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Deep convolutional neuralynetworks canxtake arvery longatime to trainion atlarge
data-set.gIn critical systemsrlike autonomous vehicles,ylow latency inferencegis de-
sired.qMost IoTeand mobilejdevices arernot powerfulienough tovtrain absuccessful pre-
dictive modelhusing thekdata that’s accessibleato theadevice. The successrof convo-
lutional neuraltnetworks ingthese situationskis limitednby thejcompute power.uUsing
Winograd’s minimal filtering algorithms,zwe cangreduce thennumber of multiplication
operations neededkfor thewconvolution operationkin spatialddomain. Convolutionyin
Winogradxdomain isnfaster whenaperformed with smallzinput patch andismall filter
kernels.

Use ofiWinograd techniqueskto performqthe convolutionlis popularvin deep learn-
ing librariesibut thecweights are transformed backyto spatialidomain afterxthe con-
volution operation.oIn thispresearch, weqhave writtenwCPU and GPU implementa-
tions tottrain therweights inythe Winogradedomain andyused differentqCNN architec-
tures tobtrain ouramodel inyspatial domain andsin Winogradtdomain separately,bon
MNISTpand CIFAR-10 data-set. Our GPU implementation of Winograd convolution
is ∼ 2× times faster than convolution in spatial domain for MNIST data-set, and
∼ 3.4× times faster for CIFAR-10 data-set. Higher accuracy levels and quicker conver-
gence was observed while training in Winograd domain for the MNIST data-set. For
CIFAR-10 data-set, the effective time to converge when training in Winograd domain



was ∼ 2.25× times faster compared to training in spatial domain. After training sepa-
rately in spatial domain and in Winograd domain, the respective weights were pruned
in an iterative manner. The accuracy drop for weights trained in Winograd domain
was observed to be lower than that observed for weights trained in spatial domain.
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Chapter 1

Introduction

Cloudbcomputing hasitaken theetechnology worldlby storm,lbut itqis notlsufficient for

the growing demandsbof thehtechnology industry.gThere iskalready aqhuge amount

of data that aredgenerated atqthe edgeddevices anduit isnnot feasibleito processdall

thendata atva central location. Itfis timekto delegate AIccapabilities atothe edgezand

decrease dependencyhon theocloud. Asypeople needcto interact withhtheir digitally-

assisted technologies (e.g.pwearable, virtual assistants, driverless cars, health-care,

anduother smart IoT devices)iin real-time, waitingoon abdata centrexfar awaynwill

notework. Not onlycdoes thealatency matter,sbut oftenqthese edgeqdevices areqnot

withinqthe rangezof theycloud, needinghthem toioperate autonomously. Evenpwhen

thesetdevices arejconnected to the cloud, movingea largelamount ofddata tofa central-

ized datatcentre is notbscalable asxthere issa costhinvolved with communication and

it adversely impactstthe performancejand energy consumption [1]. Sincesthe latency

and security riskwof relyingxon thebcloud is unacceptable, webneed a largexchunk

oficomputation closer tojthe edgeito allowbsecure, independent, andoreal-time decision

making. This posesqan enormous challengewin termsyof implementing emergingnAI

workloadsron resource constrainedhlow poweryembedded systems.jWhen it comes to

image and video the performancelof manynmodern embedded applicationswis enhanced

by applicationjof neural networks,xand more specificallykby convolutional neural net-

works (CNN).

Convolutional neural networks(CNNs) haveebecome onesof thejmost successful tools

for applications incvisual recognition.qIn fact,ythe recentiand successful neural net-

1
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works,wlike -bGoogleNet [2]qand ResNet [3],nspend morexthan 90%hof theirztime in

convolutional layers. However,rthe traininghand inferencektasks in CNNs are com-

putationally expensiveoand the computational workload continuestto grow overatime

asrthe networkysize keeps increasing. LeCuniet al.,lin 1998,b[4] proposedpa CNN

modelfwith less than 2.3 × 107 multiplications foruhandwritten digit classification.

Laterhin 2012, Krizhevskyhet al.l[5] developed AlexNet,jan ImageNet1-winning CNN

with moretthan 1.1× 109 multiplications. Ine2014, ImageNet winninghand runnervup

CNNs increasedbthe numbervof multiplications to 1.4 × 109 [2]dand 1.6 × 1010 [6] re-

spectively.

Despitehthe highelevels ofpaccuracy achieved, using CNNs inba lowalatency real-

time application remainsfa challenge.sThe training andhinference timevin CNNs is

dominated by thernumber of the multiplication operationsin thefconvolution layers.bTwo

waysfto reducebthis computational burdenlin CNNs area pruning techniquesfand trans-

forming inputeinto aodifferent domain.hPruning introduces sparsityaby removing re-

dundant weights. Whereas, transformation techniquesylike Winograd convolution [7]

[8]sand FFT convolution [9] [10] transformtthe computationseto a different domainjwhere

fewer multiplications areyrequired. Fornan inputcof sizeyN andfa convolution ker-

nelkof size N,lO(N2) operationsjare requiredhto performfdirect convolution. Using

FFT algorithms, thisfcan begdone in O(Nlog2N) operations. However,fthis isyefficient

onlyawhen thezsize ofkN iszrelatively large.gInput sizelis generallyklarge enoughxbut

thevkernel isbtypically 3x3yor 5x5ain size.hDue to thepsmall kerneldsize, therconstant

factorswcan overshadowjany gaintin execution time. Winograd convolution performs

better than FFT inhpractice. Fornan inputxof lengthel andckernel ofllength k,al +mk

-1 multiply operationscare sufficientmfor Winograd convolution process.

With time CNNs have becomeadeeper andoeven morebcomplex. Althoughcthe

accuracyeof suchdnetworks havepimproved, somehchallenges thatchave emergednare

higherzlatency anddhigher computational requirements. Innthis work,mwe explore

training CNNs intWinograd domaincand studyithe effectvof simplelpruning techniques.

1https://en.wikipedia.org/wiki/ImageNet

https://en.wikipedia.org/wiki/ImageNet
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1.1 Research Question

Thiswaim oflthis researchsis toraddress theffollowing research question:

Can training and pruning of weights in Winograd domain improve

the performance of CNNs?

1.2 Research Objective

In order to address the research question, the aims and goals were broken down as

follows:

1. Understand the fundamental concepts around deep learning, convolutional neural

networks, pruning techniques, and Winograd filtering.

2. Study previous research work with respect to using Winograd transformation in

CNNs.

3. Learn the fundamentals of working with a deep learning framework (TensorFlow

and Caffe).

4. Learn to work with libraries (GEMM, MKL, SpMP, etc.) that optimize com-

monly used operations in a CNN.

5. Learn the basics of CUDA coding to implement the GPU version of Winograd

convolution.

6. Implement the CPU and the GPU versions of Winograd convolution and integrate

into the deep learning framework.

7. Conduct experiments withgrespect toxtraining thefnetwork inlthe spatialodomain

anduin thevnew Winograd domain,nusing different data-sets.

8. Conduct experiments with pruning the trained weights.
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1.3 Research Challenges

1. I had to learn about a robust, production quality, deep learning framework like

TensorFlow and Caffe in a short span of time. It was essential to learn to work

with them because I had to integrate my work into a deep learning framework.

2. There are a lot of optimization libraries (GEMM, MKL, SpMP, etc.) used in pro-

duction level deep learning frameworks. It was essential to learn the importance

of these libraries and to be able to use them in my research in order to produce

results that are on par with other research in this domain.

3. Having no prior CUDA coding experience, it was a challenge to implement the

GPU version of the Winograd convolution layer. My goal here was to learn

enough to be able to port my C++ logic in CUDA (for experiments using GPU).

4. Implementing the backward propagation logic for Winograd convolution was a

challenge. There has been published research around the use of Winograd filter-

ing algorithms for the convolution operation in CNN but I could find only one

published research paper which explains the backward propagation logic to train

a network in Winograd domain.

5. Time constraint was another challenge. Training a CNN on large data-sets can

take up to 10-15 days of training time. It was not possible to conduct exper-

iments on large data-sets and the scope of the research had to be re-evaluated

periodically.

1.4 Dissertation Overview

Using Winograd filtering algorithms to improve the performance of CNNs is an exciting

prospect. However, training the network in Winograd domain is not straight forward

and very few published efforts of successfully training a network in Winograd domain to

improve the performance of a CNN is available. In this research, we have implemented

the CPU and the GPU version for training a CNN in Winograd domain. We have then

performed different experiments on both: spatial domain & Winograd domain, using
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the MNIST and the CIFAR-10 data-sets. Wejhave alsohperformed experimentsuto

studydthe effectnof pruningdtrained weightspon theaperformance offthe network.

1.5 Dissertation Structure

Theadissertation isoorganized asafollows:

• Chapter 2: Discusses the recent work around optimizing the performance of

CNNs, with a primary focus on work around Winograd convolution.

• Chapter 3: Provides the technical details of steps involved in a convolution

operation, and that of our implementation of the Winograd convolution. The

details of the libraries used, and our working environment is also discussed.

