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Deep convolutional neural networks can take a very long time to train on a large
data-set. In critical systems like autonomous vehicles, low latency inference is de-
sired. Most IoT and mobile devices are not powerful enough to train a successful pre-
dictive model using the data that’s accessible to the device. The success of convo-
lutional neural networks in these situations is limited by the compute power. Using
Winograd’s minimal filtering algorithms, we can reduce the number of multiplication
operations needed for the convolution operation in spatial domain. Convolution in
Winograd domain is faster when performed with small input patch and small filter
kernels.

Use of Winograd techniques to perform the convolution is popular in deep learn-
ing libraries but the weights are transformed back to spatial domain after the con-
volution operation. In this research, we have written CPU and GPU implementa-
tions to train the weights in the Winograd domain and used different CNN architec-
tures to train our model in spatial domain and in Winograd domain separately, on
MNIST and CIFAR-10 data-set. Our GPU implementation of Winograd convolution
is ~ 2x times faster than convolution in spatial domain for MNIST data-set, and
~ 3.4x times faster for CIFAR-10 data-set. Higher accuracy levels and quicker conver-
gence was observed while training in Winograd domain for the MNIST data-set. For
CIFAR-10 data-set, the effective time to converge when training in Winograd domain



was ~ 2.25X times faster compared to training in spatial domain. After training sepa-
rately in spatial domain and in Winograd domain, the respective weights were pruned
in an iterative manner. The accuracy drop for weights trained in Winograd domain
was observed to be lower than that observed for weights trained in spatial domain.
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Chapter 1
Introduction

Cloud computing has taken the technology world by storm, but it is not sufficient for
the growing demands of the technology industry. There is already a huge amount
of data that are generated at the edge devices and it is not feasible to process all
the data at a central location. It is time to delegate Al capabilities at the edge and
decrease dependency on the cloud. As people need to interact with their digitally-
assisted technologies (e.g. wearable, virtual assistants, driverless cars, health-care,
and other smart devices) in real-time, waiting on a data centre far away will
not work. Not only does the latency matter, but often these edge devices are not
within the range of the cloud, needing them to operate autonomously. Even when
these devices are connected to the cloud, moving a large amount of data to a central-
ized data centre is not scalable as there is a cost involved with communication and
it adversely impacts the performance and energy consumption [I]. Since the latency
and security risk of relying on the cloud is unacceptable, we need a large chunk
of computation closer to the edge to allow secure, independent, and real-time decision
making. This poses an enormous challenge in terms of implementing emerging Al
workloads on resource constrained low power embedded systems. When it comes to
image and video the performance of many modern embedded applications is enhanced
by application of neural networks, and more specifically by convolutional neural net-
works .

Convolutional neural networks(CNNg) have become one of the most successful tools

for applications in visual recognition. In fact, the recent and successful neural net-



works, like - GoogleNet [2] and ResNet [3], spend more than 90% of their time in
convolutional layers. However, the training and inference tasks in are com-
putationally expensive and the computational workload continues to grow over time
as the network size keeps increasing. LeCun et al.,in 1998, [4] proposed a
model with less than 2.3 x 107 multiplications for handwritten digit classification.
Later in 2012, Krizhevsky et al. [5] developed AlexNet, an ImageNetﬂWinning
with more than 1.1 x 10° multiplications. In 2014, ImageNet winning and runner up
increased the number of multiplications to 1.4 x 10° [2] and 1.6 x 10 [6] re-
spectively.

Despite the high levels of accuracy achieved, using in a low latency real-
time application remains a challenge. The training and inference time in is
dominated by the number of the multiplication operation in the convolution layers. Two
ways to reduce this computational burden in[CNNgare pruning techniques and trans-
forming input into a different domain. Pruning introduces sparsity by removing re-
dundant weights. Whereas, transformation techniques like Winograd convolution [7]
[8] and [FFT|convolution [9] [10] transform the computations to a different domain where
fewer multiplications are required. For an input of size N and a convolution ker-
nel of size N, O(N?) operations are required to perform direct convolution. Using
algorithms, this can be done in O(Nlogs N) operations. However, this is efficient
only when the size of N is relatively large. Input size is generally large enough but
the kernel is typically 3x3 or 5x5 in size. Due to the small kernel size, the constant
factors can overshadow any gain in execution time. Winograd convolution performs
better than [FFT]in practice. For an input of length 1 and kernel of length k, 1+ k
-1 multiply operations are sufficient for Winograd convolution process.

With time have become deeper and even more complex. Although the
accuracy of such networks have improved, some challenges that have emerged are
higher latency and higher computational requirements. In this work, we explore
training[CNNg/in Winograd domain and study the effect of simple pruning techniques.

"https://en.wikipedia.org/wiki/ImageNet
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1.1 Research Question

This aim of this research is to address the following research question:

Can training and pruning of weights in Winograd domain improve

the performance of

1.2 Research Objective

In order to address the research question, the aims and goals were broken down as

follows:

1.

Understand the fundamental concepts around deep learning, convolutional neural

networks, pruning techniques, and Winograd filtering.

Study previous research work with respect to using Winograd transformation in

(CINNsl

. Learn the fundamentals of working with a deep learning framework (TensorFlow

and Caffe).

Learn to work with libraries (GEMM] [MKL| [SpMP} etc.) that optimize com-
monly used operations in a [CNN|

Learn the basics of CUDA coding to implement the [GPU]| version of Winograd

convolution.

Implement the[CPU]and the[GPU]versions of Winograd convolution and integrate

into the deep learning framework.

Conduct experiments with respect to training the network in the spatial domain

and in the new Winograd domain, using different data-sets.

Conduct experiments with pruning the trained weights.



1.3 Research Challenges

1. T had to learn about a robust, production quality, deep learning framework like
TensorFlow and Caffe in a short span of time. It was essential to learn to work

with them because I had to integrate my work into a deep learning framework.

2. There are a lot of optimization libraries (GEMM]| [MKL[ [SpMP} etc.) used in pro-

duction level deep learning frameworks. It was essential to learn the importance

of these libraries and to be able to use them in my research in order to produce

results that are on par with other research in this domain.

3. Having no prior CUDA coding experience, it was a challenge to implement the
[GPU] version of the Winograd convolution layer. My goal here was to learn
enough to be able to port my C++ logic in CUDA (for experiments using [GPUJ).

4. Implementing the backward propagation logic for Winograd convolution was a
challenge. There has been published research around the use of Winograd filter-
ing algorithms for the convolution operation in but I could find only one
published research paper which explains the backward propagation logic to train

a network in Winograd domain.

5. Time constraint was another challenge. Training a on large data-sets can
take up to 10-15 days of training time. It was not possible to conduct exper-
iments on large data-sets and the scope of the research had to be re-evaluated

periodically.

1.4 Dissertation Overview

Using Winograd filtering algorithms to improve the performance of is an exciting
prospect. However, training the network in Winograd domain is not straight forward
and very few published efforts of successfully training a network in Winograd domain to
improve the performance of a|[CNN|is available. In this research, we have implemented
the and the version for training a CNN in Winograd domain. We have then

performed different experiments on both: spatial domain & Winograd domain, using



the MNIST and the CIFAR-10 data-sets. We have also performed experiments to

study the effect of pruning trained weights on the performance of the network.

1.5 Dissertation Structure

The dissertation is organized as follows:

e Chapter 2: Discusses the recent work around optimizing the performance of
[CNNs| with a primary focus on work around Winograd convolution.

e Chapter 3: Provides the technical details of steps involved in a convolution
operation, and that of our implementation of the Winograd convolution. The

details of the libraries used, and our working environment is also discussed.

e Chapter 4: Explains the different experiments that we have performed. Details
of the architectures, hyper-parameters used are provided. The results of

our experiments, limitations and future scope of this research are also discussed.

e Chapter 5: Provides a short conclusion to this research.



Chapter 2

Background and Related Work

2.1 AlexNet

AlexNet [I1] is the name of a , designed by Alex Krizhevsky, a PhD student
at the University of Toronto in 2012. AlexNet was the winner of the ImageNet Large
Scale Visual Recognition Challenge(ILSVRC)}2012 with a top-5 error of 15.3%, 10.8%
better than the runner up submission. It was a variation of designs proposed by Yann
LeCun et al. [I2] [13]. LeCun et al.’s designs were also modifications to a variant
of a simpler design called neocognitron [14] by introducing back-propagation algo-
rithm to it. Training AlexNet with a huge data-set like ImageNet was made feasible
by the use of GPUs. There has been other research around using GPUs to leverage
the performance of prior to AlexNet [I5] [16] but AlexNet is one of the most in-
fluential research in the computer vision and deep learning domain, especially due to
its formidable performance in ImageNet Large Scale Visual Recognition Challenge 2012.
AlexNet has a very similar architecture as LeNet[13] by Yann LeCun et al. but
was deeper, with more filters per layer, and with stacked convolutional layers. It has
eight layers: The first five layers perform the convolution operation and some of those
are followed by max-pooling layers. The last three layers are fully connected layers.
layers, which performs better than tanh and sigmoid functions are used as
the activation function.The original architecture of AlexNet is illustrated in figure

21

'http://image-net.org/about-overview
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More research around the use of CNNs in image classification challenges gave
birth to other, deeper and complex, networks which improve the classification accu-
racy even further. We have used LeNet architecture for training our network with
MNISTP| data-set and VGG architecture for training our network with CIFAR-1(f]

data-set.
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Figure 2.1: AlexNet’s architecture
source: Krizhevsky et al. [11]

2.2 LeNet and VGGNet

LeNet [13], is a pioneering 7-level convolutional network proposed by LeCun et al. in
1998. It classifies digits and was used by several banks to recognize hand-written
numbers on checks (cheques) digitized in 32x32 pixel grey-scale input images. The
ability to process higher resolution images requires larger and more convolutional lay-
ers, so this technique was constrained by the availability of computing resources.

