
School of Computer Science and Statistics

Group Equivariant Neural Networks
for Games

Oisin Carroll

April 30, 2020

A Dissertation submitted in partial fulfilment
of the requirements for the degree of

MAI (Computer Engineering)

Supervised by Dr. Joeran Beel

http://www.scss.tcd.ie

Declaration

I hereby declare that this project is entirely my own work and that it has not been submitted
as an exercise for a degree at this or any other university.

I have read and I understand the plagiarism provisions in the General Regulations of the
University Calendar for the current year, found at http://www.tcd.ie/calendar.

I have also completed the Online Tutorial on avoiding plagiarism ‘Ready Steady Write’, located
at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

Signed: Date:

i

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

Abstract

Games such as go, chess and checkers have multiple equivalent game states. That is, multiple
board positions where symmetrical and opposite moves should be made. These equivalences
are not exploited by current state of the art neural agents which instead must relearn similar
information, wasting computing time. Group equivariant CNNs in existing work create net-
works which can exploit symmetries to improve learning, however, they lack the expressiveness
to correctly reflect the move embeddings necessary for games.

I introduce two methods for creating agents with an innate understanding of these board
positions; Game Graph Convolutional Networks (GGCNs) and Finite Group Neural Net-
works (FGNNs). These are shown to improve the performance of networks playing checkers
(draughts), and can be easily adapted to other games.

Additionally, FGNNs can be created from existing network architectures. This includes, for
the first time, those with skip connections and arbitrary layer types. I demonstrate that an
equivariant version of U-Net (FGNN-U-Net) outperforms the unmodified network in image
segmentation.

Acknowledgements
Thanks to my supervisor; Joeran, for his advice and especially for his guidance in writing this
document and the subsequent paper. Thanks to Lucy Deacon for helping break my head with
some math concepts used in this and that will hopefully tie into future work. Thanks to Alec
Barber and Eleanor Windle for their help proof-reading and suggesting improvements.

Thanks also to the Adapt Centre for allowing me access their HPC for training networks, and
the dev-ops team; Graziano and others who kindly helped me with technical problems.

Finally, I’d like to extend a special mention to Millie, my dog, who kept me company during
long nights of coding, debugging and writing.

ii

Contents

1 Introduction 1
1.1 Research Problem . 2
1.2 Research Question . 2
1.3 Research Goal . 2
1.4 Contributions . 3

2 Background 4

3 Related Work 6
3.1 Set Invariance . 6
3.2 Graph Equivariance & Invariance . 6
3.3 Equivariance to Spacial Transforms . 8

3.3.1 Group Convolutions . 8
3.4 Equivariances in a Broader Context . 10

4 Game Graph Convolutional Networks 11
4.1 Boardgames as Graphs . 11
4.2 Equivariances of GGCNs . 12

5 Finite Group Neural Networks 13
5.1 A Simple Approach . 13
5.2 A Better Approach . 15
5.3 T-Equivariance . 16
5.4 T-Equivariant Layers . 18
5.5 Lift & Drop . 18
5.6 Skip connections . 19
5.7 Pooling . 20
5.8 Group Equivariance . 20
5.9 Move Embeddings . 21

6 Methodology 23
6.1 Dataset . 23
6.2 Baseline . 24
6.3 GGCNs For Checkers . 25
6.4 FGNNs For Checkers . 25

6.4.1 Equivariance . 25
6.4.2 Implementation . 26
6.4.3 Model sizes & Training . 26

iii

6.5 Metrics . 26

7 Results 27
7.1 Game Graph Convolutional Networks . 27
7.2 Finite Group Neural Networks . 27
7.3 U-Net . 30

8 Discussion 31
8.1 GGCNs . 31
8.2 FGNNs for Checkers . 31
8.3 FGNNs for Biomedical Segmentation . 32

9 Conclusion 33

10 Summary 34

11 Future Work & Limitations 35

iv

List of Figures

1.1 Chess positions with white to play upwards (left) and black to play down-
wards (right). These are all equivalent through reflecting left-to-right and/or
swapping colours, and the only drawing move is shown in blue on all boards. 1

4.1 The starting checkers position represented as a graph. The arrows in blue
represent the possible moves for a piece. 11

5.1 The cayley graph of the dihedral group of the square; D8. This defines two
generating functions; a (red) and b (blue), for 90° rotation and horiztontal
reflection respectively. The nodes then represent all elements of the group/
all possible transformations of an image. 17

5.2 A move (blue arrow) on a board state (left). The resulting move and board
state after naively reflecting both tensors (middle). The correctly reflected
board and move (right). 21

6.1 The current board state (left) is given as input to the network and the next
move to be played, in red (right), is predicted by the network. 24

7.1 GGCN networks with 3 and 5 layers (3L, 5L) compared with simple equivalent
CNNs and other methods. Rand is a random output from the network, and
Rand-Valid is a random move taken which is legal in the current board state1. 27

7.2 The accuracy (left) and top-3 accuracy (right) of equivariant and baseline
networks of different sizes on unseen board states. 28

7.3 The accuracy (left) and top-3 accuracy (right) of networks over the training set. 28
7.4 The models’ performance on the training set vs the test set. The dashed line

is where both are equal, and hence no overfitting occured. Nearer this line
then equates to less overfitting. 29

7.5 The training time in minutes compared against the models’ number of trainable
weights (left) and resulting performance (right). 29

7.6 The performance of FGNN-U-Net variants of different sizes and symmetry
groups compared to the baseline (Identity) model. 30

v

1 Introduction

The leading computer algorithms for playing many board games are deep-learning based.
Google’s DeepMind created the first Go program able to beat a world champion; AlphaGo
[1] and their subsequent papers discuss AlphaZero; a generic algorithm that was trained to
become a top go, shogi or chess engine [2]. LeelaChessZero — a community lead effort to
replicate AlphaZero for chess (based on LeelaZero, a go program) recently won the computer
chess world championship1. The primary innovations in these papers are the methods used to
train the networks stably through self-play; loss functions, genomes and randomness, as well
as a much improved weighted Monte Carlo tree search.

Figure 1.1: Chess positions with white to play upwards (left) and black to play downwards
(right). These are all equivalent through reflecting left-to-right and/or swapping colours, and
the only drawing move is shown in blue on all boards.

The neural network architectures used at the core of these algorithms are similar however;
variations on standard Convolutional Neural Networks (CNNs). They aren’t able to understand
symmetries of the game rules or board and because of this, relearn similar information multiple
times. For example, solving for the best move in any of the 4 boards shown in Fig. 1.1 is an
equivalent problem; knowing the move in any one means you should play the symmetrically-
equivalent move in the rest. We assert a better neural network architecture would be able
to treat these 4 positions as the same, and would never play different moves on equivalent
boards.

1https://www.chess.com/news/view/lc0-wins-computer-chess-championship-makes-history

1

1.1 Research Problem

Networks which treat these equivalent positions as the same may reduce overfitting and
improve training times as each position must be learned only once, no matter the orientation
it appears on the board.

For some network predicting a move from a board-state N : X → Y and an operation g which
reflects the board and g′ which reflects a move, N(gx) = g′N(x) for all x ∈ X. This property
is equivariance; some transformation of the input leads to an equivalent transformation of the
output. If g′ is the identity function it is invariance; where the output is unaffected by some
transformation of the input.

Neural networks which are invariant or equivariant to some property of their input is a rapidly
expanding field, with many influential works being published in recent years. These include
invariances over sets [3, 4, 5, 6]; where the order of the input sequence is ignored, graphs [6, 7,
8, 9]; where perturbations of the input nodes and edges are ignored, and spatial equivariance to
a variety of group operations. These are generally CNN-based and can be divided into networks
which are equivariant over finite groups such as rotations of 90° [10, 11, 12, 13, 14, 15]
and methods which are approximately equivariant over continuous groups, such as affine
transformations [16, 17, 18, 19, 20, 21].

Of these, the most relevant are the CNN architectures over finite groups. Many of these
are applicable to equivariances over of rotations or reflections of the input. Games however
require a different kind of equivariance. Reflecting the input board state should result in the
network predicting the symmetrically opposite move which, in many cases, is not the same
as reflecting the output tensor. AlphaZero [2] for chess encodes moves in the output where
each layer corresponds to a specific direction (North/North-East/East/. . .) and distance to
move the piece. Reflecting this move tensor won’t correctly reverse the move direction. The
research into group-equivariant CNNs cannot easily be extended to handle this case.

Additionally, these methods are not applicable to neural network architectures with skip con-
nections; an indispensable component of many popular neural network architectures [22, 23,
24, 25, 26].

