
Using Machine Learning to Predict Judicial

Decisions

Conor O’Sullivan BBusSc

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Data Science)

Supervisor: Joeran Beel

August 2019



Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Conor O’Sullivan

August 14, 2019



Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Conor O’Sullivan

August 14, 2019



Acknowledgments

Firstly, I would like to thank the team at vizlegal for giving me access to their API and

allowing me to discuss some of my results and ideas. Specifically, Gavin Sheridan who

authorised and initiated the whole process and José Lopez who helped with the technical
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Using Machine Learning to Predict Judicial

Decisions

Conor O’Sullivan , Master of Science in Computer Science

University of Dublin, Trinity College, 2019

Supervisor: Joeran Beel

In this study, machine learning models were constructed to predict whether judgements
made by the European Court of Human Rights (ECHR) would lead to a violation of
an Article in the Convention on Human Rights. The problem is framed as a binary
classification task where a judgement can lead to a ”violation” or ”non-violation” of a
particular Article. Using auto-sklearn, an automated algorithm selection package, models
were constructed for 12 Articles in the Convention. To train these models, textual features
were obtained from the ECHR Judgment documents using N-grams, word embeddings
and paragraph embeddings. Additional documents, from the ECHR, were incorporated
into the models through the creation of a word embedding (echr2vec) and a doc2vec
model. The features obtained using the echr2vec embedding provided the highest cross-
validation accuracy for 5 of the Articles. The overall test accuracy, across the 12 Articles,
was 68.83%. As far as we could tell, this is the first estimate of the accuracy of such
machine learning models using a realistic test set. This provides an important benchmark
for future work. As a baseline, a simple heuristic of always predicting the most common
outcome in the past was used. The heuristic achieved an overall test accuracy of 86.68%
which is 29.7% higher than the models. Again, this was seemingly the first study that
included such a heuristic with which to compare model results. The higher accuracy
achieved by the heuristic highlights the importance of including such a baseline.



Summary

The study looked at predicting the outcome of judgements made by the ECHR using

machine learning. This was to address the problem of a large application backlog faced

by the Court which subsequently leads to large delays. To address this problem, the

study seeks to determine how well the judgements made by the Court can be predicted.

Some of the main shortcomings of previous works were addressed. This includes the

lack of a realistic test set used to determine the accuracy of the models. Similarly, previous

studies did not include a simple heuristic as a baseline. These studies have compared their

cross-validation accuracies to 50%, the accuracy of a random guess if judgements were

balanced. This comparison is flawed as in the past judgements have not been balanced.

Additionally, it was determined that model selection and feature engineering could be

improved.

The problem is framed as a binary classification task where a judgement can lead to

a ”violation” or ”non-violation” of a particular Article. The auto-sklearn package was

used for model selection and hyper-parameter tuning. Models were constructed for 12

of the Articles in the European Convention on Human Rights. To train models, textual

features were obtained from ECHR documents. The most important documents are the

Judgments. This is because the models aim to predict the outcome of the judgements

made by the Court. The textual features obtained include N-grams, average word em-

bedding and paragraph embedding features. In creating the average word embeddings,

three different word embedding models were used. These are a general GloVe embedding

and two legal embeddings: law2vec and echr2vec. The echr2vec embedding was created

using all the ECHR documents obtained. Similarly, these documents were used to train

doc2vec model which was used to obtain the paragraph embedding features.

The models achieved a weighted average accuracy of 68.83% across the test sets of all

12 Articles. In comparison, the average accuracy of the heuristic was 29.7% higher than

v



the models. Ultimately, the accuracy achieved was deemed to be too low for the models

to be used by the Court to make judgements. However, it was argued that the models

could still be used by the Court to prioritise applications.
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Chapter 1

Introduction

1.1 Background

The European Court of Human Rights (ECHR) is an international court that examines

potential breaches of the European Convention on Human Rights. The Convention con-

sists of numerous ”Articles”. These Articles and the rights they protect are shown in

Table 1.1. The majority of the judgements made by the court concern Article 6 where

about 50% of all violations are due to breaches of this Article (Council of Europe 2014).

Article Title

Article 2 Right to life

Article 3 Prohibition of torture

Article 4 Prohibition of slavery and forced labour

Article 5 Right to liberty and security

Article 6 Right to a fair trial

Article 7 No punishment without law

Article 8 Right to respect for private and family life

Article 9 Freedom of thought, conscience and religion

Article 10 Freedom of expression

Article 11 Freedom of assembly and association

Article 12 Right to marry

Article 13 Right to an effective remedy

Article 14 Prohibition of discrimination

Article 18 Limitation on use of restrictions on rights

Table 1.1: Articles in the European Convention on Human Rights (Council of Europe

1950)

According to Council of Europe (2014), for a potential breach of the Convention to be
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investigated an application must first be made. This means the ECHR cannot investigate

potential violations on its own accord. Any State or individual can make an application

but cases can only be made against a State. Specifically, one of the 47 States that has

ratified the Convention. Since its founding, the Court has been very successful leading

to a growing number of cases. In the Court’s own words:

”The Court has been a victim of its own success: over 50,000 new applications

are lodged every year. The repercussions of certain judgments of the Court,

on a regular basis, and the growing recognition of its work among nationals

of the States Parties, have had a considerable impact on the number of cases

brought every year (Council of Europe 2014, p. 7).”

The impact of the Court’s success can be seen in Figure 1.1. Here the number of

applications made every year since 2004 is shown. In recent years there have been fluc-

tuations. However, this still an overall positive trend. Particularly, from the years 2004

to 2013, the number of applications increased by 103%.
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Figure 1.1: Number of Applications Made to the ECHR (Council of Europe 2019a)

1.2 Research Problem

The problem is that the large number of applications made every year has led to a backlog

of applications. This has subsequently led to significant time delays in Court proceedings.

According to the Council of Europe (2019a), the number of pending applications at

the start of 2018 was 56250. A pending application is one that has not had an initial

examination yet. By the end of 2018, the number of pending applications remained
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relatively constant at 56350. Due to this backlog, applications can take up to a year

before an initial examination can take place. After this examination, the application has

to go through a further process before the Court can determine whether there was a

breach of the Convention (Council of Europe 2016). Ultimately, it can take over a year

for the ECHR to make a final judgement.

1.3 Research Question

How accurately can the judgements made by the European Court of Human Rights be

predicted?

1.4 Research Objective

The research objective is to use a predictive model to help address the backlog of ap-

plications. The ECHR could use an accurate predictive model to make or help make

judgements. Such a model could also be used to prioritise cases. That is cases which

indicate a high likelihood of violation can be prioritised.
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Chapter 2

Background

2.1 Court Procedure

According to the Council of Europe (2018), the ECHR has the following procedure:

1. An application is lodged by either an individual or State. A single application can

involve multiple potential violations of Articles in the Convention.

2. The application then undergoes an initial examination to determine whether it is

admissible. This decision is made by a single judge.

3. If an application is deemed admissible it will be allocated to one of three judicial

formations: a single judge, a Committee (3 judges) or a Chamber (7 judges). The

judicial formation chosen will depend on the type of case. In some circumstances,

the application can be referred to a Grand Chamber of 17 judges.

4. Once allocated to a judicial formation, a verdict will be made for each of the po-

tential Article violations.

5. Once a verdict has been made the ECHR produces a Judgment document.

In 2018, 42761 applications were decided by the ECHR. 40023 of these were by deci-

sion. This means they were deemed inadmissible at step 2 of the above procedure. The

remaining 2738 were by judgement (Council of Europe 2019a). These applications go

through the entire procedure and a final Judgment is produced. A Judgment is a legal

document and the details of this document are discussed in the next section.

2.2 Judgment Structure

The contents of the Judgments are defined by the Council of Europe (2019b) in the

Rules of the Court. The rules state that the Court should have, in the following order,
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a ”PROCEDURE”, ”THE FACTS”, ”THE LAW” and a verdict section. Throughout

this study, these sections are referred to as procedure, facts, law and verdict respectfully.

The facts section, seen in Figure 2.2, is commonly made up of two subsections: ”I.

THE CIRCUMSTANCES OF THE CASE” and ”II. RELEVANT DOMESTIC LAW”.

Throughout this study, these subsections are referred to as circumstances and relevant,

respectfully. An example of a procedure section can be seen in Figure 2.1. This section

details the procedure followed by the ECHR throughout the applications life. An example

of the law and verdict sections can be seen in Figure 2.3 and Figure 2.4 respectfully. The

verdict section gives the judgement made by the ECHR. In Figure 2.4, we can see the

Court investigated two potential violations of Article 6 and found no violations.

Figure 2.1: Example of Procedure Section of a Judgment (Rook v. Germany 2019)

Figure 2.2: Example of Facts Section of a Judgment (Rook v. Germany 2019)

5



Figure 2.3: Example of Law Section of a Judgment (Rook v. Germany 2019)

Figure 2.4: Example of Verdict Section of a Judgment (Rook v. Germany 2019)

6



Chapter 3

Related Work

The related work section focuses on studies that have used machine learning to predict the

outcome of legal cases. The results of the studies can be seen in Table 3.1. The ”Court”

column gives the legal court considered by the study. The majority of the studies looked

at either the ECHR or the Supreme Court of the United States (SCOTUS). The ”Train.

Acc.” and ”Test Acc.” give the training and test accuracy, respectfully, achieved by the

study. For some studies,the validation accuracy is not present. This is because it has not

been reported by the researchers. Similarly, in some cases, the test accuracy is missing.

This is because the researchers have not included a test set in their study. The ”Data”,

”Target Variable” and ”Algorithm” columns are explained in detail in the remaining

sections of this chapter.

The first three studies in Table 3.1 looked at predicting the outcome of ECHR cases.

At the time this study was done, these constituted all the previous works that aimed

to predict the decisions made by this Court. Ultimately, they were scrutinised in more

depth than the other studies in Table 3.1. This is because they are most relevant to the

research problem. By analysing these other studies we can gain useful information on

best practises when it comes to legal case prediction.

Table 3.1 includes only the studies that have constructed classification models to

predict the outcome of legal cases. This is opposed to studies where the target variable

is continuous such as in the study conducted by Bala et al. (2017). In this study, the

researchers attempted to predict the time it would take for an insurance claim to be

settled. A legal firm could use this model to avoid cases that would likely take longer to

settle and reduce litigation costs. The outcome of ECHR judgements are discrete and so

predicting the outcome is a classification task. In other words, the studies in Table 3.1

are most relevant to the research question. Subsequently, studies that look at predicting

continuous target variables are less relevant.
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Author Court Data
Target

Variable
Algorithm

Train.