The runner-up at the ILSVRC 2014 competition is dubbed VGGNet [6] by the
community, was developed by Simonyan and Zisserman. The original version of VG-
GNet consists of 16 convolutional layers and is very appealing because of its very
uniform architecture. Similar to AlexNet, it has only 3x3 convolutions, but lots of filters.
It is a popular choice in the community for extracting features from images. The

weight configuration of the VGGNet is publicly available and has been used in many

’https://en.wikipedia.org/wiki/MNIST_database
3https://en.wikipedia.org/wiki/CIFAR-10
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other applications and challenges as a baseline feature extractor. In our research, we have
used a variant of VGGNet to train our network on CIFAR-10 data-set.

The convolution operation is one of the key operation in any CNN. The inputs
and weights can be arranged in a manner that the convolution operation reduces to
a simple matrix multiplication operation. The bulk of the workload of a convolution
operation comes due to the multiplication operation. The next sections discusses some
of the work that has been done to optimize the matrix multiplication and it’s appli-
cation to CNNs.

2.3 Strassen algorithm for fast matrix multiplica-
tion

In 1969, Volker Strassen proved that the O(N3) time General Matrix Multiplica-
tion algorithm was not optimal and proposed a better than O(N?) algorithm [17].

Strassen’s algorithm, with running time complexity of O(n*0735?)

for large input, was
only slightly better but it became the basis for more research and eventually led to faster
algorithms. The basis of Strassen’s algorithm is explained below:
Let X, Y be two square matrices over a ring R and the product of X and Y be Z.
Z=XY X Y,ZeR"*”

If the matrices X and Y are not of type 2" x 2", then fill the missing rows and
columns with zeros.

Then partition X, Y and Z into equally sized block matrices
X X Y Y Z Z

X — 1,1 1,2 Y= 1,1 1,2 7= 1,1 g
Xo1 Xap Yo1 Yoo Zyy Zsp

with

Xi; Y Zi; € R ¥7X, Y, 5,2y € R2TAT

The naive matrix multiplication would be:

Zi:=X11Y11+X12Y2,

Zi5=X11Y12+X12Y2,

Zoi =X01Y11+X22Y2,
Zos=X21Y12+X55Y25

INE



8 multiplications to calculate the Z; ; values, which is the same as in standard matrix
multiplication.
The Strassen algorithm suggests defining new matrices as below:
M, = (X411 +X22) (Y114 Yapo)
M, = (Xo1 +X52)Y1
M; = X1,1(Y1,2 - Y2,2)
M, = Xz,Q(YQ,l - Yl,l)
M; = (X1,1 + X1,2)Y2,2
Mg := (X213 — X11)(Y11+ Y1)
M; = (X12 —X22)(Ya1 + Yoo)
With M, defined as above, only 7 multiplications (one for each M;) are required. C; ;
can now be expressed in terms of M; as follows:
C.1 =M +M;—-M;+M;
Ci2=M;s+ M;
Cy1 =My + M,y
Coo=M; — M; + M3 + Mg
This division process is repeated n times recursively until the sub-matrices degener-
ate into numbers (elements of the ring R). At this point the final product is padded with
zeroes, just like X and Y, and is stripped of the corresponding rows and columns.
Using this basis, Cong and Xiao [I8] proposed a view of the architecture
that canleverage from Strassen’s algorithm. They reported to have reduced the computation
by up to 47%.
More research in optimizing the performance of CNNs led to exploration of domain

transformation techniques such as FFT, details of which are discussed in the next section

2.4

2.4 FFT based convolution

A fast Fourier transform (FFT)) is a technique that calculates the discrete Fourier
transform of a sequence, or its inverse (IDFT]). Fourier analysis involves con-
verting a signal from a base domain(space/time) to a representation in frequency do-
main and vice-versa. The[DFT|is computed by breaking a series of values into components

of distinct frequencies [19]. This operation can be applied to many fields but com-
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puting the DFT requires too many operations to be feasible in practice. An [FET]

performs the conversion by factorizing the[DFT]input into a product of sparse factors
in faster time [20]. Thus the time complexity of calculating the reduces from

O(N?), which arises when one uses the definition of DFT} to O(NlogoN). Here N

represents the size of the input.

In 2014, Mathieu et al. [I0] presented a simple based convolution algo-
rithm to accelerate the training and inference of a[CNN] Their [FFT] based out-
performed the state-of-the-art [CNN] implementations of that time. This was possi-
ble by computing convolutions as Hadamard productsﬁin the Fourier domain and reusing
the same transformed feature map.

In 2015, Vasilache et al. [9] proposed two based convolution techniques to
optimize the performance of[CNNsl One of their implementations was based on NVIDIA’s
[cuFFT]library, and the other was based Facebook’s open-source library, [{bfft] Both for
them were faster than NVIDIA’s CuDNN implementation of networks with many con-
volution layers. [fbfft| performed better than[cuFFT] however, the speedups were promi-
nent for deeper networks and large kernel sizes. The speedups obtained by their cuFFT
implementation for different kernel sizes are shown in figure 2.2

The speedups achieved using[FFT]based convolution are promising but are observed
for large input and kernel sizes. The typical kernel sizes used in are small (3 x 3
or 5 x 5) and based convolution techniques have produced mixed results with

small kernel sizes.

2.5 Winograd based convolution

Like [FFT] Winograd based algorithms are another class of transformation techniques
that use properties of linear algebra to reduce the number of multiplication operation.
Coppersmith-Winograd algorithm was one of the earliest version of this technique and
has a running time of O(n**™*7") [21], for multiplying two square matrices of size n x n.
Unlike [FFT] based techniques, Winograd convolution works well with small input and
kernel sizes, which is generally the case in a [CNN] Using Winograd’s minimal filtering

algorithm-based optimization techniques is a common practice in signal processing and

‘https://en.wikipedia.org/wiki/Hadamard_product_(matrices)


https://en.wikipedia.org/wiki/Hadamard_product_(matrices)

1/16x 16X

speedup
1 1
96 96
512 512
4096 4096
12288 12288
32768 32768
49152 49152
05536 65536
98304 g 98304 g
131072 ‘g 131072 g
147456 147456
196608 E 196608 E
262144 8 262144 8
393216 el 393216 2
524288  © 524288  ©
589824 589824 o,
786832 786432
1041 6576 104 576
1179648 1179648
1572864 1572864
2097152 2097152
3145728 3145728
4194304 4194304
8388608 8388608
— [a\} <t o0 el N <+ — oV} <t el 2] <+
— ™ O Anl ™ O
output size output size
3 x 3 kernel 5 x b5 kernel
1 1
96 96
5126 | 5126
o o
f22988 ;}22988
32768 32768
49152 49152
65536 ™ 65536 m
98304 N 98304 N
131072 g 131072 g
147456 147456
196608 g 196608 g
26214g 2 262148 2
393216 2 393216 2
524288 2 524288 2
589824 A, 589824 o
786432 786432
10486576 1048576
1179648 1179648
1572864 1572864
2097152 2097152
i 3ios
§388608 §388608
\n 9] < @ O q < \n 9] < @ O q <
— o O - o O
output size output size
7 x 7 kernel 9 x 9 kernel
1 1
96 96
512 512
4096 4096
12288 12288
32768 32768
9152 9152
é 530 ° é 536 ®
Tyioge -3 tyioge -3
147456 4 147456 4
196608 g 196608 g
262142 2 262142 <2
393216 2 393216 Q2
524288  Q 524288  ©
589824 A, 589824 o,
78648132 786432
104 6575? 104 6575?
117964 117964
1572864 1572864
2097152 2097152
193504 105504
§388608 38%608
- a4 < o © o <% - a4 < o © o
— ™ O — ™M O

output size

11 x 11 kernel

output size

13 x 13 kernel

Figure 2.2: Speed ups for cuFFT convolution by Vasilache et al. for different kernel
sizes

source: Vasilache et al. [9]
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data transmission but wasn’t used in until 2015.

Lavin and Gray [8] were the first to propose an analogy between the convolution
operation in and application of Winograd’s minimal filtering techniques. They
implemented the [GPU]version of Winograd based convolution layer on the VGG Net-
work [6], a sixteen layer deep network with nine convolution layers. They performed
bench-marking tests for different batch sizes with both single precision (fp32) and
half precision (fpl6), using a 3 x 3 filter on every convolution layer. fp32 arithmetic
instructions were used for all the tests. With fp32 data, they found F(2 x 2,3 x 3)
based Winograd convolution tobe more accurate than direct convolution. With fp16
data, all the algorithms were observed to produce similar accuracy. Speedups were
observed for both fpl6 and fp32 data using Winograd based convolution.

