
Intelligent Summarization: Leveraging Cohesion in

Text

Arun Thundyill Saseendran

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Future Networked

Systems)

Supervisor: Professor Khurshid Ahmad

August 2019

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Arun Thundyill Saseendran

August 14, 2019

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Arun Thundyill Saseendran

August 14, 2019

To my mother, Anitha S and my father, Saseendran TV for what I am and for what I

will be! To my teachers for moulding me! To the Almighty God!

For Good Health, Joy and Prosperity!

iii

Acknowledgments

My sincere thanks to Professor Khurshid Ahmad for his supervision and guidance

throughout the work. I am grateful to him for patiently explaining the concepts and

giving me motivation throughout.

My special thanks to my mother Anitha S, my father Saseendran TV, my sweet

sister Deepa TS and her little one Aarav for providing me moral support from over a

thousand miles away.

I would like to thank Dr. Husanbir Singh Pannu, Post-Doctoral researcher, Trinity

College Dublin, and Shane Finan, Research Manager, FIOSIN for always willing to

help, giving me support, and encouragement.

Thanks to my friend and peer Viren Chhabria for being a good friend and for the

motivation. I would also like to thank all my friends, near and dear for understanding

my mood - good and bad throughout the course of this work, and still supporting me.

Arun Thundyill Saseendran

University of Dublin, Trinity College

August 2019

iv

Intelligent Summarization: Leveraging Cohesion in

Text

Arun Thundyill Saseendran , Master of Science in Computer Science

University of Dublin, Trinity College, 2019

Supervisor: Professor Khurshid Ahmad

Text summarization is a task that requires the application of human intelligence in
which the human shows an understanding of natural language and can process lan-
guage, where human beings show creativity by presenting complex objects and events.
Human beings use a collection of words in discussing specific subjects - the so-called
specialist or scientific lexicon, that comprises the ontology of a domain. A computer
program that can mimic these aspects of human intelligence is referred to as an in-
formation extraction system, and text summarization systems of the type discussed in
this thesis are called extractive text summarization systems. In this work, a text sum-
marization system is presented that is based on the theory of lexical cohesion, where
the focus is on how a (scientist) writer repeats a specific word to convince his or her
reader about the importance of the theme. The Intelligent Text Summarization algo-
rithm makes use of repetition that can be visualized as a graph where the links between
nodes represent the linked sentences based on the same word or its close variants. The
novelty introduced is the autonomous selection of domain-specific words to produce a
readable summary selecting pre-existing sentences in the text. The average summary
is about 25% of the text. The system (developed using Java and Python) was tested
using computer science texts and was tested using texts in bio-medicine, specifically
gastroenterology. An expert compared the summaries of 15 papers generated by the
application and found that in 73.6% of the cases the summary was good.

Summary

Specific language text which is generally non-narrative in nature unlike literary texts

like fiction.These texts are a source of valuable information and knowledge which needs

to be effectively summarized to be useful. The summaries may be used for a variety

of purposes: for understanding texts; for storing and subsequently retrieving text from

databases; for indexing; for author attribution; in search engines etc.

Summarization or precis writing is an ancient art of creating abstracts [1]. However,

abstract creation is a human-intensive process and requires subject matter experts of

the domain to create meaningful summaries. Summarization requires the understand-

ing of natural language text and human intelligence to identity the important part of

a text to create a summary. Automatic text summarization is an open research topic

since the 1950s and attributes to the field of Information Science since it requires the

computer to mimic human intelligence in order to create a readable meaningful sum-

mary. Creation of a meaningful summary without the loss of important information in

a text without human intervention is termed as Automatic Text Summarization. The

process of automatic summarization can be broadly classified into abstractive summa-

rization and extractive summarization. In abstractive summarization, the summary is

created by extracting the key ideas and modifying the sentences of the text. Whereas,

in extractive summarization, the key sentences of a text are selected and reordered

without any modification to the original sentences to create the summary. In this

work, extractive summarization is attempted.

vi

The focus of this work is on automatic text summarization of non-narrative scientific

text. The choice of the specific domain of scientific texts is made on the understanding

that the authors of the scientific texts follow a theme in their writing and make use of

domain-specific terms to introduce, define and elaborate new topics resulting in a repe-

tition of important terms throughout the document. These terms can be identified and

counted using simple mechanical means to establish a relationship between sentences

and to identify the most important sentence to create an extractive summary.

Several approaches have been suggested for extractive summarization in the past

works based on various approaches including machine learning methods which require

huge training dataset and the model created is only as good as the data it is trained

on.

In this work, the algorithm for automatic text summarization of text is devised on

the hypothesis that ’scientific messaging relies on the repetition of key terms’. Using

this hypothesis an algorithm has been devised that can summarize any arbitrary sci-

entific text by intelligently identifying the key terms in the text, use the key terms to

establish relationship between sentences, identify the most important sentences based

on the relationships and use them for summarization. The work presented in this thesis

is an extension of the work by Benbrahim and Ahmad [2]. Figure 1 shows an easy to

understand illustrative flow of the intelligent text summarization algorithm designed

and implemented (developed using Java and Python) in this work. The figure shows

the step by step approach of how an output summary is generated from an input text.

This work is planned to be published as a journal article and the work is in progress

[3].

The algorithm devised is implemented as a working software to test its practicability.

The software developed is also instrumented to perform various systematic, controlled

statistically verifiable automatic evaluation of the working of the algorithm. Further,

texts from other domains are summarized using the software and subjectively evaluated

vii

by subject matter experts of the domain to verify the working of the software and in

turn the algorithm across different domains of scientific text.

Figure 1: Illustrative flow of the Intelligent Text Summarization Algorithm

viii

Contents

Acknowledgments iv

Abstract v

Summary vi

List of Tables xii

List of Figures xiii

Chapter 1 Introduction 1

1.1 Problem Definition . 4

1.2 Contributions . 7

1.3 Structure of the Dissertation . 9

Chapter 2 Motivation and Literature Review 11

2.1 Motivation . 11

2.2 Literature Review . 13

2.2.1 Lexical Cohesion . 15

2.2.2 Syntactic Cohesion . 16

2.2.3 Links and Bonds . 16

2.2.4 Soft-computing and fuzzy systems 17

2.3 Conclusion . 17

Chapter 3 Method 20

3.1 Introduction . 20

ix

3.2 Pre-Processing the Text . 24

3.3 Intelligent Text Summarization Algorithm 24

3.3.1 Key Terms Identification . 27

3.3.2 Sentence Linking and Link Matrix 44

3.3.3 Sentence Bonding and Bond Matrix 47

3.3.4 Sentence Categorization using in-out bond ratio 49

3.3.5 Summary Generation . 51

3.4 Evaluation Method . 53

3.4.1 Readability Index . 53

3.4.2 Correlation of Relative Frequency 55

3.4.3 Cumulative Relative Frequency Comparison of top open-class

words . 57

3.5 Conclusion . 58

Chapter 4 Implementation and Case Studies 61

4.1 Introduction . 61

4.2 Dataset Selection . 61

4.3 Technical Specification and System Design 63

4.3.1 System Architecture . 63

4.3.2 Technical Stack . 66

4.3.3 User Interface Design . 66

4.4 Case Studies and Discussion . 76

4.4.1 Controlled Evaluation on Computer Science Text 76

4.4.2 Controlled Evaluation on the Bio-medicine dataset 80

4.4.3 Experimental evaluation of summarization of large block of tweets 81

4.5 System Performance . 82

4.6 Security and Privacy Concerns . 82

4.6.1 Security Concerns . 82

4.6.2 Privacy Concerns . 85

4.7 Summary . 86

Chapter 5 Conclusion and Future Work 87

5.1 Conclusion . 87

x

5.2 Future Work . 88

Bibliography 90

Appendices 95

xi

List of Tables

1.1 Various applications of text summarization with technique highlights

and references . 5

2.1 Comparative analysis of automated text summarization techniques with

highlights and dataset . 18

3.1 Part-of-speech tags used by POS tagger to annotate text 34

3.2 Table showing the frequency calculation for candidate terms (W) and

other open class words (Wi) for 5 words to the left (L1 to L5) and 5

words to the right (R1 to R5) . 38

3.3 Flesch Kinkaid Reading Ease interpretation reckoner 54

xii

List of Figures

1 Illustrative flow of the Intelligent Text Summarization Algorithm . . . viii

1.1 Generic flow of Automated Text Summarization process 3

1.2 General Classification of Automated Text Summarization 4

1.3 The logo for Curukka Text Processing Pipeline 8

1.4 Graphical representation of the research design plan 10

2.1 Diffenent types of lexical and syntactic cohesion 12

2.2 Summary of studied approaches (Green links show the used approaches) 14

2.3 Overview of the literature survey on text summarization techniques and

references for various modes of operation 15

3.1 The proposed flow of the algorithm with the core methods 22

3.2 Sample scientific text as an example . 23

3.3 Algorithm of the proposed text summarization technique - Intelligent

Text Summarization . 26

3.4 A sample snapshot of the BNC corpus with words represented as TSV . 28

3.5 Graphical representation selection criteria of terms using the Z-Score of

the frequency and weirdness index . 31

3.6 Design Specification of the selection of terms using Weirdness Index

represented using UML Flow-chart . 33

3.7 Design Specification of the selection of key terms including POS Tagging

represented using UML Flow-chart . 37

3.8 Design Specification of the collocate candidate selection represented us-

ing UML flowchart . 43

3.9 Logical view of the sentences annotated with the identified key terms . 44

xiii

3.10 Network among various sentences based on key terms for incoming, out-

going and intermediate sentence analysis 46

3.11 The link matrix showing the count of links between sentences 46

3.12 The Bond matrix showing the detection of bonds from link matrix when

the bond strength is set as 2 . 48

3.13 The Bond matrix showing the detection of bonds from link matrix when

the bond strength is set as 2 . 49

3.14 The summary generated using the Intelligent Summarization Algorithm

with the Sample Text as input . 59

3.15 Design Specification of Intelligent Text Summarization Algorithm UML

flowchart . 60

4.1 System Implementation Design of the Intelligent Text Summarization -

Curukka System . 64

4.2 Screenshot of the configuration panel for the Curukka System 68

4.3 Screenshot of the Text Input Screen for the Curukka System 69

4.4 Screenshot of the Summary Screen for the Curukka System 70

4.5 Screenshot of the Metrics Screen for the Curukka System 71

4.6 Screenshot of the Finger Print Analysis Screen for the Curukka System 72

4.7 Screenshot of the Signature Analysis for the Curukka System 73

4.8 Screenshot of the Collocation Analysis Screen for the Curukka System . 74

4.9 Screenshot of the File Menu option the Curukka System 75

4.10 Screenshot of the Export Menu option in the Curukka System 75

4.11 Screenshot of the Export CSV File dialogbox in the Curukka System . 76

4.12 Comparison of total sentences of the original with the sentences obtained

from proposed text summarization method 77

4.13 Comparison of total token count of the original with the sentences ob-

tained from proposed text summarization method 78

4.14 Comparison of readability index of original with the readability index of

the summary text obtained from proposed text summarization method 79

4.15 Comparison of cumulative relative frequency of original with the cumu-

lative relative frequency of the summary text obtained from proposed

text summarization method . 80

xiv

4.16 Subjective evaluation of the summaries produced for the bio-medicine

dataset by the intelligent text summarization algorithm by a subject

matter expert on a scale of 10 . 81

xv

Chapter 1

Introduction

Data is being produced in abundance. In the current era of the information age, the

rate at which the data is produced is increasing exponentially day-by-day. At the

same time, technology is being used better than ever to harness the knowledge in

data. Separate disciplines of engineering such as Knowledge and Data Engineering are

gaining traction and active research happens in the area of Information Science to find

better methods and techniques to harness the knowledge in data. Of the data being

produced, the most prominent form of data is unstructured textual data. Textual data

is produced in the form of essays, blogs, microblogs, books, articles, journals, and many

other forms. Researchers and industry are working relentlessly to make effective use of

these unstructured form of data to provide meaningful information to the public and

business alike.

When it comes to textual data, search engines, encyclopedias, research journal

databases, etc., are in a need to organize the text effectively to serve its customers.

Having access to the well-organized text enables the common public to better make

use of the text. One of the important forms of presenting a text for easy understanding

and perception is to provide the basic details about the text like the source, author,

date, and place of publication, etc., along with the summary of the text. Summaries

have proved to be an effective form of representation of the text that is easy for people

to understand and perceive. From a kid who wants to know what the story is about to

a researcher who wants to know what a research journal is on, relies on the summary.

The art of abstraction or creating summaries is an ancient art and an important

1

part of Information Science. The summaries for various artifacts were created man-

ually by subject matter experts of the respective domains. In domain specific text

summarization, we need a specific domain knowledge. For example, if the user wants

to summarize an article in bio-medicine, one needs to have enough domain knowledge

to incorporate in the model. In fact, generic summary writing was taught as a subject

called ’Precis’ writing, the basics of which can be applied by domain experts to sum-

marize texts in their domain. However, with the abundance of text being produced and

the text being made more accessible to people, humans cannot produce summaries for

all the text. Though most of the scientific text in the recent past come with abstracts

as a part of the text written by the authors, the abstracts by authors are not always

true summaries of the text. Hence there is a need for automatic text summarization.

What is automated text summarization?

Automated text summarization is an automated method which can produce summaries

from the text without the loss of any important information.

It is an automatic process to shorten a given text document without loss of infor-

mation and creating an efficient summary with minimum redundancy. There are few

motivations to explore this research area such as (a) Increasing data including velocity,

volume and variety (b) Less time to process.

Automatic Text summarization is a very broad area and there are many ways

proposed by researchers for text summarization. Figure 1.1 shows a very simple flow

for an automated text summarization process. The pre-processing stage is a very

generic step that deals with the cleaning, parsing and encoding the input text in a

manner that can be used for processing in the next steps. The pre-processing step

is not itself a core part of the summarization process, however, it is essential since

machine reading of the text in most cases needs processing.

2

Figure 1.1: Generic flow of Automated Text Summarization process

Once the text is processed and machine-readable, the next step involves the exe-

cution of the summarization process. The summarization process can be classified in

several ways. The classification is based on either the purpose of summarization, the

output type or input type. The generic classification of the summarization is shown

figure 1.2.

Based on the purpose it is classified into generic summarization, domain-based sum-

marization which focuses on the creation of summary for a specific domain by leveraging

expert domain experience and query-based summarization which focuses on creating

a summary based on an input query or keywords. Based on the type of input, sum-

marization can be classified into single-document and multi-document summarization.

Single document summarization as the name suggests deals with the summarization of

a single document. Whereas in multi-document summarization, it can be the summa-

3

rization of multiple similar documents or multiple varied documents. Finally, based on

the output, summarization is classified as abstractive and extractive. Abstractive sum-

marization is the process in which the summarization method creates the summary by

finding the important information in the text and then forms sentences to produce the

summary. Extractive summarization is the process in which the sentences representing

the most important information is identified and ordered according to the algorithm

to produce the summary. The sentences are extracted from the text and not produced

by the algorithm, hence, the name extractive summarization.