Acc.

Test

Acc.

Aletras

et al. (2016)
ECHR

Case

Documents

Violation,

Non-Violation
SVM 80.1% NA

Liu & Chen

(2017)
ECHR

Case

Documents

Violation,

Non-Violation
SVM 79.5% NA

Medvedeva

et al. (2018)
ECHR

Case

Documents

Violation,

Non-Violation
SVM 75.0% 74.0%

Ruger et al.

(2004)
SCOTUS

Summary

Information

Affirmed,

Reversed

Decision

Tree
NA 75%

Guimer‘a &

Sales-Pardo

(2011)

SCOTUS
Summary

Information

Justice

Decsion:

Affirmed,

Reversed

Stochastic

Block

Model

NA 83%

Katz et al.

(2017)
SCOTUS

Summary

Information

Affirmed,

Reversed

Random

Forest
NA 70%

Kaufman et

al. (2017)
SCOTUS

Summary

Information

and Oral

Arguments

Affirmed,

Reversed

Random

Forest
74.04% NA

Agrawal et

al. (2017)

US

Circuit

Court

Case

Documents

Affirmed,

Reversed
CNN 79% NA

Agrawal et

al. (2017)
SCOTUS

Case

Documents

Affirmed,

Reversed

Random

Forest
68% NA

Virtucio et

al. (2018)

Philippine

Supreme

Court

Case

Documents

Affirmed,

Reversed
SVM NA 62%

Sulea et

al. (2017)

French

Supreme

Court

Case

Documents

Rejet,

Cassation,

Irrecevabilite,

qpc,

Annulation,

Non-lieu

SVM 96.9% NA

Table 3.1: Summary of Previous Works

A broader body of research that looked at how machine learning can be applied to

the legal industry, in general, was also consulted. This was to gain an understanding
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of how machine learning can be used to address the research problem. In other words

how machine learning models could be used to address the case backlog. Researchers

explain that ”the growth of big data, artificial intelligence, and machine learning will

have important effects that will fundamentally change the way law is made, learned,

followed, and practised (Alarie et al. 2016, p. 424)” . Some of the prominent research

areas include legal prediction, legal analytics, document classifications and clustering and

legal document generation (Surden 2014, McGinnis & Pearce 2013). Specifically, legal

prediction models can benefit both lawyers and clients. By utilising these models, lawyers

will be able to generate more accurate legal opinions in a shorter amount of time (Yoon

2016). For the ECHR, the implications of this are that legal prediction models could be

used to decrease the amount of time it takes the Court to make decisions. This would

ultimately have a positive effect on the case backlog and decrease time delays.

3.1 Datasets

As mentioned above, the ”Court” column in Table 3.1 gives the legal court considered

by the study. Besides the ECHR and SCOTUS, models were constructed for the United

States (US) Circuit Court (Agrawal et al. 2017), the Philippine Supreme Court (Virtucio

et al. 2018) and the French Supreme Court (Sulea et al. 2017). The data available to

construct legal models differ for each Court. For example, ECHR documents are publicly

available in the HUDOC database. Documents available include the Judgments discussed

in the Background chapter and other documents such as decisions and legal summaries

(HUDOC database 2018). These are all text-based data sources. In comparison, SCO-

TUS data, downloaded from the Supreme Court Database (SCDB), consists of different

variables summarising the cases. For example, the variable ”Lower Court Disposition”,

which can take on 12 different values, gives the decision made by the lower Court (Spaeth

et al. 2018).

The ”Data” column in Table 3.1 gives the type of data used in the study. ”Case

documents” refers to text documents that outline the cases heard by the Court. For

example, the first three studies use the ECHR Judgment documents (Aletras et al. 2016b,

Liu & Chen 2017, Medvedeva et al. 2018b). Similarly, Sulea et al. (2017) and Virtucio

et al. (2018) used case documents. The majority of the studies that looked at SCOTUS

decisions used ”Summary Information” (Ruger et al. 2004, Guimerà & Sales-Pardo 2011,

Katz et al. 2017, Kaufman et al. 2017). Where summary information are those variables

available from the SCDB. There are some exceptions. Kaufman et al. (2017) used both

summary information and oral arguments. Where oral arguments is textual data that

detailed justices’ oral arguments for each case. This source includes information such as

the questions asked to petitioners and respondents.

Agrawal et al. (2017) are the only researchers to considered case documents when

9



trying to predict the outcome of SCOTUS decisions. Specifically, they use documents

from lower courts predict the decisons of the higher courts. The researchers use case

documents from District Court cases appealed to a Circuit Court to predict the outcome

at the Circuit Court. Similarly, the researchers use Circuit Court case data to predict

the outcome of the Supreme Court decision. The type of data available is important as

it likely influences choices made in the study’s Methodology. In particular, we’ll see in

the Feature Engineering section how the types of features that can be extracted depends

on the available data.

We have mentioned that the studies looking at the ECHR have considered the Judg-

ment documents. Specifically, Aletras et al. (2016b) considered only Judgments with

the structure outlined in the Background chapter. That is the Judgments must have

a procedure, facts, law and verdict section. The facts section must also consist of two

subsections: circumstances and relevant. According to Aletras et al. (2016b), considering

Judgments with the same structure simplifies the text-based analysis. We will see in the

Feature Engineering section how this structure has helped in creating textual features.

Subsequently, Liu & Chen (2017) and Medvedeva et al. (2018b) have also chosen to only

consider Judgments with this structure.

It is not necessarily the case that Judgments must have this structure. Importantly,

neither Aletras et al. (2016b), Liu & Chen (2017) nor Medvedeva et al. (2018b) have

provided details such as what proportion of the Judgments have this structure. If only

a small proportion of all Judgments have this structure, then the researchers would have

significantly reduced the amount of data available to train models. Additionally, the

Judgments used are not necessarily representative of all Judgments. That is there may

be systematic differences between the Judgments with an without the structure. For

example, we may find that the Judgments with the structure tend to have more violations

than those with a different structure.

Another important detail is that the ECHR studies all construct individual models

for the different Articles shown in Table 1.1. For example, Aletras et al. (2016b) consider

a subset of ECHR Judgments which related to Articles 3, 6 and 8 of the convention.

Subsequently, the researchers construct models to predict the outcome of judgements with

respect to each Article. That is whether there is a ’violation” or ”non-violation” of the

Article. Aletras et al. (2016b) looked at only these Articles because they determined there

to be an insufficient number of Judgments for the other Articles to construct machine

learning models. Liu & Chen (2017) has used the same dataset as Aletras et al. (2016b)

and so they have also only considered Article 3, 6 and 8. In comparison, Medvedeva

et al. (2018b) considered 9 Articles, including Article 3, 6 and 8, of the Convention.

Consequentially, we can expect the models constructed by Medvedeva et al. (2018b) to

be more useful in practice. This is because the models can be used by the ECHR to make

predictions for more Judgments.

10



For training, Aletras et al. (2016b), Liu & Chen (2017) and Medvedeva et al. (2018b)

have all used balanced datasets. That is they have an equal number of violation and non-

violation Judgments in each Article’s training sets. In their final training sets, Aletras

et al. (2016b) had 250, 80 and 254 cases for Articles 3, 6 and 8 respectfully. The number

of Judgments for Article 6 is peculiar. In the Introduction, it was mentioned that the

majority of the Judgments made by the ECHR involved Article 6 (Council of Europe

2014). This is not the case for the Judgments collected by Aletras et al. (2016b) and this

suggests their dataset is not representative of all Judgments. In comparison, Medvedeva

et al. (2018b) included 568, 916 and 458 Judgments in their training sets for Article

3, 6 and 8 respectfully. Consequentially, the researchers have trained their models on

significantly more data. Specifically, their Article 6 training set has over 11 times more

Judgments. There are still some issues with the dataset collected by Medvedeva et al.

(2018b).

Medvedeva et al. (2018b) has made their dataset publicly available (Medvedeva et al.

2018a). Looking through their dataset reveals that they have included the Judgments

that do not have the structure defined in the Background section. For example, they

have included Judgment for the case of Szerdahelyi v. Hungary (2012) in their Article

11 training set. This Judgment has no relevant subsection. That is the facts section

only consists of the circumstances subsection. It is not clear how many Judgments, with

a different structure, have been included. Ultimately, we will see that including these

Judgments may have negative consequences in the Feature Engineering section.

The issues with dataset collection could be a result of how data has been made avail-

able by the ECHR. It is not possible to download Judgments and other documents from

the HUDOC database in bulk (HUDOC database 2018). This means researchers have

to create their own tools to download the data which can be unreliable. For example,

(Medvedeva et al. 2018b, p .8) states: ”We used a rather crude automatic extraction

method, so it is possible that a few cases might be missing from our dataset.” This issue

may be addressed by Quemy (2018). In their paper, the researcher presents the European

Court of Human Rights Open Data project (ECHR-OD). This project aims to provide

a complete dataset to aid machine learning and other data analysis. Ultimately, having

a reliable source for the ECHR data will mean that any results presented by researchers

are more reliable.

An important aspect of the machine learning process is to include a test set. Models

can become biased towards the training set or, in other words, they have been over-fitted

to the training set. So by including a test set we obtain an unbiased estimate of how well

the models perform (Kuhn & Johnson 2013, p. 67). Additionally, to obtain a realistic

estimate of the model’s performance a realistic test set should be used. Where a realistic

set is one where the target variables are in the same proportion to what we would expect

in the future. For example, Ruger et al. (2004) trained their model using SCOTUS

11



cases before the 2002 term. This was done before the start of the 2002 term. Once

the term started, the researchers tested their models on the cases, as they transpired,

throughout the term. This is inherently a realistic test as the proportion of ”Affirmed”

and ”Reversed” cases are the same as in reality. For the ECHR, a less elaborate way of

obtaining a realistic test set would be to choose the set so that it had the same proportion

of ”violation” to ”non-violations” as in the past. This is assuming that future Judgments

will have a similar proportion.

In Table 3.1, we see that neither Aletras et al. (2016b) nor Liu & Chen (2017) have

included a test set. Medvedeva et al. (2018b) has included a test set but it is not a

realistic. As mentioned, Medvedeva et al. (2018b) has used a balanced training set for

each Article. They obtained the largest training sets possible. For example, Article 6 has

more violations than non-violations and so the training set, for this Article, contains all

the non-violations. The remaining Judgments are used as the test set. Ultimately, what

this means is that, depending on the Article, the test sets contain only either violation

or non-violations and not both. This is not a realistic test set as we would not expect all

future Judgments to have the same outcome. Consequentially, as far as we can tell, no

study that looks at predicting ECHR judgements has used a realistic test set to evaluate

their models. In terms of the research question, this means that we do not have a realistic

estimate of how well machine learning models can predict the judgements made by the

ECHR.

