that the instances are in the essential state before sending commands to 

them, the following commands are run. These ensure that the instances are in the 

‘𝑟𝑢𝑛𝑛𝑖𝑛𝑔’ state and that they have passed the status checks which will identify if 

there are any hardware or software issues with an instance. EC2 instances will not 

process a command until the status checks complete so it is important to wait for 

these to finish.  

𝑎𝑤𝑠 𝑒𝑐2 𝑤𝑎𝑖𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒   − 𝑟𝑢𝑛𝑛𝑖𝑛𝑔         − −𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑖𝑑𝑠 < 𝑖𝑑𝑠_𝑠𝑡𝑟 > 

𝑎𝑤𝑠 𝑒𝑐2 𝑤𝑎𝑖𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒   − 𝑠𝑡𝑎𝑡𝑢𝑠 − 𝑜𝑘   − −𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑖𝑑𝑠 < 𝑖𝑑𝑠_𝑠𝑡𝑟 > 

5.5.2.4. Send Command Using SSH 

The following command uses an essential Linux tool which sends a command to be 

executed on another machine. SSH is a network protocol for operating network 

services securely and requires the private key, user name (‘𝑢𝑏𝑢𝑛𝑡𝑢’) and DNS 

address of the machine. The command inside the quotation marks will be sent to the 

desired machine.  

𝑠𝑠ℎ − 𝑖 < 𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑘𝑒𝑦_𝑛𝑎𝑚𝑒 >. 𝑝𝑒𝑚 𝑢𝑏𝑢𝑛𝑡𝑢@ < 𝑑𝑛𝑠_𝑎𝑑𝑑𝑟 > " < 𝑐𝑚𝑑 > " 

A DNS address is required for each SSH command called but we often want to send 

the same command to all the addresses. The best way to do this is within a for loop 

with the DNS addresses stored in an array. Since a tab-separated string already exists 

with the DNS addresses, I used the internal field separator to split the string using 

the tab as a delimiter. The same is done to generate an array of the IP addresses.  

𝐼𝐹𝑆 = $′\𝑡′   𝑟𝑒𝑎𝑑 − 𝑟 − 𝑎 < 𝑑𝑛𝑠_𝑎𝑟𝑟𝑎𝑦 >   <<<   < 𝑑𝑛𝑠_𝑠𝑡𝑟𝑖𝑛𝑔 > 
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5.5.2.5. Mount EFS  

The next two commands are called from inside a for loop where ‘𝑖’ is the index of 

the DNS array. This command ensures that each instance gets mounted onto the 

same EFS. 

𝑠𝑠ℎ − 𝑖 < 𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑘𝑒𝑦_𝑛𝑎𝑚𝑒 >. 𝑝𝑒𝑚 𝑢𝑏𝑢𝑛𝑡𝑢@(< 𝑑𝑛𝑠_𝑎𝑟 > [𝑖]) 

        "𝑠𝑢𝑑𝑜 𝑚𝑜𝑢𝑛𝑡 − 𝑡 < 𝑣𝑚_𝑑𝑖𝑟_𝑝𝑎𝑡ℎ >  −𝑜 𝑡𝑙𝑠  

        < 𝑒𝑓𝑠_𝑖𝑑 >:/< 𝑒𝑓𝑠_𝑑𝑖𝑟_𝑝𝑎𝑡ℎ > " 

5.5.2.6. Run Docker Container with Bind Mount  

With the EFS mounted, this command starts a Docker container using the AWS-

BWBBLE image and mounts the EFS to the container.  

𝑠𝑠ℎ − 𝑖 < 𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑘𝑒𝑦_𝑛𝑎𝑚𝑒 >. 𝑝𝑒𝑚 𝑢𝑏𝑢𝑛𝑡𝑢@(< 𝑑𝑛𝑠_𝑎𝑟 > [𝑖]) 

"𝑑𝑜𝑐𝑘𝑒𝑟 𝑟𝑢𝑛 − 𝑑𝑖𝑡 

   − − 𝑐𝑝𝑢𝑠 =< 𝑛𝑢𝑚_𝑐𝑝𝑢𝑠 > 

   − − 𝑛𝑎𝑚𝑒 < 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟_𝑛𝑎𝑚𝑒 > 

   − − 𝑚𝑜𝑢𝑛𝑡 𝑡𝑦𝑝𝑒 = 𝑏𝑖𝑛𝑑, 𝑠𝑜𝑢𝑟𝑐𝑒 =< 𝑠𝑟𝑐_𝑝𝑎𝑡ℎ >, 𝑡𝑎𝑟𝑔𝑒𝑡 =< 𝑡𝑎𝑟𝑔𝑒𝑡_𝑝𝑎𝑡ℎ > 

   < 𝑖𝑚𝑎𝑔𝑒_𝑛𝑎𝑚𝑒 >: < 𝑖𝑚𝑎𝑔𝑒_𝑡𝑎𝑔 > " 

5.5.2.7. Run Reference Indexing  

Some of the commands only need to be run on one of the instances. This instance 

will be known as the ‘master’ as it provides some indirect control over the other 

instances. The BWBBLE index command only needs to be run on one machine 

because its functionality is not being parallelized and the result files will be stored 

in the EFS where all the other instances can access them for the read alignment.  