After the work by Lavin and Gray [§], the use of Winograd based convolutions
gained popularity and a standard implementation of it was provided on various hard-
ware platforms. Compared to spatial or based convolution, fewer floating-point
operations are involved in Winograd based convolution and they are very popular in
CNNs. However, training CNNs in Winograd domain is not straight forward. Wino-
grad based convolutions are used only to perform the convolution operation and the
weights are converted back to spatial domain after the convolution operation.

Zlateski et al. [22] studied the behaviour of these convolution techniques(regular
Gaussian [FFT] and Winograd) on modern CPUs. Their evaluation criteria was
based on experiments using VGG [6] and AlexNet [II] and took memory bandwidth
and cache sizes, along with floating point operations, into consideration. They found
based convolution techniques to be faster than Winograd based method on multi
core CPUs with large cache sizes.

We have also used Winograd based techniques for convolution in our for this
research. The details of the transformation and convolution operation in Winograd

domain, and those for the backward propagation stage are discussed in Chapter 3.

2.6 Winograd Convolution via Integer Arithmetic

Quantized have been shown to work for inference with integer weights and
activations [23]. The 32-bit floating point model sizes can be reduced by a factor of

4 by quantizing to 8-bit integers. The quantized networks on CPUs are also 2x-3x
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times faster than the floating point models. Various successful kernels like ARM CMSIS
[24], GEMMLOWP (GLP), Nvidia Tensor RT use reduced precision for fast inference.
There also exist a few custom hardware that use reduced precision for fast inference
[25] 1]

Meng and Brothers [26] proposed a new Winograd based convolution by extending
the construction to the field of complex. They have reported their approach to attain
an arithmetic complexity reduction of 4x over the spatial convolution and 2x per-
formance gain over other algorithms. They also propose an integer-based filter scaling
scheme that reduces the kernel bit width by 2.5% without much accuracy loss.They
displayed that a mixture of Winograd based convolution and lossy scaling scheme can

attain inference speedups without much accuracy loss.

2.7 Winograd Convolution Kernel Implementation
on embedded CPUs(ARM architecture)

One of the primary goals of improving the performance of using Winograd
and other transformation techniques is to enable deployment in low power embedded
devices. Maji et al. [27] propose a way to leverage computational gains on an Armv8-A
architecture by rearranging blocks of data and allow optimal use of the available
registers. The proposed data flow is described in figure 2.3] They reported having
achieved 30% - 60% speedups in deep like: SqueezeNet [28], Inception-v3 [29],
GoogleNet [2] and VGG16 [6]. In theory, speedups up to 4x are possible using this
approach. However, the practical speedups are lower than this, largely due to the cost
associated with transforming the inputs. With an increase in the number of output

channels, the speedups attained will be maximized.

2.8 Pruning techniques

The complexity of a architecture depends on the problem it has to solve. For a
simple task, a shallow network with few parameters may be sufficient, whereas for a
complex task a deep network with several connections and parameters may be required.

The computational complexity increases as the size of the network increases. A com-



Pre-Transform Input Tiles (6 x 6 x C)

X0

=

X02 | X03

X4

X5

X06 |

Xov

X01 | X02

X03

04

X05 | X06 |

X13
X7 |} xo1

x02

X03

x04

X05

X06

X19 I x93 Xa7

X08

X09

X10

X1

Xi12

X19 (|43

¥i4

Xi5

X16

A7

X18

X25 || w19

Xz20

X1

Xz

K23

24

c3 x31

X25

X26

xer

X8

X249

30

X31

X3z

X33

X34

X35

36

C3

1 {

Input
Transforms

a)

Post-Transform Input Tiles (Rx4 x4 X C)

02[03] 04

0

=

02 [03]o4]

05001]02]03]04]

01[02]03[04]

05001 [02] 03|04

09

05[Jo1{02] 03

04

09005060708

13

09Mlos| 06|07

08

1309 |10[11 12

c3

13|jog[10] 11

12

13|14[15|16

c2

13]14|15

16

i
R1

c1
R2

02[03] 04

=]
=

02[03]o4]

c3

0102 03] 04|

01[02]03[04]

05001 [02]03|0a

05 oz|oa

04

090506 07|08

091jos| 06|07

08

13foa[10[11]12

c3

13 10]11

12

13|14[15|16

14]15

16

c1 3

(b)

— Ri

Y01 | Y02 | Y03

Y05 | Y06 | Yo7 | R

| R3 —
Y13 | Y14

Y09 | Y10 | v | iz

Y15 | Y16

— R4 —

(d) Kernels, (e) Output of (GEMM|

M1

c e

M4

Post-Transform Cufput Tiles (4 x4 x M)

(f)

Post-Transform Filter Tiles (Cx 4 x 4 x M)

o1fo2|03]04] o1[02] 03|04 01/02| 03 [04] o1[02| 03[ o4
05 01[0z[ 03[ 04] 05(101]02]0af 04 05f01]o2]03[04] l05/o1]o2]oa |04
0900501 |02] 02 oa] 221105 o1 [02]oz [oa] 122005 fo1 [0z oz [oa] [“2f25/jo1]0z2]0z]oa
| 13002005 o607 [oe| 12| 02|fos[os o7 [oe] L13lj0efos|os[o7[oe] L23]|02|fos|os 07|08
c3  |13foal10]11]12 [13]]oe]10{11]12 | 1302 ]10]11]12 [13]|0] 10] 11|12
c2 13[14[15]16 13]14]15]16 12]14|15]16 1314|1516
o .
N M2 (C) M3 M4
Rearganizing
Transformed
Filters
M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
ct [otfo1]o1]o1] [o2]oz]oz]oz 16]16]16]16
x cz [ot]ot]o1]o1] [o2]o2]o2]02 oooD 32[32|32]32
ca |ot|ot]o1]o1] Jo2|02]o2]02 48|48 48]48
C1 c2 3 M1 M2 M3 M4
r1 JotJorJor]| Rt JoiTorforTor
Rz Jot|oifot]| e [os 1]o1
s |ot|ot|ot]| ms [ot|ot]otfot
B R4 JO1|01|01]|| R4 [O1)01|01|O1] M1 M2 M3 ma
Reorganizing
formed gy A1
nputs 02]oz2]02
Re  |oz|oz|o2 A2
s  |oz|oz2|o02 A3
Ra |oz|oz|o2 A4
-]
(-}
(-]
o pa |
[-)
v M1 M2 M3 M4
Rt [16[18]16 rR1 |16
Rz |16|16|16 Rz |18)
ps  [16[16]16 ps |16
ne |16]16]16 ne |16
Output
from (d)
GEMM
01[02[03]o4]
05{[o7 oz
oz]oa]os]
Cutput 01]02]03]04
Transforms osloslo7[os
[12lJos[10] 11|12
M2 13[14]15]16
M1
A1
oz]ca]os]
01]02]03]04
05| 06| 07|08
iz 2fJos]1o]11]12
M2 13[14]15]16
M1 R M1 e

Pre-Transform Cutput Tiles (Rx4x4xM)

(€)

Figure 2.3: Data-Flow in Region-wise Multi-channel on ARM CPUs
(a) Pre-transform Input Channels, (b) Transformed Input, (c¢) Transformed Filters,

Channels after applying Inverse Transforms
source: Maji et al. [27]

14

in the Residue Domain, (f) Final Output



15

plex network is capable of learning a lot of details, sometimes more than what’s
necessary for the given task. The optimal configuration is unknown and can require
a bit of guess work. Learning more parameters than necessary may lead to over-
fitting, whereas learning less than necessary may lead to under-fitting. One solution
to this problem is to prune a superior network by discarding redundant connections
and useless weights [30, B1]. This works well in most cases and provides better results.
A different issue while dealing with complex is with porting them on low power
embedded devices. Here again, we can solve part of the problem by deploying a pre-
trained pruned network on the device. This will reduce the DRAM] accesses and in
turn save energy. As can perform several [MAC] operations, sparsity can help in
reducing those computations.

Several network pruning methods have been shared by different researchers. Han,
Pool et al. [32] and Han, Mao et al. [33] were able to discard a large portion of
the weights with minimum accuracy drop by training the network with L1/L2 norm
augmented loss functions and pruning it gradually. Connection values less than a
threshold are removed and the threshold is increased gradually. Han, Pool et al. [32]
extended their work by quantizing the final pruned network[33]. Han, Pool et al. [32]
and Han, Mao et al. [33] had to use sparse representation to leverage from the induced
sparsity. Han et al. [34], B3] proposed learning the sparsity pattern in network weights
by discarding weights whose absolute value is below a certain threshold. This technique
can induce 50%-70% sparsity in the network and reduce the number of multiplications.
Castellano et al. pruned the units in the hidden layers for a feed-forward deep
[35].

Collins and Kohli reduce the computational workload with sparse connectivity
in convolution and fully connected layers [36]. Stepniewski and Keane [31] used genetic
algorithms and simulated annealing to prunes multi-layered perceptron. These works
[32, 33], 35, [36], B1] leverage from the unstructured sparsity in .

Polyak and Wolf [37] propose a way to add channel-wise sparsity to a network
by removing entire convolution layer channels. On the other hand, Anwar et al. in
proposed a way to explore sparsity at different levels using search followed fixed point
optimization [3§].