3.2 Baselines

The accuracy achieved on test sets should be compared to that of a baseline. This is

because a baseline puts the model’s accuracy into perspective. If a similar or higher

accuracy can be achieved by a baseline it suggests improvements need to be made to

the model. In machine learning, a baseline could be a simple model or a heuristic. For

example, (Katz et al. 2017) used the heuristic of choosing the most frequent decision

within a moving window of the last 10 years. That is if the SCOTUS made more affirmed

decisions, within a 10-year window, then any test cases, within that window, would be

predicted as being affirmed. This baseline had an accuracy of 65% on the test set. In

comparison, their model achieved an accuracy of 70% which is 7.7% higher.

As an alternative Ruger et al. (2004) used the predictions of legal experts as a baseline.

As mentioned above, the researchers used all the SCOTUS cases, as they transpired,

throughout the 2002 term as a test set. At the same time, the researchers asked a panel

of legal experts to predict the outcome of these same cases. The experts achieved an

overall accuracy of 59.1%. In comparison, the model had a statistically higher accuracy

of 75%. This baseline is effective as it allows us to compare the model’s results to expert

opinion. In other words, we are comparing the model to the best available predictions.
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The results achieved by other studies could also be used as a baseline. For instance,

Ruger et al. (2004) and Katz et al. (2017) both aimed to predict SCOTUS decisions.

Looking at Table 3.1, we can see that Ruger et al. (2004) achieved an accuracy that was

7.14% higher. This suggests that the earlier work by Ruger et al. (2004) has obtained

better results. However, other differences in the studies should be considered. For in-

stance, the model constructed by Ruger et al. (2004) can only be applied to the same

natural court. A natural court is a period during which no SCOTUS justices change. In

comparison, Katz et al. (2017) could be applied over a much longer time period and not

just one natural court.

Similarly, it is difficult to compare the approaches of the studies done on ECHR

prediction. This is both due to the lack of realistic test sets and the fact that they

have varying training sets. To best compare one approach or algorithm to another it is

necessary to hold other factors constant. In other words, a standardised training and

test set is needed. For example, the GLUE benchmark allows researchers to test NLP

algorithms on standardised training and test sets across a variety of tasks. This allows

for a more direct comparison between different algorithms. This highlights the need for

the ECHR-OD discussed above, which will ultimately provide more standardise datasets

for ECHR research (Quemy 2018).

In terms of baselines, all the researchers who looked at the ECHR have compared

their training accuracy 50% (Aletras et al. 2016b, Liu & Chen 2017, Medvedeva et al.

2018b). This is the accuracy of a random guess given a balanced dataset. However,

in reality, judgement outcomes are not perfectly balanced. For instance, the Medvedeva

et al. (2018b) collected 720 cases for Article 2. 559 of these cases were label as ”violation”

and 161 as ”non-violation”. This means that 77.6% of Article 2 cases are labelled as a

violation. If future cases have a similar distribution, we can expect the heuristic of always

predicting violation to produce an accuracy close to 77.6%. In comparison, the training

accuracy achieved by the researchers for Article 2 was only 73%. This suggests that a

baseline of 50% is too low. It may have been appropriate to also compare the models

results against the simple heuristic of always predicting the most common case outcome.

3.3 Target Variables and Algorithms

The ”Target Variable” column in Table 3.1 gives the case outcome that the court is

trying to predict. Most researchers have framed the problem as a binary classification

task. This often requires a simplification. For example, Ruger et al. (2004) simplified

SCOTUS decisions by labelling all votes to reverse, partly reverse, vacate or remand

as ”reversed”. This led to a binary classification problem where cases are labelled as

either ”affirmed” or ”reversed”. This was also done in the other studies that looked at

either the SCOTUS or US Circuit Court. The target variable in the study by Guimerà

13



& Sales-Pardo (2011) is slightly different. Here the researchers aimed to predict the

outcome of individual justices’ votes and not the Court’s decision as a whole. Similarly,

the studies that look at the ECHR have labelled Judgments as either ”violations” or

”non-violations”. Sulea et al. (2017) were the only researchers that did not use a binary

target variable. Their model was trained to predict 6 possible outcomes. Modelling a

more complicated target variable, such as this one, could provide more practical value as

such a model would be a better representation of reality.

To tune hyper-parameters, most of the studies in 3.1 have used k-fold cross-validation.

The only exceptions are Ruger et al. (2004) and Guimerà & Sales-Pardo (2011) but

they did not report their training accuracy. Consequentially, the accuracies reported

in the ”Train. Acc.” column is the cross-validation accuracy achieved by the studies.

Specifically, for the studies that look at the ECHR, Aletras et al. (2016b) and Medvedeva

et al. (2018b) have used 10-fold cross-validation and Liu & Chen (2017) has used 5-fold

cross-validation.

For each study, the algorithms that achieved the highest accuracy can be seen in the

”Algorithm” column of Table 3.1. For some studies, such as Katz et al. (2017), Ruger et al.

(2004) and Kaufman et al. (2017), only the algorithm shown in Table 3.1 was applied.

In other studies, multiple algorithms were applied. For instance, Agrawal et al. (2017)

applied Gradient Boosting, Multinomial Naive Bayes, Random Forest, Linear Support

Vector Machine (SVM), Logistic Regression and Convolutional Neural Networks (CNN)

algorithms. Subsequently, they found CNNs to performed the best for the US Circuit

Court and Random Forests for the SCOTUS.

For all the studies that used case documents, except Kaufman et al. (2017), SVMs

were found to produce the highest accuracy. Specifically, in all these studies Linear SVMs

were used. For studies by Aletras et al. (2016b), Medvedeva et al. (2018b), Sulea et al.

(2017) this was the only algorithm applied. The choice to use this algorithm may have

followed from the prominence of SVMs and their success in a variety of text classification

tasks (Joachims 1998, Liu et al. 2010). Virtucio et al. (2018) applied both Linear SVMs

and Random Forests. Lastly, Liu & Chen (2017) applied 4 other algorithms besides a

linear SVM. These are k-nearest neighbour (KNN), Logistic Regression, Random Forests,

Bagging (Bootstrap aggregation) and SVM with a radial basis function (RBF).

This means only 5 classification algorithms have been applied to predicting the out-

come of ECHR judgements. Additional algorithms, such as Naive Bayes Classifier, could

be applied. Similarly, hyper-parameter tuning has been limited. For instance, Liu &

Chen (2017) has applied a KNN algorithm using only 1 value for k (i.e. k = 5). Simi-

larly, Medvedeva et al. (2018b) considered 3 values for the SVM penalty parameter: 0.1, 1

and 5. The exact values for the other algorithms in the study by Liu & Chen (2017) and

for the SVM in the study by Aletras et al. (2016b) have not been reported. Ultimately, by

applying additional algorithms and parameters the cross-validation of the models could
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be improved.

3.4 Feature Engineering

Due to the nature of the data, the studies that used summary information required

minimal feature engineering. For example, Katz et al. (2017) used features available

directly from the SCDB such as Justice ID, Natural lower court disposition and issue

area. This is common for the papers that looked at the SCOTUS (Katz et al. 2017,

Ruger et al. 2004). Kaufman et al. (2017) used SCDB features but they also obtained

features from the justices’ oral arguments. Features were obtained using indicators (e.g.

indicating if petitioners were asked more question than respondents) and ratios (e.g. the

ratio of the number of questions asked to petitioners and respondents). This is one

approach to structuring textual data. The researchers could have also used alternative

NLP techniques. Such as, Agrawal et al. (2017) who obtained N-gram features from the

case text for both the US Circuit Court and SCOTUS. N-gram features are also known

as the bag-of-words model.

A similar approach has been used by Aletras et al. (2016b) to obtain features from

the ECHR Judgments. Specifically, the 2000 most frequent N-grams of length 1 to 4 are

obtained. Features are then obtained from the Judgments by determining the frequency

that these N-grams occur within each Judgment section. To be clear, different sets

of N-gram features are obtained from the different Judgment sections discussed in the

Background chapter. A similar approach has been taken by Liu & Chen (2017) and

Medvedeva et al. (2018b). In fact, Aletras et al. (2016b) have made their feature matrices

available online (Aletras et al. 2016a). Liu & Chen (2017) have used these matrices

to train their models without considering the original Judgments. Medvedeva et al.

(2018b) has used their own dataset to obtain the N-gram features. This is where the

inconsistencies in the dataset collected by the researchers are a concern. As mentioned,

the Medvedeva et al. (2018b) have included Judgments with a different structure to that

discussed in the Background chapter. Hence, it is unclear how the researchers have

managed to obtain features for all the sections for each Judgment.

Virtucio et al. (2018) and Sulea et al. (2017) have also used N-gram features to train

their models. Evidently, N-gram features are popular amongst the researchers that have

used case documents. These features have their limitations. For instance, they do not

consider the semantics of words. The word order of the legal documents is also lost Le

& Mikolov (2014). As an alternative, word embeddings could be used to obtain features.

The goal of word embeddings is to represent words as vectors to capture their semantics.

Words with similar vectors have similar meanings (Li & Yang 2018). They have also

shown to provide improvements in performance for a variety of text classification task

(Lilleberg et al. 2015, Ge & Moh 2017).
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Features could be obtained using pre-trained embeddings such as the GloVe embed-

dings trained by Pennington et al. (2014). Alternatively, the pre-trained legal embedding,

law2vec, could be used. These embeddings have been trained on a variety of legal doc-

ument (Chalkidis & Kampas 2019). As a result, these embeddings could have captured

the legal semantics of words better than the GloVe embeddings which were trained using

more general documents. Another option would be to train a new word embedding using

the documents obtained from the ECHR. This is one way of incorporating additional

ECHR data, not just Judgments, into the machine learning models.

Word embeddings may provide an advantage to the N-gram model but they also

do not consider the word order of documents. Paragraph embeddings could be used

as an alternative. These are similar to word embeddings but they consider the word

order of documents (Le & Mikolov 2014). Word order may be an important factor. A

paragraph embedding model could, similarly, be trained using the documents available for

the ECHR. An additional advantage of both word and paragraph embeddings is that they

can be used to represent Judgments using vectors of a smaller dimension than N-gram

features (Li & Yang 2018). For instance, both 100 and 200 dimension law2vec embeddings

are available (Chalkidis & Kampas 2019). This is opposed to the 2000 dimension vectors

obtained using N-grams.