𝑠𝑠ℎ − 𝑖 < 𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑘𝑒𝑦_𝑛𝑎𝑚𝑒 >. 𝑝𝑒𝑚 𝑢𝑏𝑢𝑛𝑡𝑢@(< 𝑑𝑛𝑠_𝑎𝑟 > [0]) 

" 𝑑𝑜𝑐𝑘𝑒𝑟 𝑒𝑥𝑒𝑐 < 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟_𝑛𝑎𝑚𝑒 >  

/𝑎𝑤𝑠 − 𝑏𝑤𝑏𝑏𝑙𝑒/𝑚𝑔 − 𝑎𝑙𝑖𝑔𝑛𝑒𝑟/./𝑏𝑤𝑏𝑏𝑙𝑒 𝑖𝑛𝑑𝑒𝑥 < 𝑒𝑓𝑠_𝑝𝑎𝑡ℎ >/𝑐ℎ𝑟21. 𝑓𝑎 " 
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5.5.2.8. Split the Reads 

Before the read alignment can be run, we need to determine which portion of reads 

to instruct each instance to align. The first step of this is to get the total number of 

reads. This is done using the ‘𝑤𝑐’ Linux command which gets the word count of a 

file, by using the ‘−𝑙’ option we, instead, get the number of lines in the file. This 

number is then divided by 4 to get the number of reads since each read in the file 

spans 4 lines.  

𝑙𝑖𝑛𝑒𝑠_𝑖𝑛_𝑓𝑎𝑠𝑡𝑞 = 

        $(𝑠𝑠ℎ − 𝑖 < 𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑘𝑒𝑦_𝑛𝑎𝑚𝑒 >. 𝑝𝑒𝑚 𝑢𝑏𝑢𝑛𝑡𝑢@ < 𝑑𝑛𝑠_𝑎𝑑𝑑𝑟 >  

        “𝑤𝑐 − 𝑙 <  𝑒𝑓𝑠/𝑑𝑢𝑚𝑚𝑦_𝑟𝑒𝑎𝑑𝑠_𝑙𝑎𝑟𝑔𝑒. 𝑓𝑎𝑠𝑡𝑞”)  

𝑛𝑢𝑚_𝑟𝑒𝑎𝑑𝑠 = ((𝑙𝑖𝑛𝑒𝑠_𝑖𝑛_𝑓𝑎𝑠𝑡𝑞/4)) 

To get the number of reads for each instance, the total number of reads is divided by 

the number of running instances. The variables ‘𝑠𝑡𝑎𝑟𝑡’ and ‘𝑒𝑛𝑑’ and created to be 

used within the for loop that will run the alignment command. They are both 

incremented by the variable ‘𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑠𝑖𝑧𝑒’ after each run to point to the next 

section of reads in the file. Figure 20 shows a visual depiction of how these variables 

are used to access the correct positions in the file.  

𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑠𝑖𝑧𝑒 = $((𝑛𝑢𝑚_𝑟𝑒𝑎𝑑𝑠/< 𝑛𝑢𝑚_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 >)) 

𝑠𝑡𝑎𝑟𝑡 = 0 

𝑒𝑛𝑑 = $𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑠𝑖𝑧𝑒 

 

Figure 20 Depiction of the Splitting of Reads in the Shell Script 
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5.5.2.9. Subshells for Parallel Processing of Alignment  

The following command is starting a subshell in each instance to run the alignment. 

It uses the < 𝑠𝑡𝑎𝑟𝑡 > and < 𝑒𝑛𝑑 > variables as described above, to evenly split the 

work amongst the machines. A subshell is a child process and allows the script to 

process the commands in parallel. To initiate a subshell, a normal SSH command 

just needs to be surrounded by parenthesis. The ampersand symbol is used to run the 

specified command in the background which means that there is no interference 

between the current terminal and each of the processes running on the EC2 instances. 

The output alignment file for each instance includes the instance IP in the file name 

to make it clear which instance it was generated from. A simple ‘𝑤𝑎𝑖𝑡’ command is 

used to wait for all the subshells to complete.  

(𝑒𝑐ℎ𝑜 − 𝑒 "𝑆𝑢𝑏𝑠ℎ𝑒𝑙𝑙 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑜𝑛 < 𝑖𝑝 > " & 

 𝑠𝑠ℎ − 𝑖 < 𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑘𝑒𝑦_𝑛𝑎𝑚𝑒 >. 𝑝𝑒𝑚 𝑢𝑏𝑢𝑛𝑡𝑢@ < 𝑑𝑛𝑠_𝑎𝑑𝑑𝑟 > 

         "𝑑𝑜𝑐𝑘𝑒𝑟 𝑒𝑥𝑒𝑐 < 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟_𝑛𝑎𝑚𝑒 >  

                /𝑎𝑤𝑠 − 𝑏𝑤𝑏𝑏𝑙𝑒/𝑚𝑔 − 𝑎𝑙𝑖𝑔𝑛𝑒𝑟/./𝑏𝑤𝑏𝑏𝑙𝑒 𝑎𝑙𝑖𝑔𝑛  

                −𝑡 < 𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠 >  −𝑏 < 𝑠𝑡𝑎𝑟𝑡 >  −𝑓 < 𝑒𝑛𝑑 >  

