Improvement of Recommendation Accuracy by

Integrating User Demographic Information

Shuqi Wu

A Dissertation
Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Data Science)

Supervisor: Dr. Bahman Honari

08 2019

Declaration

I, the undersigned, declare that this work has not previously been submitted as an
exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Shuqgi Wu

August 9, 2019

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Shuqi Wu

August 9, 2019

Acknowledgments

First and foremost, I would like to thank my parents, Jiayong Wu and Lilan Wu, who
love me, believe me and support me to complete my Master degree at Trinity College
Dublin.

I would like to express my sincere gratitude to my supervisor, Prof. Bahman Honari
for all the support and help he has given to me through out my thesis. Then would like
to thank my second reader who taken out some of his time and gave me suggestions
for improving my thesis during my presentation.

All of the staff and faculty members in the School of Computer Science and Statis-
tics, for imparting their vast knowledge to me over this year.

Last but not the least, I would like to thank all my friends, and classmates, for

making my days the most memorable of my life.

SHUQI WU

University of Dublin, Trinity College
08 2019

iii

Improvement of Recommendation Accuracy by

Integrating User Demographic Information

Abstract

Shuqi Wu, Master of Science in Computer Science

University of Dublin, Trinity College, 2019

Supervisor: Dr. Bahman Honari

Recommender systems has taken more and more places in our lives, recommending
goods or services that satisfy the original expectations of users.Since the first research
paper came up in the mid 1990s, attempts of implementing different algorithms to
provide more personalized items in order to improve the prediction accuracy can be
found in the literature. However, as far as I known, most papers about recommender
systems so far are only based on users’ previous preferences - ratings, neglecting the
user demographic information, such as age, gender,occupation. Theoretically, recom-
mendations made with respect to different users characteristics would be more accurate
and personalized. That leads to my research question:

to build a recommender system that is using the user demographic information and
test if this recommender systems performance would be improved by using the user
demographic information.

The baseline algorithm is based on Collaborative Filtering algorithm combining
with matrix factorization technique, which was used to solve the data sparsity problem.

Movielens one million dataset was chosen as the experiment dataset as it contains
the complete user demographic information dataset (predictors:x) and the traget value

(predicted value:Y), ratings, that can used for the comparison between different exper-
iments. A recommender system’s performance is measured by mean square error(mse),
the comparison between the predicted ratings and the true ratings. The overall exper-
iment was processed as follows:

e Experiment 1: Train the ratings dataset without user demographic information
and predict users ratings towards different movies. Use the predicted ratings for
the test set to get the overall mse as the evaluation result.

e Experiment 2: Train the datset with user demographic information and predict
user ratings towards different movies. Use the predicted ratings for the test set
to get overall mse as the evaluation result. However, with the complexity of user
demographic information, Convolution Neurall Network was added to train the
textual data.

e Experiment 3: Train the datset with two dataset in Experiment 1 and Experi-
ment 2 using User-based Collaborative Filtering algorithm, one added experiment
to prove that the improvement in Experiment 2 was resulted from the user de-
mographic dataset. The precision was used as the evaluation matrix.

The mse results of experiment 1 and experiment 2 show that the recommender
systems performance by using user demographic information(0.661) implemented with
Convolution Neural Network has improved around 15% compared to the experiment
without user demographic information(0.770). The Experiment 3 was designed to
prove that the improvement of experiment 2 was made by user demographic instead
of the Convolution Neural Network algorithm. The precision of the test with user
demographic information(46.4%) is 17% higher than that without user demographic
information(38.5%). Thus, the above experiments show that the use of user demo-
graphic information can improve the overall recommender systems performance.

Contents

Acknowledgments iii
Abstract iv
List of Tables ix
List of Figures X
Chapter 1 Introduction 1
1.1 Background 1

1.2 Motivation 1
1.3 Research Question, 2
1.4 Research Objective 2
1.5 Thesis Challenges 3
1.6 Thesis Overview e 4
1.7 Thesis Structure 5)
1.8 Keywords D
Chapter 2 Literature Review 6
2.1 Recommender Systemso Lo 6
2.2 Collaborative Filtering 7
2.3 Matrix Factorization 9
2.4 Evaluation Metrics 11
2.4.1 Precision, Recall, and Accuracy 11

2.4.2 Mean Square Exroro 12

2.5 Convolution Neural Network 13

vi

2.6

2.7

2.5.1 Convolution layer
2.5.2 Pooling layer
2.5.3 Fully Connected Layer
Convolution Neural Network with Recommender Systems Textual Infor-
mation Processing Lo

Conclusion

Chapter 3 Methodology

3.1

3.2

3.3

3.4

3.5

Datasets Description
3.1.1 Datasets Analysis L
3.1.2 Conclusion
Data Preparation o
3.2.1 Users Dataset
3.2.2 Movies Dataset o
Experiment 1: Implementing Collaborative Filtering Matrix Factoriza-
tion Model
3.3.1 Data Splitting
3.3.2 Model Trainingo
3.3.3 Model Evaluation00
3.3.4 Parameter Tuning
Experiment 2: Implementing Convolution Neural Network Collaborative
Filtering Matrix Factorization Model
3.4.1 Implementation of user information
3.4.2 Implementation of movie information
3.4.3 Generating predictions of ratings
3.4.4 Model Evaluation
3.4.5 'Trained with different Parameters
Experiment 3: Implementing Collaborative Filtering Model with User
Demographic Information and without User Demographic Information .
3.5.1 Data Splitting
3.5.2 Model Training o
3.5.3 Model Evaluationo

vil

Chapter 4 Results and Discussion

4.1 Mean Square Error Results for Experiment 1
4.1.1 Test 1: Train the dataset with different feature numbers
4.1.2 Test 2: Train the dataset with different iterations

4.2 Mean Square Error Results for Experiment 2
4.2.1 Test 1: Train the dataset with different parameters
4.2.2 Test 2: Train the datset with different feature numbers
4.2.3 Test 3: Train the dataset with different iterations

4.3 Comparison between Experiment 1 and 2

4.4 Precision for Experiment 3

Chapter 5 Conclusion and Future Work
5.1 Conclusion
5.2 Future Work

Bibliography

viii

43
43
44
45
46
46
48
49
49
20

52
52
53

54

List of Tables

3.1 Data Format 21
3.2 Attribute Types (users.dat) 26
3.3 Ageranges 26
3.4 Occupations 27
4.1 mse results for different feature numbers 45
4.2 mse results compared with Kim’s[1] model 47
4.3 mse results trained with different feature numbers 49
4.4 mse results trained with different feature numbers 50

1X

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5

Classification of Recommender System approaches.[2] 7
Architecture of LeNet-5 [3] 14
5 x 5 Input Matrix with 3 x 3 filter 14
ReLU operation 15
Max-pooling 16
Pooling Layer 16
Fully Connected Layer 17
Fully Connected Output Layer 17
One Convolution layer architecture[1] 18
Genre Interest Distribution of Different Genders 23
Genre Interest Distribution of Different Ages 24
users.dat 26
movies.dat Lo 28
One Convolution layer architecture[1] 32
Convolution Neural Network Matrix Factorization Architecture. 33
Full Connected Layer 34
Movie Title Convolution Neural Network Architecture 36
Merged dataset 40
MSE results for Experiment 1 trained with 50 iterations 44
MSE Results for Experiment 1 with 200 features 46
MSE Results for Experiment 2 compared with Kim’s [1] model 47
MSE Results for Experiment 2 trained with different feature numbers . 48
MSE Results for Experiment 2 trained with 100 Iterations 49

Chapter 1

Introduction

1.1 Background

During the last few years, recommender systems have emerged to deal with enormous
amount of data in online platforms and have taken more and more places in our lives. It
has been widely used in different areas: for web-based recommender systems, suggesting
products or items to users that could interest them; for online advertisement systems,
recommending users the right contents that might match their preferences. These
systems are generating recommendations for users based on users’ previous behaviors.
By providing more personalized recommendations to improve the recommender systems
performance, the user experience and loyalty can be improved.

First research paper about recommender systems was published in 1990 [2] by Jussi
Karlgren. Since then, the researches about recommender systems have never stopped.
Research groups are organized these years to study for different algorithms. Com-
mercial companies are running competitions to award for a higher-performance recom-
mender system model. Challenges and problems are arisen and discussed throughout

the years. Literature surveys on available research papers are published year by year.

1.2 Motivation

As the increasing performance of recommender systems, the study of it is not restricted

to the algorithm itself. The training dataset is one of the other aspects we could focus

on. Basically, a recommender system is an extensive class of web applications that aims
to predict the users responses to a new product based on users’ previous preferences,
that is ratings. Most research papers about recommender systems are based only on
ratings dataset, neglecting the other user demographic information.

Take an example of MovieLens dataset. MovieLens dataset is of the widely used
dataset for the recommender systems research purposes. It is collected from MovieLens
online movie recommender system. It contains approximately one million ratings from
about 6,000 users on around 4,000 movies. MovieLens dataset are structured as three
separated files, ratings dataset, users demographic inforamtion dataset, and the movies
dataset. The ratings dataset can be seen as the users previous preferences when making
recommendations. The users dataset saved all the user demographic information, such
as age, gender, and occupation. The last movies dataset records the movie titles and
genres.

According to the analysis about MovieLens dataset, I found that different gender
groups have different preferences to movies. Female users’ top 5 preferences to movies
are [Drama(22%), Comedy(14%), Romance(12%), Action(10%), Thriller(9%)] while
male users’ references are [Drama(20%), Comedy(12%), Action(12%), Thriller(10%),
Romance(9%)]. The same results came up with the different age groups and the dif-
ferent occupations. This analysis shows that the user demographic information are
having some relationships with one user’s preferences. This result based on the Movie-

Lens dataset have motivated my research question.