1.2 Research Question

Can neural networks for games which can ’understand’ the equivalence of different board
positions perform better than those which don’t?

1.3 Research Goal

This dissertation aims to investigate the existence of an equivariant deep-learning neural
network architecture for games — that is, one which would treat all board positions in Fig.
1.1 as the same. We hypothesize that this may reduce training times, improve performance,
and/or reduce model sizes when compared existing architectures.

2

1.4 Contributions

I propose two novel methods for creating equivariant networks for learning board games. The
first; Game Graph Convolutional Networks (GGCNs) uses a network architecture equivariant
over equivalent graphs, and the second; Finite Group equivariant Neural Networks (FGNNs)
are a general method for creating equivariances in arbitrary existing neural network architec-
tures.

GGCNs use Graph Convolutional Networks, and define a novel method of representing and
reasoning about the board state as a graph. Since equivalent board states form isomorphic
graphs, the method is equivariant over equivalent boards.

FGNNs can be used to derive equivariant versions of existing neural network architectures
including, for the first time, those with skip connections and arbitrary layer types. The
derivations are arguably easier to reason about than prior work, and this allows for easier
extension of this method. FGNNs can be viewed as a generalization of the work of Dieleman
et Al. [11] to arbitrary groups and with an additional proof for skip connections, although the
approach differs.

For each of the network architectures proposed, I verify they create equivariant networks
in theory and practice. Next I demonstrate that FGNNs reduce overfitting and improve
performance when compared to equivalent networks without this equivariance. This work
uses checkers, but the methods presented are general enough to be used in a variety of board
games including chess, go and shogi.

I conclude with an FGNN-based implementation of a popular architecture; U-Net [26] over
several finite groups, and demonstrate that these can demonstrate equivalent performance
with 4-8 times fewer weights as compared to the baseline implementation.

3

2 Background

Convolutional Neural Networks (CNNs) are widely used for many kinds of machine learning,
such as image classification, segmentation, and games since their resurgence in 2012 with
AlexNet [27]. These networks are trained on a large sample set, and subsequently predict on
unseen examples.

As introduced previously, this dissertation considers networks which are ’unaffected’ by some
transformation of the input. These transformations may be rotations, reflections, permuta-
tions, or others. It is useful to talk about these transformations in the context of Group
Theory. Group Theory is, as the name implies, the study of algebraic structures known as
Groups. It allows us to derive general expressions over ’types’ of transformation.

A group consists of a set of elements, and some binary operation acting upon them. We
primarily consider Transformation Groups, where elements may represent ’actions’ such as a
rotation of 90° or a permutation of (1,2,3). The group operation then is composition, where
we simply perform the actions in succession. Equivalent actions, such as doing nothing (the
identity element) and rotating 360° correspond to the same element in the group. A group
must also be closed, meaning that the composition of any two elements in a group must also
be a member of the group.

Specific groups referred to in this work are:

Dihedral groups (D2n) The D2n group describes the symmetries of a polyhedra with n
sides. For example, D8 (“The dihedral group of order 8”), describes the symmetries of
the square; the elements are all rotations of 90° and reflections that map a square unto
itself.

Lie groups (SE(n)) Groups which describe isometries of n dimensional euclidian space.
These include rotations and translations, and preserve distance between points.

Affine group This group consists of all affine transformations. It is effectively the SE(2)
group with additional scaling and skewing.

Typically we use G to denote a group, and g ∈ G to denote the group elements. A finite
group is simply one with a finite number of elements, such as the dihedral groups.

The term invariance is used throughout the paper, loosely meaning ’unchanged by’. A
function f : X → Y is invariant with respect to a group G iff:

f(g · x) = f(x)

for all x ∈ X and all g ∈ G

4

Similarly, a function f : X → Y is equivariant iff:

g · f(x) = f(g · x)

for all x ∈ X and all g ∈ G

This is equivalent to saying that each g ∈ G commutes with f , as g ◦ f = f ◦ g.

Approximate invariance or equivariance is where these properties hold approximately. For
example, if they are empirically observed.

5

3 Related Work

Research into deep learning algorithms which have useful equivariances is broad and divides
somewhat into different approaches, generally tailored to the type of problem. Here I provide
a summary of influential works considering invariance or equivariance across a broad range of
problems in deep learning, with focus on those most relevant to games.

3.1 Set Invariance

Many works in deep learning focus on data represented as ordered sequences, such as audio
or text. For some problems, however, it is important to ignore permutation of the input and
treat it as an unordered set.

For 3D data, often works quantize data into voxels - effectively 3D pixels, which allows
researchers to closely mimic the approaches used for images. Qi et al. [3] present an alternate
approach; PointNet, a network which directly consumes pointclouds. Pointclouds are simply
sets of points, and are often generated by 3D scanners or structure-from-motion systems. A
problem with feeding pointclouds into traditional networks is that the order of these points in
memory changes the result, and it is difficult to not overfit to this order. PointNet’s predictions
are robust to this the reordering of points, however its invariance is approximate and is primarily
learned through training of an RNN on randomly perturbed input sequences.

Zaheer et al. [4] provide a neural architecture which is permutation invariant by definition.
Their overall strategy; nicknamed DeepSets, enforces equality in weights of the neural network
layers. In the simplest case, this means the number of nodes in each layer remains consistent
and all ’horizontal’ edges and all ’diagonal’ edges are each equal to each other. This forms
a permutation-equivariant layer which may be incorporated into other network architectures.
Their results are competitive to many specialized algorithms in different domains, including
text concept set retrieval (finding a missing word in a set), image tagging (suggesting de-
scriptions for an input image), and set anomaly detection (detecting outliers). The full model
for anomaly detection is permutation-equivariant, while this property is only approximate for
other tested applications.

3.2 Graph Equivariance & Invariance

A similar problem to invariance or equivariance over set equality is graph-problems. Many
problems are represented naturally as a graph, such as network routing, knowledge graphs,
and CPU-register allocation. On disk these graphs may be stored as an adjacency matrix,
which is changed by reordering the nodes. Algorithms consuming an adjacency matrix would

6

then need to learn this equivariance through learning. These learning algorithms for graphs
have an equivariance to reordering of the graph nodes at an architecture level.

Graph Convolutional Networks (GCNs) are presented by Kipf and Welling and used for classi-
fication in graph structures [7]. They provide an efficient convolution for graphs with is similar
to that of CNNs. Their equivariance properties can be seen in the layer-wise propagation rule
for GCNs, defined as:

H(l+1) = σ(D−
1
2 ÃD−

1
2H(l)W (l))

Here, Ã = A + IN is the adjacency matrix of the graph G with added self-connections,
Dii =

∑
j Ãi is a normalization term, and W (l) is the trainable weight matrix for layer l. σ(·)

is an activation function such as ReLU.

The values for each node in the graph, H(l)
i , in each layer are updated based on the sum of the

nodes sharing an edge with node i, normalized by some factor. The weights, W (l), applied
to each node are the same, and the adjacent nodes remain the same under perturbation of
the adjacency matrix. This means the architecture is equivariant to reorderings of the nodes
and edges in the adjacency matrix.

The normalization used (D−
1
2 ÃD−

1
2) is the core innovation of GCNs’ spectral graph convolu-

tion. When calculating the values for node i, this allows the network to effectively normalize
by both the number of edges of node i but also by node j if i and j share an edge.

Schlichtkrull et al. [28] present Relational Graph Convolutional Networks (RGCNs) which
extend GCNs to add multiple edge types. This is used to model relational data, and each
edge type has its own weight matrix.

Gilmer et al. [8] propose Message Passing Neural Networks (MPNNs), an architecture which
represents the graph structure literally and nodes send ’messages’ along shared edges. Each
update loop, nodes first pass messages and update their hidden state. The state of a node is
updated as a function of the hidden state of that node and the sum of all incoming messages.
Next, a readout function generates a feature vector for the whole network which is the output
prediction. Due to this sum over incoming messages, the hidden state is order-invariant.
However their best performing network uses set2set [5] as the readout function which, similar
to PointNet [3], only learns an approximate equivariance to order.

The MPNN architecture is shown to generalize 8 popular graph deep-learning algorithms
including GCNs [7]. MPNNs are originally used to solve quantum chemistry problems by
representing atoms as nodes and chemical bonds as edges, and are later used by NeuroSat
[29] to solve SAT problems, similarly embedding the problem as a graph. MPNNs can run for
any number of iterations (update/propagate) until convergence; NeuroSat can solve harder
problems than it was trained on simply by running for longer.