                < 𝑒𝑓𝑠_𝑝𝑎𝑡ℎ >/𝑐ℎ𝑟21. 𝑓𝑎  

                < 𝑒𝑓𝑠_𝑝𝑎𝑡ℎ >/𝑑𝑢𝑚𝑚𝑦_𝑟𝑒𝑎𝑑𝑠_𝑙𝑎𝑟𝑔𝑒. 𝑓𝑎𝑠𝑡𝑞  

                < 𝑒𝑓𝑠_𝑝𝑎𝑡ℎ >/𝑑𝑢𝑚𝑚𝑦_𝑟𝑒𝑎𝑑𝑠_ < 𝑖𝑝 >. 𝑎𝑙𝑛 ") & 

5.5.2.10. Concatenate Results and Convert to SAM Format  

Before converting the alignment results to a SAM file, I added a conditional check 

to ensure that all the alignment processes were completed successfully and that their 

respective alignment results were stored in the EFS. To do this I run the ‘−𝑓’ (find) 

command on the master node for each of the expected alignment files. This is 

achieved using a for loop where ‘< 𝑖𝑝 >’, in turn, points to each of the IPs in the 

IPs array. If the file is found the variable ‘𝑒𝑥𝑖𝑠𝑡𝑠’ is set to true and the name of the 

alignment file is added to an array called ‘𝑎𝑙𝑛_𝑓𝑖𝑙𝑒𝑠’. If, at any point, this variable 

is set to false it is clear that something has gone wrong during the alignment process.  

𝑒𝑥𝑖𝑠𝑡𝑠 = 

$(𝑠𝑠ℎ − 𝑖 < 𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑘𝑒𝑦_𝑛𝑎𝑚𝑒 >. 𝑝𝑒𝑚 𝑢𝑏𝑢𝑛𝑡𝑢@(< 𝑑𝑛𝑠_𝑎𝑟 >  [0]) 

        “[[ −𝑓 < 𝑒𝑓𝑠_𝑝𝑎𝑡ℎ >/”𝑑𝑢𝑚𝑚𝑦_𝑟𝑒𝑎𝑑𝑠_ < 𝑖𝑝 >. 𝑎𝑙𝑛” ]] &&  

          𝑒𝑐ℎ𝑜 𝑡𝑟𝑢𝑒 || 𝑒𝑐ℎ𝑜 𝑓𝑎𝑙𝑠𝑒; ”) 
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As mentioned, when the IPs and DNSs are first retrieved they are listed in 

corresponding order. When they are later converted to arrays they maintain this 

correlation. This is very useful for the concatenation of the alignment results since 

everything that has been processed on all instances has been done in the order 

specified by the arrays. Therefore, we run the following command on the master 

instance using the array of file names generated in the previous step.  ‘𝑎𝑙𝑛_𝑓𝑖𝑙𝑒𝑠[@]’ 

lists all elements of the array to be concatenated.  

𝑠𝑠ℎ − 𝑖 < 𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑘𝑒𝑦_𝑛𝑎𝑚𝑒 >. 𝑝𝑒𝑚 𝑢𝑏𝑢𝑛𝑡𝑢@ < 𝑑𝑛𝑠_𝑎𝑑𝑑𝑟 > 

        "𝑠𝑢𝑑𝑜 𝑏𝑎𝑠ℎ − 𝑐  ′𝑐𝑎𝑡   "(< 𝑎𝑙𝑛_𝑓𝑖𝑙𝑒𝑠 > [@])" >  

         < 𝑒𝑓𝑠_𝑝𝑎𝑡ℎ >/𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑. 𝑎𝑙𝑛′" 

The final alignment file ‘𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑. 𝑎𝑙𝑛’ is then converted to the standard SAM 

format using this command: 

𝑠𝑠ℎ − 𝑖 < 𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑘𝑒𝑦_𝑛𝑎𝑚𝑒 >. 𝑝𝑒𝑚 𝑢𝑏𝑢𝑛𝑡𝑢@ < 𝑑𝑛𝑠_𝑎𝑑𝑑𝑟 > 

         𝑑𝑜𝑐𝑘𝑒𝑟 𝑒𝑥𝑒𝑐 < 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟_𝑛𝑎𝑚𝑒 >  

         /𝑎𝑤𝑠 − 𝑏𝑤𝑏𝑏𝑙𝑒/𝑚𝑔 − 𝑎𝑙𝑖𝑔𝑛𝑒𝑟/./𝑏𝑤𝑏𝑏𝑙𝑒 𝑎𝑙𝑛2𝑠𝑎𝑚  

         < 𝑒𝑓𝑠_𝑝𝑎𝑡ℎ >/𝑐ℎ𝑟21. 𝑓𝑎  

         < 𝑒𝑓𝑠_𝑝𝑎𝑡ℎ >/𝑑𝑢𝑚𝑚𝑦_𝑟𝑒𝑎𝑑𝑠_𝑙𝑎𝑟𝑔𝑒. 𝑓𝑎𝑠𝑡𝑞  

         < 𝑒𝑓𝑠_𝑝𝑎𝑡ℎ >/𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑. 𝑎𝑙𝑛  

         < 𝑒𝑓𝑠_𝑝𝑎𝑡ℎ >/𝑑𝑢𝑚𝑚𝑦_𝑟𝑒𝑎𝑑𝑠. 𝑠𝑎𝑚 

The SAM file is downloaded from the master instance to the local machine using 

SCP (secure copy) so that the user has access to it after the instances are shut down.  

