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Among various diseases of human body, neurological diseases are difficult to detect, manage
and diagnose in the world of neuro-science. Over the past few decades, neurologists and re-
searchers are progressing in detecting and diagnosing of neurological disorders. Various ad-
vanced technologies like electroencephalography and magnetoencephalography(EEG/MEG)
assist the researchers to understand the undefined underlying pathological process.

By studying the relationship between cortical areas or interaction between two neurons
aids in detection and diagnosis of the diseases.The neurologists examine the information
transmission over the two areas. In this dissertation, estimating cortical connectivity and
cortico- muscular connectivity using non-parametric methods to understand the informa-
tion transmission. Many traditional methods such coherence and spectral density utilized to
study linear interactions or properties. However, exploring non-linear properties with non-
coordinate system would be challenging with traditional methods.

In this study, non-parametric implementation of mutual information utilized to esti-
mate cortical connectivity and cortico-muscular connectivity and cross-validated against
magnitude squared coherence. With Trinity Bio-medical Sciences neurological data, the
EEG(C3,C4) and EMG(FDI) channels are employed to estimate the connectivity.

With density approximation method, mutual information is calculated and one of the



distance metrics used in this study is euclidean distance. Cross-mutual information theory is
applied with time -lag ranging from 0 to 256 as per sample rate to understand the non-linear
interaction between channels.

Cross-validated against bin-based approach and spectral coherence to study frequencies
bands and estimate the connectivity. Alpha band is excluded because of volume conduction.
This study might be helpful in assisting neurologist in examining specific cortical connectiv-
ity, movement associated disorders and in diagnosis of neurological diseases.
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Chapter 1
Introduction

In human body, the largest complex system which controls everything is brain. Because of
the complex nervous system, neurological disorders are the most challenging to diagnose,
manage and monitor in the world of medicine. Over the past few decades, neurologists
and research scholars are advancing in the field of neuro-science towards the detection and
diagnosis of neurological diseases with current technology and systems. On the recent report
of World Health Organization[1],21% of the deaths are caused by neurological disorders.
Every year, one billion people worldwide are affected by neurological disorders like epilepsy,
Alzheimers disease and stroke to headache. These disorders affect the people worldwide.

Lately, various advanced diagnosis technologies such as Electrophysiollogical tests (Elec-
troencephalography or EEG), computerised tomography (CT scan), magnetic resonance imag-
ing (MRI scan), electromyography (EMG) and Magnetoencephalography (MEG) have been
used to detect, manage and treat neurological disease and more. In McMackin R, et al[2],
neuroimaging paved a way to understand pathogenesis and spread of the diseases. MRI
and positron emission tomography may detect the changes in brain networks but underlying
pathological process are poorly defined.

Neuro-degenerative diseases diagnosis involves clinicopathological correlation and histroical
changes during the transmission of signals. These can be defined as structural and functional
terms as altered patterns observed during neuro-motor connectivity. To study the brain con-
nectivity and abnormal transmission of neurons, neurologists apply these advanced quantita-
tive measures such as electroencephalography and magnetoencephalography(EEG/MEG).The
recordings of EEG/MEG with 256 sensors and removal of artifacts has substantially in-



creased spatial resolution. These measurements assist in studying target regions like cor-
tex and investigate about neuro-degenerative diseases.In this study, EEG and EMG/MEG
are utilized to understand relation of the cortico-cortical connectivity and cortico -muscular

connectivity.

1.1 Motivation

Many of neurological diseases such as Alzheimer disease,Parkinson’s disease, tremor, dysto-
nia, post-stroke movement disorders and hemiparesis are mostly cortex disorders associated
with movements. Estimating neural activity between cortical areas and muscle areas aiding
the neurologists to determine behavioral effects of disorders and proving feedback to re-
habilitation mechanisms [3]. Approximation of cortico-muscular connectivity was initially
reported between electromyography (EMG) and magnetoencephalography(MEG)[4]. How-
ever,estimation can provide better spatial solution by measuring between EEG and EMG.

Multi-variate time signals assist in investigating the relationship between concurrently
recorded neurophysiological signals and to assess the information transmission between
signals, giving insights into the function of the systems than studying paramters of single
singnal.[3]]. Traditional methods such as power spectrum, coherence give useful information
in the study of interdependence between two signal and temporal coordination between cor-
tical regions. However, these methods mainly measure linear connectivity, although neural
connectivity may be nonlinear. For study of complex neurophysiological data, linear meth-
ods are inadequate.[6].

With advancement in information theory[7], Mutual information (MI), which applies the
entropy of highorder statistics to approximate uncertainty, is a statistical measure of both
linear and nonlinear dependencies between two time sequences. Mutual information calcu-
lation can be implemented by both parametric and non- parametric methods. For the higher
dimensionlity data, Gaussian parametic implementations requires class densities assumption
to make optimization tractable than non-parametric method.

Approximation of cortical and cortico-muscular connectivity using non-parametric im-
plementation of mutual information provides better depiction about the abnormal activity
between neurons and aiding the neurologists towards an advancement in diagnosing the neu-

rological disorders associated with movements.



1.2 Research Question

Estimation of Cortical and Cortico-Muscular Neural Connectivity and Non-Linear Interac-

tions using a Non-Parametric Implementation of Mutual Information

1.3 Research Challenge

The objectives put forth to address the research question are:

e The density approximation approach of calculating mutual information is computa-

tionally demanding than traditional bin-based approach.
e Tuning the smoothing parameter of the density approximation method for good results.

e The variation in h value may be different based on EEG-EEG and EEG-EMG signal

values.