Aletras et al. (2016b) has used features called ”topics” to reduce the feature dimension-

ality. These are essentially features created using clusters of N-grams. The clusters are

obtained using the N-gram feature matrices and spectral clustering (Von Luxburg 2007).

The reproducibility of these features may be an issue. This is because the researchers

have omitted some key information needed to obtain the features. Firstly, Aletras et al.

(2016b) did not mention from what section of the Judgments the topics were obtained.

Secondly, the researchers have omitted important technical details. They mention that

they follow a tutorial on spectral clustering provided by Von Luxburg (2007). However,

this tutorial requires you to make various technical decisions, such as what algorithm is

used to obtain the ”similarity graph”, before obtaining the final clusters.

A final consideration for feature engineering is data leakage. Data leakage is when

data, that could only be obtained after an outcome is known, is used to train models.

That is textual features should not be obtained using any text that could only be obtained

after a verdict has been made because, in reality, this text would not be available to

make predictions. Doing so would likely lead to higher prediction accuracies than could

be achieved otherwise (Nisbet et al. 2009, p. xv). For example, in Table 3.1 we see that

Sulea et al. (2017) achieved a training accuracy of 96.9%. This is 21% higher than the

second-best training accuracy, 80.1%. The researchers addressed the high accuracy in

their paper. One potential reason is that the French Supreme Court is predictable as it

offers judges less freedom when it comes to interpretation (Sulea et al. 2017). Another

potential reason is that their method of removing text, that could only be obtained after
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a verdict, from cases is flawed. Specifically, the researchers stated:

In the future we would like to investigate more sophisticated methods of

masking features in the original text data that explicitly list and “give away”

the desired target prediction to simulate realistic application scenarios, where

text classification predicts the target features from “draft” case descriptions

that do not yet contain the target predictions (Sulea et al. 2017, p .6).

The inclusion of text features that directly relate to the case outcome in the model would

explain the high accuracy. This is because a machine learning model would identify

these features and give them a high weighting. Hence, this mistake should be avoided.

For the ECHR Judgments, the verdict contains the final outcome of the case. Hence,

textual features should not be obtained from this section. Additionally, the law section

also contains information that could only be known after a judgement has been made.

In previous work, researchers have taken different approaches when it comes to the law

section. Aletras et al. (2016b) used regular expressions to remove the text that, could

be directly related to the outcome, from the section. Medvedeva et al. (2018b) took an

alternative approach and simply excluded this section.
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Chapter 4

Methodology

The study builds onto the work done by Aletras et al. (2016b), Liu & Chen (2017) and

Medvedeva et al. (2018b). Particular aspects of the methodology in this study have been

motivated by the choices these researchers have made. This is because their approach

has proved to be a good initial step in addressing the research problem. It will also

allow for a better comparison of the results to those of previous studies. Differences

in the methodology include the introduction of new data, new textual features and an

automated model selection process. By keeping other aspects of the methodology the

same, the effect of these changes can be better understood.

4.1 Data Preparation

Obtaining the ECHR Documents

All ECHR documents are publicly available in the HUDOC database (HUDOC database

2018). The database, however, does not provide the functionality to download documents

in bulk. To avoid the time-consuming process of downloading documents manually, doc-

uments were obtained using an API provided by vizlegal. vizlegal is a legal technology

company that specialises in legal search (vizlegal 2019). The API allows HTTP requests

to be made to vizlegal’s server were all the ECHR documents have been processed and

stored. This makes it simple to automatically download all the documents. In previ-

ous studies, researchers built their own scraping tools to obtain the data (Aletras et al.

2016b, Medvedeva et al. 2018b). However, these have not been made available by the

researchers. Other tools such as echr-scraping , created by van der Heijden & Kapfer

(2016) were research. The repository for this tool has not been updated in three years

and there is minimal documentation. Ultimately, the vizlegal API was used as it was the

most reliable and efficient method of obtaining the data that could be found.

The number of documents downloaded using the API are shown in Figure 4.1. 14071

Judgment documents were obtained. Besides these, additional documents were also ob-
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tained. Decisions make up approximately 40% of all the documents. According to the

Council of Europe (2017), these documents give the rulings on the admissibility of ap-

plications. Communicated cases describe the communications that took place with the

State responding to an application. Legal summaries are summaries of important judge-

ments or decisions and the resolution documents describe proposals made by the Court

(Council of Europe 2017). The other documents include Reports and Advisory Opin-

ions. In total, 56688 documents were obtained. The Judgments are the primary data

source as this study attempts to predict the outcome the judgements detailed in these

documents. The other documents will still be incorporated. This is through the process

of creating word and paragraph embeddings which are described in more detail in the

textual features section of the Methodology.
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Figure 4.1: Number of ECHR Documents

Obtaining the Dataset

Only Judgments with the structure outlined in the background section are used to train

models. That is they must have a procedure, facts, law and verdict section. The facts

section must also consist of two subsections: circumstances and relevant. 9703 of the

14071 Judgment have this structure. The difference in the structure of 98% of the re-

maining 3970 Judgments is due to variations in the facts section. That is the section has

either only one of the subsections, none of the subsections or the subsections are com-

bined into one subsection. For some Judgments, such as Beck, Copp and Bazeley v. The

United Kingdom (2002), the facts section is missing entirely. The remaining 2% consist of

Judgments of a variety of different structures. For instance, Belziuk v. Poland (1998) has

no law section. The downside to this decision is that the models are trained using only
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69% of the available Judgment documents. The choice was made as all previous papers

discussed have decided to used only Judgments of this structure (Aletras et al. 2016b,

Liu & Chen 2017, Medvedeva et al. 2018b). This is because a standard structure for

the Judgments simplifies the process of cleaning and extracting different textual features

from the documents.

The 9703 Judgments are put into groups based on what Articles the Judgments ad-

dress. The Judgments are then labelled according to the target variable described in

Table 4.1. A single Judgment can involve multiple potential violations for the same Ar-

ticle. Hence, within an Article group, a Judgment is labelled as a violation if there is at

least 1 violation for that Article. A single Judgment can also address potential violations

for multiple different Articles. For example, within the same Judgment, the ECHR could

rule that a State is in violation of Article 6 and in non-violation of Article 3. Hence, a

single Judgment can appear in multiple Article groups and have different labels in each

group. Ultimately, the problem has been framed as a binary classification problem with

respect to each Article. Separate models are subsequently constructed to predict the

outcome for each of the Articles.

Code Outcome Description

0 Non-Violation There were no violations for that Article

1 Violation There was atleast 1 violation for the Article

Table 4.1: Target Variable Code

The number of Judgments, by outcome, for each Article can be seen in Figure 4.2.

Article 6 has the most Judgment documents: 3912 violations and 560 non-violations. In

comparison, Articles such as 18 and 11 have significantly fewer Judgment documents.

Specifically, Article 18 has less than 1% of the number of Judgments used for Article

6. For most of the articles, there is an imbalance between the number of violations and

non-violations labels where there tend to be more violations. For instance, Article 3

has approximately 6 times more violations than non-violation. For each Article, Judg-

ments are divided into a training and test set. During this process, the Judgments are

randomised to avoid confounding with factors such as the date the Judgment was made.
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Figure 4.2: Number of Judgments in Dataset

A balance training set is selected. This is to avoid models becoming biased towards

one of the outcomes. Additionally, previous studies have used balanced training sets

and so a better comparison of training accuracies can be made. Realistic test sets were

selected. That is, they were chosen so that they had the same violation to non-violation

ratio as seen in the past. To be clear, they have the same ratio as the original set of

Judgments and not the Judgments with the structure defined in the Background chapter.

For example, Article 5 had 1959 violations and 210 non-violations. After selecting only

those documents with the structure described, the number of violations and non-violation

were 1641 and 184 respectfully. The test set is chosen to have a ratio of 1959:210 or 9.3:1.

The sets are chosen in such a way as to maximise the number of training documents while

still having at least 10% of each label in the test sets. The final number of Judgments in

the training and test set for each article can be seen in table 4.2. We see for article 5 the

number of non-violations in the test set is 18 which is 10% of 184. The ratio of violations

to non-violations in the test set is 168:18 or 9.3:1.
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Training Set Testing Set

Article Violation Non-violation Violation Non-violation

Article 2 76 76 58 8

Article 3 245 245 175 27

Article 5 166 166 168 18

Article 6 504 504 539 56

Article 7 32 32 4 5

Article 8 271 271 93 30

Article 9 20 20 5 2

Article 10 128 128 45 14

Article 11 23 23 14 3

Article 13 101 101 138 11

Article 14 182 182 20 20

Article 18 13 13 1 2

Table 4.2: Number of Judgments in Training and Testing Sets

The number of Judgments in the training set can be compared to that of previous

studies. The training sets’ sizes are significantly larger than those used by Aletras et al.

(2016b) and Liu & Chen (2017). On average, 4.5 times as many Judgments were used

for each Article. In particular, 12.6 times as many Judgments were used for Article 6.

Compared to Medvedeva et al. (2018b), 8.1% more Judgments were used across all the

Articles on average. Even with the additional Judgments, some of the Articles have a

small number of Judgments in their training sets.

It may be difficult to construct reliable machine learning algorithms for those Articles

with relatively few Judgments. Previous studies have suggested a minimum threshold

of 100 Judgments to train the models (Medvedeva et al. 2018b). This would exclude

Articles 7, 9, 11 and 18. However, other researchers have trained models using fewer

Judgments. Specifically, we saw in the Background section that Aletras et al. (2016b)

used 80 Judgments for Article 6. So, the threshold of 100 Judgments is considered but we

have still attempted to model the outcome of all the Articles. The results of the models

for Articles 7, 9, 11 and 18 where analysed with the small training data sets in mind.

4.2 Feature Engineering

Before predictive models can be constructed, the Judgment text must be processed and

features must be created from this text. From each Judgment, the text form the pro-

cedure, facts, circumstances and relevant sections are obtained. A combination of the
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text from the procedure and facts sections (procedure+facts) is also created. To avoid

data leakage, the text from the verdict section is not used. As mentioned in the Related

Work, text from the law section also contains information that would only be available

after a judgement is made. It was also mentioned that Aletras et al. (2016b) used regular

expressions to remove this text. After doing so their law section models achieved an

average accuracy of 62% which is 21.5% lower than their highest accuracy. On the other

hand, Medvedeva et al. (2018b) simply excluded the entire law section. For simplicity

and because the law section produced relatively low accuracies, this section was also not

used to create predictive models.