𝑠𝑐𝑝 − 𝑖 < 𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑘𝑒𝑦 >. 𝑝𝑒𝑚 

𝑢𝑏𝑢𝑛𝑡𝑢@<dns_addr>: < 𝑒𝑓𝑠_𝑝𝑎𝑡ℎ >/𝑑𝑢𝑚𝑚𝑦_𝑟𝑒𝑎𝑑𝑠. 𝑠𝑎𝑚 . 
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5.5.2.11. Clean Up and Termination  

The following command removes all the newly generated data from the EFS so that 

the script can be run again with the EFS in its original state with only the reads file 

and the reference genome.  

𝑠𝑠ℎ − 𝑖 < 𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑘𝑒𝑦_𝑛𝑎𝑚𝑒 >. 𝑝𝑒𝑚 𝑢𝑏𝑢𝑛𝑡𝑢@ < 𝑑𝑛𝑠_𝑎𝑑𝑑𝑟 > 

𝑠𝑢𝑑𝑜 𝑟𝑚  

    < 𝑒𝑓𝑠_𝑝𝑎𝑡ℎ >/∗. 𝑎𝑙𝑛  

    < 𝑒𝑓𝑠_𝑝𝑎𝑡ℎ >/∗. 𝑎𝑛𝑛  

    < 𝑒𝑓𝑠_𝑝𝑎𝑡ℎ >/∗. 𝑏𝑤𝑡  

    < 𝑒𝑓𝑠_𝑝𝑎𝑡ℎ >/∗. 𝑟𝑒𝑓  

    < 𝑒𝑓𝑠_𝑝𝑎𝑡ℎ >/∗. 𝑠𝑎𝑚 

All the instances are shut down using this CLI command to ensure there isn’t a large 

build-up of running instances.  

𝑎𝑤𝑠 𝑒𝑐2 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 − 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 − −𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑖𝑑𝑠 < 𝑖𝑑_𝑙𝑖𝑠𝑡 > 

A variation of following code was used to set up timers for each section of the code; 

instance setup, indexing, alignment, generation and download of SAM file and 

finally, the termination of the instances. The alignment timer is of great importance 

and is looked at closely is the results section of this dissertation.  

𝑡𝑖𝑚𝑒𝑟_𝑠𝑡𝑎𝑟𝑡 = (𝑑𝑎𝑡𝑒 + %𝑠%𝑁|𝑐𝑢𝑡 − 𝑏1 − 13) 

𝑡𝑖𝑚𝑒𝑟_𝑒𝑛𝑑 = (𝑑𝑎𝑡𝑒 + %𝑠%𝑁|𝑐𝑢𝑡 − 𝑏1 − 13) 

𝑡𝑖𝑚𝑒𝑟_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  $((𝑡𝑖𝑚𝑒𝑟_𝑒𝑛𝑑 −  𝑡𝑖𝑚𝑒𝑟_𝑠𝑡𝑎𝑟𝑡)) 
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6. Results  

This chapter presents the results of the project initially using the in-built multithreaded option 

of BWBBLE and then discussing its drawbacks. Finally, it presents the definitive results in 

comparison to results from previous works.  

6.1. Initial Testing  

The initial testing uses the shell script outlined in section 5.5 to create the distributed system 

on AWS and run the AWS-BWBBLE program. It also makes use of the integrated 

multithreaded option of the BWBBLE program. As discussed, the chromosome 21 multi-

reference genome and a FASTQ file containing 2,048,000 reads are used in all tests.  

 

Figure 21 Speed-Up of AWS-BWBBLE Using 4 Threads 

As seen in figure 21, the initial results contrasted with the expected linear speed-up. The 

program achieved a speed-up of 1.67 when distributing its work to 2 VMs which is not too 

far off the expected speed-up of 2, however, when run with 4 VMs the program only 

achieved a 1.9 times speed-up. At very least we should expect a speed-up of about 3.34 at 

this point since there should be some correlation between the speed and the number of VMs. 

This speed-up is less than the speed-up achieved in both SparkBWA and SparkBWBBLE 

which achieve 2.5 and 2.1 times speed-up with 4 times the computing power, respectively. 

Because of this, I suspected there may be an error somewhere in the implementation.  
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6.2. Testing Built-In Multithreading 

It seemed that the most possible error in the program would have something to do with the 

in-built multithreaded option. I suspected this as there is nothing explaining the 

implementation or results of the option used on the original program in the journal article 

(Huang and Popic, 2013). The paper simply states that the feature exists but doesn’t explain 

it any further.  

 

Figure 22 Comparing the Speed-Up of The Original BWBBLE Program Using the Multithreaded Option 

Figure 22 shows the speed-up achieved using the multithreaded option with 1 to 4 threads 

on the original BWBBLE program. From the testing of this option it is clear that it is not in 

optimal working order. To ensure that this was the reason for the lack of speed-up in the 

initial tests I wanted to search for a correlation between the speed-up of BWBBLE using 

‘n’ threads and AWS-BWBBLE using the multithreaded option and ‘n’ VMs.  
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Figure 23 Linking AWS-BWBBLE's Lack of Speed-Up to BWBBLE's Threads 

Figure 23 shows the speed-up of BWBBLE when run on 1, 2, 3 and 4 threads and the speed-

up of AWS-BWBBLE when run on 1, 2 and 3 VMs, using 4 threads for each run. This test 

was done to see if there was any correlation between the previous two tests. The graph 

shows a strong correlation between the two tests insinuating that the lack of speed-up is due 

to the multithreading option being utilized. This proves that the insufficient speed-up in the 

initial test is indeed caused by the in-built multithreaded option. 

