
School of Computer Science and Statistics

The Impact of Synthetic Data On The
Reliability of Hand Tracking Systems

Daniel Desmond Dennis

April 2020

A dissertation submitted in partial fulfilment

of the requirements for the degree of

MAI (Computer Engineering)

Declaration

I hereby declare that this project is entirely my own work and that it has not been

submitted as an exercise for a degree at this or any other university

Signed: Date:

i

30th April 2020

Abstract

This dissertation investigates the merits of using synthetic data for training a hand track-

ing model to address the problem of the lack of training data for such systems. This is

achieved by looking at two different synthetic data generation strategies, and training

an existing hand tracking model to see how it performs on those generated synthetic

datasets. An existing real dataset, the MSRA dataset is used as a control. The MANO

model is used as the basis for generating synthetic data, and V2V-Posenet is used as the

existing hand tracking model. The first strategy generates the data based on random

parameters for MANO, this is referred to as the Random MANO Dataset. The second

strategy generates the data based on parameters determined from the groundtruth of the

real dataset to recreate that real dataset using inverse kinematics, this is referred to as

the IK MANO Dataset.

In recent years, the accuracy of hand tracking systems has improved with the use of con-

volutional neural networks (CNNs). However, these systems need comprehensive training

data, and such a dataset does not exist currently. This need is underlined by the fact that

current hand tracking systems do not generalise well for a given training dataset, and

performs poorly for hand poses that are not covered by that training dataset. The reasons

for this lack of data are twofold. Firstly, annotating these datasets is difficult. Secondly,

the human hand is a uniquely complex object, and a comprehensive dataset needs to

cover a diverse range of; camera perspectives, hand poses, hand shapes, and interactions

with objects, so the amount of data that needs to be collected to cover these ranges is

also unknown. Synthetic data offers a way around this issue, since the annotation is

theoretically perfect, and the capture of that data can be automated.

This dissertation shows that generating synthetic based on the Random MANO Dataset

strategy shows promise, but more testing is required by generating more synthetic im-

ages. State-of-the-art results on this test dataset is demonstrated at an 8.90mm average

ii

per-joint mean squared error, but poor performance when comparing with the real test

dataset. It also shows that trying to recreate a real dataset with the IK MANO Dataset is

challenging, with efforts to achieve this showing poor performance at 77.44mm. The key

contributions of this dissertation are (1) performing a side-by-side comparison between a

synthetic and real hand tracking dataset using the state-of-the-art synthetic hand data

generation method, MANO, (2) giving the basis for a new synthetic dataset based on the

MANO model with the Random MANO Dataset, and (3) providing a new framework

for generating a synthetic dataset by using a real dataset as a basis with the IK MANO

Dataset.

iii

Acknowledgements

Thank you to my supervisor, Dr Gerard Lacey who guided me through this project and

provided invaluable advice. Thank you to Tejo Chalasani who also provided helpful

advice on hand tracking, and was always available for help if I had a problem. Thank

you to Yalong Li (dragonbook on GitHub) whose PyTorch implementation of the V2V-

PoseNet network was central to the experimental setup of this project. Thank you to

Xinghao Chen (xinghaochen on GitHub) who hosts a comprehensive list of papers and

other works related to hand tracking. Thank you to my father Gus, as well as friends

Alec Barber and Davy Nash, who exposed the most egregious errors and omissions in

assisting the editing process of this document. Thank you to Dr Mike Brady for providing

the LATEXtemplate for this document. Finally, thank you to the many people on Stack

Exchange websites (mostly Stack Overflow and TEX) as well as other assorted websites

who have already asked and answered many of the questions I had in relation to this

project and beyond.

iv

Contents

Abstract ii

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Overview . 3

2 Literature Review 5

2.1 Previous Work . 5

2.1.1 Data . 5

2.1.2 Rendering Methods . 9

2.1.3 Hand Tracking Systems . 9

2.1.4 Related Tracking Systems . 15

2.2 The Modern Hand Tracking System . 16

3 Synthetic Data 19

3.1 Synthetic Data Generation Methods . 20

3.1.1 Random Generation Method - Random MANO Dataset 21

3.1.2 Recreating A Real Dataset - IK MANO Dataset 23

3.2 Transfer Learning . 30

4 Experimental Setup 33

4.1 Hand Tracking Model . 33

4.2 MSRA Dataset . 34

4.3 Performance Metrics . 34

4.4 Software Testing . 36

4.4.1 Data Visualisation . 37

4.5 Experiments . 39

v

4.5.1 Baseline . 39

4.5.2 Analysis Of Synthetic Data . 39

4.6 Miscellaneous . 40

4.6.1 Execution Model . 40

4.6.2 Execution Speed . 41

4.6.3 Computers . 42

5 Results 43

5.1 Summary . 43

5.2 Baseline Tests . 44

5.3 Training With The Random MANO Synthetic Dataset 45

5.4 Training With The IK MANO Synthetic Dataset 48

6 Conclusion 50

6.1 Discussion Of Results . 50

6.1.1 Baseline . 50

6.1.2 Experiments . 50

6.2 Future Work . 53

6.3 Summary . 53

6.4 Postscript . 54

References 55

vi

List of Figures

0.1 Box diagram convention. All boxes flow from left to right. Green boxes

denote data, and red boxes denote a process on that data. xii

0.2 Schematic of hand and keypoints. The goal of a hand tracking system

is to predict the 3D locations of these keypoints. A keypoint name is the

combination of the finger name and joint type, for example, the MCP joint

of the Index finger is called the IMCP keypoint. Each of these keypoint

names has an equivalent index in �. From left to right, the finger names

used are: thumb, index, middle, ring, and pinky. xii

1.1 An example of the use of Virtual Reality using only hands to interface with

the computer1. 2

2.1 Sample images from the BigHand2.2M dataset with the annotation super-

imposed. Image taken from the original paper [1]. 7

2.2 An illustration of the V2V-Posenet model. Image taken from the original

paper [2]. 12

3.1 A diagram of the process for generating the Random MANO Dataset. The

parameters ↵, �, and camera parameters are inputs, and the depthmap

image and grountruth are outputs. 21

3.2 Examples of images generated using the random generation method. . . . 24

3.3 A diagram of the process for producing the IK MANO Dataset. Since the

recreated depth image should have the same groundtruth as the equivalent

MSRA, no processing is performed on it. 25

3.4 Screenshot of Maya with the full body MANO model, also called SMPLH. 25

3.5 A visualisation of how the rotation of a joint is found. �a, �b, and �c are

passed to Equation 1 to find the angle ↵. 27

vii

3.6 Examples of images generated by trying to recreate the MSRA dataset.

Note that the difference in colour is not significant and is dependent on

the visualisation method only. The visible body is also segmented in training. 28

3.7 High level overview of knowledge transfer in terms of training a hand track-

ing model using a synthetic hand generator. A task is denoted by T , and

a domain of data is denoted by D. 30

3.8 A toy example example of machine learning. This model learns to classify

input data {x1, x2} into three classes; red, green, and blue. 31

4.1 A visualisation of the Global Error performance metric. The prediction

and groundtruth are shown in blue and red respectively. The performance

metric measures the average distance for each joint between the prediction

and groundtruth, denoted for this example by the dotted black line. Each

�n corresponds to a keypoint as in Figure 0.2. 35

4.2 A diagram of the preprocessing steps for the V2V-Posenet model, from

input depthmap image Z and centre v to voxels, this voxelised represen-

tation is then passed into the 3D CNN. The two red boxes for Point Cloud

Visualisation and Voxel Visualisation denote the two visualisation stages

described in Section 4.4.1. 37

4.3 Examples the visualisation tools for the pointcloud (top row and middle

left) and voxelisation (bottom row and middle right). For the pointcloud,

all blue points that fall within the green sphere are voxelised, note as well

that the background pixel points are not shown. 38

viii

List of Tables

3.1 Fully enumerated list of how each joint was rotated in the x-axisfor the

inverse kinematics algorithm. See Equation 1 in Section 3.1.2. See Figure

0.2 for details on the joint names. 27

3.2 Fully enumerated list of how each joint was rotated in the y-axisfor the

inverse kinematics algorithm. See Equation 1 in Section 3.1.2. Where a

joint to be rotated has two sets of �a, �b, and �c vectors, the combination

that produces the greatest magnitude of ↵ in absolute terms with Equation

1 is chosen. See Figure 0.2 for details on the joint names. 29

5.1 The experimental baseline, showing the results when the model is first

trained on the MSRA training dataset, then tested on the test MSRA

dataset and test synthetic datasets. 43

5.2 Summary of results over all experiments undertaken. Each experiment

reports the average error over all joints for the two metrics described in

Section 4.3. See Section 4.5 for details on the experiments performed. . . 44

5.3 Global error when model trained with the MSRA dataset initialised with

random weights and tested on the MSRA test dataset. 44

5.4 Local error when model trained with the MSRA dataset initialised with

random weights and tested on the MSRA test dataset. 44

5.5 Global error when model trained with the MSRA dataset initialised with

random weights and tested on the Random MANO dataset. 45

5.6 Local error when model trained with the MSRA dataset initialised with

random weights and tested on the Random MANO test dataset. 45

5.7 Global error when model trained with the MSRA dataset initialised with

random weights and tested on the IK MANO test dataset. 45

ix

5.8 Local error when model trained with the MSRA dataset initialised with

random weights and tested on the IK MANO test dataset. 45

5.9 Global error when model trained with Random MANO dataset initialised

with random weights and tested on Random MANO test dataset. 46

5.10 Local error when model trained with Random MANO dataset initialised

with random weights and tested on Random MANO test dataset. 46

5.11 Global error when model trained with Random MANO dataset initialised

with random weights and tested on MSRA test dataset. 46

5.12 Local error when model trained with Random MANO dataset initialised

with random weights and tested on MSRA test dataset. 46

5.13 Local error when model trained with Random MANO dataset initialised

with MSRA weights and tested on Random MANO test dataset. 46

5.14 Local error when model trained with Random MANO dataset initialised

with MSRA weights and tested on Random MANO test dataset. 47

5.15 Global error when model trained with Random MANO dataset initialised

with MSRA weights and tested on MSRA test dataset. 47

5.16 Local error when model trained with Random MANO dataset initialised

with MSRA weights and tested on MSRA test dataset. 47

5.17 Global error when model trained with IK MANO dataset initialised with

random weights and tested on the MANO test dataset. 48

5.18 Local error when model trained with IK MANO dataset initialised with

random weights and tested on the MANO test dataset. 48

5.19 Global error when model trained with IK MANO dataset initialised with

random weights and tested on the MSRA test dataset. 48

5.20 Local error when model trained with IK MANO dataset initialised with

random weights and tested on the MSRA test dataset. 48

5.21 Global error when model trained with IK MANO dataset initialised with

MSRA weights and tested on IK MANO test dataset. 49

5.22 Local error when model trained with IK MANO dataset initialised with

MSRA weights and tested on IK MANO test dataset. 49

5.23 Global error when model trained with IK MANO dataset initialised with

MSRA weights and tested on MSRA test dataset. 49

5.24 Local error when model trained with IK MANO dataset initialised with

MSRA weights and tested on MSRA test dataset. 49

x

Nomenclature

CNN Convolutional Neural Network

FCN Fully Convolutional Neural Network

LBS Linear Blend Skinning

MSE Mean Square Error

ROI Region Of Interest

Dt Training dataset, where Dt
k 2 Z

Dv Test dataset, where Dv
k 2 Z

E Performance metric

v 3D centre of hand in depthmap image Z, where v 2 R3

Yi Groundtruth hand joints, where Yi
n ⌘ �, Yi

n,m ⌘ �m

Yo Predicted hand joints, where Yo
n ⌘ �, Yo

n,m ⌘ �m

Z Depthmap image, where Zm,n 2 N
� MANO Hand shape parameter, where � 2 R10

✓ MANO hand pose parameter, where ✓ 2 R45

� Hand joints, where � = {�1,�2, ...,�N},�n 2 R3

a A scalar value

a A vector value

A A matrix value

A A tensor value

Articulation The particular position of the fingers of a hand with respect to each other.

Annotation The marked groundtruth for a depthmap Z.

Groundtruth True value for N keypoints.

Joint A type of keypoint.

Keypoint Known reference point in a hand in 3D cartesian space.

Point Cloud A series of 3D points which together describe the shape of a 3D surface.

Pose An alternative name for articulation.

Prediction Prediction of the keypoints from a hand tracking model.

All notation follows the convention set by [3].

xi

Conventions

Green Boxes
Denote Data

Red Boxes
Denote Processes

Figure 0.1: Box diagram convention. All boxes flow from left to right. Green boxes
denote data, and red boxes denote a process on that data.

IT M PR

TIP

DIP

Wrist

MCP

PIP

Figure 0.2: Schematic of hand and keypoints. The goal of a hand tracking system is to
predict the 3D locations of these keypoints. A keypoint name is the combination of the
finger name and joint type, for example, the MCP joint of the Index finger is called the
IMCP keypoint. Each of these keypoint names has an equivalent index in �. From left
to right, the finger names used are: thumb, index, middle, ring, and pinky.

xii

1 Introduction

The focus of this dissertation is on hand tracking, and specifically the merits of using

synthetic data for training hand tracking systems. A hand tracking system is one that

can automatically estimate the 3D locations of the joints in the hand, given an image of

that hand. The overall purpose of a hand tracking system is to enable human-computer

interaction with a hand as a medium (other forms of human-computer interaction include

the use of keyboards, mice, and punchcards). Figure 1.1 illustrates an example of hand

tracking for interaction with a Virtual Reality headset.

