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Abstract 

Software Testing is an integral function of the Software Development Lifecycle (SDLC). 

Manual testing has long been the tried and tested approach whereby test cases are 

designed and executed by human resources. Automated testing reduces the effort 

required by software test engineers by transferring repetitive test case execution to 

software programs that can be run continuously to provide rapid feedback to project 

stakeholders. However, studies suggest that the adoption rate of automated testing is 

30% or lower across the software testing industry.   

Machine learning can reduce repetitive tasks and adapt to changing environments. The 

benefits of machine learning align closely with the goal of automated software testing.  

This investigation researches how machine learning can be leveraged by software testing 

practitioners and assesses the capabilities of commercial testing services which 

incorporate machine learning. The potential impact on the software testing profession is 

found to have both positive and negative implications.  

The forecast for the adoption rate of machine learning across the software testing industry 

is concluded to be low within a five-year timeframe but the potential presented by machine 

learning to resolve many of the issues found with standard automation tools is such that it 

is only a matter of time before ML-Driven automated tools become an industry standard. 
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1. Chapter 1: Introduction 

1.1  Context and General background 

Software Testing is an integral function of the Software Development Lifecycle (SDLC). 

Testing ensures that software features meet the requirements of clients while also 

providing a level of assurance that software is delivered to agreed quality targets through 

the identification of defects residing within the code. Manual testing has long been the 

tried and tested approach whereby test cases are designed and executed by human 

resources. Automated software testing was introduced in the 1990s which provides 

software testers with the option to use automation tools and methods to record or code 

test cases that be executed programmatically.  

Automated testing can be complicated and expensive to maintain. There are limitations on 

how effective they can be, particularly in a system that is updated regularly. This 

constrains emerging development processes associated with agile methodologies which 

demand rapid feedback from test processes in order to ensure Continuous Integration (CI) 

practices operate properly. CI requires that bulk sets of test cases are executed on a 

nightly basis. Manual tests cannot provide this volume of testing at this frequency, which 

leaves test automation the only viable option. With studies reporting that automation is 

only adopted by between 18% - Throvagunta, S., Olsen, B., Aymer, A. (2018) and 30% - 

Appvance (c.2018) of software development organisations currently, it is clear that there is 

a problem. Software testing practices are falling behind as development practices 

continue to evolve.  

Machine Learning (ML) is a branch of Artificial Intelligence (AI) which incorporates 

sophisticated algorithms which can ‘learn’ from data sets and adapt to changes to the 

system in which it operates. The advantages of machine learning are that it can process 

large volumes of data and adapt quickly to change, while automating tasks that previously 

were only suited to human application. 

The goal of test automation is to facilitate the execution of larges sets of test cases, which 

in turn allows for the rapid identification of defects in a system which is continuously 

changing. Machine learning capabilities seem ideal to disrupt software testing practices by 

providing the capability to automatically generate test cases for the System Under Test 

(SUT) and proactively respond to changes to underlying behaviour.  
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The intention of the investigation outlined in the following chapters is to assess the impact 

of machine learning on software testing within the context of the following areas: 

• The value that machine learning offers software testing in terms of improved 

capability  

• The commercial availability and adoption rates of machine learning services in the 

software testing industry 

• Disadvantages to machine learning services which would impede adoption 

• Positive and negative implications for humans working in software testing   

• The five-year forecast for machine learning in software testing 

It is assumed that the results of this investigation would be of interest to not only 

practitioners in the field of software testing but to anyone who is interested in improving 

software development delivery timelines and providing clients with new features at a 

quicker rate.  

1.2  Scope of the Study 

The main question for investigation is ‘How can Machine Learning be Leveraged for 

Software Testing within a Timeframe of Five Years?’ This question was then broken 

out into three sub-questions: 

Question 1: How is machine learning (ML) being used to impact software testing 

techniques? 

This is an investigation into how machine algorithms are being adapted in software 

testing.  

Question 2: How are commercial ML-Driven automated software testing tools 

different from traditional non-ML automated tools? 

This is an investigation into the commercial availability of machine learning services and 

tools and what improvements, if any, they offer over standard automation tools. During 

this dissertation the term ‘standard automation tools’ refers to tools that do not incorporate 

machine learning. 

Question 3: How will the rate of adoption impact on professional software testing 

from both a human and business perspective within five years? 
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This question aims to predict, using information gathered at each stage of the 

investigation, how ML-Driven automated testing tools and services will impact on the 

software testing profession from a human perspective. What are the negative 

connotations and what are the positive? An attempt is also made to forecast the adoption 

rate of ML-Driven tools within a timeframe of five years.  

Each chapter is framed with these questions in mind. The conclusions to these questions 

combine to answer the primary question.  

1.3  Research Questions/Objectives 

Two complementary approaches comprised the overall research design. The first was to 

conduct semi-structured interviews with leaders in the field of software testing. This 

provided useful information as to the awareness of machine learning in the testing 

industry. It provided qualitative data which was used to assess the human impact of 

machine learning and provided data which was used to assess the adoption rate over the 

next five years. The potential value that the respondents associated with machine learning 

was then used to structure the data captured when reviewing the services currently 

available on the market that offer ML-Driven automated testing. An empirical analysis was 

done on five services which were selected through researching industry-related material. 

This data was then analysed using the online tool ‘Dedoose’, which provided a framework 

for qualitative analysis. Data was then correlated with respondents ’ data to provide a 

combined assessment of machine learning in software testing 

The literature review was carried out from September 2018 to February 2019 and then 

refined over the remaining months to April 2019. Criteria for assessing the ML-Driven 

services were designed over March, and later modified after the semi-structured 

interviews were conducted. Ethics approval was granted on April 3rd, 2019 and semi-

structured interviews commenced after that. 

1.4  Chapters 

The dissertation contains the following chapters: 

Chapter 1: Introduction 

This provides information as to the goal of the investigation, who might be interested in 

the findings and information regarding the structure of the investigation 

Chapter 2: Literature Review 
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During the literature review an investigation is carried out within the context of the three 

sub-questions by reviewing available academic journals, industry-related articles, 

standards bodies, commercial reports and individuals’ blogs. Common themes are 

identified, and a conclusion is drawn which is later expanded on by the research 

methodology. 

Chapter 3: Methodology and Fieldwork 

During this chapter the research methodology is explained starting from the philosophical 

concepts underpinning the approaches undertaken. The strategy and approaches are 

described in detail and the rationale behind each interview question and empirical 

evaluation are explained within the context of the sub-questions. 

Chapter 4: Findings and Analysis 

The results from the data collections are presented during Chapter 4 and findings from the 

qualitative analysis are discussed and used to provide conclusions as to the impact of 

machine learning on software testing. 

Chapter 5: Conclusions and Future Work 

Chapter 5 provides a conclusion to the dissertation and submits an answer to the question 

of the investigation. Future research is suggested which can extend on the findings 

produced from this investigation.  
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2. Chapter 2: Literature Review 

2.1  Introduction 

The primary question for investigation is: How can Machine Learning be Leveraged for 

Software Testing within a Timeframe of Five Years? 

This section contains a review of selected literature related to the potential impact of 

machine learning on software testing practices. Information has been gathered from 

several different source types, including academic journals, industry-related articles, 

standards bodies, commercial reports and individuals’ blogs. 

The primary question is broken down into three sub-questions: 

Question 1: How is machine learning (ML) being used to impact software testing 

techniques? 

This is an investigation into how machine learning algorithms are adapted for the 

improvement of software testing techniques, metric gathering, test coverage and defect 

identification.    

Question 2: How are commercial ML-Driven automated software testing tools 

different from traditional non-ML automated tools? 

This is an investigation into commercially available software test tools and services which 

incorporate machine learning. Included is a review of the improvements they possess 

compared to standard automated tools. 

Question 3: How will the rate of adoption impact on professional software testing 

from both a human and business perspective within five years? 

Through a review of expert opinions, commercial forecasts and an assessment of the 

maturity of available ML-Driven automated testing tools an informed predication is 

proffered of the adoption rates and impact of the tools in the software development 

industry.  
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2.2  Background 

2.2.1 Software Testing Theory & Practice 

Software Testing is an integral part of the Software Development Lifecycle. Its purpose is 

to ensure that the system under test (SUT) behaves as intended. Verification involves the 

practice of identifying technical defects in the code and ensuring there are no mistakes in 

associated documentation. As Sharma, L. (2017), defines it in ‘Difference between 

Verification and Validation’, “Verification will help to determine whether the software is of 

high quality, but it will not ensure that the system is useful. Verification is concerned with 

whether the system is well-engineered and error-free.” Validation describes the process of 

ensuring the SUT meets the requirements set out by the customers or end users. “It is a 

dynamic mechanism of validating and testing the actual product.”- Sharma, L. (2017). 

Simply put Validation ensures we’re building the right thing; Verification ensures we’re 

building it right.  

Software testing can be split into two categories: White Box Testing and Black Box 

Testing. White Box Testing ‘is based on an analysis of the internal structure of the 

component or system.’ - ISTQB Glossary (c.2018). For White Box Testing the code of the 

underlying application is known and usually involves unit testing and component testing. 

White box is an important phase of the testing lifecycle and ensures that the fundamental 

components of the code are tested to ensure correct behaviour.  Black Box Testing 

involves testing the functionality of the software without access to the code underneath. 

This usually involves front-end testing, ensuring that the application behaves as expected 

from an end-user perspective and reflects business requirements. The ISTQB Glossary 

(c.2018). defines this as ‘Testing, either functional or non-functional, without reference to 

the internal structure of the component or system’.  Artificial Intelligence, and particularly 

the branch of AI called Machine Learning has potential applications across both White and 

Black Testing techniques.     

2.2.2 Manual, Automation, Agile & Continuous Integration  

Traditional waterfall type development methodologies usually include long release cycles, 

with costly manual regression testing phases. Manual testing is done by software testers 

who design, write and execute test cases to identify flaws in the design of the software 

and defects in the software code.  
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Automated testing involves a software tool or service that can be used to record or code a 

set of test cases. The tool can be used to execute these test cases and provide feedback 

on the stability of the SUT. Automated software testing has evolved since its introduction 

in the mid-1990s. Tools have become more intuitive and less expensive to employ. This 

evolution is further discussed in section 5 of this Chapter. As the software development 

industry has adopted more agile development practices, shorter release cycles have 

resulted in increased pressure to deliver new features to market at a faster. Agile Software 

Development is described in the ISTQB Glossary (c.2018) as ‘A group of software 

development methodologies based on iterative incremental development, where 

requirements and solutions evolve through collaboration between self-organizing cross-

functional teams.’ Incremental development practices require rapid feedback from test 

activities, which rely on automated testing to provide this test coverage within a 

Continuous Integration process. 

Continuous Integration (CI) is a feature of modern software development practices. 

According to Radigan, D. (c.2018) in ‘Continuous Integration Explained’ this is ‘the 

practice of routinely integrating code changes into the main branch of a repository, and 

testing the changes, as early and often as possible.’ Stable, repeatable automated tests 

are a necessary component of a successful Continuous Integration framework. 

Automated testing, when properly integrated, provides the rapid feedback needed for 

effective CI but it can be difficult to implement, which is reflected in low adoption rates 

across the software development industry. In a study involving 1700 executives, 

representing 10 different sectors Throvagunta, S., Olsen, B., Aymer, A. (2018) found that  

‘On average, 18% of functional test cases were generated using test generation 

tools, and 16% were executed using test automation tools. Similarly, 16% of all 

security tests were executed using automation tools, and automation was also 

applied to the execution of 16% of all performance test cases. Quite 

encouragingly, 15% of all end-to-end business scenarios were also being 

executed using test automation tools.’ 

These statistics suggest that most organisations are still relying heavily on manual testing, 

and are not investing in automated testing, for several reasons, discussed further in 

section 5 of this Chapter. 
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2.2.3 Artificial Intelligence and Machine Learning  

The terms Artificial Intelligence (AI) and Machine Learning (ML) are often used 

interchangeably but there are distinct differences. AI describes systems that can make 

decisions based on the information presented to them. AI uses machine learning to 

process data to perform some operation for which the AI system was built. Machine 

Learning allows a system to learn from a data set that is changing constantly and is not 

known at the time of programming. Machine learning moves away from a constrained 

program and allows a system to adapt to the information or data that is presented to it at a 

given time, and through computational algorithms adapts and ‘learns’ without necessary 

further human intervention.  

For the purposes for this investigation Machine Learning can be considered as a branch 

or subset of Artificial Intelligence. This is captured in the Glossary from PWC (2017) in 

Figure 2-1.  

 

FIGURE 2-1 GLOSSARY OF AI TERMINOLOGY. SOURCE: PRICE WATERHOUSE COOPER (2017) 

Although Marr. B, (2016) would define the difference between AI and ML differently: ‘Often 

referred to as a subset of AI, it’s really more accurate to think of it as the current state-of-

the-art.’ This illustrates the ambiguity that surrounds the terminology related to AI and ML. 

This investigation refers to machine learning predominantly, except for some instances, 
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such as the research interviews where the term AI is used synonymously with ML to 

facilitate the discussion with respondents.    

As machine learning, evolves, its adoption by organisations across various industries is 

predicted to increase.  According to the report ‘AI predictions. 8 insights to shape business 

strategy’ by Price Waterhouse Cooper (2018) ‘In the near-term, the biggest potential 

economic uplift from AI is likely to come from improved productivity. This includes 

automation of routine tasks, augmenting employees’ capabilities and freeing them up to 

focus on more stimulating and higher value-adding work.’ This further illustrated by the 

predicted growth of value derived from machine learning technologies over the coming 

decades as capture in Figure 2-2. 

 

  

 

FIGURE 2-2 WHERE WILL THE VALUE GAINS COME FROM WITH AI? SOURCE: PWC (2017) 

The goal of Software Test Automation is closely aligned with the vision of machine 

learning to automate routine tasks and free workers up for more creative work. Standard 

automation tools (tools that do not incorporate ML) rely heavily on a human understanding 

for design and creation of automated test cases. There is potential for ML-Driven software 

automation tools to reduce the need for human intervention through their use of machine 
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learning algorithms to produce automated test scripts that can verify the SUT with 

potentially faster feedback of results, automatic test case generation, reduced 

maintenance costs and automated user interface (UI) testing.  

2.3  Machine Learning Algorithms use in Software Testing 

How is machine learning (ML) being used to impact software testing techniques? 

The learning capability available from machine learning algorithms offers software test 

practitioners a powerful advancement in automated testing. King, T M., Santiago, D., 

Phillips, J., Clarke, P. (2018) define Machine Learning as: 

‘a subset of AI that involves the construction of algorithms that can learn from and 

make predictions on data. Formally stated, if the performance P of a computer 

program at completing a task T improves with experience E, the program is said to 

have learnt.’  

Software test tools that can self-learn and evolve have significant potential for a range of 

test activities. Machine learning can increase the speed and coverage of test automation 

while reducing or eliminating the need for testers to code and maintain large sets of 

automated tests scripts. Whereas human-driven automation techniques rely on software 

testers to design and generate test cases, machine learning can potentially be used to 

generate test cases automatically by coupling established software test methods with 

machine learning algorithms to produce tools that provide effective code coverage without 

relying on the same level of time-consuming and costly analysis done solely by human 

application.  

