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Abstract

The aim of this project is to analyse the impact of obstacles such as roadside bus stops and
parked cars on the safety and efficiency of bicycle operations in the Dublin Docklands area.
Cycling is becoming more popular as an alternative method of transport in Dublin, however,
it is becoming increasingly dangerous. According to an Irish Times article, as recently as 2013
Dublin ranked in a list of the top 20 bike-friendly cities yet it hasn’t been seen on the list since
this time (1). Several campaigns have and continue to protest roadside obstacles such as
those mentioned above (2). This project will investigate what impact, if any, these obstacles
have on the safety of cyclists.

Whilst there are several examples of work being done analysing the impact of items on road-
flow etc this project addresses the specific area of cycling that’s been neglected and also the
problems unique to the Dublin city centre. Creating a network using the SUMO software suite
and connecting it to the Smart Dublin Docklands model has never been done before and is a
unique approach to planning for the future and taking into account the needs of cyclists.
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1 Introduction

With the advent of Smart City planning using technology as a tool to plan and evaluate
future city development decisions is becoming increasingly useful. Senior editor, BCC
Research Michael Sullivan stated:

The smart cities market opportunity is driven by the convergence of information
and communications technology, in particular the development of advanced
connectivity and analytic software and hardware. A branch of the Internet of
Things (IoT), smart cities leverage the array of connected sensors and analytics
platforms to drive stronger coordination within departments and across city
agencies and community groups.

By applying this combination of statistics, analytics and technology there is a multitude of
different possible uses from city planning to enhancing public-government engagement.
Using smart city tools, local authorities can more efficiently examine current situations and
use this data to plan a more efficient future for their area. Smart Dublin is one current
initiative by the four local Dublin councils aimed at implementing these new techniques in
an Irish setting. They provide a Docklands area model that is used in the developemnt of
this project. They state:

We aim to position Dublin as a world leader in the development of new urban
solutions,using open data, and with the city region as a test bed.

Smart Dublin is delivering a programme that encourages the creation of
solutions to address city needs. It has an emphasis on using the opportunities
offered by emerging technology and public data. Smart Dublin has identified
mobility, environment, energy, waste and emergency management as priority
challenges.(7)

This project will look to analyse the one of these situations. The impact of obstacles such as
roadside bus stops and parked cars on the safety and efficiency of bicycle operations in the
Dublin Docklands area will be analysed and discussed. Cycling is becoming more popular as
an alternative method of transport in Dublin, however, it is becoming increasingly dangerous.
According to an Irish Times article, as recently as 2013 Dublin ranked in a list of the top 20
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bike-friendly cities yet it hasn’t been seen on the list since this time. Several campaigns have
and continue to protest roadside obstacles such as those mentioned above. This project will
investigate what impact, if any, these obstacles have on the safety of cyclists.

Figure 1.1: Roadside bus stop with no indent(3)

The traffic network is created in SUMO with information regarding vehicle positioning and
information being obtained from this simulation via TracI. Vehicles are displayed in the Unity
simulation using a C# assembly script. Unfortunately there is no significant C# Traci
module so a python script (which supports Traci) is used in order to pull this information.
this python script pulls this information and then dumps it as a string via TCP to the C#
assembly script. This parses the string and creates and updates game objects based on this
info. Collision detectors are attached to each game object to monitor the states of the
object.

Whilst there are several examples of work being done analysing the impact of items on
road-flow etc. My project addresses the specific area of cycling that’s been neglected and
also the problems unique to the Dublin city centre. Creating a network using the SUMO
software suite and connecting it to the DCC model has never been done before and is a
unique approach to planning for the future and taking into account cyclist needs.

2



Figure 1.2: Smart Dublin Docklands model(4)

To evaluate the research questions several simulations are run and the statistics gained from
each scenario are compared. By comparing collision rates we can see if there is any impact
by changing the environment state.
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2 Research Questions

Following on from the previous chapter where the concerns on cyclists were outlined and the
aim of the project was discussed the key questions to be answered in the thesis are as
follows:

Primary Question:

• Does roadside bus stops have an impact on the safety of cyclists and if so what is this
impact?

Secondary Question:

• Is using a SUMO and Unity3D combination an effective tool?
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3 Report structure

Chapter 2 will Will outline the key research preformed in anticipation of the project. It will
examine areas such as traffic patterns, cyclist behaviour and the physics of road collisions. It
will also examine the use cases of tools used in the project and the state of the art in
examining questions such as those posed in Section 1.2.

Chapters 5,6,7 and 8 will provide a deeper look at the tools used to examine this particular
traffic situation and convey the positives and negatives of certain choices in this area.
Chapter 8 then looks at how each of these tools are combined together to produce a linked
program whereby we can gain results.

In Chapter 10, the scenarios designed and run in the program are shown and the results
produced outlined. These results are then amalgamated and analysed as a sum in Chapter
11 with Chapter 12 examining how these evaluations answer the original research
questions.

The potential of the program as a whole is discussed in Chapter 13 along with some
recommended future upgrades.
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4 Literature Review

Previous and related work reviewed can be divided into three sections, work relevant to the
implementation of the project, current developments using similar set-ups and work relevant
to the overall theme of the project. e.g. an article on connecting the Sumo traffic simulator
to Unity’s 3D game engine, an article on identifying types of collisions involving road users.
These combine to give an understanding of the complexities of the question and of how to
go about implementing a way to examine the question. This section will contain a discussion
of the papers of major importance the project at large.