Next, the text from each section is cleaned by making it lower case and removing

all punctuation and numbers. A version of this text with stop-words removed is also

obtained. The set of English stop-words provided by the NLTK python package was

used (Loper & Bird 2002). In the end, 10 different variations of the text are obtained

for each Judgment (2 stop-word variations and 5 case sections). This means we have 10

different corpora of cleaned Judgment text for each Article. Each corpus is divided into

a training and test set. Different textual features are subsequently created using these

different corpora.

N-grams

The NLTK Python package is used to create N-gram feature matrices using the cleaned

Judgment text (Loper & Bird 2002). From the Judgments in the training set, the 2000

most frequent N-grams of length 1 to 4 are obtained. We only consider the N-grams from

the training set as, in a realistic scenario, the Judgments in the test set would not be

available at the time models are trained. Including the N-grams from the test set would

be considered data leakage. This is because we would be incorporating information into

the models that would not be available before a prediction is made. Using the training set

N-grams, the Judgments are vectorised to obtain feature matrices for both the training

and test sets. An example of the resulting matrix can be seen in Figure 4.3. Here,

the rows represent the individual Judgments and the columns give the frequency of the

particular N-gram for that Judgment. For instance, the N-gram ’yet’ occurs 3 times in

Judgment 1. For each Article, this is done for each of the 10 different corpora.
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Figure 4.3: N-gram Feature Matrix Example

These feature matrices are then normalised using Min-Max feature scaling. Each

value of a column is scaled using the following equation:

X ′ =
X −Xmin

Xmax −Xmin

(4.1)

Here, for the given column, X is the original value and X ′ is the scaled value. Xmin

and Xmax are the column’s minimum and maximum values from the training set. The

same minimum and maximum values are used to scale the testing matrix. Again, this is

because in a realistic scenario the Judgments in the test set would not be available at the

time the minimum and maximum values were determined.

Word Embeddings

N-grams are useful rudimentary textual features but they do have some disadvantages.

For instances, they do not capture the semantics of words in the dataset. That is, they

do not tell us anything about how similar words are to each other. By representing

words as a vector, word embeddings can capture the semantics of words. Additionally,

embeddings can also help to reduce the dimensionality of the features used in machine

learning models (Li & Yang 2018).

The different word embeddings used are summarised in Table 3. ’Corpus’ gives the

documents that are used to train the word embeddings and ’No. Tokens’ are the number

of lower case words that make up the corpus. The tokens are used to train the word

embeddings. The ’vocabulary size’ is the number of words that have vector represen-

tations for that embedding. The GloVe and law2vec embeddings were trained by other

researchers and the echr2vec embeddings were trained specifically for this paper. For each

embedding, a 100 dimension and 200 dimension version are used. Where, the dimension is

the embedding vector size. The reason for this is that the law2vec embeddings were only

available in these dimensions. The same dimensions were used for the other embeddings

so that a better comparison of the embeddings could be made. That is, any differences
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in model accuracies could be attributed to the corpus used to train the embeddings and

not the dimension.

The GloVe embeddings were trained by Pennington et al. (2014). The researchers

created the embeddings using the GloVe algorithm discussed in their paper. For training

data, they used the Gigaword 5 and Wikipedia 2014 dumps which provided 6 Billion

tokens. They limited the vocabulary size to 400,000 of the most frequent tokens. On the

other hand, the law2vec and echr2vec embeddings both used the word2vec embedding

algorithm (Mikolov et al. 2013). Hence, It would have been preferable to use the word2vec

algorithm instead of the GloVe algorithm. That is, use word2vec embeddings trained on

a similar corpus to the one used for the GloVe embeddings. However, such embeddings

with both a 100 and 200 dimensions version could not be found.

The law2vec embeddings were trained by Chalkidis & Kampas (2019). The researchers

used a corpus of 123,066 legal documents from the UK, EU, Canada, Australia, USA,

and Japan. These provided 492 Million tokens and embeddings with a vocabulary size

of 169439. The law2vec embeddings were trained using roughly 8.2% of the number of

tokens used for the GloVe embeddings. This may mean that the law2vec embeddings

would not perform as well when used for text classification problems. However, the

law2vec embeddings, having been trained on legal documents only, may better capture

the semantics of words in a legal context.

Following from this, the semantics of words may differ depending on the area of law

or the country the legal documents come from. The ECHR documents were not included

in the law2vec corpus and so an additional embedding, echt2vec, using these documents

were created. When creating the embeddings, all of the 56688 ECHR documents obtained

were considered. To avoid data leakage it was necessary to exclude certain documents

or sections of documents. For any Judgment in a training set, we exclude the law and

verdict section. For any Judgment in a testing set, the entire Judgment was excluded.

Additionally, the summary of any of the above Judgments was excluded. This is because

the summary also contains details of the judgement made by the Court. Ultimately,

this means that the echr2vec embedding was not trained on any text that would not be

available before a judgement was made.

The embedding was created using these documents and the gensim implementation of

the word2vec model (Řeh̊uřek & Sojka 2010). A 5-word window and a minimum threshold

of 10 occurrences was used. This is because these are the same parameters used to create

the law2vec embedding. In the end, the documents provided 84 Million tokens and

produced embeddings with a vocabulary size of 47587 words. Again, these embeddings

were trained using fewer tokens than the others but they may have better captured the

semantics of the words used in the ECHR documents. The echr2vec embeddings are also

an attempt at incorporating the remaining documents available for the ECHR, and not

just Judgments, into the models.
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Embedding Corpus No. Tokens Vocabulary Size

GloVe Gigaword 5 and Wikipedia 2014 6 Billion 400,000

law2vec 123,066 legislation documents 492 Million 169,439

echr2vec ECHR Judgment documents 84 Million 47,587

Table 4.3: Summary of Word Embeddings

Average Embedding Values

Word embeddings allow us to represent words as vectors. For this problem, predictions are

made using entire documents. In other words, it is necessary to represent the documents

as vectors. A common way of doing this is by finding the average of the word embedding

vectors. This process is shown in Figure 4.4. We start with a section of the Judgment

shown in the first block. In step 1 each word, of a cleaned version of this section, is

cycled through. Each word is replaced by a vector representation of the word, shown

in step 2. Then, in step 3, the average all these vectors are taken. This average vector

is the vector representation of the Judgment. The vector representation for each word

will differ depending on the embeddings used. For some embeddings, certain words will

not have a vector representation. For example, in Figure 4.4, we see that ’quickborn’ is

replaced with ’none’. This is because the embedding does not have a representation of

the word ’quickborn’. This word is consequentially not considered in the document mean

vector.

Figure 4.4: Average Word Embedding Process

This is done for both the training and testing sets. An example of a feature matrix

obtained from this process is shown in Figure 4.5. As before, the rows represent each

Judgment. The columns represent each element of the Judgement vector. In this example,

a word embedding of dimension 100 has been used and so the corresponding average word

embedding is also of dimension 100. As with the N-gram matrices, Min-Max feature

scaling is used to normalise these feature matrices. For each Article, this process is

repeated for each of the 10 corpora and using both the 100 and 200 dimension versions

of each of the 3 word embeddings in Table 4.3.
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Figure 4.5: Example of Average Word Embedding Feature Matrix

Doc2vec Embeddings

A downside to using the average of word embeddings to represent documents is that

the document’s word order is lost. Therefore, as an alternative, a doc2vec model has

also been used to represent the Judgments as vectors. This model considers both the

semantics of words as well as the word order of the Judgments (Le & Mikolov 2014). The

gensim implementation was used to train the doc2vec model (Řeh̊uřek & Sojka 2010).

The same documents used to train the echr2vec embeddings were used. That is, ex-

cluding the same documents and sections to avoid data leakage. Certain hyper-parameters

have to be set to train the doc2vec model. For a better comparison to the average word

embeddings, doc2vec models of dimension 100 and 200 are trained. The other hyper-

parameters were informed by the work done by Lau & Baldwin (2016) where the re-

searchers trained doc2vec models using a variety of corpora. Specifically, they used a

window size of 15, a minimum word frequency of 10 and 20 training epochs. Judgment

vectors are inferred using 20 epochs. These same parameters were used to train the

doc2vec models in this paper. This resulted in feature matrices similar to the one shown

in Figure 4.5. Only now, for columns give the doc2vec embedding representation of the

Judgment. Again, these feature matrices are normalised using Min-Max feature scaling.

For each Article, this is done for all 10 corpora.

4.3 Modelling

4.3.1 Classification Models

Using the textual features discussed above, machine learning models are constructed for

each of the Articles. This was done using of the auto-sklearn python package. This

package uses efficient Bayesian optimization methods to automate algorithm and hyper-

parameter selection (Feurer et al. 2015). It is based on the scikit-learn machine learning

framework (Pedregosa et al. 2011) and it considers 15 different algorithms, including
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Linear SVM, Gradient Boosting and Random Forest. The number of hyper-parameters

considered depends on the algorithm. For instance, the package selects the values of 4

different hyper-parameters for the Linear SVM algorithm including the penalty parameter

and type of penalty: l1 or l2. 10-fold cross-validation is used to select both the algorithm

and associated hyper-parameters. Ultimately, this package provides an alternative to grid

search. Using the package, a wider range of models and parameters can be tested than

tested in previous papers (Feurer et al. 2015).

As discussed in the Feature Engineering section, multiple different feature matrices

are obtained for each Article. For example, feature matrices are constructed using both

GloVe and law2vec embeddings. In terms of modelling, these differences can be consid-

ered hyper-parameters. All these hyper-parameters are shown in Table 4.4. Ultimately,

varying each of these hyper-parameters results in a different feature matrix for an Article.

A distinction should be made between these hyper-parameters and those selected by the

auto-sklearn package. The auto-sklearn package can only be used to select the algorithm

and the algorithm’s associated hyper-parameters. Hence, for each of an Article’s feature

matrices, auto-sklearn is used to find the classification algorithm and associated hyper-

parameters that maximises cross-validation accuracy. Then, all these cross-validation

accuracies are compared to obtain the model with the highest overall cross-validation

accuracy.

Ultimately, at the end of this process we will have one model for each Article. This

model would have been trained using one combination of the hyper-parameters in 4.4.