Maron et al. [9] consider graph learning algorithms specifically in the light of equivariant
and invariance. They characterize the collection of linear invariant and equivariant layers that
may be used in graph classification networks. They also provide orthogonal bases vectors for
the spaces of these layers - allowing them to be parameterized without constraint. In their
appendices they show that their model can represent any MPNN to arbitrary precision.

7

3.3 Equivariance to Spacial Transforms

Some works generalize or extend the 2D convolution operation typical in a CNN in such a
way that the network gains an equivariance or invariance.

Gens et al. [16] propose Deep Symmetry Networks; a CNN variation which is approximately
invariant to any given symmetry group. They focus especially on the affine transformation
group, which consists of all translations, reflections, rotations, or skews of the input/output.
Deep Symmetry Networks or symnets have parallels to a CNN; in a CNN each feature map
(in each layer) is stored as a function M : R2 → R, and the value at point P ∈ R2 of a
feature map layer i is calculated from a weighted sum of points ’near’ P in the previous layer.
This is the convolution operation and it is due to this process that a CNN is equivariant to
translations of the input.

Deep Symmetry Networks store feature maps in higher-dimensional space, where each point
represents a unique transformation in the group, i.e. in D dimensional space where D depends
on the group representation. Since a point in the translation group can be parameterized by
P ∈ R2, D = 2, the implementation for this group is analagous to a CNN. However a
transformation in the affine group can be expressed as:[

x′

y′

]
=

[
a b
c d

] [
x
y

]
+

[
e
f

]
(1)

Which is parameterized by R6, so D = 6 for this representation of the affine group. Each
feature map then is also a mapping RD → R. Layers in a Deep Symmetry Network sample
points in the ’k-neighbourhood’ of the point in the previous layer, i.e. those points which are
’nearby’ in this D-dimensional representation of the group. Storing these maps on disk is an
issue, as even with 10 steps in each direction there are 106 points. Instead each feature map
is evaluated at several control points, which are chosen to maximize the feature in symmetry
space by Gauss-Neuton optimization.

3.3.1 Group Convolutions

Cohen and Welling [10] propose a method for creating CNNs which are equivariant to finite
groups. These G-CNNs utilize a G-Convolution in place of the traditional one. They write
this regular convolution as an operation taking a stack of feature maps f : Z2 → RKl ,
(where K l is the number of features in layer l) and convolving it with a set of K l+1 filters
ψi : Z2 → RKl .

[f ∗ ψ](x) =
∑
y∈Z2

Kl∑
k=1

fk(y)ψk(x− y)

Considering the first sum as a sum over elements of the translation group G, this can be
rewritten as:

[f ∗ ψ](x) =
∑
h∈G

Kl∑
k=1

fk(y)ψk(hx)

This allows for a similar reasoning as before, as the network becomes equivariant to the
group G. Subsequent proofs extend to arbitrary groups with the same convolution equation.
Performance is improved by calculating the correlation instead of the convolution (this is the

8

inverse operation), and implementations for the roto-transformation group are demonstrated
to have SOTA performance (for the time; 2016) on a rotated-MNIST dataset.

Several works extend or generalize G-CNNs. Cohen et al. [20] extend a similar approach
to G-CNNs for defining CNNs equivariant to transformations in different input spaces, with
specific mention of Euclidean and the sphere. These properties are proven using fiber bundles
and fields.

Lenssen et al. [15] extend G-Convolutions to Lie groups and use them as part of a Capsule
Network [30, 31], which is itself a generalization of a CNN. Using a similar approach to G-
CNNs [10], their group equivariant capsule network outperforms non-equivariant equivalents.
Equivariance may be especially useful in capsule networks, where the degree of parameter
sharing in a G-Convolution could reduce the large number of trainable weights typically in a
capsule network.

Romero et al. [14] define the attentive group convolution, which allows them to consistently
outperform baseline G-CNNs. The addition of attention [32] accentuates meaningful symmetry
during training and the learned concepts can be human-interpreted from the resulting attention
maps.

Some apply G-CNNs to 3D problems [12, 13] and the 3D-Roto-Translation group over voxel
data. These demonstrate that exploiting equivariances during learning, and specifically the
G-CNN architecture has the ability to improve performance.

More generalize G-CNNs to the SE(2) group. Weiler et al. [17] use Steerable Filters which
share weights to guarantee equivariance in each layer. This is improved upon by Bekkers et al.
[18] who lighten the restrictions on the kernel functions and so show improved performance.
Smets et al. [21] present a PDE-based framework which generalizes G-CNNs, applying known
ideas for reasoning about CNNs using PDEs [33].

These methods notably solve an important problem in the standard G-CNN; that it can only
provide equivariance over those groups which transform input exactly over the pixel grid. For
board games however, the transformation groups are usually finite and map square-to-square
and as such the improvement offered by these methods isn’t as applicable.

Cohen et al. [19] solve the problem of CNNs applied to spherical signals such as 360° images
and video. Definition for spherical cross-correlation allows their Spherical CNNs to exhibit
equivariance over translations on the surface of a sphere. They show how this correlation can
be computed efficiently using a generalized Fast Fourier Transform (FFT) algorithm.

Dieleman et al. [11] approach the problem of an equivariant CNN from a different angle.
Other methods generally work by replacing the convolution operation, instead these create
equivariance from a higher level. This is done by applying each layer multiple times to different
transformations of the input. Their approach applied to CNNs “describes the same kind of
models” as G-CNNs, although may be extended to arbitrary layer types. The method is
specifically demonstrated for equivariance over cyclic symmetries, i.e. rotations of multiples
of 90°, and issues with extending the approach to arbitrary groups are briefly commented
on.

9

3.4 Equivariances in a Broader Context

There are other works considering equivariances or invariances of existing neural networks or
unifying different approaches.

Lenc et al. [34] investigate the extent to which CNNs may naturally learn invariant or equivari-
ant representations through training. They demonstrate that early layers of a trained AlexNet
[35] network are approximately invariant to symmetries. They further evaluate how rotations
or reflections of a layer affect subsequent layers. Since performance is roughly maintained,
this is a strong indicator that networks learn approximate transformation equivariance through
training.

Bloem-Reddy et al. [6] use tools from probability and statistics to define a general represen-
tation which characterizes the structure of many invariant and equivariant neural networks.
They show that Deep Sets [4], Message Passing NNs [8] and others can be found using
their program; a method for finding these symmetric representations. Further, several of their
theorems generalize those in previous literature.

While 2D convolutions are equivariant to translations of the input, Zhang et al. [36] show that
many downsampling methods commonly used in CNNs are not. These include max-pooling,
strided-convolution and average pooling. In practice demonstrating that predictions made
by AlexNet [35] and VGG [37] can vary by 90%+ for single pixel translations of the input.
They propose variations of these operations, typically by adding an additional blurring step,
which alleviates this. Their modified networks have improved translation invariance, but the
invariance is still approximate.

10

4 Game Graph Convolutional Net-
works

In order to improve the neural architecture for games, we are looking for one which is equivari-
ant over reflections or rotations of the game board. Here we define Game Graph Convolutional
Networks (GGCNs), which achieves this equivariance by using Graph Convolutional Networks
(GCNs) [7] or Relational Graph Convolutional Network (R-GCNs) [28]. These have inherent
invariances and equivariances that are possible to exploit by representing the problem in spe-
cific ways. Here we apply this approach to checkers but the applications are more broad.

4.1 Boardgames as Graphs

In order to use a Graph Convolutional Network to predict moves for a game, we first represent
the board state as a graph. Subsequently, we can show that this representation is equivariant
to symmetries.

Figure 4.1: The starting checkers position represented as a graph. The arrows in blue represent
the possible moves for a piece.

We have a node for each reachable square on the board, and edges between adjacent reachable
squares. This representation can be seen in Fig. 4.1. At each node we store 1, 0, or -1 to
denote the presence of a player’s piece, an empty square, or an opponent piece respectively.
Every possible move corresponds to exactly one directed edge, including where captures involve

11

’jumping’ an extra square. The network then predicts a value for each directed edge indicating
the probability of that move.

The graph representation of a board alone doesn’t contain enough information to reasonably
play checkers. This is because the graph doesn’t give the orientation of the board. Each node
doesn’t ’know’ which edges face ’up’ or ’down’ the board, nor is this information calculable
from its neighbours. To fix this, the board can be represented as a directed graph with typed
edges. The edges moving toward the opponent’s side are one ’type’ while edges moving
towards the player’s side are another. RGCNs extend the GCN architecture to add support
for multiple edge types in a similarly equivariant way.