Figure 1.2: General Classification of Automated Text Summarization

1.1 Problem Definition

As explained, with all the digitization and with the internet being the endless source

of information, textual information is flooding the internet. However, it is really hard

to find relevant information in all this amount of text. Hence, automated text sum-

marization is essential. To viewing a snippet of a web-page in a search engine result

in viewing the abstract of a research paper in a journal database, summaries play an

important role for information dissipation.

The reason to have a text summary is to read quickly and if required the reader

can choose to read the entire document, and it would be efficient to have an automated

way to create the summary instead of having to go through the detailed text. On the

4

other hand, that is not enough, and we do need to go into the details. Even in that

case, it is relevant to have text summary as to know if the detailed document is useful

to read in its entirety. In other words, does this document contain the information, the

user is looking for? The research problem to find out text summary automatically are

two folds:

1. How to select the most relevant information?

2. How to express the key information in the best possible way?

Thus, the objective is how can we say the most important things in the shortest

amount of time and space? We want to optimize the coverage of the topic and optimize

its readability. So, the text summary should retain the information content and should

be able to present in the best possible readable way which sounds logical and readable.

Some of the applications of text summarization along with the one of the techniques

used, the highlights of the work and reference is shown in table 1.1.

Table 1.1: Various applications of text summarization

with technique highlights and references

Sr Application Technique Highlights Ref

1 Automated con-

tent creation

Augmented Reality Augmented reality and text

mining to identify virtual

contents to match editorial

content

[4]

2 Books and liter-

ature

Hidden Markov Model Passage model and token

models using HMM

[5]

3 E-learning and

class assign-

ments

Summarization As-

sessment based on

Linguistic Knowledge

(SALK)

It merges semantic and syn-

tactic information in order

to produce an effective eval-

uation method

[6]

4 Email overload Deep learning Unsupervised extractive

summarization of emails

using a deep auto-encoder

with excellent performance

[7]

5

5 Financial re-

search

EA-LTS (extractive

and abstractive long

text summarization)

In summary generation,

attention and pointer

mechanism are united with

seq2seq

[8]

6 Helping disabled

people

Decision tree classifier

C5

Sentence segmenter, tok-

enizer, stopword removal,

stemming, tf-idf, sentence

similarity to title and deci-

sion tree

[9]

7 Internal docu-

ment workflow

Legal contract

analysis

LetSum Documents architecture

and its thematic structures

to build a table sum-

mary for coherency and

readability

[10]

8 Medical cases statistica/graph/tree

based

Survey of articles [11]

9 Meetings and

video conferenc-

ing Newsletters

feature-based ap-

proache

Using prosodic and lexical

features maximal marginal

relevance, latent semantic

analysis to summarization,

compared with ROUGE

software.

[12]

10 Patent research text mining Text segmentation, sum-

mary extraction, feature se-

lection, term association,

cluster generation, topic

identification, and informa-

tion mapping.

[13]

11 Question an-

swering and

bots

Machine learning and

NLP

Extractive summarization

using sample size, group

size, and PICO values from

full text PDF reports.

[14]

6

12 Science and

RnD

RnD program planner Text Mining Text Sum-

marizing Decision Support

Knowledge Discovery R&D

Planning

[15]

13 Search market-

ing and SEO

Based on term-

frequency and ontol-

ogy

Pragraph ranking based

on relevance between main

topics and each individual

paragraph

[16]

Though there are several methods already published for text summarization, they

rely on machine learning methods where the training of the model is essential. Some

methods are specific to special varieties of short text such as email and customer queries

whereas some are specific to specific domains such as medicine or law. However pre-

trained methods of text summarization required very huge datasets for training, highly

powerful systems for running and are only good as the data that they are trained on. In

other words, they are constrained to domain and language it was trained for and cannot

be used for arbitrary text. For example, a machine-learning-based summarization

module trained for medical research text cannot be used for summarization of texts

from physics though they are scientific texts and belong to the same domain. There is a

need for a method in which the summarization method can be applied to a large variety

of text and can be extended to other languages. The method needs to be definitive,

repeatable and transparent so that it can be easily adapted to other domains and

languages. However, minimal research has been carried out in this field.

1.2 Contributions

The major contribution of this work is the presentation of a practicable text summa-

rization algorithm that can be applied to scientific text from various domains. This

work has been extended from the work by Benbrahim and Ahmad [2]. The salient

features of the Intelligent Text Summarization algorithm are as follows.

• The algorithm is designed in such a way so that it can accept arbitrary English

scientific text from various domains and autonomously produce summaries. The

7

core algorithm identifies the key terms which in turn are used for summarization

in a language-agnostic manner.

• The algorithm makes use of the finding that, key ideas in the form of terms and

phrases are repeated in scientific texts. Hence the key terms can be identified

using simple mechanical computation.

• The algorithm is definitive and repeatable. The results produced are consistent

and statistically verifiable.

In addition to the core algorithm, this work also makes the following contributions.

i. An algorithm for statistically verifying the goodness of the summary that is pro-

duced. This is an important contribution since the evaluation of summary is a

human-intensive process and is difficult to be carried out on different domains on

a large scale.

ii. The algorithms for summarization and statistical verification of goodness of sum-

mary is implemented as a working software with a client user interface that can be

run on both Microsoft Windows and Apple OSX operating systems. The server is

implemented using Representational State Transfer (ReST) interface that serves

requests securely over the Hyper-Text Transfer Protocol (HTTP) that can be used

by other software systems as well. The software is named ’Curukka ’ which means

abstract in a Dravidian language called Tamil - one of the oldest languages in the

world. Its logo is given in figure 1.3

Figure 1.3: The logo for Curukka Text Processing Pipeline

8

iii. The software implementation also consists of data exporters in Comma Separated

Value (CSV) format for the metrics and other statistical computations produced

which can be imported into other systems.

1.3 Structure of the Dissertation

The remainder of the dissertation is organized as follows. The motivation for the work

and the literature review covering the latest related works, existing approaches, and

evaluation techniques is explained in chapter 2. The methods used for summarization

and evaluation of the generated summaries are explained in chapter 3. Following the

explanation of the methods in chapter 3, the systematic collection of a dataset for

evaluation, the implementation of the algorithms as a working software along with its

the design specifications, case studies for evaluation of the goodness of the summaries

produced and the performance of the system is explained in chapter 4. The limitations

of the work, conclusion and the suggestions for future work are given in chapter 5.

The detailed notes on the setup of the intelligent text summarization software named

’Curukka’ and step-by-step working instructions are given in the appendix section of

the dissertation.

The research design plan is graphically showcased in figure 1.4

9

Figure 1.4: Graphical representation of the research design plan

10

Chapter 2

Motivation and Literature Review

Chapter 1 provides the introduction to this work. This chapter explains the motiva-

tion (see section 2.1) behind this work and the literature review (see section 2.2) of

the approaches, techniques and related work along with the dataset and evaluation

techniques used in them.

2.1 Motivation

Automatic text summarization can be useful for a myriad of purposes. Moreover,

manual summarization is expensive and dependent upon the the writing skills of the

author of the article or the technical knowledge of a professional text summarizer.

Scientific texts are produced in abundance in various domains and effective sum-

marization of the texts is a very important task. Though some of the scientific texts

in the recent past come with abstracts, the quality of scientific writing is deteriorating

over last two decades or so, especially due to ’bad writing’ (See for example, Freeling

et al 2019 [17]); and some authors have stressed that abstracts can be improved much

further to help the reader in selecting a given article and then reading it - the abstract

being a very important in this context (See for instance Plavn-Sigray et al 2017 [18])..

Some of the desirable features of automatic text summarization are: it should pro-

duce a summary without the loss of key information from the text; should be able to

summarize an arbitrary scientific text; should be able to summarize text from various

domains; and should be transparent, definitive and repeatable.

11

When non-narrative scientific text is considered, they tend to follow a specific style

that is used to persuade the reader of the importance of concepts and arguments

presented in the paper - the term theme is used in this context which is used to suggest

how a writer/speaker identifies the relative importance of the subject matter of the

paper [19]. The authors tend to introduce a set of domain-specific terms. Throughout

the text, the authors repeat the domain-specific terms or open-class words to explain

and elaborate on the topic. The topic can be repeated by simple repetition of the term

itself, its morphological variations or as complex repetitions as is called lexical cohesion.

The topics may also linked together by conjunctions, including and or but, pronominal

references, for instance it instead of the name of an object, ellipsis, for example cloud

instead of cloud computer or cloud computing. The linkage provided by conjunctions,

pronouns, and strategies for elliptical paraphrase, are part of the grammar or syntax of

the language in which a text is written. Thew grammatical or more precisely syntactic

links, provide syntactic cohesion and usually do not carry as much information about

the content as do lexical cohesion. This work focus mainly on lexical cohesion. Using

lexical and syntactic cohesion, the sentences in the text are linked together to form

the complete text. The various forms of lexical and syntactic cohesion is shown in

figure 2.1 and is studied in detail by Halliday and Hasan [20]. The difficulty of using

syntactic cohesion and the usage of lexical cohesion where certain lexical features of

the text connect the sentences in the text is studied theoretically in detail from the

perspective of linguistics by Michael Hoey [21].

Figure 2.1: Diffenent types of lexical and syntactic cohesion

Computers are good at performing primitive tasks such as addition, subtraction,

12

multiplication, and division along with executing primitive functions such as searching,

sorting and merging. If an algorithm can leverage the concept of lexical cohesion to

identify the important sentences of a text in such a way that it can perform summariza-

tion by making use of simple mechanical computation using the primitive functions, it

would lead to an algorithm that is elegant, practicable, versatile, definitive, and will

satisfy the desirable features of automated text summarization.

The work by Paice and Jones (1993) [22] attempts to identify important topics in

highly structured technical documents effectively combining the tasks of indexing and

abstracting. The work by Benhrahim and Ahmad (1995) [2] leverages the concept of

lexical cohesion to produce summaries by forming a directed graph of sentences. The

work making use of simple repetition of key terms in the text to create a graph of

sentences from which the summaries are derived. However, very little work has been

carried out on text summarization using lexical cohesion. The work by Erkan and

Radev (2004) [23] is a recent related work that uses a graph-based lexical centrality by

computing the intra-sentence cosine similarity.

The need for an effective text summarization algorithm that uses the concept of

lexical cohesion that can be implemented by leveraging primitive computer functions

along with the relative lack of research in this field is the motivation for this work.

2.2 Literature Review

This section includes the studies performed by various contemporary researches which

is the key motivation and helps to provide a comprehensive view of the current state

of the research.

The automated text summarization topics and approaches the have been studied

in this work are shown in figure 2.2. The green links show the approaches that have

been used in this work.

13

Figure 2.2: Summary of studied approaches (Green links show the used approaches)

Figure 2.3 shows the categorized literature review carried out in this work. The

literature review is primarily categorized into works that make use of cohesion in text

and the various methods used for summarization. In terms of the work leveraging

cohesion in text, it is further classified into works that leverage lexical cohesion and

the works that leverage syntactic cohesion. In terms of the methods, it is further

classified into works that make use of sentence graphs for text summarization and

those that make use of machine learning methods for text summarization.

14

Figure 2.3: Overview of the literature survey on text summarization techniques and

references for various modes of operation

2.2.1 Lexical Cohesion

On the basis of phonology, lexicography and grammar levels, the elements share seman-

tic relationship as proposed in [24]. This cohesive approach based upon the extension

of gratification and comprehension has been an influential premise in simultaneous in-

terpretation of the text. Thus when the text is semantically connected with repitition

and other types of cohesions, only then it makes semantic sence of communication in

the audience. Another approach has explored selective retention of complex repetitions

in [25] using metrics of complex networks. A graph is defined with edges correspond-

ing to the meaningful nouns and nodes for the sentences. Afterwards, k-cores, d-rings,

length of shortest paths, degree of nodes has been explored using network concepts.

Brazilian Portuguese texts has been analyzed for the performance analysis to support

15

the belief of automatic extractive summary.

2.2.2 Syntactic Cohesion

Discourse segmenter has been developed for parsing for discourse segmentation in [26].

Syntactic and lexical information has been used to transform the rules of one language

to another (Spanish to Catalan) using Rhetorical Structure Theory. Result analysis

has been performed using standard corpus and manual texts. In [27], a news article

based analysis of the text summaries based on sentence ranking is proposed. The ranks

are assigned by considering linguistic features and statistical metrics. Precision-recall

curves with a random sentence selection baseline model has been studied for evaluation

to emphasize the utlity of corpus-dependent standards of text summary, careful crafts

of long queries and compression ratio deliverables.

In [28], semantic capturing of ellipitical noun phrases have been studied. The

ellipitical coordinated compound nouns are often used for space efficiency of a research

paper to avoid the mis-intrepretation of a disease or a body parts for phrases such

as “lung or breast cancer” for example. Extensive experiments have been performed

using full texts to quantify the impact of coordinated ellipses by considering backward,

forward, complex ellipses, generate-and-test phenomenon for candidate expansions and

leveraging syntax. Another method for substitution and ellipsis as cohesive linguistic

devices has been studied in [29]. This study has explored the ellipsis and substitutions

as linking mechanisms of textual cohesive relationships among sentences. Repetition

of sentences should be avoided to generate a better cohere version of the text using

illustrated examples on linguistic devices of substitution and ellipsis.

2.2.3 Links and Bonds

Link and graph based ranking algorithm for text processing has been invented in [30].

Based upon natural language, it considers text plurality using the graph nodes. This

follows by searching connecting links among plurality of text nodes. It includes other

features such as sentence/keyword extraction, semantic disambiguation and graphical

visualization of text collection. In [31], a novel text analysis has been studied to reveal

social structures using semantic networks or maps. Bonds among events, organizations

and people have been observed using elements of the text and meta-matrix approach

16

based upon an ontology. An interesting example for illustration using West Bank

and terrorist groups in operation and how to discover them, has been studied using

social structures of covert networks. Symmetric matrix factorization and sentence

level semantic analysis text summarization has been proposed in [32]. It begins with

similarity calculations among sentences to generate the matrix, followed by symmetric

matrix factorization to group sentences in clusters. Symmetric matrix clustering works

has been found similar to normalized spectral cluster. DUC2005 and DUC2006 data

sets have been considered for numerical case study.

2.2.4 Soft-computing and fuzzy systems

In [33], text summary has been analyzed for text assessment in expert systems. This

system is developed using fuzzy rules to specify extracted feature variety to compute the

information which is most important. Dimensions has been reduced using correlation

among features on the dataset of Brazilian Portuguese texts. Method was compared

with Model and Sentence, Score, naive baseline with the help of ROGUE measure and

yielded better F1-score. An artificial neural network based text summarization has

been proposed in [34]. It is based on the features of continuous sentences and data-

driven without a need to rely on human engineering. It extracts words and sentences

to devine various classes of summary models. The illustration of this unsupervised

learning has been performed on two datasets for linguistic annotations. A deep learning

model based on convolutional neural network for sentiment analysis for text analysis

has been studied by [35]. It used ontology to generate semantic features, Word2Vec

for corpus conversion and CNN for opinion mining. Performance comparison has been

quantified using F-meansure, recall, precision and accuray so support the belief in the

proof of concept of prototype model.