The classification algorithm and it’s associated algoithm would have been selected by

the auto-sklearn package. For each Article, this model is then re-trained using the entire

training set and used to make predictions on the test set. This is to provide an estimation

of how well the model performs on a realistic out-of-sample data set.

Hyper-parameter Values

Feature Type N-gram, GloVe,,law2vec, echr2vec, doc2vec

Dimension 100, 200 and 2000 (for N-gram only)

Judgment Section procedure+facts ,procedure, facts, circumstances, relevant

Stop-words Yes, No

Table 4.4: Model Hyper-parameters

To train models, the auto-sklearn time parameters ”time left for this task” and ”per run time limit”

have to be set. These give the maximum amount of time, in seconds, dedicated overall

to fitting models and the maximum amount of time dedicated to each classification algo-

rithm. Essentially there is a payoff, between the time it takes the package to fit models

and the overall cross-validation accuracy. Not giving the package enough time would
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mean that the optimal model and parameters may not be found. To choose the param-

eters some initial experimentation was done. 10 random feature matrices were taken,

and the package was applied using variations of the time parameters. It was found that

values of 360 and 120, respectfully, were appropriate. Increasing the time value’s further

resulted in an average increase in the cross-validation accuracy of less than 0.1%.

The package can also be used to automatically select data and feature preprocessing

methods. The data preprocessing methods include aspects such as how missing data is

imputed and how features are scaled. Feature preprocessing change sthe dimensionality

of the features through methods such as PCA (Feurer et al. 2015). These aspects of the

package are not used in this study as they have already been covered during the feature

engineering process.

A downside to using the auto-sklearn package is that the individual cross-validation

fold accuracies are only calculated internally. Only the average accuracies across all the

folds are given as output. Hence, confidence intervals for the cross-validation accuracy

cannot be calculated. This means that we cannot conclude statistically whether the

difference in cross-validation accuracies of the two models are statistically significantly.

Ultimately, we can only compare models base on the cross-validation accuracies.

4.3.2 Heuristic

The models’ results are also compared to a simple heuristic. That is, the heuristic always

predicts the outcome of the Judgment to be the outcome that was the most common in

the past. So, in the case of Article 6, we saw there were more violations a non-violations.

Each Judgment in the test set for Article 6, will consequentially be predicted as a violation

by the heuristic. It is important to include such a baseline as it puts the model results

in perspective. If the models are outperformed by a simple heuristic they are likely not

going to be useful.

4.3.3 Metrics

Prediction results will be analysed using accuracy, precision and recall. The confusion

matrix in Table 4.5 is used to explain how these metrics are calculated. Here, the values

for false negative (FN) and false positive (FP) give, for a given Article, the number

of Judgments that are incorrectly predicted as non-violation and violation respectfully.

Similarly, the values for true negative (TN) and true positive (TP) give the number of

Judgments correctly predicted as non-violations and violations respectfully.

29



Prediction

Non-violation Violation

Actual
Non-violation True Negative (TN) False Postive (FP)

Violation False Negative (FN) True Positive (TP)

Table 4.5: Confusion Matrix

Equation 4.2 gives the formula for the accuracy metric. For a given Article, this

gives the proportion of Judgment outcomes that were correctly predicted. Accuracy is

calculated for each Article and for both the models and heuristic. To compare the overall

accuracy, the weighted average, in Equation 4.3, is calculated for both the models and

heuristic. Here Accuracyi is the accuracy achieved for Article i and wi is the number of

Judgments in the test set for Article i. The weighted average is used as it has a clearer

interpretation than the average. The test sets have the same Article balance as past

Judgments. The weighted average, therefore, gives the estimate of how many correct

predictions the model (or heuristic) would make in the future. This is assuming future

Judgments have the same Article balance as the past.

Accuracy =
TN + TP

TN + FP + FN + TP
(4.2)

Weighted Average =

∑
i∈Articles Accuracyi ∗ wi∑

i∈Articles wi

(4.3)

The formula for precision and recall are given by Equations 4.4 and 4.5 respectfully.

For a given Article, precision gives the proportion of all violation predictions that were

correct. Recall, on the other hand, gives the proportion of actual violations that were

correctly predicted. Precision and recall are only calculated for the models and not the

heuristic. This is because not much insight can be gained for the heuristic. Due to the

nature of the heuristic, if violations were most common for a given Article, precision will

equal the accuracy and recall will equal 1. If non-violations are most common then both

the precision and recall will be 0.

Pecision =
TP

TP + FP
(4.4)

Recall =
TP

TP + FN
(4.5)

As mentioned in the Related Work, none of the previous studies has used a realistic

test set. Consequentially, the test set accuracies achieved in this study cannot be com-

pared to previous studies. Hence, the cross-validation accuracies for each of the Articles

will also be given. The cross-validation accuracies will subsequently be compared keeping

in mind the differences between the studies.
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Chapter 5

Results and Discussion

5.1 Model Results

The hyper-parameters and classification algorithm that achieved the highest cross-validation

accuracy for each Article can be seen in Table 5.1. The ”Feature Type”, ”Dimension”,

”Section” and ”Stopwords” parameters are discussed in the modelling section of the

Methodology chapter. The ”Classifier” is the classification algorithm that was selected

by the auto-sklearn package. We can see that the classifier used varied for each Article.

Quadratic Discriminant Analysis (QDA) and Random Forest were the two most common

algorithms. They were each chosen for 3 of the Articles. Additionally, Gradient Boosting,

Stochastic Gradient Descent (SGD), Decision Tree and AdaBoost classifiers were used.

We can see that the ”Feature Type”, ”Dimension” and ”Part” also varied by Article.

These hyper-parameters are analysed in more depth in sections 5.2 and 5.3.

In the Related Work chapter, we saw that a linear SVM classifier produced the highest

cross-validation accuracy for each Article. Either the researchers only tested linear SVMs

(Aletras et al. 2016b, Medvedeva et al. 2018b) or a linear SVM showed to produce the

highest accuracy for all algorithms tested (Liu & Chen 2017). Looking at Table 5.1, we can

see that, in this study, a linear SVM did not produce the highest cross-validation accuracy

for any of the Articles. This is important as it suggests that, to improve accuracy, it was

necessary to test additional classification algorithms. However, the results in Table 5.1

do give any indication of the statistical significance of the difference between the cross-

validation accuracies of the algorithms tested. For example, for Article 3 we found that

a Random Forest classifier produced the highest cross-validation accuracy. If compared

to the accuracy achieved by a linear SVM we may find that difference is not statistically

significant. In other words, it is not possible to say with certainty that the random forest

classifier produced the highest accuracy.

31



Article
Feature

Type
Dimension Section Stopwords Classifier

Article 2 law2vec 100 circumstances Yes
Gradient

Boosting

Article 3 GloVe 200 procedure+facts No
Random

Forest

Article 5 GloVe 200 relevant Yes
Gradient

Boosting

Article 6 echr2vec 100 procedure+facts Yes SGD

Article 7 GloVe 200 circumstances No
Decision

Tree

Article 8 echr2vec 100 procedure+facts Yes
Random

Forest

Article 9 n-gram 2000 circumstances Yes AdaBoost

Article 10 echr2vec 200 procedure+facts No QDA

Article 11 GloVe 200 procedure+facts Yes SGD

Article 13 GloVe 100 procedure+facts Yes QDA

Article 14 echr2vec 200 procedure+facts No QDA

Article 18 echr2vec 200 procedure+facts No
Random

Forest

Table 5.1: Model Hyper-parameters

The accuracy of the models and the heuristic on the test set can be seen in Figure

5.1. The accuracy for each Article as well as the weighted average across all the Articles

are shown. As mentioned in the Methodology, the weights are given by the number of

Judgments in the test set for each Article. For the models, the weighted average is 0.6883.

This is the best estimation of how well the models will perform in a realistic scenario on

new cases. That is, it estimated that 68.83% of the predictions made by the model would

be correct. All of the Articles, except for Article 10, had a test accuracy above 0.5.

Article 10 had a test accuracy of 0.4576 which is 33.52% lower than the average. The

highest test accuracy was 0.803 for Article 2 which is 16.64% higher than the average.

The test accuracies in Figure 5.1 can be compared to the heuristic accuracies. For

all Articles, excepting 7, 14 and 18, the accuracy of the heuristic on the test set was

higher. The greatest differences was for Article 10, where the heuristic accuracy was

66.7% greater than the test accuracy. This is followed by Articles 6 and 5 where the

heuristic accuracy was 34.25% and 33.3% greater, respectfully. The weighted average, for

the heuristic, was 0.8668 which is 29.7% higher than the weighted average for the models

on the test set. Hence, in general, the heuristic has outperformed the models.
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The higher accuracy of the heuristic can be partly explained by the balance of violation

to non-violations in the test sets. Take for instance Article 6 where, in the past, 91% of

the complaints about this Article resulted in violations. As the test sets had the same

balance as past judgements, the heuristic correctly predicted the outcome of Article 6

judgements with 91%. We saw in the methodology that this imbalance is common among

the Articles contributing to the higher accuracy of the heuristic. The recall and precision

of the models further explain why the heuristic outperformed the models.

Article 2 Article 3 Article 5 Article 6 Article 7 Article 8 Article 9 Article 10 Article 11 Article 13 Article 14 Article 18 Weighted
 Average
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Figure 5.1: Model and Heuristic Accuracy on Test Set

Figure 5.2, shows the precision and recall, on the test sets, of the models. 7 of the

Articles had a precision above 0.9 and 9 of the Articles had a precision above 0.8. Article

2 and Article 9 both had a precision of 1. Article 18 had the lowest precision of 0.5.

The average precision, across all the Articles, is 0.8491. In general, the high precisions

mean that models tend not to miss-classify non-violations as violations. For instance,

take Article 6. Its model had a precision of 0.9677 which means 96.8% of the Judgments

predicted to be violations were violations. In comparison, lower recall values are observed.