1.3 Research Question

The research question of my dissertation is:
to build a recommender system that is using the user demographic information and
test if this recommender systems performance would be improved by using the user

demographic information.

1.4 Research Objective

The research objective put forth to address the research questions are:

e Pre-processing the MovieLens datasets and converting all the data types to be

suitable for training for different experiments.

e Experiment 1: Constructing an algorithm to experiment the recommender sys-
tems performance without user demographic information by using Collaborative

Filtering algorithm.

e Experiment 2: Constructing a novel algorithm to experiment the recommender
systems performance with user demographic information by using Collaborative

Filtering algorithm combined with Convolution Neural Network.

e Experiment 3: Train the dataset with two dataset in Experiment 1 and Exper-
iment 2 using User-based Collaborative Filtering algorithm to prove that the
results of experiment 2 is resulted from the user demographic dataset. Use the

predicted ratings for the test set to get the precision as the evaluation result.

e Executing three models to calculate the mean square error for the overall recom-

mender system.

e Analyze and compare above results and figure out if the recommender systems

performance would be affected by the user demographic dataset.

1.5 Thesis Challenges

e The pre-processing of training dataset - to convert all the data structures to be

able for the training with Convolution Neural Network.

e The implementation of all three models and evaluation measurement can only
be designed by myself and compared within in this thesis, other algorithms of
other papers cannot be used and compared within this thesis. Because different
people have different ways of implementing even one same algorithm, thus little

difference within one algorithm may result in different result.

e Building a new recommender system by using Convolution Neural Network and

testing the parameters for the model.

e Generating the movie genres features because each movie may belong to different

genres and each genre contains different features.

e Analysis of the different movie preferences with respect to different user demo-

graphic information.

1.6 Thesis Overview

Convolution Neural Network has been widely used for handwritten recognition and
image classification since the LeNet-5 model proposed by Yann LeCun et.al [3]. Ap-
plying Convolution Neural Network to MovieLens one million dataset integrating the
user demographic information is a novel approach in the area of recommender sys-
tems. Collaborative Filtering algorithm is one of the most common used algorithms
and matrix factorization technique was also chosen for the implementation of this the-
sis as its effectiveness of solving the data sparsity problem along with Collaborative
Filtering algorithm|[4]. Thus, the combination of Collaborative Filtering algorithm and
matrix factorization technique was chosen to be the baseline algorithm for Experiment
1. Second experiment was operated by using baseline algorithm and parts of the cal-
culation was made by Convolution Neural Network due to the complexity of textual
user demographic datase. Experiment 3 was designed and aims to prove that the per-
formance improvement made by Experiment 2 was caused by the dataset instead of
the algorithm. Thus, Experiment 3 was operated by using Collaborative Filtering and
the same user demographic dataset in Experiment 2.

The MovieLens one million dataset used in this thesis was collected from MovieLens
movie recommender system over various periods of time by GroupLens Research, ac-
knowledging the permissions of usage for the research purposes. This dataset contains
approximately one million ratings from about 6,000 users on around 4,000 movies. All
three experiments are predicting user ratings for different items and the evaluation is
measured by the mean square error(mse) algorithm to compare the users’ predicted
ratings and the true ratings. The mse results for Experiment 2(0.661) with user de-
mographic information is around 15% lower than that of Experiment 1 without user
demographic information(0.770). The precision of the test with user demographic infor-
mation(46.3%) is 20% higher than that without user demographic information(38.5%).

That confirms that the recommender systems implemented with user demographic in-
formation are providing higher performance than that of without user demographic

information (with ratings dataset).

1.7 Thesis Structure

The thesis is organized as follows: Chapter 2 introduced the related work; Chapter 3
explains the methodologies and implementations for three experiments; the results will
be discussed in Chapter 4; Chapter 5 will give the overall conclusion and the future

works.

1.8 Keywords

Recommender Systems, Collaborative Filtering, Matrix Factorization, Gradient De-

scent, Convolution Neural Network, Mean Square Error, Similarity Matrix

Chapter 2
Literature Review

In this chapter, the works related to the methodologies used in this dissertation will

be introduced and explained.

2.1 Recommender Systems

With the growing of various selections in our lives, customers are making choices at
almost every seconds. In another words, customers are drowning in a explosive infor-
mation due to the high availability of products or services. As results, this availability
is causing the troublesome and time-consuming issue. Therefore, filtering useful infor-
mation and helping the customers to make the best choice that could meet the expecta-
tions with them becomes more and more important. Recommender systems, designed
as a filtering tool, are now implemented by different business companies to filter useful
information and speed up the whole searching process for users interested products.
Thus, the increasing performance of recommender system, in return, are increasing
the sales and user experience by predicting more personalized items and meeting the
higher satisfaction of customers. The importance of using relevant efficient algorithms
to provide a higher accuracy within recommender systems is non-negligible.

Jussi Karlgren published the first research paper in recommender systems in 1990
2] at Columbia University in a specialized report. Since then, researches in this area
became diversified and various approaches were introduced to present higher recom-

mendation accuracy. The basic idea of recommender systems is acting as a information

filtering tools to filter all useful information in a effective way. The recommendations
are usually made based on users previous preferences. Different algorithms are using
different techniques for the implementation. According to those differences, recom-

mender systems can be classified into different categories.

2.2 Collaborative Filtering

One recent survey discussing of recommender system types and classification produced
by Akhil P.v and Dr. Shelbi Joseph [2] classifies the recommender system algorithms
into three categories, Collaborative filtering, content based filtering and hybrid filtering.

Figure 4.5 shows the classifation of recommender systems.

Recommender
System

[Content-based filtering] [Collaborative filtering] { Hybrid filtering]

technigue technigue technique

Model-based filtering Memory-based filtering
technigue technique

Clustering, techniques
Association techniques,

Bayesian networks,
MNewral Networks User-based ltem-based

Figure 2.1: Classification of Recommender System approaches.|2]

Collaborative filtering is a method of predicting the user responses to a new rec-

7

ommended good or service based on users previous preferences. In most cases, users
preferences are represented by the ratings to products. User-based Collaborative filter-
ing technique filters the information by using other similar users preferences. Basically,
the similar users are selected and filtered by their rating patterns [5]. For instance, if
user A and user B both rated item 3 for the rating 2, we can sat that they are sharing
the same or similar rating patterns. Therefore, user A and user B are two similar users.
Based on user A’s rated items, we can recommend those items to user B. This is one
common approach called User-Based Collaborative filtering. The predicted rating of
the item user A gives to item i can be calculated as an aggregation of other similar

users’ ratings of items. It can be mathematically represented as follows:

Tui = Q99w euTu i (2'1>

where U denotes the set of similar users who are sharing the similar rating patterns

and at the same time who have rated the item i. The aggregation formular is:

Pug =N > sim(u, u)ry; (2.2)

u'elU

where N is a factor to normalize the whole model, it is defined as

1/ > |sim(u,u')|
wel
As for User-Based Collaborative filtering, recommendations are generated to a user
based on the evaluation of rated items by his similar users. Thus the similarity matrices
between users should be calculated. The similarities between users can be measured
by taking weighted average of all the ratings produced by other similar users. Different
similarity algorithms[6], such as k-nearest neighborhoods, Jaccard correlation, Pearson
correlation, vector cosine etc. Two common techniques are the Pearson correlation

similarity and cosine similarity:
e The Pearson correlation similarity of user A and user B can be defied as:

sim(A, B) o ZiEIAB (TAJ; B 7’?4)(7“372‘ - T_B> (23>

VZieras ("ai = 1V Siera (n2s = 15)?

where

Iap

is the set of items rated by bother user A and user B.

e The cosine similarity of user A and user B can be defied as:

A-B ZieIAB TAiTB.i

AN Bl /e, (rai)?/Siern (r5.0)?

sim(A, B) = cos(A, B) = (2.4)

Cosine approach was used in my experiment. Overall, user-based collaborative filtering

is operated of three steps:

e Look for users who share the similar rating patterns with the user whom the
prediction is for by using the above consine similarity algorithms. Similarity
users can be one, two, or even thousands, but all with different similarity factors

according to their different rating patterns.

e Use the ratings rated by similar users found in step 1 and calculate predicted

ratings the active user (users whom those prediction are for) would give to items.

e Recommend top-k items from those sorted predicted items to active user.

2.3 Matrix Factorization

Challenges within the collaborative filtering algorithm are discussed as well. One pa-
per published by Miha et al. [7] in 2006 clearly stated the data sparsity problem in
the Collaborative Filtering. The data sparsity problem indicates that the amount of
missing ratings for items is large due to the large commercial dataset itself. As the
result, the user-item matrix would be extremely large and sparse. Because the number
of rated items for most users is extremely small compared to the total item numbers.
Therefore, the accuracy of locating the similar users would be very low due to the lack
of user preferences information. One typical problem following by the data sparsity is
the cold start problem. Cold start problem refers to a situation that the system fail to
capture users preferences when a new user is added to the system thus caused a low

accurate prediction.

