*,% V4 Trinity College Dublin
o Colaiste na Trionoide, Baile Atha Cliath
The University of Dublin

School of Computer Science and Statistics

Towards the design of a large-scale
distributed traffic management
system for slot-based driving

Sigi Wei

May 8, 2020

A Final Year Project submitted in partial fulfilment
of the requirements for the degree of
MAI (Computer Engineering)

http://www.scss.tcd.ie

Declaration

| hereby declare that this project is entirely my own work and that it has not been submitted
as an exercise for a degree at this or any other university.

| have read and | understand the plagiarism provisions in the General Regulations of the
University Calendar for the current year, found at http://www.tcd.ie/calendar.

| have also completed the Online Tutorial on avoiding plagiarism ‘Ready Steady Write', located
at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

Signed: Date:

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

Abstract

This research focused on designing a large-scale distributed traffic management system (TMS).
It aims at developing a TMS to support the slot-based driving approach and to control vehicles
remotely.

At present, autonomous driving is one of the most promising areas in the automotive domain.
This technology consists of sensing, perception, planning and operation to improve road safety
by avoiding human mistakes. The European Commission states that the nature of human
driving is competitive. In reality, drivers tend to drive faster on the motorway, and they prefer
to drive on faster lanes instead of slower lanes. Such phenomenon has a negative impact
on road safety, efficiency and traffic congestion. Thus, prior work of slot-based driving, as
an example of remote control, underpins this project as a way to reduce traffic congestion,
coordinate vehicles and guarantee journey times. To support the slot-based driving approach,
a large-scale TMS is proposed in this research. This TMS aims to help traffic management,
enable autonomous vehicles, give guidance and control them.

This large-scale distributed traffic management system is proposed to handle large user capac-
ity and it requires high scalability, availability, reliability and low latency. This TMS consists
of App, load balancer, TMS centers (TMC), map service, road servers, road-side units (RSU),
on-board units (OBU), the overall database and local databases. Users can input their re-
quests through the App which will then reroute requests to the load balancer. Load balancers
will distribute loads to TMC that will query the map service to get routes based on users’
requests. This is followed by TMC querying road servers to check the road availability. The
overall database will provide road servers with slot information which will then be sent back
to TMC. When vehicles are travelling on the motorway, OBUs will keep broadcasting vehicle
information to RSUs which will constantly update the overall database and local databases to
store real-time information. This TMS is designed to be able to book the journey for vehicles
and to ensure vehicles to follow the pre-defined trajectories while travelling.

A prototype of the overall design was achieved by using simulator SUMO to simulate the
traffic environment. This prototype consists of OBU, RSU and slot information. RSUs will
read the slot information and send it to OBUs before vehicles joining the motorway. Vehicles
will be allocated a route defined by slots in OBUs. Control commands will be sent to vehicles
from OBUs while they are travelling on the motorway. This implemented prototype shows the
interaction between RSUs and OBUs. It also allows vehicles to be scheduled before travelling
and to be controlled during the journey.

Acknowledgements

| would first like to acknowledge my supervisor Prof Vinny Cahill for his help and
encouragement during this research project. He gave me valuable advice on the project itself
and also the dissertation writing. Without his help, | wouldn't have accomplished this on my
own. | would also like to thank Lara Codeca for helping me configure software used in this

project.

Finally, | would like to thank my family and my boyfriend Jerry Yang for enduring support

and advice.

Contents

1 Introduction

1.1 Research Motivation
1.2 Research Objectives
1.3 Overview of Achievements,
1.4 Improvements and Future work
1.5 Thesis Structure

2 Background

2.1 Distributed System
2.1.1 System Architecture
2.1.2 Replication
2.1.3 Partitioning

2.2 Vehicular Communication

2.3 Slot-based Driving

2.4 Traffic Management System

25 Conclusion

3 System Design

3.1 Overviews
32 SlotDesign.
3.3 Overall Architecture Design
331 App ..
332 LoadBalancer
333 TMS Centre
334 RoadServers
335 RSU
336 OBU
337 Database
34 User Case Scenario
34.1 Booking Journey

A~ A WO DN R~ =

O N o O

10
14
17
18
21

342 DrivingonRoad

4 Implementation

4.1 Phase One
4.1.1 Environments and Software Setup
412 RSU
413 OBU

42 Phase TWo
421 DefineSlot
422 RSU . . .
423 OBU

4.3 Phase Three

5 Evaluation

51 Results
5.2 Comparison between Design and Prototype
52.1 Components
5.2.2 System Functionalities

5.3 Future Work

6 Conclusion

31
31
31
32
34
35
35
37
38
39

41
41
42
43
43
43

45

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
25

2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Traffic management center 2
TMS architecture

Example of distributed system
Two-tier architecture system L.
Three-tier architecture system
Leader-based replication 10

Leader-based replication with one synchronous and one asynchronous follower

(1) o oo 11
Partitioning in the parking lot 11
Combination of replication and partitioning (1) 12
A car park partitioned by the key range 12
Secondary index by document (1) 13
Secondary index by term (1) 14
VANET (2) o 15
DSRCvs LTE (3) (4) (5) - - - - o o o o 15
Slot-based driving diagram 17
Basic Operation of Fire-Nrd (6) 19
Data life cycle in smart transportation (7) 20
Overall TMS architecture (8) 21
Stopping distance formula (9) 23
Slot trajectory 24
Overall system architecture 24
Load balancer 25
Sending requests to the server 26
Slots within RSU transmission range 27
Current slot information table 0. 28
Slot booking table 28
Current slot sizetable 28

vi

3.10
3.11
3.12
3.13
3.14
3.15
3.16

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

51
5.2
53

Current slot speed table 28

Current slot information table 28
Slot booking table 28
Current slot sizetable 29
Current slot speed table 29
Book ajourney 29
Drivingontheroad 30
Initial map in NETEDIT 32
Route file 32
sumo.sumocfg file 32
TCP three-way handshaking (10) 33
RSU TCP connection 33
OBU TCP connection 34
Data serialization in RSUs 34
Data deserialization in OBUs 34
SUMO environment setup 35
Starting simulation 35
slotxml file 36
slotxml file 36
Read in the XML file in Pythonscript 37
Append slot information to route list 38
Allocate a vehicle toitsslot 38
Distinguish edge ID and send commands 39
Move multiple vehicles simultaneously 39
Map used in the implemented prototype L. 40
Vehicles running in the SUMO traffic network 41
Trajectory of vehicle O 42
Trajectories of four vehicles 42

vii

1 Introduction

This chapter gives an account of the aims of this large-scale traffic management system
project and the motivations for these aims, as well as the chapter structure of this

report.

1.1 Research Motivation

Connected autonomous driving is one of the emerging areas in building the smart city.
Vehicles will be able to drive on their own without any human inputs. These driver-less
vehicles are designed to combine embedded sensors and software to control and navigate
themselves. Unlike human driving, an autonomous driving system utilises inputs from roads,
vehicles and environments to automatically control the vehicles” CAN (controller area
network) bus (11). CAN is a component embedded in vehicles connecting the braking
system, steering system, etc. The autonomous driving system can sense the environment
and navigate to the destination, which can potentially avoid traffic accidents and congestion
and effectively increase road safety. Past reports suggest there were over 5000 accidents on
the M50 motorway in Ireland from 2017 to 2018 and there were also 45 percent increase in
the number of drivers’ deaths on Irish roads in 2019 (12). These facts show that there is a

need to introduce autonomous driving for tolerating traffic incidents.