1.4 Scope of dissertation

The Kozachenko Leonenko estimator [7]]as referred as density approximation method used
in this study to estimate cortico connectivity and cortico-muscular connectivity. The non-
parametric implementation of mutual information is applied to study the interdependence re-
lationship between EEG-EEG and EEG-EMG signals. Comparing with traditional bin-based
approach and cortical coherence for cross-validation for linear and non-linear interactions.

The data for the analysis, EEG- EMG data is provided by Trinity Bio-medical college
sciences. The data consists of EEG -EMG channels of 8 healthy subjects with common
7 trials and time delay of 4s. Each trail includes 256 sample rate. To estimate mutual
information using density approximation method, smoothing parameter value is calculated
by simulating data and experimented with real-time data.

MATLAB is used to compute large data and estimate neural connectivity in this study.



1.5 Structure of dissertation

The thesis is organized as follows. Chapter 2 explains literature background and related
work. Chapter 3 presents the methodology applied for the study followed by the analysis
of simulated and experimental data conducted is presented. The Chapter 4 discusses the
estimation against cortical coherence, The study concludes with summary, applications in

neuroscience, conclusion and future works



Chapter 2
Literature review and Background study

In this chapter, the review of the literature on the neuro-electric signals (EEG and EMG)
in studying the nervous system, applications of mutual information & information-theoretic
measures for neural signal connectivity analysis and estimation of Mutual information(MI)

is carried out. Separate research on each of the topics is conducted.

2.1 Neuro-electric signals (EEG and EMG) in Studying the

Nervous System

Electrical signals encoding various forms of information can be observed at numerous lev-
els of the complex nervous system.Most recent studies applies EEG and EMG to study the
motion control during interaction between cerebral motor cortex and muscles.
Electroencephalogram (EEG) is a electrophysiological monitoring brain imaging tech-
nique and non-invasive method that applied to measure the voltage fluctuations induced by
the mass electrical activity of neurons from electrodes placed on the scalp. [8].The recorded
rhythmic activity are examined to find abnormalities in neural activity or electrical activity.
Electromyography (EMG) technique is applied to record the neural activity produced by
motor muscles. EMG results assist the neurologist in finding nerve dysfunction, muscle dys-
function or problems with nerve-to-muscle signal transmission for psychogenic movement

disorders such as (seizures, tremors)[9].



2.1.1 Relationship between EEG and EMG data (EEG-EEG Cortico-

cortical and EEG-EMG cortico-muscular coherence)

The neurons in one cortical areas release signals to excite the target neurons in other cortical
areas. The term “cortico-cortical” refers to synchronization in neural activity during rest or
action of tasks. In Thatcher, R.-W et al [10], functional activity of cortical connections are
studied using EEG coherence in Alzheimer’s patients.

Cortical-cortico coherence might relate directly to treatment or indirectly reflect the
change in task performance with treatment. Studying the actions produced by long distance
connections and short length axonal connections in [11], explain the connectivity between
right and left hemisphere. High alterations in EEG coherence compared with cortico-cortical
areas to analyze the linear connectivity between cortical areas in dementia patients.

A synchrony in neural activity is reflected between primary cortex & motor regions and
provides basis for rehabitation mechanism for post-stroke and dyskinesia patients. In Con-
way et al [12], reported that dynamic interactions are observed between the brain activities
and motor tasks. In neuroscience, “coherence” shows evidence of coupling between EEG
and EMG signals. EEG-EMG coherence provides a measure of functional connectivity.

In particular, the cortico-muscular coupling strength was evaluated based on the EEG
signals obtained from the primary motor cortex and EMG signals measured from upper arm
of subjects. In [13] Krauth Richard et al, EEG-EMG coherence values are lower in post -
stroke patient group than healthy subjects. However , there is quantifying reduction found in
coherence after rehabilitation mechanism. First months patients are compared with motor-
recovery patients aided the neurologist to evaluate cortico-musuclar coherence during the
motor recovery.

Liu Jinbiao et al[14], studied cortico-muscular coherence and its applications to vari-
ous neurological disorders such as pakinson’s disease, post stroke, tremor and others. The
motor functionality mostly derived from alpha and beta band of cortico- musular coher-
ence.Analyzing healthy subjects with patients group ,it has been observed that , peak coher-
ence value is usually seen within beta band in healthy subjects and for the movement disorder

patients, it has been observed in alpha band.



2.2 Neuro-electric Signals for Neurological Diagnosis and

Clinical Applications

Neuro-imaging techniques such as EEG and EMG are reliable,non-invasive, repeatable tests
and applied in various neurological diagnosis and clinical applications. EEG & EMG syn-
chorny can be quantified by various information theoretic methods such as coherence, mu-
tual information and correlation. A study reported that there is significant decreased EEG
synchony are found in Alzheimer patients[15].

EEG are utilized to extract features from linear and non-linear analysis of sampled EEG
signals. A diagnosis based on EEG is employed to extract the features causing transient
oscillations at low frequencies in Alzheimer’s & dementia patients.[16]. Recorded EEG sig-
nals can quantify the information about periodic and rythmic patterns of specfic brain areas.
In S.J.M smith[17] reported that EEG abnormal rhythmic patterns are useful in detection of
dialysis dementia or encephalopathy.

The neural activity or electrical activity of voluntary muscle movements are mainly mea-
sured by EMG. A highly individual bio-signal, EMG is affected by neurological diseases
and reveals any abnormal muscle contractions in standardized and temperate activities. In D
Flament et al[18], EMG signal values showed low number of actions or bursts in pakinson’s
disease patient than normal health subjects. A study of EMG based robotic therapy for post-
stroke patients[[19], EMG -driven algorithm demonstrating better outcomes in re-habitation

of post-stroke patients.