4.1 Implementation of the Project

4.1.1 Sumo

In creating a realistic traffic network it was important to ensure the best tool was used for
the job. Without a realistic traffic network with realistic road user-to-road user interaction
the results obtained would be meaningless. "A Review of Traffic Simulation Software" (8) is
a paper outlining the use-fullness of several different tools.

In this paper SUMO, Quadstone Paramics Modeller, Treiber’s Microsimulation of Road
Traffic, Aimsun, Trafficware SimTraffic and CORSIM TRAFVU are compared across a range
of topics. The most important topic for this thesis is the realism of traffic interactions and
therfore the "Creating traffic networks and associated vehicle patterns" is what is reviewed
in this paper. In this section the author writes "SUMO software package is very different in
this sense from the other applications because it is the only application where each vehicle
(agent) knows its own destination and list of edges it needs to pass until this destination is
reached." (8). This is crucial as although it creates extra overhead it ensures the impartiality
of traffic interactions as they are guaranteed to be dynamic with no prevention measures
implemented due to foreknowledge.

6



4.1.2 Sumo to Unity3D connection

Porting a generated network created in SUMO into the Unity simulation is another major
step for the project. The paper "Connection of the SUMO Microscopic Traffic Simulator
and the Unity 3D Game Engine to Evaluate V2X Communication-Based Systems" (6) talks
about this process and explains a method of doing this using TraCI. It is quite an extensive
paper evaluating Vehicle-to-Everything (V2X) communication technologies, however, the
main focus of this review will be on its description of connecting SUMO to Unity. That
being said the rest of the paper is quite interesting with regards to the use of technologies in
assisting the driver of a vehicle on the road and is a recommended read.

The authors created a simulated scenario of a neighbourhood in Vienna using geographic
information and procedural modelling tool CityEngine as well as creating a road network
scenario in SUMO. The process described in the report for displaying this scenario in Unity is
quoted below:

1. Generation of the road set, which built the network scenario through the process of
retrieving all of the vertices, allowing for the definition of lane shape, and created a
GameObject per segment. Every segment was noted in meters as is required by the
SUMO X-Y coordinate system and then mapped to the X-Z coordinate system in
Unity 3D (6)

2. In accordance with its position and angle, each simulated vehicle generated by SUMO
was placed in Unity as a GameObject (6)

This connection between the two platforms is created via the TraCI protocol.

Figure 2 in Section 3 of the paper shows the communication to initialise the scenario.
Section 4 of the paper describes the algorithms created in order to maintain the scenario in
Unity.

These algorithms and protocols are an ideal basis to start from in connecting a scenario in
SUMO with Unity and therefore is a good starting point for connecting a bicycle centered
network in SUMO with the Docklands model in Unity although as mentioned in the report
the performance of this implementation could be improved and would need to be tested. In
the research done for this project this approach is the closest to the approach carried out in
the experiment. It is lacking however in several key areas:

• It does not have any practical applications.

• The area investigated is not relevant and therefore any results obtain are not relevant
to the key area investigated in this project.

• The Docklands model provided by Smart Dublin is extremely realistic and provides
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much greater accuracy than generating a model through CityEngine.

4.1.3 Bicycle movement model

An improvement on the default models would be to create an improved bicycle movement
model for Sumo. The research paper "Integration of an External Bicycle Model in SUMO"
(9) describes an approach of overcoming bicycle model problems using an external control
script.

As the author describes in the Motivation section of the paper "In this paper a method for
simulating the path-finding behaviour of bicyclists as they cross an intersection is presented.
Issues with indirect left turns, bidirectional bicycle lanes and shared space are addressed".
The main issue looked at was the behaviour of cyclists at intersections with how cyclists
interact with other road users addressed as well. In order to do this the authors collected
video data from a road intersection in Germany and used open source software to analyse
the trajectories of the road users. These studied trajectories are used as a guideline for the
simulated cyclists by selecting the lowest cost action for the cyclist using the cost formula
shown in Fig.1 below.

Figure 4.1: Cost function

Through the authors approach, the implementation of an external method "delivered
promising results" (9). It found that the simulated approach followed the modelled
approach during normal phases with minimal placement error but during transition phases
(intersections etc.) the placement error can grow to 6-7m (9). It provides useful realism for
modelling cyclist behaviour in SUMO, however, as the authors mention this can and should
be improved upon using machine learning. For the purpose of this project, this paper gives
useful information and theory to create an external control model.
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4.2 Background theory

4.2.1 Traffic patterns in Dublin City

In order to create simulations with realistic traffic density and distribution real word Dublin
traffic patterns must be researched. The National Transport Authority published a report
"Canal Cordon Report 2017"(5) which described the trends in mode share of vehicles and
pedestrians in an area comprising the Dublin City Centre shown in Figure 4.2.

Figure 4.2: (5)

This data is collected via several sources (5):

• Dublin City Council has undertaken surveys at the Canal Cordon in November annually
since 1980. Surveys are undertaken over two days at each location and an average
across the two days is reported. The survey counts pedestrians, cyclists, cars, taxis,
buses, goods vehicles and motorbikes crossing the cordon points in the inbound
direction in the three hour, AM peak period 0700-1000

• To complement the Dublin City Council Canal Cordon annual surveys, Dublin Bus
have undertaken their own surveys annually on a single day at each location in
November. This is not necessarily the same day as the DCC cordon counts. Since
1997 this survey has counted the number of passengers on all buses crossing inbound
over the canal cordon points. This survey is undertaken at the 22 cordon points that
are on bus routes into the City

• Since 2012, Iarnród Éireann has undertaken a census of passengers boarding and
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alighting on all services passing through all stations in the national rail network on a
single day. In 2017 the national rail census was carried out on 16th November. Prior
to 2012 and since 1997, Iarnród Éireann had undertaken a similar passenger census for
services operating within the Greater Dublin Area. Analysis of this data enables a
calculation of the numbers of rail passengers crossing the three Canal Cordon points
(inbound) between 0700-1000 on the census day.