2.3 Conclusion

The various literature of automated text summarization studied is compared illustrat-

ing the method, idea and the dataset used for evaluation in table 2.1

This work considers the research works studied with careful consideration for the

design of the Intelligent Text Summarization algorithm. The literature is used to

17

Table 2.1: Comparative analysis of automated text summarization techniques with
highlights and dataset
Sr Ref. Method Idea Data
1 Lin (2019)

[24]
Simple Repeti-
tion

Semantic relationships, cohesion
using gratification and compre-
sion

Random text

2 Antiqueira
(2009) [25]

Complex Repe-
tition

Graph matrix with sentence
nodes and meaning as nodes

Brazilian Por-
tugese texts

3 Cunha
(2017) [26]

Conjunctions Rhetorical structure theory for
tranlation of Spanish to Catalan

News articles

4 Goldstein
(1999) [27]

Pronomial Ref-
erences

Sentence ranking using linguistic
and statistical features

20 sets of 50 docs
from TIPSTER
1988-1992

5 Blake
(2017) [28]

Ellipitical Para-
phrases

Ellipitical coordinated compound
nouns, backward, forward, com-
plex ellipses.

Journal of Bi-
ological Chem-
istry

6 Vujevic
(2012) [29]

Substitution Ellipsis and substitutions to link
textual cohesions

Online news ar-
ticles

7 Mihalcea
(2010) [30]

Links Connecting pluraity of text nodes
using sentence and keyword ex-
traction, graphical visualiation
and semantic disambiguation

Search engines
(Google)

8 Diesner
(2005) [31]

Bonds Bonds among social structures
using semantic networks, meta-
matrix approach using ontology

West bank and
terrorist groups
discovery

9 Wang
(2008) [32]

Repetition Ma-
trix

Similarity calculations among
sentences using symmetric matrix
factorization

DUC2005 and
2006

10 Cheng
(2016) [34]

ANN Features of continuous words are
fed into unsupervised neural net-
work

191 texts col-
lected at CASOS

11 Kumar
(2019) [35]

CNN Sentiment analysis using
Word2Vec, corpus creation,
CNN for opinion mining (good
or bad)

moviereview and
hotelreview

12 Goularte
(2019) [33]

Fuzzy Fuzzy rules for feature variety to
compute information, dimension
reduction using correlation anal-
ysis

Brazilian Por-
tuguese

18

understand the various methods explored by researchers for automated text summa-

rization and evaluation. The literature review also enables this work to be done in an

informed manner considering the pros and cons of the existing works or overcoming

the shortcomings. This work extends on the work by Benbrahim and Ahmad [2]. A

major contribution is the design of an intelligent text summarization algorithm which

understands the natural language present in the scientific text, intelligently and au-

tonomously identifies key terms in the text and uses the key terms to create a summary

of the text contributing to artificial intelligence. The method is explained in chapter

3.

19

Chapter 3

Method

3.1 Introduction

Text analytics has been a growing branch of natural language processing, which is

itself a sub-branch of Artificial Intelligence. The works in the field of natural language

processing have opened up many unexplored fields. Areas like speech recognition rely

heavily on speech to text and then natural language processing of the text to analyze

its meaning. The role of text analytics in text indexing is of paramount importance.

Topic modeling and key phrase extraction play a vital role in search engines.

The treatment of texts within text analytics relies generally on the grammatical

structure of the language of the text. Part of speech taggers is used in various text

analytics methods to understand the grammatical structure of the text and make ef-

fective use of it. Natural language processing engines like the ones from Stanford [36]

have gained popularity and is used widely. However, seldom attention is paid to how

authors introduce keywords, how they elaborate keywords, and how they use keywords

in complex sentences. The use of keywords for representing core ideas has proved

to be instrumental in domain-specific texts [37]. Algorithms for text linguistics have

often paved the way in this respect. Texts written by scientists and engineers pose

significant problems in terms of indexing on the one hand and summarization on the

other. Moreover, specialist texts are jargon-rich and cannot be dealt with easily by

novices in the domain and nor indexing experts. People with a deep understanding of

the domain, expertise in comprehension and skill in precis writing is required to create

20

meaningful summaries of scientific texts. Text summarization strategies also rely on

repetition of tokens and scientific messaging relies on repetition, which is our key find-

ing thus far. The algorithm presented in this chapter is based on this understanding.

The motivation for this work and the literature review is given is chapter 2.

The language used in scientific texts is very peculiar, it has been established in

genre analysis of language under the domain of text linguistics [38]. The language used

in scientific texts is specific to the domain and uses a large set of domain-specific terms.

Some terms are introduced by the authors and then it becomes a part of the language.

These domain-specific terms have a different meaning in the domain-specific text and

the frequency of usage varies sharply from the general language. For example, the word

’nucleus’ has a different meaning in general English which means ’center’, a different

meaning in Biology meaning, ’the center part of a cell’ and a very varied meaning in

Physics meaning, ’the core of an atom which consists of protons and neutrons’. The

usage of ’nucleus’ to mean center is comparatively less in common English, however,

when it comes to Biology or Physics, the word ’nucleus’ is more generally used and

hence the relative frequency (the frequency with respect to the text) increases. This

is one of the core ideas on which the text summarization algorithm is devised in this

chapter.

Figure 3.1 shows the core steps in the ’Intelligent Text Summarization’ algorithm

proposed in this word and explained in the later section of this chapter. There are a

total of eight distinct steps in the whole process labeled from ’a’ to ’h’.

21

Figure 3.1: The proposed flow of the algorithm with the core methods

Key Terms Used

The key terms involved in the research have been defined below.

1. Lexical Cohesion : The action or condition of cohering. cleaving or sticking

together

2. Link : Two sentences are said to be linked when they have a common key token

in them.

3. Bond : Two sentences are said to be bonded when more than a certain (default

3) number of links exist between them.

4. Repetition Matrix : A nxn matrix of bonds formed between sentences.

5. Open Class Words : Domain Specific Words. E.g. Computer, Software,

Modem.

22

6. Closed Class Words : Words Common to the Language for example the, and,

which, etc.

The pre-processing of the text is explained in section 3.2. The intelligent text

summarization algorithm is explained in section 3.3 which includes key term extraction

(see section 3.3.1), sentence linking (see section 3.3.2), bonding (see section 3.3.3),

the calculation of in-out bond ratio (see section 3.3.4) and the method for summary

generation (see section 3.3.5). The evaluation methods used for automated evaluation

of the summaries produced is explained in section 3.4, consisting of three methods

for automated evaluation namely readability index (see section 3.4.1), correlation of

relative frequency (see section 3.4.2) and cumulative relative frequency comparison of

top open-class words (see section 3.4.3). The conclusion for the chapter is provided in

section 3.5.

Figure 3.2: Sample scientific text as an example

A short sample scientific text about a computer [39] is shown in figure 3.2. This

text will be used to illustrate the working of the algorithm in the various steps detailed

in this chapter.

23

3.2 Pre-Processing the Text

The pre-processing stage is not a direct part of the core algorithm. However, it is an

essential step since the text that has to be given as input for automatic text sum-

marization should be in a machine-readable format that is compatible with the other

components for the successful execution of the algorithm.

In the pre-processing stage, two important pre-processing steps are done. The first

is to check for the encoding of the text. It is important that the encoding of the text is

uniform so that the characters in the text are not misinterpreted. This is a vital check

since the digitized documents when used in different computer operating systems can

be encoding to the native encoding format of the operating system. There are also cases

where the encoding within a text may be mixed. Hence, the encoding of the input text

has to be made uniform. Based on the experiments carried out, the character encoding

set ISO-8859-1 [40] is chosen as the base format. All the input text is converted to the

ISO-8859-1 encoding format being fed into the summarization algorithm.

Another pre-processing stage that is carried out is the removal of ASCII control

characters and HTML tags that are present in the text. The ASCII control characters

render non-humanly-visible changes to the text that change the natural working of

the algorithm when implemented as computer software. The HTML tags in the text,

if present, are used for markup when the text is displayed on the web and renders

no meaningful information to the text in the perspective of summarization as per the

algorithm showcased in this work. Hence, the HTML tags are removed.

Once the pre-processing of the text is complete, the text is passed on to the core

algorithm for summarization.

3.3 Intelligent Text Summarization Algorithm

The Intelligent Text Summarization is a nine-step algorithm. The algorithm starts

by identifying the key terms of the text. Various methods such as weirdness index,

Part-Of-Speech (POS) analysis and collocation analysis is used to identify the key

terms.

The next step involves the lexical cohesion analysis of the text by calculating their

relative frequency and creating a signature vector (vector of words uniquely represent-

24

ing the text that is created based on the frequency distribution) based on the frequency.

Once the signature vector is created based on the frequency distribution, the sentences

are linked together. Based on the links between sentences, a directed graph of sentences

is created. When the number of links between two sentences is greater than a given

threshold called bond strength, a bond is established between the sentences.

The links between sentences and the bonds are represented as matrices called the

link matrix and bond matrix respectively. Once the bond matrix is created, the ratio of

inbound links and outbound links for each sentence is calculated based on the number

of incoming bonds and outgoing bonds respectively. The density of repetition linkage

between the sentences is a measure of the closeness of the sentences and a statistical

method of determining that the sentences are a part of the common theme that is

presented in the text.

The ratio of the inbound bonds and outbound bonds is used to determine whether

a sentence is an OPENING sentence - a sentence that opens the topic in the text,

MIDDLE sentence - a sentence that is used for elaboration and contains the meaningful

middle part of the text, CLOSING sentence - a sentence that concluded a topic in the

text and MARGINAL - a sentence that is used for explanation of the topics in the text

but do not necessarily is core to the text. The idea is that a marginal sentence can be

safely eliminated without losing any information from the text.

The final step of the algorithm is to present the summary by organizing the identified

sentence in a manner that is easy to be read and understood by the reader. The 9

steps of the algorithm is shown in figure 3.3

25

Figure 3.3: Algorithm of the proposed text summarization technique - Intelligent Text

Summarization

The following five sub-sections provides detailed method explanation for each of

the important section of the algorithm.

1. Key Terms Identification (see section 3.3.1)

(a) Weirdness Index Calculation

(b) Collocation Analysis

(c) Part-of-speech Analysis

2. Sentence Linking and Link Matrix (see section 3.3.2)

3. Sentence Bonding and Bond Matrix (see section 3.3.3)

4. Sentence Categorization using in-out bond ratio (see section 3.3.4)

26

5. Summary Generation (see section 3.3.4)

3.3.1 Key Terms Identification

Automatic key term identification is the most vital part of the intelligent text sum-

marization algorithm showcased in this work. The key terms identified is used for the

creation of the signature vector that is in turn used for the linking and bonding of

sentences from which the summary for the text is generated.

Automatic Term Identification has been an important part of text retrieval sys-

tems and various methods are employed for automatic key terms extraction [41]. In

this work, the primary method used for the key term extraction is Weirdness Index

method which enables autonomous and intelligent key terms extraction. Besides, the

part-of-speech (POS) tagging method is used to enhance the algorithm. However, the

part-of-speech tagging method is dependent on the language and needs POS tagger

trained in the language to tag the text with its part-of-speech. Finally, another im-

provement brought about in this work compared to the previous works [2] [22] [23]

is the incorporation of collocation analysis to find collocates - co-located words that

enabled the algorithm to perform compound words repetition analysis providing better

automated text summarization.

Weirdness Index Calculation

Weirdness Index Calculation method for the identification of key terms in a relative

frequency calculation and corpora comparison method to identify domain-specific terms

or open class works in a simple to use and easily computable manner [37] [42].

The method does not need the use of any pre-training and depends on a simple

mathematical calculation of relative frequencies of the terms in the text with the terms

in a reference corpus. A reference corpus is a collection of a diverse range of texts from

various genres, carefully selected and organized to represent the use of words in the

given language. Usually, the reference corpus is maintained by a consortium and is

updated regularly to reflect the current usage of words in the language.

In this work, since English language scientific text is used, two English language

reference corpora are used. First is the Open American National Corpus (OANC) is

a corpus of English language text containing text that uses American English main-

27

tained by the Linguistic Data Consortium. The corpus consists of 22 million words of

written and spoken American English across various genres including literature, dailies,

weeklies, and emerging texts like tweets and web data [43].

Similar to the Open American National Corpus, the British National Corpus (BNC)

is a carefully selected corpus of English texts are written or spoken in British English.

The British National Corpus contains 100 million words from varied genres of text and

stands as a representative sample of the spoken and written British English [44].

OANC and BNC are used in this work to compare the frequencies of the selected

words in the representative sample of the language. Both OANC and BNC are available

as machine-readable formats as Tab Separated Value (TSV) files. The TSV file consists

of the four fields namely: sort-order, frequency (freq(W k
R)), word (W k

R), and word-class.

The sort-order is the rank of the word based on the frequency, the frequency is the

number of occurrences of the word in the corpus, the word represented the word itself

and the word-class gives the part-of-speech tag of the word [45]. A sample snapshot of

a set of TSV in the corpus is given in figure 3.4

Figure 3.4: A sample snapshot of the BNC corpus with words represented as TSV

From the data available in the corpus, the relative frequency of each word in the

corpus is calculated using the algorithm 1.

28

Result: Corpus updated with the relative frequencies of each word

1 Load Corpus into memory;

2 total ← 0;

3 foreach W k
R in Corpus do

4 total ← total + freq(W k
R)

5 end

6 foreach W k
R in Corpus do

7 RelativeFreq(W k
R) ← freq(W k

R)/total;

8 end
Algorithm 1: Algorithm to calculate relative frequency of terms in the reference

corpus

Both OANC and BNC are reffered commonly as the reference corpus in this work

and is represented using the notation CORPUSR. The corpus of tokens that is cre-

ated from the input scientific text is referred by the notation CORPUSS. Similar to

the reference corpus, the specific text corpus is also processed to get the frequency

(freq(W k
S)) of each word (W k

S) in the corpus.

The weirdness index of a word is calculated as the ratio of the relative frequency of

the token W k in the scientific text corpus CORPUSS to the relative frequency of the

token in the reference corpus CORPUSR. The formula for weirdness index calculation

is given in equation 3.1.

Weirdness =

freq(Wk
S)

NS

freq(Wk
R)

NR

(3.1)

where

freq(Wk
S) = Frequency of the word (W k) in the specific text corpus CORPUSS

NS = Total number of words in the specific text corpus CORPUSS

freq(Wk
R) = Frequency of the word W k in the reference corpus CORPUSR

NR = Total number of words in the reference corpus CORPUSR

Dealing with the shortcomings of Weirdness Index Method

Though weirdness index is a very good method of identifying the open-class words from

the text, it suffers from a set of disadvantages. One, if the word is not updated in the

29

reference corpus, then weirdness of the word will increase to infinity providing a false

positive. Similarly, if the word in the text has a spelling mistake, the word will not

be available in the reference corpus, hence the weirdness index will increase to infinity

again providing a false positive.