2.3.1 Test Case Generation 

In a study to automatically create test cases for Android mobile applications Rosenfeld, A., 

Kardashov, O. & Zang, O. (2018) presented ‘a novel approach for the automation of 

functional testing in mobile software by leveraging machine learning techniques and 

reusing generic test scenarios.’ The approach split out mobile applications into a number 

of generic activities, which included: Splash Activity, Advertisement Activity, Login Activity, 

Portal Activity, Mail Activity, Browser Activity, To Do List Activity. Machine learning 

algorithms were then used to classify screens in a mobile application into these activities. 

They found the KStar machine learning algorithm most effective.  
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Through the accurate classification of the screens they were able to execute a set of 

generic test cases based on the activities. The researchers found that by utilising machine 

learning they were able to ‘automatically cover a large portion of the human testers’ work 

suggesting a significant potential relief in the manual testing efforts.’ This is an example of 

ML being used to generate test cases automatically, which still required much effort and 

manual data entry in order to produce a working solution.  

2.3.2 Model-Based Testing 

Model-Based-Testing (MBT) is a relatively new test strategy where the SUT is 

represented as a system model, which is designed by developers and testers and used to 

generate test cases. According to Güldali, B., Mlynarski, M. & Sanca, Y. (2010) ‘MBT uses 

abstract models (test models) of the system under test (SUT) or its environment as the 

source for test case generation. In addition to models of SUT and the environment, also 

the testware, e.g test execution environment or test cases, can be modeled’  

The Environment-Application Interaction Model is an existing model that is used to 

represent interactions between a given system and the environment in which it operates. 

Fanping, Z., Ling, L., Juan, L. & Xufa, W. (2009) describe an experiment where an ‘EAI 

model is used for anomalies simulation. At the same time, we give an idea of introducing 

artificial intelligence technology and status feedback to extend the original model. So our 

method can monitor and control the testing process.’ The experiment uses a knowledge 

base, created from existing manual methods to test for vulnerabilities in the system. This 

model base is then used by a machine learning algorithm, which generates test cases to 

be run on the SUT. Machine reasoning is used to determine the test cases that will be run 

on the SUT. Test cases are then executed, results are fed back and analysed. The 

algorithm then learns from subsequent test runs. This provides continuous feedback on 

how vulnerable the SUT and is to attack. The experiment required the researchers to input 

data from a range of knowledge bases in order to provide the data that the ML would 

need, demonstrating the need still for much manual preparation to create a working ML-

Driven solution. 

The Angluin’s L∗ machine learning algorithm is used to construct a Fixed State Model in 

the experiment outlined by Groz, R., Simao, A., Bremond, N. & Oriat, C. (2018) where 

they ‘have tried to make the most of AI-inspired and machine learning methods to get 

behavioural models of blackbox software systems without resetting them.’ These fixed 

state models, which are generated by machine learning are then used to test that the SUT 
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behaves correctly. The use of ML reduces the requirement for testers to create a model to 

test, the models themselves are automatically created and the heuristic process creates 

more complex models as it is executed over time. The researchers conclude that their 

initial investigation is successful enough to scale the approach up for enterprise software 

systems.   

2.3.3 Branch Coverage 

Branch Coverage is a type of testing that verifies that each available functional path 

through a system is behaving correctly. The ISTQB Glossary (c.2018) describes this as: 

Test coverage criteria requires enough test cases such that each condition in a 

decision takes on all possible outcomes at least once, and each point of entry to a 

program or subroutine is invoked at least once. That is, every branch (decision) 

taken each way, true and false. It helps in validating all the branches in the code 

making sure that no branch leads to abnormal behavior of the application. 

Tools such as EvoSuite and Randoop can be used to generate these tests which provide 

test coverage metrics of the SUT at a unit level. These are low-level tests which ignore 

business-level behaviour and are a type of White Box testing. As they provide a wide test 

coverage of the SUT they can take a lot of time and effort to execute, particularly if the 

tests are required to be executed as part of a CI process. To improve on existing static 

analysis tools Grano, G., Titov, T. V., Panichella, S. & Gall, H. C. (2018) describe an 

experiment where they ‘take the first steps towards the definition of features and machine 

learning approaches able to predict the branch coverage achieved by test data generator 

tools.’ They were successful in using Huber Regression, Support Vector Machine, Multi-

layer Perceptron machine learning algorithms to predict the branch coverage that would 

be achieved by a given tool, which gives developers a better indication of how effective 

the tools would be before deciding to use them to test their code. This allows for more 

informed test planning, leading to an improved test strategy and higher quality software.  

2.3.4 Mutation Testing & Fault Identification  

Mutation testing introduces a fault into the SUT to check whether the current test cases 

running on the system are effective enough to identify potential issues Bowes, D., Hall, T., 

Harman, M., JIA, Y., Sarro, F. & WU, F. (2016). created a study where they ‘used four 

different classifiers (i.e., Na¨ıve Bayes, Logistic Regression, J48, Random Forest) which 
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cover a range of different techniques’ to create a model which improved on methods of 

fault detection. The benefit to software development is the identification of defects and 

faults in a system earlier and provides a tool which enables developers to establish how 

prone the system is to faults through the collection of metrics generated from their 

experiment. Bowes, D. et al found ‘that mutation-aware fault prediction can outperform 

traditional fault prediction, for a range of predictive modelling machine learning 

algorithms.’ 

Khosrowjerdi, H., Meinke, K. & Rasmusson, A. (2018) have devised another approach 

using Fault Injection (FI) which uses Learning Base Testing which ‘combines: (i) machine 

learning to reverse engineer software models, and (ii) model checking to construct test 

cases that evaluate formalised safety critical software requirements.’ The test method 

uses the machine learning Angluin’s L∗ Algorithm to create a predictive model-based test 

strategy that aims to further ensure flaws found in critical systems such as the software 

systems used in the automotive industry are captured effectively. Khosrowjerdi, H. et al 

state that ‘It was successful in finding previously unknown anomalies around safety 

requirements.’ 

2.3.5 Stabilising and Prioritising Existing Test Cases 

A criticism often directed at test automation is that the tests can become unreliable after 

the SUT has been changed over time. ‘Flaky’ tests are automated which can provide both 

a fail and pass under the same test conditions, on the same SUT. This can happen for 

several reasons, for example: 

• Tests might rely on an element to appear within a certain time frame and fails if it 

does not. That element could appear within the time frame under one test and 

appear outside of the time frame in a second execution run, producing a different 

result.  

• Tests might be impacted on data that wasn’t cleaned up properly from the first run 

or tests that are running in parallel from a different execution run.  

King, T M., Santiago, D., Phillips, J., Clarke, P. (2018) have conducted research that ‘fits 

into the category of AI for testing. It proposes a supervised ML approach that uses 

Bayesian networks to predict flaky automated tests. Flaky tests were identified and 

analysed. Metrics were associated with the causes of the ‘Flakiness’. Tools were used to 

gather data on the flaky tests. Human experts were then used to classify data, and train a 
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model which then incorporated machine learning to develop the model which could be run 

on other systems, to identify flaky tests. The experiment was successful in that it proved 

that the approach was feasible, but further work was needed to provide a fully working 

solution. As with other experiments effort was required to define and input the data for the 

algorithms to learn from. 

Tornhill, A. (2018) conducted an experiment using Codescene which ‘combines repository 

mining, static code analysis and ML to prioritise potential code improvements based on 

the most likely return on investment’. This tool is intended for application-code analysis. 

The experiment was to assess the tool’s effectiveness to identify issues with existing test-

code. The tool is used to identify, through machine learning, the highest priority code that 

requires refactoring, based on development activity and behavioural analysis. The 

experiment used Microsoft’s open source project ASP.NET MVC. By Using Codescene 

and machine learning the researcher was able to prioritise 2,501 from over 300,000 lines 

of code for refactoring.   

Regression testing for large systems can be expensive and time-consuming. As testers 

usually have no visibility on what has changed in the code it is difficult to prioritise what 

tests to execute. This necessitates running all regression tests to provide confidence that 

potential defects will be detected.  Lachmann, R., Nieke, M., Seidl, C., Schaefer, I. & 

Schulze, S. (2016) proposed an experiment in which their focus was on ‘prioritizing test 

cases according to the decisions made by a test expert imitating the expert’s behavior 

using ML.’ 

The experiment followed five steps: 

• Training Data Selection: Creation of training data for the Machine Learning 

algorithm to build on 

• Dictionary Creation and Meta-Data Collection: Creation of a dictionary that 

contains all-natural language words in test cases used in regressing testing the 

system. This dictionary is used to identify patterns to be used in the prioritisation 

model. 

• Classification Learning: Machine learning algorithm SVM Rank is used to learn a 

classification model  

• Test Case Prioritization: Using the Classification Model test cases for execution. 

Manual prioritisation would take a lot of time, but as Lachmann R. et al suggest, 
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‘Our approach improves this by automatically prioritizing large number of test 

cases in reasonable time.’ 

• Execution and Update: The test cases are executed during the Regression 

phase and new Classifications are learnt, if necessary, depending on changes to 

code and the decision of test experts. 

The experiment found that through the use of ML-Driven techniques they were able to 

identify the highest priority test cases to run rather than executing all of the tests or tests 

at random.  

These experiments have proven that machine learning can be used to improve software 

testing for a range of techniques. Several algorithms and algorithm types are common 

across the experiments such as Angluin’s L* and Support Vector Machines suggesting a 

convergence of hypotheses. The experiments required a high level of understanding to 

apply machine learning effectively, which perhaps the average software development 

organisation would not typically possess. For machine learning to be adopted widely in 

software testing, tools and services need to be made available which can make the 

benefits accessible and reduce the requirement for software test professionals to have a 

deep understanding of the complex underpinning mathematical concepts.      

2.4  Commercial Availability and Adoption 

How are commercial ML-Driven automated software testing tools different from 

traditional non-ML automated tools? 

Digitalisation, or Digital Disruption is impacting public and private organisations across 

virtually all industrial sectors, which was implied by the growth suggested in Figure 2-2. 

Organisations are impacted by a growing need to incorporate digital solutions into existing 

business models, while providing more technologically advanced products and services, 

or risk obsolescence. Effective software testing is a fundamental requirement to ensuring 

the vision of industry leaders is met with the reality of the end-product. Machine learning 

has the potential to be an effective instrument for improving software testing techniques 

and tools.  

Machine Learning algorithms are complex to implement which has made their integration 

into software processes prohibitive. If ML becomes easily accessible and readily available 

as a tool in the field of software testing then it would represent an inflexion point, providing 
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a powerful improvement to current automation practices and disrupting not only software 

testing, but the entire industry of software development. 

Software automation tools which incorporate machine learning algorithms offer a range of 

advantages: 

• Automatic Generation of Test Cases 

• Self-Healing Tests 

• Improved Continuous Integration Capability 

• Improved Automatic UI Testing Capability  

For these benefits to be realised it is required that machine learning can be implemented 

cost-effectively. One of the severest potential impediments to its adoption is the high level 

of skill required to leverage machine learning. Leaders in software testing currently would 

not possess the knowledge to leverage an ML-Driven test strategy without the assistance 

of a service or tool which abstracts the benefits and provides a cost-effective solution that 

can be adopted at an enterprise-level. This is reflected by Van De Ven, T., Dupjan, G. & 

Mamnani, D. in the World Quality Report 2018 which suggests that the  

‘traditional tester is no longer adequate, as working with AI requires professionals 

with a diverse range of competencies such as testing, mathematical optimization, 

neuro-linguistic programming, AI, business intelligence skills and algorithmic 

knowledge. At present, finding this combination of skills is difficult and experts 

suggest that challenges regarding the availability of qualified professionals will 

increase in the future as more organizations start experiment with AI’  

This necessity has been identified by a number of vendors of software testing services 

who are positioning themselves to fill this market gap. These services have benefited from 

the evolution of machine learning, its move towards mainstream adoption and its growth in 

accessibility. The Price Waterhouse Cooper (2018) finds that ‘AI is becoming more user 

friendly. Users no longer need to know how to write code in order to work with some AI 

applications. But more still demand far more technical knowledge than a spreadsheet of 

word processing program does.’ ML-Driven test solutions are offered via a Software as a 

Service (SaaS) platform in which test cases are designed by an organisation’s testers, 

then uploaded or programmed into the vendor’s system which then uses ML to automate, 

execute and learn from this input. These services offer a range of valuable advantages. 
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2.4.1 Test generation 

A prerequisite of standard automated testing is a level of design done by testers. The 

requirements of the SUT are analysed and test scripts are written that ensure the correct 

functional and non-functional behaviour, check for system compliance and identify 

defects. The design of these test cases will determine how effectively the SUT is tested. 

This involves a high-level of understanding from the tester to verify that system behaves 

as expected and to validate that business requirements are met. ML-Driven tools offer the 

capability to learn from the test cases uploaded by the testers to generate new test cases 

based on the behaviour patterns indicated by the uploaded test collateral. One ML-Driven 

test service, Appvance IQ (c.2018), describes their tool as using ‘machine learning and 

cognitive generation to instantly produce thousands of scripts based on a thorough 

mapping of the application and an analysis of actual user activity’ 

2.4.2 Self-Healing 

In software test automation one of the drawbacks is the cost of maintaining automated 

scripts. Black Box, front-end automated test cases commonly use screen elements with 

which to recognise the location of the controls to be used to execute a test script. If these 

elements are changed by updates to the SUT then the automation fails, and tests require 

a re-mapping exercise, done manually by testers. This can prove costly and time-

consuming. If the automation approach adopted proves to be too brittle, then the benefit of 

these automated test may not outweigh the cost. If the root cause analysis of a failed test 

case too often indicates an issue with the test-code rather than a valid defect produced by 

the application-code then the viability of the automated tool is quickly brought into 

question as business users lose confidence in viability of the tool. 

Self-healing is achieved by ML-Driven tests through the use of machine learning, which 

uses historical data to extrapolate information to identify the corrections needed to adapt 

to changes in the SUT over time. Functionize (c.2018), another provider or ML-Driven test 

services, describes how their tool uses machine learning for self-healing: ‘ML models are 

used to generate scores characterizing the confidence level in element selection and 

action correctness. These scores are used by the expert system to help detect failing 

actions. ML models are also used to identify root causes by learning what successful 

actions look like over time, and using this training to identify failed actions’ 
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2.4.3 Test Execution and Continuous Integration 

Automated test scripts can be executed in parallel to simulate a large set of users, which 

increases the test coverage that can be covered by manual testing depending on the 

number of instances of the application that can be generated. This execution strategy 

requires hardware resources, usually achieved through a set of virtual machines. 

Selenium Grid for Selenium 2.0, for example offers the ability to execute automated 

scripts on a large set of environments, which allows for scaling of execution and provides 

faster feedback of test results. The Selenium Grid enables parallel execution on a range 

of different platform configurations, as Figure 2-3 illustrates. This solution can be costly to 

maintain and usually incorporates the services of other support teams such as System 

Administration or Development Operations (DevOps), depending on the organisational 

structure. Continuous Integration solutions require the capability to execute automated 

test cases, continuously, usually nightly, in order to verify that new code check-ins have 

not introduced any new defects. This rapid feedback is a characteristic of modern Agile 

development processes.  