For 9 of the Articles, the precision was higher than the recall. The highest recall, 1, was

for Article 18 and the highest recall, for the Articles above the data threshold, was 0.7759

for Article 2. The average recall was 0.6906. The lower recall, means the models tend to

miss-classify violation cases as non-violation cases. In other words, incorrect predictions

are mainly due to false negatives. This is made clearer by the confusion matrix for Article

6 in Table 5.2. Here we see that the number of false negatives is 180. This is 15 times
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higher than the number of false positives, 12.
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Figure 5.2: Accuracy, Precision and Recall on Test Set

Prediction

Non-

violation
Violation

Actual

Non-

violation
44 12

Violation 180 359

Table 5.2: Confusion Matrix for Article 6

Ultimately, it is not likely that either the heuristic or model would be used by the

ECHR to make judgements. Using the heuristic would mean that all judgements would

always lead to a violation (or non-violation for some Articles) regardless of the evidence

provided. This would not be acceptable as there would be no due process. Similarly,

it is not likely that the models would be used. This is because the decisions made by

the Court are very important and an accuracy of below 70% would be unacceptable. It

would mean that more than 30% of application would be given an incorrect judgement

regardless of the evidence. The consequences of this could be severe considering that the

Court was set up to protect human rights. This does not mean that the models would

be useless to the Court.
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The models could still be used to prioritise cases by identifying which cases are more

likely to lead to violations. The heuristic does not provide any benefit in terms of priori-

tising cases. As the predictions for each Article would be the same, all complaints would

be given the same priority. In this sense, the models may be more useful. As discussed

above, the tendency to have a high precision means there are relatively few false positives.

This means the cases identified as violations and subsequently prioritised, will tend to

be violations. The downside is that those judgements, misclassified as non-violations,

would be given equal priority to the remaining non-violation cases. Nonetheless, overall

the models would put the cases in a better order as more violation cases would be heard

sooner.

5.2 Cross-validation Accuracy by Section

It was mentioned that, from a Judgment, 5 sections are considered. There are three

individual sections (procedure, circumstances and relevant) and 2 combinations of these

sections. The facts consist of the circumstances and relevant individual sections and

procedure+facts consists of all the individual sections. The ”Section” column in Table

5.1, gives the Judgment section that gave the highest cross-validation accuracy for each

Article. The most common section was procedure+facts which was used for 8 out of the

12 Articles. This is followed by circumstances and relevant which were used for 3 and 1

of the Articles respectfully. Both the procedure and facts section were not used for any

of the Articles.
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Figure 5.3: Highest Cross-validation Accuracy by Section

Using Articles 3, 7 and 14 as examples, Figure 5.3 shows how the cross-validation ac-
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curacy differs by section. For each of the Articles, the highest cross-validation accuracy

for each section is shown. Article 3 was chosen as it had the lowest difference between any

two sections. That is the difference between the procedure+facts and relevant section was

0.0143. Article 7 provided the greatest difference and Article 14 provided the greatest dif-

ference for those articles above the data threshold. Figure 5.4, summaries the differences

in cross-validation accuracies for each section. To create this Figure, the highest cross-

validation accuracy for each section for each Article was taken. For instance, we see those

highest accuracies for Articles 3, 7 and 14 in Figure 5.3. The average across the Articles

was then calculated for each part. This gives the average if the section hyper-parameters

were held constant for each Article. The procedure+facts section achieved the highest

average of 0.8129. The individual section with the highest average was circumstances

with 0.8027. This is 1.3% lower than the average for the procedure+facts section.
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Figure 5.4: Average of Models with Highest Cross-validation Accuracy by Section

Before predictions can be made for new Judgments, the sections like those in previous

documents would have to be drafted. The cross-validation accuracy results suggest that

to maximise accuracy different sections should be drafted for different Articles. However,

practically, it may make more sense to use the same section for each Article. It may

increase the administrative burden if, for every Article, a different section had to be

drafted. We see that the facts+procedure section had the greatest overall accuracy and

so this section could be used. However, practically again, this may not make sense.

It would mean that, for every Article, every individual section had to be drafted. As

an alternative, the circumstances section could be used for every Article. This section

produced the highest overall accuracy amongst the individual sections. Using models

trained on this section would mean that neither the relevant or procedure sections would
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have to be drafted to make predictions. In terms of addressing the application backlog

faced by the ECHR, this may be a better option. This is because it would take less

time to prepare the necessary sections for the models and predictions could be made

sooner. Ultimately, the decision would have to be made between increasing accuracy and

decreasing the time it takes to draft sections for the models.

5.3 Cross-Validation Accuracy by Feature Type

Looking at Table 5.1, we see that the feature type that produced the highest cross-

validation accuracy differed for each Article. For all Articles, except Article 9, an average

embedding feature type produced the highest cross-validation accuracy. The embedding

model used for these Articles varied. This could be due to the nature of the Articles.

For instance, the Article 6 model used the echr2vec embedding model which was created

using legal documents. This Article protects the right to a fair trial. A fair trial could be

considered a legal concept and so the accuracy for this Article may have been improved

due to the fact that the embeddings were constructed using legal documents. In compar-

ison, the GloVe embeddings were used for Article 3. This Article prohibits torture and

inhuman and degrading treatment. In comparison to a fair trial, these concepts could be

more common in general, non-legal documents. Hence, an embedding trained on more

general documents was appropriate. However, this hypothesis does not hold for all of

the Articles. For instance, Article 7 prohibits punishment without law, an arguably legal

concept, and used the GloVe embeddings.

Figure 5.5, gives the average cross-validation accuracy by Feature Type and Dimen-

sion. Similar to Figure 5.4, Figure 5.5 is created by taking the highest cross-validation

accuracy for each Feature Type and Dimension combination for each Article. Then the

average across the Articles is calculated. The echr2vec with dimension 200 had the high-

est average of 0.8066. This is 0.4% higher than the GloVe with dimension 200 which had

the second-highest average of 0.8031. The doc2vec with dimension 100 had the lowest

average of 0.7298 which is 9.5% lower than that of the echr2vec with 200 dimension. For

each of the word embedding and doc2vec features, the 200 dimension version had a higher

accuracy than the 100 dimension version. This difference was 0.0102, 0.0078, 0.0096 and

0,001 for the GloVe, law2vec and echr2vec and doc2vec features respectfully.
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Figure 5.5: Weighted Average of Highest Cross-validation Accuracy by Feature Type and

Dimenison.

In general, the echr2vec embeddings produced the highest cross-validation accuracy.

This suggests that using embeddings trained on legal documents can improve model

accuracy over those that use embeddings trained on general documents. In other words,

legal embeddings may capture the semantics of legal documents better than general

embeddings. However, we also saw that the law2vec embeddings performed worse, in

general, than the GloVe embeddings. This suggests that the type of legal documents used

to train the embeddings is important. The law2vec embeddings may not have captured

the semantics of words used in the Judgments as well as the echr2vec embeddings. This

could be because the law2vec embeddings were trained on legal documents from other

countries and areas of law to that of the ECHR.

Lastly, in general, the doc2vec features had the lowest average accuracy. They also

did not produce the highest accuracy for any of the Articles. This could mean that the

word order of the Judgments is not important. In other words, capturing the semantics

of the entire document does not provide any benefit over capturing the average semantics

of the words in the document. It could also be because a variety of different types of

documents were used to train the doc2vec models. Particularly, decisions made up 40%

of the documents used to train the models. The semantics of these decision documents

may differ from that of Judgments. Using the doc2vec models to infer vectors from the

Judgement documents may not produce an adequate representation of the Judgement.
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5.4 Comparison of Cross-validation Accuracy with

Previous Studies

The test accuracy achieved by this study cannot be compared to that of another study.

This is because, as mentioned in the Related Work, no other study has tested their models

on a realistic test set. We can, however, compare the cross-validation accuracies presented

in the related work section. Figure 5.6 shows the highest cross-validation accuracy for

each Article achieved in this study. These are the accuracies that correspond to those

hyper-parameters and classifiers shown in Table 5.1. The average accuracy is 0.8225.

Articles 18 and 11 had the highest accuracies of 1 and 0.9348 respectfully. These are

21.6% and 13.7% higher than the average accuracy. The lowest accuracy, 0.7319, was for

Article 5 which is 11.0% lower than the average.
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Figure 5.6: Highest Cross-validation Accuracy for each Article

When comparing cross-validation accuracies, we should consider that different studies

have construct models for different Articles. Specifically, Aletras et al. (2016b) and Liu

& Chen (2017) constructed models for Articles 3, 6 and 8. They achieved an average

cross-validation accuracy of 80.1% and 79.5% respectfully. Medvedeva et al. (2018b)

constructed models for Articles 2, 3, 5, 6, 8, 10, 11, 13 and 14. Their average across

Articles 3, 6 and 8 were 74.3% and their average across all nine Articles was 75.3%. In

comparison, across Articles 3, 6 and 8 this study achieved an average cross-validation

accuracy of 75.1%. This is 6.2% less than the highest accuracy and 1.1% higher than

the lowest accuracy previously achieved for these Articles. Across the 9 Articles, this

study achieved an average accuracy of 77.7% which is 3.2% higher than that achieved by

Medvedeva et al. (2018b).
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Looking at the 9 Articles it appears as if the approach taken in this study has improved

on the accuracy. However, looking at the 3 Articles it appears as if the approach has

reduced the accuracy. It is difficult to determine whether these differences would result in

a corresponding difference in accuracy on a test set. One reason for this is that balanced

sets were used to train models and a realistic test set would be unbalanced. Suppose,

hypothetically, a model could classify all non-violations correctly but misclassified 50% of

violations. This model would achieve an accuracy of 0.75 on a balanced set. However, on

an unbalanced test set the accuracy would be different. Particularly, if there were more

violations than non-violations the test accuracy would be lower than 0.75. Additionally,

over-fitting may result in high cross-validation accuracies. Looking at Figure 5.6, the

cross-validation accuracies for Article 18 and 11 are particularly high. Specifically, an

accuracy of 1, for Article 18, is very unlikely in reality. This suggests over-fitting has

occurred and is discussed in more depth in the next section.