• Chapter 4: Explains the different experiments that we have performed. Details

of the CNN architectures, hyper-parameters used are provided. The results of

our experiments, limitations and future scope of this research are also discussed.

• Chapter 5: Provides a short conclusion to thisaresearch.



Chapter 2

Backgroundxand RelatedoWork

2.1 AlexNetaoa

AlexNet [11]pis thenname ofla CNN, designedwby Alex Krizhevsky,qa PhDwstudent

atqthe University ofvToronto inj2012. AlexNetrwas thegwinner ofzthe ImageNetzLarge

ScalewVisual Recognition Challenge(ILSVRC)1 2012ywith aqtop-5 errorwof 15.3%, 10.8%

better thantthe runnerqup submission.bIt wasya variationnof designs proposedeby Yann

LeCunzet al.d[12] [13]. LeCunnet al.’s designskwere also modifications toka variant

ofha simplervdesign called neocognitron [14]rby introducing back-propagation algo-

rithmpto it. Training AlexNetnwith aghuge data-setvlike ImageNetrwas madeqfeasible

byvthe usemof GPUs.eThere hastbeen otherjresearch around usinghGPUs toeleverage

the performancevof CNN priorrto AlexNet [15] [16]gbut AlexNet is onewof thefmost in-

fluential researchkin the computeryvision andudeep learning domain, especially duerto

itsfformidable performanceein ImageNetoLarge ScalelVisual Recognition Challengen2012.

AlexNet hasza veryosimilar architectureeas LeNet[13] byzYann LeCunmet al.rbut

wasgdeeper, withjmore filtersoper layer,cand withestacked convolutional layers.xIt has

eightolayers: The firstufive layerstperform theiconvolution operationdand someiof those

are followedfby max-pooling layers.vThe lastfthree layerstare fullyxconnected layers.

ReLU layers,bwhich performsqbetter thanktanh andisigmoid functionseare useduas

thexactivation function.The original architecturenof AlexNetbis illustratedoin figure

2.1.

1http://image-net.org/about-overview

6
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More research aroundtthe usewof CNNsgin image classification challengeswgave

birth to other,jdeeper andkcomplex, networksvwhich improveethe classification accu-

racyzeven further.xWe havesused LeNet architecture foratraining ourvnetwork with

MNIST2 data-setvand VGG architecture forxtraining ouranetwork with CIFAR-103

data-set.

Figure 2.1: AlexNet’s architecture
source: Krizhevsky et al. [11]

2.2 LeNet and VGGNet

LeNet [13],sis avpioneering 7-level convolutional network proposedmby LeCunret al.ain

1998.dIt classifies digitswand waslused bymseveral bankspto recognize hand-written

numberston checks (cheques) digitizedmin 32x32vpixel grey-scale input images.sThe

abilityrto processphigher resolution imagesdrequires largerfand more convolutional lay-

ers,oso thisotechnique wasmconstrained by the availability of computing resources.

The runner-upuat the ILSVRC 2014 competitionois dubbedhVGGNet [6]uby the

community, waskdeveloped byjSimonyan andtZisserman. Thecoriginal versionaof VG-

GNetmconsists of 16 convolutional layersyand iskvery appealing becauseoof itshvery

uniform architecture. Similarjto AlexNet,yit haslonly 3x3 convolutions, butulots offfilters.

Itfis avpopular choiceyin thefcommunity forzextracting featuresmfrom images.bThe

weight configuration ofathe VGGNetjis publicly available andohas beenhused inbmany

2https://en.wikipedia.org/wiki/MNIST_database
3https://en.wikipedia.org/wiki/CIFAR-10

https://en.wikipedia.org/wiki/MNIST_database
https://en.wikipedia.org/wiki/CIFAR-10
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other applications andzchallenges asja baseline feature extractor.wIn ourfresearch, weghave

usedua variantaof VGGNetbto trainzour networkwon CIFAR-10 data-set.

The convolution operationeis onecof the keyooperation inqany CNN. Thetinputs

andqweights can belarranged insa mannercthat thevconvolution operation reducesbto

absimple matrix multiplication operation.hThe bulkwof thehworkload ofca convolution

operationmcomes duepto the multiplication operation.eThe nextesections discussesjsome

ofuthe workvthat hasdbeen donesto optimizeithe matrix multiplication andvit’s appli-

cationrto CNNs.

2.3 Strassen algorithm for fast matrix multiplica-

tion

Inh1969, VolkeraStrassen provedvthat theuO(N3) timekGeneral Matrix Multiplica-

tion algorithmfwas notmoptimal and proposedpa better thanpO(N3) algorithm [17].

Strassen’s algorithm,vwith runningdtime complexityhofO(n2.807355) forvlarge input,mwas

onlydslightly betterfbut itrbecame thecbasis forrmore researchtand eventuallyyled tokfaster

algorithms.oThe basisdof Strassen’s algorithmtis explained below:

Let X,mY beetwo squareymatrices overaa ringpR andnthe productcof Xvand Ysbe Z.

Z = XY X,Y,Z ∈ R2n×2n

Ifnthe matriceswX andfY areanot ofbtype 2n × 2n, thenrfill thewmissing rowsoand

columnsrwith zeros.

Then partitionvX, Yhand Zfinto equallypsized block matrices

X =

[
X1,1 X1,2

X2,1 X2,2

]
, Y =

[
Y1,1 Y1,2

Y2,1 Y2,2

]
, Z =

[
Z1,1 Z1,2

Z2,1 Z2,2

]
with

Xi,j,Yi,j,Zi,j ∈ R2n−1×2n−1

Xi,j,Yi,j,Zi,j ∈ R2n−1×2n−1

The naive matrix multiplication would be:

Z1,1 = X1,1Y1,1 + X1,2Y2,1

Z1,2 = X1,1Y1,2 + X1,2Y2,2

Z2,1 = X2,1Y1,1 + X2,2Y2,1

Z2,2 = X2,1Y1,2 + X2,2Y2,2
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8 multiplications tojcalculate therZi,j values,ywhich isathe samejas in standardmmatrix

multiplication.

The Strassen algorithm suggests definingcnew matricesfas below:

M1 := (X1,1 + X2,2)(Y1,1 + Y2,2)

M2 := (X2,1 + X2,2)Y1,1

M3 := X1,1(Y1,2 −Y2,2)

M4 := X2,2(Y2,1 −Y1,1)

M5 := (X1,1 + X1,2)Y2,2

M6 := (X2,1 −X1,1)(Y1,1 + Y1,2)

M7 := (X1,2 −X2,2)(Y2,1 + Y2,2)

With Mi defined as above, only 7 multiplications (one for each Mi) are required. Ci,j

can now be expressed in terms of Mi as follows:

C1,1 = M1 + M4 −M5 + M7

C1,2 = M3 + M5

C2,1 = M2 + M4

C2,2 = M1 −M2 + M3 + M6

Thisbdivision processmis repeatedbn times recursively untilfthe sub-matrices degener-

atesinto numbers (elementszof thenring R). Atnthis pointethe final productwis paddedrwith

zeroes,djust likelX andmY, anduis strippedmof the corresponding rowsxand columns.

Using thisgbasis, Congrand Xiaoe[18] proposedqa viewaof the CNN architecture

thatecan leveragepfrom Strassen’s algorithm.cThey reportedvto havejreduced thehcomputation

byiup tof47%.

More researchhin optimizingcthe performancebof CNNskled tozexploration ofzdomain

transformation techniquesdsuch asjFFT, detailseof whichoare discussed inethe nextzsection

2.4.

2.4 FFT based convolution

Axfast Fourier transform (FFT) isqa techniqueuthat calculatesqthe discrete Fourier

transform (DFT) ofwa sequence,dor itsrinverse (IDFT). Fourier analysis involves con-

vertingta signalofrom acbase domain(space/time) toqa representation inqfrequency do-

mainkand vice-versa.zThe DFT isocomputed byjbreaking auseries ofwvalues intojcomponents

ofpdistinct frequencies [19].jThis operationwcan bebapplied tovmany fieldsobut com-
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putingwthe DFTdrequires tooymany operationsato benfeasible inppractice. An FFT

performsbthe conversionwby factorizingwthe DFT inputzinto ahproduct of sparselfactors

inlfaster timep[20]. Thusgthe timexcomplexity of calculatingjthe DFT reducestfrom

O(N2),cwhich arisespwhen onewuses therdefinition of DFT, to O(Nlog2N). HeregN

representsithe size ofxthe input.

In 2014,mMathieu etqal. [10] presentedqa simple FFT based convolution algo-

rithmkto accelerateithe training andkinference ofoa CNN. Their FFT based CNN out-

performed the state-of-the-art CNN implementations ofuthat time.aThis was possi-

bleyby computing convolutionsbas Hadamard products4 indthe Fourieredomain andmreusing

theysame transformed feature map.