  

 

FIGURE 2-3 SELENIUM GRID. SOURCE: NARKHEDE, P. (2017) 

Infrastructural costs relating to maintaining large test environments are reduced 

significantly by ML-Driven services. Test execution occurs on cloud-hosted servers. Test 

cases can be executed in parallel on the same environments where ML algorithms are 

employed to learn from the resulting patterns of output. ML-Driven test service Testsigma 

allows customers to ‘Make use of Testsigma Lab to run your tests on thousands of 
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devices with different configurations available on the cloud.’ This capability is offered by all 

of the services researched during this investigation (described in further detail in Chapter 

5), and reduces the cost of simulating test users on the organisation’s network and offers 

rapid feedback from the execution of large sets of automated test cases. 

2.4.4 UI Testing 

The inability to automate UI tests is a limitation of standard automation tools. While 

automated tools can recognise that an element exists it has been difficult to use an 

automation tool to verify that a screen looks right to an end user. Human confirmation has 

been the only reliable way of ensuring that the aesthetic of the application has not 

changed. Software containing a proliferation of UI defects becomes difficult to navigate, 

loses intuitiveness and draws many complaints from end-users. Several ML-Driven 

services offer the capability of automated testing to verify that the user interface has not 

been compromised by updates to the SUT. The Applitools (c.2018) solution describe their 

method of doing this: ‘Baseline images define the expected appearance of your app at 

each step of the test. AI-powered computer-vision algorithms instantly detect and report 

any difference found between screenshots and baselines. By emulating the human eye 

and brain, our algorithms only report differences that are perceptible to your users.’ 

2.5  Human Impact and Five-Year Forecast 

How will the rate of adoption impact on professional software testing from both a 

human and business perspective within five years? 

Automated test approaches have grown in sophistication, effectiveness and usability since 

the first real experiments began during the 1990s. This evolutionary journey of test 

automation is illustrated in Figure 2-4. This timeline indicates that the future of testing 

belongs to ML-Driven solutions. ML is a growing trend in the automated software testing 

industry, but its capabilities are still limited (as demonstrated in Chapter 4). Machine 

learning in software testing is still a relatively new innovation and in an early stage of 

adoption.  
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FIGURE 2-4 EVOLUTION OF TESTING. SOURCE: SUBRAMANIAN, R (2018) 

This evolutionary progress of automation is represented by different levels described by 

Appvance (c.2018): 

• Level 0 is manual testing, still 70% of the testing today. 

• Level 1 is scripting at around 25% of testing. This methodology was introduced in 

the mid 1990’s. 

• Level 2 is codeless script generation or recording at around 5% of testing today. 

• Level 3 introduces the first hints of machine learning such as self-healing scripts or 

monkey bots. Appvance was the first to introduce self-healing scripts in 2016. 

• Level 4 is automatically generating scripts with no human intervention, scripting or 

recording. Appvance announced Level 4 in 2017. 

• Level 5 is self-generating tests which are able to validate complex actions or data 

or elements generally at or above human capabilities and do so autonomously. 

Similarities between both representations of the evolution of automated software testing 

suggest that automation is still predominantly designed and maintained by humans and 

that the Level 5 definition of self-generating tests is yet to be realised by commercial 

offerings within the Software Testing as a Service industry. Software test automation in 

even its simplest form has yet to be integrated into the majority of practices, as has been 

reported by Price Waterhouse Cooper (2018) who discovered that a mere 15% of all end-
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to-end business scenarios carried out by survey respondents were being executed using 

test automation tools. Appvance suggest that only 30% of testing is automated.  

Reviewing the disadvantages and challenges of automation reveals some of the reasons 

for the low adoption rates of test automation tools. These are listed by Ghahrai, A. (2018) 

as: ‘False sense of quality, Not reliable, Automation is not testing, Maintenance Time and 

Effort, Slow feedback, Not many bugs found.’  

Sharma, P. (2017) identifies ‘ROI comes late, More skilled Testers are Required, More 

Maintenance is involved, Automation is not Testing, Unrealistic expectations from the tool’ 

as the main disadvantages.   

Throvagunta, S. et al (2018) collected data from 1700 executives across 10 different 

sectors. The challenges that were most commonly reported is represented in Figure 2-5. 

 

FIGURE 2-5 CHALLENGES IN AUTOMATION. SOURCE: WORLD QUALITY REPORT (2018) 

Before the adoption levels of test automation grows these challenges and disadvantages 

need to be addressed. The introduction of machine learning into test automation can start 

to provide solutions to these issues: 
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Maintenance:  

A common drawback cited is the cost of maintaining scripts. Changes in the SUT result in 

automated tests breaking due to updates to the underlying structure of the system, 

resulting in necessary modifications to existing automated code. Machine learning offers a 

‘Self-Healing’ capability to counter this, characterised by algorithms that can identify when 

a test should be updated to align with changes to product code.  

Lack of Skill and Experienced Test Automation Resources: 

Services offering ML-Driven automated tools offer the ability to automate tests without the 

need for coding automating tests. Tests can be written in natural language and uploaded 

to the SaaS cloud. This removes the need for testers to be able to code, reduces the need 

for test professionals to understand coding practices and enables testers to focus on 

design and test analysis instead. However, with ML comes the need to understand to an 

extent what the ML algorithms are capable of. There will still be the requirement for testers 

to verify that the ML tools are returning the correct result, at least at the initial phase. ML-

tools have the capability to generate large sets of test scripts. Testers will need to be able 

to decipher large results sets on a continuous basis.  

Slow Feedback: 

The time involved in scripting automating tests can mean that the value of those test 

scripts is not realised until late in the project. Manual testing is still needed to fill this gap 

to ensure new features are tested effectively while automated tests are still in 

development. ML-Driven tools offer a solution to this, whereby test cases can be 

generated once test cases are input that the algorithms can learn from. This however, still 

suggests that an initial phase is required whereby test cases are uploaded. Feedback 

might still be slow, depending on the complexity of the SUT and suitability of the test 

cases to be used as a basis for learning.  

Challenges with the test data and environment availability: 

Effective test automation in an Agile environment requires Continuous Integration 

environments, which still need to be managed, usually by a DevOps team. Test services 

will still need the organisation to provide an environment to execute test cases on. This 

cannot be solved by test automation, and needs investment in a fit-for-purpose CI 

solution.    
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Automation is not Testing:  

Non-ML driven automated tests are only as effective as their design. There is still a need 

for testers to understand the business requirements and desired functionality of the end 

software product. As Validation requires a level of subjectivity it is still best suited to 

manual testing whereas Automated Testing is ideal for the objective static evaluation 

associated with test verification. Verification can be carried out by automated tools, but 

only within the test coverage in which they have been coded. Exploratory testing is still 

required by knowledgeable testers to carry out initial testing whereas automated testing is 

suitable for regression testing of existing functionality to ensure future releases of the 

software do not introduce defects. The Appvance model and Testim descriptions of the 

growth of software both suggest that ML-Driven has not arrived yet at a place whereby 

complex test cases can be generated without the need for manual testing to run 

complementarily.  

Unrealistic expectations from the tool: 

The challenges outlined above of not having the right tool, having too many tools to 

choose from and having unrealistic expectations from the tool, suggest a disconnect 

between the practical reality of what can be achieved by automation and what business 

leaders believe to be the potential of automated testing. While integrating machine 

learning with software testing does offer more powerful capabilities to software testing 

there is still a long way to go for it to be intuitive enough to replace testers altogether. Test 

Validation is still a requirement which is supported by a human interpretation of system 

and business design documentation. Test cases will still need to be designed by testers 

and results will still need to be analysed by humans. Limitations will need to be 

understood upfront by decision makers for ML-Driven tools not to be dismissed when 

unrealistic expectations are not met. 

As further Digitalisation puts pressure on organisations to software solutions growing in 

complexity, at faster rates the feedback provided by test automation will speed up at a 

proportionate rate as illustrated in Figure 2-6. Platz, W. (2017) suggests that ‘AI, imitating 

intelligent human behavior for machine learning and predictive analytics, can help us get 

there.’ 
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FIGURE 2-6 GROWING REQUIRED SPEED OF TESTING. SOURCE PLATZ, W.(2017) 

This will require ML to evolve in technical sophistication while also improving in usability, 

maintainability and portability. The literature does reflect that the key to the future of test 

automation will be in machine-learning, but before ML-Driven tools are widely adopted 

there is still a gap that needs to be bridged between what’s expected and what’s available. 

2.6  Conclusion 

How is machine learning (ML) being used to impact Software Testing techniques? 

The details of several experiments were available which sought to leverage machine 

learning to improve software test techniques. All experiments produced successful results, 

where the results indicated a viable improvement in software test techniques or provided 

the confirmation required to proceed to further investigation.  

Experiments covered a range of machine learning algorithms. The same machine learning 

algorithms were used by more than one experiment, inferring that there are algorithm 

types that are more applicable to software testing, such as Angluin’s L* and Support 

Vector Machines.  

The experiments were characteristically complex, requiring a deep understanding of 

machine learning. The experiments invariably required a significant level of data set-up to 
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build the knowledge that the algorithms required to start learning. For the integration of 

these machine-learning techniques to be scaled up to an enterprise-level further research 

is required. Whereas they provided proofs of concept, few described a solution that could 

be adopted by an average software development organisation. 

How are commercial ML-Driven automated software testing tools different from 

traditional non-ML automated tools? 

Commercial tools are offering a range of features, including self-healing, automatic test-

generation, out-sourced test execution capability and UI testing. These features can 

potentially remove some of the most common obstacles preventing software development 

practices from adopting automated testing.  

The cost of maintaining broken tests should reduce. More straight-forward test creation 

should eliminate the need for testers to create code. Outsourcing test execution to a 3rd 

party cloud should reduce the cost of running large numbers of test cases concurrently on 

a nightly basis. Effective automated UI testing can identify usability defects in the system 

faster, improving end-user experience and customer satisfaction levels. Chapter 5 

discusses the ability of current ML-Driven services to deliver on these potential benefits. 

How will the rate of adoption impact on professional software testing from both a 

human and business perspective within five years? 

These services are still in the early stages of development. Machine learning appears to 

be the next step in the evolution of software test automation, rather than the state-of-the-

art. Obstacles still remain. Many standard automated practices use open source tools 

such as Selenium. The ML-Driven tools currently available incur a cost and require a 

subscription. ML-Driven services require tests to be stored in the cloud, and require 

access to internal networks, which can potentially create a security risk. Test cases can 

be generated, but require an initial knowledge base to learn, which still requires human 

input. Self-healing test will still need to be verified as healing ‘correctly’, for an initial period 

at least, until confidence grows in their ability to successfully distinguish between a defect 

and a broken test. It will take a number of successful case studies before business 

leaders begin to take the value of these services seriously. Given the current low adoption 

rates of standard automation it seems unlikely that these tools will disrupt the software 

testing profession significantly within five years. Widespread adoption will likely take 

longer. 



 

 

34 

 

3. Chapter 3: Methodology and Fieldwork 

3.1  Introduction 

This chapter explains the Research Methodology and Fieldwork that was undertaken to 

gather relevant data to explore the topic further and build on the knowledge gained from 

the literature review. Included is a discussion on the philosophical concepts which 

underpin the two approaches adopted to address each sub question. Saunders, M., 

Lewis, P. & Thornhill, A. (2009) compare research to the structure of an onion with data 

collection techniques and procedures at its core. This structure is displayed in in Figure 3-

1.  

 

FIGURE 3-1 THE RESEARCH ‘ONION’. SOURCE: SAUNDERS ET AL (2009) 

This chapter discusses the research methodology within the context of this structure.  

3.2  Philosophy 

Saunders M. et al (2009) describe three branches of philosophy which inform the 

approach the researcher will take to designing the tools and methods of data collection in 

order to gain insight into the topic under review. 
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3.2.1 Ontology 

Ontology is made up of two aspects of the nature of reality which Saunders M. et al (2009) 

describe as  

The first aspect of ontology we discuss is objectivism. This portrays the position 

that social entities exist in reality external to social actors concerned with their 

existence. The second aspect, subjectivism, holds that social phenomena are 

created from the perceptions and consequent actions of those social actors 

concerned with their existence. 

3.2.2 Epistemology  

Epistemology is the branch of the philosophy which describes what constitutes knowledge 

as it relates to the research topic under review. Three distinctive perspectives are 

discussed below which influence research design decisions.  

Positivist philosophy 

Positivism suggests a research approach that would include a strict measuring of 

quantifiable data from which a set of behavioural rules can be extrapolated. Positivism 

deals with measurable facts rather than subjective opinions gained from human 

interrogation. Positivist approaches are more likely to measure statistics and gather clear 

metrics to establish knowledge. 

Realism Philosophy 

Saunders M. et al (2009) maintain that ‘Realism is a branch of epistemology which is 

similar to positivism in that it assumes a scientific approach to the development of 

knowledge.’ They go on to describe two branches of realism. The first is Direct Realism 

which assumes that social phenomena exist independently of human senses. Data 

collected is not affected on how our senses interpret it, that it exists unchanged by the 

perception of our senses. Critical Realism suggest that there are two steps in 

establishing information about the world. The first is measuring data while the second is 

how our minds interpret this data. It is this interpretation that forms our understanding and 

is the reality which we exist within.  
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Interpretivist philosophy  

Interpretivism emphasises the significance of the people as ‘social actors’. As social 

actors people play a distinctive role in establishing, creating and reshaping the social 

entities in which they operate. Empathy plays a vital role in interpretivist research, which 

would include, for example, conducting surveys and interviews to establish meaning. 

3.2.3 Axiology  

Axiology is described by Saunders M. et al (2009) as the ‘branch of philosophy that 

studies judgements about value’. This is significant in designing research as it must be 

decided how to measure value and what is of value to the research. For this research 

question ‘How can Machine Learning be Leveraged for Software Testing within a 

Timeframe of Five Years?’ we must establish what value machine learning can provide to 

software testing and how to measure this value. There are two separate value sets to 

consider when considering this question.  

During this investigation the value of ML-Driven tools is assessed through semi-structured 

interviews of leaders in the field of software testing. These interviews establish value as it 

is perceived by the target users of automated software tools. The information gained from 

theses interviews are then used in an empirical analysis of selected ML-Driven tools 

available on the market. Through the comparison of the value sought and the value 

available from the tools the impact of machine learning on software testing practices can 

then be inferred.   

Saunders M. et al (2009) suggest that Pragmatism argues that ‘the most important 

determinant of the epistemology, ontology and axiology you adopt is the research 

question – one may be more appropriate than the other for answering particular 

questions.’ For this research a pragmatic view was taken. Machine learning and software 

testing rely on social actors to design the frameworks and rules in which they operate. 

Due to the nature of machine learning it can be considered to have the potential to 

operate external to human intervention. However, it is the case that in order for machines 

to learn they must be prepared and taught by engineers beforehand. Machine learning 

can continue without the further need for human input but any advancement is an 

expression of the initial data set, input by humans. To understand the impact of machine 

learning on software testing the benefit of it to humans needs to be assessed. The extent 
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of this benefit ultimately will drive the design and evolution of the impact of machine 

learning on software testing.   