Recent hand tracking systems have become more accurate and robust, however these

systems suffer under many scenarios such as from the ego-centric perspective (where the

camera perspective of the hand is captured from a head-mounted camera, or similar

positions). Hand tracking is notoriously difficult because the hand has many degrees of

freedom (the different ways in which fingers can position themselves), and it can self-

occlude (where one part of the hand blocks the view of another part of the hand in an

image). Hand tracking systems require a lot of data to be able to perform well in different

scenarios, but acquiring that data is difficult. While the process of capturing hand data

is trivial, the challenge lies in annotating that data. For the type of hand tracking system

mentioned above, annotating the data required to train a hand tracking system involves

recording the 3D positions of a set amount of keypoints (known points in the hand that the

hand tracking system is trying to predict the location of in 3D space, such as a knuckle).

Manually labelling the data at scale is impossible in practical terms, particularly when the

hand self-occludes, and recent attempts at manual annotation only offer limited resolution

and size, [4] for example only managed 11703 images with 2D annotation, and they did not

annotate self-occluded joint. Recent projects such as BigHand2.2M[1] and ICVL[5] that

automatically annotate datasets have collected millions of annotated images of hands, but

they rely on a small amount of subjects, and there is no way of evaluating the accuracy

of that annotation. Since the annotation is theoretically perfect, synthetic data offers a

1

Figure 1.1: An example of the use of Virtual Reality using only hands to interface with
the computer1.

way to address the issue of accuracy and scale. Past attempts at generating synthetic

data however lack the realism that real data can provide[6, 7]. As mentioned by [8], even

with such large datasets, current systems still struggle to interpolate between poses in

large datasets. More recently, the MANO model has attempted to address the lack of

realism in synthetic hand data [9]. Building on the previous work in full body rendering

for computer graphics, the authors of MANO learn a synthetic hand data generation

model based on real-world subjects, including hands interacting with objects.

1.1 Motivation

In recent years and decades, as computer technology has improved, new possibilities for

human-computer interaction have emerged. This ranges from punch cards, to keyboards,

to mice, and touch screens. The developments that these innovations have led to need

not be enumerated here. Progress has been made in the development of new technolo-

gies and ways for human-computer interaction, which is being lead by the emergence
1
CC-BY-2.0 License (https://creativecommons.org/licenses/by/2.0/deed.en) c� John

F. Williams (title: 150914-N-PO203-142), obtained from https://www.flickr.com/photos/

usnavyresearch/23496662185/ (accessed 29th April 2020)

2

of new technologies such as Augmented Reality (AR) and Virtual Reality (VR). While

both technologies have been around for some time, one problem with them is how a

user interacts with them. The use of human hands offers the potential to improve the

human-computer interaction with these technologies, but hand tracking notoriously diffi-

cult problem. More recently, as of writing the world is under lockdown due to Covid-19.

Computer mice and keyboards, due to the need to touch them are inevitable vectors of

disease, and interacting with a computer using hand gestures alone offers a less risky way

of using them.

The specific motivation about using synthetic data to train a hand tracking system in

this project is largely influenced by the 5th International Workshop on Observing And

Understanding Hands in Action (Hands 2019)2. The goals of this challenge are discussed

more formally in [8]. The Hands 2019 challenge provides three different tasks for: depth-

based hand pose estimation, depth-based hand pose estimation with hands interacting

with objects, and RGB-based hand pose estimation with hands interacting with objects.

In all three of these tasks, participants are encouraged to use the MANO model to train

with synthetic data.

1.2 Objectives

The objective of this dissertation is to evaluate the current state of generating synthetic

data in 2020 towards improving the performance of hand tracking systems. This is

achieved by comparing synthetic data generated with real data: the MSRA dataset [10].

The comparison is performed by training an existing hand tracking system, the V2V-

Posenet model [2], with both kinds of data, and cross comparing the resultant models

using a performance metric. The performance metric is Mean Squared Error (MSE), and

is discussed in Section 4.3.

1.3 Overview

Two synthetic data generation strategies are investigated. The first strategy generates the

data based on random parameters for MANO, this is referred to as the Random MANO

Dataset. The second strategy generates the data based on parameters determined from
2
https://sites.google.com/view/hands2019/home (accessed 29th April 2020)

3

the groundtruth of the real dataset to recreate that real dataset using inverse kinematics,

this is referred to as the IK MANO Dataset.

The key contributions of this dissertation are

1. Generating a new synthetic dataset using the MANO model.

2. Performing a side-by-side comparison between a synthetic and real hand tracking

dataset using the state-of-the-art synthetic hand data generation method, MANO.

3. Providing a new framework for generating a synthetic dataset by using a real dataset

as a basis.

The rest of this dissertation is divided as follows. Section 2 discusses and evaluates

the previous work around hand tracking systems and datasets. Section 3 discusses the

underlying theory of what synthetic data is, the implications of training a hand tracking

system with it, and the strategies used to generate such data. Section 4 discusses the

practical details of the experimental setup used for this dissertation. Section 5 presents

the results of the experiments to compare the synthetic and real dataset. Section 6

concludes this dissertation.

4

2 Literature Review

This section will outline the state-of-the-art in hand tracking. Given the nature of this

project, a particular focus is put on works that produce datasets for hand tracking, as

well as systems that use depth sensors. As well as this, other works investigated include

the related problem of full body pose estimation, as well as hand tracking with RGB

sensors. The aim in this section is to establish the general idea of what a modern hand

tracking system entails, how these systems adapt to the real world, and any relevant gaps

and problems in research.

2.1 Previous Work

2.1.1 Data

A common issue highlighted in literature is a lack of data [8], leading many to produce new

datasets for training hand tracking systems. There are broadly two kinds of hand tracking

datasets. Firstly, depth-based datasets consist of depth images. Such images capture the

depth information of the scene. Secondly, RGB-based datasets consist of colour images

of the hand. Some systems use both depth and RGB images for hand tracking. Different

datasets also employ different labelling regimens. Most datasets aim to annotate the 3D

locations of keypoints. These keypoints consist of certain points of interest in the hand,

typically the knuckles, wrist, and finger joints. Some datasets only annotate the 2D

keypoint locations which is easier to produce, while most datasets discussed here annotate

the 3D keypoint locations, as this provides a richer feature space to extract information

about the hand, although it is more difficult to estimate 3D keypoints as opposed to

2D keypoints. Another labelling strategy is to segment the images into different parts,

such as the region that contains particular fingers. The other distinction between hand

5

tracking datasets is whether they are real or synthetic datasets.

The NYU dataset [11], which is based on depth images is one of the first modern hand-

tracking datasets. The authors describe a comprehensive pipeline for acquiring data, and

then training a convolutional neural network (CNN) with that data, to produce a system

that can infer the continuous pose shape of a hand. In the dataset creation pipeline,

the hand is first segmented using a randomised decision forest. Then using an initial

approximation of the pose parameters, a particle swarm optimisation algorithm is used

whereby a candidate pose is used to generate a synthetic image using an linear blend

skinning (LBS) model. The captured image is compared against the generated image

using an objective function and the candidate pose is updated using a loss function.

The Nelder–Mead method is used to refine the pose estimates. The initial guess of the

first frame is manually annotated, and is passed in a chain to each subsequent frame

to be labelled. Their dataset is from two subjects, with 72,000 training, and 8,000 test

images.

Two new datasets are introduced in [12]. Their first dataset, FingerPaint consists depth

of images of hands whose groundtruth consist of pixel-wise classifications of the fingers

of the hand as well as the palm, describing what region of the hand it belongs to, such as

the palm, index finger, etc. The ground truth does not describe the location of keypoints.

The annotations are generated with the help of an RGB sensor also recording the hand

sequence. The hands are ‘painted’ and segmented with a colour segmentation algorithm

to generate the labels, with any errors corrected manually. This dataset is not intended

for training, instead just for evaluating the performance of a hand tracking system. The

other dataset that they generate is called Synthetic, which consists of 1000 synthetic

depth images rendered using a 3D mesh model. Unlike FingerPaint, these images are not

in a sequence and are in random articulations. Exact details are not available, but it is

likely that the groundtruth consists of 3D keypoint positions.

Expanding on the labelling strategy of [11], [10] introduce the MSRA dataset of 76,500

depth images from 9 subjects for evaluating a hand tracking system. Each of the subjects

recorded were asked to produce 17 different poses which the authors say are mostly drawn

from American Sign Language. The ground truth is generated from another hand tracking

system and manually corrected for any errors.

[5] introduce a dataset consisting of 180,000 depth images with 3D keypoint annotation.

In what they call the ICVL dataset, it contains hand poses from 10 different subjects.

6

Figure 2.1: Sample images from the BigHand2.2M dataset with the annotation superim-
posed. Image taken from the original paper [1].

Each of the subjects are presented with the same 26 poses to recreate with their hands.

They use Intel’s Creative Interactive Gesture Camera to capture the data which they say

provides far better depth image quality than previous technologies. The annotation is

generated by fitting a point cloud (a series of 3D points which together describe the shape

of a 3D surface) version of the depth image to an articulated synthetic hand model. The

authors highlight that this annotation system often fails at difficult poses, which means

that their dataset largely contains easy frontal poses (where the camera is positioned in

front of the subject). To account for this limitation, they compare their dataset with the

Synthetic dataset introduced by [12].

BigHand2.2M [1] is the first large scale hand tracking dataset, containing 2.2 million

annotated depth images of hands for training and evaluating a hand tracking model. They

use Intel’s RealSense SR300.Sample images can be seen in Figure 2.1. They highlight

the lack of available datasets for hand tracking, and hypothesise the reason is the lack

of scalable methods for annotation. They claim existing automatic methods are not

accurate enough, or that they compromise the dataset (such as the use of gloves to aid

annotation). They say that manual annotation is too slow to make a dataset sufficiently

large. They introduce a new capture method for annotation where the hand is fitted

with magnets on each fingertip as well as the palm. With a depth camera capturing

the data, the annotations are generated using magnetic sensors. They produce 21 3D

keypoints using inverse kinematics of the hand to generate the subsequent annotations.

Their dataset is from ten subjects.

7

[6] introduce a new RGB and depth synthetic dataset, SynthHands. They define an

egocentric viewpoint as the camera perspective of the hands as is seen from the head or

chest. The reasoning behind making such a dataset is that it is challenging to capture the

real world annotations of hands, and that existing datasets lack hand-object interactions

and realistic hand poses, nor do they show real world noise and backgrounds. They

highlight that annotating an egocentric dataset is particularly challenging due to the

increased likelihood of self occlusion, which is where the hand blocks part of itself from

the camera view. The gestures rendered in the synthetic dataset are generated from

real gestures captured from a human hand, with the camera retargeted to an egocentric

viewpoint. As well as this, the synthetic hands have artificial interactions with objects,

and the background is composited with different scenarios including desktops, offices,

corridors, and kitchens.

[7] propose a new dataset, SynHand5M, which contains 5 million synthetically generated

depth images of hands in different poses, and camera viewpoints. They claim this ap-

proach to be superior to [1] and [9], since they are both based on the data of a small

amount of subjects, the nature of their synthetic data generation algorithm means they

can vary the shape of a hand, which cannot be done with real data. They also claim

that since the data is synthetically generated, the groundtruth is perfect. Their goal in

making this dataset is to cover most, if not all possible articulations, shapes, and camera

perspectives. To this end, in order to ensure that the hand shapes are realistic, they use

limits defined by an anthropometric database. They also set limits to the articulations

of the hand. This is because it is easy to deform the synthetic hand into shapes that a

real world hand would not be able to achieve, which could lead the hand tracking sys-

tem that trains on this dataset to learn unrealistic hand articulations. They admit that

their specific implementation is not fully realistic, but claim that this is sufficient as a

pretraining step for the CNN that they use for their hand-tracking system.

[4] highlight the lack of data available for training RGB based systems. They show that

existing RGB based datasets are synthetic, or captured in a lab setting. Unlike depth

images, RGB images have to have a background to simulate real life use, and the back-

ground has to vary too or else the model may just learn that background and it will not

be able to segment other types of backgrounds. Their new dataset is called OneHand10K

which consists of 11703 RGB images with varying backgrounds, and annotated for 21

2D keypoints. The groundtruth is manually annoted by at least three different people

marking, and keypoints that are not visible in the dataset are not annotated.

8

2.1.2 Rendering Methods

A new full-body statistical model is introduced in [9] called MANO. Built on previous

full-body statistical models, MANO is compatible with mainstream computer graphics

systems and allows synthetic poses using a set of shape and articulation parameters to

model different body shapes and poses seen in real life respectively. MANO places a

special emphasis on hands, the authors highlight that recent advances in full-body mod-

els have often neglected hands, given their complex articulated nature with respect to

the rest of the human body. The model is learned by capturing the full body and hands

separately. The hand model data is captured from 31 subjects performing 51 different ac-

tions including hand-object interaction. The combined model uses LBS, and the authors

say that certain corrective blend shapes are used to mitigate the drawbacks of LBS. The

model takes two parameters � and ✓ which outputs 778 vertices describing the shape of

a hand in 3D space. These vertices can then be put into a standard graphics pipeline for

rendering. They use this mesh model to improve the hand rendering performance of the

full body model SMPL [13].

2.1.3 Hand Tracking Systems

A hand tracking system is one that in general, takes a depth, RGB, or both images as

an input and outputs a set of 2D or 3D coordinates showing the location of the hand’s

keypoints. Modern (within the last 3-4 years) systems typically employ some form of

CNN architecture, however the basic architectures that have seen success in other tasks

such as ordinary image classification are typically not enough and a more sophisticated

model is required.

2D CNN Approaches

[6] approach the problem of hand pose estimation using a combination of RGB and

depth cameras from an egocentric perspective as mentioned in the dataset discussion.