Slot-based driving approach proposed by prior work (13) is adopted as the theoretical
framework in this project to achieve remote autonomous vehicle control. The slot-based
driving approach pre-defines slot trajectories and behaviors, which guarantees the arrival
time and regulates vehicles' driving patterns. This approach transforms the traditional driver
vehicle control to remote system control. Once drivers are removed from the control loop,
the overall latency of the system will decrease, allowing slots to be packed more tightly.
Slot-based driving is of great benefit for increasing road capacity (14). Also, since
trajectories of slots are defined before travelling, the vehicles' travel characteristics such as
speed, location and lane are all predefined. Thus, there is less possibility for vehicles to be
delayed and have accidents, which further lead to higher capacity and safety for the

road.

As a result, a large-scale traffic management system on the motorway is proposed in this
project to support the slot-based driving approach, of which enables better management of
traffic. A TMS is ideally composed of applications and management tools to integrate
communication, sensing and processing technology. As shown in figure 1.1, it usually
involves distributed servers, on-board units (OBU), replicated roadside units (RSU) and
VANET to achieve the high scalability, availability, reliability and low latency. By
implementing this, TMS will be able to book the slot for users and control the vehicles in

order to make vehicles follow the trajectories defined by the slot.

Manage center

7/ N\ \

Control

Control Control Control server/Server

server/Server server/Server server/Server

ﬁﬁl}g NXx XKXX KxX

VY Y |

G o = o, VT

L~ v2v using Wi-Fi g :RSU / : Ethernet
e v2l using LTE

Figure 1.1: Traffic management center

1.2 Research Objectives

This project aims to investigate the design of a large-scale traffic management system on
the motorway taking charge of collecting traffic information from RSUs and vehicles,
analyzing it and sending according commands to vehicles. An advanced algorithm is also
required to be implemented in TMS for controlling the vehicles remotely based on the
information gathered. With this, the goal is to allow for the slot-based driving approach to

adapt to the various conditions.

There are a few high-level requirements this TMS has to meet. The first requirement is that
the TMS needs to have fast response time. Latency is one of the common concerns in
large-scale distributed systems (1), as there are multiple duplicated nodes working in
consequence. The point of building the traffic management system is to make use of
collected real-time information and control vehicles. Therefore low latency is of great
importance to the TMS design. Distribution is the second requirement for this TMS, as

there will be lots of components cooperating in the system, and locating them in different
places is essential for dealing with requests and computing jobs in large-scale design. High
reliability is another requirement for the TMS. It is significant for any large-scale system to
do replication and partitioning to tolerate nodes’ failures. Scalability is another concern in
this TMS design. TMS should be more adaptable and flexible to changing demands from
numerous users. A rigid design might work for specific needs, but it will not be optimal if
users tend to add in more functionalities in the future. Last but not least, secure
communication should also be considered in the design. Because data transition and
communication between TMS and servers, RSU and OBU should be secured to prevent any

information leak.

1.3 Overview of Achievements

This research presents work on designing a large-scale distributed traffic management system
and implementing a prototype of the designed TMS. As shown in figure 1.2, the design of a
TMS is usually composed of App, TMS center, load balancers, map service, road servers,
OBUs, RSUs, overall database and local databases. App will read in users' requests and pass
them to the load balancer which will then distribute these requests to different traffic
management centers (TMC). TMC will query the map service (OSM) which can produce
multiple routes for users. Given routes from the map service, TMC will then query its
corresponding road servers, followed by road servers querying the overall database to check
the road availability. If a slot available, the system will reverse the slot in the local databases
for this user. When vehicles are running on the road, the OBUs in the vehicle's body will
keep broadcasting its real-time information to RSUs which will then update their local

database.

This research also presents a prototype of the designed large-scale distributed traffic
management system for slot-based driving approach. It is achieved by using the traffic
simulator SUMO which simulates the traffic networks and vehicles. Components including
RSU and OBU are fully implemented. RSU is able to read the slot information pre-defined in
the XML file, reformat it and pass it to OBU. It is also in charge of setting up TCP
connections with OBU. OBU is used to allocate the slot information to vehicles and send
commands to them. These commands can control the vehicles remotely in SUMO. Slot
information is all defined and stored in the XML file for quick retrieval purposes. Before
getting on the motorway, vehicles will be assigned a slot and this slot’s trajectory and
behaviors are both pre-defined in the system. While travelling, vehicles will have to drive in

the slot they booked and the slot will be released after vehicles exit.

(((0
)

android
local OBRU

App ;\ database

Load Balancer

Control) - A !
Traffic F server/Server N (((;))
Management > !
Centre : S g g

overall database

(@

Figure 1.2: TMS architecture

1.4 Improvements and Future work

Even though the prototype is fully implemented, testing of the system's scalability, reliability,
availability and latency are yet to be done. The unit tests of functionalities still needs to be
done. However, considering the time and scale of this project, unit tests will not be carried

out in this report.

Improvements to the individual component of the approach will propagate into this design in
the future. In real-world, there are various types of sensors on the road such as in-road
sensors, cameras and on-road sensors (15). They all have different roles in the traffic
networks. Gathering information from different kinds of sensors can greatly improve the
information accuracy. This prototype can be further improved by scaling up the distribution
of components and adding in more types of sensors for TMS to make more accurate
judgement about the traffic congestion and accidents. Furthermore, weather conditions and

vehicle body types will also be considered for slot size adjustment in the further study.

1.5 Thesis Structure

The remainder of this dissertation is structured as follow.

Chapter 2 is entitled Background. It provides the in-depth literature review on the fields of
Distributed Systems, Vehicular Communication, Slot-based Driving and Traffic Management

System design.

Chapter 3 is entitled System Design. It first describes how the overall system should work in

the real world before detailing the design consideration. Next, OBU and RSU are discussed
in detail about their functionalities and how they will be distributed in the system. Thirdly,
this chapter discusses the design of data structure of slot information. Finally, it compares
multiple vehicle communication methods in terms of reliability and latency, which will

potentially be involved in the development of this system.

Chapter 4, entitled Implementation, describes the implementation phase of this project in
detail. In phase one, it focuses on the implementation of two essential components, the OBU
and RSU. In particular, it involves the communication between the traffic simulator SUMO
and OBU. Phase two introduces pre-defined slot information and adds more functionalities

to OBU. Phase three then focuses on expanding the scale of this project.

Chapter 5, entitled Evaluation, gives the result, review and in-depth comparison of design
and implementation. It also addresses the limitations in this study and improvements that

can be propagated to future development.

Finally, Chapter 6 is the Conclusion chapter. It gives the overall conclusion about this
project and suggest potential work that should be done in the future to enhance efficiency

and scalability.

2 Background

This chapter provides an in-depth literature review of four core topics associated with this
project — distributed systems, vehicular communication, slot-based driving and traffic

management systems.

2.1 Distributed System

A distributed system is usually a large-scale system where nodes are independent to achieve
high availability, reliability and scalability (16). Nodes can communicate, coordinate and
share information to one another (17). Figure 2.1 shows an example of a simple distributed
system. Servers and databases in this figure are all independent and located in different
places. Servers can talk directly to the cloud and they can also communicate with each

other.

v .ll
| S
. (St .
E?'-'-'—-_ "3'-'-'—-_
[0 et - D e
[l [
O - S I —
[n npe— R B0 8 [
— T N—

Figure 2.1: Example of distributed system

2.1.1 System Architecture

A client-server model is a distributed architecture structure for large-scale applications.
Users can share common data and operations using this model (18). There are two types of
client-server model: two-tier systems and three-tier systems. The choice between them is
mainly based on the project’s scope and implementation complexity (19). The architectures
can be defined by how different components are split up among software entities or tiers.