To provide answers to each sub-question a mixed approach was deemed most suitable. 

Observable phenomena were assessed, by empirically analysing a sample of available 

ML-Driven software testing tools while semi-structured interviews also incorporated the 

subjective views of leaders in the field of software testing.  

3.3  Research Paradigm 

Saunders M. et al (2009) describes the research paradigm as ‘a way of examining social 

phenomena from which particular understandings of these phenomena can be gained and 

explanations attempted.’ 

 

FIGURE 3-2 RESEARCH PARADIGMS. SOURCE: SAUNDERS ET AL (2009) 

Functionalist paradigm: 

Positioned within the Objectivist and Regulation dimensions the Functionalist paradigm 

aims to assess an issue, like machine learning and software testing by describing how 

current techniques and solutions are employed and researching what the impact of ML 

would be if an organisation were to adopt these emerging practices.  

Interpretive paradigm:  
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Along the Subjectivist and Regulation dimensions is the Interpretive paradigm. Saunders 

M. et al (2009) identify the goal of this paradigm to ‘understand the fundamental meanings 

attached to organisational life’. Adopting this paradigm for this research would require a 

study of human involvement, and shortcomings, when it comes to software automation 

and assess how machine learning within software testing would be accepted by the 

organisational culture in a software development department or company. 

Radical humanist paradigm:  

The radical paradigms are concerned with implementing significant change to the 

established practices in an organisation. Radical humanism resides on the Subjectivist 

and Radical dimensions. For this research to adopt this paradigm this could involve 

framing the failure to adopt machine learning into software testing practices as a symptom 

of the fear of change on behalf of software testers and managers. Overcoming this 

dysfunction would be a means to effect change within the organisation.  

Radical structuralist paradigm:  

The Radical structuralist paradigm is located within the Objectivist and Regulation 

dimensions. This paradigm is concerned with achieving radical change through identifying 

objective flaws in current business practice. From the perspective of this research this 

would attempt to research flaws in the organisational structure that underlie reasons for 

adopting current test strategies. The goal would be to create a case for adoption by 

describing solutions to these flaws through the use of machine learning. 

The paradigm which this research is aligned with more closely is that of Functionalist. The 

research aims to establish how software tools and services that are machine-learning 

enabled compare to standard non-ML tools. As the research aims to establish the impact 

of ML on Software Testing it can be described as an investigation into the viability of the 

adoption of machine learning into the existing regulation of the software test function of an 

organisation.   

The approach that was adopted for this research can be best described as relating to that 

of a Pragmatic philosophy. To obtain data to answer the three sub questions the design of 

the research was based on both semi-structured research Interviews and empirical 

analysis of secondary data. This multi-strategy is described by WILSON, J. (2010). as 

‘pragmatic research’ in that the research does not attempt to ‘fit’ into any one paradigm, 
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but the researcher uses whichever methods he or she considers work best for their 

particular study’ 

3.4  Strategy and Choices 

The semi-structured interview research was formed from the expert opinions of industry 

leaders in the field of software testing. Questions were designed to provide data which 

was then used to induce the impact of machine learning on current software testing 

practices. ‘semi-structured – this is where you have a "theme" for your interview, and 

some carefully defined questions, but leave open the possibility of discussion of other 

cognate areas’ – Emerald Publishing (c.2019) 

A complementary empirical qualitative analysis was used on secondary data obtained 

through online literature and demonstrations of selected machine learning software testing 

tools. According to Saunders et al ‘Qualitative data refers to all non-numeric data or data 

that have not been quantified and can be a product of all research strategies’. This was an 

Inductive approach, which is described by Dudovskiy, J. (c.2018) as  

‘beginning with a topic, a researcher tends to develop empirical generalisations 

and identify preliminary relationships as he progresses through his research. No 

hypotheses can be found at the initial stages of the research and the researcher is 

not sure about the type and nature of the research findings until the study is 

completed.’ 

As the research assumed limited knowledge of the tools under review an inductive 

approach was undertaken to gain a clearer understanding of the capability of the tools 

under review compared to a standard non-ML driven tool. 

3.5  Approaches Overview 

The two complementary approaches were used to answer the three sub-questions 

comprising the main investigation of this research. Criteria for the secondary data 

qualitative analysis of ML-Driven tools were aligned with questions asked of respondents 

in semi-structured interviews. This research was conducted over a cross-sectional time 

horizon. Both research approaches were conducted over a snapshot of three months.  

Ethics approval was sought for the interviews carried out and informants were provided 

with an information pack which outlined a description of the research and included: 
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• A background of reasons for undertaking the research 

• Criteria for selecting the participants 

• The procedure for conducting the interviews 

• A copy of the questions that would be asked 

• A declaration of a potential conflict of interest, as the interviewer is also a leader in 

the field of software testing 

Participants were asked to sign a consent form, which required them to understand that: “I 

am participating in a personal capacity and not on behalf of my organisation.”  This 

ensured that no sensitive information relating to the organisations in which they were 

employed was discussed.  

3.5.1 Instrument Development and Analysis Approach: Semi-structured Review 

The approach taken to semi-structured interviews involved the following steps: 

1. The criteria for selecting candidates were that they had experience in the field of 

Software Test Leadership, were knowledgeable of software test automation and 

had a fundamental awareness of machine learning  

2. Interviewees were known to the researcher and contact was initiated via LinkedIn 

3. Interviews were conducted and recorded over Skype 

4. Skype recordings were then transcribed by hand into word documents 

5. The tool ‘Dedoose’ was then used to for qualitative analysis to identify patterns in 

the respondents’ transcripts and create visualisations which aided in the 

interpretation of the results 

6. Dedoose provides the user with the capability to breakdown each interview 

questions into categories and apply weightings to the responses to provide a 

metrics from which meaning can be derived from the responses. 

7. Weightings of 1-10 were inferred for each response to quantitise the qualitative 

data, details of which are described in section 6 of this Chapter. 

3.5.2 Instrument Development and Analysis Approach: Empirical Analysis 

The approach taken to the empirical analysis involved the following steps: 
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• Five software ML-Driven software testing services were identified and selected 

from reviewing material from software product review websites and software 

tooling specialist sites online. These included: 

• Reviews for Software Test Automation. Gartner (c.2019).  

• 8 Innovative AI Test Automation Tools for the Future: The Third Wave 

Colantonio, J. (2017) 

• AI Driven Testing (AI-DT) open source tools. Stack Exchange (2018) 

• An empirical analysis strategy was then created by using evaluation criteria and 

templates from the following sites for guidance:  

• Software Evaluation Checklist Tips. Strickland, A. (2019) 

• Reviews for Software Test Automation. Gartner (c.2019).  

• The responses from the semi-structured interviews were also used to form the 

criteria for analysing the ML-Driven software testing services. Categories that 

respondents prioritised were added to the ML-tool analysis. This ensured both 

approaches were aligned for proper value analysis.  

• Through rating the ML-Driven services in the areas that were a priority to the 

respondents, conclusions were then inferred as to the likely impact of the tools on 

the software testing industry. 

• Data was gathered on each of the five tools through reviewing software 

demonstrations, whitepapers, training material and functional descriptions 

available online for each service. 

• Selenium Web Driver, a standard (non-ML driven tool) was then used to compare 

both standard and machine-learning automated tools  

• Dedoose was again used to quantitise the qualitative data which was then cross-

checked with data from the semi-structured interviews  

3.6  Detailed Approach  

The following is a detailed description of the interview questions and empirical analysis 

approach. The rationale for each question and empirical evaluation is explained as it 

relates back to one of the three research sub questions. 
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3.6.1 Research Design: Machine Learning in Software Test Practice 

The following are the interview questions and criteria under which were the services were 

assessed to answer the sub-question ‘How is machine learning (ML) being used to 

impact software testing techniques?’ 

Interview question 1  

Most organisations are still implementing a traditional software automation test strategy, 

if at all, where testers manually code and maintain automated scripts and use a tool like 

Selenium for organisation and execution. In your opinion, given the current maturity of 

Artificial Intelligence how can it be used in Software Automation? 

Rationale 

The capabilities of artificial intelligence and machine learning are relatively new to 

software testing. The rationale behind this question was to establish what the 

respondents considered as machine learning and their understanding of its maturity. 

Machine learning is a broad term so to initiate the interview it seemed pertinent to agree 

on an understanding of what machine learning meant to the respondent within the time 

horizon in which the interview was taking place. The question was designed to get an 

idea of how advanced the respondent thought machine learning was at the time. The 

respondents were selected because their roles required a high level of understanding of 

standard automation tools (i.e., automation tools that did not use machine learning), so 

they were well suited to provide an informed opinion as to the feasibility of aligning 

software test automation with machine learning.   

Response Groupings Description Ratings 

1. Maturity of ML in 

Testing 

The level of maturity which 

the respondents thought 

that machine learning had 

0 = Low Maturity 

10 = High Maturity 
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researched in respect to its 

applicability as a test tool 

2. ML/ST Media Exposure The extent to which 

machine learning tools had 

been discussed in industry 

related media and software 

test forums 

0 = Low Coverage 

10 = High Coverage 

 

Interview question 2 

There are now several AI-Driven Test Automation tools on offer in the market place. 

Has your organisation implemented any of them, or is it planning to? If not, why? If so, 

what was the business case for doing so and have you carried out a Cost-Benefit 

analysis? Do you think the service the tools provide is worth the cost?  

Rationale 

The aim of this question was to gain insight into if any of the respondents had any 

professional experience with AI-Driven test tools. The question was broken out into 

possible sub-questions which covered whether or not they had reviewed any tools and if 

they had what their opinion of them was, particularly from a cost-benefit perspective. 

When analysing these tools, it is important to factor in the cost of using them. While 

they might be powerful and offer a wealth of new features, they’re impact on the 

software testing industry will be impeded if the cost of integrating them outweighs the 

benefit they offer. This lead on to the broader discussion of how the tools could reduce 

cost in other areas (such as the time and cost spend on coding test cases with standard 

automation tools) to offset the overall cost of the services on offer. During the literature 

review it was clear that machine learning could be used to improve software testing 

techniques on an experimental level, if the cost was too high then the machine learning 

wouldn’t be used to improve software testing on an industry-wide scale. 
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Response Groupings Description Ratings 

1. ML Adoption Rate by 

Respondents 
The adoption rate of tools 

in the respondent’s 

organisation, from not 

being aware of them at all 

to adopting them fully 

0 – Not Aware of tools, has 

not looked at them 

10 – fully adopted ML 

tool/service 

2. Concern of Cost 
The importance attached to 

ensuring the cost doesn't 

outweigh the benefits 

0 – Does not mention cost 

at all 

10 – Cost is of the highest 

priority 

3. Reliability of ML 

Services 
Concern of the reliability of 

the test cases that are 

generated from machine 

learning 

0 – Does not mention 

reliability of generated test 

cases at all 

10 – Reliability is of the 

highest priority 

4. Security Concerns 
Importance of Security 

when adopting ML Services 

which integrate into the 

system 

0 – Does not mention 

security at all 

10 – Security is of the 

highest priority 

5. Ease of Integration 
Concern expressed the 

rate of effort involved in 

Integrating a machine 

learning tool into existing 

infrastructure 

0 – Does not mention 

integration at all 

10 – Ease of Integration is 

of the highest priority 
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6. Cloud Integration 
The Importance the 

respondents attached for 

the tools ability to integrate 

with cloud-based 

environments 

0 – Does not mention cloud 

integration at all 

10 – Cloud Integration is of 

the highest priority 

7. Ease of Use 
The importance attached to 

the ability of software 

testers and other end-users 

to learn the new tool 

0 – Does not mention 

usability at all 

10 – Usability is of the 

highest priority 

 

Empirical Analysis:  

Secondary Data Criteria Category 1 

Category:  Machine Learning Maturity 

Criteria Data Capture Ratings 

Company Maturity How long has the Company 

which provides the service 

been in existence?  

0 – less than a year 

10 – over 10 years 

Rationale 

The length of time that the company is in existence gives an indication of the current 

maturity of machine learning in software testing and provides an insight as to the likelihood 

that Software Test Leadership have been made aware of their services.  
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Secondary Data Criteria Category 2 

Category: Machine Learning Adoption Considerations 

Criteria Data Capture Ratings 

(Reliability) Quality of 

Generated Test Cases 

Coverage and Readability of 

generated test cases   

0 – no coverage or 

unreadable 

10 – total coverage and easy 

to read 

Cost of Tool Cost of tool compared to 

Standard tool and compared 

across providers. Where 

cost information is not 

accessible a high cost is 

assumed 

0 – Open Source 

10 - $10,000+ per month 

Ease for Testers to Learn 

Tool 

Usability of tool, including 

the difficulty level in creating 

automated test cases. 

Where coding is still 

necessary a high difficulty is 

assumed 

0 – High Difficulty. Testers 

will need to speed a lot of 

time on test creation 

10 – Represents a vast 

reduction on time spent to 

create automated test cases 

compared to standard 

automation 

Ease of Integration Set-Up How easy it is to integrate 

with an organisations 

infrastructure (compared to 

standard tool), including 

Continuous Integration 

0 – Easy to integrate 

10 – Prohibitively difficult to 

integrate 
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pipelines and Defect 

Tracking tools 

Ease of setting up Cloud 

Environment Integration 

An area that was mentioned 

in the interviews was the 

ability of the services to 

integrate with an 

organisation’s own Cloud 

Test Environments 

0 – Easy to integrate with 

Cloud environments 

10 – Prohibitively difficult to 

integrate 

Quality of Analytical Tools The quality of analytical 

tools, including Root Cause 

Analysis data and monitoring 

tools 

0 - Tools are of no use 

10 - Highest quality reports, 

etc. 

Quality of Support and 

Training Material 

The quality of training 

material available, including 

tutorials and customer 

support.  

0 - Low quality 

10 - High quality 

Security Threat from Tool Considering the network 

access that the service will 

need what threat do they 

pose if their system was 

compromised maliciously. 

Another consideration is 

what access they will have to 

sensitive Intellectual 

Property such as source 

code and business test 

cases 

0 – No Security Risk 

10 – Prohibitively high level 

of risk to the organisation 

Rationale 



 

 

48 

 

This category provides data on categories that software test leadership would consider 

when adopting machine learning services that are not directly rela ted to the features they 

offer. This provides insight into areas such as cost, risk and complexity of integration 

compared to benefits 

 

3.6.2 Research Design: Machine Learning & Commercial Availability   

The following are the interview questions and criteria under which were the services were 

assessed to answer the sub-question ‘How are commercial ML-Driven automated 

software testing tools different from traditional non-ML automated tools?’ 

Interviews Questions: 

Interview question 3 

Given the potential of AI software test tools what specific features do you think could 

impact on your current Test Strategy and what benefit would you like to see. For 

example, do you think they will make it easier for software testers to automate test 

cases? Do you think that these tools will enable faster execution times, and therefore 

faster product development? Do you think these tools will be difficult to integrate with 

existing infrastructure? Are there any other impacts you can think of, both positive and 

negative? 