The multithreading of the BWBBLE program is achieved using OpenMP. Upon 

investigation into this issue, I found one notable error in the parallel code which is that the 

multithreaded function is allocating and freeing the same piece of memory n times, where 

n is equal to the number of threads running. This would be correct if the amount of memory 

fit the batch size of reads processed in each thread, however, the amount of memory being 

allocated each time is actually the size of all the batches. The function uses the same 

allocation amount that is used in the non-threaded function which is the size of the entire 

set of reads to be processed. This appears to be the reason that the BWBBLE program has 

a depleting speed-up especially when considering that there is less speed-up as more threads 

are run and for each thread running, there is more unnecessary memory allocation. Both 

functions can be found in appendix 3.   
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6.3. Testing Different Numbers of Threads 

 

Figure 24 Comparing the Speed-Up of AWS-BWBBLE Using BWBBLE's In-Built Multithreaded Option 

Figure 24 compares the speed-up times of AWS-BWBBLE using different numbers of 

threads. These are compared to the desired linear speed-up. The graph shows the more 

threads that are run corresponds to a lower speed-up which is evident from the previous 

tests. However, this test shows that AWS-BWBBLE run on a single thread, i.e. not using 

the multithreading option, achieves very close to the perfect linear speed-up.  

 
Figure 25 Run Times of Multithreaded AWS-BWBBLE 

Figure 25 shows the actual run times of the previous test. This graph is to remind the 

reader that a better speed-up does not correlate to a better run time since all speed-up tests 

are based on that test’s initial run time. However, each of these tests achieves a very 
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similar optimum run-time using 4 threads with a total of just 4 seconds separating the 2-

thread and 4-thread runs.  

6.4. Comparing Results to Previous Work 

  

Figure 26 Comparing the Speed-Up of AWS-BWBBLE and SparkBWBBLE 

Figure 26 compares the speed-up of AWS-BWBBLE (non-multithreaded) to the speed-up 

of SparkBWBBLE and SparkBWA. It is obvious by the graph that AWS-BWBBLE 

achieved much greater speed-up than the other programs. With 2 VMs, the program slightly 

exceeds the linear speed-up and has a greater speed-up than SparkBWBBLE and 

SparkBWA combined. With 4 VMs, the speed-up is slightly below linear with 3.6 times 

speed-up opposed to 4. This remains an impressive speed-up, especially when compared to 

the other programs. There is a 1.6 times speed-up between 2 VMs and 4 VMs for AWS-

BWBBLE which is about twice the speed-up of the average of the other programs. At this 

point the project can be considered a success, however, further testing with more VMs will 

be necessary to ensure that the speed-up continues to grow as more and more VMs are 

added to the distributed system.   
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7. Conclusion  

This chapter will conclude the paper with a discussion of the research objectives. It looks 

back at the research question that was posed and gives an overview of the results presented in 

chapter 6.  

7.1. Research Question and Objectives  

Chapter 1 outlines the research objectives that were undertaken to answer the posed 

research question which was:  

“Does a straightforward approach exist that will give the BWBBLE DNA analysis program 

a linear speed-up when it’s work is distributed amongst a number of virtual machines on 

the Amazon Cloud?”  

The BWBBLE code was successfully modified to accept start and end positions of the reads 

file. This meant reading and understanding the code which was beneficial to the overall 

project as it meant that I had a much better understanding of how the program worked. The 

addition of the start and end parameters went smoothly, it involved adding code to 

recognize the parameters and modifying the function that reads the DNA sequences from 

the input file.  

A shared file system was created using Elastic File Storage which was able to be mounted 

onto each of the VMs. The EFS was a massive benefit to the overall system as it meant that 

the test data did not have to be duplicated on each of the machines. The machines could 

read and write to the EFS directory with ease which helped the system to run smoothly. The 

EFS allowed the indexing and result conversions to be run on a single machine since all the 

alignment results were accessible on the EFS. This meant that the only thing run on the 

distributed VMs was the read alignment.  

An Amazon Machine Image was set up using the Management Console with Ubuntu OS. 

Docker was incorporated in the project to investigate if it would have any benefits on the 

distributed network. This incorporation did not benefit the system and the inclusion of 

Docker complicated the EFS access and automation. That said, there were Docker features 

available to make everything work together efficiently, such as the bind mount and the exec 

command. It appears that Docker had no effect on the speed-ups of the system. Some future 

work could be to set up the system in the same manner but removing the Docker elements 

and running BWBBLE directly from the VMs.  
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Amazon CLI made the automation of the system a seamless process. There are commands 

available for everything imaginable within AWS and there is no delay between the running 

of a command and its execution within AWS. The CLI is arguably a better method than 

using the browser-based Management Console. The console can be awkward to use due to 

the amount of options that can be displayed on the screen at once.  

The concatenation of the results file was a simple process. The tagging of the alignment 

files with the VMs IP addresses made it easy to ensure that all files were created. The ability 

to use both CLI and Linux commands within the shell script made tasks like the 

concatenation and download of the results file straightforward.  