To overcome this situation, the weirdness index method is augmented by making

combined use of z− score of the frequency of the word (freq(W k
S)) in the specific text

corpus CORPUSS and the z− score of the weirdness index of word (weirdness(W k
S))

in the specific text corpus CORPUSS. The z−score is a simple measure of the number

of standard deviations the given items is over or below the mean. The z − score is

defined by the equation 3.2.

z − score =
x− µ
σ

(3.2)

where

x = Frequency of the word

µ = Mean of the frequency of the word

σ = Standard Deviation of the frequency of the word

Referring 3.2, the frequencyz − score can be calculated as follows

frequencyz − score =
freq((W k

S))−mean(freq(W k
S))

sd(freq(W k
S))

(3.3)

where

freq((Wk
S)) = Frequency of the word (W k

S) in the specific text corpus

CORPUSS

mean(freq(Wk
S)) = Mean of the frequency of the word in the specific text corpus

CORPUSS

sd(freq(Wk
S)) = Standard Deviation of the frequency of the word in the specific

text corpus CORPUSS

Similarly, the weirdnessz − score can be calculated as follows

weirdnessz − score =
weirdness((W k

S))−mean(weirdness(W k
S))

sd(weirdness(W k
S))

(3.4)

where

30

weirdness((Wk
S)) = Weirdness of the word (W k

S) in the specific text corpus

CORPUSS

mean(weirdness(Wk
S)) = Mean of the weirdness of the word in the specific text

corpus CORPUSS

sd(weirdness(Wk
S)) = Standard Deviation of the weirdness of the word in the

specific text corpus CORPUSS

Based on equation 3.2, the z− score for frequency (see equation 3.3) and weirdness

(see equation 3.4) is calculated for each token in the specific language text. Only those

tokens for which the z−score for both the frequency and weirdness is greater than one

is chosen as key terms. This avoids false positives with tokens that are not available

in the reference corpus and those tokens which have spelling mistake. The selection

criteria is depicted graphically in figure 3.5

Figure 3.5: Graphical representation selection criteria of terms using the Z-Score of

the frequency and weirdness index

The algorithm for the selection of key terms using the Weirdness Index method is

given in algorithm 2.

31

Result: Key Terms selected from the text using Weirdness Index Method

1 specificLanguageText ← Load Specific Text Corpus into memory;

2 tokenizedText ← tokenize(specificLanguageText);

3 candidateTerms ← Empty Set;

4 weirdnessZScoreMap ← Empty Map;

5 frequencyZScoreMap ← Empty Map;

6 foreach token in tokenizedText do

7 weirdnessZScoreMap[token] ← weirdnessZScore(token)

frequencyZScoreMap[token] ← frequencyZScore(token)

8 end

9 foreach token in tokenizedAnnotatedText do

10 if weirdnessZScoreMap[token] > 1 AND frequencyZScoreMap[token] >

1 then

11 candidateTerms ← append(token);

12 else

13 Discard Token;

14 end

15 end
Algorithm 2: Algorithm to select key terms using Weirdness Index Method

As per algorithm 2, then input text for which the key terms have to be extracted is

first tokenized. Tokenization is a process of converting the text into individual words.

For each token in the input text the frequency z-score (see equation 3.3) and the

weirdness z-score (see equation 3.4) is calculated. Once the frequency and weirdness

z-scores are calculated for all the tokens, tokens are once again iterated and only the

tokens for which the z-scores for both the frequency and weirdness is greater than zero

is considered as candidate terms (key terms).

The design specification for the selection of the terms using the weirdness index

method is given as a Unified Modelling Language (UML) flow-chart in the figure 3.6

32

Figure 3.6: Design Specification of the selection of terms using Weirdness Index repre-

sented using UML Flow-chart

33

Part-of-speech Analysis

The part-of-speech (POS) analysis is an add-on to key term extraction. The key term

extraction is capable of working without the use of a POS tagger and is not a must-be

dependency for the algorithm. However, it is used to enhance the set of key terms by

annotating the input scientific text with the part-of-speech and adding the nouns from

the specific text corpus CORPUSS into the candidate terms. The POS taggers are

available as of-the-shelf modules that can be used to annotate the text with POS tags.

In this work, the StanfordNLP POS tagger is used. The StandfordNLP POS tagger

is widely used in the industry and academia alike [36].

The POS tagger tags the text with various POS tags. The various POS that will

be used to annotate the text by the POS tagger is given in table 3.1.

Table 3.1: Part-of-speech tags used by POS tagger to

annotate text

Sr POS

Tag

Explanation

1 CC coordinating conjunction

2 CD cardinal digit. Eg. ’1’

3 DT determiner. Eg. ’The’

4 EX existential there (like: ”there is” ... think of it like ”there exists”)

5 FW foreign word

6 IN preposition/subordinating conjunction

7 JJ adjective Eg. ’big’

8 JJR adjective, comparative Eg. ’bigger’

9 JJS adjective, superlative Eg. ’biggest’

10 LS list marker Eg. ’1’)

11 MD modal Eg. ’could’, ’will’

12 NN noun, singular Eg. ’desk’

13 NNS noun plural Eg. ’desks’

14 NNP proper noun, singular Eg. ’Harrison’

15 NNPS proper noun, plural Eg. ’Americans’

16 PDT predeterminer Eg. ’all the kids’

34

17 POS possessive ending Eg. parent’s

18 PRP personal pronoun Eg. ’I’, ’he’, ’she’

19 PRP$ possessive pronoun Eg. ’my’, ’his’, ’hers’

20 RB adverb very, Eg. ’silently’

21 RBR adverb, comparative Eg. ’better’

22 RBS adverb, superlative Eg. ’best’

23 RP particle Eg. ’give up’

24 TO to go ’to’ the store.

25 UH interjection errrrrrrrm

26 VB verb, base form Eg. ’take’

27 VBD verb, past tense Eg. ’took’

28 VBG verb, gerund/present participle Eg. ’taking’

29 VBN verb, past participle Eg. ’taken’

30 VBP verb, sing. present, non-3d Eg. ’take’

31 VBZ verb, 3rd person sing. present Eg. ’takes’

32 WDT wh-determiner Eg. ’which’

33 WP wh-pronoun Eg. ’who’, ’what’

34 WP$ possessive wh-pronoun Eg. ’whose’

35 WRB wh-abverb Eg. ’where’, ’when’

36 QF quantifier, Eg. ’lot’, ’less’

37 VM main verb

38 PSP postposition

39 DEM demonstrativ

The algorithm for the selection of key terms using POS tagger is given is algorithm

3

35

Result: Key Terms selected from the text using POS Tagging Method

1 specificLanguageText ← Load Specific Text Corpus into memory;

2 tokenizedAnnotatedText ← posTag(specificLanguageText);

3 candidateTerms ← Empty Set;

4 foreach token in tokenizedAnnotatedText do

5 if getPOS(token) begins with ′NN ′ then

6 candidateTerms ← append(token);

7 else

8 Discard Token;

9 end

10 end
Algorithm 3: Algorithm to select key terms using POS Tagging Method

As per algorithm 3, the input text is annotated using a POS tagger. The annotated

text is taken one by one and if the POS tag is of ’Noun’ type, i.e., it start with the

POS tag ’NN’ then, the token is added to the candidate terms, else it is discarded. The

design specification for the complete single term extraction including the POS tagger

option is given in figure 3.7

36

Figure 3.7: Design Specification of the selection of key terms including POS Tagging

represented using UML Flow-chart

Collocation Analysis

Collocates are those words that co-occur more often than by chance. Collocates cor-

responds to arbitrary word usages in the text and natural language text is filled with

collocates [46]. Collocates can be computed manually by taking each key term identi-

fied and looking and the words that co-occur on the left and right of it. However, it is

a human-intensive process and cannot be incorporated into an automated algorithm.

Hence, there exists a need to determine the collocations automatically.

Collocations increase the efficiency of the summarization algorithm since they iden-

tify compound words that co-occur in the text. These compound words can be used

to establish additional links between sentences thereby enabling the summarization

algorithm to better understand closely related sentences.

For automated collocation identification, this works makes use of the statistical

37

measures suggested by Smadja [46]. The three important statistical measures that are

suggested by Smadja to retrieve collocations are spread, strength and distance.

To perform the computations, the first step is to create a frequency distribution

table as shown in figure ¡¿ where for each candidate word W k, the frequency of n terms

W i in the left and right side of the word is calculated. A sample table from the medical

domain where the frequencies are calculated for the 5 open-class words to the left and

right of the candidate terms is given in table 3.2.

Table 3.2: Table showing the frequency calculation for

candidate terms (W) and other open class words (Wi)

for 5 words to the left (L1 to L5) and 5 words to the

right (R1 to R5)

W Wi Total

Fre-

quency

L5 L4 L3 L2 L1 R1 R2 R3 R4 R5

bleeding acute 38 0 0 20 12 1 0 1 1 1 2

bleeding upper 35 2 1 0 21 0 1 4 2 3 1

upper bleeding 35 1 3 2 4 1 0 21 0 1 2

upper endoscopy 33 1 0 0 1 0 29 0 0 0 2

endoscopy upper 33 2 0 0 0 29 0 1 0 0 1

bowel small 25 0 0 0 0 25 0 0 0 0 0

capsule endoscopy 23 0 0 0 0 0 23 0 0 0 0

endoscopy capsule 23 0 0 0 0 23 0 0 0 0 0

patients bleeding 21 0 0 0 1 0 0 0 2 6 12

bleeding patients 21 12 6 2 0 0 0 1 0 0 0

bleeding lower 21 0 0 1 17 0 0 0 1 1 1

obscure bleeding 20 0 0 0 0 1 1 15 2 0 1

bleeding obscure 20 1 0 2 15 1 1 0 0 0 0

upper colonoscopy 18 0 0 1 2 0 0 0 14 0 1

colonoscopy upper 18 1 0 14 0 0 0 2 1 0 0

endoscopy colonoscopy 17 0 0 2 0 0 0 14 0 1 0

colonoscopy endoscopy 17 0 1 0 14 0 0 0 2 0 0

38

catheter angiography 16 0 0 0 3 1 11 0 1 0 0

upper acute 16 3 1 0 0 11 0 0 0 0 1

Once such a table is created, then the next step is to calculate the strength for

each item in the table. The strength of a collocate is computed by the equation 3.5

strength(wk, wi) =
fi − µ
σ

(3.5)

where

fi = Sum of the frequency of Wi among the n neighbourhood

µ = Average frequency of the words that appear in the n neighbourhood of W k

σ = Standard Deviation of the words that appear in the n neighbourhood of W k

ST can be defined as the Strength Threshold which is threshold for a collocate

(W k,W i) to be considered as a candidate.

The next measure for selecting a candidate collocate is the distribution of the fre-

quency of the collocate or its spread. The spread metric enables to statistically de-

termine whether a collocate (W k,W i) has a sharp increase in the histogram analysis

indicating that its co-occurrence in the given position is not random but a deliberate

use by the author of the text or is a compound word that is part of the language. The

spread for a collocate (W k,W i) is defined by equation 3.6

spread(wk, wi) =

∑n
j=−n(f i

j − f̄i)2

2 ∗ n
(3.6)

where

fij = Frequency of W i in position j

f̄i = Average frequency of W i that appear in the n neighbourhood of W k

n = number of neighbourhood. Normally n is set to 5 and n 6= 0

ST can be defined as the Spread Threshold which is threshold for a collocate

(W k,W i) to be considered as a candidate.

The final measure for the determination of a collocate candidate is the distance.

The distance is for a collocate (W k,W i) is calculated using the equation 3.7

39

distance(wk, wi) = abs(0− index(max(W i))) (3.7)

where

index(max(Wi)) = Distance of the word W i with respect to the word W k

Based on the three measures of strength, spread and distance, the collocate can-

didates can be selection using the criteria given in equation 3.8

strength(wk, wi) > ST

spread(wk, wi) > SP

distance = 1

(3.8)

where

ST = Strength Threshold specified by the user, the default is 1

SP = Spread Threshold specified by the user, the default is 5

Using equation 3.8 as the deciding criteria for the selection of collocate candidates,

the algorithm for collocate selection is shown in algorithm 5.

40

Result: N Neighbour frequency for each key term

1 specificLanguageText ← Load Specific Text Corpus into memory;

2 sentenceSplit ← sentenceSplit(specificLanguageText);

3 keyTerms ← CandidateTerms;

4 frequencyMap ← Empty Map;

5 foreach sentence in sentenceSplit do

6 foreach term in keyTerms do

7 if frequencyFrame IS NULL in

frequencyMap[term][frequencyFrame] then

8 frequencyMap[term][frequencyFrame] ← frequencyFrame;

9 end

10 if term in sentence then

11 tokenizedSentence ← tokenize(sentence) foreach token in

tokenizedSentence do

12 if token is OPEN-CLASS then

13 frequencyMap[term][frequencyFrame] ←
computeOrUpdateFrequency(token);

14 else

15 Discard Token;

16 end

17 end

18 end

19 end

20 end
Algorithm 4: Algorithm to compute the frequency of N neighbours for each key

term

41

Result: Collocate Candidates from the given text

1 specificLanguageText ← Load Specific Text Corpus into memory;

2 sentenceSplit ← sentenceSplit(specificLanguageText);

3 keyTerms ← CandidateTerms;

4 frequencyMap ← ExecuteFrequencyAnalysis (see 4);

5 frequencyFrame ← EmptyArray[n];

6 candidateCollocates ← EmptySet;

7 strengthThreshold = 1;

8 spreadThreshold = 5;

9 distanceThreshold = 1;

10 foreach term in frequencyMap do

11 frequencyMap[term][strength] ←
computeStrength(frequencyMap[term][frequencyFrame]);

12 frequencyMap[term][spread] ←
computeSpread(frequencyMap[term][frequencyFrame]);

13 frequencyMap[term][distance] ←
computeDistance(frequencyMap[term][frequencyFrame]);

14 end

15 foreach term in frequencyMap do

16 strength ← frequencyMap[term][strength]; spread ←
frequencyMap[term][spread];

17 distance ← frequencyMap[term][distance];

18 if strength ¿= strengthThreshold AND spread ¿= spreadThreshold AND

distance == distanceThreshold then

19 candidateCollocates ← append(term)

20 else

21 Discard term;

22 end

23 end
Algorithm 5: Algorithm to select candidate collocates using the statistical mea-

sures Strength, Spread and Distance

The collocates are computed as per the algorithm 5. The first step of the algorithm

42

is to compute the n neighborhood frequency for each key term for each of the open-class

word in all the sentences of the CORPUSS. This is done by executing the algorithm

1. Once the frequency map for each of the key terms is available, then the next step

is to calculate the strength, spread and distance for each of the collocate (W k,W i).

After the computation of the strength, spread and distance, then each collocate is

examined to check if it meets the criteria for candidate collocates as defined in equation

3.8 and those collocates which pass the criteria are selected as candidate collocates.

The design specification of the candidate collocate selection process is represented as

a UML flowchart in figure 3.8.

Figure 3.8: Design Specification of the collocate candidate selection represented using

UML flowchart

43

3.3.2 Sentence Linking and Link Matrix

Once the key term identification is complete, logically the key terms annotated in each

sentence. The logical view of the sentences from the sample text shown in figure 3.2

annotated with the identified key terms can be seen in figure 3.9. An configurable

improvisation mechanism using the stemming of the key terms using the Porter2 stem-

ming algorithm [47] is included in the sentence linking method.