Rationale 

This question was designed to gain an understanding of what value the respondents 

would like to see from ML-Driven tools. Their experience of standard automation gave 

them a practical grasp of the limitations of standard tools so they were in a good 

position to give an informed opinion of what areas they would like to see improved by 

ML-Driven tools. This information was made valuable when compared to actual 

capabilities of the tools, which were assessed during the empirical analysis of the tools 

themselves. Criteria such as speed of execution, ease of implementation, ability to 
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generate test cases, were discussed. Negative aspects such were also discussed, such 

as the potential skill shortage that might arise from software testers a requiring working 

knowledge of underlying machine learning concepts, or the need to analyse large sets 

of results produced by increased test coverage.  

Response Groupings Description Ratings 

1. Automatic Test Case 

Generation 

Importance attached to 

Automatic Test Case 

Generation capability  

0 – Does not mention 

automatic test case 

generation 

10 – Automatic Test Case 

Generation is of the highest 

priority 

2. Reduced Maintenance 

Effort 
Importance attached to the 

reduction of maintaining 

automated scripts 

0 – Does not mention 

Maintenance 

10 – Maintenance is of the 

highest priority 

3. Quick 

Feedback/Execution 

Times 

Importance attached to the 

ability of the tool to execute 

large sets of test cases 

continuously, as part of a 

CI process 

0 – Does not mention Test 

Execution/CI 

10 – Test Execution/CL is 

of the highest priority 

4. Automatic UI Testing 
Importance attached to the 

ability of machine learning 

to automate UI Testing 

0 – Does not mention UI 

Testing 

10 – UI Testing is of the 

highest priority 
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Empirical Analysis: 

Secondary Data Criteria Category 3 

Category: Machine Learning Features 

Criteria Data Capture Ratings 

Automatic Test Case 

Generation Ability 

Can the services generate 

test cases automatically 

without the need for human 

intervention?   

0 – No ability  

10 – Test cases are 

generated with no human 

intervention or design 

required 

Reduced Maintenance 

Effort 

Is there reduction in the 

effort needed to maintain 

automated costs once the 

underlying SUT has 

changed? 

0 – Maintenance is as high 

as standard tools 

10 – No Maintenance cost 

Quick Feedback/Execution 

Times 

The ability of Tool to 

execute large sets of test 

cases continuously. Can 

test case be run on the 

service’s cloud 

environment, quickly and 

without the need for 

hardware to be dedicated 

from the organisation’s 

network for execution 

0 – No test execution ability 

10 – High volumes of test 

cases executed at a 

significantly improved rate 
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Automatic UI Testing Ability for automatic UI 

testing explicitly mentioned 

and described. 

0 – UI testing not even 

implied 

10 – Automatic UI testing 

fully available 

Rationale 

What features are the tools offering and how can they be of benefit? Can they generate 

more efficient tests, reduce time in test creation, reduce cost of maintenance and 

expand code coverage? 

 

3.6.3 Research Design: Human Impact & Five-Year Forecast 

The following are the interview questions to answer the sub-question ‘How will the rate 

of adoption impact on professional software testing from both a human and 

business perspective within five years?’ 

No empirical data was available for this question as its nature is subjective and requires a 

certain amount of speculation. However, conclusions can be inferred from the data 

collected in the above sections.  

Interviews Questions: 

Interview question 4 

What impact do you think the introduction of AI software test tools will have on the 

Software Test profession (human-impact). Do you think it will lead to a reduction in the 

number of Software Testers employed by IT organisations? What positive impacts do 

you envisage for Software Testers? What negative impacts do you envisage for 

Software Testers? 
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Rationale 

This question was designed to discuss the impact of ML on the software profession 

from a human perspective. There is the possibility that ML will reduce the number of 

software testers required by a software organisation due to the capability of the new 

tools to generate test cases without the need for human design and intervention. For 

testers this could have a negative impact if this resulted in significant layoffs. There is 

also the possibility that ML-Driven tools will reduce the requirement for software testers 

to code automated test cases, freeing them up to adopt more creative tasks, such as 

higher-level planning and test design, or more in-depth test analysis. The role of the 

software tester might also be impacted by the need to grasp new skills such as data 

analysis, and machine learning understanding.   

Response Groupings Description Ratings 

1. Probably of Reduction 

of Tester Roles 
The likelihood of a 

significant reduction in 

Software Tester roles due 

to the introduction of ML 

0 – Not likely tester roles 

will be reduced 

10 – Extremely likely of test 

role reduction 

2. Career Advancement 
The likelihood of a positive 

impact on the Software 

Testers role through 

upskilling in ML-related 

tools 

0 – Not likely that impact 

will be positive  

10 – Extremely likely that 

test role will be improved 

through up-skilling 

3. Improved Creative 

Freedom 
The likelihood that ML will 

free Software Testers up 

for more creative tasks, 

providing better job 

satisfaction 

0 – Not likely that testers 

will be freed up for more 

engaging tasks  
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10 – Extremely likely that 

testers will be freed up for 

more engaging tasks 

 

Interview question 5 

How do you see AI evolving within the Software Test profession in the next 5 years? Do 

you believe that AI software test tools will gain traction in the market? Do you believe 

that there will be an inflection point whereby organisations will adopt AI tools across the 

industry, replacing much of the current non- AI software test tools? 

Rationale 

This set of questions were designed to reveal how the respondents predicted the 

adoption rate of ML-Driven tools would look within a timeframe of 5 years. The adoption 

rate of standard automation is still usually reported to be 30% or less in software 

organisations. There are a number of factors to consider when discussing this question. 

Many organisations abandoned software automation due to drawbacks like high 

maintenance costs or the high-skill involved in automation. If this perception manifests 

as a mistrust of all automation then this will hamper the rollout of ML-Driven tools. 

However, if it can be proven that AI can address these impediments to adoption then 

the uptake may be rapid. As leaders in the software industry, the respondents were 

well-informed of developments in the industry through regular reports, seminars and 

other related material. This question discussed whether information on ML-Driven tools 

was being made available via these channels, and to what extent. This would indicate 

the market share and current adoption rates of the tools currently.    

Response Groupings Description Ratings 
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1. Probability of 

Widespread Adoption 

in 5 Years 

Confidence that ML-Driven 

Tools will be used by a 

significant number of 

organisations in the next 5 

years. 

0 – ML Tools will not be 

used significantly in 5 years 

10 – ML Tools will definitely 

be used in significantly in 5 

years 

 

3.7  Problems Encountered & Lessons Learned 

3.7.1 Interviews 

One interview candidate dropped out due to time constraints.  

3.7.2 Empirical Analysis 

For the empirical analysis of the machine learning tools it was assumed that trial versions 

of the services would be accessible and suitable. It became apparent that machine 

learning was invariably offered as a service rather than a standalone tool. Whereas 

standalone tools can be downloaded and assessed in isolation, services require third 

party access for trial runs.  

The original plan was to trial these tools using the researcher’s employer as a test subject. 

The tools would have been used to automate test cases and execute them on the 

employer’s systems. Results would have then been compared to the standard tool used 

by the employer. Permission was granted to do this. However, access to these trial 

versions would have required introducing a security risk for each service under 

investigation. This five-fold security risk was deemed too high to progress with and as a 

consequence the research was altered from Quantitative Analysis to Qualitative Analysis, 

which relied on secondary material available from online sources. 

3.8  Conclusion 

The research was shaped by a pragmatist philosophy, which was determined by the 

nature of the investigation. The Functionalist paradigm was most appropriate to the 

investigation as it does not seek to interpret machine learning as a radical change to 

software testing but aims to assess it as a viable improvement to existing processes. 
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Research design encompassed a complementary two-dimensional approach that aimed 

to establish the value of machine learning as perceived by potential users compared to 

the observed value offered by machine learning services. These two qualitative methods 

provided the data required to establish the impact that machine learning will have on 

software testing within a timeframe of five years, as can be seen from the findings in 

Chapter 4.     
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4. Chapter 4: Findings and Analysis 

4.1  Introduction 

This chapter introduces the results of the data collection exercises from the semi-

structured interviews and the empirical analysis of machine-learning tools. Relevant 

excerpts from the four semi-structured interviews are included in addition to information 

acquired from the empirical analysis. Data is discussed as it pertains to each sub 

question. Dedoose was used to analyse the data and present significant findings which 

inform the inquiry of the original question. 

To analyse the data in Dedoose relevant excerpts were taken from each interview and 

service evaluation. The excerpts were then assigned a code and weighted according to 

their significance within the context of the interview question or evaluation criterium.  

157 excerpts were used and 40 codes to quantitise the data returned from the qualitative 

analysis exercises. Figure 4-1 is display of the project summary from Dedoose. 

 

FIGURE 4-1 PROJECT SUMMARY, SOURCE: DEDOOSE (2019) 

Interviews: 

Four industry leaders in the field of software testing were interviewed. Each respondent 

had experience in creating and implementing a software testing strategy that incorporated 

software test automation. Question responses were analysed as outlined in the previous 

chapter. Interviews were recorded using Skype. Recordings were saved in mp4 format 

and transcribed into word documents, which were uploaded to Dedoose for analysis. 

Analysed data was then transferred to spreadsheets for further analysis and grouping. 
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Empirical Analysis:  

Five commercial software testing services were investigated. The criteria for selection was 

that the tools had incorporated some form of machine learning into their solution and were 

identified as suitable samples through industry-related reports and evaluations, including:  

• Reviews for Software Test Automation. Gartner (c.2019).  

• 8 Innovative AI Test Automation Tools for the Future: The Third Wave Colantonio, 

J. (2017) 

• AI Driven Testing (AI-DT) open source tools. Stack Exchange (2018) 

 The following is a description of each service selected for this investigation 

Service Description 

Functionize 

Functionize was founded in 2015 and describes their tools as: 

‘Legacy testing exposes your business to incalculable risk. 

Functionize’s AI removes test churn, increasing the accuracy and 

efficiency of testers.’ Functionize (c.2019) 

TestSigma 

TestSigma were founded in 2017. Their services is describe as ‘AI-

Driven Test Automation Ecosystem for Web, Mobile Web, Android & 

iOS Apps, and API automated testing. No coding skills required.’ 

TestSigma (c.2019) 

Appvance.AI 

Appvance was founded in 2012, and describe the capability of their 

product as follows ‘Appvance IQ delivers transformational 

productivity gains in both test creation and execution, the former 

through AI scripting and codeless test creation, the latter through 

unified functional, performance and security testing.’ Appvance 

(c.2019) 
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TestIM 

TestIM was founded in 2014. ‘Testim uses artificial intelligence to 

speed-up the authoring, execution, and maintenance of automated 

tests.’ TestIM.IO (c.2019) 

Rainforest QA 

Rainforest were an established service before introducing ML into 

their processes. ‘We automate the QA process — not just tests — 

and include AI-based validation, on-demand testing, and automated 

test suite management, so you can align QA with the speed of your 

release goals and have confidence in every delivery.’ Rainforest QA 

(c. 2019) 

TABLE 4-1 MACHINE LEARNING TESTING SERVICES DESCRIPTION 

For comparison purposes Selenium Webdriver was also assessed using the same criteria.  

Service Description 

Selenium 

Web Driver 

Selenium is an open source automation tools that can be used with 

several programming languages including Java.  

‘Selenium automates browsers. Primarily, it is for automating web 

applications for testing purposes, but is certainly not limited to just 

that. Boring web-based administration tasks can (and should!) be 

automated as well.’ seleniumhq (c.2015) 

TABLE 4-2 SELENIUM WEB DRIVER DESCRIPTION 

Tools were assessed using material available online, from their own websites usually 

which contained product descriptions, video tutorials, white papers and online 

demonstrations. This information was then saved into word documents, which were 

uploaded to Dedoose for analysis.  

4.1.1 Findings: Machine Learning in Software Test Practice 

The following section details the findings from collected data designed to answer ‘How is 

Machine Learning (ML) being used to Impact Software Testing Techniques?’ 
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Interview question 1: 

As discussed in Chapter 3 the rationale behind this question was to establish the 

respondents’ perception of machine learning and if it was mature enough to begin making 

an impact on software testing. The second question was to assess the extent respondents 

had heard of machine learning being used in software testing via industry-related media, 

webinars, seminars, etc. 

Response Groupings Rsp.1 Rsp.2 Rsp.3 Rsp.4 

1. Maturity of ML in Testing 2 1 2 1 

2. ML/ST Media Exposure 1 2 1 2 

TABLE 4-3 INTERVIEW QUESTION 1 RESPONSE FREQUENCY  

The data set above represents how often the maturity of ML and the media exposure was 

discussed during the interviews. All four respondents discussed each topic at least once. 

Response Groupings Count Min Max Mean Median 

1. Maturity of ML in Testing 6 1 3 2 2 

2. ML/ST Media Exposure 6 1 3 1.8 2 

TABLE 4-4 INTERVIEW QUESTION 1 RESPONSE WEIGHTINGS 

The first row in Table 5-2 represents the how mature, or advanced each respondent 

thought machine learning was within the context of software testing. The minimum 

number is 1, representing that at least one respondent thought that machine learning had 

advanced to only a minimum level of impact on software testing. The mean number is 2, 

which suggests that across the respondents the opinion is that the maturity of machine 

learning is still extremely low, too low to be leveraged effectively in software testing. 

As respondent 4 suggested: “The impression I got is it that machine learning was more of 

an experiment than expecting real world value of it. I think there is potential there, but I 

think the testing domain is too diverse and unstructured to qualify for structured machine 

learning at this stage.” 



 

 

60 

 

The second row represents the extent to which the respondents have heard of machine 

learning in industry-related media. The mean figure is a low 1.8. Machine learning has 

been advertised and discussed seldom in software testing forums.  

Empirical Analysis Category 1:  Machine Learning Maturity Test 

Response Groupings Count Min Max Mean Median 

Company Maturity 5 2 7 5 5 

TABLE 4-5 EMPIRICAL ANALYSIS CATEGORY 1 WEIGHTINGS 

The data in Table 5-3 represents the age of the companies which were assessed. The 

youngest was two years, with two being around since 2012. The mean was five years. 

When these figures are compared to the average age of small business published by 

jpmorganchase (2014), which found that ‘32 percent of small businesses are 5 years old 

or less’ the mean age of the companies are within the age bracket of 32% of small start-

ups. This would suggest that ML-Driven software testing services, while early in 

development, have been established as viable business models with companies such as 

Appvance having been around for 7 years. When compared to the respondent’s data 

however, it can be argued that these companies are still largely unknown in the software 

testing industry.  

Interview question 2 

The next set of response groupings aim to uncover if the respondents have trialled any 

ML tools. Following on from that the aim was to understand what risks and benefits would 

be included in any assessment before adopting an ML-Driven tool into their test 

strategies. 