4.2 Equivariances of GGCNs

It can be seen, by taking two symmetrically equivalent boards and representing them both as
a graph, that both are equal in the following sense: For each node in one graph there is an
equivalent one in the other graph sharing the same value. There is also an equivalent edge
for any edge in one graph. This is enough to say both graphs are isomorphic.

GCNs and their relational variant are equivariant over isomorphic graphs [9], so they will create
a symmetry equivariant learning algorithm when the board state is represented this way.

12

5 Finite Group Neural Networks

In this section we derive Finite Group Neural Networks or FGNNs. FGNNs extend from an
approach where an existing neural network architecture is taken and equivariance to a group is
emposed layer-by-layer. The simple approach, discussed first, attempts to create layers which
are equivariant to the group directly. The problems with this method are briefly discussed to
motivate the FGNN approach, which creates equivariance over a higher level.

5.1 A Simple Approach

We take a neural network N : X → Y which we wish be equivariant over some group G:

N(gx) = gN(x)

for all g ∈ G and x ∈ X

We can express networks using the same methods used by B. Fong et al. [38]. In their paper
they define a category theoretical model for supervised learning algorithms, with some focus
on neural networks. Of interest to us; they express a neural network as a sequence of k layers
with corresponding input/output sizes:

(I1 : RC1 × Rn0 → Rn1), (I2 : RC2 × Rn1 → Rn2) . . . (Ik : RCk × Rnk−1 → Rnk)

Each function Ii : i ∈ 1 . . . k, is parametric with |Ci| weights. In a neural network, these
correspond to the neural weights and biases associated with any input, and it is these weights
which are updated by back-propagation. A full, trained neural network is then expressed as
this sequence of functions I1, I2 . . . Ik along with the parameters C1, C2 . . . Ck.

In order create a network which is equivariant to some group G, we could show that each
parametric layer (I(C, ·)) individually is equivariant to that group, or equivalently commutes
with any element of the group:

g ◦ I(C, ·) = I(C, ·) ◦ g

for all g ∈ G

As a consequence, the composition of many layers (i.e. the entire network) will also be group
equivariant. We look at the restrictions on C such that the resulting layer is group equivariant.
When applying this to a 2D convolutional layer, the titular component of CNNs, we can see
that the weight kernel is too restricted.

A 2D convolutional layer with input X simply has some weight kernel C applied at each point
of the input to give the resulting matrix. This is visualized below, as the product of the red
section convolved with the blue kernel gives the green value in the output.

13

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0

∗

1 0 1

0 1 0

1 0 1

 =

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

X C X ∗ C

The restriction required for equivariance can be calculated by taking the simplest possible
’interesting’ network; a layer with a 2x2 input and kernel. Here, writing the weights of the
network as a, b, c, d. The input, I, is a matrix with a single 1.

×a ×b

×c ×d

1 0

0 0

()
∗ a b

c d

 = a
()

X C X ∗ C

If our layer is equivariant over the group of 90° rotations, then rotating the input (applying
g) should simply give a rotation of the output. Since the output is a matrix with just a single
value, rotating it has no effect.

×a ×b

×c ×d

0 1

0 0

()
∗ a b

c d

 = b

()
gX C (gX) ∗ C

Here, rotating the input prior to applying the kernel gives b. Since the layer must be equivariant
to g.

a = (gX) ∗ C = g(X ∗ C) = b

The approach can be continued to show that a = b = c = d. This is a big problem for our
network, as many weights in each kernel must be the same. Applying the approach to a 3x3
kernel shows the kernel must be of the form:

C =

a b a
b d b
a b a

Generally, the kernel must be invariant over the chosen group. This makes the resulting
architecture similar to the GCN approach shown previously. We can express the GCN network
architecture applied to an infinite1 board as several convolutional layers with restrictions on
the weights. Since edges are only one square long, they fit into a 3x3 kernel.

C =

a 0 a
0 b 0
a 0 a

1In this case the normalization term is constant at all nodes.

14

Similarly to GCNs, these layers can’t learn to activate on non-symmetrical features and the
resulting network will struggle to recognise lines and edges, or specific piece arrangements.
Ideally, we want to avoid this, and create a network which can maintain a richer internal
relationship of features while still having the same equivariance properties.

5.2 A Better Approach

Enforcing equivariance over the group directly in each layer, as seen previously, limits the
ability of the layer to represent non-symmetrical features. Instead, we define an operation Tg
for each g ∈ G and enforce each layer’s equivariance to this instead. This method results
from a definition of Tg given formally in the subsequent section, and a general solution for
creating an equivariance over it for an arbitrary layer.

In order to aid description, this section gives a practical example of FGNNs derived from a
simple network and equivariance over horizontal reflections. The formalization of this which
applies to arbitrary layers, network architectures and groups follows.

A neural network without recurrent layers or memory is a pure function N(X) = Y . It can be
written as a composition of layers fi, i ∈ [1..k], which are linearly composed for now.

X0 X1 Y
f0 f1

We add the restriction that the input tensor X must have an even number of ’layers’, and
write it as two stacked subtensors of equal size.

X =
[
X(1)

X(2)

]
In order to modify this network, we replace all functions fi with their modified version f ′i ,
where g is a matrix which horizontally reflects the input. Note the reordering of the subtensors
in the second call of fi.

f ′i(
[
X(1)

X(2)

]
) =

 fi(
[
X(1)

X(2)

]
)

gfi(g
[
X(2)

X(1)

]
)

Then resulting equivariant network N ′ can be written as:

X0

[
X0
X0

] [
X

(0)
1

X
(1)
1

] [
Y (0)

Y (1)

]
Y (0)

+Y (1)

Lift f ′0 f ′1 Drop

Along with switching out the layers, we add two more here. The Lift layer at the start simply
duplicates the input. The Drop layer at the end adds the two subtensors.

Lift(X) = [XX] (1)

Drop(
[
X(0)

X(1)

]
) = X(0) +X(1) (2)

Note that the dimensionality of the component layers may need to be changed, i.e. for
convolutional layers the number of features should be halved in all layers except the last to
retain the same model size and maintain layer inter-connectivity.

15

In order to be reflection equivariant, the following property should hold for all inputs:

N ′(X) = Y =⇒ N ′(gX) = gY = gN ′(X)

This can be verified by defining an operation T (X) which both applies g and reverses the
order of the component tensors. Since g reflects the tensors, it can be applied equally to each
sub-tensor X(i).

T (
[
X(1)

X(2)

]
) = g

[
X(2)

X(1)

]
=
[
gX(2)

gX(1)

]
We can then show that applying g the input leads to the following network values after each
layer is applied, with the result correctly showing equivariance.

gX0 T
[
X0
X0

]
T

[
X

(0)
1

X
(1)
1

]
T
[
Y (0)

Y (1)

]
g
(

Y (0)

+Y (1)

)Lift f ′0 f ′1 Drop

The Lift and Drop layers can both be easily verified from the definitions. Reordering identical
subtensors and reordering tensors before adding them, respectively, have no effect. The
commutativity of T over f ′i is slightly more challenging.

f ′i(T
[
X(1)

X(2)

]
) =

 fi(T
[
X(1)

X(2)

]
)

gfi(gT
[
X(2)

X(1)

]
)

 =

 fi(g
[
X(2)

X(1)

]
)

gfi(g
2
[
X(1)

X(2)

]
)

Then using the fact that g is its own inverse, i.e. reflecting something twice has no effect.

=

fi(g [X(2)

X(1)

]
)

gfi(
[
X(1)

X(2)

]
)

 = Tg−1

gfi([X(1)

X(2)

]
)

fi(g
[
X(2)

X(1)

]
)

 = T

 fi(
[
X(1)

X(2)

]
)

gfi(g
[
X(2)

X(1)

]
)

 = Tf ′i(
[
X(1)

X(2)

]
)

Hence each fi commutes with T and so the full network is equivariant to flips.

5.3 T-Equivariance

The example above shows a simple network modified to be equivariant to horizantal reflections.
Here this method is extended to work over arbitrary groups (with minor restrictions), and for
networks with skip connections. There are also more efficient implementations for some layer
types such as pooling.

For this the input tensor of the layer, denoted X, must have a multiple of |G| layers (this is
later enforced by the architecture) and the group elements must apply to slices of the tensor.
For simple rotations and reflections of the input, this is evidently true.

gX =

[
gX(1)

gX(2)

...