Two-tier and three-tier architecture systems will be reviewed in the following content.

There are several ways to design two-tier client-server systems and the most common
implementation is to divide an application into two software entities: client application and
database server. As shown in Figure 2.2, clients have to send a request to the database
server and this request is usually a SQL request (19). Sending SQL requests requires a tight
connection between client and server, meaning clients have to know either the syntax of
querying and the structure of the data stored in the database or have the API for translating
the SQL query. The location of the server is also essential for access.

android -
Y —
o
e
-t
Tier One Tier Two

Figure 2.2: Two-tier architecture system

The most obvious advantage of a two-tier architecture system is that it provides high
development speed (19). It usually takes less time to develop a two-tier system within a
limited period even though the system might not be flexible enough. However, most two-tier
systems reply on the logic existing on the client side. This can lead to potential application
redistribution problems if a business rule requires a change in the applications’ logic (19).
On the other hand, security is another concern while using a two-tier architecture because
multiple clients can access the database server simultaneously and there are no middleware

technologies that offer security checks.

As shown in Figure 2.3, three-tier architecture systems add an application layer to the
two-tier system, which helps to develop more complex and flexible applications. Tools for
presentation and data processing remain the same and a call is made to the middle-tier
functional server while the client is sending a request. Middle-tier servers can be
multi-threaded for particular purposes and they can also handle requests for different clients

simultaneously (19).

Presentation Layer Application Layer Storage Layer
IFe
— S
droid E- e ——
andarol | "
—_— e
e
D wams
[} -
- N — . =
i
Tier One Tier Two Tier Three

Figure 2.3: Three-tier architecture system

There are three outstanding advantages for three-tier systems.

e One is that the middle-tier server provides higher overall system flexibility (20). In
each remote procedure call (RPC), the requesting clients can only pass the parameters
instead of SQL queries to the middle-tier server. The server will handle the parameters
and make up the SQL requests to query the database. On the client-side, SQL is not
required anymore, and the data can be organised in many formats such as relational

and object format.

e The second advantage is that three-tier architecture allows for parallel development of
individual tiers (21) within independent development requirements. For example, Ul,
as the presentation layer, requires web framework and Ul standards, while the
application layer design focuses on the algorithms and functionalities. It is beneficial

for a large-scale system in terms of the overall system quality.

e The last advantage is that the three-tier system provides for more flexible resource
allocation. As mentioned above, the middle tier can contain different servers, and this
will reduce the network traffic burden by splitting data and tasks to one particular

service before distributing it to individual clients. Furthermore, multiple requests and

complex data will be sent from the middle tier instead of clients, which can further
reduce network traffic. Besides, the load balancer can also be placed between the

client and servers to help distribute the overall traffic.

However, three-tier architecture has its weakness as well. As it consists of three basic
components, and ideally they are located in different locations, the code and device

maintenance is a great challenge for all large-scale systems.

2.1.2 Replication

Scalability, availability and latency are the main concerns of a large-scale distributed system
(1). There are three ways of scaling to high load. One is shared-memory architecture. It is
also called vertical scaling, which allows the system to install more physical components
including RAM chips, CPU and disks on one machine. The second way is a shared-disk
architecture where all data is accessible from all cluster nodes (1). The last one is a
shared-nothing architecture where data is divided into different sections and stored in
different machines. This literature review will only discuss the shared-nothing architecture
because this research project focuses on designing a large-scale system in which components
should all be distributed.

There are two ways to distribute data across multiple nodes. One is called replication, in
which each node keeps a copy of the same data across multiple nodes, ideally in different
locations. If some nodes are not available, users can access data from other remaining
nodes. Another way to distribute data is named partitioning. It splits the data into multiple

partitions which are then assigned to different nodes.

In general, there are three approaches to achieve replication: single-leader replication,
multi-leader replication and leaderless replication (22). For the first two methods, they
follow the leader-follower model where the leader is one of the nodes (also named replicas)
and it is responsible for sending the data change to its followers. When clients want to read
the data, they can access either the leader replica or follower replica. However, if they want
to write the data, they can only write to the leader replica instead of other nodes. Figure 2.4
below shows the leader-follower model in detail. Users can only write to the leader node

which will propagate data changes to its followers.

In the single-leader replication process, only one leader exists in the system and clients are
required to send requests and data changes only to this single leader. The leader will
propagate data changes to all other replicas. As for multi-leader replication, clients can send
write requests to one or more leaders who will send data change streams to each other and
any follower replicas. For the leaderless replication, there is no leader in this case and clients
can read and write to all the nodes in parallel to detect and correct nodes with updated
data.

i =

Write to —_.
database
User User
——
Data change — Data change
. R .

- Leader Node -

e e

—— e

R ——— e

replica replica

Figure 2.4: Leader-based replication

According to past literature, trade-offs to consider while dealing with replication include
propagation methods and the ways to handle failed nodes (1). In general, there are two
types of propagation methodologies for data replication. One is synchronous replication and
the other is asynchronous replication (1). Synchronous replication requires changes to all
nodes within one transaction, while asynchronous replication allows a delay in propagating
changes to other nodes. Figure 2.5 below explains the difference in detail. In this figure,
follower 1 is synchronous and follower 2 is asynchronous. During asynchronous replication,
the leader doesn't need to wait for a response from followers to close the process. This figure
shows a significant replication lag before follower 2 processes the data change message.
Most of the databases we use such as MySQL (23) and Oracle database (21), provide fast
replication services. However, they still cannot guarantee how long the replication process
takes. There might also be some occasions that follower's data falls far behind the leaders or
it is recovering from failure. Therefore, in reality, it is impractical for systems to have full
synchronous replication. Matsunobu pointed out that semi synchronous configuration is
applied in practise (24). If one synchronous becomes asynchronous, one asynchronous will

be made synchronous to ensure the completion and freshness of data.

2.1.3 Partitioning

It's not sufficient for a large-scale distributed system to only do data replication. Data has

to be broken into multiple partitions to increase the system scalability. The process of doing
it is called partitioning and it is also known as data sharding. Each partition acts as a single
database and stores its own data. Figure 2.6 below shows the partitioning of the car park in

the real world. The parking lot has three partitions and each of them parks one type of

10

update users
set picture_url ='me-new.jpg’

where user_id = 1234
User 1234 % -------

\ waiting for follower's ok
Leader [j --------------

data change

data change

Figure 2.5: Leader-based replication with one synchronous and one asynchronous follower (1)

vehicles. The partitioned database has already been used in distributed execution engines

such as Hadoop (25) and MapReduce (26). These systems’ data partitioning is designed for

different purposes. In this chapter, | will only review the fundamentals of partitioning even

though each distributed system has different partitioning techniques.

B s P
| P

Figure 2.6: Partitioning in the parking lot

Car Parking Lot

System performance will be an issue if a significant number of queries are processed to scan

over all the data. Partitioning is a reliable way of solving this problem (27). In practice,

partitioning is usually used together with replication, which means the data on one partition

can also be found on other replicas. By implementing this, the fault tolerance of the system

can be raised. Figure 2.7 below gives an idea of how the system using both techniques looks

like. Partition 1 in Node 1 is replicated in Node 3 and Node 4, which means if node 3 is

down, users can still query node 4 and node 1.