They combine the RGB and depth images into a coloured depth image (RGBD) first,

and from that crop the image to the region of interest (ROI, the part of the image that

contains the hand, either a bounding box, or semantic segmention). This is done by

passing the image into a CNN which outputs a heatmap. The centre of this heatmap is

9

supposed to be the MCP joint of the middle finger (see Figure 0.2 for an illustration). In

order to ensure that the location of the centre of the heatmap is temporally consistent,

if the confidence of this centre is less than 0.1, and it is more than 30 pixels away from

the centre of the previous image, they update the heatmap centre using the sum of the

previous frame and the estimate of the current location based on the motion of previous

frames that were marked as confident. In a special function, it locates the centre of this

heatmap, and using the depth information, it removes pixels that are far away from a 3D

Eucliadian perspective. From there, this cropped RGBD image, it is passed into a CNN

to regreess the 3D keypoints, as well as a 2D heatmap of these keypoints. The regressed

3D keypoint coordinates are refined using a kinematic hand model, and further refined

with the help of the 2D heatmap.

[7] employs a two-stage CNN architecture where given a depth image, they aim to es-

timate the 3D keypoint locations of the hand, as well as a vertex mesh representing a

reconstruction of the hand’s surface. Within this CNN, there are three parallel steps

for estimating: the hand articulation ✓, hand shape � (these parameters are not to be

confused with similar notation of MANO), and scale ↵. Inside the same CNN, ↵, �, and

✓ are then passed into a non-linear differentiable layer (which means that this layer can

be trained with backpropagation together with the previous layers) that they call a Hand

Pose and Shape Layer. This layer consists of stages to construct a hand representation

using the shape parameters ↵, �, and they use the ✓ then to reconstruct the hand pose

using Linear Blend Skinning.

[4] approach the hand tracking problem in terms of discovering a set of 2D keypoints in

an RGB image. They highlight the advances made in hand tracking using depth sensors

and the comparative slowness in progress for RGB systems. Many existing systems rely

on strict lighting and backgrounds. Their model is divided into two parts, both are fully-

convolutional networks, where the first segments a silhouette (a pixel-wise segmentation

of the image into foreground that contains the hand, and background that does not

contain the hand), and the second regresses the 2D keypoints. They believe that this

approach can be a step towards RGB-based systems for 3D keypoint estimation.

[14] address hand tracking in terms of estimating a large set of vertices that describe

the surface of a human hand from a depth image. The authors argue that estimating a

small set of keypoints is underconstrained, and that estimating the vertices of a hand has

more useful applications. To this end, they propose a fully convolutional network (FCN)

10

architecture that estimates these vertices. There are two consecutive hour-glass FCNs.

The first FCN has two heads (outputs), one with a generic feature map, and one with

estimates 2D mesh coordinates of the image. In a process the authors call extension, the

feature map and 2D mesh estimation are combined and passed into another FCN to give

an initial estimate of the 3D vertices. This initial estimate is refined using a kinematic

model of the hand.

[15] introduce a novel feature boosting algorithm for a CNN network for inferring the

3D keypoints of an RGB image of a hand or human body. They introduce a new long

short-term dependence-aware (LSTD) module that understands the relationship between

different keypoints to boost the feature outputs of a CNN network. For example, the

keypoint relationship between two different keypoints in the same finger are highly cor-

related, but less so with keypoints in other fingers of the same hand. They highlight that

many existing pose estimation methods do not factor the relationship between keypoints,

or use keypoint relationships to refine the estimate as a post processing stage. Their

network can be stacked into multiple blocks to further refine the keypoint estimate. To

account for the unreliability of the features generated by a CNN due to occlusions and

textures in the RGB input image, they also introduce a context consistency gate to act

as a gating mechanism to the LSTD module which analyses the input features in terms of

their context with respect to their neighbouring keypoints, and adjusts any irregularities

to improve the estimation of the keypoint locations overall. They claim that their results

achieve state-of-the-art results on human body estimation datasets.

3D CNN Approaches

[2, 16] both propose similar systems where depth image representation of a hand, is in-

putted to a 3D CNN to predict the 3D keypoints of the hand. The depth image, a 2D

pixel array is converted into a 3D voxel (a voxel is the 3D equivalent to 2D pixels) rep-

resentation and then passed into the CNN for inference. The authors cite the fact that

a depth image really conveys 3D information, and they hypothesise that passing in a

2D depth image into a 2D CNN discards the 3D data, leading to reduced performance.

[2] discuss this hypothesis by running four experiments; a depth image is used to infer

3D keypoints, a depth image is used to infer voxelised 3D keypoints, a voxelised depth

image is used to infer 3D keypoints, and a voxelised depth image is used to infer voxelised

3D keypoints. Their experiments show that a voxelised depth image used to infer vox-

11

3D voxelized
depth map (V)

3D heatmap (H)

Encoder

Volumetric
Basic
Block

Volumetric
Residual
Block

Volumetric
Downsampling
Block

Decoder

Branch
Split

Voxel-wise
Addition

Figure 2.2: An illustration of the V2V-Posenet model. Image taken from the original
paper [2].

elised 3D keypoints delivers superior performance over the other methods, they call their

new architecture V2V-PoseNet. [16] investigates this hypothesis by running these four

experiments. Firstly a depth image is passed into a CNN to estimate the heatmap for

each keypoint location. Second, the voxel representation of the hand is used to generate

multiple depth map images from different perspectives and passed into a 2D CNN to

estimate a series of heatmaps for keypoints for each input. Third, the single depth image

is passed into a CNN to directly estimate the 3D keypoints. Fourth, the voxelised image

is passed into a 3D CNN to estimate the 3D keypoint locatioins. [17] takes V2V-PoseNet

one step further by also trying to estimate hand shape in addition to pose using more 3D

CNN architectures in what they call HandVoxNet.

Generative Approaches

Generative Adversarial Networks (GANs) are a recent neural network architecture where

two components are trained in tandem, a generator to generate synthetic data, and a

discriminator to tell whether it is real or not [18]. The idea is that both components

engage in a race to outperform the other, and ultimately we get a good system for

generating synthetic data, and a good system for telling whether that is real or fake by

both networks working against each other.

[19] address hand tracking for RGB images by adopting this GAN approach. In this

paper, the authors use the generator to estimate the hand pose in a two stage process

where an initial estimate is generated, and further refined using a parametric hand model.

The discriminator acts effectively as a loss function, distinguishing between the predicted

keypoints and groundtruth.

12

[20] highlight how many recent works in hand pose estimation rely on a 3D hand model

as part of the estimation process. They hypothesise that this is not an ideal approach

given that these hand models are simplified and do not take the actual anatomical char-

acteristics of the hand into consideration. Given a depth image as an input, they aim to

estimate a set of keypoints describing the hand articulation, which is achieved as follows.

After obtaining a box-shaped ROI of the hand, this is passed into a CNN to give an initial

estimate of the 3D coordinates, which is passed into another CNN model that generates

a synthetic image, in a similar approach to the generator in [19]. The real and synthetic

depth images are passed into another CNN that updates the estimate of the keypoints,

which is passed back into the generator CNN again in an iterative process.

[21] propose a simple GAN for RGB-based pose estimation. They highlight the recent

advances made in hand pose estimation using depth images, but they believe RGB-based

methods to be ultimately superior because RGB sensors are cheaper and more readily

available. Combining these two ideas, they aim to train a system that generates a depth

image from an input RGB image in one module. In the other module, the 2D keypoints

are directly estimated on the RGB image, then the 3D keypoints are regressed from that.

This estimate is then refined using the generated depth image. The generative component

needs to be trained with paired RGB and depth images, but it can then be trained on

RGB images alone after that and they claim that the generative component can improve

the estimate versus using RGB alone such as [4].

Cascaded Regressors

[10] highlight recent successes in full body classification algorithms that classify the body

into different regions based on what body part that they belong to, but that this ap-

proach does not work well for hands. They believe that this is because full body images

are easy to classify, they tend to be all frontal-based. Hand images in contrast tend

to have more varied camera angles and the hand is capable of deforming in far more

diverse orientations. They therefore believe that regressing the pose of the hand, that

is estimating the locations of 3D keypoints describing the locations of certain parts of a

hand in 3D space is a more principled approach to the problem. They believe however

that current regression techniques such as CNNs do not have the capacity to learn all of

the possible variations in human hand poses. To address this hypothesis, they believe a

cascaded regression approach for hand tracking is superior. Cascaded regression works

13

by using a pipeline of weak regressors. They extend previous work for 2D cascaded hand

pose regressors into 3D.

[22] address the problem that modern hand tracking systems are typically ‘black box’

systems. That is, that the hand is passed into some model and it outputs the parameters

without us knowing what is actually going on inside the system beyond the basic math-

ematics. This is a general problem within machine learning. They specifically address

this issue for analysis by synthesis depth hand tracking systems such as [12]. In a process

that they call hierarchical sampling optimisation, it uses knowledge of the hands struc-

ture to estimate the keypoints of the hands in a hierarchal way from the wrist towards

the fingertips. Then, like [12], this is used to render a synthetic version of the hand and

compared against the original depth image using a scoring function.

[23] propose a hierarchal CNN for estimating the keypoints of a hand from a depth image.

They highlight the progress made in accurate hand tracking in terms of reduced error, but

also highlight the fact that some of the more accurate systems have a high computational

overhead, particularly V2V-Posenet [2]. Their system passes a depth image through an

encoder, then the keypoints for the thumb, palm, and each finger are separately estimated

in discrete CNN blocks to output 3D keypoints. Their system is more accurate than all of

the systems that they survey except for [2, 24], however it is still faster than them.

Mesh Recovery

[12] introduce an analysis by synthesis approach for hand tracking. Analysis by synthesis

is an approach to computer vision that uses Bayesian inference. This idea posits tradi-

tional machine learning where a model learns from data as ‘bottom up’ processing, and

they argue that we can gain more accurate insights about a problem by also considering

a ‘top down’ approach [25]. The idea is that given an input image, an attempt is made to

reverse the process of how that image was generated. In a simple example of classifying a

pattern of text, this method says that we should separate this problem into components

such as the probability of the font, noise, overlap, obstruction etc to get towards the

core problem, that is: what the actual text is. In terms of hand tracking, this approach

works by taking a depth image as an input, first segmenting the ROI. Then, the global

rotation and subsequently local articulation are estimated to generate a series of candi-

date poses which are rendered into synthetic images. This synthetic image can then be

compared against the original using a simple pixel-wise MSE function to choose the best

14

one. This initial estimate is then refined using particle swarm optimisation combined

with information from previous frames in the same video sequence.

[26] uses the MANO model [9] at the centre of their hand tracking system. Their system

aims to predict 778 3D vertices describing a hand shape from an RGB input, in a similar

‘top down’ approach to hand tracking as [12]. Instead of trying to predict this directly,

they have a three-stage pipeline employing CNN architecture to achieve this. The first

stage consists of two parts; one CNN generates a 2048-dimensional feature vector of

the foreground of the image containing the hand, and another CNN estimates the 21

2D keypoints of the hand. A second CNN takes these features and keypoints as an

input and outputs a 63-dimensional vector. The first 45 parameters are the articulation

parameters for the MANO model ✓, the next 10 are the MANO shape parameters �, the

next four are the camera rotation in quaternion space, one for scale, and the final three

are for the camera translation. As previously described, the MANO model outputs 778

vertices given the articulation and shape parameters. The 778 vertex output can then be

rotated, scaled, and translated as appropriate using the rotation, scale, and translation

parameters. These 778 vertices are then passed to a regressor to obtain 21 keypoints in

3D space.

2.1.4 Related Tracking Systems

[27] looks at the problem of full-body tracking. The authors specifically address the prob-

lem of the lack of training data for full-body tracking for RGB-based systems. Using the

full-body version of MANO - (SMPL+H) [9], they produce two datasets, one containing

fully-synthetic data, and one that is combined with a real dataset as an effective aug-

mentation strategy. A large emphasis in the paper is trying to generate photo-realistic

data, given that this is an RGB-based system. The generation of photorealistic data is

not a problem limited to synthetic and is a general problem in computer graphics. One

of the important insights about synthetic data from the paper is that some synthetically-

generated images can convey more information than others. They use Mask R-CNN for

segmentation and an existing model to generate shape parameters. To aid in training

with synthetic data, they propose an adversarial approach which they call a ‘student

teacher framework’. In this framework, synthetic images are grouped into ten groups

based on camera position and the distance of a person to the camera. In training, a

real image that has the highest loss per keypoint in the previous N images is used to

15

determine which type of synthetic image to use for training to ensure the network trains

on the most difficult synthetic images.

2.2 The Modern Hand Tracking System

The goal of hand tracking system is to find and extract information about a hand from

an image containing one. That information must be sufficiently accurate to distinguish

it from some other meaning.

The general idea of modern hand tracking systems is as follows. Given an image (RGB

and/or depth) that contains a hand, the image is first segmented to a Region of Interest

(ROI) which is either semantically segmented (pixel-wise), or segmented with a tight

bounding box. From there, the ROI is passed into a model that employs a neural network

and sometimes an additional system to take the shape of a hand into account. From

there, the system outputs a series of 3D points that describe the locations of certain

keypoints in the hand. This selection of keypoints can then be used to extract what

information the hand is conveying in a low-dimensional environment, examples of this

include [28, 29, 30]. Most research effort appears to go into the use of depth cameras

because the input is often less ambiguous than RGB images, and it preserves spatial

information about the hand. This has been encouraged by the increasing popularity and

quality of depth sensors. RGB-based hand tracking at this time appears far more elusive,

given the increased ambiguity in the image due to diverse backgrounds, different skin

colour, lighting, among other ambiguities. To give an example of this difference, it is

easy to segment a depth image of a hand in front of a wooden floor by discarding all

distant pixel values, in contrast with an RGB image, the skin color might be similar to

the wooden floor so the segmentation task is far more challenging.

