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Abstract

Recommender Systems (RSs) are software tools and techniques that are used to produce rec-

ommendations for the users of a certain application in such a way that the recommendations

generated are likely to be liked by the users. Popular examples of applications that use RSs

include Amazon, Netflix, Spotify, and Youtube. To support the wide-spread use of RSs, a

variety of open-source tool-kits have been developed. While research studies show that dif-

ferent algorithms work well for different recommendation scenarios and with varying data-set

characteristics, it has also been pointed out that the same recommendation algorithms imple-

mented from different tool-kits can produce significantly different results. Recommendation

algorithms typically have hyper-parameters that can be used to change their behaviour. Tun-

ing the hyper-parameters according to the recommendation scenario can effectively improve

the performance of any such algorithm. Even so, RS tool-kits generally lack hyper-parameter

optimization (HPO) methods.

On the other hand, the AutoML community has proposed many solutions to solve the problem

of Combined Algorithm Selection and Hyper-parameter optimization. AutoML tools like Auto-

sklearn [1] often use advanced HPO methods like Bayesian optimization to find the "best"

algorithm and hyper-parameters for a machine learning problem. Inspired by the AutoML

community, Auto-CaseRec, a novel Automated Recommender System framework is presented.

Given a data set, Auto-CaseRec allows the usage of advanced HPO techniques to produce

the "best" combination of algorithm and hyper-parameters. Experimentation with 5 tests

each across 2 data sets in 2 recommendation scenarios: Item Recommendation and Rating

Prediction show that Auto-CaseRec always outperforms the individual best recommendation

algorithm with unmodified hyper-parameters. We hope that Auto-CaseRec will become a

standard tool in the RS community.
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1 Introduction

1.1 Background

Recommender Systems (RSs) are software tools and techniques that suggest items to users

that are likely to be of interest to them [5]. "Item" is the general term used to denote what

an RS recommends to users. Recommender Systems play an important role in many appli-

cations like popular e-commerce websites such as Amazon and eBay, social media networks

such as Facebook and LinkedIn, video streaming platforms such as Netflix and Youtube, mu-

sic applications such as Spotify, Last.fm and Apple Music and even tourism businesses like

TripAdvisor. In online environments like these, presenting the user with a list of recommen-

dations that agrees with his/her preferences greatly helps in reducing the effort associated

with choosing amongst the myriad of products and items that are offered and enhances user

experience.

The algorithms used by RSs typically use feedback about user preferences (explicit or im-

plicit) regarding items to generate recommendations. RS algorithms can be divided into

non-personalized and personalized approaches, and the latter can be broadly divided into

Content-Based Filtering (CBF) and Collaborative Filtering (CF) algorithms [6]. There exist

several software tool-kits that provide functionality for implementing and evaluating RS algo-

rithms on arbitrary data sets. Common implementations of a wide variety of RS algorithms

(especially CF-based) inherently involve modifiable variables called hyper-parameters that

can be used to change or tune their behaviour.

Different recommendation algorithms have been found to perform differently in different rec-

ommendation scenarios, with different user characteristics and even with different data set
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characteristics [7, 8, 9, 10, 11]. Even in the same recommendation scenario, different al-

gorithms tend to perform differently in different applications (Example, news websites [12]).

Additionally, the same algorithms implemented from different RS tool-kits have also been

found to perform differently on the same data set [13]. Therefore, algorithm selection is a

major challenge in the RS community. Additionally, studies have shown that tuning hyper-

parameter values of CF algorithms using Hyper-Parameter Optimization (HPO) approaches

can increase their performance on RS data sets [14, 15, 16, 17, 18]. Therefore, it can be

said that the quality of the two tasks: algorithm selection and hyper-parameter tuning

becomes a major factor in the performance of an RS algorithm for a given recommendation

environment.

We combine the two tasks into one problem formulation: Combined Algorithm Selection

and Hyper-parameter optimization (CASH) that involves automatically and simultaneously

choosing a recommendation algorithm and setting its hyper-parameters to increase empirical

performance. Despite the practical importance of solving the CASH problem, we are surprised

to find just one open-source tool in the research literature, Lib-rec Auto [19, 20], that tackles

it. Lib-rec Auto uses an exhaustive search method to evaluate all algorithms and hyper-

parameters in a user given search space, but this can be inefficient when dealing with large

hierarchical search spaces [4].

The CASH problem was first formulated in the research paper of one of the first advanced

automated machine learning (AutoML) systems, Auto-WEKA[21, 22]. The AutoML commu-

nity has been successful in developing many open-source tools to tackle the CASH problem

[1, 21, 22, 23, 24, 25, 26, 27, 28]. Most of these AutoML tools augment existing machine-

learning tools like scikit-learn [29] and WEKA [30] with advanced HPO techniques like Bayesian

Optimization[31, 32], Hierarchical Task Networks [27] and evolutionary algorithms [24, 28] to

tackle the CASH problem.

We focus our research on solving the CASH problem in the RS domain, with RS algorithms

and their associated hyper-parameters. In the following sections of this introductory chapter,

we formally define the CASH problem for the RS environment, state our research objectives,

and present an overview of the structure of this report.
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1.2 The Combined Algorithm Selection and Hyper-

parameter Optimization (CASH) Problem

The CASH problem was formally defined by the authors of the AutoML framework Auto-

WEKA in their introductory research paper [21] as the problem of automatically and simulta-

neously choosing a machine learning algorithm and its associated hyper-parameter values to

increase empirical performance. The term has caught on and has been used in other research

works also [1, 22, 25, 33], while another equivalent name is Full Model Selection (FMS). For

our research purposes, we will use the CASH terminology.

We present a formulation of the CASH problem for the Recommender Systems environ-

ment, adapting it from the Auto-WEKA research paper [21]. We start with a Recom-

mender System dataset D = {(user1, item1, feedback1), · · · , (usern, itemn, feedbackn)} that

is split into K cross-validation folds of the form fold (i) = {D(i)
train,D

(i)
test} where K ≥ 1. Let

A = {A(1), · · · ,A(m)} be the set of recommendation algorithms and let the hyper-parameters

of each algorithm A(j) be λ ∈ Λ(j). The CASH problem refers to finding an optimal algorithm

configuration A
(j)
λ , i.e., algorithm A(j) instantiated with hyper-parameters λ ∈ Λ(j), that max-

imizes the cross-validation performance or equivalently, minimizes the cross-validation loss.

Thus, the CASH problem can be written as:

A∗λ∗A∗λ∗A∗λ∗ ∈ argmin
A(j)∈A,λ∈Λ(j)

1

K

K∑
i=1

L(A
(j)
λ ,D

(i)
train,D

(i)
test),

where, The L(A
(j)
λ ,D

(i)
train,D

(i)
test) is the predictive error experienced on D

(i)
test when algorithm

A(j) instantiated with hyper-parameters λ is trained on D
(i)
train .The results A∗A∗A∗ and λ∗λ∗λ∗ are

the optimal algorithm and associated values of hyper-parameters that produce the minimum

mean loss across the K folds of the data. We note that this problem can be re-formulated

as a single combined hierarchical hyper-parameter optimization problem with a search space

Λ = Λ(1)∪· · ·Λ(m)∪{λr}, where {λr} is a new root-level hyper-parameter that represents the

choice between recommendation algorithms in A. The hyper-parameters in each sub-space

Λ(j) are made conditional on {λr} being instantiated to A(j).

In the following section, we outline the specific research objective undertaken in this research
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work to develop a solution for the CASH problem in a Recommender Systems setting.

1.3 Research Objectives

The research objective for this work was to develop a novel open-source automated Rec-

ommender System (Auto-RS) tool, i.e., a tool that can solve the CASH problem stated in

Section 1.2 for any arbitrary Recommender System data set in a fully automated manner. To

fulfill the stated research objective, the following tasks were undertaken in this course of this

research.

• Task 1: To identify existing open-source RS tool-kits and analyse them in terms of the

diversity of recommendation algorithms, diversity of evaluation methods, ease of use,

and flexibility of operation.

• Task 2: To identify and perform an experimental analysis of existing open-source

Hyper-Parameter Optimization (HPO) packages that provide advanced HPO methods

like Bayesian Optimization and allow for the optimization of arbitrary functions, while

also observing the flexibility for defining search spaces, parallelization capabilities and

ease of use.

• Task 3: To experimentally analyse the feasibility of an Auto-RS tool by using a chosen

HPO library to optimize the hyper-parameters of individual recommendation algorithms

from a chosen RS tool-kit.

• Task 4: To construct an Auto-RS tool using functionality from the chosen HPO library

and RS tool-kit such that it performs data processing (splitting into cross-validation

folds) and optimization of supported evaluation metrics over a hierarchical search space

of recommendation algorithms and their associated hyper-parameters in an automated

manner with minimal user intervention.

• Task 5: To experimentally verify the benefits of the Auto-RS tool by evaluating it on

gold-standard RS data sets.

We note that in this report, we focus on the development and evaluation of the end product,

i.e., the Auto-CaseRec tool that resulted in the fulfillment of the objective stated above
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and choose to omit the intricacies of the experimentation involved in Tasks 1 -3. We instead

provide a comprehensive literature survey on existing RS tool-kits and HPO packages and also

present an analysis of our final choices for the same, later in our report.

Our ambitions for this research and the Auto-CaseRec tool are three-fold:

1. To reduce the human effort necessary for applying Recommender System techniques.

We want to make it easier for both researchers and non-expert users of Recommender

Systems to apply and evaluate RS algorithms in a robust manner.

2. To improve the performance of RS algorithms for any given task by producing tailored

solutions.

3. To improve the fairness and reproducibility of Recommender Systems research. An

Auto-RS tool for automatically tuning RS methods would facilitate fair comparisons

between different methods and also help in producing robust baselines for evaluating

novel recommendation methods.

1.4 Structure of the Thesis

The thesis is organised as follows.

Section 2 provides a literature review of the related work regarding the CASH problem. This

includes research work in the Recommender Systems research community related to algo-

rithm selection and hyper-parameter optimization, a survey of the various tools developed in

the AutoML community to solve the CASH problem, a survey of existing Hyper-Parameter

Optimization libraries and Recommender System tool-kits.

Section 3 introduces the Auto-CaseRec tool and provides in-depth information about the

various components of the tool. These include the recommendation algorithm training and

evaluation, the CASH optimization process, the search space used and finally, example usage

of Auto-CaseRec’s Python interface.

Section 4 provides information about the experimentation conducted to evaluate the Auto-

CaseRec library. It starts with details about the experimental setup, the data set used, the
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baselines used and the hardware and software used in the experiments. After that, the results

of the experiments, a detailed analysis and summary is provided.

Section 5 provides a conclusion to the research work presented in this report. Starting with

a summary, we talk about the various challenges encountered during the execution of this

research work, followed by the limitations of the research, and finally, the future work that is

planned for the further development of the Auto-CaseRec library.
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2 Related Work

2.1 Efforts in the Recommender Systems community

An investigation into the literature related to the CASH problem in the Recommender Systems

(RS) community revealed that the CASH problem had not been directly formulated in the

research work. Further, only one tool, Lib-rec Auto [19, 20] was found that automates

experimentation of RS algorithms with a user-fed search space of algorithms and hyper-

parameters. In the original research paper, there is no mention of minimization of the loss or

maximization of the performance of the RS algorithms and instead, the focus is on automating

RS experiments. Thus, Lib-rec Auto is not eligible to be called a direct solution to the CASH

problem, although, it can be a useful tool in finding out good algorithms and hyper-parameter

configurations. Lib-rec Auto uses an exhaustive experimentation methodology in which an

experiment involving algorithm training and evaluation is conducted for each algorithm and

hyper-parameter combination in the user-given search space.

On the other hand, research work related to the two sub-problems inherent in the CASH

problem: algorithm selection and hyper-parameter tuning, was found. A survey of this research

work is presented in the following sub-sections.

2.1.1 Algorithm Selection in Recommender Systems

A common approach in the literature for performing Algorithm Selection is meta-learning.

Meta-learning seeks to induce a predictive model by associating past performances of al-

gorithms to data set features that are known as meta-features. Studies have shown that

the performance of Collaborative Filtering (CF) algorithms on gold-standard data sets like
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MovieLens1 and Last.fm [34] is correlated to features of the data sets [35, 36].

Cunha et. al [37] use classification algorithms to learn correlations between meta-features

of 32 data sets and the best-performing CF algorithm for each. They demonstrate that CF

algorithms predicted by their meta-learning approach significantly outperform the baseline

majority voting algorithm on both rating prediction and item recommendation tasks. Cunha

et. al [38] have also proposed a label-ranking approach that predicts a ranked list of CF

algorithms instead of just predicting the best performing algorithm. They show this meta-

learning approach to outperform the previously mentioned classification approach. The same

authors propose a unique approach called CF4CF [39] in which they use a CF algorithm to

predict ranked lists of CF algorithms and show this approach to outperform the previous label-

ranking approach. Researchers have also proposed meta-learning algorithms that operate at

granular levels like per-user or per-instance. For the MovieLens 10M2 data set, Ekstrand

and Riedl [9] show that different algorithms fail on different parts of the data set and that

different algorithms perform well for different users. They also test a meta-learning approach

in which they use a linear classifier and a meta-feature to choose between two CF algorithms

for each user but this approach failed to beat the overall best algorithm for the data set. At

a more granular level, Collins et. al [12] proposed a novel meta-learning approach that seeks

to find the best algorithm for each instance in a data set. Their approach is not able to

outperform the single best algorithm for the two evaluated data sets (meta-learner RMSEs:

(0.973, 0.908), SVD++ RMSEs: (0.942, 0.887)).