• Transport Infrastructure Ireland undertakes an annual census of passengers boarding
and alighting at all LUAS tram stops. This census is undertaken on a single day in
November. It has been undertaken every year since both LUAS lines became
operational in 2004. This data enables calculation of the number of LUAS passengers
crossing the two Canal Cordon points (inbound) between 0700-1000 on census day

From the data collected, the ratio of cars, bicycles and buses in 2017 was:
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Cars 50158
Buses 1637
cyclists 12447

Table 4.1: Ratio of road users

with the number of cyclists and buses increasing in the previous five years indicating a trend.
This ratio combined with the information regarding bus timetables (10) in the Grand Canal
dock area is what will be used to create the Scenarios described in Chapter 10.

4.2.2 Road collisions

Understanding and evaluating results is a crucial element of any report. One of the results
that will be obtained from simulations run is collision force whilest know the incident
vehicle’s positions. Evaluating this information is crucial to giving weight to the observations
made in end of project analysis.

According to Mobility and Transport - European Commission (11) There are four types of
serious collisions:

1. Single vehicle (run-off road - no road border causes vehicle to leave the road and crash
into external object)

2. Head-on collisions (collisions involving vehicles travelling in opposing directions)

3. Side Impact collisions at junctions (Vehicle impacted on its side at an intersection)

4. Collisions involving pedestrians and cyclists. Pedestrians do not survive if struck by a
vehicle at above 40km/h.

The scenarios outlined in this paper monitor types two, three and four with incidents
involving cyclists taking priority. Any combination of type four and type two/ three is
predicted (11) to be cause extremely large impact force on the cyclist/ pedestrian and be
fatal.

Minor collisions such as side-to-side impacts produces the most numerous types of injuries
(9,199) according to Garda PC16 report forms (12). One interesting outcome of the project
and an indicator of accuracy will be the level of minor incidents occurring. These can be
identified busing the impact force involved and position information of incident
vehicles.

Understanding the physics behind impart forces involved in collisions is of vital importance in
background work for this project. The paper "On the Mutual Coefficient of Restitution in
Two Car Collinear Collisions" (13) provides an interesting discussion on two method’s of
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calculating collinear collisions. These methods are (13):

1. One based on the masses of vehicles involved

2. One based on the stiffness of vehicles involved

The author extends a linear force model descibed in "A Note on Linear Force Model in Car
Accident Reconstruction" (14) to more collisions involving than one vehicle. In it
calculations determine the vehicle’s post impact velocity. The approach used by the author
can serve as an starting point for calculations done in this project.
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5 Traffic network generation

In order to create an accurate, realistic scenario displayed in Unity3D, we first have to
generate a traffic network in SUMO. In doing this we can can get realistic step-by-step
information and realistic modelling for each vehicle in the simulation.

5.1 Create a .net.xml file

A network file can be simply thought of as the road network that provides the base for a
traffic network. The documents for SUMO produced by the DLR outlines network files as
follows "A SUMO network file describes the traffic-related part of a map, the roads and
intersections the simulated vehicles run along or across" (15).

Figure 5.1: Final road layout

The first step in creating a SUMO simulation is creating this background for the traffic
network. This needs to be the same area as outlined in the DCC 3D simulation seen in Fig
3.1. In order to do this we can use OSM’s built in map export tool (16) to export a map
area like that shown in Figure 3.1 which can be converted into a .net.xml file (readable and
editable in SUMO software) using Netconvert (17). By using these tools and by pruning
excess features, a network compatible with the Unity3D model is produced as seen in Fig
3.3.

13



Figure 5.2: OSM map export

Figure 5.3: Final road layout

5.2 Generate Traffic

Now that there is this file with interconnected roads and intersections we need to opulate it
with routes and vehicles. There are several different methods for generating the "Demand
Elements" part of this SUMO configuration. These methods are outlined as follows:

1. Add elements in Netedit.

2. Using RandomTrips.py.

3. Using a text editor of choice to manually edit the config files.

All three were used during different stages in the project and a combination of the methods
is typically most effective. For the majority of simulations methods 1 and 3 were used.
When the demands and additionals are created the .net.xml, .add.xml and .rou.xml files are
combined into one .sumocfg file.
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5.2.1 Add elements in Netedit

The netedit interface has a "Demand" tab allows a user to add and edit demand elements
ranging from vehicles to routes to bus stops. This method is the most user friendly of the
three discussed. Below outlines the main tools used in this method

Figure 5.4: Demands section

Figure 5.5: Network section

From Fig 3.3 and 3.4:

1a Route mode - create a new route with colour and name through different points on
roads

2a Vehicle mode - add vehicles with start position, speed etc. to these generated routes

3a Vehicle type editor - customise the vehicles to your specifications

4a Additionals - create and position additionals such as bus stops etc. in the network

5.2.2 Using RandomTrips.py

RandomTrips.py (18) is a useful script which comes with the SUMO package. It
automatically generates the files that are created by the user in section 3.2.1.

It is particularly useful if you want to generate random networks every-time you run the
program. By writing a command level line of code you could call this script every-time you
run a program (Figure 3.5 - inputs: -n network file used, -e end time of simulation). If it is
being run by a user then the user can have greater control over the simulation.