One issue highlighted in literature is the lack of data, many of these same papers also

produce a dataset of their own to address this. Part of the problem is that it is difficult

to make such datasets, as well as this, many of these datasets rely on few participants,

usually in the order of 10-20 participants at most. The core of many modern hand

tracking systems use CNNs, which require large datasets to train on. Exactly how much

a hand tracking system needs is unknown, but other CNN tasks require in the order of

100,000-1,000,000 images or more. The reason for the lack of hand tracking data is that

labelling it is difficult. It is far too labourious for a human to label a hand dataset at

16

scale, and indeed the accuracy may not be good. Notably in [4], they manually annotate

their dataset, but this is only for 2D keypoints, and they simply omit keypoints that

are occluded from the image. Other computer vision applications have seen a lot of

real-world success because of the existance of large datasets for their domains, notably

image classification1. For image classification tasks, it is far easier to label, notably the

reCAPTCHA project got internet users to label images by combining the task with spam

detection2. This is not possible with hand tracking however, and no scalable system exists

to label a large hand tracking dataset without the help of an automatic method.

To automatically label datasets is a chicken and egg problem. The problem is thus: hand

tracking systems need more data, and the data needs to be more accurate, but there is

not sufficient data. This data can be captured relatively easily, but to label it at scale is

practically impossible, therefore a hand tracking system should be used to annotate the

data, but no such system exists. To get around this, past datasets have attached gloves,

or other sensors to the hand to find the keypoint locations, but this then compromises

the resultant images because the glove or sensor can be seen in the image. More recent

examples have used a kinematic model of a hand to refine the estimate of the hand

such as in the NYU dataset [11]. Other labelling efforts have involves placing discrete

magnetic sensors on the fingertips and using an inverse kinematic model to estimate the

other points[1]. One problem with both of these datasets is that they both have a small

amount of participants (two and ten respectively). This problem can be solved relatively

easily. A problem that is harder to address however is the quality of the annotation,

which goes back to the chicken and egg problem highlighted above. We can only hope

that the annotation strategies of [1, 11] are accurate. It is doubtful that the authors

manually scrutinised each and every image. This is a big problem, because for any

machine learning task, the system will only perform as well as the training data given

to it. One way around this is to use synthetic data. This idea is explored in [7], when

they create their SynHand5M dataset with perfect groundtruth, but they used a different

hand model which they themselves admitted had limited realism. They also designed

a new hand tracking system at the same time, which means that their dataset has not

been validated independently. Progress has been made since then with the advent of the

MANO model[9]. They specifically set out to address the problem of a lack of realism

with hand data, and to the best of my knowledge, no further attempt at creating a large
1
http://image-net.org (accessed 29th April 2020)

2
https://www.ted.com/talks/luis_von_ahn_massive_scale_online_collaboration (accessed

29th April 2020)

17

depth dataset has been attempted since SynHand5M.

These same problems are discussed by [8], and they posit MANO as a synthetic data

generation strategy to address these problems with existing hand data. As discussed in

Section 1.1, the research question of this project is particularly influenced by the Hands

2019 challenge. Given these problems, this dissertation explores the most recent synthetic

hand data generation technique, the MANO model to see how it can address them.

18

3 Synthetic Data

Modern hand tracking systems typically employ machine learning, and the type of ma-

chine learning model usually used is a CNN [2, 4, 6, 7, 14]. Machine learning offers a

way to solve a particular task without being explicitly programmed to perform that task.

Instead, Machine Learning ‘learns’ how to do this task by ‘training’ on the data. This

learned task is further tested on another dataset that the model did not train on to see

how it performs. This idea of having a training dataset and a testing dataset is achieved

in different ways. For example, in k-fold cross validation, 1
k of the dataset is used for

testing and the remainder for training. The model is trained k times with a different

section of the dataset used for training and testing each time. This method is useful for

evaluating the performance of a model. For the purposes of this dissertation, a simpler

method of: splitting the dataset into one training and test dataset, so the model is only

trained once with the training set before evaluating performance on the test set.

Synthetic data is any kind of data that is not obtained through direct empirical ob-

servation. In the context of hand tracking, real data is obtained by a camera, while

synthetic data is obtained typically through graphics rendering. Ideally, any machine

learning system will be trained with the same kind of data that it is going to be used for

future inference, and so synthetic data should aim to replicate what a real-world camera

might see as opposed to a perfect image. There are different ways in which training

data is made, depending on what kind of pipeline is being used for hand tracking, but

this dissertation will follow the patterns used by [1, 10]. That is, the synthetic data

that is generated consists of K images and associated groundtruths (the annotation of

the keypoints) describing the location of N keypoints in 3D space for each image. Each

depthmap image Z is an n⇥m matrix, where Zn,m 2 N represents an individual pixel in

the image, each pixel represents the depth to the nearest visible point, thus it is called a

depthmap. A keypoint is a particular location of interest in the hand, such as a knuckle.

An illustration of the keypoints used in this dissertation is shown in Figure 0.2. The goal

19

of a hand tracking system is to take Z as an input and predict N 3D keypoints �, where

� = {�1,�2, ...,�N},�n 2 R3. The groundtruth Y i, (where Y i
n 2 �) represents the

locations of N keypoints in 3D Cartesian space for K depthmap images in a dataset D,

where Dk 2 Z. The hand tracking system is trained with a training dataset Dt, and is

tested with a separate test dataset Dv. When testing the hand tracking model, the set of

predictions Y o (where Y o
n 2 �) is compared with the groundtruth Y i. This comparison

is performed using a performance metric E.

The goal of this dissertation is to train a hand tracking system on synthetic data such that

it can accurately predict future keypoints from a real world sensor. The quality of the

synthetic data is evaluated by training an existing hand tracking model V2V-Posenet[2]

and evaluating its performance with the synthetic dataset in comparison to a real dataset,

the MSRA dataset[10]. To obtain a fair evaluation, the model is not modified. An

assumption is made that the right and left hand are the same, all generation of a hand

focusses on the right hand in this dissertation, and that the left hand can be obtained by

flipping the image on the y-axis. The methods used to generate the synthetic data are

described herein.

3.1 Synthetic Data Generation Methods

The spread, or domain of data, describes the nature of the data. In the context of hand

data, this implies what kinds of hand articulations, hand shapes, and camera angles

the data covers. Previous work has generally focussed on ‘frontal’ views, where the

camera is facing towards the person. The other main type of perspective for hands is the

‘egocentric’ perspective, where the camera is facing away from the person towards the

hand, an example of this is a head-mounted camera looking at the hands. Egocentric

perspectives are typically harder for a hand tracking system to recognise because the

possibility of self-occlusion is greater.

The MANO model is used as the model for generating synthetic data. In theory, it

is possible to generate a comprehensive dataset covering all possible hand articulations,

shapes, and camera positions. This is problematic in practice however for several reasons.

Firstly, the question of what constitutes a comprehensive dataset is unknown, and given

the dimensionality of the problem, the generation of an ever-increasingly comprehensive

dataset becomes computationally infeasible for the hardware available in this dissertation

20

Depthmap
Image

OpenGL
Renderer

Rotated
Vertices

Euler Vertex
Rotater

Camera
Parameters

Hand And
Groundtruth

MANO
Model

Shape
Parameter !

Articulation
Parameter " Groundtruth

Figure 3.1: A diagram of the process for generating the Random MANO Dataset. The
parameters ↵, �, and camera parameters are inputs, and the depthmap image and groun-
truth are outputs.

(the generation method described in Section 3.1.2 takes 607 milliseconds on average to

generate a single image). The subsections herein describe two ways of generating synthetic

hand data, and they both highlight the dimensionality issue. The first method sees all

generation parameters determined at random, which gives a completely random dataset

described in Section 3.1.1. The other generation method attempts to recreate a real

dataset using the groundtruth of that real dataset as a reference.

3.1.1 Random Generation Method - Random MANO Dataset

This is the first synthetic data generation strategy investigated, this dataset is called the

Random MANO Dataset. This method involves generating an entirely random synthetic

dataset, drawn from a uniform distribution, the meaning of which is described below. A

diagram of this process is shown in Figure 3.1.

Generating Poses and Hand Shapes

The basic MANO model takes two parameters, � 2 R10 and ✓ 2 R45, describing shape

and articulation respectively, giving a total of 55 parameters. Following on from [26], The

full 45-dimensional ✓ parameter is used as opposed to the principal component analysis-

based 6-dimensional subspace used in the original MANO implementation. This generates

778 vertices describing a hand based on the input parameters. The groundtruth can be

obtained from an additional regressor that takes the 778 vertices as an input and outputs

16 keypoints as a grountruth. I am not aware of any a priori relationship between the

input and output of this model, that is, knowing what � and ✓ input produces a particular

778 vertex output. Given the size of the input parameters, a random number is drawn for

each point � and ✓, drawn from a uniform distribution in the range [�2.0, 2.0], the range

of values in-between is limited by floating point hardware alone. The underlying theory

21

behind using this regimen is that, given a sufficient number of random draw of values for

� and ✓, they will eventually converge towards a ‘comprehensive’ dataset insofar as the

MANO model can accommodate. Giving the MANO model a zero vector for � and ✓

returns a hand in its rest pose (the pose that the hand naturally regresses to when no

muscular force is imparted on the fingers), and the greater each index in these vectors

deviates from zero, the more diverse of a shape that is outputted (with fingers going

in progressively more complex articulations for larger values for each index of � and ✓).

This particular range was chosen through empirical observation, a range greater than this

tends to give unrealistic or impossible poses that a real hand can produce. The original

MANO model keypoint regressor outputs 16 keypoints, which does not match with the

21 keypoints used with the MSRA dataset, so in this dissertation, the MANO setup for

this project is taken from the code of [26, 31].

Camera

Before rendering the 778 vertices into a depthmap image, the camera must be set appro-

priately. The MANO model always generates the 778 hand vertices and 21 keypoints in

the same global orientation, therefore they must be rotated afterwards to augment the

dataset for different camera perspectives. The image is rendered using OpenGL, and in

OpenGL, the camera is always at the zero vector 0 position in Cartesian space, facing in

the negative z direction. To manipulate the camera therefore, all of the other vertices in

the scene are manipulated, and they must eventually be in the space between [�1.0, 1.0]

for each Cartesian axis to appear in the render1.

This version of the model does not include a human body, so the camera must not view

the hand in any form of ego-centric perspective because the wrist is cut off from the rest of

the body and a hole will be seen in the rendered hand’s wrist. The groundtruth describes

not only the articulation of the hand, but also the orientation and position of the hand

in 3D space. To account for this, any rotation of the 778 vertices must also be performed

on the 21 keypoint groundtruth. The rotations are performed using three Euler rotations

in practice. Specifically, all over a uniform distribution (in radians), the x-axis is rotated

in the range [0, 2⇡] radians, the y-axis is rotated randomly over [�2
3⇡,�

1
3⇡] radians, and

the z-axis is rotated randomly over [23⇡,
1
3⇡] radians. The 778 vertices are rendered into

a depthmap Z. Example images generated can be seen in Figure 3.2.
1
https://www.khronos.org/opengl/wiki/Viewing_and_Transformations (accessed 29th April

2020)

22

Normalisation

The mean and variance of the rendered image need to be adjusted to match the MSRA

images. The variance is scaled to the same as the average variance of the MSRA dataset,

and the mean is the same as the mean value of the z coordinate of each groundtruth

value.

3.1.2 Recreating A Real Dataset - IK MANO Dataset

This is the second synthetic data generation strategy investigated, this dataset is called

the IK MANO Dataset. The random data generation method described in Section 3.1.1

produces a good dataset in terms of image realism and groundtruth reliability, but it is

difficult to compare with the MSRA dataset. As a reminder, the MSRA dataset [10] is

based on certain poses within American Sign Language, and the distribution of poses

likely does not match the distribution of data from the random data generation method.

To address this concern, this section describes an alternative method of generating syn-

thetic data. The goal of this method is to replicate the MSRA dataset image for image,

which offers a direct way of comparing the datasets. This is a similar strategy to [6],

where they generated their synthetic data based on the hand pose estimated from a hand

captured with a real sensor. To achieve this, the MANO model can be loaded into Maya

(as an FBX2 file) as the full human body version (specifically the male version), see Figure

3.4. In this setup, the hand has 16 keypoints, one for the wrist, and an MCP, PIP, and

DIP joint (see Figure 0.2), and each of these joints have three Euler rotation parameters.

As well as this, each of these joints have translation parameters which can be used to

change the shape of the hand, however this aspect is outside the scope of this disser-

tation. For hand articulation alone, this gives 45 rotation parameters, which is grossly

overconstrained, since it allows us to deform the hand in ways that are not possible for

a human. As mentioned in [7], having implausible hand images might not necessarily

be detrimental towards a hand tracking system, however since the purpose of this is to

recreate a dataset, this is not be a problem regardless. The following paragraphcs de-

scribes the process for reverse engineering the MSRA groundtruth for the purposes of

deforming the hand articulation, and how the camera is adjusted to recreate the same

camera perspective as the MSRA dataset.
2
https://www.autodesk.com/products/fbx/overview (accessed 29th April 2020)

23

Figure 3.2: Examples of images generated using the random generation method.

24

MSRA
Groundtruth

Inverse
Kinematics

Camera
Rotation

Parameters

Hand Rotation
Parameters

Maya and
MANO

Depthmap
Image

Groundtruth

Figure 3.3: A diagram of the process for producing the IK MANO Dataset. Since the
recreated depth image should have the same groundtruth as the equivalent MSRA, no
processing is performed on it.