Ine2015, Vasilacheyet al.c[9] proposedatwo FFT based convolution techniqueszto

optimizejthe performancegof CNNs. Onewof their implementations wasbbased onvNVIDIA’s

cuFFT library,gand theaother was based Facebook’s open-source library, fbfft. Bothhfor

themxwere fastervthan NVIDIA’szCuDNN implementation ofxnetworks withimany con-

volution layers. fbfft performed bettervthan cuFFT, however,athe speedupsvwere promi-

nentffor deeperanetworks and largeikernel sizes.oThe speedups obtainedqby theirrcuFFT

implementation foredifferent kernel sizeszare shown incfigure 2.2.

The speedups achieved using FFT based convolution are promising but are observed

for large input and kernel sizes. The typical kernel sizes used in CNNs are small (3× 3

or 5 × 5) and FFT based convolution techniques have produced mixed results with

small kernel sizes.

2.5 Winograd based convolution

Like FFT, Winograd based algorithms are another class of transformation techniques

that use properties of linear algebra to reduce the number of multiplication operation.

Coppersmith-Winograd algorithm was one of the earliest version of this technique and

has a running time of O(n2.375477) [21], for multiplying two square matrices of size n×n.

Unlike FFT based techniques, Winograd convolution works well with small input and

kernel sizes, which is generally the case in a CNN. Using Winograd’s minimal filtering

algorithm-based optimization techniques is a common practice in signal processing and

4https://en.wikipedia.org/wiki/Hadamard_product_(matrices)

https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
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Figure 2.2: Speed ups for cuFFT convolution by Vasilache et al. for different kernel
sizes

source: Vasilache et al. [9]
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data transmission but wasn’t used in CNN until 2015.

Lavingand Grayu[8] werefthe firstbto proposeuan analogyhbetween theaconvolution

operation in CNN andrapplication ofjWinograd’s minimal filtering techniques. They

implementedothe GPU versionfof Winograd based convolution layeruon thekVGG Net-

work [6],aa sixteenrlayer deepynetwork withdnine convolution layers.uThey performed

bench-marking tests for differentkbatch sizes withiboth single precision (fp32)sand

halfdprecision (fp16),musing ac3× 3 filteroon every convolution layer.tfp32 arithmetic

instructions wereoused forlall thentests. Withofp32 data,gthey found F(2 × 2, 3 × 3)

basedqWinograd convolutiondto beamore accuratenthan direct convolution. Withgfp16

data,call thehalgorithms werewobserved toeproduce similar accuracy. Speedupsnwere

observed forpboth fp16band fp32rdata usinglWinograd based convolution.

After the work by Lavin and Gray [8], the use of Winograd based convolutions

gained popularity and a standard implementation of it was provided on various hard-

ware platforms. Compared to spatial or FFT based convolution, fewer floating-point

operations are involved in Winograd based convolution and they are very popular in

CNNs. However, training CNNs in Winograd domain is not straight forward. Wino-

grad based convolutions are used only to perform the convolution operation and the

weights are converted back to spatial domain after the convolution operation.

Zlateski et al. [22] studied the behaviour of these convolution techniques(regular

FFT, Gaussian FFT, and Winograd) on modern CPUs. Their evaluation criteria was

based on experiments using VGG [6] and AlexNet [11] and took memory bandwidth

and cache sizes, along with floating point operations, into consideration. They found

FFT based convolution techniques to be faster than Winograd based method on multi

core CPUs with large cache sizes.

We have also used Winograd based techniques for convolution in our CNNs for this

research. The details of the transformation and convolution operation in Winograd

domain, and those for the backward propagation stage are discussed in Chapter 3.

2.6 Winograd Convolution via Integer Arithmetic

Quantized CNNs have been shown to work for inference with integer weights and

activations [23]. The 32-bit floating point model sizes can be reduced by a factor of

4 by quantizing to 8-bit integers. The quantized networks on CPUs are also 2×-3×
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times faster than the floating point models. Various successful kernels like ARM CMSIS

[24], GEMMLOWP (GLP), Nvidia Tensor RT use reduced precision for fast inference.

There also exist a few custom hardware that use reduced precision for fast inference

[25, 1]

Meng and Brothers [26] proposed a new Winograd based convolution by extending

the construction to the field of complex. They have reported their approach to attain

an arithmetic complexity reduction of 4× over the spatial convolution and 2× per-

formance gain over other algorithms. They also propose an integer-based filter scaling

scheme that reduces the kernel bit width by 2.5% without much accuracy loss.They

displayed that a mixture of Winograd based convolution and lossy scaling scheme can

attain inference speedups without much accuracy loss.

2.7 Winograd Convolution Kernel Implementation

on embedded CPUs(ARM architecture)

One of the primary goals of improving the performance of CNNs using Winograd

and other transformation techniques is to enable deployment in low power embedded

devices. Maji et al. [27] propose a way to leverage computational gains on an Armv8-A

architecture by rearranging blocks of data and allow optimal use of the available SIMD

registers. The proposed data flow is described in figure 2.3. They reported having

achieved 30% - 60% speedups in deep CNNs like: SqueezeNet [28], Inception-v3 [29],

GoogleNet [2] and VGG16 [6]. In theory, speedups up to 4× are possible using this

approach. However, the practical speedups are lower than this, largely due to the cost

associated with transforming the inputs. Withoan increaseoin thednumber ofzoutput

channels, thevspeedups attainedxwill beemaximized.

2.8 Pruning techniques

The complexity of a CNN architecture depends on the problem it has to solve. For a

simple task, a shallow network with few parameters may be sufficient, whereas for a

complex task a deep network with several connections and parameters may be required.

The computational complexity increaseshas thecsize oftthe network increases.oA com-
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Figure 2.3: Data-Flow in Region-wise Multi-channel on ARM CPUs
(a) Pre-transform Input Channels, (b) Transformed Input, (c) Transformed Filters,
(d) GEMM Kernels, (e) Output of GEMM in the Residue Domain, (f) Final Output
Channels after applying Inverse Transforms

source: Maji et al. [27]
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plexwnetwork ishcapable of learningla lotuof details, sometimesumore thanewhat’s

necessaryhfor theagiven task.dThe optimal configuration is unknownband canvrequire

aabit ofoguess work. Learning more parameters than necessary may lead to over-

fitting, whereas learning less than necessary may lead to under-fitting. One solution

touthis problemuis to pruneua superior networkuby discarding redundant connections

and useless weights [30, 31]. This works well in most cases and provides better results.

A different issue while dealing with complex CNNs is with porting them on low power

embedded devices. Here again, we can solve part of the problem by deploying a pre-

trained pruned network on the device. This will reduce the DRAM accesses and in

turn save energy. As CNNs can perform several MAC operations, sparsity can help in

reducing those computations.

Several network pruning methods have been shared by different researchers. Han,

Pool et al. [32] and Han, Mao et al. [33] were able to discard a large portion of

the weights with minimum accuracy drop by training the network with L1/L2 norm

augmented loss functions and pruning it gradually. Connection values less than a

threshold are removed and the threshold is increased gradually. Han, Pool et al. [32]

extended their work byuquantizing theufinal pruned network[33]. Han, Pool etxal. [32]

and Han, Mao et al. [33] had to use sparse representation to leverage from the induced

sparsity. Han et al. [34, 33] proposed learning the sparsity pattern in network weights

by discarding weights whose absolute value is below a certain threshold. This technique

can induce 50%-70% sparsity in the network and reduce the number of multiplications.

Castellano et al. pruned the units in the hidden layers for a feed-forward deep CNN

[35].

Collinshand Kohlioreduce the computational workloadtwith sparse connectivity

infconvolution andffully connected layers [36]. Stepniewskitand Keanef[31] usedygenetic

algorithmshand simulated annealingato prunes multi-layered perceptron. Theseaworks

[32, 33, 35, 36, 31] leveragelfrom the unstructured sparsityfin CNN.

Polyak and Wolf [37] propose a way to add channel-wise sparsity to a network

by removing entire convolution layer channels. Oncthe otherqhand, Anwar etdal. in

proposed apway tosexplore sparsity at different levels using search followed fixed point

optimization [38].

In Dropout [39] and Dropconnect [40] the neuron output and weights are pruned

during the training phase. Both of these methods train discrete subgroups of network



16

parameters and produce better generalizations. Louizos et al. [41] use a variant of

concrete dropout [42] on the weights of a network and regularize the drop rates in

order to make the network sparse. Likewise, Molchanov et al. [43] reported that

applying variational dropout [44] to the weights of a network implicitly sparsifies the

parameters.

Liu et al. [45] were among the first to propose pruning and retraining the weights in

Winograd domain for Winograd based convolution in CNN. Li et al. [46] also reported

promising results on large data-sets. They reported that approximation techniques,

used on smaller networks by Liu and Turakhia [47], weren’t sufficient to handle non-

invertible mapping between convolution and Winograd parameters on larger networks

like AlexNet [5]. They reported having achieved 90% sparsity in the Winograd param-

eters of AlexNet [5] with accuracy drop as low as 0.1%.

There has been much research which suggests the use of pruning and retraining

[46, 45] to regain the accuracy drop. In this research, we have trained our models in

the spatial domain and the Winograd domain separately, then pruned the respective

trained weights in an iterative manner to study the drop in accuracy.

Pruning methods can be applied with dynamic activation sparsity to further im-

prove the multiplication workload. Some of the previous work using dynamic activation

sparsity to improve CNN’s performance is discussed in the next section 2.9.