Matrix factorization as an extension of Collaborative Filtering algorithm is used
to solve the data sparsity problem. In 2006, Simon Funk reported the initial effective
work of this technique in his blog after the Netflix Prize and in 2009 Yehuda Koren
et al.[8] published a paper and detailedly described the matrix factorization technique.
The basic idea of it is to decompose or factorize the user-item matrix to two smaller
dimensional matrices, user matrix and item matrix. Each matrix contains the related
hidden latent factors or features. For example, in a movie recommender system context,
each movie is represented by ten values describing how much that movie exemplifies
each aspect, and similarly each user is represented by ten values referring how much
they like each aspect. The dot product of these two matrices can show how much each
user prefer each item. Simply, we can define those values as the weights of genres.
Each movie has different weights towards different genres and each user has different

preferences to different genres. E.g., for movie "The lion king’, it contains:
(action = 0.5, romance = 0.8, drama = 0.6, ...)
For user A, his preferences to movies is represented as:
(action = 2,romance = 8,drama = 4, ...)

Therefor, we can get how user A like the movie "The lion king’” by combining those two
information together:
2x054+8x08+4x0.6+...

Matrix Factorization can be mathematically represented as follows:

Assume that each user u is combined with a user latent factor P, € R? and each
item i is combined with a item latent factor Q; € R . The latent factor vector P;
and @), describes the preferences of user i and item j. Based on this, the latent factor
model uses observed ratings to learn the latent feature vector to predict each rating
as an implicit outcome of the latent factor vector[4]. The user-item matrix is the dot

product of the above two matrices.

R;; = PTQ (2.5)

10

2.4 Evaluation Metrics

Evaluation matrices are different according to different learning purposes. Same evalua-
tion matrix might perform differently via supervised learning or unsupervised learning.
As for the recommender systems, it can be seen as a classification problem. Thus, the
results can be measured by Presion, recall, accuracy or the mean square of errors(mse)
to know the accuracy of prediction of the model. In this dissertation, I am using mse

as the evaluation measurement.

2.4.1 Precision, Recall, and Accuracy

Precision, recall and accuracy are three matrices used of measuring the percentage of
the correct predictions made by the recommeder systems model[9]. In the recommender
system context, those evaluation matrices only focus on if one user have rated one item

or not. The actual rating figure is not calculated. Some basic terms are:
e Positive: The ground truth is positive (e.g. User 1 rated for item 2).
e Negative: The ground truth is negative (e.g. User 1 did not rate for item 2).

e True Positive: The prediction is positive; the ground truth is positive (e.g. The
prediction is user 1 rated for item 2; The ground truth is user 1 rated for item
2).

e False Positive: The prediction is negative; the ground truth is positive (e.g. The
prediction is user 1 did not rate for item 2; The ground truth is user 1 rated for
item 2).

e True Negative: The prediction is positive; the ground truth is negative (e.g. The
prediction is user 1 rated for item 2; The ground truth is user 1 did not rate for
item 2).

e False Negative: The prediction is negative; the ground truth is negative (e.g. The
prediction is user 1 did not rate for item 2; The ground truth is user 1 did not

rate for item 2).

11

Precision is used to measure how many positive ground truth were actual predicted

correctly.

TruePositive correct predictions

Precision = (2.6)

True Positive + False Positive all predictions

Recall is used to retrieve the percentage of related information that are successfully
retrieved. Recall can be calculated by all true positive predictions and all positive
results, referring to the numbers of total relevant results that are correctly categorized
by the model.

True Positive _ predicted to bepositive

Recall = (2.7)

True Positive + False Negative all positive observations

Accuracy is the number of true positive and true negative divided by total numbers,
measuring the proportion of all predictions that are correct. It is used to measure how

accuracy the model is.

True Positive + True Negative

Accuracy =
Y True Positive + True Negative + False Positive + False Negative
(2.8)
Thus,
Accuracy — correct predictions (2.9)

all predictions

The precision and recall both can express the accuracy of the model.

2.4.2 Mean Square Error

Last common used evaluation matrix is called the mean square error. It is a measure-
ment of the average of the squares of the errors between the estimated values and what
is estimated[10]. It calculates the errors of exact rating figures rated by the exact user
for the exact item. In this dissertation, it is used to measure the difference between
the predicted ratings by the system and the users true rating. It can also used within

the process of training, user feature matrix P and the item feature matrix Q for matrix

12

factorization can be retrieved by optimizing the mean square error.

Mathematically mean square error can be described as:

L =argming g Y (rui— (@) pu)* + M@l + [[p"]]°) (2.10)
(ui)eK

We add regularization term on the right side of the equation in case we find to many
latent factors and overfit our model.

In order to solve the above optimization, gradient descent technique was chosen.
Gradient descent is one of the most popular algorithms to perform optimization. It is
an iterative process that finds the local minimum of a cost function. Take the partial
derivative respect to p and g to optimize those values. The final matrix p and q iterated

by the given steps are our final results.
G =qi+7 (i pu—A) (2.11)

Pu=DPu+7" (€ui ¢ — A pu) (2.12)

2.5 Convolution Neural Network

Convolution Neural Network as a class of deep neural network is widely known in the
area of visual imagery [11] and speech precognition [12]. Convolution Neural Network
takes an inpyt image, process it and classify it to a certain categories.Typically, the
input image will be processed through serious of convolution layers with filters, pooling
layers, fully connected layers and finally end up with Softmax function to classify the
input image with probabilistic values 0 or 1. One classic model is called LeNet-5,
an architecture propsed by Lecun, Y. et al. [3] used for handwritten and machine-
printed character recognition in 1998 to extract feathers within hand writing as the
hand writing contains too less information.

This model consists of seven layers, two convolution layers, two average pooling
layers, two full connection layers and one Softmax classifier. More details will be

described as follows.

13

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
S2: f. maps

INPUT
6@28x28
sz C5: layer .

6@14x14 Ir rr 05 " Foilaver QUTPUT

|
Full coanection ‘ Gaussian connections
Subsampling Convolutions ~ Subsampling Full connection

Convolutions

Figure 2.2: Architecture of LeNet-5 [3]

2.5.1 Convolution layer

Convolution layer is the first layer to extract features from the input image by a set
of filters. The size of the filters are smaller than the input matrix. Each filter will be
automatically assign some random numbers.Those filters are slide across the width and
height of the input matrix. The dot products between the filters and the input matrix
are computed at every spatial position. Take an example of an 5 x 5 Input Matrix
with 3 x 3 filter,the output is calculated to be a 3 x 3 matrix. The [3,3] item of output

matrix can be mathematically calculated as follows:

IX14+1x04+1x1+1x04+1x1+0x0+1x1+0x0+0x1=4 (2.13)

1|1(1(0|0
0|1(1(1|0 4134
ofofsf1f1] [2]4]3
0|0 2134
a|1{1j0/0
Convolved
Image Feature

Figure 2.3: 5 x 5 Input Matrix with 3 x 3 filter

In LeNet-5,the input is a 32 x 32 written image with values 0 and 1. After filtered
by 6 5 x 5 filters, the output is 6 28 x 28 matrix. Then the convolution of 32 x 32

14

image matrix multiplies with 5 x 5 filter matrix which is called 'feature map’.
Convolution with different filters can capture different features[3].
In some cases, Rectified Linear Unit (ReLU) is applied to the input matrix, which
aims to transfer all negative values to be non-negative. Other non-linear function such
as sigmoid, which is widely used in the Supported Vector Machine (SVM), can also be

used for the operation.

Figure 2.4: ReLLU operation

2.5.2 Pooling layer

Sensitivity to the location of features is one of the problems caused after convolution
layer. Pooling layers effectively reduce the size of the output feature maps when the
input matrix is too large. It reduces the dimension of each map and enables the output
matrix to capture the most important features. Therefore, spatial pooling is also called

subsampling or downsampling. There are several different types of pooling so far:
e Max-pooling
e Average-pooling
e Sum-pooling

Max-pooling is the most common approach. In LeNet-5 model, after the 2 x 2

max-pooling layer, six output feature map becomes six 14 x 14 matrices.

15

Single depth slice

X 111|124
max pool with 2x2 filters
5|6 |78 and stride 2 6
3| 2 EiEmE 3|4
112|134
y

Figure 2.5: Max-pooling

§2: Pooling Layer
No. of filters, n=6
Filter size, F=2
Padding, P=0
Stride,5=2

Trainable parameters

| = (coefficient + bias) x filters
=(1+1)x6

1 =12

14x14x6

28x28x6

Figure 2.6: Pooling Layer

16

2.5.3 Fully Connected Layer

The layer that flat all feature maps into a vector is called fully connected layer. In
LeNet-5 model, the fifth layer is a fully connected layer with 120 1 x 1 feature maps.

The sixth layer is also a fully connected layer with the 84-feature output feature map.

C5: Fully Connected Layer

5x5x16

120
Trainable parameters = Weight + Bias
=(400x 120) + 120 = 48120

Figure 2.7: Fully Connected Layer

The last layer ends up with a 10-feature output feature map after the fully connected

layer.