In Dropout [39] and Dropconnect [40] the neuron output and weights are pruned

during the training phase. Both of these methods train discrete subgroups of network
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parameters and produce better generalizations. Louizos et al. [41] use a variant of
concrete dropout [42] on the weights of a network and regularize the drop rates in
order to make the network sparse. Likewise, Molchanov et al. [43] reported that
applying variational dropout [44] to the weights of a network implicitly sparsifies the
parameters.

Liu et al. [45] were among the first to propose pruning and retraining the weights in
Winograd domain for Winograd based convolution in [CNN] Li et al. [46] also reported
promising results on large data-sets. They reported that approximation techniques,
used on smaller networks by Liu and Turakhia [47], weren’t sufficient to handle non-
invertible mapping between convolution and Winograd parameters on larger networks
like AlexNet [5]. They reported having achieved 90% sparsity in the Winograd param-
eters of AlexNet [5] with accuracy drop as low as 0.1%.

There has been much research which suggests the use of pruning and retraining
[46], 45] to regain the accuracy drop. In this research, we have trained our models in
the spatial domain and the Winograd domain separately, then pruned the respective
trained weights in an iterative manner to study the drop in accuracy.

Pruning methods can be applied with dynamic activation sparsity to further im-
prove the multiplication workload. Some of the previous work using dynamic activation

sparsity to improve CNN’s performance is discussed in the next section [2.9

2.9 Dynamic Activation Sparsity

The [ReLUrectified linear unit), defined as below sets activations whose values are
negative to zero.

f(z) = 2 = max(0, x)

This induces dynamic sparsity in the activations. Han et al. [34] reported that ex-
ploring sparsity of both weights and activations can lower the count of multiplication
operation by 4 — 11x. Huan et al. [4§] further experimented and reported that chang-
ing the configurations after training the network can induce greater sparsity in
activation without any significant accuracy loss. Exploring unconventional CNN archi-
tectures has also led to improvements for deep learning accelerators to take advantage
of the sparsity in activations. Han et al. [25] reported having optimally skip zeros

in input activations by deploying a Leading Non-zero Detection unit(LNZD) in their
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accelerator. Albericio et al. [49] also suggested a similar technique for a convolution
layer accelerator.

Transformation techniques and pruning methods are two independent ways of op-
timizing a [CNN] Combining these two approaches can help in optimizing the network
even more. However, combining these two approaches is not straight forward as con-
ventional data transformation neutralizes any gains obtained from the sparse methods.
Figure illustrates three different strategies for using Winograd based data transfor-
mation techniques in CNN. Liu et al. [45] proposed a Winograd{ReLU| base [CNN| by
moving the layer after the Winograd transformation. Both [ReLU| and pruning
were performed after Winograd transformation in this architecture(figurd2.4c). Us-
ing this approach they were able to reduce the count of multiplication operation by
10.4x,6.8x and 10.8x with less than 0.1% accuracy drop while training with CIFAR-
10, CIFAR-100 and ImageNet data-sets respectively. They also reported that this

architecture allows for more aggressive pruning.
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Figure 2.4: Winograd{ReLLU|
(a) Standard Winograd based convolution fills the Os in both the weights and activa-
tions. (b) Pruning the transformed filter restores sparsity to the weights. (¢) Winograd-
[ReLU] based architecture restores sparsity to both the weights and activations.
source: Liu et al. [45]



Chapter 3

Convolution in CNN

One of the primary task in this research was to integrate a Winograd convolution
layer in the [CNN] architecture where the weights are trained in the Winograd domain.
Section of this chapter provides a brief overview of convolution operation and the
back-propagation logic in spatial domain. In section [3.2] the concepts involved in
Winograd minimal filtering techniques are discussed and an analogy of convolution
operation in & 2D Winograd minimal filtering technique is provided. The steps
involved in gradient computation in the Winograd domain are also discussed in [3.2]
Finally, the implementation details of our Winograd convolution layer is

discussed in section 3.3l

3.1 Spatial Convolution

In [CNNg the input is an image with height H and width W. Depending on whether
the image is grey-scale or coloured, it can have multiple channels C. So one image has
HxWxC data points. A kernel is used as a filter to learn different features about the
input image. Typically, small kernel sizes of 3x3xC or 5x5xC are used. Large kernel
will not be able to capture minute details and hence result in low accuracy.

Let’s assume an input of size 32x32x3 and a 5x5x3 kernel filter. If we slide it
over the complete image and along the way take the dot product between the fil-
ter and chunks of the input image, we get a 28><28><1E] output(figure . This is

'In practice, most libraries pad the input matrix with zero to produce a 32x32x1 output.

19
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— 32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

Figure 3.1: Convolution
image source: Internet

what happens in the forward pass of the convolution layer in the[CNN] The convolution
layer comprises of a set of independent filters, which are independently convoluted with
the image. The feature maps learn certain characteristics(edge, sharpness, etc.) of
the input image.

In the forward pass the feature maps are generated by convolution of the im-
age and the kernel. The loss function is calculated from this value. Then in the
backward pass, the weightsin each of the layers are adjusted to minimize the loss in
reverse order - from the last layer to the first layer. A simple illustration of con-
volution(during forward pass) and back-propagation(during backward pass) is pre-

sented in figure |3.2] where X = Input; F = Kernel; O = Output;

011 O12 ( X1 | X12| %13 Fi1 | Faz ) o | e R Xqq | x| xoFu
= Convolution{ | X21 | X2z | X23 Yorfor | Yo | Xo3 | ———> | X1 | e | Yarn
O21 | Oz X31 | X32| X33 ) Far | P2 X31 | X32 | X33 X31 | X32 | X33
O1q = F11X41 + F2Xq2 + F24Xpq + F2oXo2 /
012 = F44X42 + F12X43 + F21Xoo+ F22Xo3 B | K e e
021 = F14Xp1 + F12X22 + F21X31 + F22X3p ol | X | X23 | —— | X2t | Xoru | o
Ogz = F11Xp2 + F12Xo3 + F21X3p + F2pX33 2ars | Yot R -

Figure 3.2: Forward Pass
image source: Internet

In the backward pass, the gradients of the kernel 'F’ with respect to the
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error 'E’ is computed following equations shown in figure |3.3|

OE _ OF 00n _ OF 00y OF 00y  OF 00y IE _ OB o0E 0 o0E
OF1 901 0F1 | 8012 0F | 802 0Fn | 0022 0F aF: =~ 900 M T 502 T 90, T Gon 2
dE  OE 301 . OE 0012 OE 302 | JE 00 aE  OE aE aE aE

= — I X
OF, 00, 0F, " 001, 0F, | 00y, 0F, | 00y, 0F1 > 9F, ~ 90,2 T g0, %2t 50, X2 T 5o,
OE  OE 90, OE 00, OE 303  OE 00 dE  OE OE E OE

_ " 1 + - X, X. X X
BFa1 A0 OFa1 | 9012 OFy | 00s1 0Fa1 | 803 OFa1 9Fn  Bon 1 T h0n 2T 50, "1 T 5o, 0
e AE JO AE G0 AE a0 AE a0 IE OF OF IE OFE
e et R = 2 X+ - Xag+ 5 Xga + 5 Xy
DFs2 P01 0Fs 0012 dFz 9021 OF2 9022 0Fa2 2 011 dO12 021 022

Figure 3.3: Backward Pass

The above equation can be written in form of a convolution operation

as shown in figure (3.4}

OE/EF 14| GE/OF 15 X11| X12| X1 8E/801;|GE/8015
=C i X21| X2 | X23 )
dE/dFp4 dE/dF o2 Xa1 ‘ Xao ‘ X33 ) G6E/8091 dE/d095

Figure 3.4: Backward Pass
image source: Internet

Likewise, the gradient computation for the input X can be summarize
as shown in figure (3.5}

OEIXqy | OEldXyp | EIXq3 |

OEIdX, | 8E/dXpn | EIdXos |

oEIoX31 | OEloXap | SEIoXas

9E/8014 8E/301, Fo | Fn
= Full_Convolution ( | )
9E/30,1 dE/dO| 3| Fiz | Fyy

Figure 3.5: Backward Pass
image source: Internet

3.2 Winograd Convolution

Lavin and grey were the first to apply Winograd minimal filtering techniques for con-
volution operation in The details suggested by them in their paper [§] are

discussed in this section.
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A convolution layer in processes:
(i) a bank of K filters with C channels and shape of R x S, with
(ii) a batch of N images with C channels, height H and width W
The filter elements can be denoted as Gy ¢y, and
the input images can be denoted as D; ;.

The output of a single convolution layer can then be denoted by:

C R S
Y;Jf,x,y = Z Z Di,c,x—i—u,y—i—va,c,u,v (31)
c=1 v=1 u=1
which can be written as:
c
Yir = Z D;.* G (3.2)
c=1

where * denotes 2D correlation.
Using Winograd’s minimal filtering algorithm for computing m outputs with an r-tap
FIR filter, F(m, r), requires:

u( Fmyr) ) = m + r — 1 (3.3)

multiplications [7]. The 1D algorithm can be nested to form 2D algorithms. So the
number of multiplication required for computing om x n outputs with an r x s filter,

F( mxn, rxs ) is given by [7]:
wE(mxn,rxs)) = p(F(m,r)pu(F(n,s)) = (m +r— n + s — 1) (3.4)

Equations & show that to compute F(m,r), we must access an interval of
m + r — 1 data values, and to compute F(m X n,r X s) we must access a tile of
(m+r—1)x(n+s—1) data values. So one multiplication per input is required when

using minimum filtering algorithm.