]
(3)

Tg is defined for each element of the group g ∈ G, and consists of splitting the input tensor
into |G| slices, reordering them before concatenating them, and applying g. We denote this
reordering as Rg. Since the reordering of slices must commute with the group elements
G:

Tg := Rg ◦ g = g ◦Rg (4)

16

Definition 5.3.1. T-Equivariance A function is T-Equivariant if it commutes with all of the
resulting operations.

∀g ∈ G : Tg ◦ f = f ◦ Tg

Figure 5.1: The cayley graph of the dihedral group of the square; D8. This defines two gen-
erating functions; a (red) and b (blue), for 90° rotation and horiztontal reflection respectively.
The nodes then represent all elements of the group/ all possible transformations of an image.

The exact reordering of pieces is defined similarly to a cayley graph representation of the group.
We assign these pieces to nodes in the graph then permute them according to the outgoing
edges. An example of this mapping is shown in Fig 5.1. This can be viewed as representing
this group as a subgroup of an equivalently sized permutation group (Sn). Formally:

Let m(·) be a function which arbitrarily assigns each g ∈ G a unique index ∈ [1..|G|].
Let [g1, g2, . . .] be the resulting mapping applied to the group. Note that m(gi) = i by
definition.

Consider the input tensor X as divided into |G| sub-tensors denoted [X(1), X(2) . . . X(|G|)].
Rs(X) reorders the input such that in the output tensor X ′, X ′(i) = X(m(gis)).

In full, this mapping can be written as:

Rs

 X(1)

X(2)

...
x(|G|)

 =

 X(m(g1))

X(m(g2))

...
X

(m(g|G|))

 (5)

Lemma 5.3.1. ThTs = Ths for all h, s ∈ G

Proof. This can be proven by considering the way which Rh and Rs permute the subtensors.

Rh maps each subtensor at index i to index m(gih). Therefore RhRs then maps index i to
index m(gm(gis)h). Since m(gi) = i, gm(h) = h.

RhRs then maps i to m(gihs), which is the same as Rhs. Hence RhRs = Rhs

Finally, ThTs = RhRshs = Rhshs = Ths

17

5.4 T-Equivariant Layers

It is possible to redefine any layer so that it commutes with Ts, for any s ∈ G.

Given some function f ; a layer in our network, we can define its T-equivariant version as
f ′.

f ′(X) :=

f(Tg1X)g−11

f(Tg2X)g−12
...

f(Tg|G|X)g−1|G|

 (6)

Theorem 5.4.1 (T-Equivariance of Simple Functions). f ′(X) is T-Equivariant if g ∈ G
commutes with Rh.

Proof. In order to prove that f ′ is equivariant to T, we need to show that ∀s ∈ G :
Ts(f

′(X)) = f ′(Ts(X)).

Ts(f
′(X)) = Ts

f(Tg1X)g−11

f(Tg2X)g−12
...

f(Tg|G|X)g−1|G|

 = s ◦Rs

f(Tg1X)g−11

f(Tg2X)g−12
...

f(Tg|G|X)g−1|G|

Element i in the matrix is f(TgiX)g−1i , and Rs maps each element in the output such that
x′i = xm(gis). Then the resulting section at index i is f(Tgm(gis)

X)g−1m(gis)
. Since gm(f) = f

this simplifies to f(TgisX)(gis)
−1. Hence:

f ′(X) = g

f(Tg1sX)(g1s)
−1

f(Tg2sX)(g2s)
−1

...

From our restriction that the group G must commute with taking slices of the input, s ∈ G
must distribute across slices of the matrix. Further, from Lemma 5.3.1 Tgis = TgiTs.

Tsf
′(X) =

f(Tg1TsX)g−11 s−1s
f(Tg2TsX)g−12 s−1s

...

 =

f(Tg1(TsX))g−11

f(Tg2(TsX))g−12
...

 = f ′(TsX)

Since f ′ commutes with any arbitrary Ts, s ∈ G, it is T-Equivariant.

5.5 Lift & Drop

Now that we have the core of our network, we can consider how to enter and remove data
from either end. These are layers; Lift to enter data and Drop to remove, and are defined by
the following properties.

Lift ◦ g(X) = Tg ◦ Lift(X) (7)

And. . .
Drop ◦ Tg(X) = g ◦ Drop(X) (8)

18

For simple transformation groups we use the definitions: Lift(X) simply stacks |G| copies of
X, and Drop(x) divides X into |G| pieces and sums them.

Lift(X) =

[
X
X
...

]
(9)

Drop

([
X(1)

X(2)

...

])
= X(1) +X(2) + . . . (10)

The defining properties for these can be verified from properties of g (3) and Tg (4). Impor-
tantly this means that other definitions of these layers are possible for different groups, as is
important for groups acting on the action spaces of board games.

5.6 Skip connections

Skip-connections make the training of very deep networks more stable, and are an indispensable
component of a variety of popular neural network architectures [22, 23, 24, 25, 26].

Merge layers which maintain T-Equivariance can be defined simply by splitting and zipping
together the input tensors.

Merge

 A(1)

A(2)

...
A(|G|)

 ,
 B(1)

B(2)

...
B(|G|)

 =

A(1)

B(1)

A(2)

B(2)

...
A(|G|)

B(|G|)

 (11)

Lemma 5.6.1. Merge(TA, TB) = T ◦Merge(A,B)

Proof. The proof of the merge layer’s T-equivarience follows from the definition; the shuffling
of the input results in the same shuffling of the output. For all Ts, s ∈ G:

Merge

Ts
 A(1)

A(2)

...
A(|G|)

 , Ts

 B(1)

B(2)

...
B(|G|)

 = Merge

 A(m(g1s))s
A(m(g2s))s

...
A

(m(g|G|s))s

 ,
 B(m(g1s))s

B(m(g2s))s
...

B
(m(g|G|s))s

=

Am(g1s)s
Bm(g1s)s
Am(g2s)s
Bm(g2s)s

...
A

(m(g|G|s))s

B
(m(g|G|s))s

 = Ts

A1

B1

A2

B2

...
A|G|

B|G|

 (12)

Lemma 5.6.2. Any skip connection over T-Equivariant functions followed by a Merge layer
is itself a T-Equivariant funciton.

Proof. Any skip connection in a network can be visualized as the following graph. Both
f ′0 and f ′1 are T-Equivariant, and may represent the composition of multiple layers and skip
connections.

19

X0 X1

X2 Merge(X1, X2) = Y

f ′0

f ′1

T : T ∈ {Tg, g ∈ G} can commute with this structure, using the definitions of T-Equivariance
and Lemma 5.6.1. Hence it is T-Equivariant.

TX0 TX1

TX2 Merge(TX1, TX2) = TY

f ′0

f ′1

5.7 Pooling

The previous definition allows for arbitrary layers to be made T-Equivariant, which includes
up or down-scaling layers. However, maximum, minimum, and average pooling layers are
symmetric by definition, and applied pointwise. Over the D8 group or any sub-group this
means they are T-Equivariant without modification.

5.8 Group Equivariance

Finally, let our network be N ; the T-equivariant function f ′ composed at either end with a
Lift and a Drop layer.

N = Drop ◦ f ′ ◦ Lift

Theorem 5.8.1 (Group Equivariance). N = Drop ◦ f ′ ◦ Lift is equivariant over group G.

Proof. Due to the definitions of Lift and Drop, ∀g ∈ G:

N ◦ g = Drop ◦ f ′ ◦ Lift ◦ g
= Drop ◦ f ′ ◦ Tg ◦ Lift
= Drop ◦ Tg ◦ f ′ ◦ Lift (13)
= g ◦ Drop ◦ f ′ ◦ Lift
= g ◦N

Hence, N is equivariant over G, since g : g ∈ G commutes. All together this allows us then
to ’upgrade’ all layers in any network to commute with T, and by adding a layer at the start
and end the whole network will be equivariant to any chosen finite group.

20

5.9 Move Embeddings

For board-games, the network must output a move, or a policy π over all possible moves. The
reflection of this policy tensor or move embedding may not correspond to the symmetrically
opposite move.

For example, the AlphaZero [2] chess network outputs a policy representing the probability of
all possible moves. This is a tensor of size 8× 8× 73. Each of the 8× 8 positions identifies
where to “pick up” a piece, while each of the corresponding 73 planes encode how that piece
should be moved. The first 56 of which move a piece 1–7 squares along one of the 8 compass
directions. The next 8 planes correspond to possible knight moves. Finally, the remaining 9
planes encode possible pawn under-promotions or pawn captures.

Figure 5.2: A move (blue arrow) on a board state (left). The resulting move and board state
after naively reflecting both tensors (middle). The correctly reflected board and move (right).