F6: Fully Connected Layer Output

84

LCONOOTUVAWNEREO

Trainable parameters = Weight + Bias
=(120 x 84) + 84 = 10164

Figure 2.8: Fully Connected Output Layer

17

2.6 Convolution Neural Network with Recommender

Systems Textual Information Processing

Apart from image classification, recent study has found that Convolution Neural Net-
work can be used for natural language processing. Convolution Neural Network can
be seem as an feature extraction function that is applied to word maps to extract
higher level features. Sentiment analysis and question answering are examples of tasks
that CNN can operate. In 2008, Collobert and Weston have successfully applied the
Convolution Neural Network architecture to natural language processing tasks such as
part-of-speech tags, chunks etc.[13]. The results demonstrate that the performance of
natural language processing tasks processed by Convolution Neural Network has im-
proved. In 2014, Yoon Kim [1] published a variant architecture of Collobert ’s model[13]
and the model with only one convolution layer for the training performs well. The basic

structure of Kim’s model is as follows:

wait
for
the

video

and
do
n't

rent

it

[T

L | | | L J

m ¥ K representation of Convoluticnal layer with Mlaax-onver-Lime Fully connected layer
sentence with stalic and miultiple filter widths and paaling with dropout and
mon-slatic channals feature maps softman output

Figure 2.9: One Convolution layer architecture[1]

In this work,each sentence are tokenized into words before the processing, which
are later transferred into a word embedding matrix. The height of the input matrix
represents the length of the sentences. The difference of the convolution layer filter
between this model and LaNet-5 model is the width of the filters. In this model,
the width of filter is equal to the width of the input matrix, which is k. Then the

max-pooling layer is applied to the output feature map to capture the most important

18

features from each map.

Thus, Convolution Neural Network can be applied to the recommender systems
as well. Donghyun Kim et al. proposed a novel context-ware Convolutional matrix
factorization model that integrates Convolution Neural Network into probabilistic ma-
trix factorization (ConvMF)[14]. He used the dataset obtained from MovieLens and
Amazon. The textual item descriptions were retrieved by related items from IMDB.
Those textual information was processed by using Convolution Neural Network. Ma-
trix factorization technique was also used to decompose the sparse user-item matrix to
solve the data sparsity problem within this paper. The results shows that this model
performed well and improved the rating prediction accuracy.

Our experiment is based on the experiment of this paper, the differences is that we
are using different datset. The above paper trained the model with the textual movie
descriptions obtained from IMDB, while I am using the textual user demographic
information. But both textual dataset are needed to be trained with Convolution
Neural Network. According to the differences of dataset, the architecture would be

different as well.

2.7 Conclusion

Recommender systems as the tools of filtering information from high volume of com-
mercial data. The overall recommendation process for a recommender system can be

split into two steps:
e collect all user preferences information and item information,
e and generate personalized recommendations from those items to users.

State-of-art algorithms have been proposed to provide a high recommendation accuracy
for recommender systems, such Collaborative Filtering, Matrix Factorization, Deep
Neural Network etc. Memory-based Collaborative Filtering and Content-based Col-
laborative Filtering are two branches of Collaborative Filtering algorithm [15][16]. For
Memory-based Collaborative Filtering method, recommendations are based on pref-
erences of active user’s similar users. With finding the similar users who are rating

the items in the similar pattern with active user, the predictions to ratings can be

19

generated.Top-k items would be recommended to the active user after sorting those
predicted ratings.

According to the data sparsity problem caused with Collaborative Filtering tech-
nique, matrix factorization was introduces to solve this problem by reducing the user-
item matrix dimension|[8]. The doc product by two matrices, user feature matrix and
item feature matrix, would be target user-item matrix. Thus, matrix factorization
technique are usually combined with Collaborative Filtering algorithm.

Besides, Deep Neural Network was introduced to deal with the textual information
to operate the matrix factorization process by Dongyun Kim[1]. The novel context-
aware recommendation model performs well and successfully captures small contextual
difference of a word in a sentence even the data is extremely sparse.

MovieLens dataset are the most commonly used dataset for recommender systems
research purposes. MovieLens one million dataset contains about one million ratings
from 6.000 users on about 4,000 movies. There are three data files within this dataset,
ratings.dat, users.dat and movies.dat.

Few papers test with the user demographic information for the recommender sys-
tem performance, such as one paper published by Laila Safoury and Akram Salah [17]
solving the cold-start problem by using Collaborative Filtering technique. Most re-
searches about recommender systems are only use ratings dataset that only contains
users previous taste information, neglecting the user demographic data file.

Thus, my initiative of this thesis is to implement a recommender system with user
demographic information and test if the performance of recommender systems would
be improved by using this dataset. The baseline algorithm would be the combination of
Collaborative Filtering algorithm and the matrix factorization technique. Convolution
Neural Network technique will be used to process some textual information within the
user demographic information. The expected mean square error result implemented
with user demographic information, such as age, gender, and occupation will be lower
than that experiment without user demographic information. Detailed explanations of

this novel architecture would be discussed in Chapter 3.

20

Chapter 3

Methodology

In this chapter, dataset description, architecture and code implementation of three

experiments will be discussed. Lastly, the model evaluation will be explained.

3.1 Datasets Description

The implementation of this dissertation was based on the MovieLen 1-million datasets.
MovieLens datasets are collected from a web-based movie recommender systems called
MovieLens and are maintained by GroupLens Research[18].

There are three datasets: ratings.dat, users.dat, and movies.dat. MovielLen 1-
million datasets contain approximately 1,000,000 ratings from about 6,000 users on
around 4,000 movies. Table 4.4 indicates the data format within three files. Ratings.dat
contains ratings from users. Each user has rated at least 20 movies and each rating is
in a 1-to-5 scale. The rating with 5 means good film and 5 means bad film. Users.dat
contains user demographic information such as age, gender and occupation. Movies.dat

saved movie titles and movie genres for each movie.

File name Data Format

ratings.dat UserID::MovielD::Rating:: Timestamp
users.dat | UserID::Gender::Age::Occupation::Zip-code

movies.dat MovielD::Title::Genres

Table 3.1: Data Format

21

3.1.1 Datasets Analysis

According to my research of recommender systems papers, almost all papers are exper-
imented only based on ratings dataset. In order to confirm my hypothesis that users
preferences would be different according to different age, gender and occupation, I did

some further analysis.

Analysis with Different Gender Groups

After merging all three datasets, I group the complete dataset by different genders. For
each group, calculate the movie numbers with ratings more than 3 according to different
genres. The results shows that different gender groups do have different preferences

towards movie genres.

e The top-five preferences for females are

[Drama(22%),Comedy(14%),Romance(12%),Action(10%),Thriller(9%)];

e while for males are

[Drama(20%),Comedy (12%),Action(12%), Thriller(10%),Romance(9%)],

Analysis with Different Age Groups

The top-five preferences for users with different ages are different:

e for users with the age 21-30:
[Drama(19%),Comedy(13%),Action(12%), Thriller(10%),Romance(9%)]

e for users with the age 31-40:
[Drama(21%),Comedy(13%),Action(11%),Romance(10%), Thriller (9%)];

e for users with the age 41-50:
[Drama(23%),Comedy(12%),Action(10%),Romance(10%), Thriller(10%)];

e for users with the age 51-60:
[Drama(25%),Comedy(11%), Thriller(10%),Romance(9%),Action(9%)].

22

Genre Interest Distribution for Gender (M)
Comedy
Drama
Comedy
Action Action
2% i Thriller
Romance
Sci-Fi
Adventure
War
Crime
B Rim-Nair Children's
ek Horror
Missral Musical
Horrar Animation
Film-Noir
Western
Fantasy
Documentary

y
il

Thriller

Fomance
Children's

Adventure

(a) Genre Interest Distribution with Males

Genre Interest Distribution for Gender (F)

Comedy

Drama
Comedy
re— Romance
Action
Thriller
Adventure
Sci-Fi

War
Children’s
Crime
Musical
Mystery
Animation
Horror
Film-Noir
Western
Fantasy
Documentary

Fomance

By

Western
Film-Noir

Horror

Action

Animation

Mystery

Musical
Thriller

Adventure

Sci-Fi

(b) Genre Interest Distribution with Females

Figure 3.1: Genre Interest Distribution of Different Genders

23

Genre Interest Distribution for Age (21-30) Genre Interest Distribution for Age (31-40)
ey

ety

= Drama = Drama
= Comedy == Comedy
i Action = Action
Thriller s Romance
Romance Thriller
Sci-Fi == Adventure
Adventure Sci-Fi
War War
i - crim, Crime
EEm Children's Children's
Mystery Mystery
. Musical Musical
Horror Horror
== Animation Animation
Mmmom; Film-Noir W Film-Noir
Western m— Western
== Fantasy Fantasy
Documentary Documentary
Adventure L
(a) age 21-30 (b) age 31-40
Genre Interest Distribution for Age (41-50) Genre Interest Distribution for Age (51-60)
Comety
= Drama Drama
Comedy Comedy
Action = Thriller
EEm Romance S ey Romance
mmm Thriller . Action
war = War
= Adventure = Adventure
Scifi SciFi
crime = crime
Mystery Mystery
= children's Musical
Musical = children's
Horror Horror
Film-Noir Film-Noir
Animation Western
Western Animation
mms Documentary s Documentary
Fantasy Fantasy

(c) age 41-50 (d) age 51-60

Figure 3.2: Genre Interest Distribution of Different Ages

Analysis with Different Occupation Groups

The similar results are given by the data grouped by different occupations. Users with
different occupations have different movie preferences as well. The top-five preferences

for users

e with the occupation administrator:

[Drama(22%),Comedy(13%),Action(11%),Romance(10%), Thriller(10%)];

e with the occupation artist:

[Drama(21%),Comedy(12%),Romance(10%),Action(10%), Thriller (9%)];

e with the occupation doctor:

[Drama(23%),Comedy(14%),Romance(12%), Thriller(12%),Action(9%)];

e with the occupation educator:

[Drama(24%),Comedy(13%),Romance(11%),Action(9%), Thriller(9%)];

24

e with the occupation engineer:

[Drama(19%),Comedy(13%),Action(12%),Thriller(9%),Romance(9%)];

e with the occupation entertainment:

[Drama(20%), Thriller(12%),Comedy(12%),Action(11%),Romance(8%)];

e with the occupation executive:

[Drama(21%),Action(12%), Thriller(12%),Comedy(11%),Romance(8%)];

e with the occupation healthcare:

[Drama(23%),Action(12%),Thriller(11%),Comedy(10%),Romance(9%)];

e with the occupation homemaker:

[Drama(18%), Thriller(15%),Action(14%),Romance(11%),Comedy (9%)];

e with the occupation lawyer:

[Drama(20%),Comedy(14%),Romance(10%),Action(10%), Thriller (9%)];

e with the occupation librarian:

[Drama(27%),Comedy(14%),Romance(12%), Thriller(9%),Action(8%)];

e with the occupation marketing:

[Drama(22%),Action(11%),Comedy(11%), Thriller(10%),Romance(9%)].