While the literature shows that certain meta-features of RS data sets can be effectively used to

design meta-learners for algorithm selection, meta-learning approaches require significant hu-

man and computational effort to design and extract meta-features and evaluate RS algorithms

on an extensive library of data sets. For example, the meta-learning approaches proposed by

Cunha et. al [37, 38, 39] use meta-features and performance results from 32-38 data sets to

train their meta-learners.
1http://grouplens.org/node/73
2http://grouplens.org/node/73
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2.1.2 hyper-parameter Tuning in Recommender Systems

In this sub-section, we examine the research literature related to hyper-parameter Tuning of

RS algorithms.

Matuszyk et. al [15] conducted an experimental study in which the effects of tuning the hyper-

parameters of a matrix factorization algorithm called BRISMF [40] was tested with 9 different

hyper-parameter Optimization (HPO) algorithms, on the algorithm’s performance on 4 differ-

ent RS data sets: MovieLens 1M and 100k, and samples of 2000 users each from the Netflix

and Flixster data sets. The study shows that Nelder-Mead [41], Simulated Annealing [42],

Sequential Model-based Algorithm Configuration (SMAC) [32], Random Search [4], Genetic

algorithm [43] and Particle Swarm Optimization [44] perform similarly, with Nelder-Mead and

Simulated Annealing being marginally better. They recommend not using the Random Walk,

Greedy Search, and Grid Search algorithms as they consistently perform worse and in the case

of Grid Search, much worse than the other algorithms. Galuzzi et. al [16] use a Gaussian Pro-

cess (GP) based Bayesian Optimization (BO) algorithm to find the optimal hyper-parameters

of a Matrix Factorization algorithm for a rating prediction task on the MovieLens 100K data

set. They experiment with two acquisition functions for the BO algorithm: Expected Im-

provement [45] and Thomson Sampling [46]. It is shown that both BO strategies are able to

find near-optimal values that minimize the Root Mean-Squared Error (RMSE) within 30 eval-

uations. Dewancker et. al [17] use the Bayesian Optimization algorithm of the SigOpt tool

[47] to tune the hyper-parameters of a CF algorithm called Alternating Least Squares (ALS).

The algorithm is evaluated in a rating prediction task on the MovieLens data set (22 million

ratings). The hyper-parameters found by Bayesian Optimization show 40% improvement in

RMSE from the default hyper-parameters of ALS and also outperform the hyper-parameters

found by Random Search. Another study [18] shows that tuning the regularization parameter

of the Matrix Factorization algorithm increases the RMSE experienced on the MovieLens 100k

data set by 6.43% from the RMSE obtained by using default parameters.

An innovative application of HPO for Recommender Systems was shown by Chan et. al [14].

They apply Random Search to tune the ALS-WR [48] and Stochastic Gradient Descent (SGD)

[49] RS algorithms and evaluate them on an anonymized data-set of a UK retail business that

contains 2 years of purchase records. The algorithms are trained on the 1st year data and then
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month-wise new data is introduced. They evaluate three approaches with the addition of new

data from each month of the 2nd year to the original data set: no re-training and no HPO, re-

training and no HPO, re-training and HPO. Separate experiments are conducted for data from

offline stores and online stores. The comparison of the RMSE values and MAP@20 values for

the rating prediction and item recommendation tasks respectively shows that re-training the

algorithms with the addition of new data each month as well as tuning the hyper-parameters

with Random Search every fourth month outperforms the other two approaches throughout

the 2nd year in both online and offline settings, with the other approaches winning in very

few circumstances. This research work demonstrates that regular application of HPO to tune

RS algorithms can continuously increase their recommendation quality as opposed to static

hyper-parameters in the dynamic environments where data is continuously collected. Such

dynamic environments are easily found in applications that use Recommender Systems.

2.2 CASH Problem in AutoML

The CASH problem defined in Section ?? has been tackled successfully in the automated

machine learning (AutoML) domain by a variety of open-source AutoML softwares [1, 21,

22, 23, 24, 25, 26, 27, 28, 50, 51]. Given a data set, AutoML softwares automatically find

an appropriate machine learning pipeline and use that to make predictions. The Application

Programming Interfaces(APIs) provided by these softwares enable users to apply machine

learning without prior knowledge about the algorithms and hyper-parameters. A machine

learning pipeline consists of a sequence of processes required to perform a machine learn-

ing task (e.g., classification). Finding appropriate pipelines consists of choosing appropriate

machine learning and sometimes data processing algorithms, and choosing hyper-parameter

values for the algorithms.

Different AutoML softwares employ different Hyper-Paramter Optimization (HPO) approaches

to find the "best" choices for the given data set. A popular and promising approach is

Bayesian Optimization [52, 53], specifically, the Sequential Model-Based Optimization frame-

work (SMBO) [32]. Two popular AutoML tools, Auto-WEKA [21, 22] and Auto-sklearn [1]

use the Sequential Model-based Algorithm Configuration (SMAC) [32] framework, a random-

forest-based variant of SMBO to tune machine learning pipelines. Auto-WEKA and Auto-

sklearn are based on popular machine-learning tools: the WEKA workbench [30, 54] and the
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scikit-learn Python library [29] respectively. Auto-sklearn brings two new innovations: meta-

learning to identify promising pipelines from experiences with past data sets and use them

to warm start the Bayesian Optimization, and ensemble selection [55] to boost performance

by combining pipelines found by Bayesian Optimization into an ensemble. Hyperopt-sklearn

[25] is also based on the scikit-learn library but uses Hyperopt[56], an existing open-source

Python library, for describing search-spaces and implementing HPO algorithms. Hyperopt-

sklearn supports all of Hyperopt’s [56] HPO algorithms: tree Parzen Estimators (TPE) [31],

another tree-based variant of SMBO, Random Search [4], Simulated Annealing [42] and a

variant of TPE called Adaptive-TPE [57].

Tree-based methods such as SMAC and TPE have been shown to perform better than other

Bayesian Optimization variants as well as Random Search in large categorical and conditional

search spaces such as the ones involved in solving the CASH problem [31, 58, 59]. Additionally,

among tree-based methods, Thornton et. al [21] found SMAC to outperform TPE and among

model-free methods, Random Search has been shown to be much more efficient than Grid

Search in problems where some hyper-parameters are bound to be more important than the

others [4].

Another promising approach is that of MLPlan [27], which uses Hierarchical Task Networks,

an AI planning technique to build pipelines and supports machine learning algorithms from

both the WEKA and scikit-learn libraries. In [27], an evaluation across 20 machine learning

data sets, ML-Plan, configured with WEKA and scikit-learn algorithms, was compared with

Auto-WEKA and scikit-learn-based tools, Auto-sklearn and TPOT respectively. ML-Plan was

found to outperform Auto-WEKA in 17/20 of the data sets, with significant improvements in

at least 12 cases, and to be competitive with Auto-sklearn and TPOT, outperforming them

in some cases. Another interesting approach is that of genetic programming (GP) and is

applied by TPOT [24] and RECIPE [28]. In contrast to previously mentioned approaches,

TPOT and RECIPE allow for an arbitrary number of data preprocessing algorithms in the

pipeline and are, therefore, more flexible. TPOT is also based on the sci-kit learn package.

A drawback of TPOT is that it can create invalid pipelines during the search which leads to

wastage of computational resources. RECIPE’s grammar-based GP approach prevents it from

constructing invalid pipelines [28]. Finally, among simpler approaches, the AutoML module

of the H2O library [23] uses Randomized Grid Search, i.e. Grid Search with random sampling,
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to find pipelines.

2.3 An Overview of Open-Source HPO tools

Quite a few open-source software tools that provide HPO algorithms for the minimization of

arbitrary functions have been developed in the form of Python. [32, 56, 60, 61, 62, 63, 64, 65,

66, 67, 68, 69]. The majority of these tools implement some form of Bayesian optimization as

it is the most widely used approach for minimization of expensive black-box functions. SMAC

v3 [69] provides an implementation of SMAC [32]. Hyperopt is another popular library that

provides the TPE algorithm [31] along with Random Search [4], Simulated Annealing [42] and

Adaptive-TPE [57]. Hyperopt is also the workhorse behind the AutoML framework Hyperopt-

sklearn [25]. The HpBandSter tool provides a bandit-based algorithm called Hyperband [70]

along with Random Search and a combination of Hyperband and Bayesian optimization called

BOHB [61]. The MOE [62], Spearmint [64], GPyOpt [68] and the Bayesian Optimization [66]

packages provide Gaussian Process (GP) based Bayesian optimization. The scikit-optimize

package [63] provides GP-based as well as random-forest-based Bayesian optimization. Optuna

[65] is a relatively new framework that provides multiple optimization strategies that include

TPE (from Hyperopt), Random Search, Grid Search as well as CMA-ES [71], an evolutionary

algorithm. Additionally, Optuna implements a pruning algorithm that terminates unpromising

configurations early to save computation time. Amongst these tools, SMAC v3, Hyperopt,

Spearmint, Optuna, scikit-optimize and GPyOpt also provide functionality for parallelizing

optimization processes.

It is observed that most of these tools rely on some form of Bayesian Optimization for this

functionality. This supports the claim that Bayesian Optimization is widely adopted for the

optimization of expensive black-box functions.
2https://github.com/automl/HpBandSter
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2.4 An Survey of Open-Source Recommender System

tool-kits

In this sub-section, a survey of existing open-source RS tool-kits is provided. A variety of

tool-kits have been developed by the RS community in programming languages like C#,

Python, and Java. The different RS tool-kits have been assessed in terms of the following

functionality: data processing tools for RS data-sets, diversity of RS algorithms, diversity of

evaluation methods, and ease of use. The appropriate choice of an RS tool-kit was crucial for

this research work, as the chosen tool-kit has been directly used to provide RS functionality

for the Auto-CaseRec tool.

Popular open-source RS tool-kits are Mahout3, LensKit [72], LibRec [73], MyMediaLite4,

EasyRec5, Case Recommender[2], Surprise[74], Spotlight[75], LightFM[76], Crab6 and recom-

menderlab7. Mahout is offered by the Apache Software Foundation and is built on Apache

Spark. It only offers memory-based CF algorithms for rating prediction. EasyRec is a Java

based library that provides CF techniques for rating prediction but is not being actively devel-

oped (Last update in 2013). MyMediaLite is a popular C library and offers many CF as well as

Content-based techniques, along with appropriate evaluation metrics for both rating predic-

tion and item recommendation. The last update to MyMediaLite was in 2015. LensKit was

first released as a Java library but a Python successor has now been released. LensKit Python

(LKPY) provides various CF algorithms for both rating prediction and item recommendation

in addition to cross-validation procedures and various evaluation metrics. Crab is another

Python library that provides CF algorithms for rating prediction and item recommendation

but was last updated in 2012. LibRec is a Java library that provides implementations of a

huge variety of recommendation algorithms for both the rating prediction and item recommen-

dation scenarios. Additionally, it also provides various evaluation metrics and cross-validation

strategies. LibRec’s set of RS algorithms is by far the largest amongst existing RS tool-kits and

contains many state-of-the-art algorithms. LightFM is a Python library consisting of various

rating prediction as well as item prediction algorithms but only provides a basic train-test split
3https://mahout.apache.org/
4http://www.mymedialite.net/
5http://easyrec.org/
6https://github.com/muricoca/crab
7https://github.com/mhahsler/recommenderlab
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function with no cross-validation. Recommenderlab is an R package and provides various CF

algorithms for rating prediction and item recommendation along with cross-validation proto-

cols. Spotlight is an actively-developed Python library based on PyTorch and provides implicit

and explicit feedback matrix factorization along with Sequence Models. Spotlight contains

limited functionality for data processing and no cross-validation protocols like K-Fold. Also,

Spotlight uses custom data structures to manage data that make it less flexible. Surprise is

a popular Python library that provides CF algorithms for the rating prediction scenario but

does not support implicit feedback or content-based algorithms. It also provides Grid Search

for hyper-parameter optimization, a unique feature amongst RS tool-kits. Surprise documen-

tation mentions that the library will not receive any updates after September 2019 except

bug fixes. Case Recommender is another Python library that provides various rating predic-

tion and item recommendation algorithms and handles explicit and implicit feedback, provides

various evaluation metrics as well as robust cross-validation strategies. The algorithms im-

plemented by Case Recommender include various CF algorithms, content-based algorithms,

and clustering-based algorithms. Additionally, Case Recommender allows the construction of

ensemble techniques by combining various algorithms.
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3 Auto-CaseRec

3.1 Introduction

To solve the CASH stated in Section 1.2, the Auto-CaseRec1 Python library was developed.

The current version of Auto-CaseRec provides an automated search process that involves op-

timization over a hierarchical search-space consisting of various Recommender System (RS)

algorithms and their associated hyper-parameters. Using the Auto-CaseRec library, practition-

ers can search for the "best" recommendation algorithm and its associated hyper-parameters

for any arbitrary recommendation data set and recommendation scenario such as Rating Pre-

diction and Item Recommendation with a very few lines of Python code (See Example Usage

in Section 3.7). Auto-CaseRec provides users with the flexibility to modify the optimization

process as well as the recommendation algorithm training and evaluation process through a

set of simple parameters.