Figure 3.4: Screenshot of Maya with the full body MANO model, also called SMPLH.

25

Extracting hand articulation information from MSRA groundtruth

There is not a simple mapping from 21 keypoints to 15 finger joint rotations, therefore a

mapping needs to be determined to find rotations of the finger to manipulate the MANO

model in Maya. Formally, this process is Inverse Kinematics, a subset of Robotics. Human

hands though are different to robots since the bone lengths of the MANO model and an-

notations are different. Taking advantage of the fact that the MSRA dataset includes an

annotation for the tip of the finger, the property of the dot product (a·b = ||a|| ||b|| cos↵)

is used to convert the 21 MSRA joint annotation to 15 finger rotations, in a similar way

to how rotations are calculated in the Cyclic Coordinate Descent Method[32]. These

rotations are then used to deform the hand model within Maya. Two joint vectors are

subtracted from each other to produce a ‘phalanx vector’ describing the vector orienta-

tion between the two joints in consideration, this is described in Equation 1. To assist

in mapping equation 1 to the finger rotations in Maya, it is used under the following

assumption:

1. The palm of the hand (the region between the MCP joints and the wrist) is a rigid

body.

2. All MCP joints have two degrees of freedom - x-axis and y-axis.

3. All PIP and DIP joints have one degree of freedom - x-axis only.

4. The four finger MCP joints form a perfectly straight line in 3D space

For simplicity, the wrist is also considered to be a joint. Figure 3.5 provides an illustration

of this process, for example, the vectors �a, �b, and �c could represent the 3D locations

of the MCP, PIP, and DIP respectively for the index finger, and the angle formed by

Equation 1 is the angle that the index finger is deformed at the index PIP joint in the

x-axis. An enumerated list of rotations performed in the x-axis can be found in Table

3.1.

As stated above, the MCP joint is also assumed to rotate in the y-axis, those rotations

are calculated as follows. For the pinky finger, index finger, and thumb, their respective

PIP and MCP joints are used in conjunction with the next MCP joint. For the middle

and ring fingers, this is used for MCP joints on either side, and whichever adjoining

combination produces a larger angle in absolute terms is used. See Table 3.2 for a fuller

explanation.

26

!!

"" "#

(" = "" + "#)

!$

!%

Figure 3.5: A visualisation of how the rotation of a joint is found. �a, �b, and �c are
passed to Equation 1 to find the angle ↵.

↵ = arccos

(�c � �b) · (�b � �a)

||�c � �b|| ||�b � �a||

!
(1)

Joint To Be
Rotated
(!-axis)

Rotation Parameters

"! "" "#
TMCP WRIST TMCP TPIP
IMCP WRIST IMCP IPIP
MMCP WRIST MMCP MPIP
RMCP WRIST RMCP RPIP
PMCP WRIST PMCP PPIP
TPIP TMCP TPIP TDIP
IPIP IMCP IPIP IDIP
MPIP MMCP MPIP MDIP
RPIP RMCP RPIP RDIP
PPIP PMCP PPIP PDIP
TDIP TPIP TDIP TTIP
IDIP IPIP IDIP ITIP
MDIP MPIP MDIP MTIP
RDIP RPIP RDIP RTIP
PDIP PPIP PDIP PTIP

Table 3.1: Fully enumerated list of how each joint was rotated in the x-axis for the
inverse kinematics algorithm. See Equation 1 in Section 3.1.2. See Figure 0.2 for details
on the joint names.

To calculate the x rotations for each MANO joint, the corresponding MSRA joint, as well

as the previous and next joint is used in the above formula. For example, to calculate

the x rotation for the PIP rotation of the ring finger, the RMCP, RPIP, and RDIP joints

are inputted into Equation 1 letting �a =RMCP, �b =RPIP, and �c =RDIP.

27

Figure 3.6: Examples of images generated by trying to recreate the MSRA dataset. Note
that the difference in colour is not significant and is dependent on the visualisation method
only. The visible body is also segmented in training.

28

Joint To
Be Rotated

(!-axis)

Rotation Parameters
Set 1 Set 2

"! "" "# "! "" "#
PMCP PPIP PMCP RMCP None
RMCP RPIP RMCP PMCP RPIP RMCP MMCP
MMCP MPIP MMCP RMCP MPIP MMCP IMCP
IMCP IPIP IMCP MMCP None
TMCP TPIP TMCP IMCP None

Table 3.2: Fully enumerated list of how each joint was rotated in the y-axis for the inverse
kinematics algorithm. See Equation 1 in Section 3.1.2. Where a joint to be rotated has
two sets of �a, �b, and �c vectors, the combination that produces the greatest magnitude
of ↵ in absolute terms with Equation 1 is chosen. See Figure 0.2 for details on the joint
names.

Camera

The camera in Maya is the point in the scene where the renderer views from. It takes

six parameters, three for Cartesian coordinates, and three for rotation: roll, pitch, and

yaw (Rx, Ry, and Rz). The camera for generating synthetic data is focused on the palm

of the hand. The radius is set to a constant value, and the camera is always pointing

towards a fixed point in the palm of the hand P , and it is moved by giving it the pitch,

roll, and yaw parameters.

To achieve this, the camera is initially placed at point [0, 0, r], where r is the distance to

the palm of the hand. Using the three rotation parameters, this point is rotated on the

x, y, and z axes by Rx, Ry, and Rz respectively. That rotated point is then translated

to look at the hand by summing it by P , the resultant value is the new position in 3D

space for the camera. The camera is then rotated by the same parameters Rx, Ry, and

Rz. This means that the camera will always be focused on the hand regardless of the

input parameters Rx, Ry, and Rz. The values of Rx, Ry, and Rz are obtained thus.

The wrist and Index MCP coordinates are subtracted from each other to get a 3D vector

describing the global rotation of the hand. The x, y, and z rotations are then found

using the right-angled triangle definition ↵ = arctan a
b . The hyperparameters for this

method were optimised by iterating over different values. This iterative method works

by generating a small dataset (e.g. 1000 images), and testing the performance on the

V2V-Posenet model that has been trained on the MSRA dataset.

This method does not robustly recreate the camera perspective found in the MSRA

29

Human
Hands D

Learns on hand
scans

MANO
Model TS Knowledge Transfer

V2V-Posenet
Model TT

Predicts
hand

artic
ulatio

ns

Figure 3.7: High level overview of knowledge transfer in terms of training a hand tracking
model using a synthetic hand generator. A task is denoted by T , and a domain of data
is denoted by D.

dataset, and unfortunately, the original MSRA dataset does not contain camera data.

Normalising rendered image

The process is the same as is described in Section 3.1.1.

3.2 Transfer Learning

Formally, training a hand tracking system on synthetic data is a form of Transfer Learning,

or knowledge transfer. Transfer learning is the idea of transferring the knowledge gained

from training one model to another model [33]. The theory is that although the two tasks

may be different, there may be some aspects of that knowledge that can be transferred,

which reduces the need for new expensive labelled data. For example, if a CNN model

has been trained to find if there are cars in an image, when training a CNN system to

find if there are lorries in the image, there might be aspects of the knowledge in the car

classification model that can be transferred to the lorry classification model. In practice,

an example of how that can be achieved is by reusing the weights of some of the layers

in the car CNN for the truck CNN and training only the end layers of that truck CNN.

The key questions for Transfer Learning are: when should this approach be used, what

knowledge should be transferred, and how should this be done in practice.

It is important to distinguish transfer learning from machine learning. In machine learn-

ing, a task is learned from scratch with training data. A successful machine learning task

will train a model entirely on a dataset that is within the domain of the future examples

30

that it is trying to predict. Using the example in Figure 3.8, this model has learned to

classify data into classes red, green, and blue. It learns these classifications given input

data x1 and x2. Mathematically, this model can predict data from any domain, but it

is only likely to be correct for data that it learned from. For example, the point marked

with ‘?’ lies in an ambiguous domain space, and we cannot be sure what class it belongs

to. In contrast, in this dissertation the knowledge of the hand has already been learned in

the MANO model, and the task is simply to transfer that knowledge to the V2V-Posenet

model, the goal is to be able to train the V2V-Posenet model to learn from synthetic

data without ever having to use real data.

!!

!"

?

Figure 3.8: A toy example example of machine learning. This model learns to classify
input data {x1, x2} into three classes; red, green, and blue.

The question of when transfer learning should be used can be answered by asking if

negative transfer has occurred. Negative transfer is where the data from the source

model leads to the reduced performance of the target model. In general, an example of

when this can occur is when the two tasks are too dissimilar. In the context of hand

tracking, it is important that the method used to achieve transfer learning is robust. In

hand tracking, the occurance of negative transfer is determined by comparing how the

model performs with real data versus synthetic data.

In terms of answering what to transfer, it is worth first reflecting on what the synthetic

hand generation model is, and what the hand tracking model is. The synthetic hand

generation model knows about the structure of the hand and how that is related to 3D

space, and by giving it plausible articulations, that can be transferred to the hand tracking

31

model.po Using the the terminology in [33], the process of training a hand tracking system

with synthetic data is an Inductive Transfer Learning task. In the context of this, the

MANO model is the source task TS, and the target task TT is the V2V-Posenet model.

Both tasks have a common domain of human hands D. A high level illustration of this

concept is shown in Figure 3.7.

32

4 Experimental Setup

This section discusses practical considerations related to the experiments undertaken in

this dissertation. The important details of the hand tracking system used are discussed

in Section 4.1. The details of the nature of the real dataset used in this dissertation are

described in Section 4.2. The performance metric of the hand tracking system used is

defined in Section 4.3, this is particularly important as it is central to how the performance

of a dataset is evaluated. Internal testing of the experimental setup is discussed in

Section 4.4. Details of the experiments performed are discussed in Section 4.5. Finally,

miscellaneous matters are discussed in Section 4.6.

4.1 Hand Tracking Model

The V2V-Posenet model[2] is used as the hand tracking system for training on, an

overview of the network can be seen in Figure 2.2. It takes a depthmap Z as an in-

put, and a 3D vector v denoting the centre of the hand in Z in 3D space. For this

dissertation, where depthmap Z has an image resolution of (a ⇥ b), vx = a
2 and vy = b

2

and vz = Za
2 ,

b
2
. It outputs 3D predicted joints � given a depthmap image Z. Knowl-

edge of the pipeline of this model is critical for generating the correct synthetic data. In

the pipeline, the input depthmap is converted to a Point Cloud using v as a basis. In

the context of this experiment, a Point Cloud is defined as an array of 3D vertices that

describes the shape of an object in 3D space. Given that this is generated from a planar

depth image, the Point Cloud does not define the entire surface of the hand. As such,

self occlusions will also be visible in the Point Cloud. The algorithm for converting from

a depthmap to a Point Cloud takes the indices of a pixel as an x, y coordinate pair, and

the value in that pixel as the z coordinate. Points which are greater than a certain radius

away from v are discarded, thus acting as a segmentation step between foreground and

33

background. This Point Cloud is then turned into a voxel representation. Voxels are the

3D analogue to 2D pixels, and in the case of this setup, it is the 3D analogue to a 2D

binary image. Formally, it is a 3D tensor, and can be seen as a verbose version of the

Point Cloud.

An open source implementation of V2V-Posenet written in Python3 was used for this

dissertation1.

4.2 MSRA Dataset

As previously mentioned, the MSRA dataset[10] is used as a baseline to compare the

synthetic dataset. The MSRA dataset consists of depth images of nine subjects, and

each subject performs seventeen gestures drawn from American Sign Language, to which

there are approximately five-hundred frames each2. The dataset is split 90/10 for training

and testing respectively. The implementation described in Section 4.1 contains code for

training on the MSRA dataset and it was not substantially modified.

4.3 Performance Metrics

The performance metrics discussed in this section are the cornerstone from which syn-

thetic data is compared with real data. As previously discussed, the goal of a hand

tracking system is to extract information about a hand from an image of a hand, and

one way of evaluating the hand tracking system’s performance is by using the metrics

described below. Therefore, the questions asked about synthetic hand data in this dis-

sertation are answered using these metrics.

The primary performance metric used is mean per-joint error, as used in[10]. This perfor-

mance metric shall be referred to as Global Error. Specifically, for each joint, the average

euclidian distance (in millimeters) in 3D space is computed between the groundtruth

keypoint Yi
n,m and predicted keypoint Yo

n,m. An important implication of this is that the

prediction could predict the correct articulation of the hand, but the per-joint error is still

high because the global orientation or location of Yi
n,m is different to Yo

n,m. The model

1
https://github.com/dragonbook/V2V-PoseNet-pytorch (accessed 29th April 2020)

2
https://jimmysuen.github.io/txt/cvpr15_MSRAHandGestureDB_readme.txt (accessed 29th

April 2020)

34

�1
�2

�3�4

�5

�6

�7
�8

�9

�10

�11

�12
�13

�14

�15

�16

�17

�18�19

�20

�21

Figure 4.1: A visualisation of the Global Error performance metric. The prediction and
groundtruth are shown in blue and red respectively. The performance metric measures
the average distance for each joint between the prediction and groundtruth, denoted for
this example by the dotted black line. Each �n corresponds to a keypoint as in Figure
0.2.

must therefore aim to correctly predict orientation as well as articulation to perform well

on this metric.

There are K images in the test dataset, and the hand tracking model predicts N joints

� for each image Z. EG is the average error for all joints, and EG
n denotes the average

error for an individual joint �n (e.g. the per-joint error for the index MCP joint).