Simply reflecting a move represented in this embedding gives the incorrect move as shown in
Fig. 5.2. Since we can rotate the board and recolour pieces in the input such that white is to
play in all cases, we only need the network to be equivariant over horizontal reflections.

We consider the group G as acting upon this space in such a way that it maps between
symmetrically opposite moves. Hence a new Drop layer must be defined for which its defining
property holds.

Drop ◦ Tg(X) = g ◦ Drop(X)

This can be done by splitting the move space into subtensors relating to symmetrical; S0

moves, non-symmetrical moves moving left; X0 and non-symmetrical moves moving right;
X1. If g horizontally reflects the board

X =

[
S0
X0

S′0
X1

]

Drop ′

([
S0
X0

S′0
X1

])
=

[
S0+S′0

2
X0
X1

]
Then equivariance over horizontal reflections can be seen by:

Drop ′

(
Tg

[
S0
X0

S′0
X1

])
= Drop ′

([
gS′0
gX1

gS0

gX0

])
= g

[
S0+S′0

2
X1
X0

]

21

Since this resulting network has X0 and X1 switched — each symmetrically relating to op-
posite moves, the move embedding is correctly flipped. This Drop ′ layer then, when used in
conjunction with any FGNN, will correctly reflect the move embeddings when the input tensor
is reflected.

22

6 Methodology

This section outlines the methods and architectures used in testing GGCNs and FGNNs. I train
versions of both on a novel checkers dataset, and compare results with equivalent baseline
CNNs. Finally I create an equivariant version of U-Net (FGNN-U-Net), and evaluate it on an
image segmentation task.

6.1 Dataset

In order to enable quick iteration of ideas and smaller neural networks to be tested, I choose
an equivalently smaller/ simpler game. Checkers (or draughts) is a 2 player game played
on an 8 × 8 board. It is a solved game [39], and has a relatively small number of possible
states (∼ 5 × 1021 [39]) compared to chess (∼ 1043 [40]), or go (∼ 2 × 10170 [41]). Still it
has many of the properties which makes creating equivariant networks for board-games hard;
pieces which ’move’ resulting in more complicated move or policy embeddings, and multiple
piece types (after promotion).

A dataset of 22 thousand tournament games compiled by the Open Checker Archive1 is used to
train and evaluate the networks. This dataset contains moves in Portable Draughts Notation
(PDN), so this must first be parsed for board positions and moves. When a move consists
of multiple captures, called jumps, these are added to the dataset as multiple board positions
and moves each consisting of a single jump. During play, the network can be called multiple
times to produce a long string of captures as long as it is valid. The resulting training and
test sets together contain almost 1 million board states along with the next move made from
that state. Training a network on this, then, is effectively teaching it to predict the moves
made by high level checkers players.

The way the board states are passed to the network varies by method but for both each square
on the board is represented as a single value. If the square is empty this value is 0, otherwise
for regular pieces it is -1 or 1 for black or red respectively. Squares containing kings similarly
are -3 or 3 for black or red. The moves made are one-hot encoded into an vector of size 128,
with a space for each square on the board (32) times each of the directions (4) that a piece
may move from that square. These are shown in blue/red in Fig 6.1.

The moves are shown using a simple matplotlib diagram which is useful to visualize the thinking
of the network. In the case of a mistake in the input format or the network architecture, the
network would often simply converge to predicting the average moves. This could easily be
seen by evaluating several random positions from the training set.

1Open Checker Archive: http://www.fierz.ch/download.php

23

Figure 6.1: The current board state (left) is given as input to the network and the next move
to be played, in red (right), is predicted by the network.

6.2 Baseline

In order to evaluate the performance of the methods, it is important to have a benchmark.
A multi-layer CNN is used, with differing numbers of filters in each layer to create different
sized models, for the following reasons.

The models are easily scalable: Equivariance may only benefit small or large networks. It
is therefore important to evaluate across a wide variety of model sizes which vary from
under-fitting to over-fitting. CNN models can be scaled up or down small amounts,
simply by adding or removing filters.

There are equivalent FGNNs to any network: Since any network architecture has an
equivalent FGNN, it isn’t as important which is chosen for comparison. A minimal
network is then logical to eliminate other implementation details which may make the
comparison unfair.

Multiple definitions for normalisation or dropout are possible: For example, whether
dropout should be applied layer-wise (i.e. to f ′i , breaking equivariance during training)
or per function (i.e. to fi where a single dropout causes multiple values to be lost in
the next layer) is unclear and should be established experimentally. Using a network
without these empirically motivated techniques is arguably a fairer comparison.

It performs well: Through informal empirical observation across a wide variety of model
types and depths, it was found that a CNN architecture converges more consistently
than models with multiple fully connected layers, performs well, and is quick to train.

To compare against GGCNs, CNNs with comparable numbers of trainable weights are used.
These contain 3 or 5 layers and a small number of features. Both models are small due to
the fact that GCNs are unoptimized for this type of problem and are slow to train.

To compare against FGNNs, CNNs with 10 layers are used. Models deeper than this were
found not to notably improve performance, and 10 layers allows for models which both under
and over-fit the dataset.

The CNN has the same number of filters in each layer. Each layer has a 3×3 convolution, with
ReLU activation [42], and is zero-padded. The number of filters is varied to give a different
number of trainable weights in a variety of models. The final layer applies 4 filters, resulting
in 4 layers. The then model masks out the 32 squares which correspond to the reachable

24

squares in a checkers game, and flattens the values into a single vector of size 128. A final
softmax layer ensures the vector is normalized.

6.3 GGCNs For Checkers

My implementation of a Relational Graph Convolutional Network is heavily based on the
implementation provided in open-source library Spektral2. I add the ability to maintain the
adjacency matrix in the layer, removing the need to pass it on each iteration.

The GGCN for checkers model defines 3 edge types. One moving away from the current
player, one towards, and one connecting each node to itself. Each edge type in each layer has
its own set of trainable weights. The feature vector for each node in each layer then is the
sum of the activations along each layer type. Each edge type for each layer has 100 filters,
meaning there are 3×100×100 = 30000 trainable weights per layer. The activation function
in these layers is relu.

The final layer only has edges from each node to itself with 4 filters - one per move from
that node. It then flattens the input into a single vector of size 128 before applying softmax
activation. The models are trained using categorical-crossentropy loss. Together this trains
the model to predict a probability distribution over possible moves.

All models are trained for 50 epochs on the training set, and evaluated on the previously-unseen
validation set.

6.4 FGNNs For Checkers

As discussed previously, an issue with using existing methods for equivariant networks for
games is their inability to ’mirror’ more complex representations such as moves. One strength
of our method is that it is easier to reason about. Transformations of the input (g, where
g ∈ G) transform the output prior to the Drop layer by Tg. Defining Lift and Drop as defined
previously allows for networks to be equivariant to g when both input and output are acting
in the same space.

6.4.1 Equivariance

There are effectively four ways the that the same board state can occur in checkers. Two of
these are for each player, times two reflections along the horizontal axis of the board. We
rotate the board so that the current player is always playing upwards, and ’recolour’ them so
the current player is black. Because of this, the architecture only needs to only be equivariant
over horizontal flips of the game board.

For checkers, we choose to output a tensor which is 8 × 8 × 4. Similar to AlphaZero each
of the 8 × 8 vertical vectors each correspond to a starting square for a piece. The 4 layers
represent the 4 directions to move a piece from that square. Both single-square moves and
captures, moving 2 squares, are represented by the same layer in the output.

By choosing the order of these 4 layers to be the compass directions: NE SE NW SW, there is
a simple method of creating an equivariant architecture. Reflecting a move involves swapping

2https://github.com/danielegrattarola/spektral

25

any NE move with NW, and SE with SW. This is the same as swapping the corresponding
layers in the output. Finally, the full tensor can simply be horizontally reflected. For example,
a move to the NE at (0,0) becomes a move to the NW at (7,0), which is exactly what we
want.

This way to ’reflect’ a move is the exact definition for Tg over the group of horizontal re-
flections. The architecture can be used by simply defining the Drop layer to be the identity
function.

6.4.2 Implementation

The implementation of FGNNs uses the concept of generating elements. A ’group’ has one
or more generating elements. For example, the D8 group can be generated using horizontal
reflections and rotations of 90°. By applying these operations multiple times one can construct
any of the 8 elements of the group.

First, define a group to be equivariant over. For each generating element, g, give corresponding
tensorflow functions. Then, define the period of that generating element — what power of
that element corresponds to the identity. Finally, define Rg for that element, which represents
how the element permutes all elements of the group.