3.1.2 Conclusion

Overall, all above results show that user demographic information such as age, gender,
occupation are contributing to a user’s taste for items. In our cases, that is movies.
Thus, if we can use the user demographic information during the recommendation
process, I believe the final recommendations will be more personalized. As a result,

our recommender systems performance would be improved.

25

3.2 Data Preparation

3.2.1 Users Dataset

Attribute Name | Data type | Value Ranges
Age Categorical 1-56
Gender Character M.F
Occupation Categorical 0-20

Table 3.2: Attribute Types (users.dat)

Table 3.2 contains the original attribute types for all user demographic information.

Age indexes are transferred with continuous numbers 0-6 as shown in Table 3.3.

Original Age Index | Ranges | Final Age Index
1 Under 18 0
18 18-24 1
25 25-34 2
35 35-44 3
45 45-49 4
50 50-55 5
56 o6+ 6

Table 3.3: Age ranges

22 occupations were changed to continuous numbers from 0-21 as shown in Table 3.4:

Gender information 'F’ and M’ are transferred to 0 and 1.

UserlD Gender Age JoblD

0 1 0 0 10
1 2 1 5 16
2 3 1 6 15
3 4 1 2 7
4 5 1 6 20

Figure 3.3: users.dat

26

Occupation Index

Occupations

CE 0o No Ut W = O

— =
W DN

14
15
16
17
18
19
20

other or not specified
academic/educator
artist
clerical /admin
college/grad student
customer service
doctor/health care
executive/managerial
farmer
homemaker
K-12 student
lawyer
programmer
retired
sales/marketing
scientist
self-employed
technician /engineer
tradesman /craftsman
unemployed
writer

Table 3.4: Occupations

27

3.2.2 Movies Dataset

Movie genres are textual data and should be transferred into continuous categorical
data with the range 0 to 17. Each movie belongs to one or more than one genres, thus
the genre attribute for each movie would be a list of genres index.

As for movie titles, each movie title has different length of words which will be
complex when generating the input training matrix. In this context, the movie titles
are defined with the same length of 18 and using 'PAD’ to fill blank positions.

The processed movies dataset structure is in Figure 3.4:

MovielD Title Genres
0 1 [1599, 2154, 3325, 3325, 3325, 3325, 3325, 332 [17,15,10,4, 4. 4 4 4 4 4 4 4 4 4
1 2 [4714, 3325, 3325, 3325, 3325, 3325, 3325, 332... [6,15,8,4,4, 4 4 4 4 4 4 4 4 4 4
2 3 [1678, 1315, 4353, 3325, 3325, 3325, 3325, 332... [10,5,4,4, 4, 4 4 4 4 4 4 4 4 4 4
3 4 [2113, 2157, 1651, 3325, 3325, 3325, 3325, 332... [10,13,4,4,4 4 4. 4.4 4 4 4 4 4 4.
4 5 [77,2767,3237, 725, 4679, 3656, 3325, 3325, ... [10,4,4,4, 4, 4 4 4, 4.4 4 4 4 4 4

Figure 3.4: movies.dat

Those numbers would the the index of all textual information.

3.3 Experiment 1: Implementing Collaborative Fil-

tering Matrix Factorization Model

Collaborative Filtering Matrix Factorization model is a variant based on the model
publish by Yehuda Koren et al.[8] in 2009. The idea of matrix factorization is to solve
the data sparsity problem within the collaborative filtering algorithm. The sparse user-
item matrix will result in the low-accuracy when finding similar users. In addition, the
final recommendation performance would be influenced.

The dimension of ratings matrix can be reduced into two smaller feature matrices
p and q. The goal of matrix factorization is using gradient descent method to update
p and q and find the find optimal results with the lowest error. The Collaborative

Filtering Matrix Factorization model is used in this dissertation to train the dataset

28

with ratings dataset and without user demographic information. The overall process

is divided into three steps: data splitting, model training and model evaluation.

3.3.1 Data Splitting

The input dataset is the MovieLens 1-million dataset and the ratio of training set with
testing set is set to 0.8. Instead of shuffling the complete dataset and split data into
training set and testing set directly, dataset was split according to users. Each user
has rated at least 20 movies. For each user in the dataset, split 0.8 rating records to
training set and rest 0.2 rating records are added into testing set. This could make

sure that each user can be tested with same ratio of ratings.

3.3.2 Model Training

After splitting the dataset, all the training data can be used to train the model. We
denote p as user feature matrix while q is represented for the movie feature matrix.

The doc product of these two matrices are the predicted ratings.

In order to solve matrix p and matrix q, we can define an optimization problem to
minimize the mean square error between the predicted ratings by our model and the
true ratings. Mean square error can be used in such stepwise regression models to
determine the numbers of predictors included in the model by the given observations.

The objective function can be represented as:

L= argming g > (ru— (@) pa)? + A lail|* + [[p"]*) (3.2)
(ui)eK

The right side term that starts with A is a regularization term to prevent the overfit of
our model. This optimization problem can be solved by using gradient descent method.
Take the partial derivative step by step respect to p and q to find the optimal values.
The iteration steps can be changed according to different scenarios.The input of this

model is:

e the number of features,

29

the learning rate ~,

regularization term A,

iteration steps,

and the ratings dataset.

In my experiment, I have tested the performance with the feature number 10,20,50,100
and 200. The max iteration is set to 50 and 100.
Python pseudocode for the training is as follows:
Initialize a random user feature matrix p and the item feature matrix q.
for step=1,2,3,...100 do:
for (user, movie, rating) in dataset_R:
calculate p = (Gmovie)” X Duser
error=rating — p
update prmovie and user
objective function (Gmovie,Puser,rating)
end of for loop

end of for loop

3.3.3 Model Evaluation

The Collaborative Filtering Matrix Factorization model can be evaluated by the most
common algorithm, mean square error. Because other evaluation matrices, such as
precision, recall or accuracy will not calculate the exact differences between the pre-
dicted rating figures and the the true ratings but only count the how many movies
are predicted correctly. Thus, mean square error is chosen for comparing the statisti-
cal models to explain how well the model is. The mean square error is computed by
the mean (; %)) of the squares of errors between predicted values and true values
(7; — 1;)? for testing dataset.

In our model, mean square error is used both in the training part and the evaluation
part. For the training part, the model will trained by optimize the errors of training
set to find the user feature matrix and the item feature matrix. As for the evaluation

part, the mean square errors will be calculated by using testing set and the trained

30

matrix p and q. The dot product of user feature matrix p and item feature matrix q
will be the user-item matrix we used for the recommendation.

The evaluation part is followed after the model training for each iteration. Once
we get the user-item matrix, the evaluation process in Python pseudocode will be as
follows:

Input: user feature matrix p, movie feature matrix q, test set, recommendation
numbers(20)

1) Calculate user-item matrix by using p and q:

for (user, movie, rating) in test dataset:

ratA@'ng = Puser qfnm

2) Generate top-20 items for each user in test set. For each user in the test set, sort
the items according to the predicted ratings in the user-item matrix. For each item
that each user have not rated, recommend to that user. The recommendation number
in this experiment is 20.

for userl in test datset:

for item1 in sorted(items):
if userl have not rate for item1:
errors += (ratings(userl,item) — true(userl, item))?
mean of errors= errors/total error numbers

There are 200 iterations for the Experiment 1, thus the total mean square errors

will be 200. Detailed results will be shown in Chapter 4.

3.3.4 Parameter Tuning

As the input of model training has five parameters, we can compare the model perfor-
mance by changing the input parameter values. Feature numbers and the max iteration
steps are two parameters that would affect largely to the model. Limiting one of the
parameters and changing another one would give different insights of the model.
During my training, the feature number has been set from 10, 20,50,100 and 200
while controlling the iterations to be the same. The max iterations are set to 50 and
100 while set the feature numbers to be the same. These two parameters are affecting
the mean square error in the similar way. With the increasing of feature numbers, the

mean square error is reducing. However, there is a boundary for the feature numbers.

31

The mean square error would not continuously reducing when stepping out of that
boundary. Same as to the iteration numbers, before the limitation boundary, with the
increasing of iteration numbers, the mean square error will reduce. More details of the

results will be discussed in Chapter 4.