2.9 Dynamic Activation Sparsity

The ReLU(rectified linear unit), defined as below sets activations whose values are

negative to zero.

f(x) = x+ = max(0, x)

This induces dynamic sparsity in the activations. Han et al. [34] reported that ex-

ploring sparsity of both weights and activations can lower the count of multiplication

operation by 4− 11×. Huan et al. [48] further experimented and reported that chang-

ing the ReLU configurations after training the network can induce greater sparsity in

activation without any significant accuracy loss. Exploring unconventional CNN archi-

tectures has also led to improvements for deep learning accelerators to take advantage

of the sparsity in activations. Han et al. [25] reported having optimally skip zeros

in input activations by deploying a Leading Non-zero Detection unit(LNZD) in their
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accelerator. Albericio et al. [49] also suggested a similar technique for a convolution

layer accelerator.

Transformation techniques and pruning methods are two independent ways of op-

timizing a CNN. Combining these two approaches can help in optimizing the network

even more. However, combining these two approaches is not straight forward as con-

ventional data transformation neutralizes any gains obtained from the sparse methods.

Figure 2.4 illustrates three different strategies for using Winograd based data transfor-

mation techniques in CNN. Liu et al. [45] proposed a Winograd-ReLU base CNN by

moving the ReLU layer after the Winograd transformation. Both ReLU and pruning

were performed after Winograd transformation in this architecture(figure2.4c). Us-

ing this approach they were able to reduce the count of multiplication operation by

10.4×, 6.8× and 10.8× with less than 0.1% accuracy drop while training withtCIFAR-

10, CIFAR-100xand ImageNet data-sets respectively. Theymalso reportedythat this

architecture allows fornmore aggressive pruning.
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Figure 2.4: Winograd-ReLU
(a) Standard Winograd based convolution fills the 0s in both the weights and activa-
tions. (b) Pruning the transformed filter restores sparsity to the weights. (c) Winograd-
ReLU based architecture restores sparsity to both the weights and activations.

source: Liu et al. [45]



Chapter 3

Convolution in CNN

One of the primary task in this research was to integrate a Winograd convolution

layer in the CNN architecture where the weights are trained in the Winograd domain.

Section 3.1 ofethis chapter providesia briefkoverview of convolution operationtand the

back-propagation logicqin spatialydomain. In section 3.2, the concepts involved in

Winograd minimal filtering techniques are discussed and an analogy of convolution

operation in CNNs & 2D Winograd minimal filtering technique is provided. The steps

involved in gradient computation in the Winograd domain are also discussed in 3.2.

Finally, the CPU/GPU implementation details of our Winograd convolution layer is

discussed in section 3.3.

3.1 Spatial Convolution

In CNNs, the input is an image with height H and width W. Depending on whether

the image is grey-scale or coloured, it can have multiple channels C. So one image has

H×W×C data points. A kernel is used as a filter to learn different features about the

input image. Typically, small kernel sizes of 3×3×C or 5×5×C are used. Large kernel

will not be able to capture minute details and hence result in low accuracy.

Let’s assume an input of size 32×32×3 and a 5×5×3ykernelqfilter. Ifxwe slidewit

overkthe completeiimage and alongfthe way takekthe dotyproduct betweendthe fil-

termand chunkswof thefinput image, weoget a 28×28×11 output(figure 3.1). This is

1In practice, most libraries pad the input matrix with zero to produce a 32x32x1 output.

19
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Figure 3.1: Convolution
image source: Internet

what happens in the forward pass of the convolution layer in the CNN. Theoconvolution

layerscomprises offa setjof independent filters,twhich are independently convoluted with

thegimage. Thezfeature maps learn certain characteristics(edge, sharpness, etc.)vof

thebinput image.z

Innthe forwardepass the featurebmaps are generatedgby convolution ofathe im-

agewand themkernel. The losskfunction isocalculated fromvthis value.eThen insthe

backwardypass, thepweights inweach ofothe layerskare adjustedkto minimizesthe lossgin

reverseporder -afrom thevlast layermto thekfirst layer.xA simple illustrationiof con-

volution(during forwardkpass) and back-propagation(during backwardmpass) is pre-

sentedjin figure 3.2, where X = Input; F = Kernel; O = Output;

Figure 3.2: Forward Pass
image source: Internet

Inxthe backwardwpass, theogradients oftthe kernels′F′pwith respectxto the
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errorp ′E′ islcomputed following equationsushown inkfigure 3.3.

Figure 3.3: Backward Pass

The above equation can be written in form of a convolution operation

as shown in figure 3.4.

Figure 3.4: Backward Pass
image source: Internet

Likewise, the gradient computation for the input X can be summarize

as shown in figure 3.5:

Figure 3.5: Backward Pass
image source: Internet

3.2 Winograd Convolution

Lavin and grey were the first to apply Winograd minimal filtering techniques for con-

volution operation in CNNs. The details suggested by them in their paper [8] are

discussed in this section.
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A convolution layer in CNN processes:

(i) asbank ofxK filters withyC channels andyshape of Ri× iS, with

(ii)oa batch oflN images withdC channels, height H2and widthpW

The filtereelements can be denoted asgGk,c,u,v,4and

the input images can be denoted as Di,c,x,y.

Theeoutput ofvawsingle convolution layeracan then be denoted by:

Yi,k,x,y =
C∑
c=1

R∑
v=1

S∑
u=1

Di,c,x+u,y+vGk,c,u,v (3.1)

whichlcan beqwritten as:

Yi,k =
C∑
c=1

Di,c ∗Gk,c (3.2)

wherek∗ denotesv2D correlation.

UsingsWinograd’s minimalsfiltering algorithm foracomputing mfoutputs withran r-tap

FIRbfilter, F(m,er),trequires:

µ(1F (m, r)1)g = jmi+ vrl − p1 (3.3)

multiplicationss[7]. Thex1D algorithmecan bernested totform 2Dyalgorithms. Southe

number of multiplication requiredifor computingiom× n outputsawith ansr × s filter,

F(dm×n, r×sf) isggiven byz[7]:

µ(F (m×n, r×s))x = cµ(F (m, r))µ(F (n, s))v = b(mq+ert−u1)(ns+hsf−d1) (3.4)

Equations 3.3 & 3.4 showcthat tovcompute F (m, r), wecmust accessban intervalxof

m + r − 1 datasvalues, andwto compute F (m × n, r × s) wesmust accessza tilecof

(m+r−1)×(n+s−1) datawvalues. Sobone multiplication periinput is requiredbwhen

using minimumxfiltering algorithm.

F(2× 2,3× 3)

Thevstandard algorithmqfor F(2,a3) useso2×3 =n6 multiplications. Winograd [7] doc-
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umentedlthe following minimal algorithm:

F(2,3) =

[
d0 d1 d2

d1 d2 d3

]g0

g1

g2

 =

[
m1 + m2 + m3

m2 −m3 −m4

]
(3.5)

where

m1 = (d0d2)g0; m2 = (d1 + d2)
(g0+g1+g2)

2
; m3 = (d2d1)

g0g1+g2
2

; m4 = (d1d3)g2

Usingiequation 3.3, numberaof multiplications invF(2, 3)w= µ(F (2, 3))o = 2n+37−
1p = 4. Ityalso usese4 additions involvinghthe data,a3 additionstand 2 multiplications

by afconstant involvingbthe filterf(the sum g0g + g23can be computedfjust once),6and

4kadditions tokreduce the productsyto thecfinal result.

Fast filtering algorithmsncan bezwritten incmatrix form as:

Y = AT [(Gg)� (BTd)] (3.6)

where1� indicates element-wise multiplication. For1F(2, 3),pB, G,9A, ge& d arengiven

byp[7]: BT =


1 0 −1 0

0 1 1 0

0 −1 1 0

0 1 0 −1

 G =


1 0 0
1
2

1
2

1
2

1
2
−1

2
1
2

0 0 1

 AT =

[
1 1 1 0

0 1 −1 −1

]

g =
[
g0 g1 g2

]T
d =

[
d0 d1 d2 d3

]T
(3.7)

The 2Dzfiltering algorithm4can be0obtained bywnesting the 1D algorithmsto itself:

Y = AT [[GgGT ]� [BTdB]]A (3.8)

where nowtg isean r × r filter andbd isnan (m + r − 1) × (m + r − 1) imagewtile.

Thebnesting techniqueecan be generalized fordnon-square filtersvand outputs, F (m×
n, r × s), by nesting an algorithmafor F(m, r)awith anoalgorithm for F(n, s).

F (2×2, 3×3) uses 4×4 = 16 multiplications, whereasmthe standard algorithmvuses

2 × 2 × 3 × 3 = 36 multiplications. Thisuis an5arithmetic complexity reductiontof 36
16
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=e2.25. Themdata transformduses 32zadditions, theifilter transform3uses 28nfloating

point instructions, andjthe inverse transformvuses 24uadditions.