11

Node 1 Node 2
Partition 1 Partition 2 Partition 3 Partition 2 Partition 3 Partition 4
Leader Follower Follower Follower Leader Follower

A A A A A
" 4 ¥ - Y W
Partition 1 Partition 2 Partition 4 Partition 1 Partition 3 Partition 4
Follower Leader Follower Follower Follower Leader
1
Node 3 r/ Node 4
o N Writing to /%
~———————— =replication streams (per partition) partition 4

Figure 2.7: Combination of replication and partitioning (1)

The goal of partitioning is to spread the data evenly across nodes for efficient querying.
However, there is a possibility that the partitioning is not fair. For example, one extreme
case would be one partition has all the data and the rest of nodes have nothing. This
situation is called skewed. One way to relieve this problem is key range partitioning. It is
based on a key-value partitioning approach and is also used by MongoDB (28) and HBase
(29). As shown in figure 2.8 below, a range of keys including A, B and C are allocated to
each partition and users can set the key boundaries based on their needs. Administers can

also set the key to be sorted for better query performance.

b

AD Al A2 A3 A4 A5

BO Bl B2 B3 B4 B5 |CO C1 C2 C3 C4 C5

Car Park

Figure 2.8: A car park partitioned by the key range

12

One downside of this approach is that key-range still cannot fully avoid hot spots and skew
issues. Thus, hash-key partitioning is proposed for a fair key distribution. It takes advantage
of a hash function to determine the position of the given key. This hash function doesn't
need to be strong, but it has to suit the systems’ needs. For example, simple MD5
encryption is used by several non-relational DB such as MongoDB (30) and Cassandra (1).
This approach separates data more randomly but it loses the strength of the sorted key,
which leads to low efficiency. The concatenated index approach has been proposed to solve
this issue (1). It combines multiple fields into one key by adding one column to another.
This approach consists of one primary key for location scan and the other concatenated keys
for efficient range scan. For example, on a social media website, a user might follow a lot of
people. If the primary key is chosen to be follow-timestamp and user iD, it would be easy to

find people who were just followed by this user within some time interval.

In reality, the situation might be more complex if partitioning involves secondary indexes
that are usually used to search for the occurrences of a value. Due to the high complexity,
some databases such as Hbase (31) have avoided using secondary indexes while others such
as Riak (32) have started to take advantage of them because they are efficient for data

modelling.

There are two ways to partition a database with secondary indexes. One is indexed by
document, shown in Figure 2.9. Secondary indexes are saved in the same partition as the
primary key. Another approach is to partition the database by terms, where secondary
indexes’ positions are determined by terms instead of documents. Figure 2.10 gives an
example of how it works in detail. All the red cars in two partitions are classified under
color:red using secondary index. However, the index is also partitioned and thus colors

starting with a-r can be found in Partition 0 and the rest can be found in Partition 1.

Partition 0 Partition 1
PRIMARY KEY INDEX PRIMARY KEY INDEX
191 = {color;“red”, make: ‘Honda’, location:“Palo Alto") 515 = {color; “silver”, make:“Ford’, location; "Milpitas™)
214 — {color="black’, make: "Dodge’, location:"San Jose") 768 — {color:"red’ make:*Volvo', location: "Cupertino”)
306 — {color-"red’, make:‘Ford’, location:"Sunnyvale’} | | 893 — {color:"silver’, make:“Audi’, location: "Santa Clara’}
SECONDARY INDEXES (Partitioned by document) SECONDARY INDEXES (Partitioned by document)
colorblack — [214] colorblack —]
color:red == [191, 306) colorred = [768]
coloryellow — [] colorsilver —» [515,893]
make:Dodge - [214] make:Audi - - [893]
makecford — [306] makeford — [515]
makeHonda — [191] makeVolvo — [768]

scatter/gather read from all partitions

Q .
- “lam looking for a red car”
A

Figure 2.9: Secondary index by document (1)

13

Partition 0 Partition 1

PRIMARY KEY INDEX PRIMARY KEY INDEX
191 — {color: “red’, make:"Honda’, location: “Palo Alto") 515 — {color: “silver’, make:“Ford", location:“Milpitas”)
214 — {color: “black’, make: “Dodge’, location: “5an Jose”} 768 — [color; “red], make; “Volvo', location: “Cuperting”]

306 — {color: “red’, make:"Ford’, location: “Sunnyvale} 893 —v[:olOl“'surver'] make: ‘Audi’, location:*Santa Clara")

“

aee®
am"

SECONDARY INDEXES (Partitioned by term) el :‘SECONDARY INDEXES (Partitioned by term)
colorblack — [214) colorsilver — [515,893) }",
colorred —+ [191, 306, 768) -’ coloryellow — []

makeAudi — [893] --===-"""""" makeHonda — [191]
make:Dodge — [214] makeNolvo — [768]
make:Ford — [306, 515]

0 ,
Py “l am looking for a red car”

Figure 2.10: Secondary index by term (1)

This section looked at two architectures and several techniques for building a large-scale
distributed system. Informed by the advantages and disadvantages listed above, users should
choose the one which suits their needs best. Considering the goal of this research project is
to build a large scale system, a three-tier architecture and replication technique would be

used for later development.

2.2 Vehicular Communication

Vehicular communication is an emerging area of research in the field of building smart traffic
management systems to improve safety and efficiency. It is defined as communication

between vehicles (33).

VANET, also named Vehicle ad hoc network, is an advanced network which takes advantage
of wireless communication to connect vehicles and road sensors for fast and accurate data
exchange and transmission (33). It consists of three components: on-board units (OBU),
roadside units (RSU) and authentication server (AS). OBUs are installed in each vehicle and
RSUs can be any sensors that are deployed on the road as an infrastructure to gather road
information. Figure 2.11 below gives a straightforward explanation of what the infrastructure
of VANET should look like. As shown in this figure, V2V and V2l both represent vehicular
communication. For V2V, it stands for vehicle-to-vehicle communication. In this
dissemination, data transmission only happens between vehicles within the valid wireless
range. If one vehicle is outside the range, data will be sent to another vehicle as a middle
point. Whereas, V2| stands for the vehicle-to-infrastructure communication. In this case,
data transmission happens between vehicles and some sensors embedded on the road units,
such as RSUs. Both V2V and V2I belong to the V2X, vehicle-to-everything, category.

In VANET, wireless technology is widely used and there are some trade-offs between

14

) T

OBU

Trusted authority

Figure 2.11: VANET (2)

different protocols. Dedicated Short Range Communication (DSRC) and Long Term
Evolution (LTE) are two main candidates for Connected Vehicle (CV) and they will be
reviewed respectively in the following section. DSRC is an IEEE 802.11p-based (34) wireless
technology for safe data transportation and high efficiency (4). It is commonly used in V2V
and V2l for data transfer. As for LTE, it is a 4G standard for wireless broadband
communication for mobile devices, which is slower than real 4G but much faster than 3G.
Figure 2.12 below is a detailed comparison between DSRC and LTE in terms of bandwidth,

latency, transmission distance and reliability.

Bandwidth Latency Transmission | Reliability
(Mbps) (Ping in ms Distance

under the (metres)

same

condition)

DSRC Up to 27 150 300 Handle fast
and frequent
handovers
in-vehicle
environments

LTE 30-75 98 1000 Data is
encrypted,
identity is
authenticated
and
protected.