7.2. Overview of the Results  

All the research objectives were successfully met, and the program underwent substantial 

testing. The results show that the straightforward approach was successful with regards to 

the distribution of work on the system. The project encountered an issue with the built-in 

multithreaded option in BWBBLE. Although disappointing, this was an interesting 

discovery and could explain why the BWBBLE paper does not go into any detail about the 

design or usage of the option.  

AWS-BWBBLE was evaluated using the multithreaded and non-threaded options. The 

program reached a linear speed-up when using the non-threaded version with the work 

distributed on up to 4 VMs. This is the best speed-up that has been achieved compared to 

any of the other parallelization approaches discussed in this dissertation. The testing could, 

unfortunately, not be taken any further due to the restrictions to the AWS account. Future 

work could be done to bring the testing further to see if the speed-up continues when the 

program is run on a much larger number of VMs.  

7.3. Final Remarks  

The area of bioinformatics was found to be incredibly interesting. The use of computer 

science in areas such as genetics can have a real effect on the world. DNA sequencing and 

analysis are very complex procedures but the inadequate speeds of read alignment are 

largely due to having too much data to process. This embarrassingly parallel problem has 

now been proven to be optimizable using computer systems and shows that a linear speed-

up is possible for alignment programs.  
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9. Appendices 

9.1. Appendix 1: Setting BWBBLE Options Based on Alignment Parameters  

 

while ((c = getopt(argc-1, argv+1, "M:O:E:n:k:o:e:l:m:t:b:f:SP")) >= 0) { 
 switch (c) { 
  case 'M': params->mm_score = atoi(optarg); break; 
  case 'O': params->gapo_score = atoi(optarg); break; 
  case 'E': params->gape_score = atoi(optarg); break; 
  case 'n': params->max_diff = atoi(optarg); break; 
  case 'k': params->max_diff_seed = atoi(optarg); break; 
  case 'o': params->max_gapo = atoi(optarg); break; 
  case 'e': params->max_gape = atoi(optarg); break; 
  case 'l': params->seed_length = atoi(optarg); break; 
  case 'm': params->max_entries = atoi(optarg); break; 
  case 't': params->n_threads = atoi(optarg); break; 
  case 'S': params->is_multiref = 0; break; 
  case 'P': params->use_precalc = 1; break; 
  case 'b': params->reads_begin_pos = atoi(optarg); break; 
  case 'f': params->reads_end_pos = atoi(optarg); break; 
  case '?': align_usage(); return 1; 
  default: return 1; 
 } 
} 
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9.2. Appendix 2: Function to Load The Read Sequences from The FASTQ File 

 

reads_t* fastq2reads(const char *readsFname, aln_params_t* params) { 
 //printf("func: fastq2reads @ io.c\n"); 
 FILE *readsFile = (FILE*) fopen(readsFname, "r"); 
 if (readsFile == NULL) { 
  printf("load_reads_fastq: Cannot open reads file: %s !\n", readsFname); 
  exit(1); 
 } 
 reads_t *reads = (reads_t*) calloc(1, sizeof(reads_t)); 
 int allocatedReads = NUM_READS_ALLOC; 
 reads->reads = (read_t*) malloc(allocatedReads*sizeof(read_t)); 
 reads->count = 0; 
 
 // check that if begin and end pos have been set by user 
 // then begin < end && begin and end are positive && within the size of the file 
 if((params->reads_begin_pos != -1 && params->reads_end_pos != -1) && 
  ( (params->reads_begin_pos > params->reads_end_pos) || 
   (params->reads_begin_pos < 0 && params->reads_end_pos < 0)  )) { 
  // ERROR 
  fprintf(stderr, "fastq2reads: Invalid start and end positions: Start = %d, "  

+ " End = %d\n", 
params->reads_begin_pos, params->reads_end_pos); 

  exit(1); 
 } 
 
 int read_num = 0; 
 char c; 
 while(!feof(readsFile)) { 
  if( (params->reads_begin_pos == -1 && params->reads_end_pos == -1) ||  
  (read_num >= params->reads_begin_pos*4 && read_num < params->reads_end_pos*4) ) { 
    
   if (reads->count >= allocatedReads) { 
    allocatedReads += NUM_READS_ALLOC; 
    reads->reads = (read_t*) realloc(reads->reads,  

allocatedReads*sizeof(read_t)); 
   } 
 
   read_t* read = &(reads->reads[reads->count]); 
 
   c = (char) getc(readsFile); 
   while(c != '@' && !feof(readsFile)) { 
    c = (char) getc(readsFile); 
   } 
   if(feof(readsFile)) break; 
 
   // line 1 (@ ...) 
   int seqNameLen = 0; 
   c = (char) getc(readsFile); 
   while(c != '\n' && seqNameLen < MAX_SEQ_NAME_LEN && !feof(readsFile)){ 
    read->name[seqNameLen] = c; 
    seqNameLen++; 
    c = (char) getc(readsFile); 
   } 
   read->name[seqNameLen] = '\0'; 
   if(feof(readsFile)) fastq_error(readsFname); 
 
   while (c != '\n' && !feof(readsFile)) { 
    c = (char) getc(readsFile); 
   } 
   if(feof(readsFile)) fastq_error(readsFname); 
 