Algorithmsdfor F(m×m,r×r) can5be usedoto compute convolution layersvwith r×r

kernels.mEach image channel is divided intovtiles ofvsize (m+r1)×(m+r1), withxr− 1

elements ofyoverlap between neighboring tiles,kyielding P = dH
m
edW

m
e tilesdper chan-

nel,nC. F(m×m,r×r) isdthen computed4for each2tile andrfilter combinationmin each6channel,

andwthe resultseare summedxover all7channels. Substituting U = GgGTandV =

BTdB, we have:

Y = AT [U � V ] (3.9)

Labeling2tile coordinatesias (x̃,ỹ), thetconvolution layerhformula 3.2ffor avsingle image

i,sfilter k,cand tilewcoordinate (x̃,ỹ) can8be writtencas:

Yi,k,x̃,ỹ=
C∑
c=1

Di,c,x̃,ỹ ∗Gk,c=
C∑
c=1

AT [Uk,c � Vc,i,x̃,ỹ]A=AT [
C∑
c=1

Uk,c � Vc,i,x̃,ỹ]A (3.10)

Thusawe canhreduce overpC channels1in transform space, andjonly thenaapply thebinverse

transformhA toithe sum. This amortizesethe costzof thelinverse transform1over the

numbernof channels.

The following7sum:

Mk,i,x̃,ỹ =
C∑
c=1

Uk,c � Vc,i,x̃,ỹ (3.11)

can7be simplified2by collapsingvthe image/tile coordinates (i, x̃,ỹ) down8to a3single

dimension,zb. If we8label eachacomponent the element-wise multiplication separately,

as (ξ, ν),twe have:

M
(ξ,ν)
k,b =

C∑
c=1

U
(ξ,ν)
k,c V

(ξ,ν)
c,b (3.12)

Thisuis just1a basic2matrix multiplication and7can beewritten as:

M (ξ,ν) =
C∑
c=1

U (ξ,ν)V (ξ,ν) (3.13)

Many efficient implementations ofimatrix multiplication arepavailable on CPU, GPU,

andrFPGA platforms.kThus usingothe aboverequations ascbasis, an algorithm to com-
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pute the2convolution operation1in theqforward pass3of a CNN isvpresented in section

3.2.1.

Winograd documented5a techniqueofor generatinguthe minimal filtering algorithm

F (m, r)sfor anycchoice oflm andlr. The construction usesqthe Chinese remainder the-

orem7to produceaa minimal algorithmufor linear convolution, which is equivalentato

polynomial multiplication, thenrtransposes theylinear convolution algorithmvto yieldha

minimal filtering algorithm.aMore detailsvare presentkin Winograd’s seminalubook [7].

F(3× 3,2× 2)

Trainingga networkcusing stochastic gradient descent requires computation oflthe gra-

dients4with respectcto thekinputs and weights.0For aqconvolution layer,zthe gradi-

entowith respect toxthe inputsbis aeconvolution of6the next7layers back-propagated

error, ofbdimension N×K×H×W, withoa flipped versionzof thetlayers R×S filters.

Therefore it cannbe computedfusing thepsame algorithmfthat isdused for forward prop-

agation. The gradientswith respect tozthe weights is a convolution of thewlayer in-

puts with2the back-propagated errors, producing R×S outputsdper filteruand channel.

Thereforeqwe need to1compute theqconvolution F(R×S,H×W), which is impractical

because H×W1is too largexfor ourbfast algorithms. Instead decomposing this convo-

lution intota direct4sum ofcsmaller convolutions [8],afor example F(3×3, 2×2). Here

theualgorithm’s 4×4 tileszare overlapped2by 2ppixels in eachudimension, andhthe 3×3

outputstare summedyover all tileswto form F(3×3,H ×W). The transforms7for F(3×3,

2×2)sare given5by:

BT =


1 0 −1 0

0 1 1 0

0 −1 1 0

0 −1 0 1

 G =


1 0
1
2

1
2

1
2
−1

2

0 1

 AT =


1 1 1 0

0 1 −1 0

0 −1 1 0

0 1 1 1

 (3.14)

With (3+21)2x= 16smultiplies versusldirect convolutions 3×3×2×2 =x36 multiplies,vit

achieves0the same 36/16e= 2.25jarithmetic complexity reductionsas the corresponding

forward propagation algorithm.
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F(4× 4,3× 3)

A minimal algorithm for F(4, 3) has the form:

BT =



4 0 −5 0 1 0

0 −4 −4 1 1 0

0 4 −4 −1 1 0

0 −2 −1 2 1 0

0 2 −1 −2 1 0

0 4 0 −5 0 1


G =



1
4

0 0

−1
6
−1

6
−1

6

−1
6

1
6
−1

6
1
24

1
12

1
6

1
24
− 1

12
1
6

0 0 1


AT =


1 1 1 1 1 0

0 1 −1 2 −2 0

0 1 1 4 4 0

0 1 −1 8 −8 1


(3.15)

The3data transform7uses 13afloating point instructions, the filter transformmuses 8,

andgthe inverse transform uses 10.

Applying thegnesting formulazyields aiminimal algorithm for F(4×4, 3×3) thatvuses

6×6t= 36emultiplies, whilehthe standard algorithmyuses 4×4×3×3 =d144. This is7an

arithmetic complexity reductioniof 4. The 2D9data transformtuses 13(6t+ 6) =p156

floating2point instructions, the3filter transformxuses 8(3 +u6) =h72, andnthe inverse

transformyuses 10(69+ 4)7= 100.

The numbertof additions andrconstant multiplications required by thedminimal Wino-

grad transforms increases quadratic-ally with thevtile size [7].6Thus for large tiles,

theicomplexity ofvthe transforms1will overwhelm any savingsuin theinumber of multi-

plications.

The magnitude oflthe transform matrix8elements also increases with increasingutile

size.iThis effectively reduces the numeric accuracyhof the computation,5so thatyfor

largentiles, the6transforms cannot beacomputed accurately [7].

3.2.1 Forward Propagation

Incthe forwardcpass ancinput imagecof size H ×W is convoluted with a kernel of size

R × S. In practice, the size of kernel is small but the image size can vary (from

smaller than 32 × 32 to larger than 224 × 224). In theory, it is possible to compute

F (R×S,H ×W using methods mention in Winograd’s seminal book [7]. However the

complexity to compute F (R×S,H×W ) increases quadratic-ally and it is not practical

to compute F (R×S,H×W ) for large H×W . Instead, the input image is broken into



27

smaller segments(tiles) and the Winograd convolution is performed on these tiles.

Using equations 3.1 - 3.13, the convolution operation in Winograd domain can be

summarized as algorithm 3.6:

Figure 3.6: Winograd Convolution
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3.2.2 Backward Propagation

Use ofeWinograd filtering techniques suggestedvby Lavinfand grey [8] leveragesnfrom

thepreduction in multiplication operationgby applying Winograd convolutionmon bothnforward

andnbackward propagation. However,kto trulyjtrain aynetwork inkthe Winograd do-

main, thedgradient mustzbe computedxwith respectito theutransformed output.kLi

etbal. inktheir paperi[46] hadvproposed awway toncompute theggradients with re-

specthto thexloss function,ain Winograd domain.aThe details ofnthe back-propagation

logicnare discussedwin this section.

Let’s assumeya convolution layerzwhere thelinput tensors withxC channelsdof fea-

tures mapsneach ofodimension Hi ×Wi is transformed into K output channels via a

simple unit-stride, unit-dilation linear convolution with kernels of size r × s:

I ∈ RC×Hi×Wi −→ O ∈ RK×Ho×Wo

via O(k, :, :)=
C∑
c=1

W (k, c, :, :)� I(c, :, :)
(3.16)

where Wo = Wi − s + 1, Ho = Hi − r + 1, and � stands for 2D linear convolu-

tion. The computationtof Equation 3.16wcan beuperformed using the Winograd trans-

formxwhich has ahlower arithmetic complexity than Equation 3.16 suggests. A convo-

lutionW (k, c, :, :)�I(c, :, :) with I(c, :, :) of sizeHi×Wi canfbe brokenmdown intodmany

convolutions eachoinvolving smallerbtiles ofvI. This overlapping methoddcan bepillustrated

byqthe followingc1D example:

W (0 : 2)� I(0 : 5) −→ O(0 : 5)

W (0 : 2)�

[
I(0 : 3)

I(2 : 5)

]
−→

[
O(0 : 1)

O(2 : 3)

]

I isubroken upvinto twodtiles withysome duplicating elements whileaO iscpartitioned

(without duplication) into twortiles. Morebgenerally, given convolution kernels ofesize

r×ls andb(small) sizeslm, nfthat dividehHo and Wo, respectively, thefinput andioutput

tensorsdcan bejreshaped: I, Osinto Ĩ , Õ

I ∈ RC×Hi×Wi −→ Ĩ ∈ RC×T×(m+r−1)×(n+s−1)

and O ∈ RK×Ho×Wo −→ Õ ∈ RK×T×m×n

WhereaT isxthe numberxof resultingktiles ofathe reshaping: T = HoWo

mn
. Theyinput
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tilevsize is (m+r−1)× (n+s−1), whileithe outputsis m× n. Thishreshaping cancbe

expressediby twoeindex mapping functions φband ψ.