Figure 2.12: DSRC vs LTE (3) (4) (5)

15

There is still a lot of debate between these two protocols. However, most of the researches
only used software-based simulation, which might not be reliable or realistic. In the research
carried by Zhigang et al (35), a real vehicle test-bed was established for testing real-world
scenarios. The study analysed vehicles' behaviours using two protocols mentioned and gave
a few experimental results. With two vehicles running using different protocols, the one
using DSRC shows the lower Packet Loss Rate (PLR) during the round-trip time (RTT),
which means that DSRC is more suitable for V2V traffic safety applications. Another test of
two vehicles running past RSUs shows that for DSRC, the PLR is lower while vehicles are
closer to the RSU and it will increase immediately while getting further. However, for LTE,
the PLR keeps stable for a wide range because LTE has larger bandwidth and longer
transmission distances. Within the valid transmission distance of DSRC, 300 meters, the
PLR of DSRC is significantly lower than that of LTE. As a result, LTE is suitable for cutting
down the density of RSUs on the road because of its high coverage while DSRC is better for

safety applications such as car accidents broadcasting or driver warnings.

OBU is one of the essential components in the VANET for data collection and processing.
Its hardware platform consists of an ARM11-based embedded development platform, a
dCMA-86P2 module and a GPS model to support DSRC/WAVE, WiFi and LTE
communication protocols (36). lts software platform is based on the Linux operating system.
There is a vehicle communication interface where the message is passed from OBU to CAN

bus (11) to control the vehicles.

RSUs act as a router in the VANET, which are connected to the internet and forming an
infrastructure that provides the ability to communicate with servers, vehicles and other RSUs
(37). RSUs are usually firmly distributed on the road based on the networking protocol
transmission distance. Algorithms have already been implemented to position the RSUs in
the effective locations in the urban scenarios (38). Considering a situation that a RSU wants
to send a data packet to one vehicle, firstly, the RSU needs to get the location, speed and
direction of the vehicle from the last packet received from the vehicle. After examining these
properties, RSU will work together with other protocols to determine whether to send the

message or not (39).

To conclude, this section looked at the several technologies applied in the vehicular
communication area and provided an in-depth comparison between them. Both DSRC and
LTE support the V2| communication and they are chosen mainly based on their transmission
distance. Component in VANET were also reviewed and all components reviewed will be
used in later design process of the TMS.

16

2.3 Slot-based Driving

Highways are widely implemented in most countries, they provide high-speed routes along
frequented on-ramps and corridors. They can also save journey time and travel cost.
However, due to its popularity, congestion is the main issue faced by highway infrastructures
(40). Unlike other transportation methods such as train and bus, there is no timetable for
vehicles on the motorway and thus, motorways cannot guarantee the travel time to
commuters. Other than these, the existing road network is becoming increasingly crowded
because of the quick increase of vehicles and the facts that there is no space for building
large traffic networks. The European commission estimated that traffic congestion costs 1
percent of EU GDP per year, which is 100 million every year (41). The number of cars per
thousand persons has increased from 232 in 1975 to 460 in 2002 (42). The overall distance
travelled by road vehicles has tripled in the last 30 years, and in the last decade, the volume
of road freight grew by 35 percent contributing to 7500 km or 10 percent of the network
being affected daily by traffic jams (42). All of these facts indicate that some new
approaches for improving road efficiency, road safety and reducing traffic congestion have to
be developed and introduced.

Virtual slots, similar as "leaky bucket" (43) can be adapted to the road network by mapping
the vehicle to slots. This traffic shaping technique is applied to the vehicles when they are

running on the motorway instead of only merging into the motorway.

In 2006, Morla proposed an approach (44) that can lead to congestion-free traffic by
cooperating vehicles. His version introduced the slots that represent dynamic time-space
corridors and these slots can negotiate between each other to guarantee the congestion-free
journey. It aimed at preventing traffic congestion and detecting collisions ahead by
coordinating objects including landscape objects and vehicles themselves. The slot-based
concept is similar to time-division multiple access (TMDA) data slot. Any vehicle that has
been allocated a slot will never experience congestion in his approach. Figure 2.13 shows
what the slot-based driving system looks like. White rectangles represent slots. Each road is
divided by multiple slots. The blue vehicle in this diagram is following the trajectory (dotted
line) defined by slots.

Figure 2.13: Slot-based driving diagram

17

A similar concept was proposed by Ravi et al (45), but it is a more business-centric version.
His approach took advantage of a high-priority lane to combine the slot-based driving

system with existing driving.

Real-time vehicle scheduling concept was proposed by Cahill et al (13) in 2008. This
concept was also used in Marinsecu's research to achieve efficient on-ramp traffic merging
on the motorway (46). Their approach suggested exploiting vehicle-to-vehicle and
vehicle-to-infrastructure communication and related technologies. The approach in Cahill's
paper divided the road into multiple sections and each slot belongs to one section. Vehicles
will be assigned a slot before getting on the road based on their prioritised requests and while
travelling, vehicles will have to stay in the slot. This approach is very similar to a channel
access method called time-division multiple access (TMDA) which allows users to share the
same slot generation frequency and allocate slots to sections in transit through the network.
In Cahill's research, he proposed that slot should be defined by size of slot, position at
specific time and predefined behaviour as a sequence of accelerate, stop, decelerate and lane

changing. Vehicles will have to drive within the slots while running on the road (13).

This section reviewed several slot-based driving approaches proposed by Morla, Ravi and
Cahill. These approaches were all designed for reducing the traffic congestion and managing
traffic efficiently. Cahill's research gives a detailed explanation on the slot model which will

be utilized in the design of this research project.

2.4 Traffic Management System

There are more and more vehicles running on the road nowadays and this fact can lead to
heavier traffic congestion which will further cause more accidents, time loss and delay of
emergency. To ease traffic pressure, an advanced TMS should be introduced. In Gomides's
research (6), he mentioned that congestion can eventually have huge negative impacts on
economic development. Thus, he proposed a fully distributed VANET-based traffic
management system called FIRE-NRD which takes the information shared between vehicles
and makes next step decisions for the vehicles based on the received information. Figure
2.14 gives an insight into what this TMS looks like. It involves three phases including
knowledge discovering, knowledge sharing and next road decision. Vehicles will monitor their
surrounding environments and estimate the congestion level in the first phase and share this
information to their neighbours in the second phase. Final phase uses the received

information to find an alternative route with low congestion level for the vehicles.

In Djahel's research in 2015, he reviewed the development phases of modern traffic
management systems, existing technologies and some future directions to make current

TMS more efficient (7). He pointed out that a typical TMS consists of a few phases as

18

1st decision Znd decision 3rd decision
Next-road

decision
(range)
Aggregation and -
knowledge sharing]
L L]
- - A - - B - - 1= .
—— - —— [Tl
-- v -- V. - ."-\'
L ' H
L "
"
L9 i
Y of
)
D E LLLLELELLL et F
- - mm mea-
Time — — P

Figure 2.14: Basic Operation of Fire-Nrd (6)

shown in figure 2.15. The first phase, named Data Sensing and Gathering, takes advantage
of V2I, V2V and sensing technology to collect data from vehicles and road components. The
second phase, named Data Fusion, Processing and Aggregation, is to extract useful
information. The third phase, named Data Exploitation, is to compute the optimal routes
for users using the processed information. The last phase, named Service Delivery, is to

deliver the knowledge to end-users such as drivers via devices.

A similar idea was proposed by Souza et al in 2016 (8). He mentioned that preventing traffic
congestion and improving traffic efficiency mainly relies on building modern traffic
management systems which usually consists of a set of applications and management tools
to integrate communication, sensing and processing technologies. In the TMS he proposed,
VANET is the main component and it can enable the V2V and V2I technology which are
used for vehicle communications. Figure 2.16 shows the overall architecture of the TMS
Souza proposed. From the diagram, we can see that vehicles can collect information from
OBU and share it with surrounding vehicles by V2V technology. Vehicles can also send
information to the RSUs within the transmission range by V2I technology. RSUs then send
the information to the traffic management center and the data will be exploited in the cloud.
After data aggregation and exploitation, the according commands or instructions will be sent

back to vehicles.