Auto-CaseRec is essentially a wrapper around the Case Recommender [2] Python library, hence

the name and augments it with Hyper-Parameter Optimization (HPO) functionality derived

from another Python library, Hyperopt [56], to provide the automated and combined algorithm

selection and hyper-parameter optimization of RS algorithms provided by Case Recommender.

Hence, the name Auto-CaseRec. An introduction to the Case Recommender and Hyperopt

library is given.
1https://github.com/srijang97/Auto-CaseRec
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Case Recommender library

Case Recommender [2] is an open-source Python-based Recommender System toolkit and

is available on the online Python Package Index (PyPI) 2 repository for use under the MIT

license. Case Recommender provides various recommendation algorithms, data processing

(includes 2 cross-validation strategies), and performance evaluation functions for the con-

struction and evaluation of Recommender Systems. In addition to these, special features

provided by the Case Recommender library include a framework to implement ensemble3 al-

gorithms and statistical tests such as the T-Test and Wilcoxon test. These features make

Case Recommender an all-round package for practitioners that want to develop and robustly

evaluate Recommender Systems. Auto-CaseRec uses Case Recommender’s data processing

functionality, RS algorithms, and evaluation functions.

Hyperopt library

Hyperopt [56] is a Python library that provides a framework for carrying out hyper-parameter

optimization of arbitrary functions. To implement an optimization engine using Hyperopt, the

following components need to be described.

1. A search space: A Python dictionary that describes the distributions of the various

hyper-parameters that have to be used in the optimization process.

2. An objective function: The function whose value will be minimized by the optimization

process. Hyperopt requires the objective function to be a Python function that accepts

at least one hyper-parameter and returns at least a single value of the loss.

3. A trials database [optional]: An optional database to store the results generated by the

objective function.

4. An optimization algorithm: The optimization algorithm that will be used to generate

successive algorithm configurations in the optimization process.

In addition to this, Hyperopt also provides functionality for parallelizing the search process,

i.e., to evaluate multiple configurations simultaneously and thereby reduce the computation
2https://pypi.org
3Ensemble methods are not included in the current version of the library, Case Recommender 1.1.0, but

are planned to be included in future releases.

16

https://pypi.org


time. Auto-CaseRec uses Hyperopt’s optimization framework to tackle the CASH problem for

RS algorithms.

The various features of the Hyperopt and Case Recommender library will be presented in

detail alongside Auto-CaseRec’s functionality. In the following sections of this Chapter, first,

an introduction to the different components of Auto-CaseRec is given followed by the de-

tailed working of the different components, and finally, example usage of the Auto-CaseRec

library.

3.2 Components of Auto-CaseRec

This section gives an overview of the functioning of the Auto-CaseRec library. Auto-CaseRec’s

workflow has been shown in Figure 3.1.

Figure 3.1: Workflow of Auto-CaseRec

Please note that in the subsequent matter of the report, the phrase ’an algorithm configura-

tion’ will be used as a substitute for writing ’an algorithm and its associated hyper-parameters’.

To explain the working of Auto-CaseRec, it’s workflow is divided into the following two com-

ponents.
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1. Data Processing: This component is responsible for splitting the recommendation data

set into training and testing folds according to the cross-validation strategy dictated by

the user.

2. Optimization Engine: The optimization engine is responsible for successively sampling

a new algorithm configuration from the search space according to the optimization

strategy, evaluating the objective function using the sampled configuration and recording

the error rate, i.e., the loss until the maximum number of evaluations is reached. Finally,

the algorithm configuration that produced the best loss value is returned to the user.

The optimization engine can be further divided into the following components.

(a) Search Space: The search space is a hierarchical space as described in the CASH

problem (Section 1.2), with recommendation algorithms at the root-level and their

associated hyper-parameters domains as their children.

(b) Objective function: The objective function is responsible for generating a loss

value for the algorithm configuration provided by the optimization algorithm. This

involves training the recommendation algorithm on the training data and evaluating

its predictions on the test data.

(c) Optimization Algorithm: The optimization algorithm is responsible for generating

new algorithm configurations. The generation strategy may or may not be based

on the loss values encountered for previous configurations.

Now, the working of Auto-CaseRec is presented formally. Starting with a recommender system

dataset D, Auto-CaseRec creates K cross-validation folds of the form fold (i) = {D(i)
train,D

(i)
test}

where K ≥ 1 and is specified by the user. Let A = {A(1), · · · ,A(1)} be the set of recommen-

dation algorithms and let the hyper-parameters of each algorithm A(j) be λ ∈ Λ(j). Finally,

let L(A
(j)
λ ,D

(i)
train,D

(i)
test) be the loss experienced on D

(i)
test when algorithm A is trained on D

(i)
train

with parameters λ. Auto-CaseRec’s optimization process aims to compute

A∗λ∗A∗λ∗A∗λ∗ ∈ argmin
A(j)∈A,λ∈Λ(j)

1

K

K∑
i=1

L(A
(j)
λ ,D

(i)
train,D

(i)
test)

The results A∗A∗A∗ and λ∗λ∗λ∗ are the recommendation algorithm and associated values of hyper-
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parameters that produce the minimum mean loss across the K folds of the data within the

maximum number of evaluations allowed.

In the following sub-sections, the Data Processing component and the various components of

Auto-CaseRec’s optimization engine are presented in detail in separate sections.

3.3 Data Processing

The data processing component of Auto-CaseRec involves reading the recommendation data

set supplied by the user and splitting it into training and testing sets.

Auto-CaseRec implements Case Recommender’s data processing functions and cross-validation

strategies to divide recommendation data sets into training and testing sets. Case Recom-

mender supports files with delimiter-separated values. Such files contain data in a two-

dimensional array, where, each row is a data record and the columns are fields. Each field

value is separated by a delimiter, for example, comma (“,”) is used as the delimiter for CSV

(comma-separated value) files. Case Recommender accepts recommendation data sets that

contain records in the form of user-item-feedback triplets. A recommendation data set D

can be represented as a matrix Dp×3Dp×3Dp×3 with the row-vector D(i) = [useri , itemi , feedbacki ]. The

three values useri , itemi and feedbacki correspond to the user-ID, item-ID and feedback value

at row i of the dataset. Each user may be associated with one or more items and each item

may be associated with one or more users.

Case Recommender provides two cross-validation strategies to split the data into training and

test sets.

1. Shuffle Split: A cross-validation strategy in which a fixed number of training and testing

set folds are generated, where for each fold, the data points are allocated randomly to

the train and test sets. The testing sets may or may not be mutually disjoint. The

training and testing set sizes are specified by the user beforehand.

2. K-Fold Cross Validation: A cross-validation strategy in which the data is divided into K

samples following which K folds of training and testing sets are generated. In each fold,

a different sample is used as the testing set while the other K-1 samples are compiled

into the training set. The number of folds, K, is specified beforehand.
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After the data is read, Auto-CaseRec uses Case Recommender’s cross-validation strategies to

arrange the data into K training and testing sets called folds, where each fold is of the type

fold (i) = {D(i)
train,D

(i)
test}. If a cross-validation strategy is chosen, K > 1, else, K = 1 The

training sets of the different folds are not disjoint, i.e., D(1)
train ∩ · · · ∩ D

(K)
train 6= ∅. The testing

sets are disjoint in case K-Fold Cross Validation is chosen.

The input data is processed and the training and testing files are stored on the local drive,

and the files are imported during the algorithm training process. One reason for this is to

reduce the memory overhead from storing data in program variables. The parameters for the

cross-validation strategies, the input file delimiter, and the local directory path for storing the

different folds can be specified by the user.

The cross-validation functionality provides a robust estimate of algorithm performance by

training and testing the concerned recommendation algorithm on different permutations of

the same data set. This robust evaluation of performance is crucial as a poor evaluation of

the performance of an algorithm will directly propagate a bias to the optimization process as

well, thereby reducing the quality of solutions produced by the optimization algorithm. The

single or multiple data folds created are written to the user’s local drive for further use.

3.4 Objective Function

In mathematical optimization, the function to be maximized or minimized is called the objec-

tive function. Hyperopt requires the objective function to be defined as any Python function

that accepts the algorithm configuration as a parameter and at a minimum, returns a single

value that is the result of computing the function value at the configuration supplied. The

value returned is termed as the loss of the function and it is this loss which is to be minimized

by the optimization process. If needed, the objective function can be designed to return aux-

iliary information that may be of value to the user. For example, a researcher may require

the store of the function computation time, the configuration supplied to the function, etc.

for further analysis. The information returned by the objective function can be stored for

further use in a Trials database object which is passed to the Hyperopt optimization function

beforehand. The Trials object is an in-built class object of Hyperopt that stores information

returned by the objective function in the form of a Python dictionary.
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The objective function implemented in the Auto-CaseRec library accepts a Python dictionary

as a parameter, which contains an algorithm configuration A(j)
λ and returns a Python dictionary

that contains information about the iteration, which is then stored in a Trials object inside

the optimization engine.

Now, the working of Auto-CaseRec’s obejctive function is explained. The objective function

is responsible for computing the loss value for a given algorithm A(j) ∈ A and associated

hyper-parameter values λ ∈ Λ(j)Λ(j)Λ(j). For explanation, we consider the simple case where the

number of folds, K is equal to 1 and fold (1) = {Dtrain,Dtest}. First, The algorithm A(j)

instantiated with parameters λ is trained on the training data set Dtrain. Simply put, training

a recommendation algorithm means learning an approximation f̂ (useri , itemi) of the actual

function f (useri , itemi) = feedbacki , where useri , itemi and feedbacki belong to the ith row-

vector D(i)
train of Dtrain. The actual function f is not known in mathematical form but the data

set D contains known values of f for a subset of user-item pairings. The recommendation

algorithm uses the known function values in Dtrain to find the approximated function f̂ .

After the training process has ended, the function value of f̂ is then computed for each user-

item pair in the testing data set Dtest and the output values are stored as the predictions

ŷ = {f̂ (user1, item1), · · · , f̂ (userq, itemq)}, where q is the number of rows in Dtest . The

ground-truth feedback values yyy for user-item pairs in Dtest are known beforehand. The loss is

computed using a function L(y , ŷ) that is different for different evaluation metrics.

If the user opts to use cross-validation, the recommendation algorithm is trained on all the

K folds and the loss is calculated separately for each fold. The final loss is calculated by

averaging the losses for all the K folds.

loss =
1

K

K∑
i=1

L(yi , ŷi),

where yi and ŷi are the ground-truth feedback values and predicted feedback values for foldi .

The final loss value is returned to the optimization algorithm. There are different evaluation

metrics that can be used in the objective function, depending on whether the recommendation

scenario is that of rating prediction or item recommendation.
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Auto-CaseRec also implements an early-stopping mechanism for the cross-validation process.

If early stopping is selected by the user, Auto-CaseRec prematurely terminates the cross-

validation process after the computation of the loss of the i th fold if the minimum loss value

associated with the first i folds is not less than the best loss experienced in the optimization

process. The value i can also be set by the user, with i ≤ K . The advantage of early-

stopping is the significant reduction in computation time for configurations that do not seem

to be promising based on the evaluation of the first i folds. The limitation is that in the

process of reducing computation time, the robustness of the performance evaluation of the

recommendation algorithm is compromised by only evaluating it on a fraction of the data set

folds. The parameter i is therefore representative of the trade-off between computation time

and robustness of evaluation. For higher values of i , the evaluation is more robust as the

number of folds used for evaluation is higher, while for lower values, the computation time is

reduced by a factor of i
K
.

It is worth mentioning that the quality of predictions ŷ and hence the loss L(y , ŷ) is dependent

on the hyper-parameters λ that the recommendation algorithm A is instantiated with. This

is because the values of the hyper-parameters are used directly in the training process of the

algorithms. Therein is the need to find good hyper-parameter configurations.

Now, the various recommendation algorithms and evaluation functions provided by Case Rec-

ommender that have been used in the Auto-CaseRec library are described below.

3.4.1 Recommendation Algorithms

Case Recommender provides implementations of a variety of recommendation algorithms, for

use in two different recommendation scenarios: Rating Prediction and Item Recommendation.

In the Rating Prediction scenario, the respective recommendation algorithms use explicit feed-

back such as ratings given by the users, to predict unknown ratings. The predicted ratings are

considered estimates of user preferences. In the Item Recommendation scenario, usually, direct

measures of user preferences such as ratings are not available, and implicit feedback such as

user purchase history, view history or item play-counts are used. The Item Recommendation

algorithms assume that the implicit feedback is representative of the user’s preferences and

predict a ranked list of preferred items for each user. The algorithms provided by Case Rec-

ommender including Neighborhood-based algorithms, Matrix Factorization algorithms as well
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Figure 3.2: Recommendation Algorithms in the Case Recommender library [2]

Table 3.1: Recommendation Algorithms in Auto-CaseRec

Algorithm Type Rating Prediction Item Recommendation

ItemKNN Neighborhood-based

UserKNN Neighborhood-based

Matrix Factorization Matrix Factorization

SVD Matrix Factorization

Most-Popular Non-Personalized

Random Recommender Non-Personalized

BPR-MF Matrix Factorization

as clustering-based algorithms. The algorithms provided by the Case Recommender library

are shown in 3.2.