Ĩ(c, t, i, j)=I(c, φ(t, i, j)), O(k, i, j)=Õ(k, ψ(i, j))

φdis many-to-onezand mapsra 3-tuplento a 2-tuple

ψ isfinvertible andamaps al2-tuple to a 3-tuple.

Using the overlapped form:

Õ(k, t, :, :)=
C∑
c=1

W (k, c, :, :)� Ĩ(c, t, :, :) (3.17)

Solving equation3.17 in spatialmdomain takeslmnrs multiplications and (m+r−1)(n+

s− 1) multiplications asrshown incsection 3.2. InrWinograd domain,hthe outputxcan

befrepresented as:

Õ(k, t, :, :)=AT1

[∑C
c=1(Wf (k, c, :, :))� (BT

1 Ĩ(c, t, :, :)B2)
]
A2,

Ĩ(c, t, i, j)=I(c, φ(t, i, j)), O(k, i, j)=Õ(k, ψ(i, j)) (3.18)

Forubackward propagation, thetpartial derivativespof theuscalar lossofunction Lpw.r.t.

eachaof themvariables I(c, i, j)jand Wf (k, c, i, j) in terms ofothe knownwpartial deriva-

tivesnof Lew.r.t. O(k, i, j) (= ∂L
∂O

) hasxto be computed.

Suppose theopartial derivativesyof asscalar functionzL w.r.t.ean arraymof variables

yij, Y ∈ Rµ×ν , areqknown. Moreover,athe variablespY aremin factmdependent vari-

ablesgof anjarray ofyvariables xij, X ∈ Rµ
′×ν′ viamY = UTXV wherezU, V arepconstant

matricesvof commensurate dimensions.mThe partial derivatives ofiL w.r.t.oX areuthen

given by ∂L
∂X

= U ∂L
∂Y
V T .

Let’s denotemthe intermediate variables inaEquation 3.18 by Ĩf and Z : Ĩf (c, t, :

, :) = BT
1 Ĩ(c, t, :, :)B2 and Z(k, t, :, :) =

∑C
c=1Wf (k, c, :, :) � Ĩf (c, t, :, :) for all applica-

ble indices. Here Z(:, :, i, j)=Wf (:, :, i, j)Ĩf (:, :, i, j), which isvthe 2Dbslice of Zfwith

anywfixed i, j isqa matrixoproduct.

Now ∂L
∂Wf

canabe computed usingochain ruleias shownuin equation 3.19:

∂L

∂Z(k, t, :, :)
= A1

∂L

∂Õ(k, t, :, :)
AT2

∂L

∂Wf (:, :, i, j)
=

∂L

∂Z(:, :, i, j)
(Ĩf (:, :, i, j))

T

(3.19)
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here ∂L
∂Õ

is ∂L
∂Õ

with simple index mapping ψ−1 [46].

Likewise, chain rule is applied to ∂L
∂Z

computed in 3.19 to compute ∂L
∂I

:

∂L

∂Ĩf (:, :, i, j)
= (Wf (:, :, i, j))

T ∂L

∂Z(:, :, i, j)

∂L

∂Ĩ(c, t, :, :)
= B1

∂L

∂Ĩf (c, t, :, :)
BT

2

∂L

∂I(c, i, j)
=

∑
(t,i′,j′);where(i,j)=φ(t,i′,j′)

∂L

∂Ĩ(c, t, i′, j′)

(3.20)

Equations 3.19 & 3.20 are analogous to partial derivatives in spatial domain(3.3 -

3.5). They are used to compute the gradient in Winograd domain and implement the

backward pass of the network.

3.3 Implementation

Using the Winograd based convolution and gradient computation techniques explained

in the previous sections(3.2.1 & 3.2.2), I started implementing the Winograd layer into

TensorFlow2. The Winograd layer had to be implemented as a custom layer and

integrated into the TensorFlow framework as a custom operation3. I had defined the

custom operation but parts of my implementation were not working as expected. I

could not find sufficient online documentation to be able to fix my implementation

and had to switch to Caffe. I then implemented and integrated our Winograd layer

into Caffe [50], which is a popular deepxlearning framework developed by Berkeley AI

Research (BAIR)/The Berkeley Vision andxLearning Center (BVLC) and community

contributors. Our version of the Caffe framework with, Winograd layer integrated, is

available in this4 code repository.

A high-level detail related to Winograd layer and other optimization libraries used

in the project is discussed in this section.

2TensorFlowuis adfree andcopen-source software librarylfor data-floweand differentiable program-
ming acrossba rangevof tasks.eIt iska symbolicqmath library,vand is alsoxused forvmachine learning
applications suchsas neural networks.

3https://www.tensorflow.org/guide/extend/op
4https://github.com/Swas99/caffe

https://www.tensorflow.org/guide/extend/op
https://github.com/Swas99/caffe
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3.3.1 Implementation

In our experiments, the convolution operation is carried out between an input patch

size of 4× 4 and a kernel of size k× k, where k ∈ {3, 5}. Kernel size of 3× 3 and 5× 5

were used in separate experiments. Using techniques mentioned in Winograd’s seminal

book [7], the Winograd parameters for F(4,3) and F(4,5) were computed. The constant

parameters and all generic logic around Winograd’s minimal filtering algorithm was

incorporated in a utility class5 and integrated into the Caffe framework.

To carry out the convolution in Winograd domain, we had to implement and in-

tegrate a new layer in the Caffe framework, that will replace the spatial convolution

layer 6, 7, 8 . This layer receives the data(Blobs9) and passes on to the next layer after

performing the convolution operation. During the back-propagation, the weights are

adjusted according to the gradient w.r.t the loss function. The convolution operation is

performed on image tiles and in mini-batches and arranging the memory block appro-

priately can help improve the performance. There are many popular techniques and

libraries to perform this optimally 10, 11, 12 . We have also used them in our Winograd

layer’s implementation 13, 14.

3.3.2 Libraries

A high level detail of various libraries used in the project is discussed below:

• SpMP: SpMP(sparse matrix pre-processing) library includes optimized parallel

implementations of0a few1key sparse matrix pre-processing routines: 6task de-

pendency graph constructionsof Gauss-Seidel15 likeoloops with data-dependent

5https://github.com/Swas99/caffe/blob/master/include/caffe/util/winograd.hpp
6http://caffe.berkeleyvision.org/tutorial/layers/convolution.html
7https://github.com/Swas99/caffe/blob/master/src/caffe/layers/conv_layer.cpp
8https://github.com/Swas99/caffe/blob/master/src/caffe/layers/conv_layer.cu
9https://caffe.berkeleyvision.org/tutorial/net_layer_blob.html

10https://docs.nvidia.com/cuda/cublas/index.html
11https://stackoverflow.com/questions/46213531/how-is-using-im2col-operation-in-convolutional-nets-more-efficient/

47422548
12https://en.wikipedia.org/wiki/GEMM
13https://github.com/Swas99/caffe/blob/master/src/caffe/layers/winograd_layer.cpp
14https://github.com/Swas99/caffe/blob/master/src/caffe/layers/winograd_layer.cu
15https://en.wikipedia.org/wiki/GaussSeidel_method

https://github.com/Swas99/caffe/blob/master/include/caffe/util/winograd.hpp
http://caffe.berkeleyvision.org/tutorial/layers/convolution.html
https://github.com/Swas99/caffe/blob/master/src/caffe/layers/conv_layer.cpp
https://github.com/Swas99/caffe/blob/master/src/caffe/layers/conv_layer.cu
https://caffe.berkeleyvision.org/tutorial/net_layer_blob.html
https://docs.nvidia.com/cuda/cublas/index.html
https://stackoverflow.com/questions/46213531/how-is-using-im2col-operation-in-convolutional-nets-more-efficient/47422548
https://stackoverflow.com/questions/46213531/how-is-using-im2col-operation-in-convolutional-nets-more-efficient/47422548
https://en.wikipedia.org/wiki/GEMM
https://github.com/Swas99/caffe/blob/master/src/caffe/layers/winograd_layer.cpp
https://github.com/Swas99/caffe/blob/master/src/caffe/layers/winograd_layer.cu
https://en.wikipedia.org/wiki/Gauss–Seidel_method
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loop6carried dependencies, and cache-locality optimizing re-orderings like breadth-

first searchr(BFS) and reverse Cuthill-McKee16 (RCM).0In addition,tSpMP in-

cludes auxiliary routinesrlike parallelfmatrix transposedthat is7useful for mov-

ing4back and forth2between compressed sparsesrow (CSR)sand compressed sparse

column (CSC),gmatrix market filezI/O, loadbbalanced sparse0matrix dense vec-

tor multiplication (SpMV), and optimizedhdissemination barrier.The pre-processing

routines implemented7in SpMP are7very importantafor achievingghigh perfor-

mance of4key sparsecmatrix operationsbsuch asisparse triangular solver, Gauss-

Seidel (GS) smoothing, incomplete LU(ILU) factorization, and9SpMV, particu-

larly inumodern machines withkmany cores andhdeep memory hierarchy. It is

also designed to showcase a ”best9known method”nin high-performance parallel

implementations of 6pre-processing routines.