This group object can be passed to Lift , Drop, Merge and any other layer. The resulting
network will be equivariant over that group provided the commutativity rules hold.

6.4.3 Model sizes & Training

Analogous to the baseline, the architecture chosen is based on a 10-layer CNN, with the same
number of filters in each layer, with 3× 3 convolutions and relu activations.

However, the final layer only applies 2 filters, resulting in 4 layers in the output due to the
FGNN architecture. Then, as before the model masks out the 32 squares which correspond
to the reachable squares in a checkers game, and flattens the values into a single vector of
size 128. A final softmax layer ensures the vector is normalized.

The size of the output from a FGNN layer with a certain number of trainable weights isn’t the
same as it’s equivalent non-equivariant version. Therefore the sizes of the FGNN networks
don’t match exactly with the baselines. All models are trained for 50 epochs with a categorical
crossentropy loss.

6.5 Metrics

For the checkers dataset, to compare models we use accuracy. This is the percentage of
times the model correctly predicted the move made on a board. We also compare based on
the Top-3 accuracy. Here the prediction is correct if the correct move is within the 3 highest
probability moves from the network. This is common for evaluating predictions in classification
problems [35], such as this. Top-3 is especially applicable here as often in the same board
position there are many playable moves.

These metrics measure the playing strength of the resulting networks by evaluating how closely
their play would mirror those of high level checkers players.

26

7 Results

In this section we measure how well GGCNs and FGCNs perform in practice. Here we outline
the results for these equivariant and baseline networks trained on the Checkers dataset, as well
as a subsequent test applying FGCNs to the problem of biomedical image segmentation.

7.1 Game Graph Convolutional Networks

Figure 7.1: GGCN networks with 3 and 5 layers (3L, 5L) compared with simple equivalent
CNNs and other methods. Rand is a random output from the network, and Rand-Valid is a
random move taken which is legal in the current board state2.

Both GGCN networks tested show ∼5.3% accuracy in predicting the next move made in
an unseen high level checkers game. Fig. 7.1 shows this compared baseline CNNs with
comparable numbers of weights, as well as simple non-ml strategies.

7.2 Finite Group Neural Networks

We first verify that FGNNs for several groups are equivariant in practice. This is done by
generating random input tensors and testing if FGNN networks commute with transformations.
We test groups of various transformations, including theD8 group, and subgroups of horizontal

2Estimated from an average branching factor of 8 for checkers [43].

27

and/or vertical reflections, and of rotations of 90 degrees. In all cases the output never differs
in any single value by more than 10−13.

Figure 7.2: The accuracy (left) and top-3 accuracy (right) of equivariant and baseline networks
of different sizes on unseen board states.

For checkers, we compare a horizontally equivariant FGNN to the baseline CNN. Both archi-
tectures have 10 layers, while the number of features per layer is varied to create different sizes
of model. Because the equivariant architecture applies the same layer multiple times, these
feature counts don’t correspond to model sizes directly. To accommodate this, we compare
between architectures based on the number of trainable weights per model. Fig. 7.2 shows a
comparison on the validation set; after training models for 50 epochs, the model is tested on
approximately 100k previously unseen board states and moves.

Figure 7.3: The accuracy (left) and top-3 accuracy (right) of networks over the training set.

Fig. 7.3, shows the equivalent results on the training set. This can be interpreted to measure
the model’s learning capacity. If an equivariant network only affected over-fitting, the models
would score similarly here.

Comparing the ability of this method to combat overfitting is more challenging. Fig. 7.4

28

Figure 7.4: The models’ performance on the training set vs the test set. The dashed line is
where both are equal, and hence no overfitting occured. Nearer this line then equates to less
overfitting.

compares each model’s accuracy on the training set (seen examples) against the unseen
examples of the validation set. Models which over-fit more will have a larger difference
between training and validation set performance, which can be seen as a larger distance to
the dashed line.

Figure 7.5: The training time in minutes compared against the models’ number of trainable
weights (left) and resulting performance (right).

The training time (for 50 epochs) in minutes is shown in Fig. 7.5. FGNNs in their current
implementation seem to take 20–80% longer to train than comparable CNNs with the same
number of trainable weights. When comparing based on the performance of the resulting
network, FGNNs take 20–50% longer to train.

29

7.3 U-Net

Finally, to see how this approach may extend to other domains an network architectures, we
test FGNN variants of U-Net [26] (FGNN-U-Net) on the ISBI 2012 challenge dataset. In this
dataset, models must segment biomedical cells in an image. The problem is independent of
rotations or reflections, and in 2015 U-Net had SOTA results on this benchmark/dataset.
Additionally, U-Net is an architecture which makes heavy use of skip connections.

Figure 7.6: The performance of FGNN-U-Net variants of different sizes and symmetry groups
compared to the baseline (Identity) model.

We create variants of FGNN-U-Net which are equivariant over different groups. These include
horizontal reflections, vertical and horizontal reflections, and rotations of 90° and reflections
(the D8 group). By scaling up/down the number of filters in all the layers in the network,
we also create variants with differing numbers of trainable weights. These can only easily be
scaled by factors of two, doubling or halving the number of weights in the network. Due to
this and the FGNN architecture it isn’t always possible to create comparable networks over
different groups. Variants which are equivariant to 3 groups are compared to the unmodified
Identity U-Net in Fig 7.6.

30

8 Discussion

8.1 GGCNs

The game-graph networks are both outperformed by picking random valid moves, and are
vastly outperformed by CNN architectures with equivalent numbers of trainable weights and
layers.

An issue with this architecture is the ability to understand captures. A capture requires
jumping over a piece and into an empty square beyond it. By representing the board as a
graph, it is difficult for a node to work out what may lie 2 squares diagonally from itself. As
such, the model is unlikely to be able to even determine valid moves, as evident in its poor
performance.

8.2 FGNNs for Checkers

The affect of transforming the input according to some element of the group before feeding
it to the network as compared to afterwards is shown to give the same results. The small
difference between methods is likely to be a synonym of floating point maths rather than an
error in the architecture. This shows that the network is equivariant in practice.

The results in Fig. 7.2 show that the FGNN-based models are stronger checkers players than
baselines an equivalent numbers of trainable weights. Fig. 7.3 show the same on the training
set, albeit less noticeable. The improvement FGNNs provide on the validation set seems to
be present from small models up to the largest ones, and in all cases the most performant
model is a FGNN.

The results in 7.4 demonstrate that FGNN models are able to marginally reduce overfitting.
For every baseline model there is an equivariant model which outperforms it or is nearer to
the dashed line denoting an ideal learner.

The training times shown in Fig. 7.5 are unfortunately somewhat noisy. Networks for each
architecture seem to take the same time to train regardless of the number of trainable weights.
This may mean that another factor is limiting their speed, such as cpu-gpu bandwidth or data
preparation speed. Still, FGNNs of equal size seem to take %20–50 longer to train the same
number of epochs when compared to baselines. This is unsurprising, as FGNNs introduce extra
internal complexity. When compared against their resulting performance however, FGNNs are
more competitive.

31

8.3 FGNNs for Biomedical Segmentation

Equivariant versions of U-Net outperform the baseline, and this performance improvement
seems to scale with the larger groups. This shows that FGNNs can effectively be used in
networks with skip-connections, a property that isn’t possible in existing methods for creating
equivariant networks. The fact that equivariance over larger groups further improves perfor-
mance demonstrates that equivariant networks may show increased performance gains when
used on problems which have more symmetries.

32

9 Conclusion

In this work we propose and evaluate two architectures which create symmetry equivariant
learning algorithms for games.

The first, Game Graph Convolutional Networks, may not be a reasonable approach for creating
these learning algorithms. The loss of spacial reasoning appears to make it hard for these
networks to reason about the wider board state and even determine valid moves.

The second, Finite Group Neural Networks show far more promising results. A horizontally
equivariant network reduces over-fitting and outperforms baselines at playing checkers. Addi-
tionally, FGNNs have a strong theoretical foundation and are arguably easier to reason about
and extend than existing equivariant architectures. They are the first equivariant architecture
which supports skip connections and arbitrary layer types. This is demonstrated by FGNN-U-
Net, which also outperforms the unmodified U-Net network in the task of biomedical image
segmentation.

Overall, equivariance is shown to improve the performance of neural networks for playing
checkers, and may be prove to be a promising avenue of research in a variety of games. The
methods presented may be readily adapted to improve the performance of neural architectures
for Chess, Go, and Shogi, as well as a variety of wider learning tasks.

33

10 Summary

In this work we propose and evaluate two architectures which create symmetry equivariant
learning algorithms for games.