Figure 5.6

There are multiple extra optional inputs that can be added in order to generate a more
complex network. Some useful examples of these include:
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- -vehicle-class

This allows the user to specify a non-default vehicle class to be added to the output
files.

- -trip-attributes

This allows the user to use addition parameters in the creation of vehicles. e.g. the speed at
which it departs starting position at etc.

- -period - -binomial

The options allow for the control of the rate at which vehicles arrive in the network (i.e.
added to the simulation). - -period is used to set a constant rate e.g. 2 vehicles per time
step whilest - -binomial uses a binomial distribution to randomise arrivals(18)

The limitations of using this script include its lack of easily added complexity. Unless you
manually edit a lot of the generated files and add several option in the command, it
produces methodical, unrealistic entries whereby vehicles are entered into the simulation
once per time step with little realistic distribution and all of default values.

5.2.3 Using a text editor of choice to manually edit the config

files

This technique can be used in combination with the two previously discussed options or as a
standalone method. It involves using the same structure as before, routes, vehicles,
additionals but instead of using a script or UI to create them all the work is done manually
in a text editor. An example of this work is shown in Figure 3.6. This shows an example of a
.rou.xml route file for on of the scenarios discussed in Chapter 7. It shows:

1. A new custom vehicle type being declared

2. Several routes being declared with information such as edge nodes contained and
stops contained in route.

3. Numerous vehicles of different types being instantiated with values

This technique gives a lot more control, flexibility and options when creating the files
necessary for traffic generation. It is the only option where you can easily add bus stops to
particular routes and it allows greater control over default values when instantiating vehicles.
The limitations include the time taken to create large networks, route edge nodes have to be
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Figure 5.7

manually found and added, and a slow learning curve if unfamiliar with coding. However this
technique is extremely valuable and should be used in concert with the first method
mentioned (as done in this project), for example:

1. Easily create the routes needed for the simulation in Netedit and save file as
example.rou.xml

2. Open example.rou.xml in your favorite text editor

3. Create any custom vehicle types needed

4. Edit any routes created with any additionals you require it to have e.g. bus stop

5. Add or edit any new vehicles you need in the simulation

6. This process can be repeated for any additionals .add.xml needed
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6 Creating an interface between SUMO
and Unity3D

6.1 TraCI

Now that a traffic network is generated and running the information surrounding it needs to
be accessible and transferred to the Unity3D simulation. This is done using a tool in the
SUMO suite called TraCI.

TraCI is the short term for "Traffic Control Interface". Giving access to a
running road traffic simulation, it allows to retrieve values of simulated objects
and to manipulate their behaviour "on-line".

...TraCI uses a TCP based client/server architecture to provide access to SUMO.
Thereby, SUMO acts as server that is started with additional command-line
options.(19)

The architecture behind TraCI is shown in Figure 6.1. It uses a TCP connection to transfer
requested data and accept control commands. The main commands used to request
information and control the simulation are as follows:

traci.start("sumo", "-c", "scenario1.sumocfg")

This initiates the start of the Scenario 1 simulation with the executable SUMO and with a
.sumocfg file input.

traci.simulationStep()

This initiates the start of each step in the simulation. Withopout receiving this command
the server will not begin a time step.
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traci.simulation.getArrivedIDList()

This returns a list of the id’s of the vehicles which have entered the simulation on a time
step.

traci.vehicle.getPosition("bus_0")

This returns a the x and y coordinates for vehicle with id "bus_0".

traci.close()

Sends a TCP_close message to the server to end the connection.

Figure 6.1: (6)

6.2 TCP/IP

6.2.1 Server

In the sumo_server.py python script that contain the TracI code used to pull information, it
also creates a TCP server in order to make this information available to other sources. For
this section a module called Socket(20) is used to accomplish this. Python’s own
documentation about socket states:
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This module provides access to the BSD socket interface. It is available on all
modern Unix systems, Windows, MacOS, and probably additional platforms.

The Python interface is a straightforward transliteration of the Unix system call
and library interface for sockets to Python’s object-oriented style: the socket()
function returns a socket object whose methods implement the various socket
system calls. Parameter types are somewhat higher-level than in the C interface:
as with read() and write() operations on Python files, buffer allocation on receive
operations is automatic, and buffer length is implicit on send operations.(20)

These built in high-level functions make creating a server a straightforward matter however
this server needs to be tailored to the specific demands of this project.

6.2.2 Client

In the c# assembly script Sumo_to_unity_connector.cs that is used to manage the
Unity3D game scene, a TCP client is created in order to connect to the server and request
positional information. For this implementation the default System.Net.Sockets module is
used. Microsoft’s documentation on this module states:

The Socket class provides a rich set of methods and properties for network
communications. The Socket class allows you to perform both synchronous and
asynchronous data transfer using any of the communication protocols listed in
the ProtocolType enumeration.

The Socket class follows the .NET Framework naming pattern for asynchronous
methods. For example, the synchronous Receive method corresponds to the
asynchronous BeginReceive and EndReceive methods.

If your application only requires one thread during execution, use the following
methods, which are designed for synchronous operation mode.

If you are using a connection-oriented protocol such as TCP, your server can
listen for connections using the Listen method. The Accept method processes
any incoming connection requests and returns a Socket that you can use to
communicate data with the remote host. Use this returned Socket to call the
Send or Receive method. Call the Bind method prior to calling the Listen
method if you want to specify the local IP address and port number. Use a port
number of zero if you want the underlying service provider to assign a free port
for you. If you want to connect to a listening host, call the Connect method. To
communicate data, call the Send or Receive method.(21)
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These built in function make creating a client a reasonable task however the lack of several
high-end functions like the python module contains adds to the difficulty. The client also
needs to be tailored to the specific demands of this project and be able to parse the recieved
data into usable information.