3.4 Experiment 2: Implementing Convolution Neu-
ral Network Collaborative Filtering Matrix Fac-

torization Model

The overall architecture of Convolution Neural Network Collaborative Filtering Matrix
Factorization trained with MovieLens user demographic information is based on Kim
Yoon’s work published in 2004[1]. Kim used only one convolution layer to train the
model for textual information and successfully complete the sentence classification task.
With two channel of 9 x 6 input matrices, the outout is a two-element matrix indicating
whether the sentence is positive or non-positive. Kim’s architecture is shown in Figure
3.5.

wait
for
the

video

and
do
n't

rent

it

[T

[| | | L |

m ¥ K representation of Convoluticnal layer with Mlaax-onver-Lime Fully connected layer
sentence with static and multiple filter widihs and paolirg with dropout and
mon-slatic channels feature maps softmanx output

Figure 3.5: One Convolution layer architecture[1]

Figure 3.5 shows the architecture of the novel Convolution Neural Network Col-
laborative Filtering Matrix Factorization model in this thesis. Tensorflow and Keras

packages were used in this experiment. It is implemented by two parts, the implemen-

32

tation of user information and the implementation of movie information. The model is
trained with different epochs and each epoch is trained with all MovieLen’s one million
dataset. Within each epochs, 80% of one million dataset are splited into training set
and the rest 20% belong to the test set. The 80% training set later are divided into
different batches and are trained separately. Each batch contains 256 data. To control

the iteration number same as the Experiment 1, 5 and 100 iterations have been trained.

Predicted .
CNN

X
| user feature movie feature
1 1
1*200 | Full Connected Layer | Full Connected Layer

T
| Full Connected |
1*128 Full Connected Layer Laver 64

1*32
1*32
1*32
1*32
Movie title

feature

Layer

| Embedding | | GNN |

1*200

1*32

Figure 3.6: Convolution Neural Network Matrix Factorization Architecture

3.4.1 Implementation of user information

The implementation process of user information is on the left side of Figure 3.5, from

bottom to the top.

e 1. Get user embedding matrix:

For each input of userid, user age, user gender, user occupation, four 1x 32 feature

embedding matrices can be generated by tf.nn.embedding_lookup() in Tensorflow

packge.

e 2. Trained with fully connected layer:

33

Four 1x 32 embedding matrices can be fully connected to a 1x 128 feature matrix.
Figure 3.6 shows the complete process of full connection. Embedding matrices
that passed through full connected layer, all features from each embedding matrix
will be captured and added to another feature matrix. Therefore, the output
matrix after the first full connected layer would contain all features of userid,

user age, user gender and occupation.

Full
connection

[

1*32
Full
connection
| 2 |
1*32 ”///////////, 1*128 1*200

Figure 3.7: Full Connected Layer

e 3. Trained with the second full connected layer:

The idea of this layer is to expand those captured features to a bigger feature
matrix. As the results, the last 1 x 200 feature matrix would capture enough
features from users. The output matrix is the user feature matrix p that we are
going to find. We can also change 200 features to be any other numbers, because
this is one parameter we can decide within the experiment indicating how many

features we want to extract from users.

In Experiment 2, the feature number was set to 128 and 200.

34

3.4.2 Implementation of movie information

The implementation of movie information is similar to the above process of user infor-

mation.

e 1. Get movie embedding matrix:

For a input of movieid, one 1 x 32 feature embedding matrix can be generated.
Movie genres is slightly different due to the fact that each movie may belong to
one or more genres. Fach genre is a 1 x 32 feature embedding matrix. Therefore,
all genre matrices for one movie should be added together according to features
and to be calculated as one 1 x 32 genre feature matrix. Thus, for movies be-
longed to more than one genres, there would be more than one 1 x 32 embedding
matrix. After adding all matrices, the final matrix would be one 1 x 32 movie
genre embedding matrix we are looking for. This process can be easily realized
by reducing one dimension for all genre embedding matrices by tf.reduce sum()

method in Tensorflow package.

e 2. Get movie title feature matrix by using Convolution Neural Network:

Getting movie title feature matrix is the key part of the overall architecture. It
is a one-convolution-layer operation but operated with four filter sizes. Movie
titles can be treated as sentence with the sentence length 15. The differences
with Kim’s architecture are the input matrix size, the convolution layers number
and the filter number, epoch numbers, batch numbers. The results show that the

modified architecture works better with my training datset.

The architecture for this thesis can be found in Figure 3.8. In this experiment,
the input matrix size is 15 x 32 because the length of each movie title is 15 and
each word with each movie title contains 32 features. The filter size is 2,3,4 and
5, which means 2 x 32, 3 x 32, 4 x 32, and 5 x 32 filters were used to slid across
the height of input matrix. The filter number is set to 8. With four different
filter sizes, the input matrix would be filtered four times by using those four
different filters. Thus, after each convolution layer, the output matrix would be

eight (15 — filtersize 4+ 1) x 1 feature matrix.

Next process is passing all those feature matrix through a max-polling layer with

filter size equal to 15 — filtersize + 1. The purpose of this layer is to find the

35

most important features among all features to prevent overfit of the model. In

addition, it reduces computational cost by reducing numbers of features to learn.

The final process is through the full connected layer and droupout process.
Dropout layer means to randomly set input elements to zero with a given prob-
ability. In this thesis, the droupout ratio is set to 0.2. The dropout ratio for
Kim’s architecture is 0.2. Thus, I am using the same ratio as him. In the future,
all those parameters will be re-trained and to find a best combination for this

model.
The final output is a 1 x 32 feature matrix.

Take an example of 2 x 32 convolution layer. With the 15 x 32 input matrix,
after the first convolution layer with eight 2 x 32 filters, the output feature matrix
would be eight 144 x 1 feature matrix. Then, after passing the 144 x 1 feature
matrix to max-pooling layer, the output would be a 1 x8 matrix. Fully connecting

four 1 x 8 matrix would generate a 1 x 32 feature matrix.

14*1
— 1]
w4k 1*8]
g T
131
—]
15*32 S - L \
13*1*8 1*8
121
— 1]
5 2 L e L
- 12-*1*8 - 1* 1%32
111]
11*1*8 1*8
Embedding Convolution Max-pooling Full
layer layer connection

Figure 3.8: Movie Title Convolution Neural Network Architecture

e 3. Process through the fully connected layer:

All three feature matrices generated from movieid, movie genres, and movie titles

36

can then be fully connected to a 1 x 200 feature matrix. That is the movie feature

matrix q that we are looking for.

The feature number of the user feature matrix and the item feature matrix should
be the same. Because in the user feature matrix, each row is described by the
users interest in different features. In the item feature matrix, each column is the

item described by the features.

As Experiment 2 was based on the Kim’s [1] architecture. Thus, in Experiment
2, the item feature number was set to 200, same dimension as Kim’s one. The
iterations of the test comparing with Kim’s model were set to 5. But other
parameters, such as filters size, filters number, batch size, drop out rate were
modified ones. The modified model is proved to have higher performance than

Kim’s model. Detailed results will be discussed in Chapter 4.

The Python pseudocode for the training is as follows:
Input user information and movie information.
for epoch=1,2.3,...100 do:
train_batch, text_batch = get_batches()
for batch_i in (len(trainset)// batch_size):
get user feature matrix p and item feature matrix q
calculate p = (Gmovie)” X Puser
error=(rating — p)>
avg_error= error/total batch numbers
sum_error +=avg_error
end of for loop
errors = sum_error/ total epoch number
update p and q

end of for loop

3.4.3 Generating predictions of ratings

Our final aim for this experiment is to find user feature matrix and movie feature

matrix and use their doc products to generate predicted ratings to fill in missing values

37

within user-item matrix. The doc product of user feature matrix and movie feature
matrix are the predicted rating we need according to the idea of matrix factorization.
The recommendation process is similar as what we did in Experiment 1. Once we fill
the user-item matrix, user similarity matrix can be calculated by the consine similarity
matrix. The top-20 recommendation will generated to each user in test dataset.
Python pseudocode for the evaluation is as follows:
Input: user feature matrix p, movie feature matrix g, test set, recommendation
numbers(20)
1) Calculate user-item matrix by using p and q:
for (user, movie, rating) in test dataset:
rating = Puser * Gmovie
2) Generate top-20 items for each user in test set. For each user in the test set, sort
the items according to the predicted ratings in the user-item matrix. For each item
that each user have not rated, recommend to that user. The recommendation number
in this experiment is 20.
for userl in test datset:
for item1 in sorted(items):
if userl have not rate for item1:
errors += (ratings(userl, item) — true(userl, item))?
mean of errors= errors/total error numbers
There are 100 iterations for the Experiment 2, thus the total mean square errors
will be 100. Detailed results will be shown in Chapter 4.

3.4.4 Model Evaluation

In order to better compare the experiment without user demographic information and
the experiment with user demographic information, we are using the same evaluation
measurement, mean square error.

In this experiment, mean square error are calculated at each iterations (epochs).
There are 100 epochs within Experiment 2, each epoch contains 256 batch training
data. The mean error for all batches is the error of one iteration. Thus, there are 100

error numbers as Experiment 1.

38

3.4.5 Trained with different Parameters

Because of the complexity of model in Experiment 2, there are numbers of parameters
that we can change for different tests. Parameters such as the embedding layer size
(32), movie title length(15), filter sizes(2,3,4,5), filter numbers(8), epoch numbers(8),
batch sizes(256),feature numbers(200), dropout ratio(0.2) etc. However, the purpose
of this work is to test that using the user demographic information would improve
the recommder systems performance. Building the best Convolution Neural Network
architecture for recommender systems will be work on in the future.So far, we only
focus on feature numbers and iterations as what we focused on Experiment 1. Other
parameters is set ans slightly modified according to Kim’s architecture[1]. 128 features
and 200 features were trained with the model. 5 and 100 iterations are compared with

Experiment 1. Detailed results will be discussed in Chapter 4.