F(2 x 2,3 x3)
The standard algorithm for F(2, 3) uses 2x3 = 6 multiplications. Winograd [7] doc-



23

umented the following minimal algorithm:

P3| 4 & %) [my+my o+ my (35)
7 d1 d2 d3 &1 Mmoo — Mg — 1My ‘
82

where

my = (doda)go; Mo = (d1 + dz)W% mg = (dody ) 252 my = (dyds)go
Using equation[3.3] number of multiplicationsin F(2,3) = u(F(2,3)) =2 +3 —

1 =4. It also uses 4 additions involving the data, 3 additions and 2 multiplications

by a constant involving the filter (the sum gy + go can be computed just once), and

4 additions to reduce the products to the final result.

Fast filtering algorithms can be written in matrix form as:
Y = AT[(Gg) ® (B"d)] (3.6)

where © indicates element-wise multiplication. For F(2,3), B, G, A, g & dare given

1 0 -1 0 1 0 0
1 1 1
wmeto |00 0 g b s AT:[1 11 0]
0 -1 1 0 111 01 -1 -1
01 0 -1 0 0 1
T T
g=[m & & d=[d d d (3.7)

The 2D filtering algorithm can be obtained by nesting the 1D algorithm to itself:

Y = AT[[GgG"] ® [BTdB]|A (3.8)

where now g is an r x r filter and d is an (m +r — 1) x (m + r — 1) image tile.

The nesting technique can be generalized for non-square filters and outputs, F'(m x

n,r X s), by nesting an algorithm for F(m, r) with an algorithm for F(n, s).
F(2x2,3%3) uses 4x4 = 16 multiplications, whereas the standard algorithm uses

2 x 2 x 3 x 3 = 36 multiplications. This is an arithmetic complexity reduction of i’—g
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= 2.25. The data transform uses 32 additions, the filter transform uses 28 floating
point instructions, and the inverse transform uses 24 additions.

Algorithms for F(mxm,rxr) can be used to compute convolution layers with rxr
kernels. Each image channel is divided into tiles of size (m+rl)x(m+rl), with r—1
elements of overlap between neighboring tiles, yielding P = [Z£][X] tiles per chan-
nel, C.F(mxm,rxr)is then computed foreach tile and filter combination ineach channel,
and the results are summed over all channels. Substituting U = GgGTandV =
BTdB, we have:

Y = AT[U o V] (3.9)

Labeling tile coordinates as (z,7), the convolution layer formula for a single image

i, filter k, and tile coordinate (Z,7) can be written as:

o} c C
Yirzg= Z Diczg*Gre= Z AT[Uk,c © Vc,z',j,g]AZAT [Z Uke © Vc,z’,i,g]A (3.10)

c=1 c=1 c=1

Thus we can reduce over C channels in transform space, and only then apply the inverse
transform A to the sum. This amortizes the cost of the inverse transform over the
number of channels.

The following sum:

c
Myizg = Z Uke © Veizg (3.11)
c=1

can be simplified by collapsing the image/tile coordinates (i, Z,7) down to a single
dimension, b. If we label each component the element-wise multiplication separately,

as (&,v), we have:

C,

c
571/ £7V €7V
MG =3 UEIvEY (3.12)
c=1
This is just a basic matrix multiplication and can be written as:

C
ME) — Z EN T/ EY) (3.13)
c=1

Many efficient implementations of matrix multiplication are available on [CPU| [GPU]

and FPGA platforms. Thus using the above equations as basis, an algorithm to com-



25

pute the convolution operation in the forward pass of a[CNN]is presented in section
B.2.11

Winograd documented a technique for generating the minimal filtering algorithm
F(m,r) for any choice of m and r. The construction uses the Chinese remainder the-
orem to produce a minimal algorithm for linear convolution, which is equivalent to
polynomial multiplication, then transposes the linear convolution algorithm to yield a

minimal filtering algorithm. More details are present in Winograd’s seminal book [7].

F(3x3,2x2)

Training a network using stochastic gradient descent requires computation of the gra-
dients with respect to the inputs and weights. For a convolution layer, the gradi-
ent with respect to the inputs is a convolution of the next layers back-propagated
error, of dimension NxKxHxW, with a flipped version of the layers RxS filters.
Therefore it can be computed using the same algorithm that is used for forward prop-
agation. The gradient with respect to the weights is a convolution of the layer in-
puts with the back-propagated errors, producing R xS outputs per filter and channel.
Therefore we need to compute the convolution F(RxS,HxW), which is impractical
because HxXW is too large for our fast algorithms. Instead decomposing this convo-
lution into a direct sum of smaller convolutions [§], for example F(3x3, 2x2). Here
the algorithm’s 4x4 tiles are overlapped by 2 pixels in each dimension, and the 3x3
outputs are summed over all tiles to form F(3x3,H xW). The transforms for F(3x3,

2x2) are given by:

1 0 -1 0 1 0 1 1 0
01 1 0 11 0 -1 0

BT = G= |2 2| AT= (3.14)
0 —1 0 i -1 0 —1
0 —1 1 0 1 0O 1 1 1

With (34+21)% = 16 multiplies versus direct convolutions 3x3x2x2 = 36 multiplies, it
achieves the same 36/16 = 2.25 arithmetic complexity reduction as the corresponding

forward propagation algorithm.



F(4 x 4,3 x3)
A minimal algorithm for F(4, 3) has the form:
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(4 0 -5 0 1 0] (L 0 0
0 -4 -4 1 10 -3 -3 -2 11 1 11
gr_ |0 4 —4 -1 10 -+ 1 -1 AT_ |01 -1 2 2
0 -2 -1 2 10 5 i3 & 01 1 4 4
0 2 -1 210 4 —% 8 01 -1 8 -8

0 4 0 —-501 0 0 1
(3.15)

The data transform uses 13 floating point instructions, the filter transform uses 8,
and the inverse transform uses 10.

Applying the nesting formula yields a minimal algorithm for F(4x4, 3x3) that uses
6x6 = 36 multiplies, while the standard algorithm uses 4x4x3x3 = 144. Thisis an
arithmetic complexity reduction of 4. The 2D data transform uses 13(6 + 6) = 156
floating point instructions, the filter transform uses 8(3 + 6) = 72, and the inverse
transform uses 10(6 + 4) = 100.

The number of additions and constant multiplications required by the minimal Wino-
grad transforms increases quadratic-ally with the tile size [7]. Thus for large tiles,
the complexity of the transforms will overwhelm any savings in the number of multi-
plications.

The magnitude of the transform matrix elements also increases with increasing tile
size. This effectively reduces the numeric accuracy of the computation, so that for

large tiles, the transforms cannot be computed accurately [7].

3.2.1 Forward Propagation

In the forward pass an input image of size H x W is convoluted with a kernel of size
R x S. In practice, the size of kernel is small but the image size can vary (from
smaller than 32 x 32 to larger than 224 x 224). In theory, it is possible to compute
F(R x S, H x W using methods mention in Winograd’s seminal book [7]. However the
complexity to compute F(R x S, H x W) increases quadratic-ally and it is not practical
to compute F(R x S, H x W) for large H x WW. Instead, the input image is broken into

= o O© O
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smaller segments(tiles) and the Winograd convolution is performed on these tiles.
Using equations - 13.13] the convolution operation in Winograd domain can be
summarized as algorithm [3.6;

Algorithm 1 Compute Convnet Layer with Winograd Min-
imal Filtering Algorithm F'(m x m,r x r)
P = N[H/m]|[W/m] is the number of image tiles.
a = m + r — 1 is the input tile size.
Neighboring tiles overlap by r» — 1.
dep € R**™ is input tile b in channel c.
gk.c € R™*" is filter k in channel c.
G, BT, and AT are filter, data, and inverse transforms.
Yip € R™*™ is output tile b in filter .
for k = 0to K do
forc=0to C do
u = Ggp .G € R¥*
Scatter © to matrices U: U,fc’y) = U¢

forb =0to P do
forc=0to C do
V= BTdc,bB € Raxa

Scatter v to matrices V: V(i’”)

c,
for £ = 0to o do
forv =0toado
MEV) = Ev)yEr)
for k = 0to K do
for b =0to P do
Gather m from matrices M: m¢ , = M ,E.i;y)

Ykz,b == ATmA

= Ugv

Figure 3.6: Winograd Convolution
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3.2.2 Backward Propagation

Use of Winograd filtering techniques suggested by Lavin and grey [8] leverages from
the reduction in multiplication operation by applying Winograd convolution on both forward
and backward propagation. However, to truly train a network in the Winograd do-
main, the gradient must be computed with respect to the transformed output. Li
et al. in their paper [46] had proposed a way to compute the gradients with re-
spect to the loss function, in Winograd domain. The details of the back-propagation
logic are discussed in this section.
Let’s assume a convolution layer where the input tensors with C channels of fea-
tures maps each of dimension H; x W; is transformed into K output channels via a

simple unit-stride, unit-dilation linear convolution with kernels of size r x s:

I c RCXHiXWi N O c RKXHOXWO

c (3.16)
via O(k,:,:):ZW(k:,c,:,:)@I(c,:,:)

=1
where W, = W, — s+ 1, H, = H; — r + 1, and ® stands for 2D linear convolu-
tion. The computation of Equation[3.16] can be performed using the Winograd trans-
form which has a lower arithmetic complexity than Equation [3.16] suggests. A convo-
lution W (k, ¢, :,:)®I(c,:,:) with I(c,:, :) of size H;x W; can be broken down into many
convolutions each involving smaller tiles of I. This overlapping method can be illustrated
by the following 1D example:

W(O0:2)®I(0:5) — O(0:5)

1(0 : 3) 0(0 1)]

W20 14 5 0(2:3)

I is broken up intotwo tiles with some duplicating elements while O is partitioned
(without duplication) into two tiles. More generally, given convolution kernels of size
rx sand (small) sizes m, n that divide H, and W, respectively, the input and output
tensors can be reshaped: I, O into 1:, O
] € ROXHixWi __y j e ROXTx(m+r—1)x(nt+s—1)
and O € RExHoxWo __y () ¢ REXTxmxn

Where T is the number of resulting tiles of the reshaping: T = e

mn

The input
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tile size is (m+r—1) x (n+s— 1), while the output is m x n. This reshaping can be

expressed by two index mapping functions ¢ and .