6.2.3 Server and Client

The below Figure 6.2 shows the architecture of the TCP connection between
sumo_server.py and Sumo_to_unity_connector.cs. Having initiated the beginning of the
sumo simulation the python script creates a socket and then listens for any requests for this
information. On the binding to the socket of a client and initiating message it begins to run
each time step whilest sending positional information about vehicles to the client.

Figure 6.2: Connection
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7 Displaying vehicles in Unity3D

7.1 The basics

When starting development of a game in Unity3D the first step is typically to create the
environment it will be played in. For the purpose of this project the Smart Dublin Docklands
model is being used (as shown in Section 3.1). This model is a highly accurate physical
representation of the area with buildings and features represented.If you wish to display and
interact with any sort of entity in this Unity3D scene you do this by creating a
"GameObject"(22). This object by default has no physical characteristics, positional
information or behavioural traits. All these features must be added as components. There
are two main ways to do this:

1. Manually create each component and add to the GameObject

2. Load premade prefabs that you or someone else has previously created

7.1.1 Manually create each component and add to the GameOb-

ject

Unity by default has some simple primitive objects that can be used to build up the parts to
the object you want to display e.g. rectangle, sphere, cylinder etc. By creating a heirarchy of
these objects the custom GameObject being created can begin to take shape. Doing this in
combination with using another graphics program like Autodesk 3ds Max (23) can lead you
to creating the objects you need.

The amount of components that you create to make up your object depends on the
complexity required. A simple combination of cylinders, spheres and rectangles can be used
to create an animal like a cat or dog but an extremely realistic representation might have
millions of hairs attached etc.

Adding positional information is crucial as well. An object is default created with a null
attribute "transform". By editing this value and applying other transform vectors you can
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position and move the object.

Components also include characteristics of the object such as the physics that govern the
actions of an object. E.g. in Figure 5.1 a "rigidbody" component is added, this means that
the object will now obey the Unity3D physics engine, it will get pulled down by gravity and
will react to other objects in the scene. A BoxCollider can also be attached which is a
bounding box around the object monitoring for any contact. This is discussed further in
Section 6.1.

Figure 7.1

7.1.2 Prefabs

Prefabs are widely used in creating Unity3D scenes whether it be your own custom fabs or
ones downloaded from Unity3D’s store. This is done by having your prefabs saved in the
resources folder and loaded in on the instantiation of the game object as shown in Figure
5.2.

Figure 7.2

7.2 Vehicle Class

For this project several prefabs were used to represent cars, buses and bicycles however a
custom class was created to house these objects differently than discussed above due to the
nature of SUMO controlling movement. Attribute information needed to be stored
separately from the game object. In this situation the game object is stored in the class as
the visual appearance whilest the other information (position, orientation angle, id) is stored
as attributes. In Figure 5.3 we can see this implemented.

Figure 7.3
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7.3 Instantiating a vehicle

Chapter 4 outlined how information regarding vehicles is passed into the c# script but on
receiving this information its just one long string (Figure 5.4). This information has to be
used to create and update vehicles. The string is parsed for individual components. The
components are then used in the construction on a vehicle instance. The constructor is
shown in Figure 5.5

Figure 7.4: Vehicle information received

Figure 7.5

7.4 Mapping coordinates

Sumo and Unity3D operate off of different coordinate systems. Sumo has a basic 2-d
coordinate system (x,y axis) whilest Unity3D operates on a 3-d coordinate system (x,y,z
axis) (shown in Figure 5.3, The vertical axis in this case is y-axis). Neither systems common
axis are equivalent either, xSUMO!=xUnity3D and ySUMO!=yUnity3D. A conversion system must
be created and implemented.
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Figure 7.6: Sumo coordinate system

Figure 7.7: Unity coordinate system

In order to do this an equivalency needs to be created. This is done by lining up the two
systems as shown in Figure 5.2 and 5.3, picking points at the same real world location and
comparing x,y and x,z values In doing this we can now map coordinates from one system to
another. In this project’s case the coordinate conversion is shown below in Figure 5.4.

Figure 7.8: Conversion formula

7.5 Determining an objects orientation

As this project uses SUMO to control the traffic network the position of objects in Unity is
determined based on SUMO. this has been established in previous sections and will be
expanded on in Chapter 6 however this leads to one major issue which will be discussed in
this section.
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As mentioned in Section 5.1 the default method for moving a game object in Unity3D is
through using the Transform() method by applying a three dimensional vector (x,y,z). This
is done through user control i.e. using ’w’, ’a’, ’s’, ’d’ keys to indicate a movement ’up,
’left’, ’down’, ’right’. The appropriate transforms are determined from this key press and
applied and the orientation of the object can be determined based on inferring from user
control. This is not applicable in the SUMO method used in this project as Unity never
knows the starting orientation. A method for arriving at this orientation at each time step
therefore is needed to be implemented.

On the first time step all that is known is current position, from this nothing can be
determined regarding the orientation however at the second and all future time steps the
current and previous positions are known i.e. from figure 5.5 at time step 1, the vehicle was
at position (a), from 5.6 at time step 2, the vehicle was at position (b). Therefore we can
infer that the vehicle is travelling in a direction towards marker (m1) and therefore facing
that direction.