EG
n =

1

K

KX

m=1

||Yi
m,n � Yo

m,n|| (1)

EG =
1

N

NX

k=1

EG
k (2)

Through empirical observation, it was found that the V2V-Posenet model would often

correctly predict the articulation and global orientation of the hand correctly, but not

the global position. To account for situations where the model predicts the articulation

and orientation correctly, but not the global position in 3D space, the following metric

is also used. The above metric is modified by translating � by the difference between

the predicted and groundtruth values for the location of this wrist. This performance

metric shall be referred to as Local Error. This means that the error for the wrist joint

will be zero (thus this value is not reported in the local error metric). This second

35

metric exists to provide more insight into performance. While the former metric is most

important to optimise for a robust hand tracking system, this second metric can provide

an intermediate goal to achieve in optimising the hand tracking model.

EL
n =

1

K

KX

m=1

||Yi
m,n + (Yo

m,n + (Yi
m,0 � Yo

m,0))|| (3)

EL =
1

n

NX

k=1

EL
k (4)

Typically, the scale that a hand lies within in local space is approximately 200mm,

that is the maximum span of an adult human hand. The precise value of this range

is not important, but it does serve to illustrate how the above performance metrics are

interpreted, particularly the second metric. For example, if the average per-joint error of

one joint is 80mm, that is far away, if it is 800mm, then there is likely something very

wrong with the system, and if it is 8mm, that is perhaps a reasonable average error.

There is no exact interpretation to this however, which is why a baseline exists to judge

experimental results.

As discussed above, the MSRA dataset is used as the baseline for this experiment. The

crux of this dissertation is to evaluate the merits of using synthetic data for training

a hand tracking system. To answer this question, the V2V-Posenet model is trained

and tested using the respective training sets of MSRA, which produces a particular error

value. The answer is provided by comparing the performance of training the V2V-Posenet

model with the MSRA dataset versus training it with the synthetic datasets.

4.4 Software Testing

Software testing is the primary method used for improving the synthetic data pipeline.

Software testing for this dissertation and the evaluation of the merits of using synthetic

data are two separate concerns. While the latter is evaluated using the performance met-

rics in Section 4.3, software testing refers to the performance of the internal components

of the synthetic data generation system. The performance metric is directly reliant on

the internal performance of this system, and the performance metric might suffer because

of a bad design of the synthetic data pipeline, and not because my hypothesis about syn-

thetic data is false. It is imperative that the synthetic data pipeline is optimal so that the

36

V2V-Posenet
Model

Voxelised
Pixels

Voxelisation
Conversion

Point Cloud
Representation

Point cloud
conversion

Depthmap
Image !

3D Centre of
Hand "

Point Cloud
Visualisation

Voxel
Visualisation

Figure 4.2: A diagram of the preprocessing steps for the V2V-Posenet model, from input
depthmap image Z and centre v to voxels, this voxelised representation is then passed into
the 3D CNN. The two red boxes for Point Cloud Visualisation and Voxel Visualisation
denote the two visualisation stages described in Section 4.4.1.

performance metric in Section 4.3 solely answers the hypothesis, and not a failing in my

design of the pipeline. To address this concern, different tests were devised to evaluate

the performance

In both the synthetic data generation pipelines, these are aspects that I believe are liable

to failing.

4.4.1 Data Visualisation

Visualisation served as the backbone of software testing in this dissertation. Ideally, unit

testing or some other sort of numerical test would be used, but given the complicated

nature of the data being handled, I am not aware of any reliable unit testing regimen.

The following parts describe the individual visualisation tests that were performed.

Depthmap Visualisation

This step visualises the conversion of the mesh outputted by MANO into the depthmap,

as well as the normalisation of this image. This step was important for seeing whether

the camera was behaving as expected, as well as visualising the domain of the foreground

pixels and ensuring that there is a clear boundary between these foreground pixels and

the background. Examples can be seen in Figure 3.2 and Figure 3.6.

Pointcloud Visualisation

The conversion of the depthmap to the pointcloud it one of the most important steps in

the pipeline. An example of this can be seen in Figure 4.3. As previously described, the

37

Figure 4.3: Examples the visualisation tools for the pointcloud (top row and middle left)
and voxelisation (bottom row and middle right). For the pointcloud, all blue points that
fall within the green sphere are voxelised, note as well that the background pixel points
are not shown.

step of converting the depthmap to a Point Cloud uses a 3D centre point as a reference

to the ‘centre’ v of the hand, and all points further than a certain distance to this point

are discarded. In Figure 4.3, this centre is denoted by the confluence of the three thin

red lines. The threshold in which points beyond v are discarded is denoted by the green

sphere. The purpose of this step is to ensure that most points lie within this green

sphere. The definition of most is defined by my empirical observation of the MSRA

dataset visualised at this step. It was found that most, but not all points describing the

hand lie within this green sphere. The parameters that can be optimised in this step are

the centre point of the image. This step was implemented with Matplotlib.

38

Voxel Visualisation

Converting from pointcloud to voxels is the last step in the pipeline before the data is

passed to the V2V-Posenet model. This step is largely robust for a given pointcloud rep-

resentation since it is part of the implementation of the V2V-Posenet model that is used

for this dissertation. It does however serve to confirm that the pointcloud visualisation

step itself works. This step also was implemented with Matplotlib. Examples are also in

Figure 4.3.

4.5 Experiments

This section details the experiments undertaken in this dissertation. All experiments

involved training the V2V-Posenet model for 5 epochs with a batch size of 12. Every

dataset consists of 67893 training images, and 8498 test images.

4.5.1 Baseline

The baseline of this dissertation is training the V2V-Posenet model with the real MSRA

training dataset, it is then validated with the MSRA test dataset. It is also validated

with the test datasets for the Random MANO and IK MANO datasets too.

4.5.2 Analysis Of Synthetic Data

The Random MANO and IK MANO datasets are investigated separately. Both respective

training datasets are used to train the V2V-Posenet model under two scenarios; random

initialisation of the V2V-Posenet weights, and one where the weights obtained from train-

ing the V2V-Posenet model on the MSRA training dataset are used as a base. In total,

this gives four models obtained from training with synthetic data. Each of these four

models are tested with the respective test synthetic dataset, and the MSRA test dataset,

which gives eight testing scenarios. There are two error metrics described in Section 4.3,

so this gives sixteen sets of results.

39

4.6 Miscellaneous

4.6.1 Execution Model

Random MANO Dataset The MANO parameters � and ✓ are determined at random for

generating the Random MANO dataset. To make the generation of the data is made

consistent over different runs, the random number generator is seeded with a constant

value. When training, the images are generated at runtime before the model is trained

and are stored in a temporary directory using the tempfile library3 in Python. To give a

fair comparison with the MSRA dataset, the same size for the training and test sets are

used at 67893 and 8498 respectively. A different seed for the random number generator

is used for training and testing.

IK MANO Dataset

As previously mentioned, recreating the real dataset is achieved in Maya4, a 3D computer

graphics programme. The actual renderer used is Arnold5. This was running on a different

computer to the one used to run the V2V-Posenet model, and it lacked a GPU which

meant that it was not feasible to generate the dataset in real time with training the

model (it takes 12 hours and 53 minutes to generate the training and test dataset, or 607

milliseconds per image). Given the size of the dataset, the process was scripted. Maya

comes with a Python environment for writing scripts which has API calls for scripting

tasks within Maya. An important implication of using Maya Python is that it uses

Python 2.7.11, which was released in December 2015 and lacks the support of many

modern libraries. As well as this, it does not come with PIP, a common package manager

in Python, which made it more challenging to use certain third party libraries. As a way

around this problem, as well as to make the execution of the programme more efficient,

two processes were used in the synthetic data generation process; Maya Python, as well

as another process running Python 3. This was achieved using the subprocess library in
3
https://docs.python.org/3.7/library/tempfile.html (accessed 29th April 2020)

4
https://autodesk.com/maya (accessed 29th April 2020)

5
https://www.arnoldrenderer.com (accessed 29th April 2020)

40

Python6.

The calculation of the camera position, hand articulation, as well as the rendering hap-

pend within the Maya Python process. The Python 3 process did extra processing on the

image (using the Python subprocess library), this consisted of normalising the rendered

images, then compressing them to save disk space (using the numpy.savez7 method). The

execution of these processes worked in a producer-consumer model. The child process

runs a modern version of Python to perform the post-processing of each depth image.

The parent and child processes communicate using a Unix-style pipeline. Every time a

new image is rendered in Maya, it saves the file to disk, when this occurs, the name,

path, and grountruth of that image are passed to the child process in the pipeline, and

the child performs the processing based on this information. In the execution pattern

of the child, it waits for this information to be given to it. In order to strive towards

deterministic execution, a SIGALARM is set to check a boolean that says whether the pro-

gramme should stop when waiting for input, and if it receives nothing in the next three

seconds, and that boolean is set to true, the child process stops. In the parent process, a

wrapper class for calling the child process is implemented, and when that wrapper class is

garbage-collected, it send a SIGTERM signal to the child, in the child, this sets the boolean

to true, and if it is in the middle of processing an image, it will complete that first, and

it will continue to process whatever is still in the pipeline before stopping.

4.6.2 Execution Speed

Execution speed refers to how quickly the synthetic data pipeline can execute, from

generating, processing, training, and testing on the synthetic data. While this is not

necessarily needed in terms of ensuring that the synthetic data pipeline is optimal towards

improving the performance metric, it is important towards improving the speed of the

pipeline itself, since it means that less time can wasted between per development cycle.

Since the software for this dissertation was written in Python, this primarily focussed on

the optimal use of libraries within Python. Python is an Interpreted language, and is

not compiled to machine code before execution so code written in it executes slowly in

comparison to software that is compiled (such as C, C++ and Fortran). Some libraries
6
https://docs.python.org/release/2.7.11/library/subprocess.html (accessed 29th April

2020)
7
https://numpy.org/devdocs/reference/generated/numpy.savez.html (accessed 29th April

2020)

41

in Python are written in compiled languages however. This means therefore that Python

code should aim to offset as many instructions within the code to libraries that are written

in compiled languages as possible.

4.6.3 Computers

Two computers were used in the experiments. The rational behind this is that one

computer had a GPU which is needed for modern CNN training tasks, but it was not

portable and lacked a GUI, a laptop was also used. The first computer, which was used

for data visualisation and generating the MSRA-based synthetic dataset with Maya ran

using a 2.6 GHz 6-core Intel i7 8850H, with 16GB of 2400MHz DDR4 RAM running

macOS 10.15.3. The second computer used for the rest of the tasks in this dissertation

used a 3.6 GHz 6-core AMD Ryzen 5 3600 with 32GB of 2400MHz DDR4 RAM and an

Nvidia RTX 2060S with 8GB of GDDR6 RAM, running Ubuntu Server 18.04 LTS.

Since two computers were used for this dissertation, a practical concern during this project

was how to communicate between the two computers. Secure shell (SSH) proved to be

the most useful tool to achieve this. The internet connection for the server does not allow

for port forwarding, which means that it cannot be an SSH server that is accessible from

the internet. To solve this problem, a VPN server was deployed on Amazon Web Services

(AWS). The AWS-based VPN server had a permanent connection to this computer, so

when an SSH connection was made to the server from my laptop, it connected via this

VPN server. Given the nature of this project, large quantities of data transfer were

required, and AWS charges for this beyond a threshold, so the server did not connect to

the internet via the VPN save for SSH communication. For the data visualisation tasks

described in Section 4.4.1, the programme in the server interacts at different stages of the

V2V-Posenet pipeline to extract information, and writes this data as a Python script,

which can be copy and pasted onto my laptop. Given the small file size, this proved to

be computationally feasible.

42

5 Results

Section 5.1 provides a summary of the baseline and results using the Global Error EG and

Local Error EL metrics. Sections thereafter provide the full baseline and results using the

per-joint Global Error EG
n and Local Error EL

n metrics. See Section 4.3 for details on the

performance metrics. The real dataset is the MSRA dataset, and the synthetic datasets

are the Random MANO dataset and IK MANO dataset, see Section 3.1 for details. See

Figure 0.2 for details on the joint names.

Results are colour-coded, with good results (around 10mm) highlighted in green , pro-

gressively worse results are highlighted in shades of yellow and orange , with the worst

results highlighted in red (> 90mm).

5.1 Summary

Random MANO IK MANO MSRA
!! 90.93 mm 88.57 mm 10.33 mm
!" 118.89 mm 86.79 mm 14.19 mm

Table 5.1: The experimental baseline, showing the results when the model is first trained
on the MSRA training dataset, then tested on the test MSRA dataset and test synthetic
datasets.

43

Trained With The Random
MANO Dataset

Trained With The IK MANO
Dataset

Start From
Random Weights

Test on
MANO

!! 8.90 mm Test on
MANO

!! 77.44 mm

!" 6.88 mm !" 51.82 mm

Test on
MSRA

!! 105.42 mm Test on
MSRA

!! 59.03 mm

!" 120.09 mm !" 66.30 mm

Start From
MSRA Weights

Test on
MANO

!! 8.25 mm Test on
MANO

!! 74.45 mm

!" 6.54 mm !" 52.54 mm

Test on
MSRA

!! 68.13 mm Test on
MSRA

!! 54.45 mm

!" 96.29 mm !" 63.97 mm

Table 5.2: Summary of results over all experiments undertaken. Each experiment reports
the average error over all joints for the two metrics described in Section 4.3. See Section
4.5 for details on the experiments performed.

5.2 Baseline Tests

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
10.20 mm 8.82 mm 10.10 mm 10.88 mm 13.40 mm 7.33 mm 8.23 mm 9.87 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP
13.05 mm 7.56 mm 7.88 mm 9.54 mm 12.68 mm 9.13 mm 8.57 mm 9.27 mm
PTIP TMCP TPIP PDIP TTIP Average

12.04 mm 9.74 mm 11.02 mm 12.00 mm 15.55 mm 10.33 mm

Table 5.3: Global error when model trained with the MSRA dataset initialised with
random weights and tested on the MSRA test dataset.