Response Groupings Rsp.1 Rsp.2 Rsp.3 Rsp.4 

1. ML Adoption Rate by Respondents 1 1 1 1 

2. Concern of Cost 0 0 1 2 
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3. Reliability of ML Services 0 1 2 2 

4. Security Concerns 0 0 2 0 

5. Ease of Integration 1 0 2 0 

6. Cloud Integration 1 3 0 0 

7. Ease of Use 3 4 3 2 

TABLE 4-6 INTERVIEW QUESTION 2 RESPONSE FREQUENCY 

Information to note from Table 5-4, which represents how often each topic was discussed 

by each respondent is that cost was only a concern for 2 of the respondents, and security 

was only mentioned by one respondent. Ease of use was discussed at great detail, which 

is understandable given the difficulty of using standard automation tools and the potential 

for ML-Driven tools to address this impediment.    

Response Groupings Count Min Max Mean Median 

1. ML Adoption Rate by Respondents 1 1 1 1 1 

2. Concern of Cost 3 6 7 6.3 6 

3. Reliability of ML Services 5 6 8 7.2 7 

4. Security Concerns 2 8 8 8 8 

5. Ease of Integration 3 7 7 7 7 

6. Cloud Integration 4 6 8 7 7 

7. Ease of Use 12 5 8 6.7 7 
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TABLE 4-7 INTERVIEW QUESTION 2 RESPONSE WEIGHTINGS 

The data represented in Table 5-5 shows that the actual adoption rate was non-existent, 

whereby only one respondent even considered ML tooling. Respondent 2 mentions: “And 

now we’re seeing the benefits or the cost of good testing coverage. So, I think we’re now 

starting to look at tooling, such as machine learning, that would help us in that.” No other 

respondents had even considered ML-Driven tooling as an option. 

Where cost was mentioned as a concern it was considered highly on the list of factors to 

consider. Respondent 3 drew the comparison of spending on machine learning with 

spending on more human testers: “Am I getting an extra 2 testers worth of value out of 

machine learning? If I hire two new testers, will they be able to do the work that I’m paying 

for this subscription service and the AI?” 

Reliability of machine-learning services was discussed and it factored highly for 

respondents two, three and four. The main concern was that if a machine learning tool 

was automatically generating, and self-healing test cases then how could it be confirmed 

these test cases were adding value without the requirement for testers to verify the 

accuracy of the tests. This speaks to the general scepticism of the respondents in the 

ability of machine learning to replace human testers as the creative source of test cases 

for front-end applications.  

The increased security threat was highlighted by Respondent 3, who considered 

uploading test cases to a third-party system as unacceptable, stating that “Security is a 

huge thing. I just wouldn’t upload test cases to a Third-Party company. I just wouldn’t do 

it.” 

Infrastructure integration was discussed, and two candidates were particularly curious as 

to the ability of machine learning to integrate with cloud environments. A mean score of 7 

indicated that a high importance was given to the adaptability of the services to integrate 

with established CI and other support systems. 

The potential for testers to easily create and analyse automated tests was of great interest 

to all respondents. Rapid test creation and execution is where the respondents could see 

a lot of the value residing in machine learning. Respondent 2 stated that “if the language 

to define the test script is far more natural language, then it’s going to make those 

business users far more productive” 
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Empirical Analysis Category 2: Machine Learning Adoption Considerations: 

Criteria Count Min Max Mean Median 

(Reliability) Quality of Generated Test 

Cases 
5 0 4 1.4 0 

Cost of Tool 5 5 8 7 7 

Ease for Testers to Learn Tool 5 4 8 6.2 6 

Ease of Integration Set-Up 5 3 7 5 5 

Ease of setting up Cloud Environment 

Integration 
5 3 3 3 3 

Quality of Analytical Tools 5 5 8 5.8 5 

Quality of Support and Training Material 5 3 7 5.6 7 

Security Threat from Tool 5 3 8 4.6 4 

TABLE 4-8 EMPIRICAL ANALYSIS CATEGORY 2 WEIGHTINGS 

The data in Table 5-6 represents the weighted values for each of the criteria that were 

designed to align with the risks and benefits of adopting ML-Driven tools discussed during 

the interviews.  

The first item ‘(Reliability) Quality of Generated Test Cases ’ was attributed a low score as 

only two of the tools offered the ability to generate test cases automatically. Test cases 

that were generated were difficult to read, which means deciphering results would involve 

a high level of effort and increase the need for human intervention.  
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Inevitability costs were higher than using an open source tools such as Selenium. $10,000 

per month was suggested by one service for 30 testers using the tool, which represents a 

significant increase to spending on test services. However, this cost would be offset by the 

reduction in costs of running an inhouse Selenium grid solution and by the time saved 

from the testers being able to write scriptless automated tests (tests that don’t require any 

coding).  

All of the tools provided some type of scriptless automation, but two tools actively 

encouraged testers to use code to increase the quality of scripts. TestIM claimed that 

‘Using code in your tests is the best way to make sure they are reusable and easy to 

maintain.’ This would represent a return to the cost of scripting automated scripts incurred 

by standard tools. As this is one of the highest concerns expressed by the respondents 

this would discourage the adoption of machine learning tools. 

Integration of the tools was straightforward for on-premise testing. Most offered solutions 

of integrating with the cloud system of the SaaS for creation and execution or provided a 

solution to run the system within the organisations own internal network, or a hybrid 

solution. The tools that scored highest in this category were capable of integrating with the 

most third-party services. Functionize offers integration with: AWS CodePipeline, Bamboo 

CI, Circle CI, GitHub, Heroku, Jenkins, Jira, Pagerduty, Spinnaker.io, Travis CI, 

PagerDuty, ForBugz, Sentry.io, GitLab, Slack, Hipchat, Jira. However, none of the 

services explicitly stated that they could easily integrate with a test system hosted in a 

Cloud. This suggests that this may be more complex, and as such the ‘Ease of setting up 

Cloud Environment Integration’ was weighted as low.    

All services offered greater analytical capability and reports than the standard Selenium 

tool. Many of them offered monitoring tools which offered visibility of results as they were 

running in real-time while reports offered many levels to drill-down to identify where and 

when failures occurred, providing easier root cause analysis. Functionize states that it ‘will 

visually learn your application-layout and identify any test failures or anomalies leveraging 

our Adaptive Event Analysis™ (AEA) Engine.’ 

‘Quality of Support and Training Material’ varied, with one service providing only a 

selection of blogs to walkthrough their services. Others however had a comprehensive list 

of whitepapers, videos and 24-hour support made available to clients. 
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The security threat of for most of these tools would be similar to any service that was 

allowed access to an organisation’s infrastructure. If the service itself was compromised 

then there is a comparable threat to the organisation, depending on the oversight that the 

organisation put in place. All services require the organisation to whitelist their systems in 

order to work. One interesting declaration was from Rainforest, which stated that ‘All 

Rainforest testers are required to sign a Non-Disclosure Agreement with Rainforest in 

order to test with us.’ Whether or not this would make Respondent 3 more or less inclined 

to grant access to a Third-Party company is debatable.  

4.1.2 Findings: Machine Learning & Commercial Availability   

The following section details the findings from collected data designed to answer ‘How 

are Commercial ML-Driven Automated Software Testing Tools different from 

Traditional non-ML Automated Tools?’ 

Interview question 3: 

The purpose of this question was to uncover what specific capabilities the respondents 

would like to see from machine learning, and the value of each one. The machine learning 

services were then assessed to review how close each was to providing these capabilities 

to expectations of the respondents.  

Response Groupings Rsp.1 Rsp.2 Rsp.3 Rsp.4 

1. Automatic Test Case Generation 2 3 1 1 

2. Reduced Maintenance Effort 2 1 0 1 

3. Quick Feedback/Execution Times  0 0 2 0 

4. Automatic UI Testing 0 0 1 0 

TABLE 4-9 INTERVIEW QUESTION 3 RESPONSE FREQUENCY 

Data in table 5-7 finds that all candidates were interested in the capability of machine 

learning to automatically generate test cases, without the need for human intervention. A 

reduction in the cost of maintaining scripts was also highly sought. Rapid feedback and UI 

testing was only discussed during Respondent 3’s interview. 
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Response Groupings Count Min Max Mean Median 

1. Automatic Test Case Generation 7 3 10 7.1 8 

2. Reduced Maintenance Effort 4 7 8 7.5 7.5 

3. Quick Feedback/Execution Times  2 7 7 7 7 

4. Automatic UI Testing 1 2 2 2 2 

TABLE 4-10 INTERVIEW QUESTION 3 RESPONSE WEIGHTINGS 

From Table 5-8 the mean values of automatic test case generation and reduced 

maintenance were of highest value. Respondent 4 gave his opinion on test generation as 

“From a positive perspective – essentially, if you’re fast-tracking a test case creation it is 

hugely valuable. And that goes without a shadow of a doubt”. All respondents saw the 

most value in these capabilities while rapid feedback was of high value to one respondent. 

UI testing was not rated highly as a desirable feature of machine learning.  

Empirical Analysis Category 3: Machine Learning Features 

Criteria Count Min Max Mean Median 

Ability to Automatically Generate Test 
Cases 

5 0 8 3.2 0 

Self-Healing of Broken Tests 5 3 7 4.8 5 

CI Execution Capabilities and Feedback 5 8 9 8.4 8 

Automatic UI Testing Capability 5 1 7 2.4 1 

TABLE 4-11 EMPIRICAL ANALYSIS CATEGORY 3 WEIGHTINGS 
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This quality of each capability was assessed for each machine learning tool. When this 

data is correlated with the value expressed by the respondents a useful mechanism is 

provided which the current impact of machine learning can be evaluated.  

The capability for automatic test case generating was only available in two of the services. 

All offer an easier method of creating automated tests. Where test cases are generated 

automatically human intervention is still required to review results and ensure that test 

coverage is adequate. Automatically generated test cases also learn from test cases that 

have already been uploaded to the system. The mean was assessed to be low of 3.2 for 

this category. 

Self-healing test capability is offered by all services, however the level of human 

intervention required depends on the level of change of the underlying SUT. Where an 

SUT screen is altered machine learning can identify what changed and usually easily 

update the test case, through the use of multiple methods of locating an element, rather 

than relying on one method of locating an element, which is the case in Selenium. 

However, if functional paths through the system change significantly machine learning can 

provide information and offer suggestions but ultimately human intervention is still 

required to verify that changes to automated test cases are valid. From the interviews this 

capability was valued highly with a mean of 7.5 but the capability was allocated a 

relatively low mean of 4.8. 

All services offered a high rate of execution, with many offering the capability of executing 

test cases on solutions that could simulate test runs on a range of client operating 

systems, browser types and versions. This execution capability provides a rapid feedback 

to clients but also requires that the client’s test systems are available and capable of 

handling the increased levels of traffic that these test execution runs would generate. This 

is the highest rated capability with a mean of 8.4. 

Automatic UI testing was only explicitly mentioned by only one service so the mean is low 

for this capability at only 2.4. The mean for UI testing as a desirable capability for 

respondents was only 2 so, this would not necessarily be an impediment to the adoption 

of ML. 
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4.1.3 Findings: Human Impact & Five-Year Forecast 

The following section details the findings from collected data designed to answer ‘How 

will the Rate of Adoption impact on Professional Software Testing from both a 

Human and Business Perspective within Five Years?’ 

Interview question 4:  

Question 4 was subjective; in that it required a certain amount of speculation as to what 

impact machine learning would have on the professional tester role.  

Response Groupings Rsp.1 Rsp.2 Rsp.3 Rsp.4 

1. Probably of Reduction of Tester Roles 1 4 3 2 

2. Career Advancement 3 0 2 1 

3. Improved Creative Freedom 1 1 0 0 

TABLE 4-12 INTERVIEW QUESTION 4 RESPONSE FREQUENCY 

The potential reduction of the need for software testers was discussed with all 

respondents. Three of the respondents spoke of the potential of machine learning to 

improve the software testing role by introducing new skills and areas of interest. The 

potential for testers to be freed up for more creative and rewarding work was discussed 

with two of the respondents, where the potential reduction of low-level mundane tasks 

was discussed by all. 

 

Response Groupings Count Min Max Mean Median 

1. Probably of Reduction of Tester Roles 10 2 8 3.2 3 

2. Career Advancement 6 5 8 6.8 7.5 

3. Improved Creative Freedom 2 7 7 7 7 
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TABLE 4-13 INTERVIEW QUESTION 4 RESPONSE WEIGHTINGS 

The reduction of the tester role was role was discussed 10 times during the interview 

process and only one respondent, Respondent 4, felt that there would be a reduction in 

the number of software roles brought about by the advent of machine learning. The mean 

number was assessed at 3.2, providing valuable insight into how the respondents thought 

software testing roles would be impacted by machine learning. As Respondent 1 

suggested: “I don’t see it leading to a reduction in the number of software testers because 

at the end of the day, there are certain things that still have to be manually done. I’m 

making the assumption that even with the AI tools, you have certain kind of test scenarios 

where we just test manually.” 

Rather than test roles being reduced or diminished respondents thought that machine 

learning will bring new opportunities to software testing. Respondent 1 goes on to say “On 

the plus side, which for me far outweighs the potential fear factor, is the fact that it’s new 

technologies. We’d be learning and building up new knowledge around these new 

technologies, understanding a different way how AI can build out and automate tests.” 

This generally seemed to be the perception as the mean for this grouping was set as 6.8. 

For those respondents that did discuss the reduction of mundane tasks and the increased 

time spent on more creative testing tasks, such as test design and analysis, the optimism 

was high and Improved Creative Freedom was scored highly as likelihood at 7. 

Interview question 5 

The goal of this question was to gain insight from the respondents, as leaders in software 

testing as to how machine learning will grow in the field over the next five years.  

Response Groupings Rsp.1 Rsp.2 Rsp.3 Rsp.4 

1. Probability of Widespread Adoption in 5 

Years 
2 1 3 3 

TABLE 4-14 INTERVIEW QUESTION 5 RESPONSE FREQUENCY 

The topic was discussed with all respondents, and came up multiple times during three 

interviews. 
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Response Groupings Count Min Max Mean Median 

1. Probability of Widespread Adoption in 5 
Years 

9 2 6 3.3 3 

TABLE 4-15 INTERVIEW QUESTION 5 RESPONSE WEIGHTINGS 

A low score here represented the opinion that machine learning would not have a high 

adoption rate across the industry over the next five years, whereas a high score 

suggested that ML-Driven tools would move significantly towards being an industry-

standard. Only Respondent 2 predicted a significant change, saying it “will absolutely gain 

traction because AI offers such promise across the entire IT organisation, you’ve got to 

imagine that where there is an element of testing that is regression testing or evolution 

testing, that it’s got to be a sweet spot for AI.” 

The other three candidate were less sure that machine learning will significantly change 

the software testing landscape within a timeframe of five years and the mean came out as 

a low 3.3. 

4.2  Conclusion 

The analytical capabilities offered by Dedoose provided instrumental in correlating data 

from the interviews and ML-Driven testing services. Data collected from the interviews 

found that machine learning is not yet considered as alternative to manual and standard 

automation approaches in the software testing industry. When compared to the 

capabilities of the ML-Driven services, the areas in which respondents expressed value 

varied to the extent that that value could be achieved. These comparisons provided a 

framework from which conclusions could be inferred, which are discussed in Chapter 5.  

4.3  Limitations 

The comparison used for the machine learning tools was based on the standard 

automation tool used by the researcher’s employer, Selenium Web Driver. This business 

model is a business-to-business web-based solution. This meant that the research was 

limited to assessing machine learning as an impact to this business model predominantly. 