Figure 7.9: Time step 1

Figure 7.10: Time step 2

The resultant vector calculated from these positions is as follows:

ab = (xa − xb, za − zb)

From this vector an angle with respect to the origin, can be determined which is used to
calculate orientation:

angle = Atan2(ab) ∗ 180

π
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Using the aforementioned transform method which is attached to the object, orientation can
now be set. The objects rotation is aligned in the y-axis to the angle determined above.
This is shown in Figure 5.7

Figure 7.11
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8 Implementation of collision detec-
tion

8.1 Attaching a collision detector

In order to analyse the safety and status of this generated traffic network we need to
monitor the status of each of these newly generated cars, bicycles, buses etc. Unity3D has a
built in "OnCollisionEnter" function which passes in information regarding a collision eg.
objects involves, object positions etc. For the purposes of monitoring each object’s collision
status a "collisiondetection_m" class is added as a component to each generated
game-object. This monitors for collision and on a collision event enters the
OnCollosionEnter function. This function gets passed all information Unity3D default
monitors about a collision. It then uses this information about the collision and writes it to a
results text file. An example of this text is seen below in Fig 5.1.

Figure 8.1: Example of collision results from a simulation

8.2 Force generated

In order to analyse the results, a fuller picture is needed. In order to do this, not only is
information about vehicles involved and positions needed but information about the force
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involved in the collision is needed.

From Newton’s Second law of Motion we have:

F = m.a

However we know that acceleration is rate of velocity change given a time period or:

a = m.
∆V

∆t

and impulse or the change in momentum is:

∆p = m.∆V

therefore an equation for Force that is compatible in Unity3D can be obtained:

F =
∆p

∆t

Now that this equation for Force is generated it needs to be implemented. This is done by
using the information Unity3D passes into the collision detector. At each step ∆t is
recorded and sent to this detector. Impulse can be manually calculated by determining
change in velocity:

magnitude(currentpositionalvalues − previouspositionalvalues)

and the mass stored for each game object. It can also be obtained by using built in
collision.impulse.magnitude stored value. These ∆pand∆t values are then plugged into the
formula and stored in the results csv file.

Figure 8.2
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9 Project workflow

Figure 9.1: Workflow of entire project when run

Having gone over each component of the project, this section will show how they all connect
and interact. The main connections are shown in Fig. 6.1 and are outlined below.

The workflow starts with the Sumo_server.py script. As mentioned in previous sections this
code uses TracI to start a SUMO simulation. It launches with whatever .sumocfg file is
referenced in the script and controls when each time-step occurs. On running the script it
also creates a TCP server and waits for a connection. On the initiation of each time step,
using TracI, the script pulls information about each vehicle’s state and makes this
information (shown in Figure 6.2) available to a connecting client.

Figure 9.2: Vehicle information sent over TCP connection
Left to right: vehicle ID, x-coordinate, y-coordinate, vehicle type

The C# assembly script is attached in game to the Smart Dublin model docklands model.
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On command it creates a client and connects to the server created above. On initial
connection it receives vehicle information and creates a game object for each vehicle. It
attaches a collision detector and displays in-game. Each time-step the script receives the
new vehicle information, calculates any other necessary information (vehicle orientation) and
displays this updated game objects. Any objects entering the simulation after the first time
step will also be created, monitored and displayed the same as the initial vehicles.

Figure 9.3: Vehicle information stored in Unity3D
Top to bottom: vehicle ID, x-coordinate, y-coordinate, z-coordinate, orientation angle, game
object displayed

Figure 9.4: End result with vehicle being displayed

On a collision being detected, Unity passes all information about the collision into the
attached detector. This then leads to the script pulling selected information about the
collision and writing to a results csv file to be stored and analysed later (shown in Figure
6.5).

Figure 9.5: Collision information written to csv file
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10 Results

In this chapter the scenarios run using the program described in Chapter 9 are outlined and
the results obtained are published. Three scenarios are described in Section 10.1, 10.2 and
two scenarios in Section 10.3.

Each scenario will be described with the same format. This format is outlined here:

• Description of the traffic situation in the scenario.

• Diagram showing location of routes implemented with routes highlighted in blue or
yellow, bus-stops circled in green.

• Traffic density and rules followed in the scenario.

• Results obtained in scenario.

The results obtained are shown in a bar chart with collisions detected in scenarios with bus
stops active denoted by a blue bar and collisions where bus stops are inactive denoted by a
orange bar.

10.1 Small tests

These are limited tests across small areas designed in order to examine specific small
situations e.g. a section of straight narrow road. Each scenario will be run twice, once with
bus stops active and once with bus stops inactive and results will compare the
difference.
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10.1.1 Scenario 1A

This scenario examines a limited peak rush-hour situation on a straight road. It is designed
to represent the peak morning rush hour traffic i.e 8-9.00 am

Figure 10.1

Density:

• 67 Cars

• 10 Buses

• 35 Bicycles

Rules:

• Approximately 1m between motor vehicles

• Bicycles can occupy the same lane space as other vehicles

• Overtaking allowed and road users will overtake if the option is available

Figure 10.2
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10.1.2 Scenario 1B

This scenario examines a limited off-peak rush-hour situation on a straight road. The routes
and area is the same however there is more space between motor vehicles and more time
between bus stop arrivals compared to Scenario 1A. This scenario is designed to represent a
11.00am situation whereby there is still reoccurring traffic but a lot less density than peak
rush-hour morning traffic. Density:

Figure 10.3

• 24 Cars

• 6 Buses

• 12 Bicycles

Rules:

• Approximately 3m between motor vehicles

• Bicycles can occupy the same lane space as other vehicles

• Overtaking allowed and road users will overtake if the option is available

Figure 10.4
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10.1.3 Scenario 1C

This scenario examines a limited peak rush-hour situation at an intersection. It is designed
to represent the peak morning rush hour traffic i.e 8-9.00 am but ensuring flow.