There are three phases in this TMS: information gathering, information processing and
service delivery. Information gathering phase is in charge of collecting traffic-related
information from various sources such as in-road sensors, road cameras and vehicles. As for

the information processing phase, the data can either be processed locally or in the TMC

19

Data Sensing and Gathering Service Delivery - diverse end-users

Data Fusion, Processing
& Aggregation

(SUMO, veins, vissim, ns-3)

Data Exploitation

Figure 2.15: Data life cycle in smart transportation (7)

(cloud). The service delivery phase will provide the corresponding services based on the

information it got from the previous phase.

There are a variety of researches about TMS and they are mainly divided into two parts:
Infrastructure-free TMS and Infrastructure-based TMS. Infrastructure-free TMS (8)
represents fully distributed TMSs which consist of congestion detection, avoidance, accident
detection and warning, while infrastructure-based TMSs includes traffic light management,

congestion detection, route suggestion and speed adjustment.

Many open challenges still exist in the development of advanced traffic management
systems. Most significant challenges are related to information gathering, storage and
aggregation (8). The challenge in terms of data gathering is that data is collected from
many heterogeneous resources, which means the methods used for collecting data are
different and the data format may vary. This leads to the issue that it's hard to synchronize
the data and share it with other components. Data storage suffers from the same issue as
data gathering. An XML-based storage system is currently the most popular approach for
dealing with this issue. For data aggregation, the biggest challenge is the data conversion
issue because the amount of data is increasing very fast and it is complex for any algorithm

to convert heterogeneous data to one within a short time.

20

Information Gathering Information Processing Service Delivery

Vehicular Network

—_—
’ =3 ‘
% = : Transit Maragement
p B
\ 7ics AOSS = T) Processing/Storage L - .
social Feed and Mobile Sense - - ‘! y
\ - J

Route Guidance
']

GO %|[m
ﬁ z.z Tewem| 1 [-
il B 1 Ee]
:&ers ’. : - g (%@' w
- 7

(Yom

0
l

Figure 2.16: Overall TMS architecture (8)

2.5 Conclusion

To conclude, this literature review builds an overview in the field of designing the TMS. The

four areas reviewed can provide insights to the composition of the large-scale TMS system in
this research project.
Studies that are particularly useful include the slot model proposed by prior work (13),

various replication and partitioning techniques, and the TMS design. All the researches can

potentially help to build a slot-based large-scale TMS for remote vehicle control in the later

design and development.

21

3

System Design

This chapter gives an in-depth description of how the system and its components are

designed. As mentioned in Chapter 1, a good TMS system design should include four key

characteristics: reliability, scalability, reliability and low latency. This TMS will be designed

towards these requirements.

This chapter will focus on the system design and the implemented prototype will be

discussed in Chapter 4.

3.1

Overviews

Before getting into the detailed design, there are some overviews and requirements about

the system that the design has to follow.

This TMS should only remotely control vehicles on the motorway, meaning it should

not be responsible for any actions of vehicles before joining the motorway.

This TMS should be able to handle a huge number of users and requests. For
example, if this TMS is in charge of 5 segments of the motorway and each segment is

1000 meters, this TMS can then handle 50 users and their requests at a time.

To achieve the system reliability and communication efficiency addressed in Chapter 2,
the system should be distributed. All components should be located in different

locations.

The system should respond to users’ booking requests quickly, with no significant
delay.

This TMS should be adaptable to frequently changing demands.

The motorway on-ramp is a short section of the road allowing vehicles to enter the
highway (47). In this design, one component should be placed at the ramp specifically

in charge of checking whether the running vehicles have a booked journey or slot.

This TMS should get multiple available routes for users and determine the optimal

22

route which adapts to users’ priority.

e Journey in this design is a term representing the period for vehicles to travel from the
beginning to the end. The route is made up of edges, such as A->B->C. Trajectory
defines the route more specifically and it is made up of a sequence of slot information.

A slot has a position at a particular time and slot is moving with time.

With the insights of the above requirements, the detailed design process is carried out

below.

3.2 Slot Design

Slot model in this design utilises the model proposed by prior studies (13). Each slot is
defined by the size of the slot, slot position, speed and pre-defined behaviours. The slot size
should consider stopping distance and weather conditions. It should be adjustable based on
vehicle conditions and weather. In terms of road safety, the stopping distance is composed
of thinking distance and braking distance (9). Based on the formula shown in figure 3.1, the
stopping distance of the running vehicle with speed 120 km/h is 95.45 meters. The average
vehicle length is 4500 mm (48) , therefore a standard slot size in dry weather is 100 meters.
In the wet weather, the slot size should be 200 meters to prevent accidents caused by
sliding. The slot model in this design also defines the driving speed of 120km/h which is the

maximum driving speed on the motorway in Ireland.

=RalC Typical stopping distances for an average family car Key
(290) — AT
€
) ————————— Formula
= = Thinbin '] E king _ Stopping

distance distance

Figure 3.1: Stopping distance formula (9)

In this design, edges define segments of the motorway. Each edge can accommodate
multiple slots and each slot are moving with time. Each vehicle will be allocated to only one
slot on each edge and it can only drive within this slot. Figure 3.2 demonstrates the

trajectory of Slot 1 on the road.

23

Slot 1 i

A

500 metres

RSU

500 metres

Figure 3.2: Slot trajectory

3.3 Overall Architecture Design

APP
HTTP request, ?startTime?destination OBU
LB API call : 1
— » Map Service
HTTP request, ?startTime?destinatio Broadcasti
:00-13;20 Road 1 i ek

g N
r
aud
serveri
o J
s ~y
: [Coover]
e J

Figure 3.3: Overall system architecture

Figure 3.3 above shows the overall system architecture. This architecture includes
components like App, load balancer, TMS centres, Map Service, servers, overall database,
RSUs, OBUs and local databases. Each of the components will be discussed in detail in the

following sections.

3.3.1 App

The App represents a phone application through which users can interact with the system.
It is a user interface designed to take in users' requests. Users' starting positions, preferred
starting time and destinations are required as the parameters passed into the App. Requests
will ideally be made by HTTP(S) protocol because the header of requests in this design is
small and HTTP has the compression capability for faster transfer speed (49). This user
interface is the first step for users to book the journey through the TMS.

24

3.3.2 Load Balancer

The load balancer acts as a reverse proxy (50). It helps to distribute loads across a large
number of servers, shown in figure 3.4. It provides higher scalability and flexibility for the
system as it ensures no server is overworked (51). Load balancers are usually grouped into
two categories: Layer 4 and Layer 7. Layer 4 applies to data transferred within network and
transport layers, while Layer 7 applies to the data from the application layer (50). There are
various load balancing algorithms providing different benefits. For example, Round Robin is
for distributing requests across servers sequentially, while Hash is used to distribute the
requests based on the key that developers define (52). In this project, the load balancer is
only used to distribute numerous users' HT TP requests from the App, thus IP Hash is
sufficient for this system because the distribution of requests is only based on servers' IP
address. NGINX, a commonly used HTTP load balancer (53), is decided to be used in this

architecture because it is open source and provides IP Hash algorithm.

e
=
- :
android
. _-
T : .
Load balancer -
e
'E';_.,
End users ‘ g
=
Servers

Figure 3.4: Load balancer

Map service makes use of the mapping service on top of OSM to generate routes, which can
be accessed by the API call from the TMS. OSM provides the functionalities for users or
developers to draw the map based on their needs. In this design, the mapping service takes
in users’ starting positions and destinations and then generate multiple routes for them. The
routes generated from the mapping service are designed to be made up of edge IDs. For

example, route 312 represents edge3-> edgel-> edge?2.