2.3 Applications of Mutual Information and Information-
theoretic Measures for Neural Signal Connectivity Anal-
ysis

Among many mathematical or statistical methods to analyse the neural data,information the-

ory most widely used over last 20 years. Information theory quantifies how much informa-

tion a neurons carries[20]. Many of the neurologists employ information coding techniques

to study the neural coding between response and stimuli. I(S;R) quantifies how much infor-



mation of uncertainty about stimulus can be gained from the observation of neural response.

p(rls)
I(S;R) = Zp(r) p(r]s) log,
SR p(r)
Unlike traditional methods coherence and correlation can measure linear interactions of neu-
ral responses, mutual information detects the linear and non-linear dependencies of the neu-

ral responses.

2.3.1 Neurophysiological studies

Wider applications of information theory can quantify the information about network con-
nections, investigate the role of spike timing precision, correlations across neurons, and field
potential fluctuations in the encoding of sensory information in neurophysiological data.
In neurophysiological studies,researchers implement information theory techniques to study
the sensory stimuli over each trail. Compared to other single trial analysis, information the-
ory techniques are more efficient in quantifying the information carried over single trial.
Information theory techniques can employed to find information of specific response and
analyzing all features without assumption of specific feature are encoded.

Diagnosis of neurophysiological disorders involves mutual information to study under-
lying pathological facts. Information theoretic measures of network connection shows dy-
namic pattern in seizure patients. To assume global threshold for seizure movements, param-
eters are related to sensitivity and specificity to seizure-related precursory changes in neural
activity are measured. Pairwise mutual information or cross mutual information employed
to define the scope of threshold frequencies[21]].

Similarly , Mutual information measures information with respect to frequency of two
different responses to same stimulus and applied to information filtering of nervous sys-
tem.Being able to deduce non-linear properties, mutual information employed to study the
abnormal patterns in EEG for various neuro-physiological and clinical applications. In Da-
vide Bernardi et al[22]],mutual information applied to detect focal hand dystonia by compar-
ing with beta band of healthy subjects. With information theory, researchers can address the

problems of neural coding, processing neural information and more.



2.3.2 Applications in neuro-degenerative and neurological diseases

Information theory and mutual information has been extensively used in detection and di-
agnosis of neuro-degenerative diseases and neurological diseases such as Alzheimer’s, post-
stroke, dementia. Mutual information has been studied the evaluation of functional con-
nectivity of the brain and the alterations in interactions between mild cognitive impairment
(MCI) and AD[23]].

Besides, mutual information measures the transmission of information between differ-
ent cortical areas of patients suffering from Alzheimer’s disease. Cortical connectivity are
recorded through EEG and analyzed using Mutual information to find abnormal patterns in
cortical connections. Additionally, mutual information has been effective measure in study-
ing inter related brain network in neuro-degenerative diseases.

Combined with time-series analysis, auto mutual information of same sequence can be
useful in account when characterizing the EEG signal. A predetermined time delay, cross
mutual information between two different signals can quantify the amount of response car-
ried over each signal.A study reported that auto-mutual information values are transformed
and analyzed under receiver operating characteristic curve. The Sensitivity, specificity and
accuracy values are obtained and it might be valuable to neurologists in treating AD[24]].

There hasn’t been standard measure of mutual information applied for the analysis of
various neurological diseases. However, mutual information assists the neurologist to study

the relationships and compare the values with healthy subjects.

2.4 Estimation Methods for MI

On the account of studying neural connectivity, mutual information can be estimated by

either bin-based approach or k-nearest neighbors and kernels.

2.4.1 Bin-based approach

Bin-based approach mainly employ probability density function to select number of bins to
build histograms.The binned method for calculating the mutual information uses discretiza-
tion or partitioning the data values. For the better quantity, selecting number of bins chosen
for the histogram based on the range of the data dictates the bin width[25]. Mainly bin-based



approach is used for finite discrete data series, calculated MI value may depend on binning.

The number of bins is calculated from estimated bin width h:

max x — min x)}

Number of bins = {( h

where max(x) is maximum value of sample x and min(x) is minimum value of sample x. For

estimation of bins, most commonly used method is Sturge’s rule
K =1+logyn

For the probability distributions with high density data points, estimation of bias will be
high. In Masimizu et al [26l], empirical copula density are used to approximate the mutual
information. The number of bins m? in the interval of [0,1]>. To select m efficiently, AIC is

given by the sum of the negative log likelihood and the number of unknown parameters.

i=1j5=1

AIC(m :_2722 Con

)+2J

3 ‘m.

i i ) log, Chr (i
m m m
With respect to calculating mutual information of spike train[?], Each spike train interval is
converted into a word by binning the spikes for a bin width ¢ and counting the number of
spikes in each bin. The mutual information is calculated on the words rather than the spike
trains with the probability of a given word estimated by counting how often it occurs in the

data. The estimated mutual information approaches the true value slowly.

2.4.2 K- Nearest neighbours - KNN

Significant number of studies has been utilizing Kozachenko-Leonenko estimator for esti-
mating mutual information for random variables which take values on a metric space.

One of the distance metrics used by Kozachenko-Leonenko estimator is K Nearest neigh-
bours. In Shuyang Gao et al[27], KNN non paramteric method used to approximate entropy
and mutual information. The free parameter k, defining the size of neighborhood to use in
local density estimation. Using smaller k should be more accurate, but larger k reduces the

variance of the estimate. KNN calculates the euclidean distance between each data points.
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Chapter 3

Methodology

3.1 Implementation of Mutual information

In this study ,implementation of mutual information consists of estimation of entropy, vol-

ume, distance metrics and density approximation method.

3.1.1 Entropy and Mutual information in Information theory

In information theory[28], Entropy is defined as measure of uncertainty of discrete random

variables.
H(X) == p(x) logp(x)

rEX
where x is discrete random variable with alphabet X and p(x) probability mass functions.
Entropy does not depend on the actual values taken by the random variable X, but only on
the probabilities.