Figure 10.5

Density:

• 67 Cars

• 9 Buses

• 35 Bicycles

Rules:

• Approximately 1m between motor vehicles

• Bicycles can occupy the same lane space as other vehicles

• Overtaking allowed and road users will overtake if the option is available
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Figure 10.6

36



10.2 Complex tests

These are expanded tests across larger areas often combining multiple tests from the
previous section into one designed to examine specific large situations across a block.Each
scenario will be run twice, once with bus stops active and once with bus stops inactive.
Results will compare the difference.

10.2.1 Scenario 2A

These are expanded tests across larger areas often combining multiple tests from the
previous section into one designed to examine specific large situations across a block. Each
scenario will be run twice, once with bus stops active and once with bus stops inactive and
results will compare the difference. Density:

Figure 10.7

• 67 Cars

• 10 Buses

• 35 Bicycles

Rules:

• Approximately 1m between motor vehicles

• Bicycles can occupy the same lane space as other vehicles

• Overtaking allowed and road users will overtake if the option is available

• Traffic lights at intersections
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Figure 10.8

38



10.2.2 Scenario 2B

This scenario examines a block-wide peak rush-hour situation with intersections. It is
designed to represent the peak morning rush hour traffic i.e 8-9.00 am but ensuring
flow.

Figure 10.9

Density:

• 82 Cars

• 14 Buses

• 42 Bicycles

Rules:

• Approximately 1m between motor vehicles

• Bicycles can occupy the same lane space as other vehicles

• Overtaking allowed and road users will overtake if the option is available

• Multiple routes interacting (4)
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Figure 10.10
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10.2.3 Scenario 2C

This scenario examines several block-wide peak rush-hour situations with intersections and
bridges involved. It is designed to represent the peak morning rush hour traffic i.e 8-9.00 am
but ensuring flow.

Figure 10.11

Density:

• 101 Cars

• 19 Buses

• 63 Bicycles

Rules:

• Approximately 1m between motor vehicles

• Bicycles can occupy the same lane space as other vehicles

• Overtaking allowed and road users will overtake if the option is available

• Multiple routes interacting (8)
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Figure 10.12
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10.3 Density tests

These scenarios are similar in layout to those shown previously however instead of comparing
the results with/without bus stops these will look at comparing each scenario with different
bus stop densities. Each scenario will be run twice, once with bus stops active at a "high"
density and once with bus stops active at a "low" density and results will compare the
difference. Bus stops in low density simulations are shown in green, bus stops in high density
simulations shown in blue with green stops also included.

10.3.1 Scenario 3A

This scenario examines an off rush-hour situation on a straight road. It is designed to
represent the quiet afternoon traffic i.e 2-3.00 pm

Figure 10.13

Density:

• 18 Cars

• 4 Buses

• 13 Bicycles

• Low Bus Stop count - 1

• High Bus Stop count - 3
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Rules:

• Approximately 1m between motor vehicles

• Bicycles can occupy the same lane space as other vehicles

• Overtaking allowed and road users will overtake if the option is available

• Each bus stops at each available stop along the route

Figure 10.14
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10.3.2 Scenario 3B

This scenario examines an mid-peak rush-hour situation in a city block. It is designed to
represent the mid level afternoon traffic i.e 12-2.00 pm

Figure 10.15

Density:

• 18 Cars

• 4 Buses

• 13 Bicycles

• Low Bus Stop count - 1

• High Bus Stop count - 3

Rules:

• Approximately 1m between motor vehicles

• Bicycles can occupy the same lane space as other vehicles

• Overtaking allowed and road users will overtake if the option is available

• Each bus stops at each available stop along the route
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Figure 10.16
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11 Evaluation

11.1 Bus stop v no bus stop

Scenario 1A shows a situation typical in most Dublin Bus routes, a stretch of straight road
with one - two bus stops. The time period reflects peak morning rush hour traffic. This
scenario shows an increase of collisions from zero to ten with eight of them being serious
collisions and two minor grazing. The majority of collisions being serious indicates that head
on collisions are more prevalent in this environment of a straight road where there is a
significant stretch of area for overtaking.

Scenario 1B shows a situation similar to Scenario 1A, a stretch of straight road with one -
two bus stops. The time period reflects off peak morning rush hour traffic. This scenario
shows an increase of collisions from zero to four with all four of them being serious
collisions. The rate of collisions being serious indicates that again head on collisions are
more prevalent in this environment of a straight road where there is a significant stretch of
area for overtaking. The reduction in collisions from Scenario 1A to Scenario 2B can be
explained through the density of traffic being reduced and therefore the space between
vehicles being reduced.

Scenario 1C shows a situation found in Dublin Bus route through the city centre and
especially the docklands area, an intersection with one bus stop after the intersection. The
time period reflects peak morning rush hour traffic. This scenario shows an increase of
collisions from one to three with one of them being serious collisions and two minor grazing.
The lack of serious collisions and the lower number of collisions indicates the lack of
opportunity in this environment for overtaking.