I(e,ti,§)=1(c, é(t.i, 7)), O(k, i, j)=O(k, ¥(i, 1))
¢ is many-to-one and maps a 3-tuple to a 2-tuple
1 is invertible and maps a 2-tuple to a 3-tuple.

Using the overlapped form:

O(k,t,:,)=> Wi(k,c,:,:) ©I(ct,:,0) (3.17)

Solving equatio in spatial domain takes mnrs multiplications and (m—+r—1)(n+
s — 1) multiplications as shown in section . In Winograd domain, the output can
be represented as:

Ok, t,2:)=AT |8, (W (k1,)) © (BT T(e 1,2, 5)By) | Ao

I(c,ti,§)=I(c,¢(t,i,5)), O(k,i,§)=0(k, (i, j)) (3.18)

For backward propagation, the partial derivatives of the scalar loss function L w.r.t.
each of the variables I(c,1,j) and Wy(k,c,1,7) in terms of the known partial deriva-
tives of L w.r.t. O(k,4,j) (= 25) has to be computed.

Suppose the partial derivatives of a scalar function L w.r.t. an array of variables
Yij, Y € R¥ are known. Moreover, the variables Y are in fact dependent vari-
ables of an array of variables z;;, X € R¥ % via Y = UTXV where U,V are constant
matrices of commensurate dimensions. The partial derivatives of L w.r.t. X are then
given by g—)]} = Ug—{;VT.

Let’s denote the intermediate variables in Equation by I, fand Z : I, fle,t,:
)= BTI(c,t,:,:)By and Z(k,t,:,:) = chzl We(k,c,:,:) © ff(c,t, ;,:) for all applica-
ble indices. Here Z(:,:,i,j):Wf(:,:,i,j)_ff(:, :,4,7), which is the 2D slice of Z with

any fixed 7,7 is a matrix product.

Now aaWLf can be computed using chain rule as shown in equation |3.19¢
oL oL
— = A AT
aZ<k7t7:7:) 180([€,t,:7:) 2
(3.19)
oL oL ~ T
= — (15 (5,54, 7))

an(I,i,i,j) aZ(:a:aZ7])
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L :.. IL
here 50 18 95

Likewise, chain rule is applied to g—é computed in m to compute g—§:

with simple index mapping ¢~ 1 [46].

oL oL

—— = (We(:, 1,1, T —
OI¢(:,:,i,7) (Wil 2 0Z(:,,1,7)
~8—L — Bl~8—LBg“ (3.20)
dI(c,t,:,:) 0l¢(c,t,:,2) '
oL oL
0I(c,i,5) 2 Ol(c,t,i,5")

(t,i,5");where(i,j)=¢(t,i’,j")

Equations & are analogous to partial derivatives in spatial domain(3.3]-
. They are used to compute the gradient in Winograd domain and implement the

backward pass of the network.

3.3 Implementation

Using the Winograd based convolution and gradient computation techniques explained
in the previous sections & , I started implementing the Winograd layer into
TensorFlowﬂ The Winograd layer had to be implemented as a custom layer and
integrated into the TensorFlow framework as a custom operationﬂ I had defined the
custom operation but parts of my implementation were not working as expected. I
could not find sufficient online documentation to be able to fix my implementation
and had to switch to Caffe. I then implemented and integrated our Winograd layer
into Caffe [50], which is a popular deep learning framework developed by Berkeley Al
Research /The Berkeley Vision and Learning Center and community
contributors. Our version of the Caffe framework with, Winograd layer integrated, is
available in thisE| code repository.

A high-level detail related to Winograd layer and other optimization libraries used

in the project is discussed in this section.

2TensorFlow is a free and open-source software library for data-flow and differentiable program-
ming across a range of tasks. It is a symbolic math library, and is also used for machine learning
applications such as neural networks.

Shttps://www.tensorflow.org/guide/extend/op

4https://github.com/Swas99/caffe


https://www.tensorflow.org/guide/extend/op
https://github.com/Swas99/caffe
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Implementation

In our experiments, the convolution operation is carried out between an input patch

size of 4 x 4 and a kernel of size k x k, where k € {3,5}. Kernel size of 3 x 3 and 5 x 5

were used in separate experiments. Using techniques mentioned in Winograd’s seminal
book [7], the Winograd parameters for F(4,3) and F(4,5) were computed. The constant

parameters and all generic logic around Winograd’s minimal filtering algorithm was

incorporated in a utility clas{’| and integrated into the Caffe framework.

To carry out the convolution in Winograd domain, we had to implement and in-

tegrate a new layer in the Caffe framework, that will replace the spatial convolution
layer ﬂ E} ﬂ . This layer receives the data(Blobﬂ) and passes on to the next layer after

performing the convolution operation. During the back-propagation, the weights are

adjusted according to the gradient w.r.t the loss function. The convolution operation is

performed on image tiles and in mini-batches and arranging the memory block appro-

priately can help improve the performance. There are many popular techniques and

libraries to perform this optimally [} [} [§] . We have also used them in our Winograd

layer’s implementation [} []

3.3.2

Libraries

A high level detail of various libraries used in the project is discussed below:

e [SpMP} [SpMP|(sparse matrix pre-processing) library includes optimized parallel

implementations of a few key sparse matrix pre-processing routines: task de-

pendency graph construction of Gauss-Seidel™] like loops with data-dependent

5https:

//github.com/Swas99/caffe/blob/master/include/caffe/util/winograd.hpp

Shttp://caffe.berkeleyvision.org/tutorial/layers/convolution.html

7https:
8https:
9https:
10https:
11https:

47422548

“https:
13https:
14https:
15https:

//github.com/Swas99/caffe/blob/master/src/caffe/layers/conv_layer.cpp
//github.com/Swas99/caffe/blob/master/src/caffe/layers/conv_layer.cu
//caffe.berkeleyvision.org/tutorial/net_layer_blob.html
//docs.nvidia.com/cuda/cublas/index.html
//stackoverflow.com/questions/46213531/how-is-using-im2col-operation-in-convolutional

//en.wikipedia.org/wiki/GEMM
//github.com/Swas99/caffe/blob/master/src/caffe/layers/winograd_layer.cpp
//github.com/Swas99/caffe/blob/master/src/caffe/layers/winograd_layer.cu
//en.wikipedia.org/wiki/GaussSeidel_method


https://github.com/Swas99/caffe/blob/master/include/caffe/util/winograd.hpp
http://caffe.berkeleyvision.org/tutorial/layers/convolution.html
https://github.com/Swas99/caffe/blob/master/src/caffe/layers/conv_layer.cpp
https://github.com/Swas99/caffe/blob/master/src/caffe/layers/conv_layer.cu
https://caffe.berkeleyvision.org/tutorial/net_layer_blob.html
https://docs.nvidia.com/cuda/cublas/index.html
https://stackoverflow.com/questions/46213531/how-is-using-im2col-operation-in-convolutional-nets-more-efficient/47422548
https://stackoverflow.com/questions/46213531/how-is-using-im2col-operation-in-convolutional-nets-more-efficient/47422548
https://en.wikipedia.org/wiki/GEMM
https://github.com/Swas99/caffe/blob/master/src/caffe/layers/winograd_layer.cpp
https://github.com/Swas99/caffe/blob/master/src/caffe/layers/winograd_layer.cu
https://en.wikipedia.org/wiki/Gauss–Seidel_method
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loop carried dependencies, and cache-locality optimizing re-orderings like breadth-
first search (BFS) and reverse Cuthill-McKed™® (RCM). In addition, in-
cludes auxiliary routines like parallel matrix transpose that is useful for mov-
ing back and forth between compressed sparse row (CSR) and compressed sparse
column (CSC), matrix market file I/O, load balanced sparse matrix dense vec-
tor multiplication (SpMV), and optimized dissemination barrier.The pre-processing
routines implemented in are very important for achieving high perfor-
mance of key sparse matrix operations such as sparse triangular solver, Gauss-
Seidel (GS) smoothing, incomplete LU(ILU) factorization, and SpMV, particu-
larly in modern machines with many cores and deep memory hierarchy. It is
also designed to showcase a "best known method” in high-performance parallel

implementations of pre-processing routines.

e Intel MKT} Intel Math Kernel Library (Intel MKL]) is a library of optimized
math routines for science, engineering, and financial applications. Core math
functions include BLAY"| LAPACK[™®| ScaLAPACK, sparse solvers, fast Fourier

transforms, and vector math.

e cuBLAS: The cuBLAS library is an implementation of BLAS (Basic Linear
Algebra Subprograms) on top of the NVIDIA CUDA run-time. It allows the

user to access the computational resources of NVIDIA Graphics Processing Unit

(GPU).

e LMDB: cublas Lightning Memory-Mapped Database (LMDB) is a software li-
brary that provides a high-performance embedded transactional database in the
form of a key-value store. LMDB is written in C with API bindings for several
programming languages. LMDB stores arbitrary key/data pairs as byte arrays,
has a range-based search capability, supports multiple data items for a single
key and has a special mode for appending records at the end of the database
which gives a dramatic write performance increase over other similar stores.