A further limitation which should be highlighted is that in order to quantitise the qualitative 

data weightings were allocated to data collected which are prone to subjective bias.  
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5. Chapter 5: Conclusions and Future Work 

5.1  Introduction 

This chapter will discuss findings from the previous chapters and draw conclusions from 

the information gathered during the literature review and research. The primary question 

is How can Machine Learning be Leveraged for Software Testing within a Timeframe 

of Five Years?  This question is discussed within the context of the following main 

themes:  

• The value that machine learning offers software testing in terms of improved 

capability  

• The commercial availability and adoption rates of machine learning services in the 

software testing industry 

• Disadvantages to machine learning services which would impede adoption 

• Positive and negative implications for humans working in software testing   

• The five-year forecast for machine learning in software testing 

5.2  Answering the Research Question 

5.2.1 Improved Capabilities  

The integration of machine learning into software testing has produced promising results 

as is evidenced by experiment results such as the one conducted by Rosenfeld, A. et al 

which found that machine learning could ‘automatically cover a large portion of the human 

testers’ work suggesting a significant potential relief in the manual testing efforts.’ Machine 

learning can be used to learn and improve to provide better fault detection systems, as 

reported by Bowes, D. et al which found ‘that mutation-aware fault prediction can 

outperform traditional fault prediction, for a range of predictive modelling machine learning 

algorithms.’ A range of experiments described more innovative applications in the areas of 

improved branch coverage, model-based testing and stabilising pre-existing tests.  

Machine learning has been adapted and commercialised with services offering improved 

capabilities in four general categories: 
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Improved test case creation is facilitated by machine learning through ‘scriptless’ 

automation, which removes the requirement to code automated tests, allowing for faster 

and cheaper test creation.  

Services also provide the ability to automatically generate new test cases, however this 

capability was limited, and was not offered by all of the services included in the study. As 

respondents considered this high on their priorities for machine leaning and services 

scoring low for actually delivering on this capability the implication is that the services are 

still limited in their ability to meet customer expectations in this area.  

The services make it easier for testers to maintain automated scripts, an area identified 

by Throvagunta, S. et al (2018) during their review of the ‘Main challenges in achieving 

desired level of test automation’ where 61% of respondents found 'it difficult to automate 

because our applications change too much with every release'. This was echoed by 

respondents from this research where reduced maintenance effort scored highly on their 

list of concerns. Services offer ‘Self-Healing’ tests. This capability was limited however, 

and only straightforward changes can be made directly, with human intervention required 

for more complex functional changes brought about changes to the SUT. A mean of 4.8 

out of 10 was calculated for this capability which again is relatively low compared to the 

7.5 priority score that respondents provided. This represents another limitation of machine 

learning that would discourage potential clients. 

Test cases can be executed through the services’ systems. All the services included in the 

research offered the ability to execute large sets of test cases using their systems to host 

execution jobs. This provides the ability to execute test cases in parallel, on an array of 

different client operating systems and browser types, providing increased coverage and 

eliminating the requirement for clients to maintain their own internal grid structures. The 

advantage is quicker feedback and improved analytical ability as the services also 

offer improved root cause analysis and defect reporting through machine learning 

application. This scored highly on respondents’ priorities and the mean was calculated 

highly on the empirical evaluation of the services. Currently, this is one of the stronger 

selling points of machine learning services.   

Automated UI tested has also been reported as an advantage of machine learning. ‘By 

emulating the human eye and brain, our algorithms only report differences that are 

perceptible to your users’ according to Applitools (c.2018). However, for the services 

included in the research the mean for Automatic UI testing was only 2.4. The mean for UI 
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testing as a desirable capability for respondents was only 2 so, this would not necessarily 

be an impediment to the adoption of ML. 

5.2.2 Commercial Availability and Adoption 

The availability of ML-Driven services is a factor which indicates the extent to which 

machine learning will impact software testing practices. Awareness of ML-Driven tools 

was very low amongst respondents which implied that machine learning currently has a 

very low impact on software testing currently. It was found that respondents were not 

exposed to any machine learning related material in any of the industry forums they were 

involved in and they had no exposure to services via advertising or sales.  

A review of the companies providing the services found that they were relatively young, 

with the mean being just five years. While the companies were relatively young their ability 

to remain in business for a period of five years suggests that machine learning in software 

is a viable business model, and will grow further as awareness grows. 

5.2.3 Potential Disadvantages and  

The concerns of software testing leadership about adopting ML-Driven services also 

provides informative metrics which can be applied to the question under investigation. 

Concerns discussed and raised by respondents included  

• Concern of Cost 

• Reliability of ML Services 

• Security Concerns 

• Ease of Integration 

• Cloud Integration 

• Ease of Use 

While standard automation tools like Selenium are open source, machine learning 

currently is available only as a subscription service. This featured highly on respondents’ 

priorities with a mean of 6.3. The costs of the services were rated at a high 7. When 

considering the cost however, the savings implied by the services should be taken into 

account, such as reduced time on creating test cases, providing faster feedback and 

reducing manual test effort. Costs can be offset also by reduced maintenance of scripts, 

and a reduction of costs on maintaining an internal grid of client environments to execute 
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the test scripts. Organisations considering adopting one of the services would need to 

perform a full cost-benefit analysis before making a decision. While one service was 

costed at $10,000 per month for 30 users, this is well below the average salary for one 

tester. If test creation could at least partially be covered by machine learning then 

arguably the headcount of testers could be reduced to cover this cost. If savings can 

outweigh the costs then obviously adoption rates would be positively impacted. 

Reliability of automatically generated test cases was another concern. How can the test 

cases that machine learning algorithms generate be validated and trusted to effectively 

test a system? Only two service providers offered this capability, and those services that 

did produced large volumes of test cases that still needed to be analysed manually. The 

suggested progression of automated testing as illustrated in Figure 2-4 suggests that the 

ability for machine learning to automatically create test cases is still an aspiration rather 

than a reality. When ML-Driven tools can reliably generate test cases with minimal human 

intervention then software test leaders will start taking a genuine interest.  

There are increased security concerns as ML-Driven tools will require access to internal 

test environments and intellectual property in the form of test cases and functional design. 

Organisations which are more security conscious might baulk at introducing a new level of 

vulnerability where one did not exist beforehand. As service providers grow in maturity 

and reputation, they will need to establish trust to allay these fears. Organisations will 

need to perform a comprehensive risk-analysis before integrating ML-Driven services into 

their operations.  

ML-Driven tools are integrated into organisations continuous integration systems to 

execute tests regularly. Organisations might also require integration with other support 

systems, like defect tracking tools. This scored a high rate of 7 for respondents and 

scored a 5 for ease of integration. Organisations might find they need to modify internal 

structures to accommodate integration, which might incur extra cost which would 

negatively impact on adoption rates of machine learning services.  

A significant drawback of standard automation tools is the skill level involved in 

successfully implementing them. This is highlighted in Figure 2-5 where 48% respondents 

cited lack of skills as a challenge when adopting automation. Respondents interviewed in 

this research were concerned about the usability of machine learning tools, with a score of 

6.7 calculated. ML-Driven services scored highly at 6.2 for ease of use. ML-Driven tools 

make it easier to create automated tests, with the necessity for coding varying across 
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tools. The ability to automate without coding is a strong selling point as it reduces the 

delay in producing automated scripts, which provides faster feedback and reduces tester 

effort and training requirements. Evidence suggests that this could be a strong selling 

point, particularly for organisations that have not adopted automation at all and would 

prefer not to train testers how to code. 

5.2.4 Human Impact 

Investigating the impact of machine learning on the software test profession entailed 

assessing the probability of a reduction of software testing roles, while also researching 

possible changes to the nature of work required of the role.  

Respondents mostly returned a low score for this question on the likelihood of a reduction 

in tester roles, with the mean calculated at 3.2. The overriding impression was that 

software test roles would not be reduced. The respondents argued that software testers 

would still need to be involved in design of test cases and interpretation of results. From 

studying the test generation and creation features of ML-Driven tools this argument is 

verified to a certain extent as testers are still required to create test cases.  

Positive implications for the test roles were that there would be added job satisfaction due 

to the introduction of new skills related to machine learning, such as becoming familiar 

with ML-Driven tools, Business Intelligence, Data Analysis skills, etc. Respondents 

returned a 6.8 score for the likelihood of a positive impact on the software tester role 

through upskilling in ML-related practices. A mean of 7 was calculated as the probability 

that there would be improved levels of creative freedom.  

However, the introduction of more complex tasks to the test role could be a poison chalice 

as Van De Ven, T., et al suggest that the ‘Traditional tester is no longer adequate, as 

working with AI requires professionals with a diverse range of competencies such as 

testing, mathematical optimization, neuro-linguistic programming, AI, business intelligence 

skills and algorithmic knowledge’ . The potential change to the skill set required by 

software testing roles might be so radical that current testers will find they are lacking in 

the ability to adapt. Results from this investigation however, suggest that radical changes 

such as these will not happen soon, and will probably not take place within five years.   
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5.2.5 Five Year Forecast 

Respondents were sceptical that ML-Driven tools would experience wide-spread adoption 

within a timeframe of five years. The mean score for this grouping was calculated at a low 

3.3 out of 10. Only one candidate thought that adoption rates would occur significantly. 

Respondent 1 suggested that ‘There’ll always be some companies who like to be leading 

edge – it’s their modus operandi to always be leading edge, and be the first to come up 

with a new set of technology and champion it. But I think it’ll take time. Companies adopt 

change or embrace change at different speeds and paces. I don’t see any time in the near 

future where non-AI software tools will be redundant.’ For ML-Driven tools to become an 

industry standard there will need to be more case studies which showcase their benefits. 

It has been established that the respondents have not been made aware of any the 

services from software testing forums and industry media and none have any plans to 

introduce machine learning into their practices in the near future. The information 

collected from this investigation suggests that ML-Driven Services are still in a very early 

stage of development. While it is difficult to predict the future accurately it would seem that 

widespread adoption will not occur within five years.   

5.3  Conclusion 

There are many beneficial applications available from machine learning which can be 

adopted by software testing practices. These benefits can be costly however, and those 

that are most sought by leaders are not yet fully realised. Fully automated test case 

generation and test case maintenance are still not available and human intervention is still 

required. However, the ML-Driven services should not be dismissed as they do offer 

value. This value, arguably, would be most apparent to organisations who have yet to 

successfully integrate a standard automation strategy. If software testers are provided the 

ability to produce scriptless automated scripts using a tool that also enables them to 

quickly identify where and how an automated test is broken by changes to the SUT then 

the adoption rate of ML-Driven tools could find traction quickly. As pressure to deliver 

stable software grows, the imperative for rapid feedback on the quality of the software will 

grow proportionally. It is perhaps this imperative that will drive the adoption rates of ML-

Driven software test tools. However, given the current very low adoption rate of ML-Driven 

services and lack of awareness of machine learning capabilities the rate of adoption does 

not look set to increase significantly within a five-year time frame. 
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5.4  Future Work 

To extend on the research conducted during this investigation a quantitative research 

method could be used to fully assess the cost benefit analysis of using a Machine 

Learning tool. This would entail designing a set of test cases beforehand. The same set of 

test cases could then be automated using a standard automation tool like Selenium and 

an ML-Driven automated tool. 

Information could be gathered by: 

• Comparing the time taken to automate the script using each tool 

• Comparing the time taken to fix broken tests after a major upgrade 

• Comparing the cost of executing the scripts on an inhouse Selenium grid 

compared to executing the test cases on a hosted cloud service 

• Assessing the security risk of using the ML-Driven service and the cost of 

mitigating the risk should the tool be adopted 

• Assessing the time saved on UI Testing, assuming it was available 

There would be other implied costs associated with the change process in adopting an 

ML-Driven tool which would need to be factored in.  

Machine learning is coming to software testing, probably not in the next five years, but it 

looks certain to make an impact at some stage over the coming decades. As the CEO of 

Appvance, Surace, K. (2018) advices ‘While small companies and start-ups may try 

anything new, even a new recorder labelled “AI”, high quality enterprises don’t change 

easily or quickly and are not easily fooled with marketing hype. They need to see real 

impact across hundreds of applications. And true enterprise level support to roll out AI 

generated tests over time, with care.’  
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Project Title:  An Investigation into the impact of AI-Tools on the Software Testing Profession   

Name of Lead Researcher: Karl Morrissey   

Name of Supervisor:  Paula Roberts   

TCD E-mail: morrisk4@tcd.ie Contact Tel No.: 0861574603   

Course Name and Code (if applicable): Management of Information Systems   

 Estimated start date of survey/research: 25/03/2019   

I confirm that I will (where relevant):   

• Familiarize myself with the  General Data Protection Regulation Act and the College Good Research 

Practice guidelines http://www.tcd.ie/info_compliance/dp/legislation.php;   
• Tell participants that any recordings, e.g. audio/video/photographs, will not be identifiable unless 

prior written permission has been given. I will obtain permission for specific reuse (in papers, talks, 

etc.)   
• Provide participants with an information sheet (or web-page for web-based experiments) that 

describes the main procedures (a copy of the information sheet must be included with this 

application)   
• Obtain informed consent for participation (a copy of the informed consent form must be included 

with this application)   
• Should the research be observational, ask participants for their consent to be observed   
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used   
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• Act in accordance with the information provided (i.e. if I tell participants I will not do something, 

then I will not do it).   

   

   

  Signed:            Date: 21/03/2019   

Lead Researcher/student in case of project work   
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Part B 

   

Please answer the following questions.   Yes/No   

Has this research application or any application of a similar nature connected to this research project been 

refused ethical approval by another review committee of the College (or at the institutions of any 

collaborators)?   

No   

Will your project involve photographing participants or electronic audio or video recordings?   Yes   

Will your project deliberately involve misleading participants in any way?   No   

Does this study contain commercially sensitive material?   No   

Is there a risk of participants experiencing either physical or psychological distress or discomfort?  If yes, 

give details on a separate sheet and state what you will tell them to do if they should experience any such 

problems (e.g. who they can contact for help).   

No   

Does your study involve any of the following?   Children (under 18 years of age)   No   

People  with  intellectual  or  

communication difficulties   

No   

   Patients   No   
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School of Computer Science and Statistics Research Ethical Application Form   

 Details of the Research Project Proposal must be submitted as a separate document  to include the following 

information:   

   
1. Title of project   
2. Purpose of project including academic rationale   
3. Brief description of methods and measurements to be used   
4. Participants  -  recruitment  methods,  number,  age,  gender,  exclusion/inclusion  criteria,  

including  statistical justification for numbers of participants   
5. Debriefing arrangements   
6. A clear concise statement of the ethical considerations raised by the project and how you intend 

to deal with them   
7. Act etc.   
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 I confirm that the materials I have submitted provided a complete and accurate account of the research I 

propose to conduct in this context, including my assessment of the ethical ramifications.   