For n set of outcomesx1,x2,x3....N, entropy is estimated by

1 N
H(X) ~ =< >~ logy px ()
i=1
p(x) is unknown. In this study, data points are considered in metric space with no-
coordinates. Based on [29], estimate of probabilities depend on the volumes which is mea-
sure of probability distribution.Considering a ball B(x1,V) with volume V is selected sur-

rounding each data point;

11



The probability Py(xi)that the ball B(xi,V) contains k points;
(K)=NF

where Fi is the probability mass contained in B(xi,V).(K') contains the number of data
points present in the ball equivalent to #[ B(xi,V)]. Then the entropy equation is formulated
as
1

=3 log, #(B(ai, V)]

i=1

H(X) ~ —logy N +log, V +

Alternatively ,the number of points in the ball is considered in estimating probability than

size of the ball. This equation can aiding in refrain from computing integrable manifold.

3.1.2 Estimating volume

Most of the data points are metric space than discrete space in calculating mutual information
of neural activity. For the estimation of volume does not depend on coordinate measure.

Mainly volume is calculated using the probability mass it contains
Vol B= P(x € B)

Using the probability measure , number of points #[B(xi, V)] in the volume is equivalent
to some integer h. so V=h/N. Mutual information is independent of measure used.There are

two cases necessary to be considered.

e if one discrete variable is in discrete space and other random variable in metric space

and it is considered as more general situation.

e if both of random variables are in metric space, estimate is derived using Kullback-
Leibler (KL) divergence.

The equation of the mutual information is formulated as,

h 1
H(X) zlogquLloggN—NZloggh:O
i=1

12



3.1.3 MI between random variables in discrete and metric spaces
Case 1: Random variables in discrete and metric spaces

In neuro-science applications, stimuli are represented by discrete random variable and re-
sponse is represented by values in metric space.Let S be a discrete set representing the stimuli

and let R be a set of responses, which are recorded from the multiple neurons.
B(r)={t e R :d(r,t) <€}

Each element of S is presented equally ,n;. Let ng = |S| be the number of stimuli, Total
number of data points present is N =nyn,. B.(r) is open ball around r with h points. The

same measure of probabilities applied here. The estimate averaged over s

[B(ri, )]

1 N
)~y X lomnt

This estimation mostly applied for coordinated based quantities but it can extended to

this situation also.

Case 2: Random variables are in metric spaces

If S stimuli and R response are both metric spaces, the marginal probability mass functions Pg()
and Ps(s) with these measures entropy become zero.In this case, volume is estimated by
measures from Pg(r) Ps(s) of marginal spaces. Thus, region which defines is square.

hl h2 hl h2

S(r4, si, N W) ={(r,s) e R xS :r € B,.(r, W)’S € Bs(s;, F)}

The selection of h1 and h2 should be optimal.larger values reduce the accuracy of the

estimation.

3.1.4 Distance Metrics

Various distance metrics are used to estimate the distance or transmission between two neu-
ron responses. Euclidean, Manhattan, or van Rossum metric. In this study , euclidean dis-

tance is applied to measure the information transmission between two signals. The euclidean

13



distance between two responses are ,

d(p,q) = | >_(F; — Qi)
=1
One of the other metric to measure the distance between individual spike trains is calculated

using the van Rossum metric, this calculates the distance between two spike trains u = (ul;

d(u,v) = Ze_|ui - uj|/7'+26_|vi —v;|/T — 226_| —u; — | /T
i i ij

Mutual information is independent of the choice of metric used. Mostly, euclidean distance

is used to calculate mutual information to study about neural connectivity

3.1.5 Density approximation method

Calculating mutual information between two spike trains with no co-ordinate system are
relatively difficult. Most of the random variables of spike trains takes values in metric space.
Here, calculating mutual information faces two main difficulties; data in discrete values or
integrable manifold; require large amount of data. These problems are addressed by simple
KozachenkoLeonenko estimator which applies to metric space. One of the past methods,
Traditional binned method uses discretization.to calculate mutual information by counting
frequency number of words occur in the data. Converging to true value slowly and resulting
large amount of words are the challenges faced while using binned method.

In conor[29], two relevant formulas are derived to calculate mutual information between
metric space and between metric space; discrete space. KozachenkoLeonenko estimator,
also called as density estimation method relies on smoothing parameter h which is nearest
points in total number of data points in the volume of a ball.

The mutual information between two random variables U and V is given by

(U V) = <log Pov(U V) >

2 PU(U,)P\/(’U)

Where average with respect to joint distribution Py (u,v) where u and v values are

taken from U and V respectively. These joint distribution or probability distribution helps in

14



calculating mutual information by providing volume which is number of points are in ball
rather than size of the ball. In KozachenkolLeonenko approach, data points are considered
in pairs. Since spike trains have no good coordinate system, calculating volume of region
would be difficult. The probability mass defines the volume of the region, the formula is
given by

#B
Pyy(u;,v;) =~ VolB

where B is a ball around the point (u;; v;), B is the number of points in the ball and vol (V)

is the volume of the ball. The probability mass function < #B > is

(#B) = / Puy (u,v)dV

Another approach to calculate volume instead of integrable manifold, P(U) and P(V) marginal
distribution are used provide measure. Since the data points in pairs, for single data point
(u;, v1); distance is calculated by either using K- nearest neighbour or Euclidean distance.