Each algorithm can be implemented using a simple Python statement, that follows a generic

structure, with the addition or removal of a few specialized hyper-parameters that are unique

to each algorithm. Currently, Auto-CaseRec implements only a subset of the total set of

recommendation algorithms in CaseRec, which have been described in Table 3.1.

The algorithms that have not been included require metadata files in addition to the main

recommendation data set containing user feedback for items. Metadata is usually additional

23



information regarding the users or items, for example, in a movie rating scenario, metadata

could describe movie genres and titles. While metadata can potentially enrich configurations,

the Auto-CaseRec library is still in the preliminary experimentation stage which just involves

basic versions of recommendation data sets without any metadata. These algorithms will

surely be included in the future.

3.4.2 Evaluation Functions

Auto-CaseRec implements the evaluation functions for all the different metrics provided by

Case Recommender. The user can choose any of the metrics as the minimization objective

of Auto-CaseRec’s optimization process, depending on the recommendation scenario. The

various metrics are described in this section.

Lets consider the simple case where the data set D is split into only one data fold, fold (1) =

{Dtrain,Dtest}. Let the testing data set Dtest be of length q. To evaluate the performance

of recommendation algorithms in the rating prediction and item recommendation tasks, Case

Recommender provides computation of the following metrics:

• Rating Prediction: Let the predictions made by the rating prediction algorithm for Dtest

be ŷ ∈ Rq and the ground-truth feedback values for Dtest be y ∈ Rq, hence, both

are vectors of length q. The evaluation metrics for rating prediction algorithms are as

follows.

1. MAE (Mean Squared Error): This is the mean of the absolute differences between

the predicted ratings and the ground truth ratings in the test dataset.

MAE =
1

q

q∑
i=1

|yi − ŷi |

2. RMSE (Root Mean Squared Error): This is the root of the mean of the squared

differences between the predicted ratings and ground truth ratings in the test

dataset.
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RMSE =

√√√√1

q

q∑
i=1

(yi − ŷi)2,

• Item Recommendation: The item recommendation algorithms produce a ranked list of

items predicted_itemsu,N = {item(1), · · · , item(N)} of a pre-specified length N for each

user u ∈ U, the set of all users. The predicted ranked lists can be evaluated using the

following metrics:

1. Precision@K: For a user u ∈ U, the precision@Ku is the fraction of relevant items

in the top K items of the ranked list predicted by the algorithm.

relevant_itemsu,K = test_itemsu ∩ predicted_itemsu,K ,

precision@Ku =
n(relevant_itemsu,K )

K
,

where, test_itemsu is the set of all items that the user u actually interacted with

and predicted_itemsu,K is the set of first K items in the predicted rank list for the

user u.

2. Recall@K: For a user u ∈ U, the recall@Ku is the number of relevant items in the

top K predictions divided by the maximum possible number of relevant items for

the user.

recall@Ku =
n(relevant_itemsu,K )

n(test_itemsu)

3. MAP@K (Mean Average Precision @K): The MAP@K is the mean of the AP@Ku

(Average precision @K) across all the users u ∈ U. The AP@Ku is the mean of

the precision@Ku across all relevant items in the predicted ranked list.

AP@Ku =
1

n(relevant_itemsu,K )

K∑
k=1

precision@Ku × relu(k)
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where, relu(k) is 1 if the k th item in the ranked list is relevant to the user u,

otherwise 0. Then, the MAP@K is calculated as

MAP@K =
1

|U|
∑
u∈U

AP@Ku

4. NDCG@K (Normalized Discounted Cumulative Gain @K): The CG@K (cumulative

gain) is the sum of the relevance scores of the top K items in the predicted ranked

list for a given user u ∈ U.

CG@Ku =
K∑

k=1

relu(k)

The DCG@K (discounted cumulative gain) penalizes the relevance with decreasing

rank, i.e., if the item is lower in the ranked list.

DCG@Ku =
K∑

k=1

relu(k)

log2(k + 1)

The DCG@K divided by the iDCG@K (ideal Discounted Cumulative Gain) gives

the NDCG@K (normalized DCG). The iDCG@K is the DCG@K of the predicted

ranked list sorted in the ideal order (more relevant items have higher ranks). For

example, if the relevance scores of the ranked list are [0, 1, 3, 2, 5], the ideal order

would be [5,3,2,1,0].

NDCG@Ku =
DCG@Ku

iDCG@Ku

In the item recommendation scenario, evaluation metrics such as precision and recall are

positive descriptors of performance, in contrast with metrics like RMSE in the rating prediction

scenario. Hence, the optimization goal changes from minimization to maximization in the item

recommendation task. However, Hyperopt only supports minimization of loss and hence, in

the item recommendation scenario, the final loss value returned to the optimization algorithm

in each iteration is multiplied by a negative sign (−). The negation of the loss converts the
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maximization problem to a minimization problem.

Case Recommender contains an evaluation class for each of the item recommendation and

rating prediction scenarios. The evaluation class objects provide simple function calls to run

the evaluation and calculate the values of one or even multiple evaluation metrics that have

been passed as a function parameter.

3.5 Search Space

The search space defines the domains of the hyper-parameters that are to be optimized. Auto-

CaseRec uses Hyperopt’s functionality to define the search space. The hyper-parameters are

treated as variables that have a fixed type, for example, continuous, discrete, or categori-

cal, and a domain of values that they can take. The search space is a crucial part of the

optimization process and hyper-parameter domains should be such that there is a reason-

able probability of finding good solutions in them. The definition of these domains is mostly

guided by prior knowledge or intuition about how the concerned algorithm performs with

certain hyper-parameter values. A poorly defined search space will not yield good results,

no matter how good the optimization algorithm is. In addition to continuous, categorical,

and discrete domains, Hyperopt allows the user to define probability-based categorical do-

mains, normally-distributed domains as well as exponentially-distributed domains. Hyperopt

also allows users to define more complex search spaces, such as hierarchical search spaces or

variables with domains as deterministic expressions.

For combined algorithm selection and hyper-parameter optimization, Auto-CaseRec uses a

hierarchical search space Λ = Λ(1)∪· · ·Λ(m)∪{λr}, where {λr} is a root-level hyper-parameter

that represents the choice between recommendation algorithms in A. The hyper-parameters

in each sub-space Λ(j) are made conditional on {λr} being instantiated to A(j). The root level

of the search space consists of the set of recommendation algorithms A. During sampling,

the optimization algorithm is required to choose an algorithm from the root level, followed by

specific values for all the hyper-parameters associated with that algorithm. This conditional

model of the search space reduces optimization time as the optimization algorithm does

not have to learn by trial-and-error that one algorithm’s hyper-parameters do not affect the

performance of another algorithm.
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Table 3.2: Rating Prediction Search Space

Algorithm Hyperparamter Type Domain

ItemKNN
k_neighbors Discrete {1, · · · , 100}
similarity_metric Categorical [′cosine ′,′ euclidean′,′ correlation′]

as_similar_first Categorical [True,False]

Matrix
Factorization

factors Discrete {10, · · · , 200}
learn_rate Continuous [0.001, 0.1]

delta Continuous [0.001, 0.1]

SVD factors Discrete {10, · · · , 200}

Random
Recommender

uniform Categorical [True,False]

UserKNN
k_neighbors Discrete {1, · · · , 100}
similarity_metric Categorical [′cosine ′,′ euclidean′,′ correlation′]

as_similar_first Categorical [True,False]

Most
Popular

- - -

Each optimization process executes for either the rating prediction scenario or the item recom-

mendation scenario. This is because both, the set of algorithms A and the set of evaluation

metrics are different for the two scenarios. Hence, Auto-CaseRec also defines different search

spaces for the optimization process of each recommendation scenario. The user is required to

specify the scenario type for the optimization process as well as the evaluation metric which

will be computed by the objective function at the time of initialising the optimization engine.

The search spaces for both the recommendation scenarios are shown in Table 3.2 and Table

3.3 respectively.

The domains for the different hyper-parameters were defined based on a mixture of previous

knowledge derived from experimentation and by reviewing the original research papers of some

of the recommendation algorithm, and intuition.

The search spaces can be further optimized down based on experiments conducted with
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Table 3.3: Item Recommendation Search Space

Algorithm Hyperparamter Type Domain

ItemKNN
k_neighbors Discrete {5, · · · , 50}
similarity_metric Categorical [′cosine ′,′ euclidean′,′ correlation′]

as_similar_first Categorical [True,False]

BPR-MF
factors Discrete {10, · · · , 200}
learn_rate Continuous [0.001, 0.1]

UserKNN
k_neighbors Discrete {5, · · · , 50}
similarity_metric Categorical [′cosine ′,′ euclidean′,′ correlation′]

as_similar_first Categorical [True,False]

Random
Recommender

- - -

Most
Popular

- - -

the Auto-CaseRec library on many diverse recommendation data sets, and it is one of the

goals for the next version of the Auto-CaseRec library. Further experimentation will also be

analyzed to find correlations between features of the data set (example, number of users,

number of items, sparsity value, data set type, and so on) and hyper-parameter domains that

produce well-performing configurations. The relationship between data set features and hyper-

parameter domains can then be exploited to make a personalized search space generation

function according to the recommendation data set and scenario. We leave this for future

work.

3.6 Optimization

As mentioned previously, the goal of Auto-CaseRec’s search process is to compute

A∗,λ∗A∗,λ∗A∗,λ∗ ∈ argmin
A(j)∈A,λ∈Λ(j)

1

K

K∑
i=1

L(A
(j)
λ ,D

(i)
train,D

(i)
test)
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The algorithm A∗A∗A∗ and associated hyper-parameter values λ∗λ∗λ∗ that minimize the mean loss are

found using an optimization algorithm. The optimization algorithm executes as an iterative

process. In each iteration, the optimization algorithm samples an algorithm configuration

A
(j)
λ from the search space and executes the objective function with the sampled configura-

tion.

The loss value computed by the objective function for the configuration A
(j)
λ may or may not

be used by the optimization algorithm to decide the next configuration to sample. Auto-

CaseRec implements the TPE, Random Search, and Simulated Annealing algorithms from the

Hyperopt library. These are presented in detail below.

3.6.1 Optimization Algorithms

Hyperopt provides four optimization algorithms, namely, Tree of Parzen Estimators (TPE),

Adaptive-TPE (ATPE), Simulated Annealing, and Random Search. The TPE and ATPE algo-

rithms are based on Sequential Model-based Optimization (SMBO) approach, while Random

Search and Simulated annealing are model-free approaches, i.e., they do not use a proba-

bilistic model to decide which configurations to sample. Hyperopt also allows users to use

multiple optimization algorithms for a single optimization process by providing a weight of

participation for each algorithm. The various optimization algorithms are described below.

The ATPE algorithm is not described as it has not been included in the current version of

Auto-CaseRec.

Random Search

Random Search is a simple model-free, gradient-free optimization algorithm. The random

search algorithm randomly samples configurations from the search space and evaluates the

objective function on these configurations.

Simulated Annealing

Simulated Annealing (SA) is a probabilistic method for finding the global minima of an ob-

jective function that may possess several local minima. SA is modelled after annealing, a

metallurgical method in which, a material is heated to a specific temperature and then slowly

cooled. At high temperatures, the atoms of the material tend to migrate from the crystal

30



lattice. This diffusion process has the effect of reducing the impurities in the material, thereby

reducing its overall energy. Then, it is slowly cooled back to the fully solid state and exhibits

more favorable properties like increased ductility as a result of the annealing process.

In SA, the objective function is analogous to the metal energy, which is to be minimized.

A random configuration is taken as the starting point of the process. At each iteration, a

random configuration sampled from the neighborhood of the current configuration and is

evaluated. If it produces a better result than the current configuration, it is accepted as the

new current configuration. If it is worse, it is still accepted but with a probability that is

directly proportional to the temperature and inversely proportional to the difference in the

performance of the solutions. This probabilistic acceptance of worse solutions has the effect

of rescuing the system from local minima. The temperature is analogous to the temperate in

the annealing process. It is slowly lowered so that the probability of accepting worse solutions

is lowered and the algorithm converges.

Tree Parzen Estimators (TPE)

TPE is a variant of a Bayesian Optimization framework, Sequential Model-Based Optimiza-

tion (SMBO). For the explanation of SMBO and TPE, the Auto-WEKA research paper [21]

is referred to by the author. SMBO is a Bayesian Optimization framework that can work

with both categorical and continuous hyper-parameters and is known to be able to exploit

hierarchical structures in the hyper-parameter space. The algorithm for SMBO is shown in

Algorithm 1.

Algorithm 1 Sequential Model-Based Optimization
1: Initialise model ML;History H← ∅
2: repeat
3: λλλ← candidate configuration from ML

4: Compute y = L(Aλ,D
(i)
train,D

(i)
valid

5: H← H ∪ {(λ, y)}
6: Update ML given H

7: until The optimization budget has been exhausted
8: return λλλ from H with minimal y

SMBO first builds a ML that approximates the relation between the loss function L with the

hyper-parameter settings λ. Then, it executes the following loop: uses the model to generate

a promising configuration (line 3), evaluate the loss y of the configuration (line 4) and use
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(y ,λ) to update the model ML. To select the next hyper-parameter configuration using model

ML, SMBO uses an acquisition function. The most popular acquisition function is Expected

Improvement. Let y(λ) denote the error of thhe hyper-parameter configuration λ. Then, the

positive improvement is defined by

Iymin
(λ) = max{ymin − y(λ), 0}

As y(λ) is not known beforehand, its expectation over the model ML is calculated as fol-

lows.