Figure 3.9: Logical view of the sentences annotated with the identified key terms

The next step of the algorithm is the sentence linking process. The process enables

to find the links between the sentences based on the key terms identified as explained

in section 3.3.1.

The process is executed by taking each key term identified and annotated in a

sentence and looking for that key term in all the other sentences. If the same key term

is found in another sentence, then a link is created between the origin sentence (So)

and the target sentence (St) and the link is marked as an out-link in the origin sentence

(So) and in-link in the target sentence (St). The algorithm for the process of sentence

linking is given in algorithm 6

44

Result: Link Matrix

1 sentenceSplit ← keyTermsMarkedSentence;

2 foreach So in sentenceSplit do

3 foreach St in sentenceSplit do

4 if St 6=So then

5 foreach term in So[terms] do

6 if term in St[terms] then

7 So[out] ← index(St) St[in] ← index(So)

8 end

9 end

10 end

11 end

12 end
Algorithm 6: Algorithm to link key term annotated sentences in a text

After the execution of this alogithm, the link between each sentence of the text will

be established. Considering the example in 3.2, and considering only one key term, say

’computer’ figure 3.10.

45

Figure 3.10: Network among various sentences based on key terms for incoming, out-

going and intermediate sentence analysis

The output of the algorithm 6 will be a nxn matrix with the count of links from

one sentence to the other that is symmetric over the leading diagonal. The link matrix

for the sample text shown in figure 3.2 is shown in 3.11

Figure 3.11: The link matrix showing the count of links between sentences

46

3.3.3 Sentence Bonding and Bond Matrix

The process of bonding is nothing but finding out the sentences that are closely related

to each other based on the number of links between the text. To identify closely related

sentences, the threshold value called as bondstrength is introduced.

The threshold value bondstrength can be defined as the minimum number of links

that needs to exists between two sentences in order to declare the sentences as bonded.

Bonding of sentences enable to filter out the marginal or non-valuable sentences from

the text and enable the creation of a better summary.

The algorithm for the bond creation process is given in algorithm 7. As per the

algorithm, each sentence is traversed and its in-links and out-links are examined. It

there is more links than the bondstrength to a sentence, then based on whether it is an

in-link or an out-link, an in-bond or out-bond is added from the source sentence (So)

and target sentence (St).

Result: Bond Matrix

1 sentenceSplit ← linkedSentences;

2 bondStrength ← userDefinedBondStrenght;

3 foreach So in sentenceSplit do

4 inLinks ← So[inLinks] outLinks ← So[outLinks] foreach inLink in

inLinks do

5 if inLink[count] ¿= bondStrength then

6 So[inBonds] ← inLink[index];

7 end

8 end

9 foreach outLink in outLinks do

10 if outLink[count] ¿= bondStrength then

11 So[outBonds] ← outLink[index];

12 end

13 end

14 end
Algorithm 7: Algorithm to establish bonds between sentences

The links that will be selected and determined as bonds based on the link ma-

47

trix shown in figure 3.11 is highlighted with and shown in the figure 3.12 when the

bondstrength is set as 2. The change in the bond matrix when the bondstrength is

changed to 3 is shown in the figure 3.13. From the figures 3.12 and 3.13 it can be seen

that the bondstrength is an important parameter in determining the bonds between

sentences. Since the summary generated is directly dependent on the bonds between

sentences, it is important to tune the bondstrength to an optimal value for effective

summary generation.

Figure 3.12: The Bond matrix showing the detection of bonds from link matrix when

the bond strength is set as 2

48

Figure 3.13: The Bond matrix showing the detection of bonds from link matrix when

the bond strength is set as 2

3.3.4 Sentence Categorization using in-out bond ratio

The penultimate stage before the creation of the summary is the categorization of

links as OPENING, CLOSING, MIDDLE and MARGINAL. This categorization

enables the Intelligent Text Summarization algorithm to produced effective summaries

by identifying not just the importance sentences, but also the logical position of the

sentence in the summary.

OPENING sentences are ones that introduce the core topics of the text. MIDDLE

sentences generally elaborate on the topic and the CLOSING sentences conclude the

topic. The MARGINAL sentences are those sentences that are not important to the

text and when removed do not lose information. Hence all sentences which are not

bonded are classified as MARGINAL

The in-out bond ratio is calculated as per the formula given in equation 3.9.

BondRatio(BR) =
count(Si

in)

count(Si
out)

(3.9)

where

count(Si
in) = Count of incoming bonds for the sentence i

count(Si
out) = Count of outgoing bonds for the sentence i

49

Based on the bond ratio (BR), the links are classified as per the equation 3.10.

OPENING← BR < 0.5

MIDDLE ← BR >= 0.5ANDBR <= 1.5

CLOSING← BR > 1.5

(3.10)

The algorithm for sentence classification based on the bond ratio is given in al-

gorithm 8. The algorithm works by first computing the bond ratio for each sentence

based on equation 3.9 and then classifying the sentence based on the equation 3.10.

Result: Categorized Sentences

1 sentenceSplit ← bondedSentences;

2 foreach So in sentenceSplit do

3 inBonds ← So[inBonds];

4 outBonds ← So[outBonds];

5 bondRatio = count(inBonds) / count(outBonds);

6 if bondRatio ¡ 0.5 then

7 So[type] ← OPENING ;

8 continue;

9 end

10 if bondRatio ¿= 0.5 AND bondRatio ¡= 1.5 then

11 So[type] ← MIDDLE ;

12 continue;

13 end

14 if bondRatio ¿ 1.5 then

15 So[type] ← CLOSING ;

16 continue;

17 end

18 end
Algorithm 8: Algorithm to categorize the bonded sentences based on bond ratio

50

3.3.5 Summary Generation

The final step of the algorithm is summary generation. The summary generation is

done by grouping all the opening sentences, middle sentences and closing sentences

based on the categorization done using the bond ratio. This enables the summary to

be logically relevant and organized based on the flow of the topic. Within each group,

the sentences are placed in the same order as they appeared in the input text.

51

The algorithm for summary generation is given in algorithm 9.
Result: Summary of the input Text

1 sentenceSplit ← categorizedSentences;

2 openingSentences ← EmptyArray;

3 closingSentences ← EmptyArray;

4 middleSentences ← EmptyArray;

5 summary ← EmptyString;

6 foreach So in sentenceSplit do

7 if So[type] == OPENING then

8 openingSentences ← append(So[text]);

9 continue;

10 end

11 if So[type] == CLOSING then

12 closingSentences ← append(So[text]);

13 continue;

14 end

15 if So[type] == MIDDLE then

16 middleSentences ← append(So[text]);

17 continue;

18 end

19 foreach sentence in openingSentences do

20 summary ← summary + sentence;

21 end

22 summary ← summary + NEWLINE;

23 foreach sentence in middleSentences do

24 summary ← summary + sentence;

25 end

26 summary ← summary + NEWLINE;

27 foreach sentence in closingSentences do

28 summary ← summary + sentence;

29 end

30 summary ← summary + NEWLINE;

31 end
Algorithm 9: Algorithm to produce summary form the bond ratio based cate-

gorized sentences 52

3.4 Evaluation Method

When it comes to automatic text summarization, it is important to verify that the

summaries that are produced are meaningful, does not lose the information from the

main text and is easy for people to read and understand. However, the evaluation of

the summaries produced by automatic text summarization tools is human-intensive.

Moreover, the evaluation is subjective and varies from human to human. Even if

the strategy is to compare a human-created summary to an automated summary, the

human-created summaries vary based on the technical interest, language skill-set and

domain expertise of the author of the summary. Hence, there exists a need to perform

an automatic evaluation of the summaries produced in a statistically significant way

especially when it involves the evaluation of summaries produced for a large corpus

of text. Subjective human evaluation can be used for cross-checking the automatic

summarization method and can be done in a minimal and controlled manner.

Hence to perform an automatic evaluation of the summaries produced, three meth-

ods are used in combination in this work.

1. Readability Index (see section 3.4.1)

2. Correlation of the Relative Frequency Method (see section 3.4.2)

3. Cumulative Relative Frequency Comparison of top open-class words (see section

3.4.3)

3.4.1 Readability Index

Readability index is an automatic method of collecting data from a text in order to

gauge its understandability and ease of reading. There are several readability indices

available such as Gunning Fox Index, Automated Readability score, Smog Index, etc.

However, one of the most widely used and validated readability index methods is Flesch

Kinkaid Reading Ease Formula. The reading ease formula is used for identifying the

ease of reading a given document. The formula is based on the number of sentences,

words, and syllables that exist in the document. More specifically it depends on the

ratio of the number of words to the number of sentences and the number of syllables

to the number of words. It is computationally easy to use method for evaluating

53

the readability of a text document [48]. The Flesch Kinkaid Reading Ease formula is

defined by the equation 3.11.

ReadingEase = 206.835− (1.015 ∗ TW/TSe)− (84.6 ∗ TSy/TW) (3.11)

where

TW = Total number of words in the text

TSe = Total number of sentences in the text

TSy = Total number of syllables in the text

The output of the reading ease formula is a number in the range 0 to 100. The

interpretation of the score is given in table 3.3

Table 3.3: Flesch Kinkaid Reading Ease interpretation

reckoner

Score School level Notes

100.00 to

90.00

5th grade Very easy to read. Easily understood

by an average 11-year-old student.

90.0 to 80.0 6th grade Easy to read. Conversational English

for consumers.

80.0 to 70.0 7th grade Fairly easy to read.

70.0 to 60.0 8th to 9th grade Plain English. Easily understood by

13- to 15-year-old students.

60.0 to 50.0 10th to 12th

grade

Fairly difficult to read.

50.0 to 30.0 College Difficult to read.

30.0 to 0.0 College graduate Very difficult to read. Best understood

by university graduates.

The intepretation of table 3.3 is that, if the reading ease score of a text is in the

range of 90 to 100, then a person who has knowledge of English in the level that is

taught in the 5th grade can read the text. In other words, the closer the score is to 100,

54

the easier is it to read the document. Normally schololary articles contain a reading

ease score less than 50 and a mojority of them less than 30.

In this work, the Flesch Kinkaid Reading Ease is calculated for the input text and

the summary that is produced. The result is evaluated by comparing the reading ease

score for the input text and the summary.

3.4.2 Correlation of Relative Frequency

In this method of automatic evaluation, the relative frequency for each word is calcu-

lated the input text and their corresponding relative frequency in the summary that

is produced. The relative frequency is calculated for both the open and closed-class

words. Then the correlation of the vectors of relative frequencies in the input text and

summary text is determined. Since the summary should be a true representation of the

input text, the correlation of the relative frequency of words in the summary with that

relative frequency of words in the input text should be very high. A low correlation

will indicate that there is information loss in the summary that is produced.

The algorithm for calculation of the correlation between the relative frequency in

the given in algorithm 10

55

Result: Correlation between the relative frequency of words in input text and

summary text

1 inputTokens ← tokenizedInputText;

2 summaryTokens ← tokenizedSummaryText;

3 initalize(inputWordCount, summaryWordCount, inputTokenMap,

summaryTokenMap, inputTextV ector, summaryTextV ector, correlation);

4 foreach token in inputTokens do

5 inputWordCount ← inputWordCount + 1;

6 if token in inputTokenMap then

7 inputTokenMap[token] ← inputTokenMap[token] + 1;

8 else

9 inputTokenMap[token] ← 1;

10 end

11 end

12 foreach token in inputTokenMap do

13 inputTextV ector ← inputTokenMap[token] / inputWordCount;

14 end

15 foreach token in summaryTokens do

16 summaryWordCount ← summaryWordCount + 1;

17 if token in summaryTokenMap then

18 summaryTokenMap[token] ← summaryTokenMap[token] + 1;

19 else

20 summaryTokenMap[token] ← 1;

21 end

22 end

23 foreach token in summaryTokenMap do

24 summaryTextV ector ← summaryTokenMap[token] /

summaryWordCount;

25 end

26 correlation ← computeCorrelation(inputTextV ector, summaryTextV ector)
Algorithm 10: Algorithm for evaluation of summary by computing the correla-

tion between the relative frequency of word vectors in input text and summary

text

56

The output of algorithm 10 gives the correlation of the relative frequencies between

the word vectors of input text and summary text which is a statistical measure of

determining whether the summary text contains the information that is present in the

input text.

3.4.3 Cumulative Relative Frequency Comparison of top open-

class words

When a summary for a text is generated, the quality of the summary is based on

whether then summary is understandable by the reader and whether the summary

contains all the relevant information contained in the input text. The measure of

whether the reader can understand the summary is a conceptual measure. However,

the conceptual measure is difficult to be computed automatically and needs subjective

human evaluation. On the other hand, the understandability of the summary gener-

ated can be analyzed linguistically. Linguistic theories include semantic studies which

again is computationally difficult, however, the cohesion studies enable the computa-

tion of readability and understanding using simple mechanical computation and can

be equated to the conceptual measure of understandability of the summary.

The idea is that in a scientific text authors report, elaborate and aggregate topics.

To do this, there is a theme that is followed and the important topics are repeated

throughout the text by the usage of topics and terms. The sentences in the text

are linked using lexical linkages and semantics of the language. The semantics of the

language is difficult to be computed, however, the lexical linkages can be analyzed using

a bag of words model. The lexical linkages analysis work especially good on language

for special purposes. Language for special purposes (LSP) make use of the special or

domain-specific words which are introduced by the authors and have a special meaning

in the domain. These words that are specific to the domain is called open-class words

and form a small slither of the LSP and this concept is called Neologism [49]. The

open-class words enable the lexical cohesion in the text which is indirectly related to

the semantics of the text.

Based on the understanding of Neologism and its part in LSP, the goodness of a

summary can be evaluated using the cumulative relative frequency of the open-class

words in the input text and summary text. Considering a scientific text which is

57

jargon-rich, the top 100 words contribute to the meaning of the text. By analyzing the

cumulative relative frequency of the top meaning contributing words in the input text,

and analyzing the cumulative relative frequency of the same 100 words in the summary,

it is possible to determine the goodness of the summary statistically verifiable manner.

The cumulative relative frequency of the top 100 words in the text can be calculated

using the algorithm 11.

Result: Cumulative Relative Frequency Vector of the given text

1 wordFrequencyMap ← computeFrequencyMap(text);

2 wordCount ← computeTotal(wordFrequencyMap);

3 counter ← 0;

4 initialize(cumulativeFrequencyV ector);

5 wordFrequencyMap ← sort(wordFrequencyMap);

6 while wordFrequencyMap has token do

7 if token is OPEN-CLASS then

8 counter ← counter + 1;

9 cumulativeFrequencyV ector ← token[count] / wordCount;

10 end

11 if counter ≥100 then

12 break;

13 end

14 end
Algorithm 11: Algorithm to calculate the cumulative relative frequency of the

top open-class words in a text

3.5 Conclusion

This chapter explains in details the various steps involved in the generation of a sum-

mary form an input scientific text. The various section elaborate in detail the different

methods used for pre-processing the text (see section 3.2), and Intelligent Text Sum-

marization (see section 3.3).

For each of the distinct methods, detailed algorithms and illustrations are provided

to explain the concept with an easy to understand practical example of a sample text

58

shown in figure 3.2.