Consider h nearest U- spike train interval to u;:
Cu(ui, vi) = (uj,vj) : d(uj, u;)isoneo fthehsmallestU — distances
and the nearest h V -spike-train intervals to v;:
Cu(ui,v;) = (uj,v;) : d(v; =1i,v;)isoneofthehsmallestv — distances

The Ball of the data point (u;, v;) is calculated by calculating the area of number of points
which lies closer to u; and number of points which are closer to v;. is given by union of the

data points given in these two regions and has volume of h2/n2.
C(ui, v;) = Cy(ug, vi) U Oy (ug, ;)

The number of points in region satisfying both U and V distance would be C# which has
intersection of data points in both CU and CV where CU set contains corresponding data
point and nearest h-1 data points to (u;, vi) when u; compared to u;. where CV set contains

corresponding data point and nearest h-1 data points to (u;, v7) when v; compared to v;.

#C(u;, v;) = #[Cu(wi, v;) N Cy (w,v;)
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Case 1: If the two distributions are mutually dependent, mutual information measure is given

by

1 C iy Ur
1{U:V) ~ e L(P; h) = — Y- nlog, W
=1

Case 2: If the two distributions are mutually independent, the probability is given by

h—1r—1n—hh—1r

prob(#C (ui, v;) = 1) = ——

Where r =1 to h, r is urn constant and mutual information measure is given by

h
nr
Io(n7 h) = ZIPTOb(#C(uw Ui) = T) 10g2 ﬁ
r=
Where it is also called as upward bias in the estimate of mutual information. As the smooth-
ing parameter approaches total number of points n, bias term becomes zero and it can be

eliminated from the calculation.
I(U;V) = I(P;h) = IxL(P; h) — Io(n, h)

The bias term does not affected by range of smoothing parameter h. Final mutual infor-

mation equation is given by maximizing /(P; h)over h.

3.1.6 Implementation in MATLAB

To facilitate study of the neural connectivity, MATLAB software has been used extensively in
neuro-science field.Compared to other software and packages, MATLAB has been efficient
in computing high dimensional data such as EEG EMG data and analyze neural time-series
data from electrode signal recordings.

In this study , implementation of mutual information function takes two EEG input sig-
nals with h parameter value. The signals are decimated by sampling rate with rate of sam-
pling 8. The MATLAB package “decimate” reduces the sample rate of x, the input signal,
by a factor of r. The decimated signal taken as input and calculated size of array by “size”
MATLAB package.
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function [MI] = Mutual info(X1,Yl,k)

$klmi Calculates Mutual Information between x and y using the
$Kozachenko-Leonenko

$non-parametric methods (Houghton 2015)

% = Nxl

A - T o

N=size (X1,1);

% bias I0 mutual information

MIO=nan(l,N);

Figure 3.1: Implementation of mutual information

Initially , empty array mutual information is declared.As in the Fig 3.3, for the total
number of data points, each z; point is replicated in another array to calculate the distance
between each data point and neighbouring point by euclidean distance.With ”Sort” MAT-
LAB package, indices of the closest points are sorted. This process is repeated for each
point and indices of K- neighbouring points are taken. Similarly it has been performed for y

signal , calculated array indices of y; points are taken.

Crr
p——,
L
L - e
- -
o L ]
- P ® Cyv
. -
e L o ¥
-
4
ot -
El‘

Figure 3.2: Intersection of Cu and Cv
The number of points in region satisfying both U and V distance would be C# which has
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intersection of data points in both C; and CY,. For each data pair, array of intersection points

calculated based on smoothing parameter h.

for ci=1:N
b4 k. 41 ol KNI
d¥X=sqgrt (sum( (X1-X1i) .%2,2)); %Distance between each point and xi
[~,indexX1]=sort (dX); %$indices for the sorted distances.
CU=indexX1 (1: (k+1)); %indices of the k nearest points to =xi
¥T1=X1{ci;:):
dY=sqgrt(sum((Y1-Y1i)."2,2));%Distance between each point and yi
[~, IndexY1l]=sort (dY);%indices

CV=IndexY1l{(1l: (k+1));%$indices

for the sorted distances.

the k nearest points to =i

% point which lie in the intersection pf CU and CV

no_of points=intersect (CU,CV);
MIO(ci):length(no_of_points)/(k*k);

end

Figure 3.3: Finding the shortest distance of nearest h

If the two distribution of signals are mutually independent, bias term required to esti-
mated. MATLAB toolbox ”symbolic” is applied in calculating dimensional computations of

equations and applied to approximate large values of bias term.

1 E SymCalex=0
syms sN sr sk integer positive
sN=sym(N) ;% symbolic calculation of N
sk=sym(k) ;% symbolic calculation of ﬂ
syms sbias [1 k]

end

Figure 3.4: Symbolic calculation of N and H
The package ’nchoosek™ returns a matrix containing all possible combinations of the
elements of vector v taken k at a time. With “nchoosek™ package, bias term solved into

possible combinations to avoid computing large value or infinity value. The bias term is

removed from the original estimation of mutual information.
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for r=1:k

if SymCalc>0
sr=sym(r);
biasO(r):nchoosek(sk—l,sr—l)./nchoosek(sN—l,sk—l).*nchoosek(sN—sk,sk—sr).*log2(sN*sr/(sk*sk));

else
$bias0(r)=factorial (N-1)./factorial (k-r)./factorial {r-1)./factorial (N-2*k+r)./factorial (k-r).
$*1og2 (N*r/ (k*k));
biqu(r}:nchoosek(k—l,r—l)./nchoosek(N—l,k—l).*nchoosek(N—k,k—r).*log2(N*r/(k*k));
% Bias calculation.

end

end

Figure 3.5: Calculation of Bias term

bias=double (sum(bias T0));
MI=mean (log2 (N.*MI0Q))-bias;

Figure 3.6: calculation of Mutual information
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3.2 Experimental Data

The data for study is provided by department of Trinity bio medical sciences of Trinity
College Dublin. Prof. Dr.Bahman Nasseroleslami & team collected the data from specfic
group of helathy individual subjects to study the neural connectivity mainly cortico-cortical
and cortico -muscular connectivity relastionships. The data obtained for this study includes
8 healthy subjects without any history of neuological disorders.