5.5 Cross-validation Accuracy and Over-fitting

Figure 5.7, shows the relationship between the training set size and cross-validation ac-

curacy. These are the same cross-validation accuracies as in Figure 5.6. Each point is

tagged with its associated Article and the dotted black line gives the threshold of 100

Judgments. The 4 Articles, that fall below the threshold, have 4 of the 5 highest accu-

racies. These 4 Articles have an average accuracy of 0.9134. The average accuracy of

the remaining 8 Articles is 0.7771 which is 14.92% lower. Small training sets, of below

100 Judgments, are associated with high cross-validation accuracies. Potentially, small

training set sizes are leading to over-fitting resulting in high cross-validation accuracies.
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Figure 5.7: Relationship between Cross-validation Accuracy and the Number of Judg-

ments in Training Set

To gain more insight, the difference between cross-validation and test accuracy for

each Article is considered. Figure 5.8, shows the relationship between these differences

and the training set size. The average difference for the Articles below the data threshold

is 0.2607. These Articles had 4 of the 5 highest differences. Specifically, Article 18 and 9

had the greatest differences of 0.3333 and 0.3036 respectfully. For the Articles above the

threshold, the average difference was 0.0962. Hence, small training set sizes are associated

with high differences in cross-validation and test accuracy. In other words, small dataset

sizes are associated with over-fitting.
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Figure 5.8: Relationship between Training Set Size and the Difference between Training

and Test Accuracy

Other aspects of the methodology could also explain the over-fitting. Looking again at

Figure 5.8, Articles 10, 14 and 13 had the three highest differences for those Articles above

the threshold. A potential reason for this is that they all have the same classification

algorithm, QDA. None of the remaining Articles, above the threshold, use this classifier

and they have a smaller difference in comparison. Hence, the properties of a QDA, such

as that it uses a quadratic decision boundary, may be contributing to the over-fitting for

these Articles (Pedregosa et al. 2011).
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Chapter 6

Conclusion

Given the results of the models, it is unlikely that the ECHR would use the models to

make judgements. Using a realistic data set, the models achieved a weighted average of

68.83%. This is the best estimation of how well the models would predict the outcome of

potential violations. Hence, it is estimated that if the models are used by the ECHR over

30% of rulings on human rights violations would be incorrect. Looking at the models’

recall showed use that the incorrect predictions were mostly due to false negatives or,

in other words, violations being predicted as non-violations. Hence, if the models were

used by the Court many human rights violations would go unpunished. Additionally,

in some cases, States would be falsely accused of violations. This would have negative

consequences for the Court’s reputation.

As discussed, this does not mean the models cannot still be a useful tool. The models

could provide an indication of which applications in the backlog should be prioritised. In

this sense, the study has contributed towards solving the problem of a large application

backlog as the applications would be addressed in a more efficient order. Unfortunately,

this does not reduce the burden on the Court in terms of how many judgements it would

have to make. This is because judgements would have to be made for all applications

regardless of their priority. In other words, it would take the same amount of time to

address the application backlog regardless of what order the applications are in. Ulti-

mately, the research conducted is not enough to solve the research problem. Nonetheless,

the study has made some contributions towards this area of research.

6.1 Contributions

As far as we could tell, the first realistic test set has been used to determine the accuracy

of the models. This provided the first realistic estimate of how well machine learning al-

gorithms can predict the outcome of judgments made by the ECHR. This is an important

baseline that the results of future work can be compared to. An additional baseline, the
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accuracy achieved by a heuristic, was also provided. The heuristic was to always predict

the outcome that was the most common outcome in the past. Again, this is the first

instance of such a baseline being provided. It is important to include as it puts model

results in perspective.

More data for the ECHR was obtained than in previous studies. This includes both

Judgments as well as other documents available from the Court. This was the first study

to incorporate the additional documents, besides Judgments, into the machine learning

models. This was done by creating the echr2vec embedding. Textual features created

using this embedding produced the highest cross-validation accuracy for 5 of the 12

Articles. Additionally, the same textual features produced the highest cross-validation

accuracy on average across all 12 Articles. Hence, within the context of this study, the

echr2vec embedding seems to have improved the accuracy of the models. Additionally,

such an embedding could be used in other applications that would benefit the ECHR.

For example, it could be used to aid legal search.

Lastly, a new tool, auto-sklearn, was used for classification model and hyper-parameter

selection. This allowed for a wider range of models and parameters to be tested than

tested in previous papers. Using this package, the algorithms found to maximise cross-

validation accuracy differed from previous studies. In other words, using the package

has likely increased cross-validation accuracy. This suggests that it was necessary to

apply different algorithms to the problem, than previously applied, to improve accuracy.

Ultimately, researches can use the algorithms found in this study as a basis for algorithm

selection in future work.

44



Chapter 7

Limitations and Future Work

The over-fitting present in the results was discussed in depth in the Results and Discussion

chapter. Factors that potentially contributed to the over-fitting were discussed. These

include the small datasets for certain Articles and the type of classification algorithm

chosen by the auto-sklearn package. It is difficult to determine the precise cause and

additional experiments could be performed to gain a better understanding. For example,

for a given Article, the about of data used to train models could be varied and the

resulting differences between cross-validation and test accuracy could be measured. A

negative relationship would provide more evidence that small datasets lead to over-fitting.

Ultimately, the effect of over-fitting should be considered in future work. It also highlights

the necessity for test sets as cross-validation accuracy can potentially be overstating the

accuracy of the models.

Another limitation is that only the final cross-validation accuracies were used to com-

pare classification algorithms. This is opposed to considering the accuracy on individual

folds which could be used to create confidence intervals around the cross-validation ac-

curacies. This would give an indication of whether the difference in cross-validation

accuracy for each classifier was statistically significant. In other words, by only compar-

ing cross-validation accuracy we do not take into account the variation in accuracy on the

individual folds. The same can be said about the comparison of the hyper-parameters

such as the Feature Type. This limitation follows from a limitation of the auto-sklearn

package where the fold accuracies are only calculated internally. Hence, in future work,

it may be better to use grid search to test different hyper-parameters and algorithms.

This way the cross-validation fold accuracies would be available. This comes at the cost

of having to select classification algorithms and associated hyper-parameters to be tested

beforehand.

On a similar note, only the algorithms that produced the best cross-validation accu-

racy were presented. For instance, we saw that a random forest classifier produced the

highest accuracy for Article 3. This is because of the way the auto-sklearn package was

used. The package was requested to return the results from only the model with the
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greatest cross-validation accuracy. In hindsight, this was not the best way to use the

package. In future work, it would be better to return the results for all the algorithms

tested. Firstly, this would have allowed us to determine how much the cross-validation

accuracy for the best algorithm compared to the rest. Secondly, it would have also been

possible to determine how well each algorithm performed across all the Articles. In other

words, it could have been possible determined how well each algorithm performed in

general. This would have provided valuable insight for future work.

A final drawback relating to auto-sklearn is that the package does not allow you to test

all possible classification algorithms. It is confined to the 15 algorithms selected by Feurer

et al. (2015). In the future, additional algorithms could be tested. Specifically, a CNN has

been shown to perform well on other text classification tasks. These included sentiment

analysis of movie reviews and classifying questions by their type (Kim 2014). This could

be done using the Keras implementation of a 1D CNN network with an embedding layer

(Chollet et al. 2015). Additionally, this would provide an alternative approach to using

the different word embeddings that does not involve averaging the embeddings. The

average word embeddings showed some promising results but information, such as word

order, is lost through averaging. Ultimately, by using an embedding layer the individual

word embeddings are considered which could improve the model’s accuracy. That being

said, the accuracy is not the only aspect of the models that could be improved.

The models constructed in this study provided only the final predictions for each

Judgment. They did not provide any indication of how predictions are made. In reality,

Judges have to justify their decisions and so they would not be able to rely on a model

that gives only a final prediction. In future work, this is an aspect of the models that

should be considered. Models that provide information on how predictions are made

would likely be more useful to judges. The judge would be able to use the prediction was

after confirming that the reasons for the prediction are correct. Additionally, even if the

model is not used to make the final judgement, it could still be used to aid the judges

decision making. For example, suppose the model could determine the laws that apply

and have led to a verdict. The judge could use this information in constructing their own

arguments for the verdict. Such a model would undoubtedly be more complex than the

current approach. A simpler initial step could be to analyse the weights of the models. For

instance, for the models that used N-gram features, the weights for the N-gram features

can be analysed. N-grams with positive weights are associated with violations and those

with negative weights are associated with non-violations. The greater the weight the

greater effect the particular N-gram has on the prediction. Hence, by analysing the

weights we can understand which N-grams are important in making predictions.

The next two limitations consider the documents used to construct machine learning

models. Firstly, only Judgments of a specific structure are used. That is only Judgments

that had both the circumstances and relevant sections. This means the models were not
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constructed using all available Judgments. Training the models on fewer data could have

a negative effect on the model’s accuracy. An additional downside is that the subset of

Judgments, used to train models, is not necessarily representative of all Judgments. This

is not something considered in previous studies but it should be considered in future work.

It may be better to only consider the facts section as a whole and not the two individual

subsections. This is because, we saw in the Methodology, that a larger proportion of the

Judgments would be considered.

Another consideration is that the Judgment documents are only produced after the

final judgement has been made. Consequently, they would not be available to make

predictions before a Judgment has been made. The sections of the Judgment, needed for

the models, would have to be drafted before a prediction is made. A better alternative

would be to construct a model using the documents provided by the individual or State

when making an application. Firstly, these documents are available before the judgement

is made. Consequently, there will be no issue of data leakage when constructing models.

Additionally, would be less of an administrative burden on the Court as the documents

could be taken as is without any processing. However, these documents are not publicly

available. Hence, in future work, if these documents were to be used the researcher would

likely have to collaborate with the Court.

The final limitation is that not all judicial decisions made by the ECHR are being

predicted by the models. Only judgements are being predicted. The procedure of the

Court was covered in the Background chapter. There we saw that the application must

be deemed admissible before a judgement can be made. If an application is deemed

inadmissible it is said to be have been decided by ”decision”. As these models were

trained to predict the outcome of Judgments they can only be used in the final stage

of the application process. In the Background section, we saw that the majority of the

applications do not make it to this stage. In 2018, 94% of all applications were decided

by decision. This suggests that, to address the backlog of applications, it may be better

to construct models that predict the outcome of decisions. At this point, no study could

be found that aimed to predict the decisions of the ECHR and so it is potentially an

important area for future work.
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Appendix

Additional Tables

Article
Training

Accuracy

Test

Accuracy

Test

Precison

Test

Recall

Heuristic

Accuracy

Article 2 0.8553 0.803 1.0 0.7759 0.8788

Article 3 0.7612 0.7376 0.9485 0.7371 0.8663

Article 5 0.7319 0.6774 0.95 0.6786 0.9032

Article 6 0.7609 0.6773 0.9677 0.666 0.9059

Article 7 0.8438 0.6667 0.6 0.75 0.5556

Article 8 0.7325 0.7073 0.9385 0.6559 0.7561

Article 9 0.875 0.5714 1.0 0.4 0.7143

Article 10 0.7229 0.4576 0.8421 0.3556 0.7627

Article 11 0.9348 0.7059 0.8462 0.7857 0.8235

Article 13 0.8168 0.7114 0.9439 0.7319 0.9262

Article 14 0.8352 0.675 0.6522 0.75 0.5

Article 18 1.0 0.6667 0.5 1.0 0.6667

Table 1: Model Results for Each Article
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