3.3.3 TMS Centre

As mentioned in Chapter 2, data replication can help to tolerate node failures. Thus, the

TMS centre, as shown in figure 3.3, is replicated to achieve scalability and availability. The

25

single-leader model is used because it can avoid the conflicts by concurrent write (54). In
this design, it takes in users’ requests from the load balancer and makes an API call to the
map service. Multiple routes will be generated by mapping service and each of them will be
sent to different TMS centres. TMS centres will then send requests to corresponding road
servers to check the road availability for a particular period. When vehicles are running on
the motorway, TMS will also frequently query the road servers to check traffic congestion
and accidents. Lastly, it is worth mentioning that TMS is also in charge of determining the

slot size based on the weather.

3.3.4 Road Servers

RSU1 1:00-1:10

W { RSU2 1:10-1:20]—b

TMS Server A(1)
Use the time period
the DB

Map: route A 1:00- RSU6 1: 50-2:00
-2:00

Figure 3.5: Sending requests to the server

Road servers in this traffic management system are used for cooperating TMS centres and
RSUs. Servers are replicated and partitioned in this design, meaning that there is only one
server on each road. Each server is also in charge of all of the RSUs on that road. Figure
3.5 shows an example of TMS sending requests to servers. In this figure, the route only
consists of edge A whose starting and ending times are 1:00 and 2:00 respectively. Therefore
the TMS only sends requests to server A, which will further partition the period and send

requests to distributed RSUs based on the sub-period.

All the servers can write to the overall database for storing real-time information, which will

be discussed in the following sections.

3.3.5 RSU

RSU is one of the most important sensors for gathering real-time information in real life. In
this design, RSUs are used to gather information from vehicles. It also acts as an interface
for servers to query the local database to book the slot, which will be discussed in detail in
the User Scenario section. RSUs are partitioned every 1 km along the motorway based on
the LTE transmission distance, RSUs will only gather information within this effective range.
As mentioned in the overview section, there should be one component in charge of checking

the vehicles’ booking information. Thus, one RSU will be placed on the motorway ramp and

26

it will start querying its local database while vehicles are within its transmission range. If
vehicles don't have a booked slot, they will have to book the journey through the App first.
Each RSU has its local database which stores slot reservation information and real-time
vehicle information. As shown in figure 3.6 below, this RSU is only in charge of 10 slots.
Ten slots can be accommodated within the RSU's transmission range and this RSU’s local

database will only store information of these slots.

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot & Slot 9 Slot 10 J

A
A J

500 metres RSU 500 metres

Figure 3.6: Slots within RSU transmission range

3.3.6 OBU

OBU is the component embedded in the vehicle body. It is used for obtaining vehicles
information such as speed and positions, as well as broadcast information to the RSUs which

will then send back the corresponding commands to control the vehicles.

3.3.7 Database

There are two databases used in the design: overall database and local databases. Road
servers will write to the overall database and each RSU writes to its local database. As for
the database chosen, there are two types of databases in production: relation databases and
non-relational databases, each with different strengths and weaknesses. Three main factors
to consider while choosing the database are data structure, data size and retrieval speed
(55). As mentioned earlier, this TMS should be able to handle numerous users and there is
a lot of real-time information needed storing in the database, making the data size of users
and vehicles quite large. TMS will also have to frequently query road servers to check the
traffic congestion and accidents, which means it requires high information retrieval speed. As
for the data structure, both the overall database and the local database contains four tables.
Figure 3.7, 3.8, 3.9 and 3.10 below give an idea of what attributes the local databases should
store. These figures indicates that using a relational database is more suitable because each
of the tables has a RSU ID as the primary key and these tables are all related.

27

iD (same as RSU) Currslot 1 info | Curr slot2 info
info

Occupied Not occupied

Figure 3.7: Current slot information table

_ Booked time(datetime) Slot 1 Slot 2

14:30-26-Nov-2019 to Booked
14:50-26-Nov-2019

Figure 3.8: Slot booking table

[0 Trinesomp | o se St 2o

Size

Figure 3.9: Current slot size table

m Slot 1 speed | Slot 2 speed

Speed
Figure 3.10: Current slot speed table

Figure 3.11, 3.12, 3.13 and 3.14 below show the tables that should be stored in the overall
database. Similar to the local database, server ID is the primary key of all of the tables and
relational database is more suitable here. Both local and overall database have the same
structure and data, however, they are used differently. The local database is mainly used for
booking the slot information while overall databases focus on storing the real-time

information. Two databases are incorporated for faster and more precise data retrieval.

Slot 1-N

Occupied/not

Figure 3.11: Current slot information table

14:30-26-Nov-2019 to Booked
14:50-26-Nov-2019

Figure 3.12: Slot booking table

28

D |Soti-N

Size In meters

Figure 3.13: Current slot size table

i TSot1N speed

Speed

Figure 3.14: Current slot speed table

3.4 User Case Scenario

3.4.1 Booking Journey

|

App { vehicle on-board unit J<

0
i
9

balancer ¢' 5
«—2* (msui] }>{ oB1]
-] nstz }>{ o2 |

e T DB
Server 1 Y
2 «— Rrsus }» DbB3 |

10

=2}

YY

Figure 3.15: Book a journey

Figure 3.15 above shows the process for users to book a journey before joining the motorway.
Following step 0 and 1 in this figure, users will input their starting time, starting position as
well as destination to the App and this information will be passed to the load balancer. The
load balancer will distribute the requests to TMS based on its IP address and TMS will send
requests to Map Service which will generate multiple routes and send responses back to
TMS. Following Step 2, TMS will start querying corresponding road servers which will
further query the overall database to check if the slot is available for that particular period.
As shown in Step 6, these steps will keep repeating until optimal route suiting users’
priorities is found. After this, road servers will update the overall database and send requests

to the RSU which will write to the local database to book the slot. In step 7, the optimal

29

route will be sent back to the users and route information will be displayed in the App.

Step 4, 5 and 10 are happening at all times. The RSU will continuously update both the
local and overall databases. At the same time, it will keep gathering information which is
broadcasted by the OBUs.

3.4.2 Driving on Road

Book a journey

mn

vehicles

T™MS

4
Overall 7
oB DB -
Local
:]
&
Searver 1
AsSU 2
— —
X
a8
RSU 4

Figure 3.16: Driving on the road

Figure 3.16 above shows an overview of the system when vehicles are running on the road.
Before vehicles emerge into the motorway, the RSU at the gate will check its local database
to see whether the vehicle has booked slots or not. Upon the detection of a valid booking,
the vehicle will join the motorway and start travelling along with the trajectories defined by
slots. If no booking is found, it will follow Step 11 to book a journey first. As shown in Step
5, RSU will update the overall database and its local database at the same time while
vehicles are travelling on the road. The overall database will follow the leader-follower
replication model discussed in Chapter 2. Thus, RSU will only write to the leader nodes and
these nodes will propagate the changes to followers. Step 8 shows how the system works
when the vehicle is turning to another road. The road server that is currently in charge of

this vehicle will inform the server on the next road.

30

4 |Implementation

One prototype of the design was fully implemented in this project with the help of traffic
simulator SUMO. Python is the only programming language used in this project and XML is
used for slot information storage.