Each healthy subject data are anonymous. The EEG and EMG recording are included in
each subject data. Mainly 4 EEG and 2 EMG channels data recording are obtained to study
and estimate cortical connectivity. In this study, stimulated data are generated and performed

various operations before proceeding into experimental real time data.

3.2.1 EEG

In the study, EEG is recorded by Synamps2 System , by an electrode cap with Ag/AgCl
sintered ring electrode set. Considering earlobes and with a forehead location (AFz) as
foundation. EEG is band-pass filtered between 0.01 and 400 Hz and digitally sampled at
2048 Hz and captured using SCAN software. Most of the EEG channels were recorded from
the scalp electrodes.Before recording, value of contact impedance of the recorded electrodes
were below 5 k

Collected EEG signals are converted into discrete data points to computing efficiently
and for further studies. Each EEG channel data of each patient contains different number of
trails with sample rate of 256.

The form of the data matrix as follows Three Dimensional c x t X s

¢=6, no. of channels (1— Cz,2 — Pz,3 — C4,4 — C3,5 - APB,6 — FDI)

t: no. of trials( trial length 4s)

s: no. of samples in each trial

3.2.2 EMG

Simultaneously electromyogram(EMG) is recorded from the wrist extensors and signals
from over the motor cortex in a human subject during maintained wrist extension[30]. These
values are estimated with 4s of delay. The EMG plot has high peak value mostly ranges

from 40 -100HZ. The EEG has a concentration of power at low frequencies and peak values
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within range of 4 to 20 Hz. The EMG has more values in gamma band ranging from 20 to
400 Hz. The 95% confidence intervals have the same magnitude for both EEG and EMG.
The EMG channels are FDI and APB are with sample rate of 256 and different range of

trails.

3.3 Calculation of Cortical Connectivity between 2 EEG

Channels using Lagged (Cross-)Mutual Information

The implementation of cortico-cortical connectivity involves estimation of mutual informa-
tion of two EEG signals C3 and C4. In the Fig 3.7, EEG cortex channels are depicted and
for the study, similarly related C3 and C4 are considered.

Figure 3.7: EEG channels diagram

First, the EEG signals are sampled down by decimate function and reduced dimension of
the matrixThe MATLAB package “decimate” reduces the sample rate of x, the input signal,
by a factor of r.
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function x= sampling(s, factorial)
% Change the dimension of data
s=permute(s; [3 2 1])});
[~,m cols]=size(s);
temp=[];
for i=lim cols
% decimate the data
sample=decimate(s(:,1i), factorial) ;
temp=[ temp sample];
end
x=temp;
end

Figure 3.8: Sampling of Signals

Subsequent to sampling, each signal is shifted in time-phase by number of positions. For

each trial, same process is repeated for sample rate of 256 times.Similarly it has been applied

to second signal C4 by shifting the data points by backward.

function X= shi signal forward(x,no pos)

4]

[r c]=size(x);% rows and column

£

$shifts the data point forward by no of positions

Figure 3.9: Time phase forward shifting of signal

function Y=shi signal backward(y,no pos)

[r cl=size(y);

%shifts the data point backward by ne of positions
Y=y(no pos+l:r,:);

end

Figure 3.10: Time phase backward shifting of signals
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Additionally, mutual information is computed by using both bin-based approch and den-

sity approximation method for each time lag.

3.4 Calculation of Cortico-Muscular Coherence between EEG
and EMG Channels using Lagged (Cross-)Mutual In-

formation

Comparably, cortico-muscular coherence is also estimated by decimating the EEG C3 and
EMG signal FDI.The time series analysis is applied by time-lagging of sample rate 256. The
cross mutual information is calculated along with bin-based approach mutual information.

function [MI]=final mi (X,V,Kk)
factorial=8;
x1=sampling (x, factorial) ;
vl=sampling (y, factorial);
sample=256;

mi=[];
bmi=[];
for j = 0:256
% time lag by one position forward lag on first signal c3
fx = shi signal forward (x1, j):;
% time lag by one position forward lag on first signal (C4, FDI)
by = shi signal backward(yl,J);
ESE =5 HEE(EE) £
by = by (:);
%$calculate mutual info for each time lag
mi = [mi mutual info(fx,by,k)]1;
%$calculate Bin-based MI for each time lag
bmi = [bmi bmi(fx,by)]:
k = k;
end
ans = [mi ; bmi];
k = k+100;
end

Figure 3.11: Calculation of mutual informatio with time lag

3.5 Comparison against Spectral Coherence

Coherence study the relation between two signals or any data. It is used to measure the power

transfer between input and output of the system. In signal processing,spectral coherence is
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Figure 3.12: Coherence between x and y signals

applied to investigate the linear properties of the interaction between the cortex regions and
muscles during specific task or movement.
The converted frequency components of EEG and EMG were analyzed to calculate band-

specific auto-spectrum and cross-spectrum. The coherence also called as magnitude -squared

coherence between signal x and y

|Gy
Cv) = GG

where Gxy(f) is the Cross-spectral density between x and y, and Gxx(f) and Gyy(f) the
autospectral density of x and y respectively. The level of significance of the coherence value
is determined based on the confidence limit shown as

confidence limit = (1 — (1 — a)ﬁ

MATLAB provides the coherence package to calculate magnitude squared coherence be-
tween two signals.

Czy = mscohere(x,y)
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cxy = mscohere(z,y, window, noverlap, f, fs)

In this study, mcohere package is used to calculate coherence between

e Between EEG channel C3 and EEG channel C4

e Between EEG channel C3 and EMG channel FDI

With respect to data matrix, channel X trails x samplerate, coherence is estimated by

decimating with factorial value of 8 and with window sampling of 256.