The first, Game Graph Convolutional Networks (GGCNs), are an application of Graph Con-
volutional Networks to games. They create equivariance by representing the board state as a
graph, in such a way that the graph representations of symmetrical or equivalent boards are
isomorphic.

The second, Finite Group Neural Networks (FGNNs) are derived from the notion of T-
Equivariance. Instead of creating equivariance to a group layer-by-layer directly, FGNNs
enforce it over a more complex operation derived from this. FGNNs are the first neural
architecture which can exhibit equivariance over complex move embeddings used for chess
and checkers. Additionally the method used to create FGNNs can be applied to create equiv-
ariant versions of networks over arbitrary finite groups, as well as, for the first time, networks
with arbitrary layer types and skip connections.

In the evaluation, while GGCNs’ performance is lacking, FGNNs both reduce over-fitting and
improve the performance of neural networks at playing checkers. This shows that equivariance
over equivalent positions may be a useful property of board-game agents, and that FGNNs
effectively exploit this equivariance.

Finally, to show the flexibility of FGNNs, equivariant versions of U-Net (FGNN-U-Net) are
proposed, and outperform baselines on a segmentation dataset, even with 2–4 times fewer
trainable weights.

34

11 Future Work & Limitations

The clear continuation of this work is FGNNs’ applications to other games. While checkers was
a decent choice to test a variety of approaches, without any external baselines the performance
of models are hard to assess. In the future I would like to create equivariant versions of existing
network architectures used for Chess and Go. Go in particular is a game equivariant over the
full D8 group so equivariant networks are likely to provide a significant improvement over
current approaches.

One of the limitations of the work is that it inherently involves more operations per layer
than non-equivariant networks. This slows down training and inference, especially for larger
groups, and also scales linearly with the number of elements in the group (this is the same as
existing work). However, there may be ways to improve this by using other representations of
the group. Often a group can be faithfully represented as, for example, the permutation of a
much smaller number of elements. This may provide significant improvements for the speed
of FGNNs.

Another avenue of research is the impact of renormalization or dropout on FGNNs. This is
not evaluated in this work, and multiple possible implementations would need to be com-
pared.

For other applications of FGNNs, several works rely on RNNs to be equivariant over the order
of input sequences [3, 8]. While an equivariant strategy exists in DeepSets [4] the application
of T-Equivariance or a similar idea ’over time’ may be an interesting avenue of research. Addi-
tionally, pose recognition works often produce a vector field DBLP:journals/corr/CaoSWS16
for the direction along limbs, which FGNNs may be able to elegantly model equivariance over.
Many deep neural networks which use skip connections may similarly be a strong application
for FGNNs [22].

35

Bibliography

[1] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,
Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Has-
sabis. Mastering the game of go with deep neural networks and tree search. Nature,
529(7587):484–489, January 2016.

[2] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timo-
thy P. Lillicrap, Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by
self-play with a general reinforcement learning algorithm. CoRR, abs/1712.01815, 2017.

[3] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660, 2017.

[4] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhut-
dinov, and Alexander J Smola. Deep sets. In Advances in neural information processing
systems, pages 3391–3401, 2017.

[5] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to se-
quence for sets. arXiv preprint arXiv:1511.06391, 2015.

[6] Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetry and invariant neural
networks. arXiv preprint arXiv:1901.06082, 2019.

[7] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. CoRR, abs/1609.02907, 2016.

[8] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. CoRR, abs/1704.01212, 2017.

[9] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equiv-
ariant graph networks. arXiv preprint arXiv:1812.09902, 2018.

[10] Taco Cohen and Max Welling. Group equivariant convolutional networks. In Maria Florina
Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International Con-
ference on Machine Learning, volume 48 of Proceedings of Machine Learning Research,
pages 2990–2999, New York, New York, USA, 20–22 Jun 2016. PMLR.

36

[11] Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu. Exploiting cyclic symmetry
in convolutional neural networks. arXiv preprint arXiv:1602.02660, 2016.

[12] Marysia Winkels and Taco S Cohen. 3d g-cnns for pulmonary nodule detection. arXiv
preprint arXiv:1804.04656, 2018.

[13] Daniel Worrall and Gabriel Brostow. Cubenet: Equivariance to 3d rotation and trans-
lation. In Proceedings of the European Conference on Computer Vision (ECCV), pages
567–584, 2018.

[14] David W Romero, Erik J Bekkers, Jakub M Tomczak, and Mark Hoogendoorn. Attentive
group equivariant convolutional networks. arXiv preprint arXiv:2002.03830, 2020.

[15] Jan Eric Lenssen, Matthias Fey, and Pascal Libuschewski. Group equivariant capsule
networks. In Advances in Neural Information Processing Systems, pages 8844–8853,
2018.

[16] Robert Gens and Pedro M Domingos. Deep symmetry networks. In Advances in neural
information processing systems, pages 2537–2545, 2014.

[17] Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for
rotation equivariant cnns. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 849–858, 2018.

[18] Erik J Bekkers, Maxime W Lafarge, Mitko Veta, Koen AJ Eppenhof, Josien PW Pluim,
and Remco Duits. Roto-translation covariant convolutional networks for medical im-
age analysis. In International Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 440–448. Springer, 2018.

[19] Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. CoRR,
abs/1801.10130, 2018.

[20] Taco S Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant cnns
on homogeneous spaces. In Advances in Neural Information Processing Systems, pages
9142–9153, 2019.

[21] Bart Smets, Jim Portegies, Erik Bekkers, and Remco Duits. Pde-based group equivariant
convolutional neural networks. arXiv preprint arXiv:2001.09046, 2020.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. 2015. cite arxiv:1512.03385Comment: Tech report.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks, 2016. cite arxiv:1603.05027Comment: ECCV 2016 camera-ready.

[24] Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep networks.
In Advances in neural information processing systems, pages 2377–2385, 2015.

[25] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

37

[26] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. CoRR, abs/1505.04597, 2015.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1097–
1105. Curran Associates, Inc., 2012.

[28] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov,
and Max Welling. Modeling relational data with graph convolutional networks. In Euro-
pean Semantic Web Conference, pages 593–607. Springer, 2018.

[29] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and
David L. Dill. Learning a SAT solver from single-bit supervision. CoRR, abs/1802.03685,
2018.

[30] Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Transforming auto-encoders. In
International conference on artificial neural networks, pages 44–51. Springer, 2011.

[31] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules.
In Advances in neural information processing systems, pages 3856–3866, 2017.

[32] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. CoRR, abs/1409.0473, 2015.

[33] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural
networks: Bridging deep architectures and numerical differential equations. arXiv preprint
arXiv:1710.10121, 2017.

[34] Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their
equivariance and equivalence. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 991–999, 2015.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

[36] Richard Zhang. Making convolutional networks shift-invariant again. arXiv preprint
arXiv:1904.11486, 2019.

[37] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[38] B. Fong, D. Spivak, and R. Tuyéras. Backprop as functor: A compositional perspective on
supervised learning. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 1–13, 2019.

[39] Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin Müller,
Robert Lake, Paul Lu, and Steve Sutphen. Checkers is solved. science, 317(5844):1518–
1522, 2007.

38

[40] Claude E Shannon. Xxii. programming a computer for playing chess. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(314):256–
275, 1950.

[41] John Tromp. The number of legal go positions. In International Conference on Computers
and Games, pages 183–190. Springer, 2016.

[42] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks.
In Proceedings of the fourteenth international conference on artificial intelligence and
statistics, pages 315–323, 2011.

[43] Chien-Ping Lu. Parallel search of narrow game trees. 1993.

39

	Introduction
	Research Problem
	Research Question
	Research Goal
	Contributions

	Background
	Related Work
	Set Invariance
	Graph Equivariance & Invariance
	Equivariance to Spacial Transforms
	Group Convolutions

	Equivariances in a Broader Context

	Game Graph Convolutional Networks
	Boardgames as Graphs
	Equivariances of GGCNs

	Finite Group Neural Networks
	A Simple Approach
	A Better Approach
	T-Equivariance
	T-Equivariant Layers
	Lift & Drop
	Skip connections
	Pooling
	Group Equivariance
	Move Embeddings

	Methodology
	Dataset
	Baseline
	GGCNs For Checkers
	FGNNs For Checkers
	Equivariance
	Implementation
	Model sizes & Training

	Metrics

	Results
	Game Graph Convolutional Networks
	Finite Group Neural Networks
	U-Net

	Discussion
	GGCNs
	FGNNs for Checkers
	FGNNs for Biomedical Segmentation

	Conclusion
	Summary
	Future Work & Limitations