3.5 Experiment 3: Implementing Collaborative Fil-
tering Model with User Demographic Informa-
tion and without User Demographic Informa-
tion

The purpose of this added experiment is to prove that the improvement performance
of Experiment 2 was resulted from the user demographic dataset instead of the Con-
volution Neural Network technique. Experiment 3 actually contains two small tests.
One test is using the user demographic information dataset and another one without
using the user demographic information. The reason that I have not process another
similar experiment as Experiment 2 to train the dataset without user demographic
information is that, Convolution Neural Network is used in Experiment 2 to train the
textual information within the user demographic information. However, the dataset
without user demographic information does not contain any textual data, there is no
way to do another experiment for dataset without user demographic information with
Convolution Neural Network.

The idea of Experiment 3 is to train two dataset with User-Based Collaborative

Filtering algorithm only. Once the user-item matrix is calculated, no matrix factoriza-

39

tion will be used to fill in those missing numbers. All missing ratings will be calculated
by each users’ similar users. As there is no optimization problem, the experiment will
be only processed once. Thus the evaluation will be only one number. The evaluation
matrix will be different according to different ways of implementation. Accuracy, recall
and precision will be used in this context. The two evaluation results for Experiment
3 are only compared within Experiment 3 to prove the influence of user demographic
information dataset.

User-based Collaborative Filtering technique is to locate the similar users with the
active user(the user whom the predictions are for) and use the similar users preferences
to recommend items to the active user. In order to find the similar users, user-item ma-
trix are measured by user similarity matrix. In all three experiments, cosine similarity
matrix was chosen for the measurement.

The overall process for Experiment 3 is similar as Experiment 1, separated to three

steps: data splitting, model training and model evaluation.

3.5.1 Data Splitting

The merged datset is shown in Figure 3.9 is the dataset with user demographic in-
formation, the same dataset used as Experiment 2. Another dataset without user
demographic information is the same as the dataset used in Experiment 1. For each
user in the dataset, split 80% rating records totraining set and rest 20% rating records
are added into testing set. The training dataset was split by users to make that each

user can be both tested and trained within the model.

UserlD MovielD ratings Gender Age JoblD Title Genres
0 1 1193 5 0 0 10 [1307, 1981, 134, 1158, 371, 2289, 831,831,8... [14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,..
1 2 1193 5 1 5 16 [1307, 1981, 134, 1158, 371, 2289, 831,831,8... [14.0,0,0,0.0,0,0,0,0,0,0,0,0,0,...
2 12 1193 4 1 B 12 [1307, 1981, 134, 1158, 371, 2289, 831,831,8... [14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...
3 15 1193 4 1 6 7 [1307, 1981, 134, 1158, 371, 2289, 831,831, 8... [14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...
4 17 1193 5 1 3 1 [1307, 1981, 134, 1158, 371, 2289, 831,831,8... [14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,..

Figure 3.9: Merged dataset

40

3.5.2 Model Training

The Experiment 3 is using User-based Collaborative Filtering algorithm for the model
training. The user-item matrix used for the recommendations is calculated by the
similarity users’ preferences.

User-based Collaborative Filtering algorithm is operated as three steps:

e Step 1: Look for users who share the same rating patterns with the active user
(the user whom the prediction is for). There can be one or two or even thou-
sands similar users, but each one have the different similarity factor according to
there rating patterns. The similarity matrix within users is calculated by consine

similarity matrix.

e Step 2: Use the ratings from those similar users found in step 1 to calculate a

prediction for the active user predict ratings for unrated items

e Step 3: Recommend top-n item from those filled items. In my experiment, 20
movies will be recommended to each user. In this experiment, the recommenda-

tion number is 20, same as the above two experiments.

3.5.3 Model Evaluation

Once we generate the Top-20 movies for each user in the test set, accuracy, recall and
precision can be calculated by comparing the predicted items with the true rated items.

Python pseudocode for the Experiment 3 is as follows:

Input: user feature matrix p, movie feature matrix q, test set, recommendation
numbers(20)

1) Calculate user-item matrix by using p and q:

for (user, movie, rating) in test dataset:

rating = Puser * Ghovie

2) Calculate user similarity matrix by calculating cosine similarity matrix between
user vectors.

for userl in test user:

for user2 in test user:

similarity factor (userl, user2)= cosine(userl,user2)

41

3) Generate recommendations for users. Traverse all users in the test set, predict
ratings that each user will give to each item according to his similar users preferences.

for userl in test datset:

for user2 in similar users:
for item in items:
if user2 have not rate for item:
ratings(userl,item) = similarity factor(userl, user2) * ratings(user2, item)

The precision is the proportions of the correct predictions and the all predictions.
That means how many predictions are predicted correctly.

The recall is the proportion of positive predictions and all positive observations.
That is used to calculated how many items that users are truly rated are predicted by
the system.

The accuracy is similar to precision, the number of true positive and true negative
predictions divided by total predictions.

Detailed results will be discussed in Chapter 4.

42

Chapter 4
Results and Discussion

This Chapter will list all the results compiled by two recommender system model. The
explanation will be structured with three parts, results for three experiments and the
comparison of those results.

The evaluation matrix for Experiment 1 and Experiment 2 is measured by the mean
square error(mse). Calculating the mean of the squared errors for 100 iteration between
the predicted ratings with the true ratings will better capture how well the model is.

The evaluation matrix for two small tests within Experiment 3 is measured by the
precision, indicating how many predictions are correctly predicted by the system.

The results for Experiment 1 and 2 are two comparative results to test if the recom-
mender system performance would be improved by the user demographic dataset, while
the results within Experiment 3 are the results compared to prove the improvements in
Experiment 2 are resulted from the dataset. Therefore, in order to better understand
the two process, two evaluation measurements were used in case the mismatch of two

results.

4.1 Mean Square Error Results for Experiment 1

The first experiment was using the datset without user demographic information and
used the baseline algorithm (Collaborative Filtering algorithm and matrix factorization
technique) for the training.

The evaluation of the model is measured by the mean square error. With all the

43

input parameters(the number of features, the learning rate, regularization term, max
iteration steps etc.), the number of feature numbers that are going to generated and
the max iteration steps to be trained are two parameters that Experiment 1 and 2
focus on.

Three iterations(50, 100) and four different feature numbers (10,20,50,200) are gen-
erated had been tested for Experiment 1. 1. The first test is to train the dataset with
50 iterations and generate 10, 20, 50, and 200 features. The mse results for the dataset

can be seen in Figure 4.1.

4.1.1 Test 1: Train the dataset with different feature numbers

MSE Results for Experiment 1

i

W W W

N el
ONPDOREN RN N SO WN SO N

=

S

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

=—mse 200 mse_50 mse_20 mse_10

Figure 4.1: MSE results for Experiment 1 trained with 50 iterations

Different colors within Figure 4.1 means different numbers of features that were
finally trained. In this experiment, as matrix factorization was used to trained the user
features and the item features. In the user feature matrix, each row is described by the

users interest in features F1, F2 etc. In the item feature matrix, each column is the item

44

described by the features F1, F2 etc. The more the features are, the better description
can be extracted for users and items. As result, their dot product, the user-item matrix
will provide more accurate results when generating recommendations.

We can see from Figure 4.1 that with the increasing of the feature numbers, the mse
results is reducing. As it is an optimization problem, the last results of four lines are
there best results. Four last mse results is in Table 4.1. It shows that the best result
for this test, is getting close to 0.760. There must be a boundary between the feature
numbers 50 and 200. Before the boundary, with the increasing of feature numbers, the
mse results will reducing. Once cross that boundary, the mse results will incresing.
However, our job is not to find this boundary, thus the results so far work fine with

this experiment.

MSE
mse_10 | 0.774
mse_20 | 0.770
mse_50 | 0.763
mse_200 | 0.781

Table 4.1: mse results for different feature numbers

4.1.2 Test 2: Train the dataset with different iterations

This test was operated with 200 features but trained for different iterations. The
reason to choose 200 features is that in Experiment 2, it is more meaningful to extract
more features than 128 features. Because after fully connected all four user features,
we can get 128(32%4=128) features. If we want to capture more user features, the
final extracted feature number must be larger than 128. Besides, our model is based
on Kim’s[1] model, 200 feature numbers is chosen for his model and performed well.
Thus, I trained the model for Experiment 2 with 200 features as well. In order to
better compare those two experiments, I control the feature number of Experiment 1
to be 200 as well.

The mse results trained for 200 features with 100 iterations can be seen in Figure
4.2.

As we can see that with the increasing of iteration numbers, the mse results is
reducing. Finally, the it is getting close to 0.770. 7.70 will be the best result for

45

MSE Results for Experiment 1 for 200 Features

4.4
4.2

3.8
3.6
34
3.2

2.8
2.6
2.4
22

1.8
1.6
14
1.2

0.8
0.6
0.4
0.2

13
16
19
22
25
28
34
37
43
46
49
52
55
58
61
64
67
70
73
76
79
82
85
28
91
94
57

31
40
100

Figure 4.2: MSE Results for Experiment 1 with 200 features

Experiment 1 and will be used to compare the mse result for Experiment 2.

4.2 Mean Square Error Results for Experiment 2

Experiment 2 was trained with the user demographic dataset. The same baseline algo-
rithm was used for the model training as Experiment 1. However, with the complexity
of textual information in the user demographic information, state-of-art algorithm,
Convolution Neural Network was also used for the matrix factorization implementa-
tion. The related parameters for Experiment 2 are the feature numbers, the max
iteration numbers, batch sizes etc. But in our experiment, the feature numbers and

the max iteration numbers are two influence we focus on.