LMDB is not a relational database, it is strictly a key-value store.

Shttps://people.sc.fsu.edu/\protect\unhbox\voidb@x\hbox{~}jburkart/m_src/rcm/rcm.
html

"https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms

®https://en.wikipedia.org/wiki/LAPACK


https://people.sc.fsu.edu/\protect \unhbox \voidb@x \hbox {~}jburkart/m_src/rcm/rcm.html
https://people.sc.fsu.edu/\protect \unhbox \voidb@x \hbox {~}jburkart/m_src/rcm/rcm.html
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/LAPACK
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e OpenCV: OpenCV (Open Source Computer Vision Library) isan open source
computer vision and machine learning software library. OpenCV was built to
provide a common infrastructure for computer vision applications and to accel-
erate the use of machine perception inthe commercial products.The library has
more than 2500 optimized algorithms, which includes a comprehensive set of
both classic and state-of-the-art computer vision and machine learning algo-

rithms.

e cuSparse: The cuSPARSE library contains a set of basic linear algebra sub-
routines used for handling sparse matrices. It is implemented on top of the
NVIDIA CUDA runtime (whichis part of the CUDA Toolkit) and is designed to
be called from C and C++.

e Boost: Boost is a set of libraries for the C++ programming language that
provide support for tasks and structures such as multithreading, linear algebra,
pseudo-random number generation, regular expressions, image processing, and

unit testing.

e OpenMP: OpenMP is a library for parallel programming in the SMP (sym-
metric multi-processors, or shared-memory processors) model. When program-

ming with OpenMP, all threads share memory and data.

e cuDNN: The NVIDIA CUDA Deep Neural Network library (cuDNN) is a
[GPUlaccelerated library of primitives for deep neural networks. cuDNN provides
highly tuned implementations for standard routines such as forward and back-
ward convolution, pooling, normalization, and activation layers. Deep learn-
ing researchers and framework developers worldwide rely on cuDNN for high-
performance [GPU] acceleration. It allows them to focus on training neural net-
works and developing software applications rather than spending time on low-
level performance tuning. cuDNN accelerates widely used deep learning

frameworks.

e HDF5: HDF5 is a unique technology suite that makes possible the manage-
ment of extremely large and complex data collections. The HDF5 technology
suite includes: A versatile data model that can represent very complex data

objects and a wide variety of metadata.



34

Environment Details

Name Version Description/Type

Caffe 0.17.3 Deep learning framework

OpenCV 4.1.1 Vision Library

Boost 1.70 C++ library

LMDB 0.9.24 Lightning Memory-Mapped Database

Table 3.1: Environment Details
Environment Details

Name Version Description/Type

Intel [MKT/ 2019.4.243 Math Kernel Library

OpenMP 19.0.4 parallel programming library
LMDB 0.9.24 Lightning Memory-Mapped

Database
ISpMP]| 0.7 Sparse matrix pre-processing
Cuda 10.1 Parallel computing platform & pro-
gramming model for [GPT]

cuDNN 7.6.1.34 CUDA Deep Neural Network
GPT| TU106 [GeForce RTX 2070] | [GPT]

CPU] AMD Ryzen 5 2600X Six- | [CPU} x86-64

Core Processor
Arch Linux Linux 5.2.6-arch1-1-ARCH | OS

Table 3.2: Environment Details

3.3.3 Experiment Environment

Specific version of the software and hardware used in this research is described in table

B1&B.2



Chapter 4
Experiments

Using our Winograd layer, we have conducted different experiments to capture different
metrics and compare the results. The experiments conducted can be broadly classified

as mentioned in table 1]

Experiment description

Sl.No. | Data-set Mode Domain Kernel size Net

1 MNIST CPU Spatial 3x3 LeNet

2 MNIST CPU Winograd 3x3 LeNet

3 MNIST CPU Spatial 5x%x5 LeNet

4 MNIST CPU Winograd 5x%X5H LeNet

5 MNIST GP Spatial 3x3 LeNet

6 MNIST GPU Winograd 3x3 LeNet

7 MNIST GPU Spatial 5x5 LeNet

8 MNIST GPU Winograd 5 x5 LeNet

9 CIFAR-10 CPU| Spatial 3x3 VGG-19
10 CIFAR-10 CcPU Winograd 3x3 VGG-19
11 CIFAR-10 CPU Spatial 5x5 VGG-19
12 CIFAR-10 CPU Winograd 5%5 VGG-19
13 CIFAR-10 GP Spatial 3x3 VGG-19
14 CIFAR-10 GPU Winograd 3x3 VGG-19
15 CIFAR-10 GPU Spatial 5x5 VGG-19
16 CIFAR-10 GPU Winograd 5%X5H VGG-19

Table 4.1: Experiment description

Key metrics captured for each experiment are:

1. Accuracy of the trained model;

35
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2. Execution time per 100 iterations of training; and
3. Total training time to reach acceptable accuracy.
The trained weights were then pruned in an iterative manner and it’s effect on model’s

accuracy was studied.

4.1 Data set

A brief description of the data sets used in the experiments is provided in the table

B2

Data set description
Data-set Description Size Channels Contents
MNIST large database | 28x28 pixel | 1(gray-scale) 60,000 training
of handwritten images
digits and 10,000
testing images
CIFAR-10 | colour images | 32x32 pixel | 3(RGB) 50,000 training
in 10 classes, images
with 6000 and 10,000
images per testing images
class

Table 4.2: Data set description

4.2 CNN Architecture

For all the experiments with MNIST data set, LeNet architecture was used. The
convolution layer(Spatial/Winograd) and kernel size(3 x 3 or 5 x 5) was set as per the
experiment. Full details of the architecture is illustrated in figure |4.1]

For all the experiments with CIFAR-10 data set, a VGG architecture with 19 layers
was used. The convolution layer(Spatial/Winograd) and kernel size(3 x 3 or 5 x 5) was
set as per the experiment. The architecture is illustrated in figures [4.2] & [4.3]
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convl - Convolution

pool2 - Pooling

41Tl

1pl - InnerPr

relul - ReL.U - InPlace

Figure 4.1: LeNet
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Figure 4.2: VGG Net
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convd 2

relud_2

poold - Pooling
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relus_1

convs 2

relus_2

convs_3

relus 3

pools - Pooling

pools

l

global_avg_pool

Figure 4.3: VGG Net
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4.3 Hyper-Parameters

The hyper-parameters used in our experiment on MNIST data set with LeNet are
presented in table[4.3] and that for our experiments on CIFAR-10 data set with VGG
net are presented in table

The brief description of parameters used in Caffe’s solver file is present in this linK'|

LeNet hyper-parameters

VGG Net hyper-parameters

base_lr: 0.000001
Ir_policy: "inv”
momentum: 0.9
weight_decay: 0.00005
gamma: 0.0001
power: 0.75

base_Ir: 0.1
Ir_policy: "multistep”
momentum: 0.9
weight_decay: 0.0001
gamma: 0.1
stepvalue: 32000
stepvalue: 48000

type: "Nesterov”

Table 4.3: LeNet hyper-parameters
Table 4.4: VGG Net hyper-parameters

4.4 Results

4.4.1 Training experiments

Our implementation of training in Winograd domain was more than ~2x times
faster than training in spatial domain across all experiments. However, our [CPU| im-
plementation of training in Winograd domain was slower. Table [4.5| shows the average
time per 100 iterations across all experiments.