Though the algorithm performs better on large scientific texts, to complete the

illustration of the method used for Intelligent Text Summarization, the output summary

generated by the algorithm for the sample text (see figure 3.2) is given in figure 3.14.

Figure 3.14: The summary generated using the Intelligent Summarization Algorithm

with the Sample Text as input

The evaluation for the goodness of the summary using various automated statisti-

cally verifiable methods that can be used for large corpus of text is explained in section

3.4.

The complete design specification of the ’Intelligent Text Summarization’ algorithm

is represented as a UML flowchart in figure 3.15

59

Figure 3.15: Design Specification of Intelligent Text Summarization Algorithm UML

flowchart

The implementation of the Intelligent Text Summarization algorithm and controlled

case studies to evaluate the implementation is explained in chapter 4.

60

Chapter 4

Implementation and Case Studies

4.1 Introduction

This chapter explains the implementation of the Intelligent Text Summarization algo-

rithm for which the method was explained in chapter 3. The section provides informa-

tion regarding the choice of dataset and the rationale behind the selection (see section

4.2). It also explains the technical specification of the system by explaining the archi-

tecture and the user interface design (see section 4.3). In the later part of this chapter,

case studies in which controlled experimentation with instrumentation was done to

evaluate the system is presented with the results obtained along with a discussion of

the results obtained (see section 4.4). The final part of this chapter provides insights

into the system performance on different scenarios and system load (see section 4.5).

The security and privacy considerations with respect to the implementation is given in

section 4.6. The chapter is concluded in the section 4.7

4.2 Dataset Selection

The dataset that is vital for testing and evaluation of the implementation of Intelligent

Text Summarization. The dataset needs to be carefully chosen to cover a wide variety

of scenarios so that the implementation can be subjected to different use cases and the

algorithm can be evaluated well.

In this work, the primary focus is on the automated text summarization of large

61

scientific texts and since the research is in the field of computer science, one of the

dataset chosen for evaluation is large scientific texts in the field of computer science.

The works by Alan Turing is considered as one of the datasets from the computer

science domain. Alan Turning is a renowned computer scientist and his contribution

to the field such as compilers, cryptography, artificial intelligence, etc., is well respected.

Since this work considers contributes to the field of artificial intelligence and the articles

by Alan Turing are long texts in the scientific domain, the usage of the articles by him

deems to be a well-considered choice. However, many of the articles by him are not in

the digital format and hence three prominent articles that are digitized and available

for public use is chosen as one of the datasets in this work.

The articles by Alan Turing used for evaluation in this work are as follows.

1. Computing Machinery and Intelligence [50]

2. On computable numbers, with an application to the Entscheidungsproblem [51]

3. The Chemical Basis of Mokphogenesis [52]

Apart from the works by Alan Turning, 7 other articles from the field of computer

science are chosen to be a part of the dataset related to computer science. Some

of them are Steps towards Artificial Intelligence [53], Establishing Moore’s law [54]

andOrigins of Domain Name System [55]. The complete set of titles of the articles

used for evaluation is provided in the appendix.

Apart from the dataset in the computer science domain, to test the practicability

of the proposed algorithm in large scientific texts, a set of fifteen long scientific articles

from the bio-medicine (gastroenterology) domain is chosen as another dataset.

Also, as experimentation, a set of fifty thousand tweets collected during the Russian

River Flooding in the Sonoma County, California during March 2019 is used to explore

whether the same algorithm can be used to identify the most important information

present in a large cluster of tweets. The experiment was conducted to explore if the

algorithm, the core of which is to identify important sentences in a text and order them

logically, can be used in fields like Social Media Analytics for Disaster Management

where large volumes of social media message have to understood and prioritized for

emergency management organizations to take action to save life and property of the

62

citizens. This experiment is not a core part of this work, however, is used to show the

applicability of the algorithm in other domains.

4.3 Technical Specification and System Design

This section explains the system architecture of the implementation, the technical stack

used and the rationale for the choice and the user interface design of the application

that was developed to showcase the implementation of the Algorithm.

4.3.1 System Architecture

The system is architected using a service-oriented architecture (SOA) principles in a

client-server approach. The component diagram of the system architecture is given in

figure 4.1. The system consists of two major sections - user interface application and

the Intelligent Text Summarization server.

63

Figure 4.1: System Implementation Design of the Intelligent Text Summarization -

Curukka System

64

User Interface Application

The user-facing part of the system is the user interface application that is built as a

standalone application that can be used on both Microsoft Windows 10+ and Apple

Mac OSX 10.14+ operating systems. The user interface application consists of an

event processing module that listens to user events and invokes the appropriate meth-

ods. This is the primary user interaction module of the user interface application and

handles both mouse interactions and keyboard inputs. Another important component

of the user interface application is the input/output processing module. The input/out-

put processing module is responsible for the handling of file operations such as opening

a file for summarization, writing the output of the application to the file, and rendering

the output from the server on the user interface application. The user interface appli-

cation contacts the server module over HTTP using ReST application programming

interface (API). The rest communication component of the user interface application

takes care of all the communication-related activities including the creation of server

requests, processing the response from the server. Each component of the user interface

application also takes care of exception handling, gracefully handling the errors and

logging them for debugging in case of a need. The user interface application consists

of 1681 lines of code.

Intelligent Text Summarization Server

The server module of the system consists of three major components. The ReST in-

terface component is responsible for receiving requests from the clients and sending

the response back. The ReST interface component is multi-threaded and can handle

multiple requests simultaneously. The number of requests that can be handled simul-

taneously depends on the hardware and software configuration of the system and can

be configured by the user. The Intelligent Text Summarizer Component contains the

implementation of the core algorithm. It is invoked by the ReST interface component

to server user requests. The Metrics component of the server work along with the

summarizer component. The metrics component provides all the instrumentation met-

rics required to evaluate the working of the system and also records the performance

metrics. As in the user interface application, each component of the server application

takes care of the exception handling and logging.

65

4.3.2 Technical Stack

The application is built using two major technical stacks. The user interface of the ap-

plication is built using the JAVA programming language. The Swing Windows Toolkit

(SWT) and the Advanced Widgets Toolkit (AWT) along with the Windows builder

framework for JAVA programming language is used for developing the user interface.

The application developement is done using Eclipse 2019-03 integrated application

development environment with JAVA Development Kit (JDK) version 1.8. The user

interface application was developed on Apple OSX Mojave 10.14 operating system and

the distributables are built to run on both Microsoft Windows and Apple OSX operat-

ing systems with Java Runtime Environment (JRE) version 1.8 installed. The rationale

behind the choice of a technical stack based on the JAVA programming language for the

user interface application is because of the platform independency provided by JAVA

programming language, the availability of Windows desktop application development

toolkits and the excellent community support.

The technical stack for the server is based on the Python programming language.

The ReST interface module is built using the Python Flask framework. The metrics

module of the server component makes use of the popular number processing frame-

works in the Python stack such as numpy and pandas. The choice of a Python based

technical stack to implement the core algorithm and the server component is due to

the native support for advanced text processing in the Python programming language.

This is evident from the fact that most popular natural language processing systems

like the Standford NLP system are build using Python programming language. The

server component is deployed as one command executable that can be run on any

Linux based environment that has support for Python programming language version

3.7. The server module consists of 1585 lines of code.

The detailed instruction on the deployment and usage of the application is given in

the appendix.

4.3.3 User Interface Design

This section explains the user interface design of the Curukka system. The user inter-

face consists of primarily eight screen views, each of which are explained below with a

screenshot.

66

Configuration Panel

The configuration panel is the single point of all user configurations for the Curukka

system. The screenshot of the configuration panel can be seen in figure 4.2. The

bond strength threshold that should be used for the summarization process is available

as an editable dropdown list in the configurations group. The default is set as ’3’,

however, the user can choose the required bond strength from the dropdown list or

enter a number in the range of 2 to 10. The configuration group also consists of a set of

radio buttons which allows the user to choose whether the term extraction should be

done using the only the weirdness index method or to use a hybrid approach of both

weirdness index method and POS tagging method. The default setting is to use only

the weirdness index method for term extraction.

The corpus selection configuration group enables the user to configure the reference

corpus that should be used. The user has a choice between the Open American National

Corpus (ANC) or the British National Corpus (BNC). The default option is set as BNC.

The powerups configuration enable the user to select whether to use collocation

analysis for text summarization and enable or disable the use of stemming or terms

before the analysis is performed.

The final configuration item is an experimental one which enables the user to in-

dicate to the system that the text being summarized are tweets. When this option is

selected the only difference in that when the summary output is rendered, instead of

the producing paragraphs, the system arranges the tweet one per line.

67

Figure 4.2: Screenshot of the configuration panel for the Curukka System

Text Input Screen

The text input screen allows the user to enter the input text. The input can be added

by typing directly into the screen, or by pasting the text into the screen from clipboard,

or by the use of the menu bar to open a file (in ’.txt’ format). A screenshot of the text

input screen is shown in figure 4.3

68

Figure 4.3: Screenshot of the Text Input Screen for the Curukka System

Summary Screen

The summary screen is used to display the summary to the user. The summary screen

does not allow the user to add or edit the text in it. Once the summary is received

from the server, the application renders the summary on the summary screen and

automatically switches the view to it. The summary rendered on the summary screen

can be saved using the save menu option. A screenshot of the summary screen is shown

in figure 4.4

69

Figure 4.4: Screenshot of the Summary Screen for the Curukka System

Metrics Screen

The metrics screen is used to show the important metrics of after the completion of the

summarization. A screenshot of the metrics screen is shown in figure 4.5. The various

metrics present on the metrics screen are as follows.

a. Bond Strength: The bond strength that was input by the user.

b. Total Sentences in Full Text : The total number of sentences that were present in

the input text.

c. Total Sentences in Summary Text : The total number of sentences that are present

in the summary text.

d. Opening Sentences : The total number of opening sentences.

e. Middle Sentences : The total number of middle sentences.

f. Closing Sentences : The total number of closing sentences.

70

g. Discarded Sentences : The total number of discarded sentences.

h. Original Text Readability : The Flesch-Kinkaid reading ease score of the input text.

i. Summary Text Readability : The Flesch-Kinkaid reading ease score of the summary

text.

j. Part of Speech Tagging Used : A boolean value whether the user had used enabled

part-of-speech tagging method for term extraction.

k. Word Stemming Enabled : Whether word stemming was enabled by the user for

sentence linking.

l. Collocations Used : Whether collocation analysis was enabled for intelligent term

extraction.

m. Reference Corpus : The reference corpus that was selected by the user as corpus

reference.

Figure 4.5: Screenshot of the Metrics Screen for the Curukka System

71

Fingerprint Analysis View

The fingerprint analysis view renders the output of the cumulative relative frequency

analysis (see section 3.4.3). The view is called fingerprint analysis view since the

cumulative relative frequency generates a unique fingerprint word vectors based on

their cumulative relative frequency. The view displays the results in a split-screen

manner with the fingerprint of the input text in the left-hand side and the fingerprint

of the summary text in the right-hand side. As explained in section 3.4.3, the fingerprint

for the summary is generated based on the word vector of the top 100 open-class words

in the input text. The output is rendered 10 words per row and in each row, the

cumulative relative frequency up to that row is displayed to enable the user to examine

the results. A screenshot of the fingerprint analysis view is shown in figure 4.6.

Figure 4.6: Screenshot of the Finger Print Analysis Screen for the Curukka System

Signature Analysis View

The signature evaluation screen renders the output of the relative frequency analysis

including the correlation analysis using relative frequency (see section 3.4.2). The view

also enables the user to view the terms that were selected by the algorithm for creation

72

of the links between the sentences using intelligent term extraction (see section 3.3.1).

In addition, the total number of tokens in the original text and summary text is also

displayed in this view. All columns of this screen are sortable based on the user click

on the column header and can be exported using the export option into a Comma

Separated Value (CSV) file. A screenshot of the signature analysis screen is shown in

figure 4.7.

Figure 4.7: Screenshot of the Signature Analysis for the Curukka System

Collocation Analysis View

The collocation analysis view renders the output of the collocation analysis (see section

10). Each of the columns in the view are sortable based on the user click on the column

header. Also, the results rendered in this view can be exported to a CSV file using

the export menu option. A screenshot of the collocation analysis view is shown in the

figure 4.8.

73

Figure 4.8: Screenshot of the Collocation Analysis Screen for the Curukka System

Menu Options

The menu bar of the Curukka user interface application consists of two menu items:

the file menu and the export menu.

A screenshot of the file menu is shown in the figure 4.9. The options of the file

menu are as follows.

a. Open: The menu option to open a new text (.txt) file for summarization. It opens

a file open dialog box.

b. Save: The menu option to save the summary to a text (.txt) file. It opens a save

dialog box.

c. Reset All : The menu option to reset all options to factory settings.

d. Exit : The menu option to exit the Curukka application.

74

Figure 4.9: Screenshot of the File Menu option the Curukka System

The export menu provides the user with options to export the rendered outputs.

A screenshot of the export menu is shown in the figure 4.10. The options available in

the export menu are as follows.

a. Signature Analysis : The export menu option to save the signature analysis into a

CSV file. It opens a save file dialog box.

b. Collocations : The export menu option to save the collocations into a CSV file. It

opens up a dialog box.

Figure 4.10: Screenshot of the Export Menu option in the Curukka System

Both the export menu items display a file export dialog box using which the user

can choose the folder to where the file should be exported to. A screenshot of the file

export dialog box is shown in figure 4.11.

75

Figure 4.11: Screenshot of the Export CSV File dialogbox in the Curukka System

4.4 Case Studies and Discussion

This sections explains the case studies on the Intelligent Text Summarization algorithm

and the discussion on the same.

4.4.1 Controlled Evaluation on Computer Science Text

A controlled evaluation was done using a dataset of computer science texts described

in section 4.2. The figure 4.12 shows the comparison of the number of sentences in the

input text and the summary text produced using the Intelligent Text Summarization

algorithm plotted in a logarithmic scale. Similarly, figure 4.13 shows the comparison

of the tokens in the input text and the summary text. The summarization was done

with different combinations such as various bond strengths and configuration options.

The best results were obtained when the bond strength was set as 3, POS tagging

used with weirdness index, along with stemming and collocation analysis. Based on

the observation from the controlled evaluation showcased in figure 4.12 and 4.13, it

is observed that the average summary text produced by the algorithm is 28% of the

input text on an average.

76

Figure 4.12: Comparison of total sentences of the original with the sentences obtained

from proposed text summarization method

77

Figure 4.13: Comparison of total token count of the original with the sentences obtained

from proposed text summarization method

Readability Index Evaluation : The readability index for the same set of com-

puter science texts dataset was recorded for both the input text and summary text.

The observations are visualized in figure 4.14. Based on the evaluation, the average

readability index of the input text was 39, compared to the average readability index

of 35.4 for the summary text. Based on the result it is established that the summaries

produced by the intelligent text summarization algorithm do not decrease the readabil-

ity. The small drop in the readability index average in summary text can be attributed

to the fact that the readability index calculation depends on the ratio of words to

sentences and syllables to words; since the summary has a major reduction in the vital

calculation parameters, the average index score is slightly reduced.