Case 1:Cortico - Cortical coherence :

The coherence is studied between two EEG channels C3 and C4 with common trail of 7 and
sample rate of 256. The mscohere package systematically calculates the coherence with time
-lag and normalized frequency. In this study , it has been analyzed the alteration present in
the each frequency band and coherence coefficient over time using the data from channel C3
and C4 with sample window of 256. Samples are taken into account without any overlap.
To examine the differences in the cortico-cortical relations, beta band( 8-14) is chosen to
analyze the relation between C3 and C3 channel.Alpha band is avoided because of volume
conduction and other factors. Most of the EEG values are in alpha and beta band [4-18HZ].
The cortico -cortical coherence provides information about the synchrony between signals
from different electrodes or coils at each FFT frequency bin.Statistically cortico-cortical
coherence values might be higher or most correlated as EEG cortex channels are very close
to each other.The resultant matrix is symmetrical about with coherence values and frequency
range. The following results might be helpful in comparing linear and nonlinear properties

of neural network of neuological diseases.
[Czxy, F| = mscohere(C3,C4, hann(256), 0, 256)

The normalized frequency converted into atual frequency by multiplying (7) value(3.14)
and sample rate of 256.
Case 2:Cortico - musucular coherence :

Corticomuscular coherence analysis is measure to study how cortical activities involved with

the muscle movements and analyses the functional connection between brain motor cortex
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regions and associated muscles.The EMG channels FDI and APB are measured during spe-
cific task or movement. The values of these signals can vary according to the movement or
task. This might help neurologist to study specfic interactions of neural network.

The cortico muscular coherence is studied between EEG channel C3 and EMG FDI with
common trail of 7 and sample rate of 256.Samples are taken into account without any over-
lap.The mscohere package systematically estimates the interactions between EEG and the
coherence with time -lag and normalized frequency. The calculated coherence from channel
C3 and FDI data with sample window of 256 has been analyzed to study the difference in
the coherence coefficient for each frequency band over time.

To investigate the differences in the cortico-muscular relations, gamma band( 25-100hz)
is chosen to analyze the relation between C3 and FDI channel. Alpha band is avoided because
of volume conduction and other factors. EMG values are higher in beta and gamma bands.
The cortico -muscular coherence provides information about the synchrony between brain
cortex and associated muscles.

The cortico-muscular coherence value might be lower than cortico-cortical coherence
because of signal response time and neuron feedback mechanism The resultant matrix is
symmetrical about with coherence values and frequency range.

Estimating cortico-muscular coherence applicable to many neurological disorders with
movement.

[Czy, F] = mscohere(C3, FDI, hann(256), 0, 256)

The normalized frequency converted into atual frequency by multiplying (7) value(3.14)

and sample rate of 256.

26



Chapter 4

Results

Results section lists the main results from this dissertation, and provides some insight and
analysis into these results. Both tables and graphs are used to make the results data more
digestible.For better computation and optimization , smoothing paramter h is varied over
range of values to find optimal value. The better the optimal value of h, mutual information

of density based approximation method is more closer to bin-based approach MI.

4.1 Cortico-cortical (EEG-EEG) connectivity

The main objective of this dissertation is estimating cortico-cortical connectivity with non-
coordinate system. With substantial data, estimation of mutual information of EEG signals

may result in better outcome in studying the relationship between these channels.

4.1.1 Estimation using MI

The significant focus paramter h , smoothing parameter is varied across 200-1000 for the
cortico-cortical connectivity (EEG-EEG) estimation. Variation is compared with bin-based
approach to find better approximation of mutual information by density approximation method.
The mutual information is compared with spectral coherence to cross-validate outcomes of
density method. From the Fig 4.1, it can be observed that when h value is 200, mutual infor-
mation curves of both bin-based and density approximation are very distant to each other.
Following h values of 400 & 500, MI curves are getting more closer. Similar kind of

pattern can be observed for the values of h above 700. The optimal value chosen for the
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cortico-cortical connectivity (EEG- EEG) is 500. The optimal value for the K-nearest neigh-

bour is 500.

Mutual infomation

Mutual infomation

Mi based on KL and Bin when h=200

5 10 15
lag

Mi based on KL and Bin when h=500

30

Mutual infomation

Mutual infomation

0.025

o
3
S

0.015

0.02

Mibased on KL and Bin when h=400

lag

Mibased on KL and Bin when h=600

lag

Figure 4.1: Variation of H (200,400,500,600) for the subject 102
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With optimal value of h, mutual information is estimated for 8 healthy subjects. For

the certainty and performance, common trial of 7 and sample rate of 256 is selected for the

study. Following fig 4.3 shows the mutual information of bin-based , KL divergence(density-

approximation method) and validated against spectral coherence.

Mi based on KL and Bin when h=700

0.015

Mutual infomation
{
>

0.005

Mibased on KL and Bin when h=800

Mutual infomation

0 5 10 15 20
lag

i Mi based on KL and Bin when h=900

0.015 A\

Mutual infomation

0.005

lag

Mibased on KL and Bin when h=1000

Mutual infomation

lag

Figure 4.2: Variation of H (700,800,900,1000) for the subject 102

In this dissertation, alpha band is refrained from the study because volume conduction.

Beta-band from 4 to 16 hz is considered to estimate connectivity and cross- validated against

spectral coherence. There is significant peak value can be observed from both mutual in-

formation graph and coherence graph. As mutual information tends to provide non-linear

properties, various non-linear interactions can be perceived from the fig 4.3 and 4.4.
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4.1.2 Comparison against Spectral Coherence

The mutual information estimated by density approximation method is comapred with spec-

tral coherence. To identify the differences in the cortico-cortical relations, beta band( 8-14)

is chosen to analyze the relation between C3 and C4 channel.