For our experiments with MNIST data-set, the Winograd convolution converged
much quicker than the spatial convolution. For training with 3 x 3 kernel, the
Winograd convolution model has reached a top-5 accuracy score of ~85% in 1000
iterations and ~94% in 10000 iterations. Whereas the spatial convolution model on
training with a 3 x 3 kernel has a top-5 accuracy score of ~13% in 1000 iterations
and ~29% in 10000 iterations. For training with 3 x 3 kernel, the Winograd

convolution model has reached a top-5 accuracy score of ~86% in 300 iterations and

'https://github.com/BVLC/caffe/wiki/Solver-Prototxt


https://github.com/BVLC/caffe/wiki/Solver-Prototxt
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Execution time

Data Net Mode | Domain Kernel Average execution

size time per 100 itera-
tions

MNIST LeNet ||GPU| | Spatial 3x3 1365

MNIST LeNet ||GPU| | Winograd | 3 x 3 [s]

MNIST LeNet |[CPU] | Spatial 3x3 26573 @

MNIST LeNet ||[CPU] | Winograd | 3 x 3 43190 [ms|

MNIST LeNet |[GP Spatial 5x5 1653 |Tn_—s|

MNIST LeNet ||GPU| | Winograd |5 x5

MNIST LeNet |[CPU| | Spatial 5x5 25898 @

MNIST LeNet ||[CPU] | Winograd | 5 x5 41409 ms|

CIFAR-10 | VGG19| [GPU| | Spatial 3x3 44080 @

CIFAR-10 | VGG19| |(GPU| | Winograd |3 x 3 9]

CIFAR-10 | VGG19| [CPU| | Spatial 3x3 709723 @

CIFAR-10 | VGG19| |(CPU| | Winograd |3 x 3 818265 ms|

CIFAR-10 | VGG19| [GP Spatial 5x5 43125 [ms]

CIFAR-10 | VGG19| (GPU| | Winograd |5 x5 [

CIFAR-10 | VGG19| [CPU| | Spatial 5x5 708423 [ms

CIFAR-10 | VGG19| |[CPU| | Winograd |5 x5 817541 ms|

Table 4.5: Execution time

~94% in 2500 iterations. The spatial convolution model on training with 3 x 3
kernel has a top-5 accuracy score of ~32% in 300 iterations and ~78% in 2500 iterations.
A similar trend is observed when training with a 5 x 5 kernel. Top-5 accuracy scores
of ~87% & ~94% are observed at 300" & 4500 iteration respectively for Winograd
convolution, and that of ~10% & ~22% are observed at 300" & 4500%" iteration
respectively for spatial convolution, when training on [GPU] For [CPU] training, top-5
accuracy scores of ~86% & ~94% are observed at 400" & 4500*" iteration respectively
for Winograd convolution, and that of ~58% & ~ 94% are observed at 400" & 4500
iteration respectively for spatial convolution.

The results of training with MNIST with different configurations is shown as accu-
racy vs iteration graph in figures [4.4) &

Training on CIFAR-10 was not straight forward and we had to try different com-

bination of hyper-parameters and network architectures. Using the hyper-parameters
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MNIST: [GPU] training, 3x3 kernel MNIST: [CPU] training, 3x3 kernel
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Figure 4.4: MNIST training with 3x3 kernel
MNIST: [GPU] training, 5x5 kernel MNIST: [CPU] training, 5x5 kernel
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Figure 4.5: MNIST training with 5x5 kernel

and architecture discussed in section 4.2 & we were able to train a successful model
using our [GPU]implementation. We are not able to train a successful model using our
[CPU] implementation. The spatial convolution-based model was observed to stabilize

quicker than the Winograd convolution-based model. In terms of number of iterations,
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the spatial based convolution had converged earlier than the Winograd based model
but the effective time taken for convergence was better for the Winograd based model.

The results of training with CIFAR-10 with different configurations is shown as
accuracy vs iteration graph in figures [4.6] & [£.7]

CIFARI10: training, 3x3 kernel CIFARI10: [CPU] training, 3x3 kernel

[ [ I I 1 I [ [ I I
Spatial Spatial
— Winograd | | g g — Winograd | |
g1
o
£ 0.8
5]
<
v 0.6
&
= 04
0.2
I | | | | I | | | |
0O 1 2 3 4 ) OO 1 2 3 4 )
Iterations(1 unit=10" iters) 104 Iterations(1 unit=10" iters)10*

Figure 4.6: CIFAR10 training with 3x3 kernel

4.4.2 Pruning experiments

The trained weights were pruned in an iterative manner, by discarding the lowest
weights in each iteration, and the accuracy with the pruned weight was noted. The
results of the pruning experiments are shown as accuracy vs sparsity graph in figures
- The rate of accuracy drop per pruned weight was observed to be higher for
weights trained in spatial domain.

The results for training and pruning experiments are also available as a CSV file in

thid? link.

2https://github.com/Swas99/caffe/tree/master/results
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CIFAR10: [CPU] training, 5x5 kernel
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Figure 4.7: CIFARI10 training with 5x5 kernel
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Figure 4.8: MNIST: Pruning models trained with 3x3 kernel

4.5 Discussion

For experiments with MNIST: better accuracy levels were observed for Winograd

The training of Winograd

convolution-based models across all experiments.
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Figure 4.9: MNIST: Pruning models trained with 5x5 kernel
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Figure 4.10: CIFAR10: Pruning models trained with 3x3 kernel

convolution-based models had reached accuracy levels of ~90% within 20 seconds of

training and that of ~94% within 70 seconds of training time. The accuracy levels
achieved by the spatial model on training after 20 seconds and 70 seconds of

training were ~13% and ~20% respectively. Higher accuracy levels were observed for
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Figure 4.11: CIFARI10: Pruning models trained with 5x5 kernel

all our training with MNIST data-set on Winograd domain compared to that on spatial
domain.

For experiments with CIFAR-10: The[GPU]|training of Winograd convolution-based
models had stabilized around ~47000 iterations, with an accuracy of ~92%, and the
total time elapsed at this point was ~1h 38m. The spatial convolution-based model on
[GPU]training had stabilized around ~30000 iterations, with an accuracy of ~95%, and
the total time elapsed at this point was ~3h 40m. The Winograd based model took
more iterations to converge but the effective training time was more than 2x faster.

Overall, training CNNs in Winograd domain is much faster than training them
in spatial domain. The speedups observed are higher on larger data-sets, where the
performance gain is significantly higher than the overhead involved in Winograd con-
volution. By fine-tuning the model appropriately similar (or better) accuracy levels

can also be achieved for models trained in Winograd domain.

4.6 Limitations

Due to time constraint we could not fine-tune the CIFAR-10 model for our experiments

on [CPU] We were unable to successfully train our model to reach acceptable accuracy
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levels, and the execution time per iterations in Winograd domain was also much higher
than that in spatial domain. Park et al. [46] were able to achieve speedups of more
than 2x with minimum accuracy loss for their Winograd convolution-based model
using [CPU| and thread-level optimization.

Experiments with ImageNet, which is a huge database of 224x224 colour images
with 14 Million+ images in 20,000+ categories, can take over 10-15 days of training

time. It was out of scope to perform any experiments with the ImageNet data-set.

4.7 Future Work

Winograd convolution with F(4,3) and F(4,5) were used in this experiment. Larger
patch sizes can be used and the effect on training time and accuracy can be studied. A
simple approach to prune the trained weights was used in this research. Sophisticated
pruning techniques [33, B8, 51], some of which may be incorporated during training,
can be explored. Both training time and accuracy is expected to improve using sophis-
ticated pruning algorithms. Lastly, it would to interesting to conduct experiments on

the ImageNet data-set with the existing implementation.



Chapter 5
Conclusion

Our GPU implementation of Winograd convolution is ~ 2x times faster than convolu-
tion in spatial domain for MNIST data-set, and ~ 3.4x times faster for CIFAR-10 data-
set. Higher accuracy levels and quicker convergence was observed when training in
Winograd domain on the MNIST data-set. For CIFAR-10 data-set, the effective time
to converge when training in Winograd domain is ~ 2.25x times faster compared to
training in spatial domain. The application of pruning methods to models trained in
Winograd domain performs better than the models trained in the spatial domain. By
applying processor-level optimization techniques, the Winograd based models are ex-
pected to outperform the spatial domain models even on CPUs.

Training deep networks with large data-sets can be made feasible using Winograd
based techniques. Fast inference can enable use in critical systems like autonomous
vehicles. Low power devices which lack computational resources do not have to
depend on a central server to process their data. One use case would be to deploy
training capability on devices which can sustain them. These devices can process the
data in real-time to build their own predictive model and work offline if necessary.
A simple example could be, sensors that capture light/noise levels and build a
predictive model at the edge, specific to the deployed location of the device, and may
trigger some action according to the input data. Another simple example could be,
deploying the training capability on mobile phones that consists of hundreds (if not
thousands) of images. Using Winograd based techniques a large number of images can

be processed on a users device. The machine learning model may be used to cluster
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images into groups or perform some other task to provide a better user experience.
In all of these scenarios, the bottleneck of transferring and handling huge amounts of
data can be removed. The edge/mobile device can work independently. Even certain
privacy issues can be solved. Not everyone is willing to share the images that reside in
their mobile devices with a third party server and if we can process the image on their
device itself, then there is no need to. In a different scenario, where it is not possible
to deploy a model that can perform the training phase, a pre-trained model can be
deployed. The inference latency for Winograd convolution-based models is at least
2x faster than that for spatial convolution-based models across all of our experiments.
Winograd convolution-based models are also light-weight in terms of memory and other
computational requirements. Combining other optimization techniques like pruning,
model compression can help increase the efficiency even further.

Winograd based techniques can help immensely in optimizing [CNN[s performance.
It can be applied to a variety of applications from wearable(s), autonomous vehicles,
virtual assistants to health-care. The ever increasing workload on the cloud infrastruc-

ture can be reduced significantly by using these techniques.
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