78

Figure 4.14: Comparison of readability index of original with the readability index of

the summary text obtained from proposed text summarization method

Cumulative Relative Frequency Evaluation : The final statistical evaluation

of computer science dataset is based on the cumulative relative frequency. The cumu-

lative relative frequency of the top 100 open-class words in both the input text and

summary text is systematically recorded and visualized in the figure 4.15. Based on

the observations, the average cumulative relative frequency of the top 100 open-class

words in the input text was 21.84% and that of the summary text was 21.43%. The

results stand a statistical proof that the information contained in the original text is

retained in the summary text.

79

Figure 4.15: Comparison of cumulative relative frequency of original with the cumula-

tive relative frequency of the summary text obtained from proposed text summarization

method

4.4.2 Controlled Evaluation on the Bio-medicine dataset

The automated evaluations similar to the ones conducted for the computer science

dataset (see section 4.4.1) was performed on the bio-medicine dataset as well and

the results were similar. However, the summaries produced by the intelligent text

summarization algorithm in the bio-medicine dataset containing texts related to gas-

troenterology was also subjectively evaluated using a subject manner in bio-medicine.

The summaries were evaluated on a score of 10. Aspects such as the quality of the

summary produced, the ease of readability and understanding were considered as the

grading criteria among others. The results are visualized in the figure 4.16. Based

on the results recorded, the average score for the summaries generated as graded by

the subject matter expert was 7.36 out of 10. This evaluation is vital to prove the

80

practicability of the proposed algorithm since the summaries are verified and graded

by a human.

Figure 4.16: Subjective evaluation of the summaries produced for the bio-medicine

dataset by the intelligent text summarization algorithm by a subject matter expert on

a scale of 10

4.4.3 Experimental evaluation of summarization of large block

of tweets

To test the practicability of the intelligent text summarization algorithm on other do-

mains such as social media analytics, a tweet block containing fifty thousand tweets

were summarized using the proposed algorithm. The tweet summarization configura-

tion in the Curukka user interface was enabled. The input text consisted of the tweets

recorded during the Russian River Flooding that happened in the Sonoma County,

California, USA during March 2019. The summarization algorithm was able to au-

tonomously extract key terms such as flooding, river, disaster, Russian river, etc., and

also create a summary in which the most important tweets were selected and included

in the summary. The summary consisted of a total of sixteen thousand sentences.

However, in the case of tweet summarization, a bond strength of 6 produced the best

results. The results establish that the intelligent text summarization algorithm can be

81

extended for use in social media analytics with application areas such as emergency

management.

4.5 System Performance

The performance of the system under various scenarios and load is important to gauge

the practicability of the implementation in terms of scalability and reliability. Therefore

the system was put under various modes of stress testing in order to understand the

performance of the system.

Based on the experimentation done on a hardware with eight CPUs, 16 GB of RAM

and 2.3 GHz processor with 4 GB of RAM allocated for the server and 8 GB of RAM

allocated to the user interface, the system was able to gracefully handle text inputs

with upto 4 million tokens. When the load was increased to 5 million tokens the user

interface was able to send request to the server and receive response, however the user

interface was not able to render the output. Hence, based on the controlled experimen-

tation, it is noted that the system deployed on a hardware with the aforementioned

specification can process and input text with upto 4 million tokens in it.

4.6 Security and Privacy Concerns

This work focuses on designing an intelligent text summarizer for specific language

text and building an application that will be used to demonstrate the work. Free and

open-source (FOSS) software is used to build the core components of the application

to implement the designed algorithms.

In the case of the intelligent text summaries and with the use of FOSS software,

there are associated security and privacy concerns.

4.6.1 Security Concerns

The security concerns related to the work can be broadly classified into three sections.

Concerns related to the core algorithm implementation, with the use of the third-party

software and libraries, and concerns related to the application being generally available.

82

Concerns in Core Algorithm Implementation

The core algorithm that will stand as the bedrock of this research deals with the lexical

cohesion analysis. In terms of the lexical cohesion using computation linguistics, the

primary part is being able to read text using a programming language and apply

cohesion analysis on it. In the scope of this work, an intelligent text summarizer is

the objective, hence text from multiple languages have to be dealt with. With this

in mind, it is necessary to consider that application takes into account the security

issues related to the text input which can potentially compromise the working of the

application providing false results or allows the user to manipulate the results. The

attacks that the algorithm should be resistant to include the following areas.

Encoding Related Security Issues : The application should be resistant towards

attacks related to the text encoding. When a malicious user tries to break the algorithm

or increase the time complexity of the application using combinations of encoding or

by using control characters the application should be resistant towards it. An example

of it may be that the malicious user provides a specific language text with control

characters embedded between each letter of the text. Another example would be

to mix the encoding of the text wrapping it using another encoding scheme using

steganographic methods.

Without added security, the processing time of the algorithm will increase multi-fold

and will break the system with such encoding related attacks. Hence, the application

implementing the core algorithm should have a pre-processing module that will pre-

process the input text and remove control characters, check for steganographic attacks

and reject the request if any attacks are detected.

Result Manipulation Security Issues: Another category of a security issue

that is related to the core algorithm is to the manipulation of the results. If the results

of the algorithm can be manipulated as per the user needs, then it poses a huge security

risk. A way to do this in case of this work will be to use techniques such as keyword or

key-phrase repetition. For example, repeating one paragraph of the text as-is or with

slight changes, multiple times might make the algorithm biased towards the overloaded

text thereby enabling the malicious user to manipulate the output.

This attack can be mitigated by algorithm side by making use of weighted averages

and the majority of the mitigation can be done on the application implementation

83

where a pre-processing module can be used to detect repeated paragraphs. However,

the problem becomes difficult when the paragraphs are not-repeated as-is but a random

sentence rotation is used to jumble the repeated paragraphs.

Concerns with use of Free and Open Source Libraries

According to Open Web Application Security Project (OWASP) Top Ten 2017, using

components with known vulnerabilities is one of the top 10 most critical web security

risks. However, it is inevitable to use components in application building with vulner-

abilities since all or most of the applications and components available for use. It is no

different with FOSS applications and components [56].

With respect to this work, it is essential to be aware of the vulnerabilities present

in all the components that are core to the algorithm like the NLP components and

the text processing libraries and to create a detailed risk assessment with the vulner-

abilities, the probability of it occurring and the severity. Vulnerabilities related to the

components used can be retrieved from an open vulnerability database such as Com-

mon Vulnerabilities and Exposure Details. Based on the descending order of severity

of the vulnerability the mitigation plan should be created until there are no critical or

high severity risks. Care should also be taken that the components used are configured

in the right way with minimal attack surface. For example, for use of the Stanford NLP

server, a server deployment mode with local binding should be used and the web server

port should be blocked in the firewall to avoid external traffic ingress and only the

local host should be whitelisted for the use of the server. Hence, only the application

implementing the algorithm and co-hosted with the Stanford NLP server will be able

to access it. If a distributed approach is followed, necessary security implementation

in terms of firewall rules and whitelisting should be done to reduce the attack surface.

Concerns in making the Application Generally Available

When the application is made generally available (GA) as a library or as a web appli-

cation of consumption by the general public, additional security concerns arise.

Packaging as a Library : In terms of packaging the algorithm as a library,

periodic and automated security updates of the dependent components along with end-

to-end integration testing should be part of the build, package and deploy pipeline.

84

This will ensure that the library is up-to-date in terms of security. In cases where

the automated deployment fails, manual intervention will be required. Appropriate

policies for security updates along with building and deploy instructions should be

well documented as a part of the documentation and updated periodically in case the

library is made available open-source.

Deployment as a Web Application : In the case of deploying the application as

a web application, all the security measures related to web security should be taken care

of. Protection against well-known and commonly encountered issues such as injection,

broken authentication, sensitive data exposure, security misconfiguration, cross-site

scripting (XSS), insecure deserialization, insufficient logging, and monitoring should

be prioritized and addressed.

Also, care should be taken to ensure that the application is protected from attacks

such as Denial of Service (DOS), intrusion, etc., by deploying and configuring the

appropriate defensive measures.

4.6.2 Privacy Concerns

The implementation of the algorithm as a library should be done with the privacy of

the users in mind. Some of the measures that are to be taken to ensure privacy can

be in terms of the core implementation of the algorithm as a library and making the

application available as a web application for general use.

In terms of implementing the algorithm as a library, it should be ensured that no

user data is sent over to any service or server without explicit consent from the end-user

and the feature if exists (say for analytics of usage) should be turned off by default.

Besides, all user-related information should be protected using secure compartmental-

ized storage with the use of encryption techniques for sensitive information. When the

work is available as a web application for the use by the public, the data protection and

privacy rules prevalent to the locality of deployment should be strictly implemented

and followed.

85

4.7 Summary

This chapter provided a detailed view on the dataset used for evaluation, the archi-

tecture of the system implementation (see section 4.3.1) including the technical stack

(see section 4.3.2) used, the user interface design (see section 4.3.3) and the results

of the case studies (see section 4.4) carried out. This chapter establishes that the In-

telligent Text Summarization algorithm proposed in this work is practicable and can

be implemented as a working software to perform text summarization. The system

performance (see section 4.5) in terms of scalabiity and reliability were also discussed

in this chapter. The section on security and privacy (see section 4.6) explained in

this chapter provides a careful examination of the concerns in the area of security and

privacy when the application has to be deployed for general public use in production

mode.

86

Chapter 5

Conclusion and Future Work

This chapter concludes the work summarizing the key take aways and lists out the

limitations of the system which should be considered when this work is to be leveraged.

This chapter also provides a section on suggestions for the future work that can be

considered to extend this work.

5.1 Conclusion

An intelligent text summarization algorithm that can summarize large scientific texts

of non-narrative nature is designed and implemented in this work. The intelligent text

summarization algorithm designed in this work leverages the linguistic concept of lexical

cohesion to identify the most important sentences in the scientific text and categories

them into the topic opening, middle and closing sentences to provide a meaningful and

organized summary of the input text without loss of information contained in the input

scientific text. This work contributes to the field of Natural Language Processing in

terms that the algorithms are capable of understanding the theme in scientific text

and has a sub-module that will automatically understand and identify the important

open-class terms in the scientific text without any manual input from the user and use

it for linking the sentences in the input text as a directed graph hence can be attributed

to the contribution in the field of artificial intelligence. The only input that is required

from the user is the scientific text itself and the algorithm produces the summary of

the text. This work also proposes and implements automated evaluation algorithms

87

for the determination of the goodness of the summary using statistical measures which

substantially reduces the need for human-intensive evaluation.

A detailed design specification and implementation architecture are provided in

this work where the proposed intelligent text summarization algorithm is implemented

along with the evaluation algorithms as a working software that can be readily used for

summarization and evaluation of the summaries produced. The implementation is used

to test the algorithm and evaluate its working in real-life. The implementation is also

evaluated for scalability and reliability and the system performance is documented.

Using the implementation of the system, controlled evaluation is done on the pro-

posed intelligent text summarization algorithm. The automated evaluation results and

the subjective human evaluation results are documented. Based on the controlled eval-

uation the result observed is that bond strength of three works the best for scientific

texts from various domains and the average summary size is 28% of the input text.

Based on the controlled subjective evaluation by a human with expertise in the domain

of the articles used for summarization, the average score for summarization on a scale

of 10 is 7.36. This work also showcases experimentation where the large volumes of

tweets (fifty thousand) are summarized in order to extract the most important tweets.

The experimentation with tweets opens up the scope that the intelligent text summa-

rization algorithm proposed in this work can be adapted for application areas such as

emergency management using social media analytics.

5.2 Future Work

This section list out the limitations of the intelligent text summarization algorithm

that were identified during the implementation and the controlled evaluation. Future

work based on this algorithm needs to consider these limitations to make an informed

decision on the usage and extension of the intelligent text summarization algorithm

contributed by this work.

1. The algorithm has been implemented and evaluated for large scientific texts in the

English language. Though the algorithm is not specific to the language and can

work with other Indo-germanic languages with the syntactic structure of English,

it has not been tested or evaluated due to the shortage of time and resources.

88

Further, for the algorithm to work with other languages, a reference corpus for the

language should be available or a new one should be built. Trying the algorithm

with other languages such as Tamil (an ancient Dravidian language) is a potential

future work.

2. Some of the routines in the algorithm have a time complexity of n2. There is

a scope to optimize these routines so that the time complexity of the algorithm

can be reduced enabling better scalability. This can be a future work where

the algorithm can be optimized and extensive load testing done to evaluate its

performance.

3. At the time of writing this thesis, it was not able to compare the advantage

of autonomous term extraction over systems without it for text summarization.

Based on the study, the autonomous text summarization systems could be build.

This work is in progress as a journal article [57].

4. This work showcases experimentation where the algorithm is used to summarize

large blocks of tweets with application scope in the field of social media analytics.

However, extensive studies need to be conducted to test the practicability and

required changes to the algorithm and the implementation of the algorithm for

the use in social media analytics.

Apart from the aforementioned limitations and scope for future work, researchers

planning to make use of the algorithm and/or its implementation should consider the

security and privacy concerns when the algorithm is used for public-facing or machine

critical applications. The section on security and privacy (see section 4.6) provides a

detailed discussion on the concerns with respect to the current state of the algorithm

and implementation, however, it needs to be reviewed and amended when the work is

extended on leveraged.

89

Bibliography

[1] K. D. Bromley and L. McKeveny, “Précis writing: Suggestions for instruction in

summarizing,” Journal of Reading, vol. 29, no. 5, pp. 392–395, 1986.

[2] M. Benhrahim and K. Ahmad, “Text summarisation: The role of lexical cohesion

analysis,” The New Review of Document & Text Management, pp. 321–335, 1995.

[3] A. Saseendran and K. Ahmad, “Intelligent text summarization: Leveraging cohe-

sion in text,” Work in Progress - Yet to be published.

[4] R. Raso, D. Werth, and P. Loos, “Enriching augmented reality with text data

mining: An automated content management system to develop hybrid media ap-

plications,” in Proceedings of the 50th Hawaii International Conference on System

Sciences, 2017.

[5] D. Bamman and N. A. Smith, “New alignment methods for discriminative book

summarization,” arXiv preprint arXiv:1305.1319, 2013.

[6] A. Abdi, N. Idris, R. M. Alguliev, and R. M. Aliguliyev, “Automatic summariza-

tion assessment through a combination of semantic and syntactic information for

intelligent educational systems,” Information Processing & Management, vol. 51,

no. 4, pp. 340–358, 2015.

[7] M. Yousefi-Azar and L. Hamey, “Text summarization using unsupervised deep

learning,” Expert Systems with Applications, vol. 68, pp. 93–105, 2017.

[8] S. Wang, X. Zhao, B. Li, B. Ge, and D. Tang, “Integrating extractive and abstrac-

tive models for long text summarization,” in 2017 IEEE International Congress

on Big Data (BigData Congress), pp. 305–312, IEEE, 2017.

90

[9] K. Nandhini and S. R. Balasundaram, “Improving readability of dyslexic learners

through document summarization,” in 2011 IEEE International Conference on

Technology for Education, pp. 246–249, IEEE, 2011.