EML
[Iymin

(λ)] =

∫ ymin

−∞
max{ymin − y(λ), 0} ∗ pML

(y |λ)dy

The next hyper-parameter configuration is the value that maximizes the Expected Improve-

ment (EI). Different SMBO variants use different kinds of models. Some examples are Gaus-

sian Processes (GP), random-forest based models, and TPE models. Random-forest based

models are used by SMAC [32], the optimization framework of Auto-sklearn [1]. Here, the

modelling strategy employed by TPE is explained.

Instead of directly modelling p(y |λ), TPE models p(y) and p(λ|y). This comes directly from

the Bayes’ Rule:

p(y |λ) =
p(λ|y) ∗ p(y)

p(λ)

Then, p(λ|y) is modelled using two density estimates, depending on whether y is greater than

or less than a threshold value y ∗ as follows.

p(λ|y) =

l(λ), if y < y ∗

g(λ), if y ≥ y ∗

The density estimates l(.) and g(.) are learned using previous hyper-parameters values that
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produced a loss below and above the threshold respectively. Bergstra et. al [31] show that by

substituting this into the Expected Improvement formula, EI takes the form:

EML
[Iymin

(λ)] α (γ +
g(λ)

l(λ)
∗ (1− γ))−1

TPE then maximizes EI by generating random configurations and picking λ that minimizes
g(λ)
l(λ)

. We can intuitively see that this would try to generate configurations that have a high

probability under l(.) and a low probability under g(.).

3.6.2 Discussion

In practice, the optimization process is limited by the computational budget set forth by the

user. Therefore, the optimal algorithm A∗A∗A∗ and associated hyper-parameter values λ∗λ∗λ∗ are not

guaranteed to be the global minima of the loss function and are simply the configuration with

the minimum associated mean loss that is found by Auto-CaseRec in the allowed number of

evaluations or period of time. The output of the optimization process is the best algorithm

configuration A∗λ∗A∗λ∗A∗λ∗ . Auto-CaseRec is also designed to store information about each iteration of

the optimization process. This information includes the configuration used in that iteration,

the computation time of the objective function as well as the loss experienced in that iteration.

This information can be used to perform further analysis of the optimization process.

An alternative approach to designing the optimization process would be to run the optimization

process separately for each recommendation algorithm. This approach would use a different

search space for each recommendation algorithm instead of the single conditional search space

used by Auto-CaseRec. For each recommendation algorithm, the optimization process would

run for a fixed number of iterations. The best performing configurations of each algorithm

would be compared and the best among them would be presented as the optimal configuration

A∗λ∗A∗λ∗A∗λ∗ . Although this approach would theoretically achieve optimal results, I argue that it suffers

from two problems. The argument is based on the assumption that different recommendation

algorithms produce different results on a given dataset and the performance rankings also vary

across different datasets.

1. Poor resource allocation: Logically, allocating an equal amount of iterations to the best
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performing and worst performing algorithms would be a wastage of resources. Instead,

the system should be designed to allocate resources according to algorithm performance

itself. Setting unequal iteration budgets for the different algorithms would require prior

knowledge about the dataset and algorithm performance that is not always readily

available. Even with prior knowledge, the allocation of resources would have to be done

manually.

2. Sub-optimal performance: In a limited computational budget, such a system could

fail in allocating enough iterations for the best algorithm in the given recommendation

scenario. This would prevent the optimization process to find better solutions by testing

more configurations for the best algorithm and would hence increase the chances of the

final solution being sub-optimal.

Auto-CaseRec’s optimization process is designed to avoid both problems. By making the

choice of recommendation algorithm as a hyper-parameter in itself, the resource allocation

task is handled by the optimization algorithm in real-time. As the optimization process pro-

ceeds, the optimization algorithm is able to exploit the fact that one algorithm performs

better than another and as a result, generates more configurations that include the better

performing algorithm. The result is the increased probability of finding the best solution for

the recommendation scenario.

Auto-CaseRec’s optimization process was implemented using the Hyperopt Python library.

Auto-CaseRec implements Hyperopt’s various optimization strategies as well as the function-

ality for defining the search space and storing results from the optimization process. Hyperopt’s

features have been described in section ?? of this report.

3.7 Example Usage

Auto-CaseRec provides the AutoEstimator class for running an automatic configuration

search for an arbitrary recommendation data set. The AutoEstimator class object can be

implemented from the estimator module of the Auto-CaseRec library. During initialisation,

AutoEstimator internally reads the data set file whose local path is provided by the user, splits

the data into K folds, and stores the data folds on the user’s local drive. By calling the

fit() method of the AutoEstimator class object, the configuration search is initiated. Example
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usage is shown below.

#Example configuration search using Auto-CaseRec for the rating

prediction scenario

#Import the AutoEstimator module

from auto_caserec.estimator import AutoEstimator

#Define the settings for the search process

kwargs = {’datapath’: ’datasets/ml-latest-small/ratings.csv’,

’predictor’: ’rating’,

’eval_metric’: ’RMSE’,

’early_stop’: True,

’early_stop_split’: 2,

’algo’: ’tpe’,

’max_evals’: 50,

’cross_validate’:True,

’cross_validation_strategy’: ’kfold’,

’n_splits’: 5,

’sep_read’: ’,’,

’sep_write’: ’\t’,

’write_results’: True

}

#Initialise the AutoEstimator object

myEstimator = AutoEstimator(**kwargs)

#Start the search process

best, trials = myEstimator.fit()

In each iteration, AutoEstimator prints out the loss for each data fold, the training and

prediction time for each data fold, as well as the mean loss at the end of the iteration

and the overall best loss. When the search process ends, the fit method returns the best

algorithm configuration in the form of a data dictionary, as well as the Trials object that
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contains information about each iteration. The data fields stored in the Trials object are the

loss, iteration count, computation time, configuration and status associated with the search

iteration.

#Run the search process

best, trials = myEstimator.fit()

#Get the results as a Python dictionary from the Trials object

results = trials.results

#Print the results

print(results)

Each algorithm brings certain benefits and biases to a search problem. In some cases, it may

be useful to use a mix of optimization strategies for the optimization process.

#Import different search algorithms and necessary packages

from auto_caserec.estimator import AutoEstimator

from hyperopt import anneal, rand, tpe, mix

from functools import partial

#Define the mixed optimization strategy

#Uses Random Search 20% of the time, Simulated Annealing 10% of the time

and TPE 70% of the time

mix_algo = partial(mix.suggest, p_suggest=[

(0.1, anneal.suggest),

(0.2, rand.suggest),

(0.7, tpe.suggest)])

#Define the settings for the search process

kwargs = {’datapath’: ’datasets/ml-latest-small/ratings.csv’,

’predictor’: ’rating’,

’eval_metric’: ’RMSE’,
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\textbf{’algo’: mix_algo}

}

#Initialise the AutoEstimator object

myEstimator = AutoEstimator(**kwargs)

#Start the search process

best, trials = myEstimator.fit()
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4 Evaluation

This chapter of the report describes the experimental setup used to evaluate the Auto-CaseRec

library, followed by the results obtained from the experiments, the interpretation of these re-

sults, and the conclusions formed regarding the performance of Auto-CaseRec library, including

the associated time complexity.

4.1 Experimental Setup

This section describes the experimental setup used to evaluate Auto-CaseRec’s optimization

process when applied to two different data sets, theMovielens 100K and Last.fm recommender

system data sets. Two experiments were conducted for each data set, one for the rating

prediction scenario and one for the item recommendation scenario. The following subsections

describe in detail the design of the experiments, the data sets used, the baselines used, and

the hardware and software used to conduct the experiments and analyze the results.

4.1.1 Design of Experiments

To evaluate Auto-CaseRec’s search process, 4 experiments were conducted. The experiments

were conducted across two datasets: MovieLens-100K and Last.fm, and two recommendation

scenarios: Item Recommendation and Rating Prediction. Each experiment was constituted

of 5 tests, where in each test, Auto-CaseRec’s search process was executed for 50 iterations

for the data set D and recommendation scenario R , using the optimization algorithm Aopt

for the search process. All experiments used 5-fold cross-validation to compute the loss for a

given configuration with the early-stopping mechanism invoked after the 3rd fold. For a given

configuration sampled by the optimization algorithm, early-stopping exits the cross-validation

process after the 3rd fold if the best loss achieved in the 3 folds is not better than the overall
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best loss experienced in the search process. Early-stopping was used to reduce computation

time for configurations that did not produce satisfactory results until the 3rd fold and cross-

validation was used to ensure that the sampled configurations were evaluated robustly. The

search process for each test randomly samples the first few configurations from the search

space. Multiple tests thus demonstrate how the optimization algorithms behave with different

starting configurations which is useful for analyzing the variability in the quality of solutions

produced by Auto-CaseRec.

As Auto-CaseRec requires a single evaluation metric to be used as the loss function, the

RMSE metric was used for the rating prediction experiments and the MAP@N1 metric was

used for the item recommendation experiments, where N was set equal to 10.

For each test, information from all search iterations such as computation time, the loss

experienced and configuration used, was stored to a CSV (Comma-delimited value) file on the

local drive, to be analyzed later.

4.1.2 Datasets

The experiments were conducted across two datasets: the MovieLens-100K data set and the

Last.fm data set. This section describes the features of both data sets.

Movielens-100K

The MovieLens 100-K data set was released in 1998 by GroupLens2, a research lab in the

Department of Computer Science and Engineering at the University of Minnesota. The data

set is a collection of 100,000 movie ratings in the form of integers from 1-5, given to 1,682

movies by 943 users. Each user in the data set has rated a minimum of 20 movies. The data

set’s density is 6.304%. The density is the percentage of known feedback values amongst all

possible feedback values. It is a stable data set, i.e., it will not be updated and can, therefore,

serve as a benchmark data set for research purposes. The movie ratings are a form of explicit

feedback given by the users and so, rating prediction algorithms can be directly applied to the

Movielens-100K data set. For using the data set in the implicit feedback scenario, the ratings

are used by the algorithms with the assumption that the ratings are a form of implicit positive
1As the MAP@N metric is a positive indicator of performance and the search process inherently performs

minimization, the loss function actually used was −MAP@N.
2https://grouplens.org/
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feedback, i.e., they are positive representatives of user preferences. In addition to the rating

data, the MovieLens-100K data set also contains metadata for users (age, gender, etc.) and

movies (genres), but it was not used for our experiments.

Last.fm

The Last.fm data set was released in 2011 in the framework of the 2nd International Workshop

on Information Heterogeneity and Fusion in Recommender Systems[34]. The data set contains

music artist listening information in the form of 92,834 listening-counts for a set of 1892 users

and 17,632 artists, from the Last.fm online music system3. The data set’s density is 0.278%,

which makes it more than 20 times sparser than the MovieLens-100K data set. The listening-

counts are a form of implicit feedback given by the user as they do not directly convey the user

preferences but can be assumed to be representative of positive user feedback. The data set

is used in the explicit feedback scenario by normalizing the listening-counts to real numbers

between 1-5 and assuming that higher listening counts indicate higher user preference for the

related artist. The dataset also contains metadata like user-user friend relations and artist

tags, but these have not been used in our experiments.

4.1.3 Baselines

In research settings, the baselines are the benchmark systems against whose performance, the

performance of novel systems is evaluated. The baseline methods should usually be state-

of-the-art in a particular research domain or the best-performing methods. Comparing the

performance of a novel system against such baselines as described above is crucial to establish

a robust estimate of the improvement or deterioration of the state-of-the-art systems that the

novel system brings.

Auto-CaseRec aims to aid non-expert users of recommender systems to research scientists

alike. It is safe to assume that all users will not have enough prior knowledge to intuitively

choose the best performing recommendation algorithm and optimal parameters for their rec-

ommendation problem. A natural approach such users could take is to test the different

recommendation algorithms applicable in their recommendation scenario, evaluate them with

cross-validation, and choose the best performing algorithm as their preferred solution. Keeping
3http://www.lastfm.com
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this in mind, the baseline chosen for the evaluation of Auto-CaseRec in a given recommenda-

tion scenario is the recommendation algorithm that produces the lowest cross-validation loss

when executed with the default, unmodified hyperparameters.

Another baseline that was considered is Grid Search. Grid Search is a model-free algorithm

that performs an exhaustive search over a grid of hyper-parameter values. It takes as input

only a discrete set of numbers as the search space for each hyper-parameter. Grid Search

evaluates every possible combination of hyper-parameter values in the search space and re-

turns the best performing configuration. For N hyper-parameters with K discrete values for

each, the total number of evaluations in Grid Search become KN . For example, 3 hyper-

parameters with search-spaces of 20 discrete values each would make the total number of

Grid Search evaluations equal to 203 = 8000. Grid Search suffers from what is known as

the curse of dimensionality as the number of evaluations and hence the computation time

exponentially increases with the number of hyper-parameters. In high dimensional and cate-

gorical search spaces with continuous ranges of hyper-parameters, Grid Search thus becomes

a highly inappropriate and inefficient tool. The search-space used by Auto-CaseRec for the

rating prediction scenario (Figure 3.2) has 15 hyper-parameters, some of which take hundreds

of discrete values. Grid Search over such a search space would require function evaluations in

the order of 10000s as compared to the 50 evaluations we allow in our experiments for Random

Search and TPE. In [15], it has been shown that Grid Search performs significantly worse than

8 other HPO approaches including Random Search for optimizing three hyper-parameters of

a Matrix Factorization algorithm with a space of 20 discrete values for each. Another major

drawback of Grid Search is that for a maximum of B function evaluations in a search space of

N hyper-parameters, the maximum number of values evaluated for a given hyper-parameter is

B1/N as compared to B values evaluated by other HPO approaches like Random Search and

TPE. In environments where certain hyper-parameters affect the performance of the system

more than certain others, which is generally the case, Grid Search will inevitably be inefficient

[3, 4]. This is demonstrated in Figure 4.1. Grid Search is able to explore just 3 values for the

important parameter while Random Search evaluates 9 different values in 9 evaluations and

thus, finds the minima of the function. Due to the theoretical inefficiency of Grid Search and

the lack of computation resources, we could not implement Grid Search as a baseline in our

research. However, it seemed appropriate to present this analysis as Grid Search is a standard

method for optimizing hyper-parameters in the absence of advanced techniques.
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Figure 4.1: Comparison of grid search and random search for minimizing a function with one
important and one unimportant parameter. Figure taken from Hutter et. al [3] and based on
Figure 1 of Bergstra and Bengio [4]

4.1.4 Software and Hardware

Python Programming Language

Python is a high-level programming language that supports dynamic programming and object-

oriented functionality. Python is known for its high code readability and the support of a

myriad of libraries that provide all kinds of functionality. The libraries used for processing the

experimental results saved on the local drive and visualizing them very the Pandas library and

the matplotlib library respectively.

Pandas [77, 78] is a powerful python library that provides extensive data-analysis tools and

data structures for storing and manipulating data.

Matplotlib [79] is a python library used for data visualization. Data visualization is the

graphical representation of data using formats like charts and graphs. It enables users to see

the historical trends in the data, patterns, and anomalies. Matplotlib was used to make the

bar-plots and line-plots that will be shown with the results.
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Jupyter Notebook

The Jupyter Notebook4 application is a client-server-based application provided by Project

Jupyter that enables developers to develop code in a web-browser based environment. A

Jupyter notebook is a document-style coding script provided by the Jupyter Notebook appli-

cation inside which users can run code in modular cells and simultaneously visualize graphs

and contents of variables along with the output of the code. The cell structure allows for easy

compartmentalized execution and debugging of code.

The preliminary testing of Auto-CaseRec was done using Jupyter Notebooks. Jupyter Note-

books run on the local machine and use local computing resources. The Item Recommendation

experiment for the Last.fm data set was conducted using Jupyter Notebooks on the local ma-

chine, i.e., tests for both Auto-CaseRec as well as the baselines were conducted on the local

machine. The hardware of the local Desktop machine included 12 GB RAM with an Intel

Core i5-760 processor.

Google Colab

Google Colab5 provides colab notebooks, that are similar to Jupyter Notebooks in their mod-

ular cell-based programming interface. With colab notebooks, anyone with a web browser can

use Google’s cloud computing capabilities to execute programs. The experiments for both

the scenarios on the MovieLens-100K data set as well as the Rating Prediction experiment

on the Last.fm data set was conducted on a Google Colab notebook with 25GB RAM and

100GB disk memory. Computation on Google Colab proved to be much faster than the local

machine.

4.2 Results

In this section, experimental results for the evaluation of the Auto-CaseRec framework are

presented. As described before, experiments are conducted for both the item recommendation

and rating prediction scenarios. As both scenarios contain different evaluation metrics, their

results are presented in different sub-sections, and within each sub-section, results for the

two data sets: MovieLens 100K and Last.fm are given. Following the results, a detailed
4https://jupyter.org/index.html
5https://colab.research.google.com/
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analysis is presented in the form of a discussion. The results are presented using 3 types of

graphics: tables, line-plots, and bar-plots, and each is used once for each data set in each

recommendation scenario. A brief overview of the notations used in the graphics is presented

below to aid the reader in understanding them.

Tables

Tables display quantitative information about the tests in each experiment. The fields in the

tables are to be interpreted in the following manner: LossACR is the best loss achieved by Auto-

CaseRec, Lossbase is the best loss achieved by the recommendation algorithms with default

parameters (baselines), AlgoACR is the algorithm found by Auto-CaseRec that produced the

best loss, tACR is the time taken by Auto-CaseRec to complete 50 search iterations, tbase is the

cumulative time taken to train and evaluate the baseline algorithms, Iterbest is the iteration

in which the best configuration was found by Auto-CaseRec and finally, tbest−iter is the time

taken by Auto-CaseRec to find the best configuration. The percentage improvement (if any)

is also shown in curly brackets alongside the values in the LossACR field. Also, the F symbol

next to a value in the AlgoACR field means that the best algorithm found by Auto-CaseRec was

different from the best performing baseline algorithm. Note: We omit the best performing

baseline from the tables due to lack of space and request the reader to refer to the legends

of the result plots for the names.

Line-Plots

The line-plots visualize the best loss achieved by Auto-CaseRec at the i th iteration for all the 5

tests in a given experiment. Horizontal black dashed lines in the plots show the loss achieved

by the best performing baseline algorithm. Vertical dashed lines represent the first iteration

at which Auto-CaseRec outperforms the baselines. A color-coded vertical line is shown for

each test in a given experiment.

Bar-Plots

The bar-plots visualize the run-times for different stages of each of the 5 tests, specifically,

the time at which Auto-CaseRec first outperforms the best baseline, the time at which Auto-

CaseRec achieves the best loss for that test and the time at which Auto-CaseRec completes

the test. The notations for these are t-good , t-best and t-full . The cumulative time taken to
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Figure 4.2: Convergence of Auto-CaseRec for the MovieLens 100K data set in the Rating
Prediction scenario

train and evaluate the baseline algorithms is shown as a black dashed line and is represented

by t-base. The number of iterations taken to achieve a given stage is shown at the top of

the respective bars in the plot.

4.2.1 Rating Prediction Scenario

For the rating prediction scenario, the evaluation metric of choice was the RMSE. For both the

data sets, 5 tests were conducted in which Auto-CaseRec was allowed a total of 50 iterations

in each to find the best algorithm configuration using the Tree Parzen Estimators (TPE)

optimization algorithm.

Table 4.1: MovieLens 100K Rating Prediction Results

Test LossACR Lossbase AlgoACR tACR tbase Iterbest tbest−iter

1 0.9388 (+0.11%) 0.9399 UserKNN 00:24:31 00:03:40 12th 00:08:00
2 0.9237 (+1.72%) 0.9399 Matrix FactorizationF 00:29:43 00:03:40 21st 00:10:33
3 0.9236 (+1.72%) 0.9399 Matrix FactorizationF 00:30:27 00:03:40 40th 00:24:29
4 0.9221 (+1.88%) 0.9399 Matrix FactorizationF 00:35:23 00:03:40 32nd 00:24:12
5 0.9233 (+1.67%) 0.9399 Matrix FactorizationF 00:33:28 00:03:40 27th 00:19:25
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Figure 4.3: Run-time analysis for the MovieLens 100K data set in the Rating Prediction
scenario

MovieLens 100K

The results achieved by Auto-CaseRec (TPE) for the rating prediction scenario on the Movie-

Lens 100K data set are shown in Figure 4.2, Figure 4.3 and Table 4.1. As shown in Table

4.1, Auto-CaseRec (TPE) outperforms the best performing baseline algorithm UserKNN in

all the 5 tests, with a maximum improvement of 1.88% and mean improvement of 1.42% in

RMSE value. In 4 out of 5 tests, the best algorithm produced by Auto-CaseRec (Matrix Fac-

torization) is different from the best performing baseline (UserKNN). It is also worth noting

that Matrix Factorization as a baseline, i.e., with default hyper-parameters, produced a loss of

0.9695. Auto-CaseRec on the other hand is able to find hyper-parameter configurations that

improve the performance of Matrix Factorization by 4.72% (RMSE: 0.9237) in Test2, 4.73%

(0.9236) in Test3, 4.89% (0.9221) in Test4 and 4.76% (0.9233) in Test5. Auto-CaseRec also

finds a better hyper-parameter configuration for the UserKNN algorithm in Test1 that results

in a minor improvement of 0.11% in RMSE.

As shown in the Table 4.1, the best loss is achieved by Auto-CaseRec 2 out of 5 times in

the first half of the tests (Test 1 and 2), and 3 times in the second half of the tests for Test

3, 4 and 5. From the same plot, it is observed that Auto-CaseRec (TPE) outperforms the

best performing baseline (UserKNN) after a maximum of 13 iterations and a minimum of 2

iterations in all 5 tests. Further iterations find even better-performing configurations in all
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tests except Test 1 (Figure 4.3). The total computation time for Auto-CaseRec’s tests is

between 6 to 10 times that of the cumulative computation time for the baseline algorithms.

Figure 4.3 also shows that t-good is less than t-base for Tests 4 and 5, almost equal to t-base

for Tests 2 and 3, and approximately double of t-base for Test 1.

Last.fm

Figure 4.4: Convergence of Auto-CaseRec for the Last.fm data set in the Rating Prediction
scenario

Figure 4.5: Run-time analysis for the Last.fm data set in the Rating Prediction scenario

The results achieved by Auto-CaseRec (TPE) for the rating prediction on the Last.fm data set
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are shown in Figure 4.4 and Table 4.2. Auto-CaseRec (TPE) outperforms the best performing

baseline (Most Popular) in all the 5 tests with a maximum improvement of 14.36% and a mean

improvement of 13.26% in RMSE. Table 4.2 shows that in all 5 tests, the best performing

algorithm found by Auto-CaseRec (Matrix Factorization) is different from the best performing

baseline (Most Popular). With default hyper-parameters, the Matrix Factorization baseline

produced a cross-validation RMSE of 0.3464 whereas with the best hyper-parameters found by

Auto-CaseRec, the Matrix Factorization algorithm showed an improvement of 15.41% (RMSE:

0.2930) in Test1, 13.97% (0.2980) in Test2, 13.01% (0.3013) in Test3, 15.18% (0.2938) in

Test4 and 14.08% (0.2976) in Test5.

Table 4.2 shows that Auto-CaseRec achieves the best loss 4 out of 5 times in the first half of

the test and once in the second half of the test for Test 1. Figure 4.5 shows that Auto-CaseRec

outperforms the best performing baseline (Most Popular) within 10 iterations in 4 out of 5

tests, with the minimum being 3 iterations in Test 4 and maximum being 26 iterations in

Test 1. The total computation time for Auto-CaseRec is between 4 to 6 times that of the

cumulative time taken to train and evaluate the baseline algorithms. Figure 4.5 also shows

that t-good is less than t-base for 3 out of 5 tests and greater than t-base for Test 1 and

Test 5.

4.2.2 Item Recommendation Scenario

For the Item Recommendation scenario, the evaluation metric of choice was the MAP@10

(Mean Average Precision at Rank 10). The MAP@10 is representative of the average quality

of the top 10 recommendations produced for all the users of a data set. For both the MovieLens

100K and Last.fm data sets, 5 tests were conducted in which Auto-CaseRec was allowed 50

iterations. The results of the tests have been visualized in the same way as the Rating

Table 4.2: Last.fm Rating Prediction Results

Test LossACR Lossbase AlgoACR tACR tbase Iterbest tbest−iter

1 0.2930 (+14.36%) 0.3421 Matrix FactorizationF 03:16:15 00:50:20 34th 01:31:30
2 0.2980 (+12.89%) 0.3421 Matrix FactorizationF 04:13:50 00:50:20 6th 00:41:39
3 0.3013 (+11.91%) 0.3421 Matrix FactorizationF 03:35:51 00:50:20 4th 00:02:40
4 0.2938 (+14.12%) 0.3421 Matrix FactorizationF 04:04:25 00:50:20 23rd 02:18:06
5 0.2976 (+13.02%) 0.3421 Matrix FactorizationF 04:35:36 00:50:20 23rd 02:20:08
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Figure 4.6: Convergence of Auto-CaseRec for the MovieLens 100K data set in the Item
Recommendation scenario

Table 4.3: MovieLens 100K Item Recommendation Results

Test LossACR Lossbase AlgoACR tACR tbase Iterbest tbest−iter

1 0.5408 (+2.28%) 0.5288 BPRMFF 01:31:29 00:12:54 48th 01:16:24
2 0.5392 (+1.97%) 0.5288 UserKNNF 01:09:21 00:12:54 28th 00:39:53
3 0.5392 (+1.97%) 0.5288 UserKNNF 01:11:29 00:12:54 23rd 00:35:49
4 0.5392 (+1.97%) 0.5288 UserKNNF 01:22:31 00:12:54 24th 00:49:29
5 0.5392 (+1.97%) 0.5288 UserKNNF 01:11:22 00:12:54 23rd 00:38:44

Prediction experiments, except that the maximum MAP@10 is recorded for the baselines and

Auto-CaseRec. This is because MAP is a positive indicator of performance.

MovieLens 100K

The results achieved by Auto-CaseRec (TPE) for the MovieLens 100K data set in the Item

Recommendation scenario are shown in Figure 4.6 and Table 4.3. It is observed that Auto-

CaseRec (TPE) outperforms the best baseline algorithm (ItemKNN, MAP@10: 0.5288) in all

5 tests with a maximum improvement of 2.28% (MAP@10: 0.5408) and mean improvement

of 2.02% (mean MAP@10: 0.5395). From Table 4.3 we also observe that the best algorithms

found by Auto-CaseRec (BPRMF, UserKNN) are different from the best performing baseline

algorithm (ItemKNN) for all 5 tests. The baseline MAP@10 of the BPRMF and UserKNN

algorithms (with default hyper-parameters) was found to be 0.5002 and 0.5252 respectively,
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Figure 4.7: Run-time analysis for the MovieLens 100K data set in the Item Recommendation
scenario

Table 4.4: Last.fm Item Recommendation Results

Test LossACR Lossbase AlgoACR tACR tbase Iterbest tbest−iter

1 0.3654 (+0.6%) 0.3633 UserKNN 14:18:39 04:46:00 23rd 05:48:58
2 0.3656 (+0.63%) 0.3633 UserKNN 20:55:03 04:46:00 35th 14:40:04
3 0.3656 (+0.63%) 0.3633 UserKNN 21:08:26 04:46:00 46th 19:19:34
4 0.372313 (+2.48%) 0.3633 UserKNN 18:15:57 04:46:00 45th 15:57:41
5 0.3656 (+0.63%) 0.3633 UserKNN 19:26:20 04:46:00 22nd 11:19:21

whereas, with the hyper-parameter configuration found by Auto-CaseRec, BPRMF performs

8.11% better (MAP@10: 0.5408) as seen in Test 1 and UserKNN performs 2.66% better

(MAP@10:0.5392) as seen in Tests 2-5.

Table 4.3 shows that for Auto-CaseRec achieves the best loss in the first half of the test for

3 out of 5 tests and in the second half of the test for Tests 1 and 2. Figure 4.7 shows that

Auto-CaseRec outperforms the best baseline algorithm in a maximum of 5 iterations as seen in

Tests 4 and 5, and a minimum of 2 iterations as seen in Test 3. The overall computation time

for Auto-CaseRec is observed to vary between 5 to 8 times that of the cumulative computation

time of the baseline algorithms. Figure 4.7 also shows that t-good is less than t-base for 3

out of 5 tests and marginally greater than t-base for Test 1 and Test 4.
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Figure 4.8: Convergence of Auto-CaseRec for the Last.fm data set in the Item Recommenda-
tion scenario

Figure 4.9: Run-time analysis for the Last.fm data set in the Item Recommendation scenario
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Last.fm

The results achieved by Auto-CaseRec (TPE) for the Last.fm data set in the Item Recom-

mendation scenario are shown in Figure 4.8 and Table 4.4. It is observed that Auto-CaseRec

(TPE) outperforms the best baseline algorithm (UserKNN, MAP@10: 0.3633) in all 5 tests,

with a maximum improvement of 2.48% (MAP@10: 0.3723) in Test 4 and improvements of

around 0.6% (MAP@10: 0.3654 for Test 1 and 0.3656 for Tests 2,3 and 5) in the other tests.

In this experiment, the best algorithms found by Auto-CaseRec (Table 4.4) were the same

as the best performing baseline algorithm (UserKNN) and so, the improvement in MAP@10

across all 5 tests is solely attributed to better performing hyper-parameter configurations for

the UserKNN algorithm.

Table 4.4 shows that Auto-CaseRec achieved the best loss in the first half of the test for 2 out

of 5 tests and in the second half of the test for Tests 2, 3 and 4. As shown in Figure 4.9, Auto-

CaseRec outperforms the best baseline algorithm (UserKNN) in a maximum of 27 iterations

in Test 3 and a minimum of 15 iterations in Test 2. The overall computation time for Auto-

CaseRec is significantly more than the previous experiments (Table 4.4). The computation

time for Auto-CaseRec varies between 3-5 times that of the cumulative computation time for

the baseline algorithms. It is also observed that the computation time of Test 1 (14:18:39)

is significantly more than the other 4 tests (18:15:57 - 21:08:26). Figure 4.9 also shows that

t-good is always greater than t-base, with significant differences in Tests 2, 3 and 5 and

marginal differences in Tests 1 and 4.

4.3 Discussion

This section of the report presents a detailed analysis of the results shown in the previous

section. We start with a brief recap of the experimental setup. The Auto-CaseRec library

was evaluated on two popular Recommender System data sets: MovieLens 100K that con-

tains 100,000 ratings given by 943 users to 1,682 movies, and Last.fm that contains 92,834

listen-counts for 17,632 artists by 1,892 users. For both the data sets, experiments consisting

of 5 tests each were conducted for the two recommendation scenarios: Rating Prediction

and Item Recommendation. Auto-CaseRec was executed for 50 iterations in each test with

the tree Parzen Estimators (TPE) optimization algorithm. The recommendation algorithms
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instantiated with their default unmodified hyper-parameters were taken as the baselines. The

evaluation metrics used were the RMSE for Rating Prediction and MAP@10 for Item Rec-

ommendation, and the evaluation for each iteration of Auto-CaseRec and the baselines was

performed using 5-Fold Cross-Validation. Auto-CaseRec’s performance was then compared

against the best performing baseline.

4.3.1 Performance Evaluation

The results of the 4 experiments (two recommendation scenarios and two data sets) have

been collated into a table for the benefit of the reader (Table 4.5). The table shows the

best algorithms produced by Auto-CaseRec out of the 5 test results for each experiment

and the best, mean, and worst loss values achieved in each experiment. It also shows the

percentage improvement alongside the absolute loss values and shows the loss value for the

best performing baseline in each experiment in a separate column.

Table 4.5: Auto-CaseRec loss comparison

Experiment Algobest
ACR LossbestACR Lossmean

ACR LossworstACR Lossbase

RP, ML-100K MFF 0.9221 (+1.88%) 0.9263 (+1.44%) 0.9388 (+0.11%) 0.9399
RP, Last.fm MFF 0.2930 (+14.36%) 0.2967 (+13.25%) 0.3013 (+11.91%) 0.3421
IR, ML-100K BPRMFF 0.5408 (+2.28%) 0.5395 (+2.02%) 0.5392 (+1.97%) 0.5288
IR, Last.fm UserKNN 0.3723 (+2.48%) 0.3669 (+0.99%) 0.3654 (+0.6%) 0.3633

From Table 4.5, we observe that Auto-CaseRec outperformed the baseline algorithms in all 5

tests in 4 out of 4 experiments. In the Rating Prediction (RP) experiments, for the Last.fm

data set, Auto-CaseRec consistently produced large improvements (average improvement of

13.35% in RMSE), while for the MovieLens-100K data set, the improvements were moder-

ately significant (average of 1.44%). For the Item Recommendation (IR) experiments, the

improvements were moderately significant for both the ML-100K data set (average improve-

ment of 2.02%) and the Last.fm data set (average of 0.99%) Also, in 3/4 experiments, the

best performing algorithm produced by Auto-CaseRec was found to be different from the best

performing baseline algorithm. In 2/4 experiments, the worst algorithm produced by Auto-

CaseRec was also different than the best performing baseline algorithm (Table 4.2 and Table

4.3). We can make the following inferences from these results:

1. Finding the best algorithm and a set of optimal hyper-parameters using Bayesian Op-
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timization (TPE) consistently increases recommendation performance as compared to

the performance of the best individual algorithm with default hyper-parameters, while

the degree of improvement can vary according to the data set and recommendation

scenario.

2. The actual best algorithm(s) for a data set is likely to be different from the best baseline

algorithm.

3. Hyper-parameter tuning can be used to find the limits of the separate algorithms and

thereby, produce an accurate ranking of algorithms for a given recommendation task.

Table 4.6: Effects of Hyper-Parameter Tuning

Scenario Dataset Algorithm LossbestACR Lossmean
ACR Lossdefault

RP ML-100K MFF 0.9221 (+4.89%) 0.9232 (+4.78%) 0.9695
RP ML-100K UserKNN 0.9388 (+0.11%) 0.9388 (+0.11%) 0.9399
RP Last.fm MFF 0.2930 (+15.41%) 0.2967 (+14.33%) 0.3464
IR ML-100K BPRMFF 0.5408 (+8.11%) 0.5408 (+8.11%) 0.5002
IR ML-100K UserKNNF 0.5392 (+2.66%) 0.5392 (+2.66%) 0.5252
IR Last.fm UserKNN 0.3723 (+2.48%) 0.3669 (+0.99%) 0.3633

We also analyze the effects of tuning the hyper-parameters of the algorithms. The results

for the same are shown in Table 4.6. In this table, LossbestACR refers to the best loss achieved

amongst the tests that produced the associated algorithm as a result and Lossmean
ACR is the

mean of all the losses achieved by such tests. Lossdefault refers to the loss achieved by the

associated algorithm when executed as a baseline, i.e., with default hyper-parameters. The

motive is to observe the improvement in performance (if any) of individual algorithms with

tuned hyper-parameters as compared to their performance with the default hyper-parameters.

We only compare the best algorithms produced by the tests in a given experiment. In 2/4

experiments, the test results contained two different algorithms so we perform the analysis for

both.

From Table 4.6, we observe that through hyper-parameter tuning, Auto-CaseRec always in-

creases the performance of the analysed algorithms. In some cases, the effect of Hyper-

Parameter tuning is very pronounced. For example, in the Rating Prediction scenario for the

Last.fm data set, the best baseline was the Most Popular algorithm and Matrix Factorization
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(MF) was ranked second. With hyper-parameter tuning, Auto-CaseRec was able to improve

the RMSE of MF by a mean value of 14.33%. Another example is the Item Recommenda-

tion scenario for the MovieLens data set, in which, the best baseline was UserKNN, followed

by ItemKNN and then BPRMF. With hyper-parameter tuning, Auto-CaseRec improved the

MAP@10 of BPRMF by 8.11% and it was produced as the best performing algorithm.

From these results, we can infer that evaluating the recommendation algorithms with their

default configurations individually for any of the two scenarios can be inconclusive with regards

to finding the best available algorithm for a given data set. This is because without exploring

the hyper-parameter space, it is difficult to know the performance limits of any given algorithm

and thus the ranking of algorithms produced by such experimentation cannot be guaranteed

to be accurate. Hence, if a user decides to only tune the recommendation algorithm that

produced the best performance with default hyper-parameters, chances are that his solution

would still be far from the best possible solution that can be achieved in his computational

budget. A user may do this if he is bounded by a limited computational budget or, relies

on manual tuning or Grid Search due to lack of advanced Hyper-parameter optimization

(HPO) algorithms (which is generally the case in the Recommender System tool-kits). In

such a scenario, a tool like Auto-CaseRec that automates optimization with advanced HPO

techniques would greatly help the user by producing good algorithms and associated hyper-

parameter configurations within a limited computational budget. Even in scenarios where

the user has a reasonable computational budget, Auto-CaseRec would still be highly efficient

than manual tuning or Grid Search due to the size of the search space involved in Combined

Algorithm Selection and Hyper-Parameter Optimization.

4.3.2 Run-Time Analysis

The experimental results show that the run-time of the experiments varies greatly with the

recommendation scenario as well as the data set.

It is observed that the Item Recommendation experiments consume a lot more time than the

Rating Prediction experiments. One possible explanation for this is that the worst-case time

complexity of calculating the MAP@N metric is O(|U| ∗ N2). This is because the calculation

involves N computations to calculate the precision@N at each N, followed by a maximum

of N computations for calculating the AP@N and this is performed for all the users u ∈ U.
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In contrast, the time complexity for calculating the RMSE metric in the Rating Prediction

scenario is O(|Dtest |) as one computation is performed for each user-item pair in the test set.

In our experimentation, |U| is equal to 943 and 1892 for the MovieLens-100K and Last.fm

data sets respectively. The value of N is 10 and the |Dtest | takes a maximum value of 20000.

We can observe that the evaluation time taken in the Item Recommendation scenario is

conclusively bound to be much more than the evaluation time taken in the Rating Prediction

scenario.

It is also observed that the experiments involving the Last.fm data set took considerably longer

than those involving the MovieLens 100K data set. This is because of the recommendation

algorithms scale according to the number of users and the number of items. While algo-

rithms like Matrix Factorization scale well, the Neighbourhood-based methods UserKNN and

ItemKNN scale very badly [80, 81, 82]. The training time complexity for the UserKNN and

ItemKNN algorithms is O(|U|2 ∗ p) and O(|I|2 ∗ q) respectively, where, U and I are the set

of users and items respectively and p and q are the maximum number of ratings per user and

the maximum number of ratings per item respectively [82]. The prediction time complexities

for both are O(|I ∗ k |) [82]. The Last.fm data set has 1,892 users and 17,632 artists as

compared to the MovieLens-100K data set that contains 943 users and 1,682 movies. As the

number of users and items in the Last.fm data set are approximately double and 10 times

respectively, as compared to the users and items in the MovieLens-100K data set, the time

complexities of the UserKNN and ItemKNN methods are much worse and they significantly

increase the run-times. The ItemKNN was found to take the longest times as the number of

items is greater than the number of users in the data sets.

Auto-CaseRec was allowed a total of 50 iterations which translates to 50 rounds of algorithm

training and evaluation. The run-time of Auto-CaseRec scales linearly with the number of

iterations and in the worst case is O(niter ∗ tworst), where tworst is the time required for training

and evaluation by the recommendation algorithm with the worst time complexity. The base-

lines, on the other hand, consisted of 5 algorithms for the Item Recommendation scenario and

6 algorithms for the Rating Prediction scenario. This translates to 5 and 6 rounds for the two

scenarios as compared to the 50 rounds for Auto-CaseRec. As a result, the total time taken

by Auto-CaseRec is always a few times more than that of computing the baselines.

Even so, it is also observed that the time taken by Auto-CaseRec to outperform the best
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baseline algorithm is not much. For the Rating Prediction scenario, tgood was less than tbase

for 2 out of 5 and 3 out of 5 tests for the MovieLens-100K and Last.fm data set respectively.

For the Item Recommendation scenario, tgood was less than tbase 3 out of 5 times and 0 out

of 5 times for the MovieLens-100K and Last.fm data sets respectively. This translates to 8

wins out of 20 for Auto-CaseRec. Additionally, in the tests that tgood was more than tbase ,

the difference was marginal in 6 out of 12 cases. Combining the two, we can effectively say

that in 14 out of 20 cases, the time taken by Auto-CaseRec to outperform the baselines was

better than or marginally worse than the cumulative time taken to compute the baselines.

Therefore, even within very small computational budgets, Auto-CaseRec can be expected to

deliver better algorithm configurations as compared to the default configurations.

Additionally, in 11 out of 20 tests across the 4 experiments, Auto-CaseRec found the best

performing configuration in the first half of the test itself, i.e., within 25 iterations. Of the

remaining 9 tests, the best performing configurations occurred 5 times in the iteration range

26-35, 2 times in the range 36-45, and 2 times in the range 46-50. We cannot draw hard

conclusions about the run-time from this data as the individual iteration run-times greatly

vary with the associated algorithms but we can infer that in a majority of the tests performed,

the effective computation time taken by Auto-CaseRec to find the best configuration is much

less than the overall computation time reported.

4.4 Summary

The Auto-CaseRec library was evaluated on two data sets: the MovieLens-100K data set and

the Last.fm data set. Although Auto-CaseRec generally produced improvements on both data

sets, the improvements were not always significant. For example, the Item Recommendation

experiment for the Last.fm data set produced a mean improvement of 0.99%. In such cases,

it can be argued that it is not worth investing computational resources into solving the CASH

problem. However, the end-results of hyper-parameter optimization are rarely known and the

user can be expected to at least experiment with the different baseline algorithms to find

out the best performing algorithm for his scenario. The run-time analysis has shown that

the time taken by Auto-CaseRec to outperform the baselines is less than the time taken to

evaluate all baselines in some cases (6 out of 20) and only marginally worse in some more

(8 out of 20). Therefore, the author recommends using Auto-CaseRec instead of manual
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algorithm selection when prior knowledge about the algorithm hyper-parameters is limited. It

has also been shown that the algorithms found by Auto-CaseRec to produce the best results

are often different than the best performing baseline (3 out of 4 experiments). Additionally, the

effect of hyper-parameter tuning shows that often, algorithms perform significantly better with

hyper-parameter tuning. Therefore, we can say that performing manual algorithm selection

without hyper-parameter tuning is unlikely to produce the actual best algorithm for the user’s

scenario.

The results produced in these experiments are not generalizable to all Recommender System

scenarios as it is a broad domain with applications varying greatly in the user-base as well as

the items offered. The results presented may also contain an inherent bias in the performance

of the baselines (default hyper-parameters). This is possible because the data sets used

are gold-standard data sets in the RS domain and are very often used to evaluate systems.

Therefore, it is possible that the default hyper-parameters of the Case Recommender library

may already be tuned to some extent for the MovieLens-100K or the Last.fm data set. To get

a more accurate picture of Auto-CaseRec vs the algorithms with default hyper-parameters,

experiments need to be performed with many more RS data sets, both standard and non-

standard. Also, evaluating a stronger baseline like Grid Search would make the evaluations

more robust. This is left for future work.
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5 Conclusion

This chapter provides a conclusion to the research work by presenting a summary of the

scientific developments made through this research work, discussing the challenges faced

during the execution of the research tasks outlined in Section 1.3, recognising the limitations

inherent in the research and finally, presenting the ideas that the author has for the future

work to further develop the Auto-CaseRec tool.

5.1 Summary

This research work presented a novel automated Recommender System Library, Auto-CaseRec.

The research literature in the Recommender Systems community makes two observations

through various experimental studies: different recommendation algorithms perform differ-

ently in different recommendation scenarios and even with changing data set characteristics

in the same scenario and, hyper-parameter optimization of recommendation algorithms im-

proves the performance of recommendation algorithms. To exploit the benefits of both algo-

rithm selection and hyper-parameter optimization, both problems were reformulated as one

single problem, the Combined Algorithm Selection and Hyper-parameter optimization prob-

lem (CASH). The Auto-CaseRec library was proposed as the first automated tool for the RS

community that uses advanced HPO techniques to solve the CASH problem over a combined

hierarchical search space of algorithms and hyper-parameters. Auto-CaseRec uses advanced

HPO techniques like Bayesian Optimization to find the "best" algorithm and hyper-parameters

for a given recommendation scenario and RS data set. Auto-CaseRec is based on the Case

Recommender Python library and supports the optimization of various evaluation metrics in

both the Rating Prediction and Item Recommendation recommendation scenarios. The ex-

perimental results showed that Auto-CaseRec outperformed the individual recommendation
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algorithms of Case Recommender with default hyper-parameters consistently across 5 out of

5 tests in both recommendation scenarios for the two gold-standard RS data sets: MovieLens-

100K and Last.fm. The author aims to further develop the Auto-CaseRec library and publish

it for open-source use very soon. Hopefully, Auto-CaseRec will serve as a useful tool for the

RS community and fulfill the ambitions that were stated alongside the research objective in

Section 1.3.

5.2 Challenges

This section presents the various technical and analytical challenges faced during the execution

of the research tasks that were presented as the means of fulfilling the research objective stated

in Section 1.3. Examining the challenges in the context of the research tasks was deemed

appropriate by the author as they are fundamentally related to the tasks during which they

were encountered in the first place. The tasks and their associated challenges are given

below.

• Task 1: To identify existing open-source RS tool-kits and analyse them in

terms of the diversity of recommendation algorithms, diversity of evaluation

methods, ease of use and flexibility of operation.

The analysis of the RS tool-kits showed that the most appropriate libraries offered unique

advantages but had certain disadvantages as well. Initially, the well-known Surprise

library was considered for its diverse set of algorithms and Grid Search functionality but

it was discovered that Surprise is not under active development since 2019. Next, the

Spotlight library was chosen because of its unique set of algorithms and it was carried

forward into Task 3. The initial experimentation in Task 3 revealed that Spotlight’s

in-built data processing methods were inflexible and thus inadequate for the robust

evaluation of RS algorithms. Finally, the relatively new Case Recommender library

was chosen for use in Auto-CaseRec owing to its diverse set of algorithms, adequate

evaluation metrics, and robust cross-validation strategies.

• Task 2: To identify and perform an experimental analysis of existing open-

source Hyper-Parameter Optimization (HPO) packages that provide ad-

vanced HPO methods like Bayesian Optimization and allow for the opti-
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mization of arbitrary functions, while also observing the flexibility for defining

search spaces, parallelization capabilities and ease of use.

The SMAC v3 package was considered as the first choice as the SMAC algorithm [32]

had proven to be a state-of-the-art AutoML method and the was the work-horse behind

the Auto-WEKA [21] and Auto-sklearn [1] libraries. However, the tool was limited to

the Linux environment and produced bugs during experimentation that prevented the

optimization process from terminating. When the bugs couldn’t be solved even after

considerable efforts and no support could be found on the internet, it was deemed

appropriate to use another library, specifically, Hyperopt [25]. The advantages of Hy-

peropt turned out to be numerous: multiple HPO algorithms, flexible interface for

search-spaces, and support for parallelization as well as different Operating Systems.

• Task 3: To experimentally analyse the feasibility of an Auto-RS tool by

using a chosen HPO library to optimize the hyper-parameters of individual

recommendation algorithms from a chosen RS tool-kit.

The experimentation for this task was performed using Hyperopt and Spotlight and

showed improvements across 4 data sets (Book-Crossing, Jester, Last.fm, and MovieLens-

100K). However, Spotlight presented limitations and it was decided to use Case Rec-

ommender instead. Due to time constraints, the development of Auto-CaseRec had

to be initiated based on the results achieved with Spotlight. This presented a certain

amount of uncertainty but was overcome by the fast development of an initial prototype

of Auto-CaseRec that solved the CASH problem for the rating prediction scenario and

produced good results for the MovieLens-100K and Last.fm data sets.

• Task 4: To construct an Auto-RS tool using functionality from the chosen

HPO library and RS tool-kit such that it performs data processing (splitting

into cross-validation folds) and optimization of supported evaluation metrics

over a hierarchical search space of recommendation algorithms and their

associated hyper-parameters in an automated manner with minimal user

intervention.

During the further development of the Auto-CaseRec tool, a major challenge presented
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itself. An accident to the author’s laptop resulted in the partial loss of the source

code and a major loss of written and collected material, and experimental results. An

extension was granted to the author by Trinity College to ensure the completion of the

research. The author was able to redo the research work, develop the Auto-CaseRec

tool, and perform experimentation on another Desktop machine.

• Task 5: To experimentally verify the benefits of the Auto-RS tool by evalu-

ating it on gold-standard RS data sets.

This task presented an analytical as well as logistical challenge. The experiments had

to be designed robustly so that the results would be statistically significant while there

was also a time constraint. To ensure the robust validation of the Auto-CaseRec tool,

the experiments were conducted in sets of 5 tests, with 5-Fold cross-validation in each

iteration, and across two data sets. This design of the experiments proved to take up a

lot of time and often, the experiments would terminate abruptly due to external factors.

Experimentation was simultaneously conducted on Google Colab as well as the Desktop

machine to ensure their completion.

5.3 Future Work and Limitations

In this section, an organised view of the limitations associated with this research work and the

Auto-CaseRec library is presented, along with future work that is to be undertaken to tackle

these limitations. The limitations are as follows.

1. Run-time: The Auto-CaseRec library uses Bayesian Optimization (TPE) to find the

"best" algorithm configurations for a given data set which is an iterative optimization

process. Finding a configuration that produces significant improvements can take much

more time than simply manually testing all the default algorithms and may also vary

across data sets. When computational budgets are low, users may simply choose to

trade-off the improvement in performance for the much less time consumed.

2. Evaluation: The evaluation of Auto-CaseRec was performed on only two data sets.

Also, the data sets used are standard in the RS community and Case Recommender

algorithms can be expected to be pre-tuned for at least one of them. A more robust
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evaluation of Auto-CaseRec on data sets from diverse applications is required to form

a scientific opinion about its general advantages and disadvantages.

3. Baseline: A stronger baseline like Grid Search needs to be considered. Such a baseline

would enable a more concrete comparison with Auto-CaseRec in terms of run-time as

well as performance.

4. Scalability: It was seen that the run-times of Auto-CaseRec were significantly more

as the number of Users and Items increased from the MovieLens-100K data set to the

Last.fm data sets. These data sets contained 100,000 and 92,000 instances respectively.

Much larger data sets are common in the RS research community, for example, the

MovieLens 1M, 10M, and 20M data sets, and the BookCrossing data set with around

1M instances. It was found that the reason is that some RS algorithms scale very badly

with an increasing number of users and items. This directly translates to scalability

issues for Auto-CaseRec that performs multiple algorithm evaluations for all algorithms

in the search space.

Future work is aimed at making improvements that counter-act the effects of most of the

limitations presented above, although, it is questionable as to whether issues like scalability

and run-time can be completely removed. The future work is as follows.

1. Parallelization: The Hyperopt library [56] provides a simple parallelization interface

based on MongoDB and Apache Spark and can be readily included into Auto-CaseRec

without much effort. However, parallelization presents a trade-off between run-time

and guided exploration of the search space as more parallel configurations involve more

random sampling. Implementing and evaluating Auto-CaseRec with various degrees of

parallelization is a crucial part of the future development of Auto-CaseRec.

2. Pruning: Pruning techniques can be used to narrow the search space down to config-

urations that are more promising than others before running the search process. For

example, meta-learning can use past experiences to determine promising configurations

based on data set features and has been used by Auto-sklearn [1]. Other techniques

include bandit-based methods such as Successive Halving [83] and Hyperband [70] that

remove configurations that deliver bad results based on their cross-validation perfor-
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mance during run-time. A simple strategy called early-stopping has already been im-

plemented in Auto-CaseRec but it only terminates bad configurations pre-maturely and

does not permanently discard them.

3. Evaluation: To establish robust estimates of the advantages and disadvantages of using

Auto-CaseRec in terms of both performance and run-time, further experimentation is

required on multiple RS data sets. The results from these experiments would also feature

in future research paper submissions to research Journals and/ or conferences.

4. HPO methods: Several HPO approaches exist in the literature (Section 2) and some

methods might produce better performance or better convergence than Hyperopt. Fur-

ther research is required to add more HPO methods using other libraries or implement

them from scratch to complement or even completely replace Hyperopt.
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