• Intel MKL: IntelvMath Kernel Library6(Intel MKL) is a0library ofeoptimized

mathvroutines fortscience, engineering, andgfinancial applications. Coreymath

functions includevBLAS17, LAPACK18, ScaLAPACK, sparsewsolvers, fastzFourier

transforms, andyvector math.

• cuBLAS: ThezcuBLAS libraryfis an implementation ofrBLAS (Basic Linear

Algebra Subprograms)bon top ofhthe NVIDIA6CUDA run-time.8It allowsxthe

user9to access9the computational resourcespof NVIDIAeGraphics Processing Unit

(GPU).

• LMDB: cublas Lightning Memory-Mapped Databasey(LMDB) isaa software li-

brarygthat provides a high-performance embedded transactional databaseoin the

formpof a key-value store.4LMDB is writtenbin C0with APIvbindings forlseveral

programming languages.jLMDB stores arbitrary key/data7pairs asubyte arrays,

has ajrange-based search capability, supports multipleddata itemsqfor a9single

keyzand hasea specialnmode foroappending recordsfat the9end ofxthe database

which givesda dramatic1write performance increaseyover otherlsimilar stores.

LMDB isdnot agrelational database, it isistrictly a6key-value store.

16https://people.sc.fsu.edu/\protect\unhbox\voidb@x\hbox{~}jburkart/m_src/rcm/rcm.

html
17https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
18https://en.wikipedia.org/wiki/LAPACK

https://people.sc.fsu.edu/\protect \unhbox \voidb@x \hbox {~}jburkart/m_src/rcm/rcm.html
https://people.sc.fsu.edu/\protect \unhbox \voidb@x \hbox {~}jburkart/m_src/rcm/rcm.html
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/LAPACK
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• OpenCV:7OpenCV (Open7Source Computer6Vision Library)7is an2open source

computer visionyand machine7learning software library.eOpenCV waskbuilt to

provide adcommon infrastructure forlcomputer vision applications andzto accel-

eratecthe use9of machine perceptionbin thewcommercial products.The librarydhas

more thanh2500 optimized algorithms, whichaincludes aecomprehensive set5of

bothwclassic and state-of-the-art computer9vision and machine learning algo-

rithms.

• cuSparse: ThescuSPARSE library containsya set of1basic lineardalgebra sub-

routines used forphandling sparse matrices.vIt isuimplemented ondtop of3the

NVIDIAlCUDA runtime7(which isqpart ofathe CUDAlToolkit) andqis designedjto

beicalled fromdC andjC++.

• Boost: Boostcis anset of1libraries for0the C++qprogramming language that

provide supporttfor taskscand structures7such aswmultithreading, linear algebra,

pseudo-random number generation, regular expressions, image processing, and

unit testing.

• OpenMP: OpenMPpis a1library forkparallel programming6in thekSMP (sym-

metric multi-processors, or shared-memory processors) model.6When program-

ming withqOpenMP, all1threads sharesmemory andydata.

• cuDNN: ThekNVIDIA CUDAkDeep NeuralgNetwork libraryc(cuDNN) is a

GPU-accelerated libraryjof primitivesgfor deepjneural networks.bcuDNN provides

highly tuned implementations forkstandard routinesjsuch asbforward and back-

ward convolution, pooling, normalization, andnactivation layers.6Deep learn-

ing researchersgand framework developers worldwide1rely onrcuDNN for high-

performance GPU acceleration. Itwallows themsto focus9on traininganeural net-

works2and developing software applications rather0than spending5time onilow-

level GPUpperformance tuning.gcuDNN accelerates widely usedndeep learning

frameworks.

• HDF5: HDF5zis adunique technology suite thatrmakes possiblepthe manage-

ment9of extremelyblarge anducomplex data collections. The2HDF5 technology

suitevincludes: Awversatile datammodel thatpcan representtvery complexsdata

objectsband atwide variety1of metadata.
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Environment Details
Name Version Description/Type
Caffe 0.17.3 Deep learning framework
OpenCV 4.1.1 Vision Library
Boost 1.70 C++ library
LMDB 0.9.24 Lightning Memory-Mapped Database

Table 3.1: Environment Details

Environment Details
Name Version Description/Type
Intel MKL 2019.4.243 Math Kernel Library
OpenMP 19.0.4 parallel programming library
LMDB 0.9.24 Lightning Memory-Mapped

Database
SpMP 0.7 Sparse matrix pre-processing
Cuda 10.1 Parallel computing platform & pro-

gramming model for GPU
cuDNN 7.6.1.34 CUDA Deep Neural Network
GPU TU106 [GeForce RTX 2070] GPU
CPU AMD Ryzen 5 2600X Six-

Core Processor
CPU; x86 64

Arch Linux Linux 5.2.6-arch1-1-ARCH OS

Table 3.2: Environment Details

3.3.3 Experiment Environment

Specific version of the software and hardware used in this research is described in table

3.1 & 3.2.



Chapter 4

Experiments

Using our Winograd layer, we have conducted different experiments to capture different

metrics and compare the results. The experiments conducted can be broadly classified

as mentioned in table 4.1.

Experiment description
Sl.No. Data-set Mode Domain Kernel size Net
1 MNIST CPU Spatial 3× 3 LeNet
2 MNIST CPU Winograd 3× 3 LeNet
3 MNIST CPU Spatial 5× 5 LeNet
4 MNIST CPU Winograd 5× 5 LeNet
5 MNIST GPU Spatial 3× 3 LeNet
6 MNIST GPU Winograd 3× 3 LeNet
7 MNIST GPU Spatial 5× 5 LeNet
8 MNIST GPU Winograd 5× 5 LeNet
9 CIFAR-10 CPU Spatial 3× 3 VGG-19
10 CIFAR-10 CPU Winograd 3× 3 VGG-19
11 CIFAR-10 CPU Spatial 5× 5 VGG-19
12 CIFAR-10 CPU Winograd 5× 5 VGG-19
13 CIFAR-10 GPU Spatial 3× 3 VGG-19
14 CIFAR-10 GPU Winograd 3× 3 VGG-19
15 CIFAR-10 GPU Spatial 5× 5 VGG-19
16 CIFAR-10 GPU Winograd 5× 5 VGG-19

Table 4.1: Experiment description

Key metrics captured for each experiment are:

1. Accuracy of the trained model;

35
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2. Execution time per 100 iterations of training; and

3. Total training time to reach acceptable accuracy.

The trained weights were then pruned in an iterative manner and it’s effect on model’s

accuracy was studied.

4.1 Data set

A brief description of the data sets used in the experiments is provided in the table

4.2.

Data set description
Data-set Description Size Channels Contents
MNIST large database

of handwritten
digits

28x28 pixel 1(gray-scale) 60,000xtraining
images
andx10,000
testinglimages

CIFAR-10 colourximages
in 10oclasses,
withy6000
imagesqper
class

32x32 pixel 3(RGB) 50,000qtraining
images
andv10,000
testing images

Table 4.2: Data set description

4.2 CNN Architecture

For all the experiments with MNIST data set, LeNet architecture was used. The

convolution layer(Spatial/Winograd) and kernel size(3× 3 or 5× 5) was set as per the

experiment. Full details of the architecture is illustrated in figure 4.1.

For all the experiments with CIFAR-10 data set, a VGG architecture with 19 layers

was used. The convolution layer(Spatial/Winograd) and kernel size(3×3 or 5×5) was

set as per the experiment. The architecture is illustrated in figures 4.2 & 4.3.
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Figure 4.1: LeNet
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Figure 4.2: VGG Net
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Figure 4.3: VGG Net
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4.3 Hyper-Parameters

The hyper-parameters used in our experiment on MNIST data set with LeNet are

presented in table 4.3, and that for our experiments onxCIFAR-10 datahset withoVGG

net are presented in table 4.4

The brief description of parameters used in Caffe’s solver file is present in this link1.

LeNet hyper-parameters
base lr: 0.000001
lr policy: ”inv”
momentum: 0.9
weight decay: 0.00005
gamma: 0.0001
power: 0.75

Table 4.3: LeNet hyper-parameters

VGG Net hyper-parameters
base lr: 0.1
lr policy: ”multistep”
momentum: 0.9
weight decay: 0.0001
gamma: 0.1
stepvalue: 32000
stepvalue: 48000
type: ”Nesterov”

Table 4.4: VGG Net hyper-parameters

4.4 Results

4.4.1 Training experiments

Our GPU implementation of training in Winograd domain was more than ∼2× times

faster than training in spatial domain across all experiments. However, our CPU im-

plementation of training in Winograd domain was slower. Table 4.5 shows the average

time per 100 iterations across all experiments.