Scenario 2A shows a further expanded situation relative to the first set. It contains a
combination of straight road and intersections with three bus stops. The time period reflects
peak morning rush hour traffic. This scenario shows an increase of collisions from two to six
with two of them being serious collisions and four minor grazing. The lack of serious
collisions and the lower number of collisions indicates the lack of opportunity in this
environment for overtaking.
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Scenario 2B shows a further expanded situation relative to the first set. It contains a
combination of straight road and intersections across a small city block with five bus stops.
The time period reflects peak morning rush hour traffic for an area this size. This scenario
shows an increase of collisions from two to six with two of them being serious collisions and
four minor grazing. The lack of serious collisions and the lower number of collisions indicates
the lack of opportunity in this environment for overtaking where there is not a consistent
straight stretch of road.

Scenario 2C shows a further expanded situation relative to the first set. It contains a
combination of straight road and intersections across a large city block with five bus stops
and a river crossing. The time period reflects peak morning rush hour traffic for an area this
size. This scenario shows an increase of collisions from fifteen to twenty-seven with eighteen
of them being serious collisions and nine minor grazing. The complex nature of this
simulation with a large number of interconnecting routes shows the potential for a large
number of serious collisions if cyclists take each opportunity to overtake if there is an
obstacle like a parked bus at a bus stop.

Figure 11.1
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11.2 Density

Scenario 3A examines a scenario where the density of bus stops is examined instead of the
presence of bus stops. It contains a a stretch of straight road with one - three bus stops.
The time period reflects off-peak early morning traffic for an area this size (4-5.00 am). This
scenario shows an increase of collisions from one to two with eighteen of one being serious
collisions. Although there is an increase based on density there isn’t enough collisions to
show any correlation.

Scenario 3B examines a scenario where the density of bus stops is examined instead of the
presence of bus stops. It contains a a stretch of straight road and several intersections with
one - three bus stops. The time period reflects off-peak early morning traffic for an area this
size (4-5.00 am). This scenario shows an increase of collisions from twelve to twenty-one
with eight of one being serious collisions. This follows the pattern in Scenario3A whereby
the increase of bus stop density decreases the safety of cyclists on the road though not to
the level of bus stop v no bus stop.

Figure 11.2
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12 Conclusion

This report describes a method for creating a tool to investigate traffic network interactions
using the SUMO software suit, Unity3D, Smart Dublin’s Docklands model and a TCP
scripts to connect everything together.

12.1 Does roadside bus stops have an impact on the

safety of cyclists and if so what is this impact?

From the graphs shown in Chapter 10 and 11 it is quite clear that adding active bus stops
on the roadside significantly and negatively affects the safety of cyclists as road users. Not
only is there a significant increase in collisions but the rate of serious collisions rises. In
simulations where bus stops are inactive there is three serious collisions whilest in
simulations where bus stops are active there are thirty serious collisions which is a ninefold
increase.

12.2 Is using a SUMO and Unity3D combination an

effective tool?

Using a combination of these two development platforms proves to be quite effective. By
combining them SUMO’s complex traffic network platform and Unity3D’s collision detection
are both used which produces a superior tool. In Unity3D the GameObject’s could be coded
to dynamically follow a route and interact with other vehicles although this would be
rudimentary and produce significant overhead costs. SUMO does have the ability to detect a
collision however it is extremely limited with it only detecting major collisions and not
providing critical information regarding the collision.
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12.3 Limitations

The traffic interactions are dependant on the models used by SUMO. The bicycle model
used is not as developed as other vehicle models as it does not contain the full range of
actions available to real life bicycle road users. According to SUMO documentation (24)
these limitations include:

1. Turning left by crossing twice does not work. Extra edges need to be added to
accommodate these trajectories.

2. No bi-directional movements on bicycle lanes

3. No shared space for bicycles and pedestrians

4. No overtaking by vehicles on a single-lane road.

5. The intersection model has no special adaptations for bicycles. This results in
unrealistic (large) safety gaps when bicycles are approaching a large priority
intersection from a prioritized road

6. The road speed limit is not meaningful for bicycles. To model a speed distribution for
bicycles with a single vehicle type, a speed limit corresponding to the median speed of
the bicycles should be set for the cycling lanes.

This project addresses issue 3 by using the sublane model and issue 6 with the editing
described in Chapter 5. These solutions minimise the road level problems with the bicycle
model.
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13 Future Work

13.1 Enlarging the area Dublin-wide

Expanding the area used for the project city wide instead of limited to the Docklands area
would give a multitude of benefits. First it would allow for testing in a wider and more
diverse range of situations and elements.

One such situation would be examining the effect of fully or partially indented bus stops
(shown in Figure 10.1). This project has looked at roadside bus stops with no indent in the
road but Dublin city (particularly the outer regions) contains bus stops that are either
partially indented or fully indented.

Figure 13.1: Indented bus stop

13.2 Developing a more sophisticated cyclist model

One of the limitations of the SUMO suite of tools is the not fully developed bicycle model.
As a road user, cyclists have the most diverse range of options when it comes to movement.
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Especially in situations such as overtaking and navigating intersections. As mentioned in
previous chapters TracI allows for interfacing and controlling elements in a simulation.
Writing a script that uses modelling such as one shown in the paper - "Integration of an
external bicycle model in SUMO" (9) that could control bicycle movement and would
produce even more realistic results. One caveat with this would be the potential overhead
cost of implementing this in conjunction with the entire project especially if there are large
numbers of vehicles being controlled in this manner. Any future work on this topic will have
to work with this issue,

13.3 City planning tool

After incorporating the above two ideas the project would be extremely robust and well
rounded. Expanding it with a complex User interface system would allow for use as a city
planning tool by local authorities.
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A1 Appendix

A1.1 Code

The code for this project can be accessed at https://github.com/eb2k12/Thesis
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