   // line 2 (sequence letters) 
   int readLen = 0; 
   int allocatedReadLen = READ_LENGTH_ALLOC; 
   read->seq = (char*) malloc(allocatedReadLen*sizeof(char)); 
   read->rc = (char*) malloc(allocatedReadLen*sizeof(char)); 
   read->qual = (char*) malloc(allocatedReadLen*sizeof(char)); 
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c = (char) getc(readsFile); 
   while (c != '\n' && !feof(readsFile)) { 
    if (readLen >= allocatedReadLen) { 
     allocatedReadLen += READ_LENGTH_ALLOC; 
     read->seq = (char*) realloc(read->seq,  

allocatedReadLen*sizeof(char)); 
     read->rc = (char*) realloc(read->rc,  

allocatedReadLen*sizeof(char)); 
     read->qual = (char*) realloc(read->qual,  

allocatedReadLen*sizeof(char)); 
    } 
    read->seq[readLen] = nt4_table[(int) c]; 
    c = (char) getc(readsFile); 
    readLen++; 
   } 
   read->len = readLen; 
   if(feof(readsFile)) fastq_error(readsFname); 
 
   while (c != '+' && !feof(readsFile)) { 
    c = (char) getc(readsFile); 
   } 
   if(feof(readsFile)) fastq_error(readsFname); 
 
   // line 3 (+ ...) 
   while(c != '\n' && !feof(readsFile)){ 
    c = (char) getc(readsFile); 
   } 
   if(feof(readsFile)) fastq_error(readsFname); 
 
   // line 4 (quality values) 
   int qualLen = 0; 
   c = (char) getc(readsFile); 
   while(c != '\n' && !feof(readsFile)) { 
    if(qualLen <= readLen) { 
     read->qual[qualLen] = c; 
    } 
    qualLen++; 
    c = (char) getc(readsFile); 
   } 
   if(qualLen != readLen) { 
    printf("Error: The number of quality score symbols does not match"  

+ " the length of the read sequence.\n"); 
    exit(1); 
   } 
   read->qual[qualLen] = '\0'; 
 
   // compute the reverse complement 
   for(int i = 0; i < read->len; i++) { 
    read->rc[read->len-1-i] = nt4_complement[(int)read->seq[i]]; 
   } 
 
   if(read->len > reads->max_len) { 
    reads->max_len = read->len; 
   } 
   reads->count++; 
 
  } else if (read_num >= params->reads_end_pos*4) { 
   break; 
  } 
  read_num+=4; 
 } 
 printf("Loaded %d reads from %s.\n", reads->count, readsFname); 
 
 fclose(readsFile); 
 return reads; 
} 
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9.1. Appendix 3: Sequential and Parallel Inexact Matching Functions  

 

int align_reads_inexact(bwt_t *BWT, reads_t* reads, sa_intv_list_t* precalc_sa_intervals_table, 
aln_params_t* params, char* alnFname) { 
 //printf("func: align_reads_inexact @ inexact_match.c\n"); 
 printf("BWBBLE Inexact Alignment...\n"); 
 FILE* alnFile = (FILE*) fopen(alnFname, "a+b"); 
 if (alnFile == NULL) { 
  printf("align_reads_inexact: Cannot open ALN file: %s!\n", alnFname); 
  perror(alnFname); 
  exit(1); 
 } 
 // lower bound on the number of differences at each position in the read 
 diff_lower_bound_t* D = (diff_lower_bound_t*) calloc(reads->max_len+1,  

sizeof(diff_lower_bound_t)); 
 // lower bound for the read seed positions 
 diff_lower_bound_t* D_seed = (diff_lower_bound_t*) calloc(params->seed_length+1,  

sizeof(diff_lower_bound_t)); 
 priority_heap_t* heap = heap_init(params); 
 // process the reads in batches 
 int num_processed = 0; 
 while(num_processed < reads->count) { 
  clock_t t = clock(); 
  int batch_size = ((reads->count - num_processed) > READ_BATCH_SIZE ) ? READ_BATCH_SIZE  

: (reads->count - num_processed); 
  for(int i = num_processed; i < num_processed + batch_size; i++) { 
   read_t* read = &reads->reads[i]; 
   read->alns = init_alignments(); 
   sa_intv_list_t* precalc_sa_intervals = NULL; 
   if(params->use_precalc) { 
    // discard reads that have N's in the last PRECALC_INTERVAL_LENGTH  

// bases (<0 result from read_index) 
    int read_index = read2index(read->rc, read->len); 
    if(read_index < 0) { 
     continue; 
    } 
    precalc_sa_intervals = &(precalc_sa_intervals_table[read_index]); 
   } 
   // align read with forward reference <=> read reverse  

// complement with BWT reverse complement 
   // align read with reverse complement reference <=> read reverse  

// complement with BWT forward 
   calculate_d(BWT, read->seq, read->len, D, params); 
   if(params->seed_length && read->len > params->seed_length) { 
    calculate_d(BWT, read->seq, params->seed_length, D_seed, params); 
   } 
   inexact_match(BWT, read->rc, read->len, heap, precalc_sa_intervals, params, D,   