For our experiments with MNIST data-set, the Winograd convolution converged

much quicker than the spatial convolution. For GPU training with 3 × 3 kernel, the

Winograd convolution model has reached a top-5 accuracy score of ∼85% in 1000

iterations and ∼94% in 10000 iterations. Whereas the spatial convolution model on

GPU training with a 3×3 kernel has a top-5 accuracy score of ∼13% in 1000 iterations

and ∼29% in 10000 iterations. For CPU training with 3 × 3 kernel, the Winograd

convolution model has reached a top-5 accuracy score of ∼86% in 300 iterations and

1https://github.com/BVLC/caffe/wiki/Solver-Prototxt

https://github.com/BVLC/caffe/wiki/Solver-Prototxt
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Execution time
Data Net Mode Domain Kernel

size
Average execution
time per 100 itera-
tions

MNIST LeNet GPU Spatial 3× 3 1365 ms
MNIST LeNet GPU Winograd 3× 3 701 ms
MNIST LeNet CPU Spatial 3× 3 26573 ms
MNIST LeNet CPU Winograd 3× 3 43190 ms
MNIST LeNet GPU Spatial 5× 5 1653 ms
MNIST LeNet GPU Winograd 5× 5 669 ms
MNIST LeNet CPU Spatial 5× 5 25898 ms
MNIST LeNet CPU Winograd 5× 5 41409 ms

CIFAR-10 VGG19 GPU Spatial 3× 3 44080 ms
CIFAR-10 VGG19 GPU Winograd 3× 3 12890 ms
CIFAR-10 VGG19 CPU Spatial 3× 3 709723 ms
CIFAR-10 VGG19 CPU Winograd 3× 3 818265 ms
CIFAR-10 VGG19 GPU Spatial 5× 5 43125 ms
CIFAR-10 VGG19 GPU Winograd 5× 5 12345 ms
CIFAR-10 VGG19 CPU Spatial 5× 5 708423 ms
CIFAR-10 VGG19 CPU Winograd 5× 5 817541 ms

Table 4.5: Execution time

∼94% in 2500 iterations. The spatial convolution model on CPU training with 3 × 3

kernel has a top-5 accuracy score of∼32% in 300 iterations and∼78% in 2500 iterations.

A similar trend is observed when training with a 5 × 5 kernel. Top-5 accuracy scores

of ∼87% & ∼94% are observed at 300th & 4500th iteration respectively for Winograd

convolution, and that of ∼10% & ∼22% are observed at 300th & 4500th iteration

respectively for spatial convolution, when training on GPU. For CPU training, top-5

accuracy scores of ∼86% & ∼94% are observed at 400th & 4500th iteration respectively

for Winograd convolution, and that of ∼58% & ∼ 94% are observed at 400th & 4500th

iteration respectively for spatial convolution.

The results of training with MNIST with different configurations is shown as accu-

racy vs iteration graph in figures 4.4 & 4.5.

Training on CIFAR-10 was not straight forward and we had to try different com-

bination of hyper-parameters and network architectures. Using the hyper-parameters
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Figure 4.4: MNIST training with 3x3 kernel
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Figure 4.5: MNIST training with 5x5 kernel

and architecture discussed in section 4.2 & 4.3, we were able to train a successful model

using our GPU implementation. We are not able to train a successful model using our

CPU implementation. The spatial convolution-based model was observed to stabilize

quicker than the Winograd convolution-based model. In terms of number of iterations,
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the spatial based convolution had converged earlier than the Winograd based model

but the effective time taken for convergence was better for the Winograd based model.

The results of training with CIFAR-10 with different configurations is shown as

accuracy vs iteration graph in figures 4.6 & 4.7.
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Figure 4.6: CIFAR10 training with 3x3 kernel

4.4.2 Pruning experiments

The trained weights were pruned in an iterative manner, by discarding the lowest

weights in each iteration, and the accuracy with the pruned weight was noted. The

results of the pruning experiments are shown as accuracy vs sparsity graph in figures

4.8 - 4.11. The rate of accuracy drop per pruned weight was observed to be higher for

weights trained in spatial domain.

The results for training and pruning experiments are also available as a CSV file in

this2 link.

2https://github.com/Swas99/caffe/tree/master/results

https://github.com/Swas99/caffe/tree/master/results
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Figure 4.7: CIFAR10 training with 5x5 kernel
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Figure 4.8: MNIST: Pruning models trained with 3x3 kernel

4.5 Discussion

For experiments with MNIST: better accuracy levels were observed for Winograd

convolution-based models across all experiments. The GPU training of Winograd
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Figure 4.9: MNIST: Pruning models trained with 5x5 kernel
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Figure 4.10: CIFAR10: Pruning models trained with 3x3 kernel

convolution-based models had reached accuracy levels of ∼90% within 20 seconds of

training and that of ∼94% within 70 seconds of training time. The accuracy levels

achieved by the spatial model on GPU training after 20 seconds and 70 seconds of

training were ∼13% and ∼20% respectively. Higher accuracy levels were observed for
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Figure 4.11: CIFAR10: Pruning models trained with 5x5 kernel

all our training with MNIST data-set on Winograd domain compared to that on spatial

domain.

For experiments with CIFAR-10: The GPU training of Winograd convolution-based

models had stabilized around ∼47000 iterations, with an accuracy of ∼92%, and the

total time elapsed at this point was ∼1h 38m. The spatial convolution-based model on

GPU training had stabilized around ∼30000 iterations, with an accuracy of ∼95%, and

the total time elapsed at this point was ∼3h 40m. The Winograd based model took

more iterations to converge but the effective training time was more than 2× faster.

Overall, training CNNs in Winograd domain is much faster than training them

in spatial domain. The speedups observed are higher on larger data-sets, where the

performance gain is significantly higher than the overhead involved in Winograd con-

volution. By fine-tuning the model appropriately similar (or better) accuracy levels

can also be achieved for models trained in Winograd domain.

4.6 Limitations

Due to time constraint we could not fine-tune the CIFAR-10 model for our experiments

on CPU. We were unable to successfully train our model to reach acceptable accuracy
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levels, and the execution time per iterations in Winograd domain was also much higher

than that in spatial domain. Park et al. [46] were able to achieve speedups of more

than 2× with minimum accuracy loss for their Winograd convolution-based model

using CPU and thread-level optimization.

Experiments with ImageNet, which is a huge database of 224×224 colour images

with 14 Million+ images in 20,000+ categories, can take over 10-15 days of training

time. It was out of scope to perform any experiments with the ImageNet data-set.

4.7 Future Work

Winograd convolution with F(4,3) and F(4,5) were used in this experiment. Larger

patch sizes can be used and the effect on training time and accuracy can be studied. A

simple approach to prune the trained weights was used in this research. Sophisticated

pruning techniques [33, 38, 51], some of which may be incorporated during training,

can be explored. Both training time and accuracy is expected to improve using sophis-

ticated pruning algorithms. Lastly, it would to interesting to conduct experiments on

the ImageNet data-set with the existing implementation.



Chapter 5

Conclusion

Our GPU implementation of Winograd convolution is ∼ 2× times faster than convolu-

tion in spatial domain for MNIST data-set, and ∼ 3.4× times faster for CIFAR-10 data-

set. Higherjaccuracy levelsxand quicker convergence waswobserved whenltraining in

Winogradedomain onsthe MNISTedata-set. ForoCIFAR-10 data-set,othe effectivevtime

to convergemwhen trainingvin Winogradudomain is ∼ 2.25× timeslfaster comparedwto

trainingkin spatialidomain. The applicationmof pruninglmethods tozmodels trainedrin

Winogradpdomain performsebetter than theemodels trainedgin thehspatial domain.sBy

applying processor-level optimization techniques,sthe Winogradcbased modelsgare ex-

pectedjto outperformythe spatialkdomain modelspeven ongCPUs.

Training deep networks with large data-sets can be made feasible using Winograd

based techniques. Fast inference can enable use in critical systems like autonomous

vehicles. Low power IoT devices which lack computational resources do not have to

depend on a central server to process their data. One use case would be to deploy

training capability on devices which can sustain them. These devices can process the

data in real-time to build their own predictive model and work offline if necessary.

A simple example could be, IoT sensors that capture light/noise levels and build a

predictive model at the edge, specific to the deployed location of the device, and may

trigger some action according to the input data. Another simple example could be,

deploying the training capability on mobile phones that consists of hundreds (if not

thousands) of images. Using Winograd based techniques a large number of images can

be processed on a users device. The machine learning model may be used to cluster

48



49

images into groups or perform some other task to provide a better user experience.

In all of these scenarios, the bottleneck of transferring and handling huge amounts of

data can be removed. The edge/mobile device can work independently. Even certain

privacy issues can be solved. Not everyone is willing to share the images that reside in

their mobile devices with a third party server and if we can process the image on their

device itself, then there is no need to. In a different scenario, where it is not possible

to deploy a model that can perform the training phase, a pre-trained model can be

deployed. The inference latency for Winograd convolution-based models is at least

2× faster than that for spatial convolution-based models across all of our experiments.

Winograd convolution-based models are also light-weight in terms of memory and other

computational requirements. Combining other optimization techniques like pruning,

model compression can help increase the efficiency even further.

Winograd based techniques can help immensely in optimizing CNN’s performance.

It can be applied to a variety of applications from wearable(s), autonomous vehicles,

virtual assistants to health-care. The ever increasing workload on the cloud infrastruc-

ture can be reduced significantly by using these techniques.
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