   

Signed:                         Date: 21/03/2019   

Lead Researcher/student in case of project work   

   

There is an obligation on the lead researcher to bring to the attention of the SCSS Research Ethics 
Committee any issues with ethical implications not clearly covered above.   
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If external or other TCD Ethics Committee approval has been received, please complete below.   
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Part E 

   

If the research is proposed by an undergraduate or postgraduate student, please have the below section 

completed.   

   

   

 

     

Completed application forms together with supporting documentation should be submitted 
electronically to the online ethics system - https://webhost.tchpc.tcd.ie/research_ethics /  When your 

application has been reviewed and approved by the Ethics committee,  hardcopies with original  
signatures should be submitted to the School of Computer Science & Statistics, Room 104, Lloyd 

Building, Trinity College, Dublin 2.   

External/TCD ethical approval has been received and no further ethical approval is required from the School’s Research 

Ethical Committee. I have attached a copy of the external ethical approval for the School’s Research Unit.   

Signed: ..................................................................................   Date: ............................................ ......................   

Lead Researcher/student in case of project work   

I confirm, as an academic supervisor of this proposed research that the documents at hand are complete (i.e. each ite m on the 

submission checklist is accounted for) and are in a form that is suitable for review by the SCSS Research Ethics Committee   

    

Signed:      Date: ........... .....26/3/19........................   

                                             Supervisor 
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CHECKLIST   

   

Please ensure that you have submitted the following documents with your application:   

   

1.    • SCSS Ethical Application Form   Y   

2.    • Participant’s Information Sheet must include the following:   

a) Declarations from Part A of the application form;   

b) Details provided to participants about how they were selected to participate;   

c) Declaration of all conflicts of interest.   

Y   

3.    • Participant’s Consent Form must include the following:   

a) Declarations from Part A of the application form;   

b) Researchers contact details provided for counter-signature (your participant 

will keep one copy of the signed consent form and return a copy to you).   

Y   

4.    • Research Project Proposal must include the following:   

a) You must inform the Ethics Committee who your intended participants are   

i.e. are they your work colleagues, class mates etc.   
b) How will you recruit the participants i.e. how do you intend asking people to 

take part in your research? For example, will you stand on Pearse Street asking 
passers-by?   

c) If your participants are under the age of 18, you must seek both 

parental/guardian AND child consent.   

Y   

5.    • Intended  questionnaire/survey/interview  protocol/screen  shots/representative 

materials (as appropriate)   

Y   

6.    • URL to intended on-line survey (as appropriate)      

 

Notes on Conflict of Interest   

1. If your intended participants are work colleagues,  you must declare a potential conflict of 
interest: you are taking advantage of your existing relationships in order to make progress in your 

research.  It is best to acknowledge this in your invitation to participants.   

2. If your research is also intended to direct commercial or other exploitation, this must be declared. 

For example, “Please be advised that this research is being conducted by an employee of the 

company that supplies the product or service which form an object of study within the research.”    

   

Notes for questionnaires and interviews   
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1. If your questionnaire is paper based, you must have the following opt-out clause on the top of   

each page of the questionnaire:  “Each question is optional.  Feel free to omit a response to 

any question; however the researcher would be grateful if all questions are responded  

to.”   

2. If you questionnaire is on-line, the first page of your questionnaire must repeat the content of 
the information sheet. This must be followed by the consent form. If the participant does not 
agree to the consent, they must automatically be exited from the questionnaire.   

3. Each question must be optional.   

4. The participant must have the option to ‘not submit, exit without submitting’ at the final 
submission point on your questionnaire.   

5. If you have open-ended questions on your questionnaire you must warn the participant against 

naming third parties: “Please do not name third parties in any open text field of the 

questionnaire. Any such replies will be anonymised.”   

6. You must inform your participants regarding illicit activity:   “In the extremely unlikely event 

that illicit activity is reported I will be obliged to report it to appropriate authorities.”    
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TRINITY COLLEGE DUBLIN  

   

INFORMATION SHEET FOR PROSPECTIVE PARTICIPANTS   

   

   

Background:   

You are invited to participate in this study on Artificial Intelligence use in Software Testing which aims to 
establish how AI is impacting on the Software Testing industry and gain information on how its use will 

grow across the profession in the next 5 years.   

   

To do this I am gathering information by interviewing managers and leaders in the f ield of Software 
Testing to gain expert opinions on the topic. To that end I would appreciate your participation in my 

study.   

Additionally, I am reviewing what functionality is available by AI software test tools and how this 
functionality differs from established non-AI software test tools currently in use. Through researching 

specialist Software Testing websites such as saucelabs.com, sqa.stackexchange.com, marutitech.com 

and gartner.com I have shortlisted 5 market leaders in AI software test tools to review.   

   

Interviews and Study Conducted by:   

This study is being carried out by myself, Karl Morrissey in the School of Computer Science and Statistics 

at Trinity College Dublin. This study is being carried out as part of the requirements for a M.Sc. i n 

Information Systems Management at Trinity College Dublin.   

   

Participant Criteria:   

I am seeking participants who are Leaders in the field of Software Testing and who have an active role in 

assessing tools and methodologies that are used in the Software Test Strategy of the ICT function in their 

respective companies.    

   

Procedure:   

I will be asking specific questions on the technical and human impact of AI in Software Testing, in addition 

to questions around the adoption of AI tools in IT. Your responses will be used to answer the overall 
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question as to how AI is being used in Software Testing and how its use will grow in the industry over the 

next 5 years.   

   

Expected Duration:   

I expect the interview to last 30-45 minutes   

   

Risks   

I do not expect there to be any risks to the participant and a transcript of the interview will be made 

available on request.   

   

Withdrawal:   

Your participation is entirely voluntary, and you can withdraw at any time without penalty. In order to  

withdraw, simply email me @ morrisk4@tcd.ie and I will remove your data from my study.    

   

Questions:   

Each question is optional. Feel free to omit a response to any question during the interview; however, I 

would be grateful if all questions are responded to.   

   

Debriefing:   

A transcript of the interview will be made available on request by emailing me at morris4@tcd.ie.    

   

Preservation of participant and third-party anonymity in analysis, publication and presentation of 
resulting data and findings:   

The data will be analysed in order to establish expert opinions on the use of AI in Software Testing. The 

interviews will be audio recorded for transcribing at a later time. No names will be published in my final 
study. I plan to publish the results of the research in academic journals and conference proceedings. I 

will do this in a way which does not identify you, or any other individual participant. The research results 

will be published in a M.Sc. dissertation at Trinity College Dublin. No audio or video recording s will be 
made available to anyone other than myself, nor will any such recordings be replayed in any public forum 
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or presentation of the research. Recordings will be saved for a year after which they will be destroyed 

by ensuring all recording files are deleted, including any back-ups.    

   

Cautions about inadvertent discovery of illicit activities   

While it is unlikely that illicit activities would be disclosed, if you do so, we would be obliged report them 

to the appropriate authorities.   

   

Provision for verifying direct quotations and their contextual appropriateness   

Recordings and transcripts will be made available on request by emailing me at morris4@tcd.ie    

   

Declarations of conflicts of interest   

As I myself am a Manager within the Software Test industry there is an inherent conflict of interest. I will 

also be interviewing at least one colleague, which presents a conflict of interest which you should be 

aware of.   

   

Contact Details of researcher in case of queries   

If you have any queries, feel free to contact me, Karl Morrissey at morrisk4@tcd.ie and I will be happy  

to answer questions about the interview.   
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TRINITY COLLEGE DUBLIN   

INFORMED CONSENT FORM   

   

LEAD RESEARCHER: Karl Morrissey (morrisk4@tcd.ie)    

   

BACKGROUND OF RESEARCH: This research is on Artificial Intelligence use in Software Testing. This research 

aims to establish how AI is being used in the Software Testing industry and gain information on how its use 

will grow across the profession in the next 5 years.    

   

To do this I am gathering information by interviewing managers and leaders in the field of Software Testing to 

gain expert opinions on the topic. To that end I would appreciate your participation in my study.   

   

Additionally, I am reviewing what functionality is available by AI software test tools and how this 

functionality differs from established non-AI software test tools currently in use. Through researching 

specialist Software Testing websites such as saucelabs.com, sqa.stackexchange.com, marutitech.com and 

gartner.com I have shortlisted 5 market leaders in AI software test tools to review.   

   

PROCEDURES OF THIS STUDY: For this study I am interviewing Leaders in the field of Software Testing who 

have responsibility in the design and implementation of the overall Test Strategy for their company. I will be 

asking specific questions on the technical and human impact of AI in Software Testing, in addition to questions 

around the adoption of AI software test tools in IT. There should be no risk to  yourself. I will make the audio 

recordings available to you and I will make a transcript available to you should you wish. No names or 

identifying data will be included in the published dissertation.   

   

PUBLICATION: The research results will be published in a M.Sc. dissertation at Trinity College Dublin. No audio 

or video recordings will be made available to anyone other than myself, nor will any such recordings be 

replayed in any public forum or presentation of the research.    

   

CONFLICTS OF INTEREST: Participants should will be aware that I am a Manager in the field of Software Testing 

myself. Participants who are colleagues will be aware of my role in the company in which we work.   

   

Individual results may be aggregated anonymously and research reported on aggregate results.   
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DECLARATION:   

• I am 18 years or older and am competent to provide consent.   

• I have read, or had read to me, a document providing information about this research and this consent 

form. I have had the opportunity to ask questions and all my questions have been answered to my 

satisfaction and understand the description of the research that is being provided to me.   

• I agree that my data is used for scientific purposes and I have no objection that my data is published 

in scientific publications in a way that does not reveal my identity.   

• I understand that if I make illicit activities known, these will be reported to appropriate authorities.   

• I understand that I may refuse to answer any question and that I may withdraw at any t ime without 

penalty.   

• I understand that if the results of the research have been published, or my data has been fully 

anonymised so that it can no longer be attributed to me, then it will no longer be possible to withdraw   

• I understand that I may stop electronic recordings at any time, and that I may at any time, even 

subsequent to my participation [request to] have such recordings destroyed.    

• I understand that, subject to the constraints above, no recordings will be replayed in any public forum 

or made available to any audience other than the current researchers/research team.    

• I freely and voluntarily agree to be part of this research study, though without prejudice to my legal 

and ethical rights.   

• I have received a copy of this agreement.   

• I am participating in a personal capacity and not on behalf of my organisation.    

   

By signing this document, I consent to participate in this study, and consent to the data processing necessary 

to enable my participation and to achieve the research goals of this study.    

   

PARTICIPANT’S NAME:   

   

PARTICIPANT’S SIGNATURE:   

   

Date:   

   

Statement of investigator’s responsibility: I have explained the nature and purpose of this research study, the 

procedures to be undertaken and any risks that may be involved. I have offered to answer any questions and 

fully answered such questions. I believe that the participant understands my explanation and has freely given 

informed consent.   
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RESEARCHERS CONTACT DETAILS:  email: morrisk4@tcd.ie    

   

   

RESEARCHER’S SIGNATURE:   

   

Date:   
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Research Project Proposal   

   

Title of project:    

An Investigation into the impact of AI-Tools on the Software Testing Profession    

   

Purpose of project including academic rationale   

The purpose of this study is to determine how Artificial Intelligence can be used in Software Testing. By 

reviewing the literature that is available on the topic, reviewing AI software test tools that are currently 

available and interviewing leaders in the field of Software Testing I will gather information to synthesis 

my dissertation.   

   

I am reviewing 5 AI software test tools that are currently on the market and have been identified as leaders 

in the field by online reviews from specialist Software Testing sites, and the research and advisory company, 

Gartner.    

   

I plan to review the tools along the following categories and rationale. To structure this set of criteria I referred 

to marutitech.com, gartner.com and checklist.com/software-evaluation-checklist/ for related evaluations.   

   

Category   Rationale   

Cost Benefit   Rationale: The cost of implementing the tools might outweigh the 

benefit or any tool, which would influence the current impact of the AI 

tools in the industry   

Ease of implementation   Rationale: The complexity of implementing the tools might outweigh 

the benefit or any tool, which would influence the current impact of 
the AI tools in the industry   
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Ease of Use   Rationale: Current tools take effort, time and skills to implement. 

Much of a tester’s time is taken with ensuring scripts run smoothly and 
are maintained. If these tools are easy to use and reduce this effort 

then the implications could be:   

• Testers are freed up to design better test cases, or carry out 

other tasks   

• Organisations might be presented with a business imperative 

to reduce or eliminate the number of testers they employ   

Available Features, such as 
test   

case automation and 

generation   

What features are the tools offering and how can they be of benefit? 
Can they generate more efficient tests, reduce time in test creation, 

reduce cost of maintenance and expand code coverage?   

   

   

I will be asking specific questions on the technical and human impact of AI in Software Testing, in addition to 

questions on the adoption of AI software test tools in IT. Participants should be aware that each question is 

optional.     

   

Participants should feel free to omit a response to any question; however, I would be grateful if all questions 

were responded to.   

   

The questions are as follows:   

      
1.  Most organisations are still implementing a traditional software automation test strategy, where 

testers manually code and maintain automated scripts and use a tool like Selenium for organisation 

and execution. In your opinion, given the current maturity of Artificial Intelligence how can it be 

used in Software Automation?   

2.  There are now several AI-Driven Test Automation tools on offer in the market place. Has your 

organisation implemented any of them, or is it planning to? If not, why? If so, what was the business 

case for doing so and have you carried out a Cost-Benefit analysis? Do you think the service the tools 

provide is worth the cost?   

3.  Given the potential of AI software test tools what specific features do you think could impact on 

your current Test Strategy and what benefit would you like to see. For example, do you think they 

will make it easier for software testers to automate test cases? Do you think that these tools will 

enable faster execution times, and therefore faster product development? Do you think these tools 
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will be difficult to integrate with existing infrastructure? Are there any other impacts you can think 

of, both positive and negative?    

4.  What impact do you think the introduction of AI software test tools will have on the Software Test 

profession (human-impact). Do you think it will lead to a reduction in the number of Software 

Testers employed by IT organisations? What positive impacts do you envisage for Software Testers? 

What negative impacts do you envisage for Software Testers?   

5.  How do you see AI evolving within the Software Test profession in the next 5 years? Do you believe 

that AI software test tools will gain traction in the market? Do you believe that there will be an 

inflection point whereby organisations will adopt AI tools across the industry, replacing much of the 

current non- AI software test tools?   

Participants will be Leaders in Software Testing who are responsible for Tooling and Software Test Strategies 

in their organisations. Selections will  be made based on contacts that are known to me already in the IT 

industry. At least one person will be from my own company, others will be individuals I have worked with in 

the past. I intend to contact the participants directly by email and phone.   

   

Debriefing arrangements   

• Interviews will take place in person if possible, or over the phone and will be audio recorded   

• Recordings and transcripts will be made available to the interviewees on request by contacting me 

at morrsk4@tcd.ie.    

• I envisage interviews to last 30-45 minutes.   

From an ethics perspective, as I myself am a Manager within the Software Test industry there is an inherent 

conflict of interest. I will also be interviewing at least one colleague, which presents a conflict of interest whi ch 

candidates should be aware of. All identifying information will be removed from the final publication of the 

dissertation and interviewees can withdraw their participation as outlined in the Informed Consent Form.   

   

This study complies with the General Data Protection Regulation Act 2018  
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