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
N/A mm 10.82 mm 13.18 mm 14.75 mm 17.31 mm 10.76 mm 13.45 mm 15.20 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP
17.71 mm 11.59 mm 13.63 mm 15.21 mm 17.47 mm 13.20 mm 13.57 mm 14.14 mm
PTIP TMCP TPIP PDIP TTIP Average

16.62 mm 8.72 mm 12.60 mm 15.07 mm 18.86 mm 14.19 mm

Table 5.4: Local error when model trained with the MSRA dataset initialised with random
weights and tested on the MSRA test dataset.

44

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
123.25 mm 105.61 mm 84.00 mm 86.13 mm 84.01 mm 82.64 mm 79.98 mm 70.77 mm

MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP
72.60 mm 77.96 mm 72.01 mm 81.24 mm 72.84 mm 84.75 mm 79.84 mm 86.36 mm
PTIP TMCP TPIP PDIP TTIP Average

85.79 mm 138.94 mm 118.87 mm 102.89 mm 119.04 mm 90.93 mm

Table 5.5: Global error when model trained with the MSRA dataset initialised with
random weights and tested on the Random MANO dataset.

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
N/A mm 121.88 mm 117.93 mm 127.07 mm 130.78 mm 115.38 mm 113.78 mm 109.93 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP

121.37 mm 107.26 mm 105.41 mm 115.54 mm 114.41 mm 114.18 mm 124.42 mm 108.09 mm
PTIP TMCP TPIP PDIP TTIP Average

112.18 mm 136.50 mm 128.28 mm 136.64 mm 116.67 mm 118.89 mm

Table 5.6: Local error when model trained with the MSRA dataset initialised with random
weights and tested on the Random MANO test dataset.

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
73.79 mm 75.54 mm 86.05 mm 96.61 mm 108.52 mm 73.57 mm 89.94 mm 100.02 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP

112.83 mm 75.50 mm 87.29 mm 92.89 mm 98.37 mm 78.78 mm 86.27 mm 92.02 mm
PTIP TMCP TPIP PDIP TTIP Average

98.80 mm 70.36 mm 77.56 mm 85.33 mm 99.91 mm 88.57 mm

Table 5.7: Global error when model trained with the MSRA dataset initialised with
random weights and tested on the IK MANO test dataset.

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
N/A mm 67.93 mm 84.63 mm 96.64 mm 108.02 mm 69.45 mm 93.01 mm 103.37 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP

115.10 mm 71.51 mm 90.29 mm 96.56 mm 100.27 mm 75.71 mm 88.43 mm 94.82 mm
PTIP TMCP TPIP PDIP TTIP Average

101.63 mm 42.45 mm 64.63 mm 77.68 mm 93.73 mm 86.79 mm

Table 5.8: Local error when model trained with the MSRA dataset initialised with random
weights and tested on the IK MANO test dataset.

5.3 Training With The Random MANO Synthetic Dataset

45

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
8.39 mm 8.30 mm 8.68 mm 9.48 mm 11.10 mm 7.70 mm 7.90 mm 8.35 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP
9.97 mm 7.28 mm 7.54 mm 8.29 mm 10.46 mm 7.25 mm 7.73 mm 8.75 mm
PTIP TMCP TPIP PDIP TTIP Average

10.97 mm 8.29 mm 8.65 mm 9.68 mm 12.12 mm 8.90 mm

Table 5.9: Global error when model trained with Random MANO dataset initialised with
random weights and tested on Random MANO test dataset.

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
N/A mm 5.08 mm 6.13 mm 7.41 mm 9.74 mm 4.84 mm 5.89 mm 6.93 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP
9.16 mm 4.68 mm 5.69 mm 7.09 mm 9.87 mm 4.89 mm 6.03 mm 7.56 mm
PTIP TMCP TPIP PDIP TTIP Average

10.23 mm 3.95 mm 5.08 mm 6.89 mm 10.37 mm 6.88 mm

Table 5.10: Local error when model trained with Random MANO dataset initialised with
random weights and tested on Random MANO test dataset.

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
75.91 mm 99.64 mm 108.10 mm 106.09 mm 108.97 mm 109.41 mm 104.96 mm 105.99 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP

110.81 mm 110.22 mm 106.17 mm 107.01 mm 107.00 mm 103.82 mm 111.16 mm 112.72 mm
PTIP TMCP TPIP PDIP TTIP Average

111.82 mm 85.61 mm 101.98 mm 112.97 mm 113.48 mm 105.42 mm

Table 5.11: Global error when model trained with Random MANO dataset initialised
with random weights and tested on MSRA test dataset.

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
N/A mm 109.93 mm 121.02 mm 120.88 mm 126.14 mm 121.30 mm 126.35 mm 126.83 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP

130.08 mm 123.69 mm 128.24 mm 127.39 mm 125.41 mm 117.20 mm 130.32 mm 133.18 mm
PTIP TMCP TPIP PDIP TTIP Average

133.56 mm 68.03 mm 99.87 mm 114.25 mm 118.20 mm 120.09 mm

Table 5.12: Local error when model trained with Random MANO dataset initialised with
random weights and tested on MSRA test dataset.

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
7.77 mm 7.45 mm 7.79 mm 8.70 mm 10.49 mm 6.88 mm 7.23 mm 7.94 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP
9.75 mm 6.66 mm 6.82 mm 7.76 mm 9.87 mm 6.61 mm 7.05 mm 8.12 mm
PTIP TMCP TPIP PDIP TTIP Average

10.19 mm 7.79 mm 7.96 mm 9.12 mm 11.29 mm 8.25 mm

Table 5.13: Local error when model trained with Random MANO dataset initialised with
MSRA weights and tested on Random MANO test dataset.

46

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
N/A mm 4.84 mm 5.72 mm 6.90 mm 8.98 mm 4.73 mm 5.66 mm 6.72 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP
8.84 mm 4.50 mm 5.39 mm 6.70 mm 9.18 mm 4.60 mm 5.61 mm 7.10 mm
PTIP TMCP TPIP PDIP TTIP Average
9.53 mm 3.94 mm 4.97 mm 6.97 mm 9.92 mm 6.54 mm

Table 5.14: Local error when model trained with Random MANO dataset initialised with
MSRA weights and tested on Random MANO test dataset.

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
66.27 mm 56.85 mm 81.36 mm 94.68 mm 92.93 mm 52.51 mm 74.99 mm 79.10 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP
79.83 mm 48.45 mm 57.67 mm 63.70 mm 64.44 mm 57.67 mm 68.19 mm 72.50 mm
PTIP TMCP TPIP PDIP TTIP Average

75.13 mm 45.56 mm 48.79 mm 66.76 mm 83.37 mm 68.13 mm

Table 5.15: Global error when model trained with Random MANO dataset initialised
with MSRA weights and tested on MSRA test dataset.

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
N/A mm 83.09 mm 103.47 mm 117.67 mm 119.24 mm 83.72 mm 106.87 mm 110.43 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP

109.72 mm 83.35 mm 94.33 mm 98.46 mm 98.78 mm 87.96 mm 97.24 mm 102.23 mm
PTIP TMCP TPIP PDIP TTIP Average

107.56 mm 57.74 mm 71.35 mm 88.34 mm 104.33 mm 96.29 mm

Table 5.16: Local error when model trained with Random MANO dataset initialised with
MSRA weights and tested on MSRA test dataset.

47

5.4 Training With The IK MANO Synthetic Dataset

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
64.53 mm 71.31 mm 76.66 mm 83.73 mm 91.78 mm 71.68 mm 76.27 mm 79.25 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP
84.55 mm 73.99 mm 77.06 mm 79.68 mm 83.36 mm 76.68 mm 77.78 mm 80.07 mm
PTIP TMCP TPIP PDIP TTIP Average

84.91 mm 66.25 mm 71.62 mm 74.36 mm 80.73 mm 77.44 mm

Table 5.17: Global error when model trained with IK MANO dataset initialised with
random weights and tested on the MANO test dataset.

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
N/A mm 40.75 mm 49.01 mm 58.38 mm 68.74 mm 40.14 mm 49.02 mm 54.42 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP
60.87 mm 43.87 mm 50.40 mm 54.28 mm 58.48 mm 50.06 mm 54.64 mm 58.27 mm
PTIP TMCP TPIP PDIP TTIP Average

63.69 mm 26.88 mm 43.10 mm 50.68 mm 60.74 mm 51.82 mm

Table 5.18: Local error when model trained with IK MANO dataset initialised with
random weights and tested on the MANO test dataset.

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
58.33 mm 51.33 mm 57.47 mm 65.04 mm 82.37 mm 44.27 mm 43.59 mm 54.36 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP
76.42 mm 41.48 mm 40.94 mm 51.88 mm 68.88 mm 44.63 mm 49.97 mm 59.52 mm
PTIP TMCP TPIP PDIP TTIP Average

72.52 mm 63.81 mm 71.49 mm 71.15 mm 70.23 mm 59.03 mm

Table 5.19: Global error when model trained with IK MANO dataset initialised with
random weights and tested on the MSRA test dataset.

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
N/A mm 53.50 mm 66.73 mm 77.73 mm 98.87 mm 53.44 mm 62.64 mm 71.36 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP
88.12 mm 54.36 mm 58.71 mm 62.11 mm 73.09 mm 58.79 mm 67.05 mm 74.22 mm
PTIP TMCP TPIP PDIP TTIP Average

83.94 mm 33.65 mm 53.55 mm 62.18 mm 72.02 mm 66.30 mm

Table 5.20: Local error when model trained with IK MANO dataset initialised with
random weights and tested on the MSRA test dataset.

48

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
68.10 mm 68.19 mm 69.85 mm 75.70 mm 86.24 mm 67.60 mm 69.82 mm 76.65 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP
83.70 mm 66.68 mm 70.17 mm 74.45 mm 77.76 mm 71.64 mm 73.91 mm 77.46 mm
PTIP TMCP TPIP PDIP TTIP Average

79.96 mm 69.41 mm 75.58 mm 77.99 mm 82.66 mm 74.45 mm

Table 5.21: Global error when model trained with IK MANO dataset initialised with
MSRA weights and tested on IK MANO test dataset.

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
N/A mm 42.04 mm 49.49 mm 57.48 mm 66.56 mm 40.58 mm 48.88 mm 57.31 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP
63.22 mm 43.23 mm 49.33 mm 54.20 mm 57.32 mm 51.02 mm 55.80 mm 60.81 mm
PTIP TMCP TPIP PDIP TTIP Average

64.36 mm 28.52 mm 45.98 mm 53.08 mm 61.59 mm 52.54 mm

Table 5.22: Local error when model trained with IK MANO dataset initialised with
MSRA weights and tested on IK MANO test dataset.

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
44.48 mm 44.75 mm 50.11 mm 64.87 mm 78.88 mm 42.33 mm 41.90 mm 56.19 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP
74.84 mm 41.85 mm 40.55 mm 50.45 mm 64.50 mm 45.85 mm 49.38 mm 59.83 mm
PTIP TMCP TPIP PDIP TTIP Average

71.03 mm 47.58 mm 53.30 mm 56.41 mm 64.41 mm 54.45 mm

Table 5.23: Global error when model trained with IK MANO dataset initialised with
MSRA weights and tested on MSRA test dataset.

Wrist IMCP IPIP IDIP ITIP MMCP MPIP MDIP
N/A mm 49.42 mm 61.99 mm 77.78 mm 90.02 mm 49.63 mm 58.49 mm 71.92 mm
MTIP RMCP RPIP RDIP RTIP PMCP PPIP PDIP
87.89 mm 51.45 mm 56.66 mm 65.87 mm 76.86 mm 55.80 mm 62.23 mm 73.03 mm
PTIP TMCP TPIP PDIP TTIP Average

83.21 mm 32.27 mm 50.75 mm 58.25 mm 65.79 mm 63.97 mm

Table 5.24: Local error when model trained with IK MANO dataset initialised with
MSRA weights and tested on MSRA test dataset.

49

6 Conclusion

This final part3 discusses the results of Section 5.1 in Section 6.1. Future work is outlined

in Section 6.2. A summary of this dissertation is provided in Section 6.3. Finally, a

personal reflection is provided in Section 6.4.

6.1 Discussion Of Results

6.1.1 Baseline

The baseline for this dissertation is training the V2V-Posenet model on the MSRA train-

ing dataset. As anticipated, it performs well when tested on the global error metric,

matching state of the art performance at 10.33mm, the slightly higher error value on

the local error indicates that the V2V-Posenet model is also correctly predicting the

global position of the hand. The results of the Random MANO test dataset are poor,

and this is understandable, given that the datasets inevitably cover a different range of

hand poses, however the results of the IK MANO dataset are more concerning. The IK

MANO dataset is generated from the labels of the MSRA dataset, so in an ideal world, it

should have similar performance, so this alone provides early evidence that the attempt

to recreate the MSRA dataset synthetically failed.

6.1.2 Experiments

The following two sections describe the scenarios where the V2V-Posenet model is trained

on the two respective synthetic test datasets. See Section 4.5 for details.

50

Random MANO Dataset

This section discusses the results when the V2V-Posenet model is trained on the Random

MANO dataset.