D_seed, read->alns); 
  } 
  printf("Processed %d reads. Inexact matching time: %.2f sec.",  

num_processed+batch_size, (float)(clock() - t) / CLOCKS_PER_SEC); 
  // write the results to file 
  clock_t ts = clock(); 
  for(int i = num_processed; i < num_processed + batch_size; i++) { 
   read_t* read = &reads->reads[i]; 
   alns2alnf_bin(read->alns, alnFile); 
   free_alignments(read->alns); 
   free(read->seq); 
   free(read->rc); 
   free(read->qual); 
   read->seq = read->rc = read->qual = NULL; 
  } 
  printf("Storing results time: %.2f sec\n", (float)(clock() - ts) / CLOCKS_PER_SEC); 
  num_processed += batch_size; 
 } 
 
 free(D); 
 free(D_seed); 
 heap_free(heap); 
 fclose(alnFile); 
 return 0; 
} 
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int align_reads_inexact_parallel(bwt_t *BWT, reads_t* reads, sa_intv_list_t* 
precalc_sa_intervals_table, aln_params_t* params, char* alnFname) { 
 //printf("func: align_reads_inexact_parallel @ inexact_match.c -- naive  

//parallelization scheme (1 thread <=> 1 read)\n"); 
 printf("BWT-SNP Inexact Alignment...\n"); 
 FILE* alnFile = (FILE*) fopen(alnFname, "a+"); 
 if (alnFile == NULL) { 
  printf("align_reads_inexact: Cannot open ALN file: %s!\n", alnFname); 
  perror(alnFname); 
  exit(1); 
 } 
 // process the reads in batches 
 int num_processed = 0; 
 while(num_processed < reads->count) { 
  clock_t t = clock(); 
  int batch_size = ((reads->count - num_processed) > READ_BATCH_SIZE ) ? READ_BATCH_SIZE  

: (reads->count - num_processed); 
 
  omp_set_num_threads(params->n_threads); 
  int tid, n_threads, chunk_start, chunk_end; 
  diff_lower_bound_t* D, * D_seed; 
  priority_heap_t* heap; 
  #pragma omp parallel private(tid, n_threads, chunk_start, chunk_end, D, D_seed, heap) 
  { 
   tid = omp_get_thread_num(); 
   n_threads = omp_get_num_threads(); 
   chunk_start = tid * batch_size / n_threads; 
   chunk_end = (tid + 1) * batch_size / n_threads; 
 
   // lower bound on the number of differences at each position in the read 
   D = (diff_lower_bound_t*) calloc(reads->max_len+1,  

sizeof(diff_lower_bound_t)); 
   // lower bound for the read seed positions 
   D_seed = (diff_lower_bound_t*) calloc(params->seed_length+1,  

sizeof(diff_lower_bound_t)); 
   // partial alignments min-heap 
   heap = heap_init(params); 
 

for (int i = num_processed + chunk_start; i < num_processed + chunk_end; i++){ 
    read_t* read = &reads->reads[i]; 
    read->alns = init_alignments(); 
    sa_intv_list_t* precalc_sa_intervals = NULL; 
    if(params->use_precalc) { 

    // discard reads that have N's in the last  
    // PRECALC_INTERVAL_LENGTH bases (<0 result from read_index) 

        int read_index = read2index(read->rc, read->len); 
        if(read_index < 0) { 
     continue; 
    } 
        precalc_sa_intervals = &(precalc_sa_intervals_table[read_index]); 
    } 
    // align read with forward reference <=> read reverse  

// complement with BWT reverse complement 
    // align read with reverse complement reference <=> read reverse  

// complement with BWT forward 
    calculate_d(BWT, read->seq, read->len, D, params); 
    if(params->seed_length && read->len > params->seed_length) { 
        calculate_d(BWT, read->seq, params->seed_length, D_seed, params); 
    } 
    inexact_match(BWT, read->rc, read->len, heap, precalc_sa_intervals,  

params, D, D_seed, read->alns); 
   } 
   free(D); 
   free(D_seed); 
   heap_free(heap); 
  } 
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printf("Processed %d reads. Inexact matching time: %.2f sec.",  
num_processed+batch_size, (float)(clock() - t) / CLOCKS_PER_SEC); 

  // write the results to file 
  clock_t ts = clock(); 
  for(int i = num_processed; i < num_processed + batch_size; i++) { 
   read_t* read = &reads->reads[i]; 
   alns2alnf_bin(read->alns, alnFile); 
   free_alignments(read->alns); 
   free(read->seq); 
   free(read->rc); 
   free(read->qual); 
   read->seq = read->rc = read->qual = NULL; 
  } 
  printf("Storing results time: %.2f sec\n", (float)(clock() - ts) / CLOCKS_PER_SEC); 
  num_processed += batch_size; 
 } 
 fclose(alnFile); 
 return 0; 
}
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9.2. Appendix 4: Results Data Tables 

Number of 

Threads 

Number of Virtual Machines 

1 2 4 

1 114.2 54.0 31 

2 61.3 31.5 21.5 

3 43.6 23.6 19 

4 33.7 20.1 17.5 

Table 2 Run Times of AWS-BWBBLE 

 

Number of 

Threads 

Number of Virtual Machines 

1 2 4 

1 1 2.1 3.7 

2 1 1.9 2.9 

3 1 1.8 2.3 

4 1 1.7 1.9 

Table 3 Speed-Up of AWS-BWBBLE 

 

Threads 1 2 3 4 

Speed-Up 1 1.65 1.63 1.9 

Table 4 Speed-Up of Multithreaded BWBBLE 

 