The beta band of mutual information shows significant peak values similar to coherence.

Spectral coherence shows linear properties of the signals and Initially mutual information

has higher alpha band values.Alpha band is avoided because of volume conduction and other

factors. Most of the EEG values are in alpha and beta band [4-20Hz]. The cortico -cortical

coherence provides information about the synchrony between signals.
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Figure 4.5: Mutual information VS Spectral coherence of Cortico-cortical connectivity

4.2 Cortico-muscular (EEG-EMG) connectivity

Estimating cortico-muscular connectivity with non-coordinate system is useful in various

applications of neuroscience. With large data, calculation of mutual information of EEG and
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EMG signals may be lower than cortico-cortical connectivity.

4.2.1 Estimation using MI

Similar to cortico-cortical , parameter is varied across 300-900 for the cortico-muscular con-
nectivity (EEG-EEGQG) estimation. The bin-based approach mutual information is calculated
along with KL divergence MI.The mutual information is compared with spectral coherence
to cross-validate outcomes of density method.

From the Fig 4.6, variation of h values shows that when h=300, mutual information
curves almost close to each other. The optimal value chosen as 400. The higher values of h,

distance between two waves is increasing.
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4.2.2 Comparison against Spectral Coherence

Similar to corticl connectivity estimation, cortico- muscular connectivity also estimated and
cross validated against spectral coherence. The mutual information estimated by density
approximation method is compared with spectral coherence. The differences are examined
in the cortico-muscular relations, beta band( 8-14) is chosen to analyze the relation between
C3 and FDI channel.

The beta band of mutual information shows significant peak values similar to coherence.
Spectral coherence shows linear properties of the signals and Initially mutual information
has higher alpha band values.Alpha band is avoided because of volume conduction and other

factors. Most of the EMG values are in beta and gamma band [20-100Hz]. Because f
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Figure 4.9: Mutual information VS Spectral coherence of Cortico-muscular connectivity
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Chapter 5

Discussion and Conclusions

5.1 Summary of New Findings

In this study of estimating neural cortico-cortical connectivity and cortico-muscular connec-
tivity, linear and non-linear properties of the interactions can be studied and employed in
the diagnosis of neurological disorders.Mutual information of KL divergence is one of the
efficient approach based on the proximity structure of the data;Various distance metrics can
be employed to calculate the mutual information. The mutual information is independent of

distance measures and not affected by probability measures. The findings as follows

e Systematically cortico-cortical connectivity might be higher than cortico-muscular

connectivity because cortex regions are very close to each other.

e Cortico-muscular connectivity estimation provide information about the neural trans-

mission about specfic channels or neurons invloved in movement state.

e As the data increases, smoothing parameter h also varies.

5.2 Non-linear interactions and the utility of MI-based Meth-

ods

The sensitive interactions in the brain network might be detected by traditional linear meth-

ods such as coherence and spectral density.To study the cognitive development and move-
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ment, non-linear mutual information brings neurologist closer to computational models of
cognition.

Additionally , non-linear methods can provide reliable evidence about the stimuli in-
volved in the interaction and properties of the stimuli.Mutual information shows more vari-
ance about the information transmission between two regions than linear methods. One of
the utility of MI based methods depict the virtually connected graph of brain network with

interaction and might be helpful in identifying the regions associated with disorders.

5.3 Applications in neuroscience and neurological diagnos-
tics

Many applications and studies of neuroscience utilize the mutual information to examine
the interaction between regions and complex physiological data like EEG. Examining the
connections of MI measures cognitive features and comparing interaction in AD patients
and other types of dementia. This may be useful detecting neurological disorders in their
early stage diagnosis and in monitoring progress of disease. Abnormal rhythmic pattern aids

neurologist to identify the affected region of brain in post-stroke patients.

5.4 Limitation

This section lists the limitations in this dissertation. The other limitations as follows

e The analysis of EEG and EMG data can be applied to many other channels to study

the relationship between cortico-muscular connectivity.

e The selection of optimal value h should be varied across many different channels with

more data.

e The task or movement related to EMG data is unknown.It is difficult to study the

measures related to specific task of patient during EMG recording.

e In neuroscience , certainty of standard measures of comparing mutual information is

unavailable to the current neuologists.
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e The density estimation approach is more computationally demanding than the binned

approach;

5.5 Future Directions

Many neurologist struggling to set standard measure for the information transmission or
measure of interaction between the neurons.By calculating the non-parametric mutual infor-
mation paves way for comparing outcomes with healthy subjects.Estimation of neural con-
nectivity and cortico-muscular connectivity might be useful in defining the standard measure
for specific interaction between cortex channels or interaction between cortex - movement
muscles. Hopefully, this study might be foundation for defining the standard measure. Addi-
tionally, optimizing h value across the channels and data might help to obtain better outcomes

of the Mutual information.

5.6 Conclusions

The objective of this dissertation is to estimate cortical connectivity and cortico-muscular
connectivity using non-parametric implementation of mutual information achieved success-
fully. Using auto and cross-mutual information, re-habitation & feedback mechanisms can
be further improved serving specific purpose. Optimization of h value brings approximation
of connectivity more closer in defining standard measure to compare with. By migrating the
limitation , this study can move forward in new direction and can aid neurologist to explore

the interactions.
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Appendix

Abbreviations

AMI - Auto Mutual Information

AD - Alzheimer’s Disease

CCC - Cortico-Cortical Coherence
CMC - Cortico- Muscular coherence
CMI - Cross Mutual Information
EEG - Electroencephalography
EMG - Electromyography

KL - kozenko -Lenenko

KL - divergence - Kullback -Leibler divergence
KNN - K- Nearest Neighbours
MEG - Magnetoencephalography
MI - Mutual Information

PSD - Post Stroke Patients
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