It is first worth noting that these two datasets cover different kinds of poses. The MSRA

dataset is a series of frames from a video where 10 subjects perform 17 different hand

poses. Given this scenario, many of the frames in the MSRA dataset are similar, with

only slight variations between frames for camera angle and pose. In training V2V-Posenet

however, depthmap images are passed in at random. In contrast, the Random MANO

dataset is entirely random, the hand shape changes in each frame, so in theory, if there

are 10,000 images, this could have come from 10,000 different subjects. Each pose is

entirely drawn from random, so no two images will be similar in the same way that

they are in the MSRA dataset which comes from a video sequence. As well as this, the

Random MANO dataset is likely to have higher quality images, while the MSRA dataset

is likely to contain noise due to the nature of real world sensors. These differences are

important when weighing the differences between these two results. Both the global

error and local error metrics perform well when tested with this synthetic dataset, and

better than the MSRA dataset. However, the local error performs better which indicates

that the global error might improve if the global position of the hands is predicted better,

which may indicate a problem with the MANO vertices-to-joints regressor. In my opinion,

this dataset performed better than the MSRA dataset because the quality of the labels

was better, they were more consistent with respect to each image. The MANO model

can output accurate labels, while the MSRA dataset determined the labels using an

optimisation algorithm [10] which will not always find the correct annotation. Indeed,

in the ICVL Dataset [5], they admit that when the labelling algorithm fails, they just

discard the image leading to an easier dataset to train on (less challenging images). It

is curious that the cross comparing the MSRA dataset and Random MANO datasets

does not perform well (i.e. training on one dataset and testing the trained model on

the other dataset). While both datasets cover different ranges of poses, I do not think

that that is the reason. Instead, a possible explanation is that there is a discrepancy

in the domain of the groundtruth � for a given depthmap image Z. The V2V-Posenet

model learns to map a depthmap image to a particular domain of predictions to satisfy

the global error metric, but given another dataset, it may map to a different domain of

predictions. For example, for a depthmap image where the average foreground pixel value

51

is 300, and for that type of image where the average foreground image is 300, it has a

groundtruth where the average z value �n,2 is 100, but in a different dataset, that same

type of depthmap image might map to an average �n,2 of 200. As long as the annotation

mechanism is consistent, this domain issue is not a problem for datasets, but it is for

comparing datasets. I am not aware of any recent dataset that makes use of data from

previous datasets, and I think this is quite telling. The key theme of this dissertation

has been the lack of data for hand tracking datasets, and yet, when an attempt is made

to create a new dataset, while past techniques are considered, no author ever uses the

previous data, and I believe this can be partly explained by this domain issue. Therefore,

that is why I think the MSRA and Random MANO datasets do not compare well with

each other.

IK MANO Dataset

This section discusses the results when the V2V-Posenet model is trained on the IK

MANO dataset, the dataset that is generated within MAYA to recreate the MSRA

dataset synthetically. The results overall are poor, with test results poor even on the

test version of the synthetic dataset. The local error does significantly better than the

global error when tested with the MANO dataset in both MSRA weights and random

weights scenarios, and this to me indicates a problem with the camera step, that the

global position of the hand in the groundtruth with respect to the images is inconsistent.

Looking at the sample images in Figure 3.6, the hand articulation is generally correct, but

the actual orientation of the hand varies widely. The camera orientation was chosen by

looking at the orientation of the hand, since there was not information about the camera

in the original annotation of the dataset, which clearly is not a good approach.

The method for for deforming the hand joints has shown promise, but the method for

finding the camera location was not robust.

Results Conclusion

The purpose of this dissertation was to investigate the merits of using synthetic data to

train hand tracking systems. Given the results discussed in Section 6.1.2, I believe that

the use of synthetic data is a valid step in improving the performance of hand tracking

systems, but more work is required. These experiments have shown that it is easier to

52

generate synthetic data directly from the MANO model. In contrast, generating synthetic

data from the grountruth of a real dataset is harder, since it involves the use of a dubious

inverse kinematics algorithm in the absence of proper camera annotation of that real

dataset.

6.2 Future Work

Generating synthetic data at random proved to be easier than making a pipeline for

reverse engineering the grountruth. The error of the Random dataset was very low, far

lower than the equivalent on the MSRA dataset. It would therefore be interesting to make

a very big dataset, in the order of 107 or 108 to see how it performs on the V2V-Posenet

model in comparison to a real dataset. As well as this, the problems reverse engineer-

ing the grountruth could be fixed, and hand shape could be factored in by calculating

the bone lengths in the grountruth and deforming the model in Maya as appropriate.

This grountruth-reversal method could also provide a way to augment real datasets like

Bighand2.2m. An example of this could be to supplement this dataset with synthetic

counterparts, using the grountruth of this dataset as a starting point, the angles of the

individual joint deformations could be adjusted, the camera could also be adjusted. In

addition to this, a synthetic dataset with hand-object interactions could be investigated

for depth images like is done for RGB images in [6].

6.3 Summary

In this dissertation, a comprehensive evaluation of synthetic data in 2020 was performed

using the MANO model as the state-of-the-art in generating synthetic data, with a view

towards addressing the lack-of-data problem in hand tracking. Two regimens were demon-

strated for generating such data: at random (The Random MANO Dataset), and based

on another dataset (The IK MANO Dataset). The random generation method worked by

drawing random parameters from a pre-selected uniform distribution for camera, hand

articulation, and hand shape. The method where the synthetic data is based on another

dataset worked by using inverse kinematics to deform the MANO model within MAYA,

with a view towards augmentation of a real dataset.

53

6.4 Postscript

This dissertation marks the concluding work that I submit as part of a five year Engineer-

ing programme at Trinity College Dublin. This degree has taken me on a journey from a

churlish youth to what I hope is someone prepared to take on life ahead. In the midst of

submitting this dissertation, the world at large is in lockdown, and it is probably one of

the worst times to be a graduate, but life must go on. I will be in a lifetime of emotional

debt to all of the great people I encountered through my time here, and I mean this in a

most sincere way. A special word of mention is in order towards Dublin University Boat

Club, I will forever hold fond memories of both on-water and off-water endeavors. I often

suspected, that I spent more time in boats than in lecture theaters.

54

References

[1] Shanxin Yuan, Qi Ye, Bjorn Stenger, Siddhant Jain, and Tae-Kyun Kim. Big-

hand2.2m benchmark: Hand pose dataset and state of the art analysis. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

4866–4874, 2017.

[2] Gyeongsik Moon, Ju Yong Chang, and Kyoung Mu Lee. V2V-posenet: Voxel-to-

voxel prediction network for accurate 3D hand and human pose estimation from a

single depth map. In Proceedings of the IEEE conference on computer vision and

pattern Recognition, pages 5079–5088, 2018.

[3] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[4] Yangang Wang, Cong Peng, and Yebin Liu. Mask-pose cascaded cnn for 2d hand

pose estimation from single color image. IEEE Transactions on Circuits and Systems

for Video Technology, 29(11):3258–3268, 2018.

[5] Danhang Tang, Hyung Jin Chang, Alykhan Tejani, and Tae-Kyun Kim. Latent

regression forest: structured estimation of 3D hand poses. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 39(7):1374–1387, 2016.

[6] Franziska Mueller, Dushyant Mehta, Oleksandr Sotnychenko, Srinath Sridhar, Dan

Casas, and Christian Theobalt. Real-time hand tracking under occlusion from an

egocentric RGB-D sensor. In Proceedings of the IEEE International Conference on

Computer Vision Workshops, pages 1284–1293, 2017.

[7] Jameel Malik, Ahmed Elhayek, Fabrizio Nunnari, Kiran Varanasi, Kiarash Tamad-

don, Alexis Heloir, and Didier Stricker. Deephps: End-to-end estimation of 3D hand

pose and shape by learning from synthetic depth. In 2018 International Conference

on 3D Vision (3DV), pages 110–119. IEEE, 2018.

55

[8] Anil Armagan, Guillermo Garcia-Hernando, Seungryul Baek, Shreyas Hampali,

Mahdi Rad, Zhaohui Zhang, Shipeng Xie, MingXiu Chen, Boshen Zhang, Fu Xiong,

et al. Measuring generalisation to unseen viewpoints, articulations, shapes and ob-

jects for 3D hand pose estimation under hand-object interaction. arXiv preprint

arXiv:2003.13764, 2020.

[9] Javier Romero, Dimitrios Tzionas, and Michael J Black. Embodied hands: Modeling

and capturing hands and bodies together. ACM Transactions on Graphics (ToG),

36(6):245, 2017.

[10] Xiao Sun, Yichen Wei, Shuang Liang, Xiaoou Tang, and Jian Sun. Cascaded hand

pose regression. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 824–832, 2015.

[11] Jonathan Tompson, Murphy Stein, Yann Lecun, and Ken Perlin. Real-time continu-

ous pose recovery of human hands using convolutional networks. ACM Transactions

on Graphics (ToG), 33(5):1–10, 2014.

[12] Toby Sharp, Cem Keskin, Duncan Robertson, Jonathan Taylor, Jamie Shotton,

David Kim, Christoph Rhemann, Ido Leichter, Alon Vinnikov, Yichen Wei, et al.

Accurate, robust, and flexible real-time hand tracking. In Proceedings of the 33rd

Annual ACM Conference on Human Factors in Computing Systems, pages 3633–

3642, 2015.

[13] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and

Michael J Black. Smpl: A skinned multi-person linear model. ACM transactions on

graphics (TOG), 34(6):1–16, 2015.

[14] Chengde Wan, Thomas Probst, Luc Van Gool, and Angela Yao. Dual grid net: hand

mesh vertex regression from single depth maps. arXiv preprint arXiv:1907.10695,

2019.

[15] Jun Liu, Henghui Ding, Amir Shahroudy, Ling-Yu Duan, Xudong Jiang, Gang Wang,

and Alex Kot Chichung. Feature boosting network for 3D pose estimation. IEEE

transactions on pattern analysis and machine intelligence, 2019.

[16] Liuhao Ge, Hui Liang, Junsong Yuan, and Daniel Thalmann. Real-time 3D hand

pose estimation with 3D convolutional neural networks. IEEE transactions on pat-

tern analysis and machine intelligence, 41(4):956–970, 2018.

56

[17] Jameel Malik, Ibrahim Abdelaziz, Ahmed Elhayek, Soshi Shimada, Sk Aziz Ali,

Vladislav Golyanik, Christian Theobalt, and Didier Stricker. Handvoxnet: Deep

voxel-based network for 3D hand shape and pose estimation from a single depth

map. arXiv preprint arXiv:2004.01588, 2020.

[18] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive grow-

ing of GANs for improved quality, stability, and variation. arXiv preprint

arXiv:1710.10196, 2017.

[19] Yiming He, Wei Hu, Siyuan Yang, Xiaochao Qu, Pengfei Wan, and Zongming Guo.

Graphposegan: 3D hand pose estimation from a monocular RGB image via adver-

sarial learning on graphs. arXiv preprint arXiv:1912.01875, 2019.

[20] Markus Oberweger, Paul Wohlhart, and Vincent Lepetit. Generalized feedback loop

for joint hand-object pose estimation. IEEE transactions on pattern analysis and

machine intelligence, 2019.

[21] Liangjian Chen, Shih-Yao Lin, Yusheng Xie, Yen-Yu Lin, Wei Fan, and Xiaohui Xie.

Dggan: Depth-image guided generative adversarial networks fordisentangling RGB

and depth images in 3D hand pose estimation. In The IEEE Winter Conference on

Applications of Computer Vision, pages 411–419, 2020.

[22] Danhang Tang, Qi Ye, Shanxin Yuan, Jonathan Taylor, Pushmeet Kohli, Cem Ke-

skin, Tae-Kyun Kim, and Jamie Shotton. Opening the black box: Hierarchical sam-

pling optimization for hand pose estimation. IEEE transactions on pattern analysis

and machine intelligence, 41(9):2161–2175, 2018.

[23] Cheol-hwan Yoo, Seung-wook Kim, Seo-won Ji, Yong-goo Shin, and Sung-jea Ko.

Capturing hand articulations using recurrent neural network for 3D hand pose esti-

mation. arXiv preprint arXiv:1911.07424, 2019.

[24] Shile Li and Dongheui Lee. Point-to-pose voting based hand pose estimation using

residual permutation equivariant layer. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 11927–11936, 2019.

[25] Alan Yuille and Daniel Kersten. Vision as Bayesian inference: analysis by synthesis?

Trends in cognitive sciences, 10(7):301–308, 2006.

[26] Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim. Pushing the envelope for

RGB-based dense 3D hand pose estimation via neural rendering. In Proceedings

57

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1067–

1076, 2019.

[27] David T Hoffmann, Dimitrios Tzionas, Micheal J Black, and Siyu Tang. Learning

to train with synthetic humans. arXiv preprint arXiv:1908.00967, 2019.

[28] Guillaume Devineau, Fabien Moutarde, Wang Xi, and Jie Yang. Deep learning

for hand gesture recognition on skeletal data. In 2018 13th IEEE International

Conference on Automatic Face & Gesture Recognition (FG 2018), pages 106–113.

IEEE, 2018.

[29] Xuan Son Nguyen, Luc Brun, Olivier Lezoray, and Sébastien Bougleux. Skeleton-

based hand gesture recognition by learning SPD matrices with neural networks. In

2019 14th IEEE International Conference on Automatic Face & Gesture Recognition

(FG 2019), pages 1–5. IEEE, 2019.

[30] Yiwei Wang, Cheolkon Jung, Inyong Yun, and Joongkyu Kim. Spfemd: Super-pixel

based finger earth mover’s distance for hand gesture recognition. In ICASSP 2019-

2019 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 4085–4089. IEEE, 2019.

[31] Xiong Zhang, Qiang Li, Wenbo Zhang, and Wen Zheng. End-to-end hand mesh

recovery from a monocular RGB image. arXiv preprint arXiv:1902.09305, 2019.

[32] Martin Fêdor. Application of inverse kinematics for skeleton manipulation in real-

time. In Proceedings of the 19th spring conference on Computer graphics, pages

203–212, 2003.

[33] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions

on knowledge and data engineering, 22(10):1345–1359, 2009.

58