4.2.1 Test 1: Train the dataset with different parameters

As explained in the Experiment 1, the feature number of Experiment 2 is more mean-

ingful if we extract the feature numbers that is larger than 128. As the model is based

46

on Kim’s[l] model. Thus, I operated the tests 200 features and 5 iterations, same
setting with Kim’s model.

The mse results compared with Kim’s model is in Figure 4.3.

MSE Results for Experiment 2 with 5 Iterations
1.6

1.4

0.8

0.6
0.4

0.2

1 2 3 = 5

=mse_cnn_200fe_5it =——mse_cnn_200fe 5 kim

Figure 4.3: MSE Results for Experiment 2 compared with Kim’s [1] model

MSE
mse_Kim 0.941
mse_my model | 0.879

Table 4.2: mse results compared with Kim’s[1] model

Different colors of lines means different settings of my novel model trained with
Convolution Neural Network. Two models are trained with user demographic infor-
mation dataset. The orange line is the model trained with parameter setting within
Kim’s[1] paper. The feature numbers is 200. The max iterations is 5. The window
sizes are 3, 4, 5. The dropout rate is 0.2. The batch size is 128. The mse result of
this model is getting close to 0.941. Another blue line is the model designed by myself
with the modified parameters. The mse results of this model is getting close to 0.879.

47

There are other factors that can affect the final mse results. But if we only compare

those parameters, my model is performing around 6.5% better than Kim’s model.

4.2.2 Test 2: Train the datset with different feature numbers

This test is to train the user demographic information datset by using my model with
different feature numbers. As explained the before, the feature number is better to
set to be larger than 128. Thus, I process two tests trained with 128 features and 200

features with 5 iterations. The mse results can be seen in Figure 4.4.

MSE Results for Experiment 2 with 5 Iterations

1.4
13
1.2

11

0.9

0.8
0.7

0.6
1 2 3 = 5

m—rise_cnn_128fe 5it ==mse _cnn_200fe_5it
Figure 4.4: MSE Results for Experiment 2 trained with different feature numbers

The Figure 4.4 shows that the mse results trained with 200 features gives better
performance than that of trained with 128 features. Even though two results is quite
close shown on the figure, the mse results of orange line trained with 200 features(0.879)
is lower than that of blue line(0.884).

48

MSE
mse_128 | 0.884
mse_200 | 0.879

Table 4.3: mse results trained with different feature numbers

4.2.3 Test 3: Train the dataset with different iterations

The last test within Experiment 2 was to train the user demographic information
dataset with 100 iterations. The results is shown on Figure 4.5. With the increasing

of the max iterations, the best results for this test is getting close to 0.661.

MSE Results for Experiment 2 for 200 Features

14

1.2

0.8

0.6

0.4

0.2

22
25
28
31
34
37
40
43
46
49
52
55
58
61
64
&7
70
73
76
79
82
85
88
91
34
97
100

19

Figure 4.5: MSE Results for Experiment 2 trained with 100 Iterations

4.3 Comparison between Experiment 1 and 2
By comparing the above results, we get that:
e With the increasing of feature numbers, the mse results is reducing.

e With the increasing of iteration numbers, the mse results is reducing as well.

The novel modified algorithm trained with user demographic information dataset

49

performs better than Kim’s[1] model trained with user demographic dataset. If we
control both experiments with 200 features and 100 iterations, the recommender
system’s performance is better than that of the experiment trained without user
demographic information. Even though. we have controlled most parameters, the
algorithms used for two experiments are different as well. The Convolution Neural
Network is used to train the textual information within the user demographic
information dataset. It is unavoidable to add this technique. Thus, Experiment
3 was added to prove that the improvement in Experiment 2 was resulted from

the user demographic dataset.

Experiment number | feature numbers-iterations | MSE
1 10-50 0.774
1 20-50 0.770
1 50-50 0.763
1 200-50 0.781
1 200-100 0.770
2 128-5 0.884
2 200-5 0.879
2 200-100 0.661

Table 4.4: mse results trained with different feature numbers

4.4 Precision for Experiment 3

The aim of Experiment 3 is to confirm that the improvement of Experiment 2 was
caused by the user demographic information dataset instead of the Convolution Neural
Network algorithm. Thus, the algorithms used within this experiment are same. The
only differences between two tests is the dataset. Two tests were processed within this
test.

The precision was used to measure two tests. The precision was calculated by the
proportion of correctly predicted items among all predictions. That means when the
system is generating 20 movies for each user, the evaluation was processed by counting
the correctly predicted movies compared to users true ratings divided by the total

prediction number.

50

e Test 1: Train the dataset without user demographic information with User-based

Collaborative Filtering Algorithm;

e Test 2: Train the dataset with user demographic information with User-based

Collaborative Filtering Algorithm

The precision of test 1 is around 38.5%, while the precision for test 2 is around 46.3%.
Thus, the recommender performance trained with user demographic information is

around 17% higher than that of trained without user demographic information.

o1

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The mse results compared between Experiment 1 and Experiment 2 show that the
combination of the user demographic information dataset and the Convolution Neural
Network can improve the performance of one recommender system. The mse results
for the Experiment 1 trained without user demographic information dataset is around
0.770, while the mse result for Experiment 2 is around 0.661. The Experiment 2 has
improved about 15% performance of a recommender system. However, as there are
two differences between those two experiments, it is not very clear that it is the user
demographic information dataset helps to improve the performance. Thus, Experi-
ment 3 was added to train the recommender system with same algorithm but different
datasets.

The final results of Experiment 3 shows that by integrating the user demographic
information, the performance of a recommender system is improved. The precision
results for the test with user demographic information is around 46.3%, while anothe
test trained without user demographic information is around 38.5%. Around 17%
improvement has been proved. This added experiment better confirm the results for
Experiment 2.

The novel recommender system model built with Convolution Neural Network

within Experiment 2 can be used in different recommender system area.

52

5.2 Future Work

In the future, there will be a lot can be done:

e The first thing I can do is to rebuild a better model with Convolution Neural Net-
work. As we all know, Convolution Neural Network is a very complex model, one
little change for one parameter will results in a different result. Thus, parameter

tuning should be done in the future to train a better model.

e The second part that can be improved is the Experiment 3. Even though the
results have already proved that the user demographic information can improve
the performance, the precision is very low. Maybe other algorithms can be chosen

in the future to better train the model and give a higher precision.

53

Bibliography

1]

Y. Kim, “Convolutional neural networks for sentence classification,” in Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), (Doha, Qatar), pp. 1746-1751, Association for Computational Linguis-
tics, Oct. 2014.

A. P. V, “A survey of recommender system types and its classification,” Interna-
tional Journal of Advanced Research in Computer Science, vol. 8, no. 9, p. 486491,
2017.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEFE, vol. 86, no. 11, p. 22782324,
1998.

R. Mehta and K. Rana, “A review on matrix factorization techniques in recom-
mender systems,” 2017 2nd International Conference on Communication Systems,
Computing and IT Applications (CSCITA), 2017.

L. Baltrunas and F. Ricci, “Context-based splitting of item ratings in collaborative
filtering,” Proceedings of the third ACM conference on Recommender systems -
RecSys 09, 2009.

“Distance and similarity measures,” SpringerReference.

M. Gréar, D. Mladenic¢, B. Fortuna, and M. Grobelnik, “Data sparsity issues in
the collaborative filtering framework,” in Advances in Web Mining and Web Usage
Analysis (O. Nasraoui, O. Zaiane, M. Spiliopoulou, B. Mobasher, B. Masand, and
P. S. Yu, eds.), (Berlin, Heidelberg), pp. 58-76, Springer Berlin Heidelberg, 2006.

o4

8]

[12]

[13]

[14]

[15]

[16]

[17]

Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recom-

mender systems,” Computer, vol. 42, pp. 30-37, Aug 2009.

D. Powers, “Evaluation: From precision, recall and f-factor to roc, informedness,

markedness correlation,” Mach. Learn. Technol., vol. 2, 01 2008.

A. Said and A. Bellogin, “Comparative recommender system evaluation: Bench-
marking recommendation frameworks,” in Proceedings of the 8th ACM Conference
on Recommender Systems, RecSys 14, (New York, NY, USA), pp. 129-136, ACM,
2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Neural Information Processing Systems, vol. 25,
01 2012.

A. Graves, “Generating sequences with recurrent neural networks,” CoRR,
vol. abs/1308.0850, 2013.

R. Collobert and J. Weston, “A unified architecture for natural language pro-
cessing: Deep neural networks with multitask learning,” in Proceedings of the
25th International Conference on Machine Learning, ICML 08, (New York, NY,
USA), pp. 160-167, ACM, 2008.

D. Kim, C. Park, J. Oh, S. Lee, and H. Yu, “Convolutional matrix factoriza-
tion for document context-aware recommendation,” in Proceedings of the 10th
ACM Conference on Recommender Systems, RecSys ’16, (New York, NY, USA),
pp. 233-240, ACM, 2016.

R. Burke User Modeling and User-Adapted Interaction, vol. 12, no. 4, p. 331370,
2002.

J. Rongfei, J. Maozhong, and L. Chao, “Using temporal information to improve
predictive accuracy of collaborative filtering algorithms,” 2010 12th International
Asia-Pacific Web Conference, 2010.

L. Safoury and A. Salah, “Exploiting user demographic attributes for solving cold-
start problem in recommender system,” Lecture Notes on Software Engineering,
p. 303307, 2013.

95

[18] “Non-commercial, personalized movie recommendations..”

56