[10] A. Farzindar and G. Lapalme, “Legal text summarization by exploration of the

thematic structure and argumentative roles,” in Text Summarization Branches

Out, pp. 27–34, 2004.

[11] S. Afantenos, V. Karkaletsis, and P. Stamatopoulos, “Summarization from medical

documents: a survey,” Artificial intelligence in medicine, vol. 33, no. 2, pp. 157–

177, 2005.

[12] G. Murray, S. Renals, and J. Carletta, “Extractive summarization of meeting

recordings.,” 2005.

[13] Y.-H. Tseng, C.-J. Lin, and Y.-I. Lin, “Text mining techniques for patent analy-

sis,” Information Processing & Management, vol. 43, no. 5, pp. 1216–1247, 2007.

[14] D. D. A. Bui, G. Del Fiol, J. F. Hurdle, and S. Jonnalagadda, “Extractive text

summarization system to aid data extraction from full text in systematic review

development,” Journal of biomedical informatics, vol. 64, pp. 265–272, 2016.

[15] D. Thorleuchter and D. Van den Poel, “Using text summarizing to support plan-

ning of research and development,” in New Perspectives in Information Systems

and Technologies, Volume 1, pp. 23–29, Springer, 2014.

[16] C.-W. Wu and C.-L. Liu, “Ontology-based text summarization for business news

articles.,” Computers and their applications, vol. 2003, pp. 389–392, 2003.

[17] B. Freeling, Z. A. Doubleday, and S. D. Connell, “Opinion: How can we boost the

impact of publications? try better writing,” Proceedings of the National Academy

of Sciences, vol. 116, no. 2, pp. 341–343, 2019.

[18] P. Plavén-Sigray, G. J. Matheson, B. C. Schiffler, and W. H. Thompson, “The

readability of scientific texts is decreasing over time,” Elife, vol. 6, p. e27725,

2017.

91

[19] D. Crystal, A dictionary of linguistics and phonetics. Cambridge Blackwell Pub-

lication, 2003.

[20] M. A. K. Halliday and R. Hasan, Cohesion in english. Routledge, 2014.

[21] M. Hoey, Patterns of lexis in text, vol. 299. Oxford University Press Oxford, 1991.

[22] C. D. Paice and P. A. Jones, “The identification of important concepts in highly

structured technical papers,” in Proceedings of the 16th annual international ACM

SIGIR conference on Research and development in information retrieval, pp. 69–

78, ACM, 1993.

[23] G. Erkan and D. R. Radev, “Lexrank: Graph-based lexical centrality as salience

in text summarization,” Journal of artificial intelligence research, vol. 22, pp. 457–

479, 2004.

[24] Y. Lin, “A study of cohesion in simultaneous interpreting,” in 2019 Interna-

tional Conference on Contemporary Education and Society Development (ICCESD

2019), Atlantis Press, 2019.

[25] L. Antiqueira, O. N. Oliveira Jr, L. da Fontoura Costa, and M. d. G. V. Nunes, “A

complex network approach to text summarization,” Information Sciences, vol. 179,

no. 5, pp. 584–599, 2009.

[26] I. da Cunha, E. SanJuan, J.-M. Torres-Moreno, and I. Castellón, “Extending

automatic discourse segmentation for texts in spanish to catalan,” arXiv preprint

arXiv:1703.04718, 2017.

[27] J. Goldstein, M. Kantrowitz, V. Mittal, and J. Carbonell, “Summarizing text

documents: sentence selection and evaluation metrics,” in SIGIR, vol. 99, p. 99,

1999.

[28] C. Blake and T. Rindflesch, “Leveraging syntax to better capture the semantics of

elliptical coordinated compound noun phrases,” Journal of biomedical informatics,

vol. 72, pp. 120–131, 2017.

[29] V. M. Vujević, “Ellipsis and substitution as cohesive devices,” 2012.

92

[30] R. Mihalcea and P. Tarau, “Graph-based ranking algorithms for text processing,”

Oct. 5 2010. US Patent 7,809,548.

[31] J. Diesner and K. M. Carley, “Revealing social structure from texts: meta-matrix

text analysis as a novel method for network text analysis,” in Causal mapping for

research in information technology, pp. 81–108, IGI Global, 2005.

[32] D. Wang, T. Li, S. Zhu, and C. Ding, “Multi-document summarization via

sentence-level semantic analysis and symmetric matrix factorization,” in Proceed-

ings of the 31st annual international ACM SIGIR conference on Research and

development in information retrieval, pp. 307–314, ACM, 2008.

[33] F. B. Goularte, S. M. Nassar, R. Fileto, and H. Saggion, “A text summarization

method based on fuzzy rules and applicable to automated assessment,” Expert

Systems with Applications, vol. 115, pp. 264–275, 2019.

[34] J. Cheng and M. Lapata, “Neural summarization by extracting sentences and

words,” arXiv preprint arXiv:1603.07252, 2016.

[35] R. Kumar, H. S. Pannu, and A. K. Malhi, “Aspect-based sentiment analysis using

deep networks and stochastic optimization,” Neural Computing and Applications,

pp. 1–15, 2019.

[36] P. Qi, T. Dozat, Y. Zhang, and C. D. Manning, “Universal dependency parsing

from scratch,” in Proceedings of the CoNLL 2018 Shared Task: Multilingual Pars-

ing from Raw Text to Universal Dependencies, (Brussels, Belgium), pp. 160–170,

Association for Computational Linguistics, October 2018.

[37] A. Khurshid, L. Gillman, and L. Tostevin, “Weirdness indexing for logical doc-

ument extrapolation and retrieval,” in Proceedings of the Eighth Text Retrieval

Conference (TREC-8), 2000.

[38] R. De Beaugrande and W. U. Dressler, Introduction to text linguistics. Routledge,

1981.

[39] U. of Rhode Island, “Introduction to Computers.” https://homepage.cs.uri.

edu/faculty/wolfe/book/Readings/Reading01.htm, 2019. [Online; accessed

10-August-2019].

93

https://homepage.cs.uri.edu/faculty/wolfe/book/Readings/Reading01.htm
https://homepage.cs.uri.edu/faculty/wolfe/book/Readings/Reading01.htm

[40] ISO/IEC, “Final Text of DIS 8859-1, 8-bit single-byte coded graphic character

sets – Part 1: Latin alphabet No.1.” http://www.open-std.org/JTC1/SC2/WG3/

docs/n411.pdf, 1998. [Online; accessed 10-August-2019].

[41] G. Salton and C. Buckley, “Term-weighting approaches in automatic text re-

trieval,” Information processing & management, vol. 24, no. 5, pp. 513–523, 1988.

[42] M. Rogers and K. Ahmad, “Corpus linguistics and terminology extraction,” Sue-

Ellen Wright and Gerhard Budin. Handbook of Terminology Management, Ams-

terdam Philadelphia, vol. 2, pp. 725–760, 2001.

[43] N. Ide and C. Macleod, “The american national corpus: A standardized resource

of american english,” in Proceedings of corpus linguistics, vol. 3, pp. 1–7, Lancaster

University Centre for Computer Corpus Research on Language , 2001.

[44] G. Leech, P. Rayson, et al., Word frequencies in written and spoken English: Based

on the British National Corpus. Routledge, 2014.

[45] A. Kilgarriff, “BNC database and word frequency lists.” http://www.

kilgarriff.co.uk/bnc-readme.html, 1996. [Online; accessed 10-August-2019].

[46] F. Smadja, “Retrieving collocations from text: Xtract,” Computational linguistics,

vol. 19, no. 1, pp. 143–177, 1993.

[47] M. F. Porter, R. Boulton, and A. Macfarlane, “The english (porter2) stemming

algorithm,” Retrieved, vol. 18, p. 2011, 2002.

[48] J. P. Kincaid, R. P. Fishburne Jr, R. L. Rogers, and B. S. Chissom, “Derivation

of new readability formulas (automated readability index, fog count and flesch

reading ease formula) for navy enlisted personnel,” 1975.

[49] N. Cheshire and H. Thomä, “Metaphor, neologism and’open texture’: implica-

tions for translating freud’s scientific thought,” International Review of Psycho-

Analysis, vol. 18, pp. 429–455, 1991.

[50] A. TURING, “I.–computing machinery and intelligence,” Mind, vol. 59, no. 236,

pp. 433–433, 1950.

94

http://www.open-std.org/JTC1/SC2/WG3/docs/n411.pdf
http://www.open-std.org/JTC1/SC2/WG3/docs/n411.pdf
http://www.kilgarriff.co.uk/bnc-readme.html
http://www.kilgarriff.co.uk/bnc-readme.html

[51] A. M. Turing, “On computable numbers, with an application to the entschei-

dungsproblem,” Proceedings of the London mathematical society, vol. 2, no. 1,

pp. 230–265, 1937.

[52] A. TURING, “The chemical basis of mokphogenesis,” Philosophical Transactions

of the Royal Society of London. Series B, Biological Sciences, vol. 237, no. 641,

pp. 37–72, 1952.

[53] M. Minsky, “Steps toward artificial intelligence,” Proceedings of the IRE, vol. 49,

no. 1, pp. 8–30, 1961.

[54] E. Mollick, “Establishing moore’s law,” IEEE Annals of the History of Computing,

vol. 28, no. 3, pp. 62–75, 2006.

[55] O. M. Bonastre and A. Veà, “Origins of the domain name system,” IEEE Annals

of the History of Computing, vol. 41, no. 2, pp. 48–60, 2019.

[56] S. R. Vadalasetty, “Security concerns in using open source software for enterprise

requirements,” SANS Institute, 2003.

[57] A. Saseendran and K. Ahmad, “Towards autonomous text summarization,” Work

in Progress - Yet to be published.

95

Appendix

I. Dataset Used for Evaluation

Computer Science Dataset

The titles of the articles in the computer science dataset is given below.

• Computing Machinery and Intelligence

(http://cogprints.org/499/1/turing.html, online, accessed 10-August-2019)

• Lecture to the London Mathematieal Society

(https://www.vordenker.de/downloads/turing-vorlesung.pdf, online, accessed 10-

August-2019)

• Turing Invents the Universal Turing Machine

(https://dl.acm.org/citation.cfm?id=1391235, online, accessed 10-August-2019)

• Why the Arpanet was built

(https://ieeexplore.ieee.org/abstract/document/5432117, online, accessed 10-August-

2019)

• The Materiality of the Internet

(https://ieeexplore.ieee.org/document/1677468, online, accessed 10-August-2019)

• The ENIACs 1949 Determination of PI

(https://ieeexplore.ieee.org/abstract/document/5999630, online, accessed 10-August-

2019)

• Origins of the DNS

(https://ieeexplore.ieee.org/document/8700196, online, accessed 10-August-2019)

96

• IBM Relational Database Systems The Early Years

(https://ieeexplore.ieee.org/document/6297962, online, accessed 10-August-2019)

• Establishing Moores Law

(https://ieeexplore.ieee.org/document/1677462, online, accessed 10-August-2019)

Bio-medicine Dataset

The titles of the texts used from the bio-medicine domain is given below

• Diagnosis of gastrointestinal bleeding: A practical guide for clinicians

• Epidemiology of acute upper gastrointestinal bleeding

• The Overall Approach to the Management of Upper Gastrointestinal Bleeding

• Systematic reviews of the clinical effectiveness and cost-effectiveness of proton

pump inhibitors in acute upper gastrointestinal bleeding

• Restrictive vs liberal transfusion for upper gastrointestinal bleeding: A meta-

analysis of randomized controlled trials

• Red cell transfusion for the management of upper gastrointestinal haemorrhage

• Gastrointestinal Bleeding

• Impact of More Restrictive Blood Transfusion Strategies on Clinical Outcomes:

A Meta-analysis and Systematic Review

• Medical Management of Variceal Hemorrhage

• Does This Patient Have a Severe Upper Gastrointestinal Bleed?

• Effect of pharmacological therapies for stroke prevention on major gastrointesti-

nal bleeding in patients with atrial fibrillation

• Nasogastric Aspiration and Lavage in Emergency Department Patients with Hema-

tochezia or Melena Without Hematemesis

97

• Usefulness of CT angiography in diagnosing acute gastrointestinal bleeding: A

meta-analysis

• International Consensus Recommendations on the Management of Patients With

Nonvariceal Upper Gastrointestinal Bleeding

• Endoscopic band ligation versus pharmacological therapy for variceal bleeding in

cirrhosis: A meta-analysis

II. Intelligent Text Summarization Server Setup

The server can be setup on any linux server with a minimum of 8 GB of RAM, 8

CPUs and 20GB of Harddisk with JRE 1.8 and Python 3.7 installed. Ubuntu 18.04 is

suggested. The below steps have to be followed.

1. Download and start the Stanford NLP server from

https://stanfordnlp.github.io/CoreNLP/download.html

2. Unpack and start the server using the command

’java -mx4g -cp ”*” edu.stanford.nlp.pipeline.StanfordCoreNLPServer -annotators

”tokenize,ssplit,pos,lemma,parse,sentiment” -port 9000 -timeout 30000’

3. Download the Curukka Server by cloning the git repository

https://github.com/ats0stv/TextSummarization.git

4. Navigate to the folder ”pythonCode” in the repository.

5. Execute the command ”pip install -r requirements.txt”

6. Start the server using the command

”FLASK APP=TextSummarizer.py FLASK DEBUG=1 python -m flask run”

The Curukka server is all setup and ready to serve requests.

98

III. Curukka User Interface Setup

A computer with Microsoft Windows 10+ or Apple OSX 10.14+ operating system with

atlest 4 CPU, 4 GB of RAM and 10 GB of harddisk space is the minimum requirement

for the Curkka UI.

To run the Curukka user interface, follow the below steps.

1. Clone the git repository

https://github.com/ats0stv/TextSummarization.git

2. Navigate to the GUI folder.

3. Double click on the Curukka,jar

Following the about steps will launch the Curukka User Interface application.

99

	Acknowledgments
	Abstract
	Summary
	List of Tables
	List of Figures
	Chapter Introduction
	Problem Definition
	Contributions
	Structure of the Dissertation

	Chapter Motivation and Literature Review
	Motivation
	Literature Review
	Lexical Cohesion
	Syntactic Cohesion
	Links and Bonds
	Soft-computing and fuzzy systems

	Conclusion

	Chapter Method
	Introduction
	Pre-Processing the Text
	Intelligent Text Summarization Algorithm
	Key Terms Identification
	Sentence Linking and Link Matrix
	Sentence Bonding and Bond Matrix
	Sentence Categorization using in-out bond ratio
	Summary Generation

	Evaluation Method
	Readability Index
	Correlation of Relative Frequency
	Cumulative Relative Frequency Comparison of top open-class words

	Conclusion

	Chapter Implementation and Case Studies
	Introduction
	Dataset Selection
	Technical Specification and System Design
	System Architecture
	Technical Stack
	User Interface Design

	Case Studies and Discussion
	Controlled Evaluation on Computer Science Text
	Controlled Evaluation on the Bio-medicine dataset
	Experimental evaluation of summarization of large block of tweets

	System Performance
	Security and Privacy Concerns
	Security Concerns
	Privacy Concerns

	Summary

	Chapter Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendices

