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Abstract

Suspension control systems in cars are a vital component in modern vehicles tasked with
enhancing ride comfort for passengers and protecting occupants from the impact of road
disturbances. In order to maximise the performance of these systems, modern cars make use
of a variety of different types of suspension. One popular type used in many cars is known as
semi-active suspension and allows for the suspension systems to dynamically change to match
road disturbances. Specifically, these systems dynamically alter a value known as the damping
rate, which is responsible for controlling the dampers in a car. By doing this the vehicle can
dissipate energy stored in the suspension system’s spring, which in turn improves ride comfort.

However, these systems rely on system controllers to monitor and dictate the damping rate.
One of the most common types of controller for this purpose is known as a Proportional
Integral Derivative (PID) controller. Whilst these controllers have a number of benefits as-
sociated with them there are also a number of drawbacks, including the linear nature of the
controllers, the difficulties with tuning the controller’s parameters, and the sensitivity of the
controllers to changes in the environment.

On the other hand, many of these weaknesses are the strengths of reinforcement learning
techniques which are capable of dealing with non-linearities and are self-training and highly
adaptable. In recent years, a lot of research has gone into combining reinforcement learning
with PID-controllers in order to benefit from each system’s strengths.

In this research, a novel approach is taken to do this, by directly combining a PID-controller
with a Deep Deterministic Policy Gradient (DDPG) reinforcement learning agent, through a
technique known as Residual Policy Reinforcement Learning. This approach involves summing
both policies together in order to create a final policy which exhibits the benefits of both
systems.

This approach is evaluated on a quarter car suspension system model provided by ZF Friedrichshafen
AG. The reinforcement learning agent is trained using the DDPG algorithm and is deployed,
with a PID-controller as a base policy, on a variety of road disturbances. The results show
that the algorithm is capable of improving the suspension control of a car, enhancing the
performance of a PID-controller, and adapting to environmental changes. However, it is also
shown that the algorithm’s performance is highly reliant on the performance of the base policy.

ii



Acknowledgements

My deep gratitude goes to my fellow students and professors from Trinity College Dublin. In
particular, I would like to thank my supervisor, Dr. Ivana Dusparic for her guidance and
advice throughout the year. In addition, I would like to thank Dr. Elena Sapozhnikova, Dr.
Tobias Pobandt and the entire team at ZF Friedrichshafen AG for their efforts in supporting
me throughout this year. Finally, I would also like to extend my sincerest appreciation to my
friends and family who have encouraged me throughout my education and without whom I
would not be here.

iii



Contents

1 Introduction 1

1.1 Thesis Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6

2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Optimisation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.5 Universal Approximation Theorem . . . . . . . . . . . . . . . . . . . 17

2.3 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Deep Q-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Policy Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Actor-Critic Models . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.4 Deep Deterministic Policy Gradient . . . . . . . . . . . . . . . . . . 23
2.3.5 Residual Policy Reinforcement Learning . . . . . . . . . . . . . . . . 25

2.4 Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Suspension Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 PID-controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Related Work 33

3.1 Online PID Tuning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.1 Traditional Tuning Methods . . . . . . . . . . . . . . . . . . . . . . 34
3.1.2 Reinforcement Learning Tuning Methods . . . . . . . . . . . . . . . 39

iv



3.2 Replacing PID Control with Reinforcement
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Residual Policy Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 47
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Design 51

4.1 Suspension Control As a RL Problem . . . . . . . . . . . . . . . . . . . . . 51
4.1.1 State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.2 Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.3 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.4 Terminal Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Deep Reinforcement Learning Algorithm . . . . . . . . . . . . . . . . . . . 58
4.3 Residual Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Performance Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Early Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Deep Neural Network’s Architecture . . . . . . . . . . . . . . . . . . . . . . 60
4.7 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Implementation 65

5.1 Simulation Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Residual Policy Reinforcement Learning Algorithm Implementation . . . . . . 66
5.3 PID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4 Reinforcement Learning Agent . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.1 Tensorflow Implementation . . . . . . . . . . . . . . . . . . . . . . 68
5.4.2 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.3 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.4 Optimisation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.5 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4.6 Performance Threshold and Early Stopping . . . . . . . . . . . . . . 78

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Evaluation 79

6.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 Evaluation Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.1 Evaluation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.2 Evaluation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4.1 Suspension Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

v



6.4.2 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5.1 Sine Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.5.2 Pothole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5.3 Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.5.4 Mass Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5.5 Residual Policy Reinforcement Learning Algorithm as a PID Tuner . . 107
6.5.6 Challenges of Using the Residual Policy Reinforcement Learning . . . 110

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Conclusion 113

7.1 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A1Appendix 122

A1.1 Deep Learning Early History . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A1.2 Mass Change Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

vi



List of Figures

2.1 RL agent’s interaction with environment [1] . . . . . . . . . . . . . . . . . 7
2.2 Tabular Q-learning [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Neurons [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Neural Network Architecture [4] . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 TanH Activation Function [5] . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Rectified Linear Unit Function [6] Note: the red line indicates the ReLU function 14
2.7 Deep Q-learning [7] Note: the use of convolutional layers to analyse the image

of the screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 Deep Q-learning Target Networks [8] Note: the difference in noise between

the learning of the normal network versus the target network with reduced
updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 Actor Critic Architecture [1] . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.10 Performance of Residual Policy Reinforcement Learning Algorithm [9] Note:

The yellow line indicating the DDPG+HER implementation failing . . . . . . 26
2.11 Open Loop system [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.12 Closed Loop system [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.13 Suspension system [11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.14 Dampers [11] Note: the difference as the piston is compressed . . . . . . . 29
2.15 PID-controller [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.16 PID-controller with Kp being changed [1] Note: that this diagram only high-

lights the deviations in performance when Kp is changed. Similar performance
variations occur when changing either of the other two gains. . . . . . . . . 32

3.1 APID Update Parameters [13] Note: the negative sign, as gradient descent is
attempting to minimise the cost . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 APID PID Gain Updates [13] . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 APID Algorithm [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Fuzzy Logic Self Tuning PID Implementation [14] . . . . . . . . . . . . . . 35

vii



3.5 Fuzzy Logic Class Tables [14] Note: that the outputs are classed based on
the combination of input classes e.g. in Table 2 in the image NL and NL gives
and output class of PVL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Fuzzy Logic Membership Plots for Kp [14] Note: The triangular shape of the
membership plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Neural Network PID Tuner Architecture [15] . . . . . . . . . . . . . . . . . 37
3.8 Neural Network PID Tuner Implementation [15] . . . . . . . . . . . . . . . 38
3.9 State Aggregation for Incremental Q-Learning [16] . . . . . . . . . . . . . . 40
3.10 Action Aggregation for Incremental Q-Learning [16] Note: the increase in

points in particular regions, this represents the increase in actions in those
areas that showed invariance . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.11 Actor Critic Network for PID Tuning [17] Note: the last output is the critics
valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.12 Actor Critic Model for PID Tuning [17] Note: the addition of the SAM unit 42
3.13 Actor’s Architecture for Turbo-Charger control [18] . . . . . . . . . . . . . . 45
3.14 Critic’s Architecture for Turbo-Charger control [18] Note: the critic receives

one extra input, which is the action taken by the actor . . . . . . . . . . . . 45
3.15 Residual Policy RL results for the Vision Based tests [19] . . . . . . . . . . . 48
3.16 Residual Policy RL results for the Full State Information tests [19] Note: that

the residual policy is only compared against the standalone Reinforcement
Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.17 Residual Policy RL results for the Sparse Rewards tests [19] Note: that this
test in only conducted on the USB insertion environment . . . . . . . . . . . 49

4.1 Wheel Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Wheel Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Agent’s Actions Every 35ms . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Agent’s Actions Note: How the actions are maintained for at least 35ms . . 54
4.5 ISO Riding Comfort Standard [20] . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Reward Function 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7 Reward Function 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.8 Divergence when applying DDPG to suspension control [1] Note: the red box

indicating the point where divergence occurred . . . . . . . . . . . . . . . . 58
4.9 Residual Policy Reinforcement Learning Rewards Note: the enhance stability 59
4.10 Actor Critic’s Architecture [1] . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.11 Actor’s Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.12 Critic’s Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.13 DDPG Algorithm [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

viii



5.1 Residual Policy Reinforcement Learning Algorithm Interaction with the Envi-
ronment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Tensorflow Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Main Actor Critic Network Tensorflow Graph . . . . . . . . . . . . . . . . . 71
5.4 Target Actor Critic Network Tensorflow Graph . . . . . . . . . . . . . . . . 72
5.5 Implementation: Adam Optimizer . . . . . . . . . . . . . . . . . . . . . . . 76
5.6 Implementation: RMS_Prop Optimizer . . . . . . . . . . . . . . . . . . . . 76
5.7 Implementation: Stochastic Gradient Descent Optimizer . . . . . . . . . . . 77

6.1 Evaluation: ISO 2631 Ride Comfort Standard [20] . . . . . . . . . . . . . . 80
6.2 Evaluation: Sine Wave Road Disturbance . . . . . . . . . . . . . . . . . . . 82
6.3 Evaluation: Pot Road Disturbance . . . . . . . . . . . . . . . . . . . . . . . 82
6.4 Evaluation: Hybrid Road Disturbance . . . . . . . . . . . . . . . . . . . . . 82
6.5 Evaluation: Quarter Car Simulation Model [22] . . . . . . . . . . . . . . . 84
6.6 Evaluation: 2.5cm sine wave - acceleration magnitude differences. Negative

readings indicate the Residual Policy RL algorithm has lower accelerations than
the PID-controller Note: the RL agent here refers to the whole Residual Policy
RL algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.7 Evaluation: 2.5cm sine wave - Exponential Cumulative Acceleration for the
Residual Policy Reinforcement Learning Algorithm vs the PID-controller. Note:

over time the PID experiences far more acceleration Note: the RL agent here
refers to the whole Residual Policy RL algorithm . . . . . . . . . . . . . . . 88

6.8 Evaluation: 5cm sine wave - acceleration magnitude differences. Negative
readings indicate the Residual Policy RL algorithm has lower accelerations
than the PID-controller Note: the RL agent here refers to the whole Residual
Policy RL algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.9 Evaluation: 5cm sine wave - Exponential Cumulative Acceleration for the
Residual Policy Reinforcement Learning Algorithm vs the PID-controller. Note:

over time the PID experiences far more acceleration Note: the RL agent here
refers to the whole Residual Policy RL algorithm . . . . . . . . . . . . . . . 92

6.10 Evaluation: 2.5cm pothole - Acceleration Difference between the PID-controller
and the Residual Policy RL algorithm. In this case the Residual Policy RL al-
gorithm is 1.49 times more likely to have a reduced acceleration than the
PID-controller. Note: Negative values indicate the Residual Policy RL algo-
rithm has a lower acceleration and is outperforming the PID-controller Note:

the RL agent here refers to the whole Residual Policy RL algorithm . . . . . 95

ix



6.11 Evaluation: 2.5cm pothole - Exponential Cumulative Acceleration for the
Residual Policy Reinforcement Learning Algorithm vs the PID-controller. Note:

over time the PID experiences far more acceleration. Note: the RL agent here
refers to the whole Residual Policy RL algorithm . . . . . . . . . . . . . . . 96

6.12 Evaluation: 5cm pothole - Acceleration Difference between the PID-controller
and the Residual Policy RL algorithm. In this case the Residual Policy RL
algorithm is 2 times more likely to have a reduced acceleration than the PID-
controller. Note: Negative values indicate the Residual Policy RL algorithm
has a lower acceleration and is outperforming the PID-controller Note: the
RL agent here refers to the whole Residual Policy RL algorithm . . . . . . . 98

6.13 Evaluation: 5cm pothole - Exponential Cumulative Acceleration for the Resid-
ual Policy Reinforcement Learning Algorithm vs the PID-controller. Note:

over time the PID experiences far more acceleration Note: the RL agent here
refers to the whole Residual Policy RL algorithm . . . . . . . . . . . . . . . 99

6.14 Evaluation: 2.5cm hybrid disturbance - Acceleration Difference between the
PID-controller and the Residual Policy RL algorithm. In this case the Residual
Policy RL algorithm is 2.45 times more likely to have a reduced acceleration
than the PID-controller. Note: Negative values indicate the Residual Policy
RL algorithm has a lower acceleration and is outperforming the PID-controller
Note: the RL agent here refers to the whole Residual Policy RL algorithm . 101

6.15 Evaluation: 2.5cm hybrid disturbance -Exponential Cumulative Acceleration
for the Residual Policy Reinforcement Learning Algorithm vs the PID-controller
Note: over time the PID experiences far more acceleration Note: the RL
agent here refers to the whole Residual Policy RL algorithm . . . . . . . . . 102

6.16 Evaluation: 5cm hybrid disturbance -Acceleration Difference between the PID-
controller and the Residual Policy RL algorithm. In this case the Residual
Policy RL algorithm is 2.4 times more likely to have a reduced acceleration
than the PID-controller Note: Negative values indicate the Residual Policy
RL algorithm has a lower acceleration and is outperforming the PID-controller
Note: the RL agent here refers to the whole Residual Policy RL algorithm . 104

6.17 Evaluation: 5cm hybrid disturbance -Exponential Cumulative Acceleration for
the Residual Policy Reinforcement Learning Algorithm vs the PID-controller
Note: over time the PID experiences far more acceleration Note: the RL
agent here refers to the whole Residual Policy RL algorithm . . . . . . . . . 105

6.18 Evaluation: Rewards During Training Note: the agent re-optimises the per-
formance of the PID-controller Note: the RL agent here refers to the whole
Residual Policy RL algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 106

x



6.19 Evaluation: Rewards of the Residual Policy RL algorithm using a untuned
PID-controller as a base policy Note: the RL agent here refers to the whole
Residual Policy RL algorithm, whilst the untuned PID-controller refers to the
untuned controller alone . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.20 Evaluation: Agent’s actions on the hybrid road disturbance . . . . . . . . . 109
6.21 Evaluation: Agent’s actions on the pothole road disturbance . . . . . . . . . 110

xi



List of Tables

3.1 Non-RL Online Tuning Techniques . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Reinforcement Learning Online Tuning Techniques . . . . . . . . . . . . . . 43
3.3 Reinforcement Learning Alternatives to PID-control Methods . . . . . . . . 47
3.4 Residual Policy Reinforcement Learning with P-controller base policy Summary

Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Reward Function Testing Parameters . . . . . . . . . . . . . . . . . . . . . 57
4.2 Reward Functions Note: the table shows the average number of times the

boundary was exceeded over the three runs. All other measurements have
regions of error to accommodate for deviations between results in the 3 tests 57

5.1 PID Gain Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Hyperparameter values, tuning ranges and step sizes Note: any value in the

incremental column with an Asterix beside it indicates the number was multi-
plied as opposed to added on to the original value. For example, for a range
[1,100] with increment size *10, this means values 1, 10 and 100 were tested. 74

5.3 Implementation: Activation Functions . . . . . . . . . . . . . . . . . . . . . 75

6.1 Evaluation: PID Gain Values . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Evaluation: 2.5cm sine wave results . . . . . . . . . . . . . . . . . . . . . . 85
6.3 Evaluation: 2.5cm sine wave results as per ISO 2631 ride comfort standard

Note: The total number of timesteps are different between the two models.
This is because it takes the PID-controller longer to achieve the goal and hence
requires more timesteps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 Evaluation: 5cm sine wave results . . . . . . . . . . . . . . . . . . . . . . . 89
6.5 Evaluation: 5cm sine wave results as per ISO 2631 ride comfort standard . . 89
6.6 Hyperparameters for Pothole Experiment . . . . . . . . . . . . . . . . . . . 93
6.7 Evaluation: 2.5cm pothole results . . . . . . . . . . . . . . . . . . . . . . . 93
6.8 Evaluation: 2.5cm pothole results as per ISO 2631 ride comfort standard . . 94
6.9 Evaluation: 5cm pothole results . . . . . . . . . . . . . . . . . . . . . . . . 97
6.10 Evaluation: 5cm pothole results as per ISO 2631 ride comfort standard . . . 97

xii



6.11 Evaluation: 2.5cm hybrid disturbance results . . . . . . . . . . . . . . . . . 100
6.12 Evaluation: 2.5cm hybrid disturbance results as per ISO 2631 ride comfort

standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.13 Evaluation: 5cm hybrid results . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.14 Evaluation: 5cm hybrid results as per ISO 2631 ride comfort standard . . . . 103
6.15 Randomly Assigned PID Gain Values . . . . . . . . . . . . . . . . . . . . . 107

A1.1 Evaluation: 2.5cm hybrid results before mass change . . . . . . . . . . . . . 123
A1.2 2.5cm hybrid results prior to mass change as per ISO 2631 ride comfort standard123
A1.3 Evaluation: 2.5cm hybrid results after mass change . . . . . . . . . . . . . . 124
A1.4 Evaluation: 2.5cm hybrid results after mass change as per ISO 2631 ride

comfort standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xiii



1 Introduction

Suspension control systems are an integral part of modern car systems, with ride comfort
and passenger satisfaction being directly linked to the performance of these systems. As
such, there has been a lot of research focused on improving and maximising their
performance. In order to do this, systems need to be developed that are capable of reducing
the chassis acceleration, the chassis velocity and the chassis position when a vehicle impacts
a road disturbance i.e. a bump. The chassis acceleration in particular plays a key role in ride
comfort, with chassis velocity and position being directly related to it. As such, a variety of
different approaches have been proposed to achieve this with one of the most popular
systems being known as semi-active suspension systems.

These semi-active suspension systems work by dynamically altering the characteristics of the
suspension system in order to maximise its performance. Specifically, semi-active suspension
systems work by altering a parameter known as the damping rate. This parameter dictates
the level of damping the system’s damper experiences. These dampers are responsible for
dissipating the energy absorbed in the system’s spring following road disturbances and as
such play a key role in maximising ride comfort for passengers.

However, in order for these systems to be effective, a system controller is needed to provide
continuous input to the damper to dictate how it should behave. A very popular controller
for this purpose is a Proportional, Integral, Derivative (PID) controller. These controllers
operate by reducing the error between a target value and current value and are incredibly
popular due to their cost, simplicity, reliability and ability to output continuous actions. As
such, they are deployed across a wide variety of systems including temperature control and,
of course, suspension control.

However, whilst these controllers are incredibly popular, they do have their drawbacks. The
first problem associated with the controller relates to its linear nature which can make it
perform poorly in complex non-linear systems. As well as this, the controller has a number
of parameters associated with it, known as gains, and these parameters are known to be
incredibly tedious to tune. Whilst there exists a wide variety of tuning techniques including
the Ziegler and Nichols method [23] and Chien–Hrones–Reswick method [24], these
methods rarely agree on the gain values, usually outputting different values causing the
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controllers to behave slightly differently. This indicates that finding the set of parameters
with the optimum performance for a PID is not trivial and as a result PID-controllers rarely
operate at their maximum. As well as this, these parameters are highly specific to
environments and as such even small deviations in the characteristics of an environment can
result in a significant drop in performance. These changes in environmental characteristics
can relate to incredibly minor fluctuations in temperature or even wear and tear. As such,
even PID-controllers tuned in simulations can exhibit dramatically different performances
once they are deployed to the real world. As a result, a lot of effort has been spent trying to
identify online or self-tuning methods to help PID-controllers to adapt during their life cycle.

In recent years, a lot of research has also focused on replacing or combining PID-controllers
with reinforcement learning in an attempt to overcome and compensate for the problems
associated with the PID-controller. This focus is due in part to the growth of reinforcement
learning techniques. More recently, reinforcement learning has been applied to a variety of
different applications ranging from playing Atari games [25] to the control of Unmanned
Aerial Vehicles (UAVs) [26]. This has been possible due to the unique set of characteristics
associated with reinforcement learning algorithms which include the ability to deal with
non-linearities, the ability to self-train and the ability to adapt to changes in the environment.
This is particularly true for deep reinforcement learning approaches. These characteristics
directly contrast the PID-controller’s weaknesses and as such a number of efforts have been
made to replace or enhance PID-control with reinforcement learning techniques.

One such attempt was shown in [1] where attempts were made to replace a PID-controller in
a suspension control system completely with the implementation of a reinforcement learning
algorithm. However, it was found during this work that the algorithm proved too unstable
and struggled to fully grasp the task. This was believed to be due to the inconsistencies
experienced during the learning phase and highlights the fact that this is not a trivial task.

In an attempt to remove these inconsistencies, and to allow reinforcement learning to be
applied to PID-control, this work proposes the use of the Residual Policy Reinforcement
Learning algorithm [9] to combine a PID-controller together with a deep reinforcement
learning agent trained using the Deep Deterministic Policy Gradient algorithm [27]. This
algorithm works by summing the output of both the PID-controller and the reinforcement
learning agent together to form a final policy, which it is hoped can outperform either
approach individually. This policy or strategy essentially describes the behaviour of the
control system and it is believed that by combining these two individual policies together,
through Residual Policy Reinforcement Learning, the final system can benefit from the
consistency provided by the PID-controller, which will help the reinforcement learning agent
to learn and exhibit the adaptability, non-linearity and self-training ability that is a hallmark
of reinforcement learning techniques.
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This is, to the best of the author’s knowledge, the first time Residual Policy Reinforcement
Learning will be applied to enhance the performance of a PID-controller, and it is hoped
that by doing so the performance of PID-controllers and suspension control systems can be
improved.

It is also hoped that by successfully improving the PID-controller’s performance in
suspension control, the techniques used can be applied to other applications involving
PID-controllers in the future.

1.1 Thesis Aims and Objectives

The main aim of this thesis is to improve the overall performance of suspension control in
vehicles by enhancing a PID-controller’s ability to reduce the chassis acceleration, speed and
movement when a road disturbance is encountered and hence improve ride comfort. It is
believed that this is possible by combining PID-control with reinforcement learning, through
Residual Policy Reinforcement Learning, in order to maximise the benefits of both systems.
This thesis argues that the strengths and weaknesses of both these systems independently
complement each other, and that by combining them through Residual Policy Reinforcement
Learning a more effective control system can be developed. This thesis analyses whether this
is indeed the case, and presents the design and implementation for such a system. It also
provides an evaluation of such a system on a quarter car suspension system model provided
by ZF Friedrichshafen AG.

1.2 Thesis Assumptions

In designing and evaluating the Residual Policy Reinforcement Learning implementation, a
number of assumptions are made which simplifies the task and limits the scope of the thesis.

The main assumption involves the role of suspension control in vehicles. This thesis limits
this role to only providing passenger comfort, however, in truth, these systems also play key
roles in road handling, traction and steering stability. In this thesis these roles are ignored
and this is reflected in the simulation used. This simulation only monitors vertical chassis
acceleration, velocity and movement along a 2-D plane. As such, no consideration is given
to the system’s ability to deal with other tasks.

Another assumption is in relation to the factors that affect the suspension system of cars.
The simulation used provides a simplified version of the impact of road disturbances and
damping rate on a vehicle, and as such neglects a number of aspects which may affect this.
This includes vehicle driving speed, which is not considered when calculating the chassis
acceleration. However, intuitively, this is an important factor in determining ride comfort.
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In addition to this, the simulation only allows an agent to input a damping value every
35ms, which is done to match the mechanical constraints of a real system, which only allows
damping rate changes approximately every 35ms. However, in the simulation used this is
done by only allowing the algorithm to input a damping value every 35ms, even if this input
is the same. This means that the simulation has a harsher constraint than a real world
system as even actions that are the same can only be taken once every 35ms. As a result, it
is possible for a disturbance to occur during one of these periods and the algorithm will not
have the ability to change the damping rate until the next 35ms period. This is the case
even if the policy has not changed its output over the previous 35ms.

Finally, this thesis also assumes that road surfaces are completely smooth and ignores the
small bumps and rough surfaces of a typical road. As a result, the agent’s ability to deal
with the typical random noise which may be found whilst driving on a normal road surface is
not tested.

1.3 Thesis Contribution

This thesis identifies and motivates the need for combining PID-controllers with deep
reinforcement learning algorithms through Residual Policy Reinforcement Learning. It
attempts to illustrate the applicability of such a control system in the context of suspension
control. It presents the challenges associated with using PID-controllers in system control
and proposes a solution aimed at overcoming these problems with the use of deep
reinforcement learning techniques. The main contribution of this thesis is the design,
implementation, application and evaluation of a Residual Policy Reinforcement Learning
algorithm aimed at improving suspension control in a car system. This technique allows for
the development of a complementary system which combines the strengths of both
PID-controllers and deep reinforcement learning to create a highly adaptive, consistent and
effective control system. This control system is capable of learning strategies to enhance the
performance of the PID-controller on a variety of different road disturbances and is capable
of adapting to a variety of environmental changes. This thesis evaluates this model on a
quarter car suspension system simulation provided by ZF Friedrichshafen AG and shows the
potential of such an algorithm to enhance PID-control in suspension control.

1.4 Document Structure

This document is structured as follows. Chapter 2 provides the background to this research,
providing an insight into reinforcement learning, PID-control and suspension systems.
Chapter 3 describes the literature including some online self-tuning PID methods,
reinforcement learning tuning methods and also highlights attempts to replace
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PID-controllers with reinforcement learning. This section also describes previous work
whereby Residual Policy Reinforcement Learning was used to optimize the performance of a
Proportional (P) controller, which is a controller very closely linked with the PID-controller
used in this study. Chapter 4 outlines the design used in this particular thesis, as well as
providing information on the design of the task as a RL problem, the design of the algorithm
itself and a number of additional design features used. Chapter 5 describes how these
designs were implemented, including the tools used to do so. Chapter 6 presents the results
and evaluations of this thesis on a variety of different road disturbances using a quarter car
suspension system. Finally, chapter 7 provides a summary and conclusion of the work done,
and provides direction for any future work.
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2 Background

This chapter provides an insight into the techniques and technologies used in this thesis.
Section 2.1 describes the basics of reinforcement learning. Section 2.2 introduces deep
learning and describes the different components used to make it effective. Section 2.3
describes deep reinforcement learning which combines deep learning and reinforcement
learning. Section 2.4 explains control systems, whilst section 2.5 describes suspension
systems and portrays it as a control system. Finally, section 2.6 explains PID-controllers and
how they operate.

2.1 Reinforcement Learning

Reinforcement learning (RL) represents a family of artificially intelligent techniques where an
agent attempts to maximise its reward in an environment by learning how to act optimally in
this environment through trial and error [28]. In order to do this the agent interacts with an
environment through actions, which it makes based on the current position of the
environment. This position is described to the agent via a state vector. The agent then
receives a reward signal which describes how good a particular action was in the particular
state, and the process begins again. This interaction can be seen in Figure 2.1.
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Figure 2.1: RL agent’s interaction with environment [1]

Reinforcement learning is formalized as a type of Markov Decision process [29], and
therefore is defined by;

• T – timestep

• S – set of states such that s 2 S

• A – set of actions such that a 2 A

• R(st, at, st+1) – reward function for taking action at, in state st and transitioning
to the new state st+1

• T(st, at, st+1) – transition function which described the probability of transitioning
to state st+1 from state st having taken action at

In truth, RL is an incompletely-known Markov Decision Process and therefore does not know
the transition function or reward function. Instead, reinforcement learning algorithms
attempt to learn how best to behave in an environment in order to maximise their returns
from that environment. This behaviour is defined by what is known as a policy in
reinforcement learning. The policy essentially describes the strategy of an agent.

There are two main groups of reinforcement learning techniques. The first group is known as
model based techniques and essentially involves the algorithm developing a model of the
environment by taking actions and observing the feedback which includes the next state and
the reward. However, these algorithms are of limited use due to the difficulty in modelling
complex environments.

The alternative techniques are known as model free algorithms and do not require the
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development of a model. Instead these algorithms try to directly learn the correct behaviour
required to maximise reward. This thesis focuses on model free algorithms only.

Within model free algorithms, there are two subgroups; value based and policy based
algorithms.

Value based algorithms work by trying to optimise value function approximations. These
value functions usually try to learn Q-values which describe how good a particular action is
in a particular state. These Q-value approximations can then be used to optimise the
performance of an agent’s policy. For example, if the agent’s policy is to always pick the
action with the highest predicted Q-value, then by optimising the accuracy of the Q-value
predictions, the policy’s performance can also be optimised.

In contrast, policy based algorithms work by trying to optimise a policy itself. In other
words, this group of algorithms attempt to optimise the agents strategy as opposed to a
value function which can be used to aid the strategy.

Regardless of which model is used the agent’s ability to learn is reliant on the presence of a
reward signal. The reward signal is returned to the agent from the environment and
describes how good a particular action is within a particular state. Based on this signal the
agent can learn what actions are good in what states.

2.1.1 Q-Learning

One of the most popular reinforcement learning algorithms, known as Q-learning, was
created in [30]. This algorithm was first used in tabular form whereby a table was used to
describe the Q-value associated with particular states and actions, as can be seen in
Figure 2.2

Figure 2.2: Tabular Q-learning [2]

The algorithm works by assigning Q-values for each state-action pair. In order to do this the
algorithm randomly chooses actions in a particular state. This stage of learning is known as
the exploration stage and is where the agent explores the environment, by taking random
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actions, and learns about the Q-values of each state-action pair. In order to do this, the
algorithm tries to apply temporal difference learning, which was first proposed in [31] and
represents an attempt to incorporate long term rewards into the reward system. This results
in the Q-learning update of:

Q(st , at) = (1� ↵)Q(st , at) + ↵[Rt + �maxa✏AQ(st+1, at+1)] (2.1)

where:
Q(st , at) = the current prediction for the current state s and action a
� = discount factor
↵ = learning rate Note: usually in the range (0,1)
Rt = actual reward returned from the environment
maxa✏AQ(st+1, at+1) = the maximum estimated reward from the taking the best action in
the next state

This equation states that the current reward is based on a combination of the immediate
reward from the environment and the discounted future reward associated with the best
action in the next state. The discount factor here reduces the importance of the future
reward slightly, which conveys the priority of the immediate reward to the agent.

Following the exploration stage the algorithm enters into what is known as the exploitation
stage, where the agent then tries to take the optimal actions based on what it has learnt
during exploration. In the case of the Q-learning algorithm this involves choosing the action
with the highest Q-value, considering the state.

As this algorithm works by optimising a value prediction, it is a value based method.

This algorithm can be very effective in discrete-state, discrete-action environments i.e
environments where there are a limited number of actions and states, and it has been shown
to have guaranteed convergence to the optimal policy in [32]. However, for this to happen,
all actions must be repeatedly sampled in all states and the Q-values must be represented
discretely.

2.2 Deep Learning

Deep learning is a subset of machine learning which sits in the wider paradigm of artificial
intelligence. Deep learning makes use of highly complex computational models known as
neural networks which draw heavily from our understanding of human biology, statistics and
applied maths. Deep learning, in particular, refers to those neural network models with many
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layers of neurons. The history of this technology goes back to the 1940’s and can be seen in
section A1.1.

Deep learning uses these neural networks to achieve great power and flexibility by learning to
represent the world as a nested hierarchy of concepts, with each concept defined in relation
to simpler concepts, and more abstract representations computed in terms of less abstract
ones [33]. In other words, deep learning works by breaking down complex tasks into simpler
tasks. For example, in image classification, one layer of the network may be responsible for
identifying lines in an image, whilst another may be responsible for identifying contours. The
key aspect of deep learning is that these layers aren’t designed by humans, but instead are
learnt during training through the use of learning algorithms such as the Backpropagation
algorithm which will be discussed in Section 2.2.2.

This allows deep learning models to deal with highly complex tasks such as image
classification and audio recognition. This field has grown considerably in recent years due to
more powerful computers, larger data sets and better techniques [33].

2.2.1 Deep Neural Networks

Neural networks are a group of algorithms designed to emulate the human brain. In
particular, neural networks attempt to mimic the behaviour and structures of the neurons in
the brain. As a result, neural networks are composed of a number of layers of neurons,
which are essentially processing elements, with synaptic input connections and a single
output. These neurons are connected to each other via a series of weighted connections,
which are updated during learning. Most neurons also have a bias associated with them,
which can also be updated during training. This results in an input equation like so;

⌃ = w1x1 + w2x2.....wnxn + b (2.2)

where:
wi = weight i
xi = input i
b = bias
n = the number of weights passing into the neuron

An activation function is then applied to this weighted sum of inputs in order to get the
output, as can be seen in Figure 2.3.
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Figure 2.3: Neurons [3]

Models are generally composed of three types of layers; the input layers, the hidden layers
and the output layers. As can be seen in Figure 2.4, the input layer is tasked with taking in
the data, and the output layer is tasked with providing the final product. Each layer is used
to compute a different feature of the data, for example, in an image classification network, a
layer may be used to determine the presence of a contour. Due to this the number of hidden
layers may vary as the task complexity increases and more layers are needed to analyse all
features. There are no exact rules for calculating the number of hidden layers, however this is
an area of on-going research and at present there are a number of design heuristics used [34].

Figure 2.4: Neural Network Architecture [4]

These networks are usually trained to minimise error by using the Backpropagation algorithm
which will be explained in Section 2.2.2. They also combine a number of features such as
non-linear activation functions and optimisation algorithms to maximise performance. These
features will be discussed in Sections 2.3.3 and 2.2.4 respectively.
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2.2.2 Backpropagation

In order to train these models for function approximation an algorithm known as the
Backpropagation algorithm was proposed in [35] to calculate the gradient of the loss with
respect to each weight. It uses the chain rule to calculate each weight’s contribution to the
loss i.e. the error between the desired output and the actual output. In other words, it is
essentially used to calculate the gradient of the loss function for each weight. From here
gradient descent can be deployed to minimise the loss function as so;

w i
t+1 = w i

t � ↵
@E

@w i
(2.3)

where:
w = weight i
t = timestep
↵ = learning rate
@E
@w = the gradient of the loss with respect to the weight i, this is calculated by the
backpropagation algorithm

2.2.3 Activation Functions

According to [5], activation functions are functions used in neural networks to compute the
weighted sum of income weights and biases and to decide whether a neuron can fire or not.
They are also referred to as a threshold function as certain activation functions require the
weighted sum of the inputs and biases to surpass a particular value for the neuron to fire.
Activation functions are vital to neural network’s success as these functions are what allow
neural networks to cope with non-linearities. There are a wide variety of activation
functions, some of which will be discussed here.

Linear Activation Function

The linear activation function is one of the simplest activation functions, simply outputting
the weighted sum of the inputs. It is of the form;

output = weights ⇥ inputs + bias (2.4)

It can return any value in the range (-1, 1).
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Hyperbolic Tangent Activation Function (TanH)

The TanH function is a zero centred function which squashes the weighted sum of inputs
into the range (-1,1), as can be seen in Figure 2.5. It allows the neural network to deal with
non-linearities and is of the form;

output =
e� � e��

e� + e��
(2.5)

where:
� = inputs ⇥ weights + bias (2.6)

Figure 2.5: TanH Activation Function [5]

However, this activation function suffers from a problem known as the vanishing gradient
problem. This problem occurs when applying the backpropagation algorithm to large neural
networks with many layers. As the algorithm moves back through the network the gradients
tend to get smaller and smaller, until they eventually vanish. As a result, the neurons in the
early layers tend to learn much slower than those in the later layers, resulting in reduced
performance.

Rectified Linear Unit Function (ReLU)

In order to overcome the vanishing gradient problem, [36] proposed the Rectified Linear Unit
function, which has the form;

13



output = max(0,�) (2.7)

where,
� = inputs ⇥ weights + bias (2.8)

As can be seen in Figure 2.6, the ReLU activation function has a slope of either 0 or 1. As a
result, the gradient cannot progressively decrease which prevents the vanishing gradient
problem. However, it is possible for neurons to suffer from the dying ReLU problem, which
results in the neuron constantly outputting a zero value. This is caused by the zero slope
produced by the ReLU function for negative numbers.

Figure 2.6: Rectified Linear Unit Function [6] Note: the red line indicates the ReLU function

2.2.4 Optimisation Algorithms

Optimisation algorithms are a group of algorithms which attempt to reduce the loss of a
neural network by updating the neural network’s parameters. Arguably, the most well-known
optimisation algorithm is the standard gradient descent algorithm which works by iteratively
taking steps towards the local minimum of a differentiable equation. The size of these steps
is dictated by the gradient of the loss and the learning rate, which is a hyperparameter.
Gradient descent is of the form;

✓t+1 = ✓t � ↵.r✓J(✓) (2.9)

where:
✓ = parameters
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↵ = learning rate
r✓J(✓) = gradient of the loss with respect to the parameters

However, gradient descent does suffer from a number of drawbacks, one of these being the
fact that the learning rate is fixed for all features in a neural network. This is a problem if
features occur at a different frequency and therefore may need to be updated by different
amounts e.g. features which occur half as often as other features should have slightly larger
updates to ensure they are trained as efficiently. This also means choosing the correct
learning rate can be very tedious and is the sole responsibility of the user. Therefore a
number of other algorithms have been proposed to overcome this issue and to make use of
adaptive learning rates, some of these are outlined now.

AdaGrad

[37] proposed an algorithm called AdaGrad. Intuitively this algorithm works by making
smaller updates for frequently occurring parameters and larger updates for infrequent
parameters. AdaGrad does this by taking the sum of squares of the gradient, with respect to
each parameter, into account. It is of the form;

✓t+1 = ✓t �
↵p

Gt + ✏
� gt (2.10)

where:
✓ = parameters
↵ = learning rate
Gt = matrix of the sum of squares of the gradients
✏ = smoothing term to avoid division by zero
gt = matrix of the gradients of the loss

[38] found that this optimiser not only allowed for adaptive learning rates, but also proved to
enhance the robustness compared to stochastic gradient descent. However, as the sum of
squares of the gradient is in the denominator, overtime this grows infinitesimally large
causing the learning rate to become infinitesimally small.

RMSprop

In order to overcome the decreasing learning rate problem associated with the AdaGrad
algorithm, [39] proposed an algorithm known as RMSProp which also adapts the learning
rate during training. This algorithm replaces the sum of squares of the gradients with the
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exponentially decaying average, meaning the denominator should not get infinitesimally
large. It is of the form;

✓t+1 = ✓t �
↵p

E (g 2)t + ✏
.gt (2.11)

where:
✓ = parameters
↵ = learning rate
g = is the sum of squares of the gradients
✏ = smoothing term to avoid division by zero
gt = the gradient of the loss function

Adam

[40] proposed an algorithm known as Adam. As in RMSprop, Adam uses the exponentially
decaying average of squared gradients. However, it also uses the exponentially decaying
average of gradients, which is similar to how a technique known as momentum works. These
two are calculated as follows;

mt = �1mt�1 + (1� �1)gt (2.12)

vt = �2vt�1 + (1� �2)g
2
t (2.13)

where:
mt = the first moment(the mean)
vt = the second moment(the uncentered variance)
gt = past gradients
�1 = hyperparameter for mt

�2 = hyperparameter for vt

However, as these moments are initialised as vectors of zero’s, they are biased towards zero.
As such, these biases need to be corrected by using the following bias correction estimates;

m̂t =
mt

1� �t
1

(2.14)

v̂t =
vt

1� �t
2

(2.15)
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From here the update can then calculated as;

✓t = ✓t�1 �
↵p
v̂t + ✏

m̂t (2.16)

The fact that Adam incorporates the bias correction estimates outlined above has allowed it
to outperform RMSProp, as it can deal with the sparser gradients near the end of training
according to [41].

2.2.5 Universal Approximation Theorem

One of the most common and basic neural networks is known as a feed forward network,
which is essentially a non-cyclic neural network i.e. everything moves forward. One of the
reasons for its popularity is its ability to approximate functions. In fact, [42] proved that
these networks, with a linear output layer and at least one hidden layer, are capable of
approximating any function, in a theorem known as the Universal Approximation Theorem.
As such feed forward networks make great function approximators.

However, as highlighted in [43], whilst feed forward networks are capable of approximating
any function in theory, the layers may need to be infeasibly large and may fail to generalize
completely. Therefore, even though the Universal Approximation Theorem holds up in
theory, it may not be always be achievable in practice.

2.3 Deep Reinforcement Learning

Over the last number of years there has been a lot of research aimed at combining the
power of deep learning with the paradigm of reinforcement learning. To this end, there have
been many new reinforcement learning algorithms created which harvest the function
approximation power of neural networks to extend the use of reinforcement learning, some of
these will be looked at in this section.

2.3.1 Deep Q-learning

The Q-learning algorithm described in Section 2.1.1 is a very effective algorithm, with
guaranteed convergence to an optimal policy when deployed correctly. However, it is limited
to discrete-state, discrete-action environments due to its tabular form. In order to overcome
this issue, [7] proposed the use of deep neural networks to act as function approximators to
provide predictions of the Q-values, as opposed to the use of a table to record the exact
Q-values in an algorithm known as Deep Q-Networks (DQN). By doing this, DQN can
operate in continuous-state, discrete-action environments i.e. environments where there is a
large, potentially, infinite number of states, and a finite number of actions.
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This was applied to Atari games as can be seen in Figure 2.7. The states, which are the
screenshots of the Atari game, act as an input into a neural network, which then assigns a
Q-value to each action. From here the action with the highest predicted Q-value is chosen.

Figure 2.7: Deep Q-learning [7] Note: the use of convolutional layers to analyse the image
of the screen

However, this algorithm was not trivial to create as the use of neural networks in
reinforcement learning is known to be unstable and therefore the authors implemented two
new features to help overcome this: experience replay and target networks.

Experience replay is the idea of storing the agents experience and reusing these experiences
throughout training to continuously learn. An algorithm that uses experience replay is said
to be an off-policy algorithm i.e. it is an algorithm that learns about its current policy or
strategy, by using a different policy. In this case it is off-policy because it learns from past
experiences which most likely came from an old strategy. This feature has three main
benefits. Firstly, it is sample efficient i.e. the agent can learn multiple times from the same
experience. Secondly, it improves learning as learning from consecutive samples can be
inefficient due to the correlation between them. Therefore, randomly selecting samples from
past experiences can help overcome these problems. Finally, due to the fact it is off-policy it
improves the stability of learning in certain circumstances, as on-policy learning methods can
experience large deviations and divergence in parameters as the next set of sample data is
determined by the current set of parameters. However, it should be noted that this is a
point of contention with certain on-policy algorithms showing improved stability over
off-policy algorithms. As such, the use of experience replay can reduce divergence.

The implementation of experience replay results in two additional hyperparameters. The first
hyperparameter relates to the size of the experience replay buffer i.e. the amount of
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experiences to store. The second is the batch size hyperparameter, which outlines the
number of experiences to sample from the replay buffer at every iteration.

The other feature, known as a target network, also contributes greatly to improving the
stability of learning. This is because it helps reduce the fluctuations experienced when using
temporal difference learning. As seen in section 2.1.1, temporal difference learning creates a
target function based on the current reward and a prediction of the future reward. This
future prediction is calculated using a function approximator and results in a technique
known as bootstrapping i.e. using one function approximator to train another. This results
in a target value of the form;

target value = Rt + �maxa✏AQ̂(st+1, at ,wt) (2.17)

where:
Rt = current reward
� = discount factor
Q̂(st+1, at ,wt) = the Q-value approximation given the new state, st+1, the current action,
at , and the current neural network parameters at time t, wt

Using this function an agent can learn to consider the long term implications of taking a
particular action. However, when used with neural networks, temporal difference learning has
proved to be very unstable, mainly because the function uses bootstrapping. Bootstrapping
is so problematic because the neural network being used to predict the future rewards is
oftentimes updated at the same rate as the main function approximator that is being
trained. In fact, in some implementations the neural network being used for predicting the
future reward, is the same one that is being updated. This results in a lot of fluctuations
and noise during training.

Target networks overcome this by using a far smaller update for the future reward function
approximator than is used for the main Q-value function approximator. They are essentially
identical copies of the main network, however, during learning these networks update by
taking small updates from the main network. Usually, this is done by summing a large
percentage of the target network’s weights (usually approximately 99%) with a low
percentage of the main network’s weights (usually approximately 1%), resulting in an update
equation for a target network as so;

✓target network = ⌧✓target network + (1� ⌧)✓main network (2.18)

where:
✓target network = target network’s parameters
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⌧ = percentage of parameters the target network maintains
✓main network = main network’s parameters

This has the effect of updating the target network at about 1% the frequency of the main
network. By doing this, a smoother learning curve can be created. Figure 2.8 shows the
difference in noise between a normal network and a target network with reduced updates.

Figure 2.8: Deep Q-learning Target Networks [8] Note: the difference in noise between the
learning of the normal network versus the target network with reduced updates

Again, target networks introduce another hyperparameter known as the target network
parameter, ⌧ . This outlines the ratio target networks should be updated by in comparison to
the main networks. For example, a ⌧ value of 0.01 corresponds to updating the target
networks at a rate of approximately 1% of the main network.

By combining these two features the authors were able to create a stable and efficient
learning algorithm capable of dealing with a variety of continuous-state, discrete-action
environments.

2.3.2 Policy Gradients

Whist Deep Q-learning, described in Section 2.3.1, is a very powerful algorithm, it is
incapable of dealing with highly complex continuous-action spaces, as it relies on the idea of
assigning a value to every possible action. Instead, in order to overcome this, policy gradient
methods were proposed in [44].

Policy gradient methods operate differently to the other algorithms we have seen, mainly
because they directly attempt to optimise a policy by updating the policy’s parameters, ✓.
As such they are policy based methods, as opposed to the value based methods we have
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already seen, like DQN which works by optimising a value approximation. Essentially, the
goal of policy gradient methods is to directly find the parameters, ✓, which will maximise the
reward. When using policy gradient methods alongside deep learning, ✓ is used to describe
the parameters of the neural networks i.e. the weights and biases. Therefore updating the
parameters means updating the weights and biases of the network, which can be done using
gradient ascent which is of the form;

✓t+1 = ✓t + ↵rJ(✓t) (2.19)

where:
✓ = policy’s parameters
↵ = learning rate
rJ(✓t) = gradient of the objective function at time t

Note: the use of the + as opposed to the - in this equation. This is due to the use of
gradient ascent as opposed to gradient descent, as reinforcement learning is focused on
maximising the reward, as opposed to minimising the loss.

The gradient of the objective function is equal to the gradient of the expected reward
function and can be written as;

rJ(✓) = rE[r(⌧)] (2.20)

Therefore the gradient ascent equation can be rewritten as;

✓t+1 = ✓t + ↵rE[r(⌧)] (2.21)

In order to solve this function we can make use of the Policy Gradient Theorem presented in
[44], which states that the derivative of the expected reward is the expectation of the
product of the reward and the gradient of the log policy. This can be written as;

rE[r(⌧)] = E⇡✓
[r(⌧)rlog⇡✓(⌧)] (2.22)

where:

⇡✓(⌧) =
TX

t=1

⇡✓(at |st) (2.23)

This results in a final gradient update of the form;

✓t+1 = ✓t + ↵E⇡✓
[r(⌧)

TX

t=1

rlog⇡✓(at |st)] (2.24)
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It is important to note here that the policy is a probabilistic distribution, and as such this
must be accounted for. Therefore ⇡✓(at |st) is used to describe the probability of choosing
action at given state st .

2.3.3 Actor-Critic Models

In order to apply the policy gradient methods described in section 2.3.2, it is necessary to
make use of a family of algorithms known as actor-critic methods, which were first proposed
in [45].

As can be seen from Figure 2.9 these models are composed of two sections, an actor section
and a critic section. The actor section is responsible for outputting a probabilistic
distribution of actions, from which the action with the highest probability will occur most
often. Whilst the critic section is responsible for providing feedback on that action.

Figure 2.9: Actor Critic Architecture [1]

As can been seen in Figure 2.9 the critic receives the state and the action as inputs. The
critic’s task is to try to learn a value approximation for a state action pair i.e. the Q-value.
This is done by using Backpropagation on the following loss function;

Loss = prediction � actual (2.25)
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This gives a critic update of the form;

J(✓) =
1

2
(Rt + �Q̂(st+1, at)� Q̂(st , at))

2 (2.26)

where:
J(✓) = the objective function for the critic
Rt = the actual reward at time t
� = the discount factor
Q̂(st+1, at) = the Q-value approximation for the next state st+1 and current action at

Q̂(st , at) = the Q-value approximation for the current state st and action at

This is very similar to the update function used for the DQN algorithm in section 2.3.1, as
the critic’s role is to essentially learn an approximation of the Q-value for a state-action pair,
just like in the DQN algorithm.

The actor network can now be updated using the Policy Gradient Theorem described in
section 2.3.2. However, the difference here is the use of Q̂(st , at) instead of r(⌧) as the goal
is to update the actor based on the feedback from the critic, which acts as an approximation
of the reward. This gives an equation of the form;

✓t+1 = ✓t + ↵E⇡✓
[Q̂(st , at)

TX

t=1

rlog⇡✓(at |st)] (2.27)

This can then be used to train actor-critic models for use in continuous-state,
continuous-action environments. An important point when using actor-critic models is
understanding that the critic is only needed during training, and therefore can be discarded
once training is completed.

2.3.4 Deep Deterministic Policy Gradient

However, actor-critic models alone can often struggle to converge. In order to overcome
these difficulties, [21] proposed combining the Policy Gradient Theorem and actor-critic
models, with the added features proposed in the DQN algorithm: experience replay and
target networks, in order to create the Deep Deterministic Policy Gradient algorithm
(DDPG).

The target networks in this case were implemented slightly differently, mainly because
actor-critic models make use of two neural networks. As such both networks used a target
network to help calculate the temporal difference error. This results in a slightly different
target value update for the critic which takes the form:
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target value = Rt + �Q̂(st+1, at+1,wt) (2.28)

where:
Rt = current reward
� = discount factor
Q̂(st+1, at+1,wt) = the Q-value approximation given the new state, st+1, the target
network’s new action, at+1, and the neural network parameters, wt

As can be seen from this equation, the future prediction is based on a new action at+1 as
opposed to the current action, at, used for updating the critic in section 2.3.3. This is
because the DDPG algorithm makes use of the target networks to choose a new action
based on the new state. However, just like in the DQN algorithm the critic’s loss is the
difference between the predicted Q-value and the actual Q-value, which is of the form:

J(✓) =
1

2
(Rt + �Q̂(st+1, at+1)� Q̂(st , at))

2 (2.29)

The actor’s update function, however, is slightly different. This is due to the fact that the
update function described in equation 2.27 is based around stochastic policies, and therefore
needs to incorporate probabilistic distributions. However, the DDPG algorithm is
deterministic and therefore its updates are done using the equation;

✓t+1 = ✓t + ↵rQ̂(st , at)rµ(st) (2.30)

where:
r✓J = Distribution of actions
rQ̂(st , at) = gradient of the critic
rµ(st) = gradient of the deterministic policy

Note: the policy is now deterministic and this justifies the use of µ(s) instead of ⇡(a|s) and
the removal of the expectation.

[27] proved this was the policy gradient of the deterministic policy.

However, the fact that this algorithm is deterministic creates another challenge in terms of
exploration. Usually, when using a stochastic policy gradient method, the agent is able to
explore the environment itself by taking a range of actions, as described by the stochastic
policy. However, this is no longer possible with a deterministic policy and therefore a new
exploration strategy needs to be developed. This is done by adding Gaussian noise to actions
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at a probability of epsilon, where epsilon is a small probabilistic number e.g. 0.3. This
means that 30% of the time the action taken will be random due to noise being added on to
the model’s output. This epsilon parameter is also known as the exploration rate, and is
reduced at each time step by a value known as the exploration decay rate. This reduction
takes the form;

✏new = ✏old .K (2.31)

where:
✏ = exploration rate
K = decay rate

The decay rate is usually another small value in the range [0.9,1). This results in a very
small and gradual reduction in exploration rate. It also creates two further hyperparameters:
exploration rate and exploration decay rate.

2.3.5 Residual Policy Reinforcement Learning

However, whilst the DDPG is a very capable algorithm, it does not always converge, instead,
in certain complex environments it suffers greatly from divergent problems. This is often
attributed to the critic being unable to learn accurate predictions for the Q-value.

One algorithm that appears capable of reducing the likelihood of divergence is the Residual
Policy Reinforcement Learning algorithm proposed in [9]. This algorithm works by combining
a reinforcement learning policy with another policy. The reinforcement learning policy is
known as the residual policy, whilst the other policy is known as the base policy. It takes the
form of:

⇡✓(s) = ⇡(s) + f✓(s) (2.32)

where:
⇡✓(s) = final policy
⇡(s) = base policy
f✓ = residual policy

Depending on how well the base policy performs, the residual policy learning algorithm can
be seen as either a corrective term used to enhance performance of the base policy, or it may
become a substantial component in the overall policy and may just use the base policy for
hints to guide its exploration.

Using this equation it can be seen that the gradient of the policy, with respect to the
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parameters ✓, depends on the residual policy as opposed to the base policy;

r✓⇡✓(s) = r✓f✓(s) (2.33)

Therefore, it is possible to use policy gradient methods alongside residual policy
reinforcement learning.

In [9], the authors used the DDPG algorithm as their residual reinforcement learning policy
alongside a base policy known as the reactive hook and were able to show that it was far
more stable than alternative RL methods. They were also able to show that the Residual
Policy Reinforcement Learning algorithm could converge in environments were the DDPG
algorithm, which was deployed with a sparse reward algorithm known as Hindsight
Experience Replay (HER) [46], could not, as can be seen in Figure 2.10.

Figure 2.10: Performance of Residual Policy Reinforcement Learning Algorithm [9] Note:

The yellow line indicating the DDPG+HER implementation failing

This suggests that the Residual Policy Reinforcement Learning algorithm was able to
overcome the instability which led to the DDPG+HER implementation failing. The authors
believe that this was due to the Residual Policy Reinforcement Learning algorithm’s
enhanced ability to deal with long horizons and sparse rewards. In reinforcement learning, a
horizon refers to a future point from the current timestep, beyond which the reward is
irrelevant. For long horizons i.e. horizons which incorporate many future timesteps, neural
networks can struggle to learn accurate Q-value approximations as shown in [47]. However,
by using a base policy the trajectory can stay relatively consistent, meaning that the target
Q-values are more stable during training and hence easier to learn. Essentially the base
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policies provide a level of consistency which aids the critic in learning the value
approximation. This in turn helps reduce the likelihood of divergence.

2.4 Control Systems

Control systems are systems which provide a desired response from a process or plant by
controlling an output signal, commonly known as a manipulated variable, which interacts
with the process or plant to attempt to reach a target output value. There are two main
families of control systems: open loop control systems and closed loop control systems.

Open loop systems are systems which do not feedback the output into the input, as can be
seen in Figure 2.11.

Figure 2.11: Open Loop system [10]

Closed loop systems on the other hand work by feeding the output back into the control
unit, as can be seen in Figure 2.12. Closed loop systems will be the systems focused on in
this thesis.

Figure 2.12: Closed Loop system [10]
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The job of the controller therefore is to output a signal i.e. the manipulated variable, to
interact with the system, in Figure 2.12 this is the plant, in order to achieve the optimum
output.

2.5 Suspension Control

In this thesis we will focus on suspension control systems for cars. These suspension systems
are composed of a tyre, a chassis, springs and dampers as can be seen in Figure 2.13. The
suspension system’s main goal is to reduce the impact of road disturbances felt by
passengers in the chassis.

Figure 2.13: Suspension system [11]

When a car encounters a bump the spring is compressed and stores the energy from the
road. In order to release this energy the spring oscillates, however, this can create discomfort
for the passengers and therefore it is the role of the damper to control this oscillation. In
order to do this the damper, which is connected in parallel to the spring, converts the kinetic
energy of a spring into heat energy, which can be dissipated by hydraulic fluid.

Dampers are often designed with a chamber filled with hydraulic fluid, and a piston with
orifices in it, as can be seen in Figure 2.14. When a bump is encountered on the road the
spring will start to oscillate, which in turn causes the damper to oscillate. However, as the
damper oscillates a huge amount of pressure is needed to push the hydraulic fluid through
the small orifices in the piston. This slows the piston down, and as a result also reduces the
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frequency of spring oscillations, hence, improving comfort. The size of these orifices dictate
the force required to push the piston down, and hence dictate the amount of damping, this
is known as the damping rate.

Figure 2.14: Dampers [11] Note: the difference as the piston is compressed

However, it is sometimes desirable to change the orifice size in order to vary the damping
rate. For example, when a sharp bump is encountered the damper should have a very low
damping rate and therefore a very large orifice, but it is then desirable to reduce the orifice
size to dissipate the energy in the spring. In order to do this, [48] proposed a damper known
as a semi-active damper, which allows the orifices to change size.

In order to control the size of these orifices a control system is used, which can monitor the
acceleration and velocity of oscillation in the chassis and wheel, and manipulate the size of
the orifice to increase or decrease damping. This creates a closed loop control system and as
such a controller is needed to govern it. There has been a wide variety of control techniques
proposed to optimise this control including: fuzzy logic controllers [49], H1 controllers [50]
and LQR controllers [51]. However, the most popular choice at present is the Proportional
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Integral Derivative Controller (PID-Controller).

2.6 PID-controller

As mentioned in section 2.5 the PID-controller is one of the most popular forms of control
for suspension control. This is due to the controller’s simplicity and ability to output
accurate and continuous control.

These controllers are composed of three parts, a proportional part, an integral part and a
derivative part, as can be seen in Figure 2.15.

Figure 2.15: PID-controller [12]

Each part has a gain associated with it. The proportional section calculates its output by
calculating the product of the error and the proportional gain, Kp, as so:

Proportional Output = Kpe(t) (2.34)

where:
Kp = the proportional gain
e(t) = the error between the actual process output and target process output

The proportional gain dictates the system’s response speed. However, if the proportional
gain is too large it can result in large oscillations around the set point i.e. the target value.

The next section is the integral section which calculates its output as the product of the
integral gain, Ki , and the integral of the error over time, it is of the form:

Integral Output = Ki

Z t

0

e(⌧)d⌧ (2.35)

where:
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Ki = the integral gain
e(⌧) = error

The integral section is responsible for reducing the steady state error, which is the difference
between the target and actual value of a system as time goes to infinity.

Finally, the derivative section produces its output by calculating the product of the derivative
gain, Kd , and the rate of change of the error. It is of the form:

Derivative Output = Kd
de(t)

dt
(2.36)

where:
Kd = the derivative gain
e(t) = the error

By monitoring the rate of change of the system the derivative section acts as brake for the
system by reducing the speed of the response if it is too rapid.

Once all the individual sections have been calculated they are summed to create the
manipulated variable which is then passed to the process.

PID-controllers are deployed in numerous different closed loop feedback systems, where,
when given the error between the current output and target output, they can adjust the
manipulated variable to reduce this error.

However, whilst PID-controllers are very popular, they do have a number of drawbacks. The
first problem is the linearity of PID-controllers. PID-controllers are linear systems and as
such they have been known to struggle with complex non-linear systems. As well as this,
PID-controllers are highly sensitive to changes in their gain values, as can be seen in
Figure 2.16. These gains are chosen and tuned for deployment in particular environments,
but even minor changes in these environments can reduce the performance of the
PID-controller. These changes may be in the form of temperature fluctuations or wear and
tear on the system. Due to this many PID-controllers that are deployed in real world
systems often undergo routine tuning where possible. However, in certain systems, such as
suspension control systems, this is not possible and therefore the PID-controller’s
performance can reduce over time. In addition, current tuning methods are very tedious and
often struggle to agree on PID gain values. As a result, a lot of research has focused on the
development of self-tuning and online tuning PID methods.
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Figure 2.16: PID-controller with Kp being changed [1] Note: that this diagram only highlights
the deviations in performance when Kp is changed. Similar performance variations occur when
changing either of the other two gains.

2.7 Summary

In section 2.1 Reinforcement Learning was introduced alongside Q-learning. Section 2.2
described the paradigm of deep learning, including Backpropagation, activation functions
and optimisation algorithms. The Universal Approximation Theorem was also outlined here.
Section 2.3 then introduced deep reinforcement learning, which combined reinforcement
learning techniques with deep learning methods. The DDPG algorithm and the Residual
Policy Reinforcement Learning algorithm were also outlined here. Section 2.4 described
control systems whilst section 2.5 explained how suspension systems work and why they can
be considered a control system. Finally, section 2.6 introduced PID-controllers and provided
insight into how they work and the pros and cons of using them.
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3 Related Work

This section recaps previous work from literature which has attempted to overcome some of
the difficulties associated with PID-control by either developing online tuning methods for
PID-controllers to improve their adaptability, or by attempting to completely replace
PID-control with artificially intelligent methods. Both families of techniques are applicable
to this research as Residual Policy Reinforcement Learning acts as a hybrid of both by trying
to tune the PID-controller and optimise its performance by learning a secondary policy which
can compensate in areas where the PID-controller may struggle.

Section 3.1 touches on self-tuning methods, encompassing both traditional and
reinforcement learning approaches, whilst section 3.2 focuses on work aimed at completely
replacing PID-controllers through reinforcement learning. Section 3.3 focuses on work where
Residual Policy Reinforcement Learning has been applied successfully to a Proportional (P)
controller. Finally, Section 3.4 provides a brief summary of all this research and a conclusion.

3.1 Online PID Tuning Methods

PID-controllers are commonly used in a variety of control systems due to their ease of
implementation and ability to provide a continuous, accurate output. However, as mentioned
in section 2.6, a PID-controller’s performance is highly dependent on the values of its
parameters. These parameters are optimised for particular environments, and as such they
begin to become sub optimal as environmental characteristics change. These changes can
be the result of a number of factors, including wear and tear and temperature deviations.

In order to combat these environmental changes, some systems can be taken offline to
undergo routine PID tuning, periodically, in order to re-optimise the PID’s performance.
However, this is not always possible and as such a lot of research has focused on self-tuning
and online tuning methods. These methods allow PID-controllers to re-optimise in real time
and independently, in order to counteract any deviations in environmental properties.

This research has created a variety of online tuning methods, some of which are related to
reinforcement learning and others which have adopted other, more traditional approaches.
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These are of particular interest to this work, as one of the aims of this thesis is to show that
Residual Policy Reinforcement Learning has the ability to compensate for poorly tuned
PID-controllers and act as an online tuning method of sorts. This section looks at some of
the other attempts to do this and apply online tuning methods using both traditional
methods and RL techniques. Subsection 3.1.1 discusses the traditional, non-RL related
methods used to tune these controllers, whilst subsection 3.1.2 introduces some of the RL
related methods.

3.1.1 Traditional Tuning Methods

The following approaches outline some of the non-RL related techniques seen in the
literature.

[13] presents an Adaptive PID (APID) controller for use in suspension control. The
algorithm makes use of gradient descent to optimise the PID gains online, which guarantees
convergence in a closed loop system. In order to do this the authors identified an objective
function of the form;

J =
1

2
(y � r)2 (3.1)

Equation 3.1 APID Objective Function [13]

where:
r = desired force
y = actual force

The gradient descent algorithm was then used to create a set of update parameters as seen
in Fig 3.1

Figure 3.1: APID Update Parameters [13] Note: the negative sign, as gradient descent is
attempting to minimise the cost

These values were then used to calculate the actual PID gain value, as seen in Figure 3.2
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Figure 3.2: APID PID Gain Updates [13]

This was then used to create the algorithm seen in Figure 3.3.

Figure 3.3: APID Algorithm [13]

[14] proposes a fuzzy logic self-tuning PID-controller for use in suspension control. Here a
fuzzy logic controller is used to decide the gains for the PID-controller, based on the chassis
velocity error and the change in this error, as can be seen in Figure 3.4.

Figure 3.4: Fuzzy Logic Self Tuning PID Implementation [14]

The authors devised a set of fuzzy rules based on a set of classifications for both the input
and outputs. The inputs had 5 different classifications (Negative Large (NL), Negative Small
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(NS), Zero (ZE), Positive Small (PS), Positive Large (PL)) and the outputs had 7 different
classifications (Positive Very Small (PVS), Positive Small (PS), Positive Medium Small
(PMS), Positive Medium (PM), Positive Medium Large (PML), Positive Large (PL) and
Positive Very Large (PVL)). As can be seen in Figure 3.5 the input classifications determine
the output classifications.

Figure 3.5: Fuzzy Logic Class Tables [14] Note: that the outputs are classed based on the
combination of input classes e.g. in Table 2 in the image NL and NL gives and output class
of PVL

Membership function plots are of triangular form, as can be seen in Fig 3.6. In this case,
these plots determine the value of Kp based on the fuzzy logic rules.
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Figure 3.6: Fuzzy Logic Membership Plots for Kp [14] Note: The triangular shape of the
membership plots

[15] proposes a neural network for tuning PID-controllers for use in Underwater Remotely
Operated Vehicles (ROVs). Neural Networks are chosen here due to their high fault
tolerance, adaptability, parallelism and ability to deal with non-linearities. As can be seen in
Figure 3.7 the architecture is composed of a single hidden layer connecting an input and
output layer. The neural network predicts the PID gains as outputs, and training is done
using the Backpropagation algorithm.

Figure 3.7: Neural Network PID Tuner Architecture [15]

The Backpropagation algorithm makes use of the chain rule to update the network’s
parameters, as described in section 2.2.2. This is based on the feedback of the error which,
as can be seen in Figure 3.8, is based on the difference between the actual trajectory and the
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desired trajectory. It can also be seen here that the network receives the desired trajectory,
actual trajectory and PID output as inputs.

Figure 3.8: Neural Network PID Tuner Implementation [15]

Whilst all these methods were designed to tune PID-controllers, they were tested in a variety
of different environments. [13] built a full car suspension model i.e. a model composed of all
4 wheels, with 8 degrees of freedom to test the APID algorithm. This suspension model was
then used to test the algorithm on a variety of different road profiles, including potholes and
sine wave disturbances. The algorithm proved to outperform both passive and semi-active
skyhook systems in terms of heave, heave response, pitch and maximum displacement.
Similarly, [14] tested the fuzzy control self-tuning PID-controller on a half car suspension
system i.e. a system consisting of only two wheels. Again the system was tested on a variety
of road inputs, including sinusoidal bumps and potholes. The Fuzzy Logic Self-Tuning
PID-controller was then compared against a fuzzy logic controller, a conventional
PID-controller and a H1 controller. In every case the Fuzzy Logic self-tuning PID-controller
outperformed the other controllers in terms of mean square error (MSE). It also
outperformed the other controllers in terms of max displacement on 2 out of the 3 different
road profiles. Finally, [15] evaluated the neural network based self-tuning algorithm on a
simulation representing an underactuated 6 degree of freedom underwater ROV. The neural
network self-tuning algorithm was compared to the conventional PID-controller, and showed
an improvement over the conventional PID-controller in terms of trajectory, with a MSE of
approximately 2.2cm versus 3.1cm recorded by the conventional PID-controller.

As can be seen from the work above, self-tuning and online tuning PID techniques have the
ability to improve the performance of PID-controllers and as such have become a prominent
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and important aspect of research. Whilst only two of the methods were tested on suspension
control systems, all methods showed the performance gains of implementing online tuning
methods for PID-controllers.

Table 3.1 provides a brief summary of these methods.

Reference Algorithm Analysis

[13] Adaptive PID Using Gradient Descent Full Car Suspension Model

[14] Fuzzy Logic Self-Tuning PID Half Car Suspension Model

[15] Neural Network Self-Tuning PID Underwater ROV Model

Table 3.1: Non-RL Online Tuning Techniques

3.1.2 Reinforcement Learning Tuning Methods

There has also been a number of attempts to apply reinforcement learning techniques to
tune PID-controllers. This is in part due to the characteristics of reinforcement learning
methods, in particular, deep reinforcement learning methods which display many of the
positive attributes of neural networks, which are outlined in Section 3.1.1. As well as these
attributes, reinforcement learning algorithms also benefit from the fact that they need very
little prior information or data about a system before being trained. As such reinforcement
learning algorithms have been the subject of a lot of research lately, some of which is
outlined below.

[16] presents an incremental Q-learning strategy for adaptive PID-control. The algorithm is
based on the popular tabular Q-learning algorithm described in section 2.1.1. Here the
algorithm is used to create a table describing the performance of a particular action in a
particular state space, where the action represents the optimal PID gains for the controller.

In the traditional algorithm the number of states and actions are fixed, meaning there is a
table of fixed size. However, in this implementation the number of states and actions can
grow dynamically.

The dynamic state space allocations are based on incremental state aggregation, whereby
new states are analysed to determine if they are in the same state space as a known state.
In other words the algorithm tries to identify how similar two states are. This is done by
measuring the Euclidean distance between two states to determine if states are within a
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certain threshold of each other. Any new state that is not within the Euclidean distance
threshold of a previous state in the table will then be listed itself in the table, allowing the
table to grow dynamically.

This is done incrementally, as can be seen in Figure 3.9, hence the name Incremental
Q-learning Learning Strategy.

Figure 3.9: State Aggregation for Incremental Q-Learning [16]

The action space discretization is done differently, however, the goal is still to allow it to
grow dynamically. In this case new actions are added to the table, and the discretization
level is augmented based on the invariance of the system. In other words, the action space
grows if actions taken have little to no effect on the system. If there is complete invariance
then the number of potential actions will increase within the "neighbourhood" of the
original action as can be seen in Figure 3.10

Figure 3.10: Action Aggregation for Incremental Q-Learning [16] Note: the increase in
points in particular regions, this represents the increase in actions in those areas that showed
invariance
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These two aggregation techniques are then combined to create a dynamically growing
Q-learning table where values can be assigned to particular actions in particular states. This
then allows an agent to choose the action which is deemed to have the highest reward, as is
the case in the original tabular Q-learning algorithm.

[52] also proposes a reinforcement learning tuning technique, however, this technique uses a
continuous action space for selecting the PID gains, as opposed to the discrete-action space
seen in [16]. In order to achieve this, the technique uses the Continuous Action
Reinforcement Learning Automata (CARLA) algorithm. CARLA works by assigning a
probability distribution to a range of actions. The action with the highest probability will
then be selected most often. This distribution can then be updated based on a Gaussian
neighbourhood function, which takes into account the performance of a particular action i.e.
if an action performs well in a particular state the neighbourhood function updates the
distribution to give this action a higher probability. The authors here deploy three separate
CARLA agents, with each agent responsible for a different PID gain i.e. one for the
proportional gain, one for the integral gain etc. The agents operate independently of each
other, with the only interconnection being the environment and a shared reward function.

[17] also proposes a continuous-action reinforcement learning tuning technique. However, in
this case the authors opt to use an actor-critic model, as opposed to the CARLA method
seen in [52]. As described in section 2.3.3, these models are usually composed of two
separate parts; an actor and a critic. However, the authors here have designed a single
network as can be seen in Figure 3.11. This is possible as they have chosen a Radial Basis
Function (RBF) network which has a simple structure and can be trained efficiently.

Figure 3.11: Actor Critic Network for PID Tuning [17] Note: the last output is the critics
valuation
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As there is only one network only one update is needed for both the actor and critic.

[17] has also chosen to add a Stochastic Action Modifier (SAM) as can be seen in
Figure 3.12 which stochastically selects the PID gains based on the actor’s suggestion and
the valuation from the critic.

Figure 3.12: Actor Critic Model for PID Tuning [17] Note: the addition of the SAM unit

Whilst these algorithms were all designed to tune PID-controllers online, each were analysed
in different applications. [16] uses the Pioneer 3AT® terrestrial mobile robot as the
experimental platform. A variety of different test cases were established, each varying in
difficulty, with the algorithm showing itself capable of maintaining control in a variety of
environments. More impressively, it also demonstrated the algorithm’s ability to alter the
PID gains in order to compensate for changes in the system. [52] applied the CARLA tuning
algorithm to engine idle-speed control. Initially, the algorithm was tested on a simulation
based on the Cook and Powell structure described in [53]. Here the model was compared
with the Ziegler-Nichols tuning method and proved to outperform it in terms of settling time
and overshoot. It was then applied to a real engine system and again was able to outperform
the Ziegler-Nichols method. Finally, [17] tested their adaptive PID algorithm in a simple sine
wave tracking task and compared the results against a conventional PID-controller. Testing
showed that the Adaptive PID-controller was capable of significantly minimizing the error
experienced during tracking. The authors also noted that their algorithm was strongly robust
to system disturbances, which allowed it to outperform the conventional PID-controller. In
addition, they concluded that their adaptive PID-controller was capable of realizing stable
tracking of complex non-linear systems, something which conventional PID-controllers can
struggle with.
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These results highlight the potential role of reinforcement learning in optimising and tuning
PID-controllers online. It also highlights the ability of reinforcement learning algorithms to
help PID-controllers deal with non-linear systems. As a result, there is strong evidence here
that when reinforcement learning algorithms are used to aid PID-controllers it can often
result in superior performance.

Table 3.2 provides a brief summary of these methods.

Reference Algorithm Action Space State Space Analysis

[16] Incremental DQN Discrete (dynamic) Discrete (dynamic) Mobile Robots

[52] CARLA Continuous Continuous Engine idle-speed

[17] RBF Actor Critic Continuous Continuous Sine Wave Tracking

Table 3.2: Reinforcement Learning Online Tuning Techniques

3.2 Replacing PID Control with Reinforcement
Learning

This section looks at previous work focused around replacing PID-controllers with
reinforcement learning alternatives. As mentioned previously, the Residual Policy
Reinforcement Learning algorithm can be viewed as a hybrid between an online PID tuning
method and a RL agent attempting to replace a PID-controller. As such it is important to
consider work where researchers have successfully used reinforcement learning to improve
and replace PID-controllers.

[54] proposes an unmanned surface vehicle path following control method based on the
continuous-state, discrete-action reinforcement learning algorithm known as SARSA. SARSA
was originally proposed in [55] and is an acronym for State Action Reward State Action. It
operates in a similar way to the DQN algorithm described in Section 2.3.1. However, it is an
on-policy variation, which means it learns how to improve based on its current policy, as
opposed to a different policy. This is achieved by using the current policy to determine the
next action based on the next state, and storing these in the memory buffer i.e. storing the
current state, current action, reward, next state and next action (SARSA) in the memory
buffer. The fact that the next action is stored is different to off-policy methods such as
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DQN which only stores the current state, current action, reward and next state (SARS).

In this case, the SARSA algorithm was used to determine the rudder angle needed to allow
an unmanned surface vehicle to follow a path, a task usually done by PID-controllers. In
order to do this the agent was provided with information to do with heading deviation, water
current and wind. This was then used to calculate the correct rudder angle, which was
allowed vary between -25°and 25°. As the SARSA algorithm is a discrete-action algorithm
i.e. it can only pick from a limited number of actions, the action space was broken down
into 51 different actions, each one representing a 1°increment i.e. the action space was
{-25°, -24°, -23°..... 23°, 24°, 25°}. The agent was rewarded if actions reduced the heading
deviation between the current position and the desired position.

[18] also proposes a deep reinforcement learning method, this time for an intelligent control
strategy for transient response of a variable geometry turbocharger system. In this case, the
RL algorithm chosen was the Deep Deterministic Policy Gradient (DDPG) algorithm
discussed in section 2.3.4. As mentioned previously, this is an actor-critic model capable of
operating in continuous-state, continuous-action spaces. In this task, the algorithm was
designed to control a variable geometry turbocharger and as such had a state vector
describing the engine speed, actual boost pressure, desired boost pressure and the vane
position. The action space was the vane position which was controlled by a membrane
vacuum actuator.

The actor’s architecture can be seen in Figure 3.13, whilst the critic’s architecture can be
seen in Figure 3.14.
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Figure 3.13: Actor’s Architecture for Turbo-Charger control [18]

Figure 3.14: Critic’s Architecture for Turbo-Charger control [18] Note: the critic receives one
extra input, which is the action taken by the actor
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Similarly, [56] also uses the DDPG algorithm, this time to control the lane keeping
assistance (LKA) and the adaptive cruise control (ACC) systems for vehicle control. In this
case, the agent was trained to maintain a safe driving distance from a leading car whilst
maintaining its position in a lane. In order to do this the agent received information about
the lateral deviation and the relative heading, and the rate of change of each of these. It
was also provided with the velocity of itself and the leading car, the distance between the
two, and the current angle of steering. From this information the agent was tasked with
choosing the acceleration and the steering angle.

All these algorithms were then tested on different environments. [54] tested the SARSA
USV control algorithm in a simulation USV path finding environment based on the
parameters of the CybershipII simulation in [57]. The SARSA control algorithm was
compared against a PID-controller in a number of different tests, including path following
tests in ideal conditions i.e. no wind or currents and in tests with interference. In the ideal
tests it showed similar performance to the PID-controller but was able to converge quicker,
whilst in the tests with interference it was able to outperform the PID-controller. [18] tested
the DDPG variable geometry turbocharger control algorithm on an advanced co-simulation
platform. Again, this was compared to a fine tuned PID-controller using Integral Absolute
Error (IAE). Again, the DDPG algorithm was able to outperform the PID-controller. The
authors also deployed an agent, pre-trained in a different environment, into a new simulation
and were able to show its ability to re-adapt to the new environment. This highlighted the
DDPG algorithm’s ability of adapting to small changes in the environment, similar to those
experienced when deploying control methods optimised in simulation to the real world.
Finally, [56] tested the DDPG path tracking method using a simulation environment. Two
tests were devised, one using a circular path and another using a clothoid path. Results
showed that the DDPG algorithm was able to substantially outperform the PID-controller on
the more difficult clothoid path, however, the improvement on the simpler circular road was
a lot smaller with both control methods performing very well.

As can be seen from the research above RL algorithms are very capable of replacing and
outperforming their PID counterparts whilst also having an increased degree of adaptability.
As such, for complex control systems RL methods represent a very promising alternative to
traditional control methods and this research suggests that they have the potential to target
areas of system control that PID-controllers struggle with.

Table 3.3 provides a brief summary of the above methods.
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Reference Algorithm Action Space State Space Analysis

[54] SARSA Discrete Continuous Path Following USV

[18] DDPG Continuous Continuous Variable Geometry Turbocharger

[56] DDPG Continuous Continuous Path Following LKA and ACC

Table 3.3: Reinforcement Learning Alternatives to PID-control Methods

3.3 Residual Policy Reinforcement Learning

This section discusses previous work in applying Residual Policy Reinforcement Learning to
optimise the performance of a Proportional (P) controller.

[19] presents attempts to use Residual Policy Reinforcement Learning to optimise the
performance of a P-controller in electric connector assembly tasks. As described in section
3.3, Residual Policy Reinforcement Learning works by combining a base policy with a
reinforcement learning residual policy. Here the authors have chosen to use a P-controller as
the base policy, but use two different reinforcement learning algorithms as their residual
policies. The first reinforcement learning algorithm used is the Twin Delayed Deep
Deterministic Policy Gradient (TD3) algorithm first proposed in [58], which is essentially an
enhanced version of the DDPG algorithm described in section 2.3.4. It attempts to improve
on the DDPG algorithm by using two Q-function approximators to reduce value
overestimation as well as delayed policy updates to stabilize training. The second algorithm
is known as Soft Actor Critic (SAC) and was proposed in [59]. It is an off-policy value based
reinforcement learning technique which uses a stochastic policy and aims to maximise the
entropy i.e. the unpredictability of picking a particular action. This is aimed at preventing
agents from getting stuck picking the same actions repeatedly.

These implementations were tested on three tasks; USB insertion tasks, D-sub connector
tasks and Model-E connector tasks. For each task, 3 different tests were used. The first test
was a vision based test, whereby the algorithms were tested on their ability to complete the
tasks using only raw image observations and a distance measure. The second test used only
sparse rewards i.e. a singular reward for success or failure. In the sparse rewards case, the
algorithms were only tested on the USB connection task. Finally, the techniques were also
tested using perfect state information and a dense reward signal. Both these algorithms were
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tested and compared against stand-alone RL algorithms i.e. algorithms that did not use the
P-controller, and RL algorithms which learnt with the aid of demonstrations from expert
policies. In the perfect state information test the algorithms were only compared against the
standalone reinforcement learning algorithms.

As can be seen from Figures 3.15 and 3.16 the Residual Policy Reinforcement Learning
algorithm successfully managed to outperform the other methods in the vision-based test and
the perfect state information test. In both cases the figures show the distance from the goal.

Figure 3.15: Residual Policy RL results for the Vision Based tests [19]

Figure 3.16: Residual Policy RL results for the Full State Information tests [19] Note: that the
residual policy is only compared against the standalone Reinforcement Learning Techniques

The Residual Policy Reinforcement Learning algorithm also performed well in the sparse
reward test, with results matching those of the other algorithms. However, as can be seen
from Figure 3.17 the Residual Policy Reinforcement Learning algorithms took longer to
converge than the algorithms making use of demonstration learning. As mentioned above
this test was only conducted on the USB insertion environment.
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Figure 3.17: Residual Policy RL results for the Sparse Rewards tests [19] Note: that this test
in only conducted on the USB insertion environment

Table 3.4 provides a quick summary of this chapter. The Performance columns refer to how
the residual policy algorithm compared to the other techniques.

Reference Algorithm Performance
Vision Based

Performance
Full State Info

Performance
Sparse Reward

[19] Residual Policy RL Better Better Equal

Table 3.4: Residual Policy Reinforcement Learning with P-controller base policy Summary
Table

3.4 Summary

In Section 3.1.1 the potential of adaptive PID-controllers, without RL methods, was
outlined. In Section 3.1.2 the paradigm of online tuning methods was extended to
incorporate reinforcement learning techniques. In Section 3.2 the potential for reinforcement
learning techniques to operate independently and to outperform PID-controllers was shown.
It was also shown here that reinforcement learning techniques have the added benefit of
being very adaptable to environmental changes and being capable of dealing with non-linear
environments, something PID-controllers struggle with.

In addition to this, the research in Section 3.3, shows that a P-controller’s performance can
be optimised when deployed alongside a residual policy. In this case, the TD3 and SAC
reinforcement learning algorithms were used to improve the performance of the P-controller.
Therefore, there is strong evidence here to suggest that Residual Policy Reinforcement
Learning algorithm can also be used alongside a PID-controller to optimise performance.
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As such there is clear evidence that the combination of both PID-controllers and
reinforcement learning algorithms alongside each other through the application of Residual
Policy Reinforcement Learning is a completely reasonable idea due to the success of each
method, both independently and in combination, as well as the success of Residual Policy
Reinforcement Learning with other, similar, control methods.

It is clear therefore, that there are potential performance gains from tuning PID-controllers
online, and from replacing them altogether with reinforcement learning techniques capable of
dealing with certain areas of system control that PID-controllers struggle with. Due to this
there is a strong case for the application of the Residual Policy Reinforcement Learning
algorithm here as it acts as a hybrid of these two families of techniques. On one hand,
Residual Policy Reinforcement Learning attempts to learn how to control the system by
targeting areas where the PID-controller struggles. Whilst on the other, it tries to optimise
the performance of the PID-controller in an online fashion by adapting to the environment
and complimenting the PID-controller’s policy, similar to how self-tuning methods work. As
such, the evidence from the literature would suggest that Residual Policy Reinforcement
Learning may be a very effective way of optimising the performance of the PID-controllers
used in suspension control systems.
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4 Design

This chapter outlines the approach used to design the suspension control problem as a RL
task. It describes the design of the suspension system simulation, as well as the state and
action spaces and the reward functions. It also describes the reasoning for choosing the
Residual Policy Reinforcement Learning algorithm, as well as the additional features used,
the training and the network architecture.

4.1 Suspension Control As a RL Problem

In order to simulate the behaviour of a suspension system, a simulation of a quarter car
model was provided by ZF Friedrichshafen AG. The quarter model car describes the
suspension system of a single wheel in car i.e. a quarter of the car. Similar simulations were
used in [60, 61, 62].

In order to apply the Residual Policy Reinforcement Learning algorithm, the suspension
control system needs to be framed as an RL problem. This can be done by allowing an
agent to interact with a damper and provide this damper with a continuous damping rate,
which describes the amount of damping the damper should apply. Specifically, the problem
depends on an agent viewing state st ✏ S , taking action at ✏ A, to transition to state st+1 ✏ S

and receive reward Rt . These components will now be defined.

4.1.1 State Space

The state space is a vector describing the velocity and position of the system’s wheel. These
numbers are zero centred as can be seen in Figure 4.1 and Figure 4.2. A zero reading for the
position means the wheel has not moved i.e. it is still in the resting position, whilst positive
and negative values correspond to the wheel’s movement in position upwards and downwards
respectively. Similarly, a zero reading for velocity means the wheel is stationary, whilst
positive and negative values indicate the wheel is moving upward and downwards
respectively.
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Figure 4.1: Wheel Position

Figure 4.2: Wheel Velocity

The reason for using the wheel velocity and position instead of the chassis equivalents is due
to the impact of a disturbance being felt on the wheel one timestep ahead of the chassis,
hence it gives the agent a chance to react to protect the chassis.

These state vectors are calculated using a series of equations which take a number of factors
into account, including the mass of the chassis and road disturbances.

4.1.2 Action Space

The action space is a scalar value in the range [100, 5000] which corresponds to the
damping rate, also known as the K-value. The damping rate describes how much damping
the damper should apply. The higher the damping rate, the more damping applied.

An important point to note is that the agent is only allowed to take an action every 35ms.
This is due to the physical constraints of the system which can’t accommodate constant
changes in the damping rate. As a result, every action taken by the agent is maintained for
at least 35ms. This can be seen in the figures below, where every action taken in Figure 4.3

52



is maintained for at least 35ms in Figure 4.11. By doing this, it can be considered as a
roll-out of transitions which allows it to remain within the RL framework.

Figure 4.3: Agent’s Actions Every 35ms
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Figure 4.4: Agent’s Actions Note: How the actions are maintained for at least 35ms

4.1.3 Reward Function

There were two reward functions tested and compared in order to determine which function
resulted in the best overall performance. Performance was measured on a number of different
metrics including maximum chassis acceleration, maximum chassis velocity and maximum
chassis displacement. As well as this, the ISO 2631 Riding Comfort Standard [63] was used
to determine the performance of each model. This standard is outlined below in Figure 4.5.

Figure 4.5: ISO Riding Comfort Standard [20]

As can be seen from this picture accelerations over 0.315m/s2 start to become
uncomfortable. As such, each reward function was also compared based on how many times
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chassis acceleration exceeded this value.

The first reward function tested, which will be labelled Reward Function 1, took the form;

Reward Function 1 = �((clip((abs(chassis acceleration)� 0.315), 0, 1)⇥ 100)) (4.1)

The term reward function may be slightly misleading here, as rather than rewarding the
agent for taking the correct actions it essentially punishes it for allowing the chassis
acceleration to exceed a 0.315m/s2. As can be seen from Figure 4.6, when the acceleration
remains within the boundaries the agent receives a reward of 0. As the acceleration increases
outside these boundaries there is a linear decrease in the reward the agent receives until a
saturation point of -100 occurs when the acceleration exceeds 1.315m/s2. It is also
important to note the use of the absolute function here to ensure that both accelerations in
the positive and negative direction i.e. up and down are treated equally. This is in line with
the use of the RMS acceleration shown in Figure 4.5.

Figure 4.6: Reward Function 1

The second reward function, which will be labelled as Reward Function 2, took the form;

55



Reward Function 2 = �((ceil(clip((abs(Chassis Acceleration)� 0.315), 0, 1))⇥ 100)) (4.2)

Again, this function punishes the agent for chassis accelerations which exceeds the boundary
of 0.315m/s2. However, in this case the function takes the form of a unit function, as can
be seen in Figure 4.7, which simply punishes the agent with -100 as soon as the chassis
acceleration boundary is breached. This is different to Reward Function 1 which had a linear
build up to a punishment of -100. Instead, Reward Function 2 is discontinuous and therefore
may be more difficult to learn.

Figure 4.7: Reward Function 2

These two reward functions were compared on the exact same simulation, using the exact
same road disturbances and the same set of parameters, which can be seen in Table 4.1
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Parameter Value

Episodes 30000

Critic Learning Rate 0.0000001

Actor Learning Rate 0.0000001

Explore Rate (Epsilon) 0.3

Decay Rate 0.99995

Target Network Update Value (⌧) 0.01

Experience Replay Size 20000

Mini Batch Size 256

Discount Factor (�) 0.9

Table 4.1: Reward Function Testing Parameters

Using these implementations each reward function was tested 3 times. The following results
were recorded for each reward function.

Reward Function
Max

Acceleration
±0.02

Max Chassis
Speed
±0.002

Max
Displacement

±0.0001

Avg. No. of Times
Boundary Exceeded

±2

1 0.98 0.019 0.0027 296

2 1.03 0.02 0.0028 299

Table 4.2: Reward Functions Note: the table shows the average number of times the bound-
ary was exceeded over the three runs. All other measurements have regions of error to
accommodate for deviations between results in the 3 tests

As can be seen from Table 4.2, Reward Function 1 outperformed Reward Function 2 in
nearly every metric. This may be due to the fact that Reward Function 2 is discontinuous
and as such is harder to learn. In contrast, Reward Function 1 is continuous and therefore it
is easier for the model to learn.

As such, based on these results Reward Function 1 was deemed to be the most practical and
effective reward function to use and as such is the one that all models were trained on.

It is important to note here that as the agent is only authorized to take an action every
35ms, the actual reward received by the agent is the accumulative sum of rewards over the
following 35ms from taking the current action.
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4.1.4 Terminal Goal

The end of the simulation occurs when a terminal goal is reached. In this case the terminal
goal occurs when chassis acceleration falls to below 0.2m/s2 for 200 consecutive timesteps.
This is done to determine when the chassis has settled down following the road disturbance.
When this is achieved the simulation ends.

4.2 Deep Reinforcement Learning Algorithm

This section compares the different deep reinforcement learning techniques applied to this
problem and outlines why Residual Policy Reinforcement Learning was deemed to be the
best option.

In previous work carried out in [1], attempts were made to apply the DDPG algorithm,
described in section 2.3.4, to suspension control in order to replace PID-controllers.
However, as can be seen in Figure 4.8, it was found that this led to instabilities in learning.

Figure 4.8: Divergence when applying DDPG to suspension control [1] Note: the red box
indicating the point where divergence occurred

These instabilities often resulted in complete divergence, as seen in Figure 4.8 and this has
been attributed to the long and varying horizon which is caused by the use of an end goal,
as described in section 4.1.4. This makes it more difficult for the critic to learn an accurate
prediction for the Q-value approximation as the length of the horizon varies, therefore this
can lead to divergence.
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In order to overcome this, the Residual Policy Reinforcement Learning algorithm was chosen.
As mentioned in section 3.3, this algorithm works by using a base policy alongside the
reinforcement learning policy. This base policy provides guidance to the reinforcement
learning policy and also increases the consistency in horizon length and trajectory making it
easier for the critic to learn. As a result, and as can be seen in Figure 4.9, this reduces the
instability experienced during learning.

Figure 4.9: Residual Policy Reinforcement Learning Rewards Note: the enhance stability

Due to this improvement in stability Residual Policy Reinforcement Learning was chosen for
this study. However, it is important to note that the algorithm does not guarantee full
stability and the agent can still slip in and out of convergence very slightly, as can be seen
with the oscillations in Figure 4.9. As such, early stopping and performance thresholds were
used to further enhance the stability and consistency of training, these methods will be
discussed in section 4.5 and 4.4 respectively.

4.3 Residual Policy

The Residual Policy Reinforcement Learning algorithm used in this thesis combined a
PID-controller as the base policy and a reinforcement learning agent as the residual policy.
The PID-controller was tuned for use in the simulation. The reinforcement learning agent
was trained using the DDPG algorithm described in section 2.3.4, further details on the
training will be provided in section 4.7.
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The PID was pre-tuned meaning it was consistent throughout training. As such it was only
the RL agent being updated during the training phase.

The final policy was given as the sum of the two polices and was used to decide the action
i.e. the damping rate, as described in section 4.1.2.

4.4 Performance Threshold

Whilst the use of Residual Policy Reinforcement Learning improves the stability of the agent
during training, as described in section 4.2, there is still slight fluctuation in performance in
training, even when the agent is in relative convergence. As such, the use of a performance
threshold was introduced whereby if an agent was performing better than the threshold, and
the agent was no longer exploring i.e. there was no random actions, then the model was
saved. This meant that should the agent slip out of convergence before training was over,
there was still a good performing model available.

4.5 Early Stopping

Early stopping is the process of terminating training before the dictated number of episodes
are reached. This is done as a way of saving time during training and is usually carried out
when the agent has reached convergence. However, it can also be used to improve
performance. As mentioned in section 4.4 even though Residual Policy Reinforcement
Learning can improve stability during training the agent can still slip slightly out of
convergence and end up with a policy slightly below the performance threshold. The use of
early stopping helps avoid this by terminating training early, whilst also preventing any
unnecessary training when in convergence, thus saving time.

4.6 Deep Neural Network’s Architecture

The architecture of the deep neural network is based on the DDPG algorithm described in
section 2.3.4 and as such is an actor-critic model as can be seen in Figure 4.10. It is shown
here that the actor takes in the state as input and takes an action, which gets passed to the
critic and the environment. The critic then takes this action as input, as well as the state,
and returns a Q-value approximation to the actor, which is used to update the actor. The
critic then receives the reward signal from the environment, which it uses to update itself.
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Figure 4.10: Actor Critic’s Architecture [1]

The exact architectural design of each network is similar to that described in [21], however
there are less hidden layers for the actor in the implementation in this thesis. This is because
it was found that the use of two hidden layers, as was recommended in the [21], resulted in
no improvement in policy performance compared to a network with one hidden layer, but
instead reduced the speed of training due to the extra parameters that needed to be updated.

As a result, the actor’s architecture consisted of an input layer, a single hidden layer and an
output layer as can be seen in Figure 4.11. The hidden layer was made up of 300 neurons,
which is the same as the second hidden layer of the actor network described in [21].
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Figure 4.11: Actor’s Architecture

The critic’s architecture was identical to that described in [21], this consisted of two input
layers, two hidden layers and one output layer. This architecture differs slightly from
traditional network implementations as the second input layer connects directly to the
second hidden layer i.e. it skips hidden layer one. This results in a structure whereby the
state is taken as an input in input layer one and passed into hidden layer two. However, the
action enters the network at input layer 2 and passes directly into hidden layer 2, where it is
combined with hidden layer one and passed through to the output layer. The first hidden
layer of the critic was made up of 400 neurons, whilst the second hidden layer was made up
of 300 neurons, exactly as described in [21].
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Figure 4.12: Critic’s Architecture

4.7 Training

The training for the reinforcement learning agent was the same as that for the DDPG
algorithm described in [21]. At each 35ms timestep the agent was allowed to take an action,
in the current state, which results in the agent transitioning to a new state and receiving the
reward. This action was summed with the action of the base policy before being applied to
the suspension control problem. The new state corresponded to the state reached after the
agent’s action has been applied to 35 consecutive 1ms timesteps. Similarly the reward
corresponded to the sum of rewards over the 35ms, as outlined in section 4.1.3. A tuple
comprised of the current state, current action, new state and current reward,
< st , at , st+1,Rt >, were stored in a memory buffer so that the agent could relearn from
these experiences at a later stage.

Every time the agent took an action, a sample of experiences were randomly selected from
the memory buffer and used to create minibatches to train the network. As these
minibatches were from old experiences the algorithm can be deemed off policy.

Following each update of the main network the target networks were also updated. These
target networks are used to improve the stability of learning as discussed in section 2.3.1

The full pseudocode for the DDPG implementation can be seen in Figure 4.13.
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Figure 4.13: DDPG Algorithm [21]

Following training the critic and the two target networks were discarded so that there was
only the actor left.

4.8 Summary

This section described the design of suspension control as a RL problem, as well as the state
and action spaces, reward function and terminal goal of this RL problem. It also described
the additional features used, the training and the architecture of the deep neural network
model, as well as the design of the Residual Policy Reinforcement Learning Algorithm.
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5 Implementation

This section will describe the exact implementation of the simulation, Residual Policy
Reinforcement Learning algorithm, PID-controller and RL agent.

5.1 Simulation Implementation

The simulation was provided by ZF Friedrichshafen AG and followed the form of the OpenAI
Gym format [64]. This template is written using the Python programming language and can
cater to almost any simulation. In this case, the simulation describes the impact road
disturbances and the Residual Policy Reinforcement Learning algorithm’s actions have on
chassis and wheel acceleration, velocity and position in a quarter car suspension system
model. The simulation itself is responsible for creating the road disturbances and it is also
responsible for calculating the rewards for each action. There are a number of functions
used within the OpenAI Gym’s template, these will be discussed now.

• init(self) - initialises all the variables needed for use within an instance of a gym
environment.

• step(self, action) - creates road disturbances and calculates and describes the
impact these road disturbances and the chosen actions have on particular states. It
calculates the rewards for these actions in the current state and also calculates the
new states. It also monitors the terminal goal to determine when it is reached. If this
terminal goal is achieved the function changes a Boolean switch to true. This switch
is known as the done variable. It returns the next state, the reward, the done variable
and additional information. The addition information variable is null in this
implementation. Each time the step() function is called it corresponds to 35 timesteps.

• reset(self) - resets the environment back to the original state. Returns the initial
state value.

• render(self) - plots the simulation results.
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5.2 Residual Policy Reinforcement Learning Algorithm
Implementation

The Residual Policy Reinforcement Learning algorithm was made up of two components: the
base policy (PID-controller) and the residual policy (DDPG RL Agent). The final policy was
the sum of these two. The interaction of the Residual Policy Reinforcement Learning
algorithm and the OpenAI Gym environment, described in section 5.1, can be seen in
Figure 5.1.

Figure 5.1: Residual Policy Reinforcement Learning Algorithm Interaction with the Environ-
ment
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As can be seen from Figure 5.1 the final action passed to the environment is the sum of the
two actions from the PID-controller and the DDPG RL agent. This is passed to the
environment through the step(self, action) function described in section 5.1. In turn, the
environment returns a number of variables, namely the next state and the reward. Note that
the reward is only used by the DDPG RL agent, as the PID-controller does not update
during training and as such has no use for the reward. The done variable, which is described
in section 5.1 and describes if the terminal goal is completed, is not passed to either the
PID-controller or the RL agent, but is instead used separately to determine if the episode is
complete.

The full system is implemented using Python. The exact implementation of each component
will now be discussed in section 5.3 and section 5.4.

5.3 PID

The PID-controller, as described in section 2.6, is implemented in Python. In this
implementation the PID-controller outputs an acceleration value which can then be used to
calculate a K-value or damping rate. This K-value corresponds to the action which is passed
to the final policy.

The controller itself is not updated during training as it is pre-optimized using a brute force
algorithm which tests the performance of each gain value in the range [-1000,1000], with
iteration size 0.1. Each gain is optimized separately to save computational time.

The final result of this optimisation is a set of PID gains outlined in Table 5.1

Gain Value

Proportional 0

Integral 0

Derivative 0

Table 5.1: PID Gain Values

These values can be considered to be somewhat odd due to the fact, and as described in
section 2.6, these gains are multiplied by the operation in each of the sections of the
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PID-controller. As such, there will be a constant output of 0 from the PID-controller, which
seems to be unusual.

However, it is believed that this may be the result of the tuning method, which iteratively
tries the different gain values to see which gain values perform the best. Each gain is tuned
separately as opposed to simultaneously. As previously stated, this was done to save time as
tuning PID-controllers can be quite tedious. In future work it may be advisable to use a
better tuning method such as the Ziegler and Nichols method [23].

Nonetheless, these values did exhibit good performance and were tested and found to
outperform passive systems, which are suspension systems with fixed damping rates.
Therefore they were deemed acceptable for this research.

5.4 Reinforcement Learning Agent

This section describes the RL agent’s implementation in Tensorflow, as well as giving an
insight into the parameter’s chosen and the activation functions and optimisation algorithms
used.

5.4.1 Tensorflow Implementation

The reinforcement learning agent is built using Tensorflow with a Keras backend and is
implemented using a Python class. The implementation involves the construction of two
actor models following the architecture described in section 4.6, with one of these models
acting as the target network for the actor and the other being the actor itself. Similarly, the
critic model was implemented using the same architecture as described in section 4.6. Again
two networks were created using this architecture, one being for the critic and the other
being for the critic’s target network.

The implementation contains the following functions:

• init(self, TensorflowSession, Environment, CriticLearningRate,
ActorLearningRate, NumberEpisodes, Exploration, ExplorationDecay,
FolderName, MaxActionRange, MinActionRange, ActivationFunction) -
Responsible for initializing an instance of the class with the given parameters.

• create_actor(self, action, trainable) - creates the actor network

• create_critic(self, action, state, trainable) - creates the critic network

• train(self) - updates both critic and actor network

• store(self, CurrentState, Action, Reward, NewState) - stores experiences in the
replay buffer
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• actor_target_update(self) - updates the actor’s target network

• critic_target_update(self) - updates the critic’s target network

• act(self,State) - triggers the actor to take an action. Returns the action
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This results in a tensorflow graph as can be seen in Figure 5.2

Figure 5.2: Tensorflow Graph
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As can be seen this diagram is quite complicated, therefore a clearer version can be seen
below in Figure 5.3 and Figure 5.4. These figures essentially break the full Tensorflow graph
down into two simpler sub graphs which show the main actor-critic model in Figure 5.3, and
the target actor-critic networks in Figure 5.4.

Figure 5.3: Main Actor Critic Network Tensorflow Graph

As can be seen from Figure 5.3 the actor network is composed of two dense layers, whilst
the critic makes use of three dense layers and a concatenate layer. The concatenate layer is
responsible for combining the first dense layer, which is the same as hidden layer 1 in
Figure 4.12, with the action which comes directly from the actor network. It can also be
seen that the state is passed into both the actor, through dense_1, and the critic, through
dense_5.

71



Figure 5.4: Target Actor Critic Network Tensorflow Graph

Figure 5.4 is almost identical to that seen in Figure 5.3, however, the big difference is that
the target networks receives the new state as input as opposed to the current state. This is
due to the fact that the target network’s main job is to stabilise temporal difference learning,
and it does this by predicting the future reward based on a new state and a predicted new
action. As with the main network seen in Figure 5.3, this new action is provided by the
actor’s target network.

5.4.2 Hyperparameters

There was a high number of hyperparameters in this implementation. These
hyperparameters include:

• Episodes - the number of episodes the agent will be trained on

• Critic Learning Rate - the step size for the critic’s updates (too small and it takes
too long to learn, too big and it could miss a minimum)
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• Actor Learning Rate - the step size for the actor’s updates (too small and it takes
too long to learn, too big and it could miss a minimum)

• Exploration Rate (✏) - Dictates the probability of taking an exploratory action i.e. a
random action to explore the environment. It is a decimal value in the range [0,1].

• Decay Rate - dictates how much the exploration rate should be reduced by at each
timestep. It too is a decimal value in the range [0,1]. At each time step it is multiplied
by the exploration rate to give a new exploration rate.

• Target Network Update Value (⌧) - a decimal value dictating how large target
network updates should be in comparison to main network updates. Usually very small
and in the lower range of [0,1].

• Experience Replay Size - the size of the buffer used to store memories or
experiences.

• Mini Batch Size - the number of experiences sampled at each update

• Discount Factor (�) - the temporal difference value dictating how much of
reduction is placed on each future reward. It is in the range [0,1]

As with most reinforcement learning algorithms, a DDPG agent is highly sensitive to
hyperparameter values. As such, a substantial amount of time was spent iteratively testing a
variety of different values for each hyper-parameter. Table 5.2 shows the different
hyperparameters and the values assigned to them. It also shows the range and incremental
value used to tune the hyperparameter. For example, a hyperparameter trained between 0
and 5, tested using only integers, would have a range of [0,5] in the table and incremental
value 1, indicating the values 0,1,2,3,4,5 were tested.

Note: Any value in the incremental column with an Asterix beside it indicates the number
was multiplied as opposed to added on to the original value. For example, for a range
[1,100] with increment size *10, this means values 1, 10 and 100 were tested.
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Hyper-Parameter Value Range Incremental
Value

Episodes 30000 [500,30000] 500

Critic LR 0.0000001 [10�10,1] *10

Actor LR 0.0000001 [10�10,1] *10

Exploration Rate 0.3. [0,1] 0.1

Decay Rate 0.99995 [0.9,0.9999999] See Note1

Target Network ⌧ 0.01 [0.01,0.1] 0.01

Experience Replay 20000 [2000,2000000] *10

Mini Batch Size 256 [64,512] 64

Discount factor � 0.9 [0.7,1] 0.02

Table 5.2: Hyperparameter values, tuning ranges and step sizes Note: any value in the
incremental column with an Asterix beside it indicates the number was multiplied as opposed
to added on to the original value. For example, for a range [1,100] with increment size *10,
this means values 1, 10 and 100 were tested.

Note1:the decay rate was tested using the value set
{0.9,0.95,0.99,0.995,0.999,0.9995,0.9999,0.99995,0.99999,0.999995, 0.999999, 0.9999995,
0.9999999}

5.4.3 Activation Functions

Another important aspect of the implementation was the activation function. As described
in section 2.2.3, there are a wide variety of possible activation functions. In this
implementation the ReLU activation function was chosen for all hidden layers, as it avoids
the exploding gradient and vanishing gradient problems. Whilst the critic networks used a
linear output function. This is in line with the implementation described in [21] and [9].

However, for the output layer of the actor it was harder to determine the best activation
function. This was because both [21], the paper that proposed the DDPG algorithm, and
[9], the paper that proposed the Residual Policy Reinforcement Learning algorithm, used two
different implementations. [21] used a zero centred TanH function, which assumed the
action space was zero centred and symmetric, whilst [9] used a simple linear output. In order
to determine which implementation was best each was applied to the suspension control
problem and compared.

The linear function was simple to implement, however, the TanH function outputs a value in
the range (-1,1). Therefore, to successfully implement Tanh, it was necessary to create a
zero centred symmetric action space. In this case a number of different action spaces were
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tested including: [-1000,1000], [-2000,2000], [-3000,3000], [-4000,4000] and [-5000,5000]. It
was found that the range [-5000,5000] was optimal, which makes relative sense as the action
space allowed by the suspension system is [100,5000]. Therefore, by having this output
range, the actor had the ability to completely change any output from the PID-controller.
For example, if the PID-controller outputted 5000 the RL agent could output -5000,
bringing the total output to zero, which would be clipped to a damping rate of 100. Equally,
the RL agent could make a small PID-controller output become very large in the final policy.

Both the linear and the TanH, with output range [-5000, 5000], activation functions were
used to train 3 separate models and compared against each other. 3 models were trained in
order to ensure the performance of each function was reproducible. Based on these tests the
TanH activation function was found to outperform the linear function. This was due to the
fact the linear function repeatedly converged to an output of zero, meaning the RL agent
contributed nothing to the total policy, and performance was based solely on the
PID-controller’s behaviour. The TanH activation function on the other hand, showed the
ability to make small adjustments to the overall policy, which was shown to improve
performance.

Table 5.3 gives a breakdown of the activation functions used.

Model Hidden Layer Output Layer

Actor ReLu TanH

Critic ReLu Linear

Table 5.3: Implementation: Activation Functions

5.4.4 Optimisation Algorithms

In order to choose the correct optimisation algorithm a number of potential algorithms were
tested, namely: Adam, RMS_Prop and Stochastic Gradient Descent (SGD). Each algorithm
was used to train 3 models and the performances compared against each other. Again, 3
models were trained using each algorithm to ensure reproducibility. The results can be seen
in Figures 5.5, 5.6 and 5.7. Each of these graphs are plotted alongside the rewards achieved
by the PID-controller alone as reference.
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Figure 5.5: Implementation: Adam Optimizer

Figure 5.6: Implementation: RMS_Prop Optimizer
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Figure 5.7: Implementation: Stochastic Gradient Descent Optimizer

As can be seen from these figures, the Stochastic Gradient Descent algorithm is by far the
worst performing algorithm with a massive divergence at approximately Episode 24,000.
Therefore, it was discarded as a potential option. The Adam optimisation algorithm and
RMS_Prop optimisation algorithm both performed quite well with only small differences
between them. Therefore the Adam optimisation algorithm was chosen for this
implementation as this was the one chosen in [21].

5.4.5 Initialisation

One important aspect of the Residual Policy Reinforcement Learning algorithm implemented
in [9] was the initialisation of the networks. Here, the actor network’s output was set to zero
at the beginning of training so as to allow the actor to experience the rewards associated
with the PID-controller alone. This was done in an attempt to prevent the algorithm
diverging too much away from the PID-controller in the beginning, especially if this
divergence was causing the overall policy’s performance to deteriorate. A similar approach
was adopted in this implementation with the actor’s output layer being initiated to zero.

[9] also introduced a wear in period whereby only the critic was trained for an initial number
of episodes. This was done so the critic could learn a relatively accurate approximation of
the Q-value before it was used to update the actor. This is important as the actor relies on
the critic to learn itself. As such, waiting a number of episodes before updating the actor is
thought to improve overall performance. A similar implementation was used in this thesis.
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5.4.6 Performance Threshold and Early Stopping

As described in section 4.4 and 4.5 two additional features were used to improve the agent’s
overall performance and reduce training time, these were early stopping and a performance
threshold. The exact implementation of these will be discussed now.

For the performance threshold the performance of the PID-controller alone was used. This
meant that once the Residual Policy Reinforcement Learning algorithm’s performance
surpassed the PID-controller’s performance the model would be saved. At this point the
threshold would be updated to the performance of this model i.e. the performance threshold
will always be the PID threshold or that of a better performing model. This meant that
during training the best performing model would always be saved and this would protect
against the possibility of divergence.

For the early stopping implementation, early stopping would occur following 15 consecutive
episodes of the same reward. The same reward was deemed to mean two reward totals
within 0.5 of each other.

5.5 Summary

This section described the exact implementation of the suspension environment and the
Residual Policy Reinforcement Learning algorithm including each of the individual
components i.e. the PID-controller and the reinforcement learning algorithm. It also
described the hyperparameters, activation functions and optimisation algorithms used in this
implementation, as well as the initialisation of each network and the critic’s wear in period.
The implementation of the performance threshold and early stopping techniques were also
outlined.
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6 Evaluation

This section describes the evaluation of the Residual Policy Reinforcement Learning
algorithm. This includes outlining the objectives of the evaluation, a description of the
metrics used to analyse performance and a specification of the road disturbances used to
test the performance. In addition, the results themselves will also be presented and an
analysis will be provided.

6.1 Objectives

The objective of this evaluation is to highlight the ability of the Residual Policy
Reinforcement Learning agent to enhance the performance of the PID-controller on a
number of metrics. As outlined in section 1, PID-controllers are quite tedious to tune and
tuning techniques often disagree on the optimum parametric values, as such optimal
performance is rarely achieved. Performance can also be impacted by non-linearities in the
system. Hence, one of the objectives is to compensate for these problems by using the RL
agent in the policy to improve the overall performance. In addition, PID-controllers do not
adapt well to environmental change due to the sensitivity of the parameters in specific
environments. Therefore, it is also the objective of this research to show how Residual Policy
Reinforcement Learning can overcome this by allowing the RL agent to re-adapt and
re-optimise performance. Finally, it is also the objective of this work to try to demonstrate
the ability of the Residual Policy Reinforcement Learning algorithm to reduce the need for
tedious tuning of PID-controllers by allowing it to try improve and optimise the performance
of an untuned PID-controller.

These objectives are outlined below:

1. To show that the Residual Policy Reinforcement Learning algorithm is capable of
enhancing a PID-controller’s performance on a number of metrics which will be
described in section 6.2 and improve the ride comfort of the vehicle.

2. To show that the Residual Policy Reinforcement Learning algorithm has the ability to
adapt and re-optimise the PID-controller’s performance following changes to the
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environment.

3. To show that the Residual Policy Reinforcement Learning algorithm has the ability to
optimise the performance of untuned PID-controllers, hence reducing the need for
tedious tuning methods.

6.2 Metrics

As mentioned previously, ride comfort is directly related to the chassis acceleration, velocity
and position. However, the chassis acceleration is particularly important as the velocity and
position are derived from this. This means that if low acceleration can be achieved then by
extension there will be very little velocity or movement in the chassis. As such the metrics
used here mainly focus on acceleration, however, maximum chassis velocity and position are
also considered. The metrics are as follows:

• Maximum Chassis Acceleration

• Maximum Chassis Velocity

• Maximum Chassis Movement

• Reward Function Score

• ISO 2631 Riding Comfort Standard

The final metric, the ISO 2631 Riding Comfort Standard, describes how the chassis
acceleration relates to passenger comfort. It groups acceleration ranges into categories of
comfort. The full breakdown can be seen in Figure 6.1

Figure 6.1: Evaluation: ISO 2631 Ride Comfort Standard [20]

Performance for this metric is evaluated based on the algorithm’s ability to reduce the
number of times the ride comfort enters the lower comfort bands e.g. "Very Uncomfortable"
or "Extremely Uncomfortable".
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6.3 Evaluation Scenario

This section describes the scenarios used to evaluate the Residual Policy Reinforcement
Learning algorithm. This includes describing the techniques used for comparison purposes
and the different road disturbances used for testing.

6.3.1 Evaluation Techniques

The performance of the Residual Policy Reinforcement Learning algorithm is compared
against a PID-controller operating by itself. This PID-controller was pre-tuned on this
environment as per the description given in section 5.3. This resulted in a PID-controller
with the gains as follows:

Gain Value

Proportional 0

Integral 0

Derivative 0

Table 6.1: Evaluation: PID Gain Values

6.3.2 Evaluation Scenarios

The following list outlines the scenarios that will be tested.

• Sine Wave - The algorithm is tested on a sine wave, which is common practice and
was used in [65, 66]. In this case the sine wave form was used to resemble a divot in
the road. Figure 6.2 shows the exact road disturbance used. Two separate sine wave
sizes were used, one at 2.5cm and one at 5cm in depth.
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Figure 6.2: Evaluation: Sine Wave Road Disturbance

• Pot Hole - The algorithm was also tested on a pothole which is slightly sharper than
the sine wave used above. Again this is common practice for suspension systems with
similar disturbances being used in [67, 68]. Figure 6.3 shows the exact road
disturbance used. Again, two different depths were used for testing: 2.5cm and 5cm.

Figure 6.3: Evaluation: Pot Road Disturbance

• Hybrid - The algorithm is also tested on a hybrid disturbance, which is a mix of a sine
and step function. Figure 6.4 shows the exact road disturbance used. Again, two
different depths were used for testing: 2.5cm and 5cm.

Figure 6.4: Evaluation: Hybrid Road Disturbance

• Mass Change - The algorithm was also tested on its ability to deal with
environmental change, which was simulated by altering the mass of the chassis. This
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mass change was from 650kg to 600kg which is similar to unloading a vehicle for
example. See Note2. This was tested on the hybrid road disturbance seen in Figure
6.4. This test was only conducted on a road disturbance of height 2.5cm.

• Untuned PID - Finally the algorithm was also tested on its ability to optimise the
performance of an untuned PID-controller. In order to do this the PID gains were
randomly selected and will be specified in section 6.5.5. Again the model was tested
only on a 2.5cm hybrid road disturbance.

Note2 - the reason a mass reduction was chosen as opposed to introducing a higher mass
was due to the dynamics of the vehicle. Increasing the mass in this simulation was shown to
reduce the chassis acceleration due to the equations used. As such it would be too easy for
the algorithm to adapt. Hence why mass reduction was used.

6.4 Setup

This section describes the environment used.

6.4.1 Suspension Model

The suspension system used here is known as a quarter car model and corresponds to a
simulation of a single wheel and suspension system encountering road disturbances i.e.
bumps. Due to intellectual property restrictions, as agreed with ZF Friedrichshafen AG, the
exact implementation cannot be discussed, however, [60, 61, 62] all use similar simulations.
Figure 6.5 shows the mechanics of such a system. Interestingly, in these models the wheel is
itself described as its own suspension system, with spring constant kt and damping value bt .
mu describes the wheel’s mass. This is due to the wheel’s mechanical properties which are
similar to those exhibited by a spring and damper system.
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Figure 6.5: Evaluation: Quarter Car Simulation Model [22]

6.4.2 Simulation Parameters

The simulation, whilst confidential, does allow for certain parameters to be changed. This
includes the masses of the chassis and wheel and the road disturbances. Using these
parameters different road disturbances and chassis masses can be tested.

6.5 Results and Analysis

In this section the results, and an analysis of those results, is presented. All evaluation
scenarios described in section 6.3.2 will be discussed and the performance of the model in
each scenario will be considered based on all the metrics described in section 6.2. The
hyperparameters used are the same as those outlined in Table 5.2, any changes to these
hyperparameters will be outlined and justified where necessary. In addition, all graphs used
in this section describe the systems behaviour over the course of a full episode i.e. graph
lengths are not reduced. As the models can take different times to reach the terminal goal,
as described in section 4.1.4, the episode end is determined by the time it takes the RL
model to complete the task. As such, in all graphs shown it is possible that the
PID-controller is still working to achieve the terminal goal after the timesteps specified in
the graphs.
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6.5.1 Sine Wave

The first test conducted involved training and testing the algorithm on a sine wave road
disturbance, which mimics a divot in the road. Two separate simulations were used, the first
simulation showed divot depth of 2.5cm whilst the second simulation showed a divot depth
of 5cm. Each experiment, which involved training the algorithm and testing it on the
different environments, was carried out 9 times each to ensure reproducibility. The
performance of the algorithm in each of the two simulations will be discussed now.

Sine Wave - 2.5cm

The algorithm was trained for 30,000 Episodes on a simulation of a 2.5cm sine wave. This
was done 9 times to ensure reproducibility. Table 6.2 shows the performance of the
algorithm, with error ranges indicating the variations in performance in each model. The
reward function is also shown to indicate the algorithms ability to increase the rewards
received, which indicates improved behaviour. This algorithm is compared directly with the
performance of a PID-controller.

Metric PID-controller Residual Policy RL

Maximum Chassis Acceleration (m/s2) 1.4 1.370±0.005

Maximum Chassis Velocity (m/s) 0.027 0.026

Maximum Chassis Movement (m) 0.0041 0.0040

Reward -5822 -5799 ±15

Table 6.2: Evaluation: 2.5cm sine wave results

Using the ISO 2631 ride comfort standard, seen in Figure 6.1 the distributions of
accelerations can also be grouped into different comfort bins. The number of timesteps each
model spent at each comfort level can be seen in Table 6.3
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Comfort Level PID-controller Residual Policy RL

Comfortable 588 554±1

Little Uncomfortable 32 29±1

Fairly Uncomfortable 73 76±1

Uncomfortable 28 31±1

Very Uncomfortable 11 10

Extremely Uncomfortable 0 0

Table 6.3: Evaluation: 2.5cm sine wave results as per ISO 2631 ride comfort standard Note:

The total number of timesteps are different between the two models. This is because it takes
the PID-controller longer to achieve the goal and hence requires more timesteps.

As can be seen from the results in Tables 6.2 and 6.3 the performance between the two
models i.e. the PID-controller and the Residual Policy Reinforcement Learning algorithm is
very similar with the PID-controller performing slightly better on the ISO 2631 standard.
However, the Residual Policy Reinforcement Learning algorithm is capable of reducing the
maximum chassis acceleration, velocity and movement, which all indicate improvements in
performance. In addition, it has also been able to outperform the PID-controller in terms of
the reward received and has reduced the number of timesteps the chassis spends in the
"Extremely Uncomfortable" comfort bin.

Other improvements can be seen in Figure 6.7. This plot highlights the difference in
magnitude between the PID-controller and the Residual Policy RL algorithm. Negative
values on this graph indicate that the Residual Policy RL algorithm has a smaller
acceleration than the PID-controller. As can be seen, the majority of this graph is below zero
suggesting the PID-controller has larger acceleration magnitudes for most of the episode.
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Figure 6.6: Evaluation: 2.5cm sine wave - acceleration magnitude differences. Negative
readings indicate the Residual Policy RL algorithm has lower accelerations than the PID-
controller Note: the RL agent here refers to the whole Residual Policy RL algorithm

This can also be seen in Figure 6.7 where the exponential cumulative acceleration for the
PID-controller is far larger than the Residual Policy Reinforcement Learning algorithm
indicating reduced acceleration on the Residual Policy RL algorithm’s behalf throughout the
episode.
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Figure 6.7: Evaluation: 2.5cm sine wave - Exponential Cumulative Acceleration for the Resid-
ual Policy Reinforcement Learning Algorithm vs the PID-controller. Note: over time the PID
experiences far more acceleration Note: the RL agent here refers to the whole Residual Policy
RL algorithm

However, all these differences are very small and even though the PID-controller does
experience more acceleration over the course of the episode, it also performs arguably better
on the ISO 2631 standard. As such it is hard to definitively state the Residual Policy RL
algorithm shows clear improvements over the PID-controller in this test.

Sine Wave - 5cm

This exact experiment was then repeated using the exact same road disturbance, however,
on this occasion the road divot’s depth was set to 5cm. Table 6.4 shows the differences
between the two models on the metrics related to maximum chassis acceleration, velocity
and position, as well as the overall reward received.
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Metric PID-controller Residual Policy RL

Maximum Chassis Acceleration (m/s2) 2.4 2.36±0.02

Maximum Chassis Velocity (m/s) 0.048 0.0455 ±0.0003

Maximum Chassis Position (m) 0.0071 0.0067 ±0.0001

Reward -14075 -13870 ±20

Table 6.4: Evaluation: 5cm sine wave results

Table 6.5 outlines the performance between the models when compared using the ISO 2631
standard.

Comfort Level PID-controller Residual Policy RL

Comfortable 529 533 ±1

Little Uncomfortable 125 129±1

Fairly Uncomfortable 60 50±1

Uncomfortable 47 48±1

Very Uncomfortable 79 77±1

Extremely Uncomfortable 0 0

Table 6.5: Evaluation: 5cm sine wave results as per ISO 2631 ride comfort standard

Based on these results it can be seen that the Residual Policy RL algorithm is capable of
reducing the maximum chassis acceleration, velocity and position, and also improving the
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reward when compared with the PID-controller. In addition, it can also be seen that the
Residual Policy RL algorithm is also effective at reducing the number of occurrences the
chassis acceleration spends in the "Very Uncomfortable" band with the maximum number of
occurrences being 78 compared with 79 for the PID-controller. There is a slight increase in
the number of occurrences the chassis spends in the "Uncomfortable" comfort band,
however, this was found to be predominantly caused by the reduction of times the
acceleration reached the "Very Uncomfortable" band i.e. the Residual Policy RL algorithm
reduced occurrences in the "Very Uncomfortable" band in favour for increasing occurrences
in the "Uncomfortable". Similar trends are seen in the "Fairly Uncomfortable" and "Little
Uncomfortable" bands with the Residual Policy RL algorithm tending to reduce occurrences
in the "Fairly Uncomfortable" band in preference of increasing occurrences in the "Little
Uncomfortable" band. All of these metrics indicate the Residual Policy RL algorithm is
enhancing the PID-controller’s performance and by extension improving the suspension
control of the vehicle.

This improvement can also been seen in Figure 6.8 which shows the differences between the
magnitudes of the Residual Policy RL algorithm and the PID-controller. Negative numbers
indicate the points where the Residual Policy RL algorithm has lower acceleration
magnitudes compared to the PID-controller. The orange line here indicates zero. As can be
seen the line is predominately lower than zero, indicating that the Residual Policy RL
algorithm has a lower acceleration compared to the PID-controller for the majority of the
episode. Interestingly, one of the few times the PID-controller does outperform the Residual
Policy RL algorithm is directly after the disturbance is encountered. However, whilst it
appears the PID-controller does dramatically outperform the Residual Policy RL model here,
the PID-controller does also have a higher maximum chassis acceleration as described in
Table 6.4. Therefore, whilst this difference is substantial, it can be mostly ignored as it is
not representative of the general trend.
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Figure 6.8: Evaluation: 5cm sine wave - acceleration magnitude differences. Negative readings
indicate the Residual Policy RL algorithm has lower accelerations than the PID-controller
Note: the RL agent here refers to the whole Residual Policy RL algorithm

The Residual Policy RL algorithm’s ability to consistently reduce the chassis acceleration is
also evident in Figure 6.9 where the exponential cumulative magnitudes of acceleration are
much lower for the Residual Policy RL algorithm compared to the PID-controller.
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Figure 6.9: Evaluation: 5cm sine wave - Exponential Cumulative Acceleration for the Residual
Policy Reinforcement Learning Algorithm vs the PID-controller. Note: over time the PID
experiences far more acceleration Note: the RL agent here refers to the whole Residual Policy
RL algorithm

Due to these results it is clear the Residual Policy RL model does outperform the
PID-controller.

6.5.2 Pothole

The second evaluation involved the use of a step function pothole. Again two separate
simulations were used, the first simulation showed bump depth of 2.5cm whilst the second
simulation showed a bump depth of 5cm. Each experiment was carried out 9 times each to
ensure reproducibility. However, during the course of running this experiment it became
apparent that 30,000 episodes was not sufficient to train the agent to develop a good policy.
As such training was extended and the decay rate was changed. The updated parameters
can be seen in Table 6.6. These parameters were only used for the pothole experiments.
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Hyper-Parameter Value

Episodes 300000

Critic LR 0.000000

Actor LR 0.0000001

Exploration Rate 0.3

Decay Rate 0.999999

Target Network ⌧ 0.01

Experience Replay 20000

Mini Batch Size 256

Discount factor � 0.9

Table 6.6: Hyperparameters for Pothole Experiment

The results will now be discussed.

Pothole - 2.5cm

As stated previously 9 separate models were trained on a 2.5cm deep pothole, which was
created using a step function. The results can be seen in Table 6.7.

Metric PID-controller Residual Policy RL

Maximum Chassis Acceleration (m/s2) 0.74 0.65±0.1

Maximum Chassis Velocity (m/s) 0.014 0.014 ±0.01

Maximum Chassis Position (m) 0.0019 0.0018 ±0.0002

Reward -2884 -2050 ±300

Table 6.7: Evaluation: 2.5cm pothole results

Table 6.8 outlines the performance between the models when compared using the ISO 2631
standard.
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Comfort Level PID-controller Residual Policy RL

Comfortable 600 635 ±25

Little Uncomfortable 206 185±25

Fairly Uncomfortable 34 18±3

Uncomfortable 0 0

Very Uncomfortable 0 0

Extremely Uncomfortable 0 0

Table 6.8: Evaluation: 2.5cm pothole results as per ISO 2631 ride comfort standard

By analysing the results it can be seen that the Residual Policy RL agent is capable of
outperforming the PID-controller in terms of maximum chassis acceleration, maximum
chassis velocity and maximum chassis position, as well as reward function. However, it is
interesting to note the large range of performance differences between models. This results
in the Residual Policy Reinforcement Learning algorithm, on some occasions, having higher
maximum acceleration, velocity and position than with the PID-controller alone. This occurs
even though the reward function is always superior for the Residual Policy RL algorithm.
This is most likely due to a local maxima which allow the agent to optimise the reward
whilst also showing some undesirable behaviour characteristics. This may be overcome by
identifying better reward functions but this can be quite tedious.

Nonetheless, any deterioration in performance on these metrics was very small and had very
little impact on the model’s performance on the ISO 2631 standard. As can be seen in
Table 6.8 the Residual Policy Reinforcement Learning algorithm was consistently better than
the PID-controller, with the Residual Policy RL algorithm reducing the number of timesteps
spent at both the "Fairly Uncomfortable" and "Little Uncomfortable" comfort levels in
favour of increased time spent in the "Comfortable" level. This is a clear indication of an
improvement in ride comfort.

Further evidence of this improvement can be seen in Figure 6.11, where the PID-controller
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displays higher accelerations more frequently than the Residual Policy Reinforcement
Learning algorithm. In fact, the Residual Policy Reinforcement Learning algorithm is 1.49

times more likely to have a smaller acceleration than the PID-controller.

Figure 6.10: Evaluation: 2.5cm pothole - Acceleration Difference between the PID-controller
and the Residual Policy RL algorithm. In this case the Residual Policy RL algorithm is 1.49

times more likely to have a reduced acceleration than the PID-controller. Note: Negative
values indicate the Residual Policy RL algorithm has a lower acceleration and is outperforming
the PID-controller Note: the RL agent here refers to the whole Residual Policy RL algorithm

This improvement is further seen in Figure 6.11 where the cumulative acceleration is far
higher for the PID-controller than the Residual Policy RL agent. As such it can be stated
that the Residual Policy RL agent does outperform the PID-controller in this simulation.
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Figure 6.11: Evaluation: 2.5cm pothole - Exponential Cumulative Acceleration for the Residual
Policy Reinforcement Learning Algorithm vs the PID-controller. Note: over time the PID
experiences far more acceleration. Note: the RL agent here refers to the whole Residual
Policy RL algorithm

Pothole - 5cm

This experiment was repeated on a pothole of depth 5cm. The results are contained in
Table 6.9 and Table 6.10.
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Metric PID-controller Residual Policy RL

Maximum Chassis Acceleration (m/s2) 1.49 1.45 ±0.1

Maximum Chassis Velocity (m/s) 0.28 0.032 ±0.001

Maximum Chassis Position (m) 0.0041 0.0032 ±0.0005

Reward -15152 -11200 ±700

Table 6.9: Evaluation: 5cm pothole results

Table 6.10 outlines the performance between the models when compared using the ISO 2631
standard.

Comfort Level PID-controller Residual Policy RL

Comfortable 764 510 ±10

Little Uncomfortable 62 95 ±15

Fairly Uncomfortable 150 140 ±30

Uncomfortable 131 77 ±5

Very Uncomfortable 13 10 ±2

Extremely Uncomfortable 0 0

Table 6.10: Evaluation: 5cm pothole results as per ISO 2631 ride comfort standard

Analysing the results from Table 6.9 it can be seen that the Residual Policy Reinforcement
Learning Algorithm is capable of reducing the maximum chassis acceleration and position
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whilst also maximising the reward received. These are all indications that the Residual Policy
RL algorithm is outperforming the PID-controller. However, the Residual Policy RL
algorithm was never able to improve the maximum chassis velocity, which is interesting as
this value is directly derived from the acceleration. Nonetheless, whilst the PID-controller
does have a lower maximum velocity, which is also a sign of improved comfort, the Residual
Policy RL algorithm beats it on all other metrics in this table. As such it can be stated that
based on these metrics the Residual Policy RL algorithm outperforms the PID-controller.

This improvement is also seen in Table 6.10 where the Residual Policy RL algorithm
repeatedly reduces the number of occurrences the chassis experienced acceleration values in
the lower comfort tiers e.g. "Very Uncomfortable" and "Uncomfortable". Instead the
algorithm increased experiences in the more comfortable tiers such as "Little
Uncomfortable" and "Fairly Uncomfortable".

As well as this, Figure 6.12 highlights the acceleration differences between the Residual
Policy RL algorithm and the PID-controller. Again, negative values indicate the Residual
Policy RL algorithm has lower accelerations compared to the PID-controller. In this case,
the Residual Policy RL algorithm is 2 times more likely to have a lower acceleration than the
PID-controller.

Figure 6.12: Evaluation: 5cm pothole - Acceleration Difference between the PID-controller
and the Residual Policy RL algorithm. In this case the Residual Policy RL algorithm is 2 times
more likely to have a reduced acceleration than the PID-controller. Note: Negative values
indicate the Residual Policy RL algorithm has a lower acceleration and is outperforming the
PID-controller Note: the RL agent here refers to the whole Residual Policy RL algorithm
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Again, this result is reflected in the exponential cumulative acceleration of the two, with the
PID-controller having a far larger value. This is shown in Figure 6.13

Figure 6.13: Evaluation: 5cm pothole - Exponential Cumulative Acceleration for the Residual
Policy Reinforcement Learning Algorithm vs the PID-controller. Note: over time the PID
experiences far more acceleration Note: the RL agent here refers to the whole Residual Policy
RL algorithm

Once again it is clear the Residual Policy RL algorithm outperforms the PID-controller, with
better scores on all metrics except for maximum chassis velocity. Hence, it can be stated it
once again outperforms the PID-controller in terms of ride comfort and suspension control.

6.5.3 Hybrid

The third evaluation involved using a bump which was a hybrid of both a step function and
a sine wave. In this case the front of the bump was a sharp edge like that created by a step
function whilst the end of the bump was a sine wave. Again two different bumps heights
were used and each experiment was carried out 9 times. The parameters described in
Table 5.2 were used. The results are presented below.

Hybrid - 2.5cm

The initial height was set to 2.5cm. The results can be seen in Table 6.11 and 6.12.
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Metric PID-controller Residual Policy RL

Maximum Chassis Acceleration (m/s2) 0.52 0.49±0.005

Maximum Chassis Velocity (m/s) 0.01 0.0097±0.0001

Maximum Chassis Movement (m) 0.0014 0.0013

Reward -335 -280 ±15

Table 6.11: Evaluation: 2.5cm hybrid disturbance results

Comfort Level PID-controller Residual Policy RL

Comfortable 796 798

Little Uncomfortable 38 42

Fairly Uncomfortable 6 0

Uncomfortable 0 0

Very Uncomfortable 0 0

Extremely Uncomfortable 0 0

Table 6.12: Evaluation: 2.5cm hybrid disturbance results as per ISO 2631 ride comfort stan-
dard

Analysing these results shows that in Table 6.11 the Residual Policy RL algorithm
consistently outperforms the PID-controller in terms of maximum chassis velocity and
position whilst also maximising the reward function. In addition, the algorithm also
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frequently outperformed the PID-controller in terms of maximum chassis acceleration,
however, some models did fail to do this. Nonetheless, the vast majority of metrics indicate
improved performance from the Residual Policy RL algorithm.

This improvement is further evident in Table 6.12 where the Residual Policy RL algorithm
consistently remained within the acceleration boundaries of the "Little Uncomfortable" tier,
as per the ISO 2631 standard. In contrast the PID-controller routinely exceeded these
boundaries and entered into the "Fairly Uncomfortable" tier on 6 occasions.

This enhanced performance can also be seen in Figure 6.14 where the Residual Policy RL
algorithm is 2.45 times more likely to have a lower acceleration magnitude compared to the
PID-controller.

Figure 6.14: Evaluation: 2.5cm hybrid disturbance - Acceleration Difference between the
PID-controller and the Residual Policy RL algorithm. In this case the Residual Policy RL
algorithm is 2.45 times more likely to have a reduced acceleration than the PID-controller.
Note: Negative values indicate the Residual Policy RL algorithm has a lower acceleration and
is outperforming the PID-controller Note: the RL agent here refers to the whole Residual
Policy RL algorithm

Again, this results in the exponential cumulative acceleration of the Residual Policy RL
algorithm being lower than the PID-controller, as can be seen in Figure 6.15.
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Figure 6.15: Evaluation: 2.5cm hybrid disturbance -Exponential Cumulative Acceleration for
the Residual Policy Reinforcement Learning Algorithm vs the PID-controller Note: over time
the PID experiences far more acceleration Note: the RL agent here refers to the whole
Residual Policy RL algorithm

As a result, the Residual Policy RL algorithm can be deemed an improvement on the
PID-controller in this case with improved performance seen in terms of the ride comfort.

Hybrid 5cm

Again, this experiment was repeated on the same road disturbance but this time at a height
of 5cm. The results can be seen in Table 6.13 and 6.14.
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Metric PID-controller Residual Policy RL

Maximum Chassis Acceleration (m/s2) 1.03 0.983±0.001

Maximum Chassis Velocity (m/s) 0.02 0.0195±0.001

Maximum Chassis Movement (m) 0.0028 0.00268 ±0.00002

Reward -6214 -6065 ±15

Table 6.13: Evaluation: 5cm hybrid results

Comfort Level PID-controller Residual Policy RL

Comfortable 540 544

Little Uncomfortable 142 142 ±1

Fairly Uncomfortable 141 139 ±1

Uncomfortable 17 15

Very Uncomfortable 0 0

Extremely Uncomfortable 0 0

Table 6.14: Evaluation: 5cm hybrid results as per ISO 2631 ride comfort standard

As can be seen from Table 6.13 the Residual Policy Reinforcement Learning Algorithm once
again outperforms the PID-controller on all available metrics. In addition, the algorithm
outperforms the PID-controller on the ISO 2631 standard with it once again showing the
ability to reduce the timesteps spent in lower comfort bands such as the "Uncomfortable"
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band. All these indicate that the algorithm is improving ride comfort.

This can also be seen in the acceleration differences between the two approaches. This is
shown in Figure 6.16. Again it can be seen that the Residual Policy RL algorithm is 2.4

times more likely to have a lower acceleration than the PID-controller.

Figure 6.16: Evaluation: 5cm hybrid disturbance -Acceleration Difference between the PID-
controller and the Residual Policy RL algorithm. In this case the Residual Policy RL algorithm
is 2.4 times more likely to have a reduced acceleration than the PID-controller Note: Negative
values indicate the Residual Policy RL algorithm has a lower acceleration and is outperforming
the PID-controller Note: the RL agent here refers to the whole Residual Policy RL algorithm

This is also reflected in the exponential cumulative acceleration which shows the
PID-controller experiencing far more acceleration over the course of an episode. This can be
seen in Figure 6.17
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Figure 6.17: Evaluation: 5cm hybrid disturbance -Exponential Cumulative Acceleration for the
Residual Policy Reinforcement Learning Algorithm vs the PID-controller Note: over time the
PID experiences far more acceleration Note: the RL agent here refers to the whole Residual
Policy RL algorithm

As a result, it is clear that the Residual Policy Reinforcement Learning algorithm improves
the performance of suspension control, and enhances the abilities of the PID-controller for
suspension control.

6.5.4 Mass Change

The algorithm’s ability to re-adjust and relearn following environmental change was also
tested by varying the mass of the car from 650kg to 600kg during training. Following this
change the PID was re-tuned to ensure it was still performing optimally and to ensure the
PID-controller was not the cause of any drop in performance. This re-tuning did not result
in a change to PID gains i.e. the gains were the same as those seen in Table 5.1. This test
was only conducted on a hybrid road disturbance of height 2.5cm. The agent was allowed to
re-explore its environment at the point of change. As outlined in section 2.6 one of the
PID-controller’s biggest weaknesses is its inability to adapt to changes in the environment
and chapter 3 outlined a series of approaches put forward to overcome this. Therefore, if the
Residual Policy Reinforcement Learning Algorithm can accomplish the readjustment it would
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be a major bonus for the method.

Mass Change - 2.5cm

As with all other experiments this test was conducted 9 times with each model showing the
ability to re-adapt and re-optimise the PID-controller. This can be seen in Figure 6.18 where
the Residual Policy RL algorithm was able to re-optimise the PID-controller following the
mass change, which is marked with the dramatic drop in performance of both the
PID-controller and Residual Policy RL agent. It is shown that this mass change particularly
impacts the Residual Policy RL algorithm which experiences a reward drop from more than
-500 to less than -2500. However, following this drop in performance the agent begins to
relearn and begins to outperform the PID-controller again, which is seen through the
oscillations around the PID line. Whilst these oscillations may seem problematic, due to
introduction of the performance threshold and early stopping techniques described in
chapter 4 only the best model will be kept i.e. the models at the peaks of the oscillations.
As a result, the end product is a re-optimised PID-controller.

The full set of results for this experiment can be found in section A1.2.

Figure 6.18: Evaluation: Rewards During Training Note: the agent re-optimises the perfor-
mance of the PID-controller Note: the RL agent here refers to the whole Residual Policy RL
algorithm
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6.5.5 Residual Policy Reinforcement Learning Algorithm as a PID
Tuner

The Residual Policy Reinforcement Learning algorithm was also trained using an untuned
PID-controller in order to ascertain the ability of the algorithm to optimise the performance
of this PID-controller and to determine the algorithm’s ability and applicability to replace
traditional tuning methods which are known to be very tedious.

In order to do this, a PID-controller with randomly chosen gains was deployed as the
Residual Policy RL algorithm’s base policy. Again, a DDPG agent was used for the residual
policy. As with previous experiments the model was trained for 30,000 episodes using the
hyperparameters outlined in table 5.2. The road disturbance used was the 2.5cm hybrid road
disturbance. The performance was compared against a tuned PID-controller’s performance
using the gains outlined in table 5.1. The untuned PID-controller was randomly assigned the
gains seen in table 6.15.

Gain Value

Proportional 12

Integral -5

Derivative 7

Table 6.15: Randomly Assigned PID Gain Values

It was found during this experiment that the Residual Policy Reinforcement Learning
algorithm using the untuned PID-controller was incapable of achieving any kind of
competitive performance when compared with the tuned PID-controller. In fact, it was
found that the Residual Policy Reinforcement Learning agent struggled to even enhance the
performance of the untuned PID-controller. This is seen in Figure 6.19 where the Residual
Policy RL algorithm’s performance actually drops when compared to the untuned
PID-controller. This is a crucial find as it indicates that the performance of the Residual
Policy RL algorithm is heavily dependent on the base policy used.
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Figure 6.19: Evaluation: Rewards of the Residual Policy RL algorithm using a untuned PID-
controller as a base policy Note: the RL agent here refers to the whole Residual Policy RL
algorithm, whilst the untuned PID-controller refers to the untuned controller alone

This is interesting as throughout the experiments it was seen that the agent was able to vary
its action magnitudes in order to take a bigger or smaller role in the final policy. This is seen
in Figure 6.20 where actions were in the range [13,18] for the hybrid disturbance, but
changed to the bigger range of [300, 800] in Figure 6.21 for the pothole disturbance.
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Figure 6.20: Evaluation: Agent’s actions on the hybrid road disturbance
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Figure 6.21: Evaluation: Agent’s actions on the pothole road disturbance

This indicates that whilst the algorithm can vary its role, as suggested in [9], it is still reliant
on a good base policy to ensure good performance. One possible reason for this is due to
the exploration experienced by the agent. Specifically, because the base policy is so poor the
agent never or very rarely experiences good behaviour and as such struggles to learn any way
to improve the final policy. It may be possible to overcome this by introducing a better
exploration method which allows the agent to encounter good experiences more frequently.

Nonetheless, this is an important result as it shows that even though Residual Policy RL is
capable of dealing with environmental change and re-optimizing PID-controllers, as seen in
section 6.5.4, performance is still highly dependent on the performance of the base policy.
As such, if the base policy struggles to cope with the environmental change it may result in
bad overall performance.

6.5.6 Challenges of Using the Residual Policy Reinforcement Learn-
ing

Whilst the Residual Policy RL algorithm has been shown to be very capable at enhancing
PID and suspension control, whilst also being capable of adapting to change there were a
number of difficulties associated with applying Residual Policy RL to suspension control.
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The first problem came in the form of local maxima. The results illustrated above attempt
to provide a fair and balanced insight into the general behaviour of models. As such, where
applicable, all values provided give an error range. In addition, all the graphs used were
chosen based on their representation of the general trends of models trained during the
experiments i.e. the graphs used to illustrate differences in acceleration and cumulative
differences can be considered as the average performance of models. However, in all
experiments there were a number of outlier models which exhibited undesirable behaviour.
For example, one pothole model trained the RL agent to output highly negative numbers in
the range [-5000,-4500]. This resulted in the total policy output being a consistent damping
rate of 100. Interestingly in all cases the outlier models achieved very good scores in terms
of the reward. In fact, on several occasions these models achieved the highest rewards out of
all models trained in their respective environments. This suggests the models did not fail to
learn but instead found different maxima to the majority of models. This is down to the
reward function chosen which allows for certain undesirable behaviours to be rewarded.

Whilst all these models were retrained and in all cases managed to achieve similar
performance to the general trends of models following this retraining, this indicates one of
the biggest difficulties when using an RL algorithm. RL algorithms work by identifying and
learning behaviours that maximize reward, as such, if reward functions maximise undesirable
behaviour it is possible that the agent can learn this behaviour. The best way to overcome
this is by creating a different reward function which does not reward the agent for these bad
behaviours, however this is not a trivial task, and usually requires a lot of trial and error.

Another major challenge was hyperparameter selection with models being very sensitive to
changes in these values. In particular, agents struggled to learn when the learning rates were
too large. As such a lot of time was spent iteratively tuning these variables.

6.6 Summary

In this chapter the experimental results were presented and discussed. As well as this the
simulation scenarios used, the metrics used and the objectives for the evaluations were
discussed.

The results showed that in nearly all experiments the Residual Policy RL algorithm was
capable of improving the performance of the PID-controller and suspension system is terms
ride comfort, as described by the ISO 2631 standard, maximum chassis acceleration and
position, cumulative acceleration and total rewards. The one exception to this was seen in
the sine wave road divot of depth 2.5cm as seen in section 6.5.1. In this case performance
was very similar, with the PID-controller arguably performing better on the ISO 2631
standard. However, the Residual Policy RL algorithm did perform better on nearly all other
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metrics, therefore it is very hard to determine which approach would be preferable here with
the differences being very small.

It is worth noting that the results showed that the Residual Policy RL algorithm seemed to
perform best when used on the road disturbances of larger depth or height. It is not entirely
clear why this is, however, it appears to be related to the fact that the PID-controller alone
is performing quite well on these road disturbances and therefore there may not be as much
room to improve. In contrast, the larger road disturbances are more difficult to control and
hence the Residual Policy RL algorithm has more space to learn and improve performance.

The results also showed the algorithm’s ability to adapt to environmental changes when the
vehicle experiences mass change. In this case the algorithm was once again able to
outperform the PID-controller alone.

However, the final experiment highlighted the limitations of the algorithm, and the reliance
of the algorithm on a good base policy. In this case the algorithm was unable to compensate
for the poor performance of a untuned PID-controller, indicating that it is not an applicable
option for replacing PID tuning methods.

As a result of these findings both objective 1 and 2, as described in section 6.1, have been
achieved, but objective 3 was not.
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7 Conclusion

In this chapter the thesis is reviewed and the thesis contributions are presented.

7.1 Thesis Contribution

This thesis proposes and evaluates a method for combining PID-controllers with RL
techniques to create a highly effective and complementary system capable of enhancing
PID-control and improving the performance of vehicle suspension systems in terms of ride
comfort.

Chapter 1 outlined the motivation for the work, highlighting the drawbacks of
PID-controllers and illustrating how RL techniques can overcome these. We argued the
three main drawbacks of the PID-controller i.e. its linearity, how tedious it is to tune and its
inability to adapt to environmental changes, are also the strengths of deep reinforcement
learning algorithms. We proposed that by applying Residual Policy Reinforcement Learning
these systems could be combined together to create an improved technique for controlling
suspension systems.

In chapter 2, the background to the techniques used in this implementation was described.
In particular, the DDPG algorithm, which was used to train the RL element of the Residual
Policy RL algorithm, was described, as well as the Residual Policy RL algorithm itself.
PID-control and suspension control were also discussed.

Chapter 3 outlined other attempts to improve PID performance. This included algorithms
aimed at tuning PID-controllers in an online fashion to maintain optimal performance as the
system changed. Reinforcement Learning techniques were also discussed, which highlighted
previous attempts to both replace and tune PID-controllers using RL techniques. Finally,
previous attempts to apply Residual Policy Reinforcement Learning to enhance the
performance of a Proportional controller were also described.

Chapter 4 presented the exact design of the algorithm used in this thesis. In particular, the
exact design of the Residual Policy RL algorithm was described, as well as the deep
reinforcement learning algorithm used to train the agent and the architecture of the deep
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neural networks. The additional features, namely: early stopping and the performance
threshold, were also presented.

Chapter 5 showed the complete implementation of the algorithm and the simulation used for
testing. The Tensorflow implementation was shown using Tensorboard graphs and the
functions used to create the environment and agent were outlined. The PID-controller’s
implementation and gain values were also presented as were the hyperparameters used.

Finally, Chapter 6 presented the evaluation of the model including the scenarios and
techniques used for this evaluation. These results showed the Residual Policy Reinforcement
Learning algorithm was capable of enhancing the performance of both the PID-controller
and the suspension system. The algorithm displayed the ability to repeatedly and
consistently outperform the PID-controller on a variety of different metrics including the ISO
2631 Ride Comfort Standard. As well as this, the results showed the algorithm was very
capable of relearning and adapting to changes in the environment which a PID-controller
alone would struggle with. However, the results all highlighted the limitations of the
algorithm and its reliance on good and effective base policies. Without this the algorithm is
unable to achieve good performance and as such it does not offer a practical alternative to
good tuning methods.

As such the main contribution of this thesis is the proposal for the design and
implementation of an algorithm which can enhance the performance of suspension control
systems when compared to traditional PID-controllers. It also provides a platform for future
work in relation to not only suspension systems but PID-control in general. PID-controllers
themselves are used in numerous applications and as such this thesis presents and outlines
an algorithm which may be capable of being applied to other applications that use
PID-controllers and could represent a huge industrial use for RL techniques. However, this
work also highlights the limitations of this algorithm and illustrates the fact that whilst the
Residual Policy RL algorithm is capable of enhancing PID-control and dealing with
environmental change, it is not capable or ensuring good performance when used alongside
poorly tuned or untuned PID-controllers or base policies.

7.2 Future Work

This section outlines areas where future work should be focused. This is based on areas
identified during the evaluation of the models, other experiments that would be interesting
to run and other applications where the model could be applied.

• Real Road Data - future work should focus on applying this algorithm to suspension
systems using real road data. Whilst the experiments conducted here used road
disturbances in line with the literature, real road data provides an additional challenge
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and represents a far more realistic evaluation setting for the algorithm.

• Noise - Future work should also analyse the algorithms ability to deal with noise. In
this experiment road surfaces were assumed to be smooth, however, this is never the
case and as such noisy road surfaces should be used to help mimic the real world. This
is similar to applying real road data.

• Generalization - In this thesis models were trained independently on a single road
disturbance and only evaluated on this road disturbance. As such, future work should
test the algorithm’s ability to generalize to other road disturbances as in the real world
it is very rare for road disturbances to be identical.

• Improved Simulation - As mentioned previously, the simulation model used here
was very simple and neglected a number of aspects related to real suspension systems.
For example, vehicle speed was ignored. As such, whilst the results presented here are
promising, they do not directly show the algorithm is capable of controlling real world
suspension systems. Therefore, future work should attempt to re-run these
experiments on more complex environments.

• New Applications - Finally, as touched on previously, PID-controllers are used in
many different systems, not just suspension control. As such, future work should also
consider the performance of the Residual Policy RL algorithm on other PID-controlled
systems. If the algorithm can be shown to work well on other applications it could
represent a large step forward in industrial uses for Reinforcement Learning.
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A1 Appendix

A1.1 Deep Learning Early History

The earliest work on neural networks was in 1943, when [69] proposed a non-linear
computing unit known as a neuron, which was designed to model the behaviour of a neuron
in the brain. This was then expanded by [70], which introduced the idea of weighted inputs
for these neurons. This model used the weighted sum of the inputs to determine a binary
output, in this case 1 if the weighted sum was positive or 0 if the sum was negative.

However, due to difficulties training perceptrons with multiple layers, progress on neural
networks haulted until 1986 when [35] proposed the Backpropagation algorithm which was
capable of training neural networks with many layers and thousands of neurons.

Since then deep learning has been progressing quickly and has been applied to a wide range
of applications, from image classification, to sentiment analysis to text translations.
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A1.2 Mass Change Results

Before Mass Change

Metric PID-controller Residual Policy RL

Maximum Chassis Acceleration (m/s2) 0.52 0.495±0.005

Maximum Chassis Velocity (m/s) 0.01 0.00980±0.00005

Maximum Chassis Movement (m) 0.0014 0.00134 ±0.00001

Reward -335 -290 ±5

Table A1.1: Evaluation: 2.5cm hybrid results before mass change

Comfort Level PID-controller Residual Policy RL

Comfortable 796 798

Little Uncomfortable 38 42 ±1

Fairly Uncomfortable 6 0

Uncomfortable 0 0

Very Uncomfortable 0 0

Extremely Uncomfortable 0 0

Table A1.2: 2.5cm hybrid results prior to mass change as per ISO 2631 ride comfort standard

After Mass Change

123



Metric PID-controller Residual Policy RL

Maximum Chassis Acceleration (m/s2) 0.77 0.710±0.005

Maximum Chassis Velocity (m/s) 0.016 0.0150±0.0002

Maximum Chassis Movement (m) 0.0019 0.00182 ±0.00002

Reward -2238 -2045 ±20

Table A1.3: Evaluation: 2.5cm hybrid results after mass change

Comfort Level PID-controller Residual Policy RL

Comfortable 627 628

Little Uncomfortable 191 194 ±1

Fairly Uncomfortable 22 18±1

Uncomfortable 0 0

Very Uncomfortable 0 0

Extremely Uncomfortable 0 0

Table A1.4: Evaluation: 2.5cm hybrid results after mass change as per ISO 2631 ride comfort
standard
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