This chapter will give an in-depth description and explanation of the design and
implementation process of the prototype. Implementation of the prototype involves three
development phases, which will be discussed individually in the following sections. Phase one
focused on the initial environment setup and simple components implementation including
RSU and OBU, with the aim of getting each component of the system working as a whole.
Phase two added in pre-defined slot information and more functionalities, such as vehicle

control in OBUs. Phase three focused on scaling up the implementation.

All phases above contribute towards a fast and efficient design prototype, which fulfils the

four key characteristics of good TMSs mentioned in chapter 3.

4.1 Phase One

4.1.1 Environments and Software Setup

A map is needed for simulating the traffic network in SUMO. A graphical network editor
called NETEDIT (56) is a tool provided by SUMO for users to draw the map based on their
needs. The map in NETEDIT can be exported in the format of the SUMO-net file which
can be read by SUMO. NETEDIT is a GUl-application and it is designed to be running
under the Linux/Windows operating system. To run any GUI-applications under macOS,
XQuartz, a component of the X-Windows system, has to be installed first. By using this,
NETEDIT and SUMO can be used smoothly in macOS.

31

Figure 4.1: Initial map in NETEDIT

As shown in figure 4.1, a map with eight edges and seven junctions was made in NETEDIT
as the first version. Each of the edges has two lanes, one direction and a specific edge ID.
This map was exported in the format of net.xml (SUMO-net) file which was passed as an
input parameter in the SUMO configuration file called sumo.sumocfg. A route file is also
required in SUMO for specifying vehicles, their properties and routes taken by vehicles. In
figure 4.2, a vehicle with ID 0 has the route starting from the edge -genE36 and finishing at
the edge -gneE38. Similar to net.xml, sumo.sumocfg also took the route file as an input
parameter. Figure 4.3 shows how net.xml and route file were handled in sumo.sumocfg.
Following these previous steps, the sumo.sumocfg file can be opened in SUMO and vehicles

were able to run in the virtual environment.

<vehicle id depart
<route edges

</vehicle>

Figure 4.2: Route file

<input>

<net-file value="newedit.net.xml"/>

<route-files value ="newedit.rou.xml"/>
<additional-files value = "additional.xml"/>
</input>

Figure 4.3: sumo.sumocfg file

4.1.2 RSU

As mentioned in Chapter 3, RSUs are designed to gather information from the vehicles. For
this prototype, RSUs were implemented for sending slot information to OBUs and setting up
communication with them. Phase One only focused on getting RSUs talking to OBUs.

32

In the prototype, TCP was used for establishing and maintaining the conversation between
RSUs and OBUs. It was chosen over UDP for its higher reliability and its ability to
guarantee the flow and integrity of data (57). Python provides the socket module which can
be used for TCP socket programming. The most common type of socket applications are
client-server applications. In this project, RSU acted as a client and OBU acted as a server.

Figure 4.4 below shows the process of setting up TCP connections between the server and

the client.
Server
<=
v Server creating listening socket "
RS
<=
Establishing connection,
three-way handshake m
- -
Client sending data,
4 server receiving data X
Server sending data,

X client receiving data hd
<» -
X Client sending close message X
«<»-

¥

Figure 4.4: TCP three-way handshaking (10)

Figure 4.5 and figure 4.6 below show the process of RSU and OBU setting up the
connection respectively on their sides. As mentioned earlier, this TMS should be able to
handle a large number of users, meaning that the size of data is large and the data format is
complex. Python provides a library called pickle that is specially designed for handling such
type of data. Figure 4.7 and 4.8 show how data is serialized and deserialized in RSUs and

OBUs. In this phase, only strings with different sizes were used to test the TCP connection
between RSUs and OBUs.

socket

socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))

Figure 4.5: RSU TCP connection

33

HOST =
PORT =
s = s0
s.bind
s. list

conn

socket

cket.socket(socket.AF_INET, socket.SOCK_STREAM)
((HOST, PORT))
en(2)

addr = s.accept()

Figure 4.6: OBU TCP connection

new_request = pickle.dumps(request)
s.send(new_request)

4.1.3

Figure 4.7: Data serialization in RSUs

data_ = conn.recv()

data = pickle.loads(data_)

Figure 4.8: Data deserialization in OBUs

OBU

OBUs in this prototype were in charge of receiving slot information from RSUs, associating

slots to vehicles and controlling them. In Phase one, OBUs were implemented for building

TCP connection with RSUs, which has been set up in previous content. OBUs were also

implemented in this phase for controlling vehicles.

To contro

load path,

| vehicles in SUMO, firstly SUMO HOME directory had to be set on the python
which means the environment variable SUMO_HOME should be set before

running the python script. A library called TraCi was used in this study, which provides an

interface for Python script to control vehicles in SUMO. It can also be used to retrieve

information about vehicles and road (58). This library also needed to be imported into

Python to enable the TraCi commands. Figure 4.9 shows the setup of the environment
variable and TraCi.

34

os.environ:
tools = os.path.join(os.environl

sys.path.append(tools)

sys.exit(

get_options()
opt_parser = optparse.OptionParser()
opt_parser.add_option(

options, args = opt_parser.parse_args()
options

Figure 4.9: SUMO environment setup

To start the SUMO simulation and connect it to the Python script, the code shown in figure
4.10 was needed. After connecting to the simulation, various commands can be sent within
the while loop. The official website (59) provides various TraCi APIs for value retrieval, lane
changing, state-changing and subscriptions. In this phase, only the commands for retrieving
vehicle information and changing vehicles' lanes were used to test system's
functionalities.

traci

traci.start([sumoBinary

step =
step <
traci.simulationStep()
traci.inductionloop.getLastStepVehicleNumber(
traci.trafficlight.setRedYellowGreenState(

traci.close()

Figure 4.10: Starting simulation

4.2 Phase Two

4.2.1 Define Slot

In the design, slot information is stored in both the local and overall database, which can be
queried by RSUs and road servers respectively. In Chapter 3, the relational database was
determined to be the best choice for retrieving information like speed, data structure and
data size. However, this prototype is of small scale compared with the previous design.
Therefore XML was used in the prototype to store the slot information. The slot.xml for

each vehicle has the following structure shown in figure 4.11. Tag laneiD _slot defines the

35

slot on one edge. Each slot's position, lane, speed and starting time are all defined within
the tag slot _ID. In this prototype, each vehicle would only be assigned one slot on one lane

and its slot would change if it turned to another lane or edge.

<slot>
<laneiD_slot>
<slot_0@></slot_0=>

<slot_4></slot_4>
</laneiD_slot>
<laneiD_slot></laneiD_slot>
</slot>

Figure 4.11: slot.xml file

In figure 4.12 below, a slot named E36 0 has a pre-defined trajectory: slot 0 -> slot 1
(the number only represents the position rather than slot ID). It starts from position (-48,
55) and ends at position (-47, 57.6). The slot also has the fixed speed 120 and only runs on
lane E36.

Slot files were named using the string “slot " and the corresponding vehicle ID. For
example, the slot information for vehicle 0 should be named slot 0.xml.

<slot>
<E36_0>
<slot_@>
<time time ></time>
<pos position ></pos>
<lane lane ></lane>
<speed speed ></speed>

</slot_0>

<slot_1>
<time time ></time>
<pos position ></pos>
<lane lane ></lane>
<speed speed ></speed>

</slot_1>

</E36_0>

Figure 4.12: slot.xml file

As mentioned in Phase One, all the vehicles' routes were defined in rou.xml file. In the

prototype, trajectories defined by slots would overwrite the routes in rou.xml when sending
TraCi commands from OBUs to SUMO.

36

4.2.2 RSU

RSUs were responsible for reading the slot information and passing it to OBUs. The
development of RSU in this phase focused on getting slot information from slot.xml file,

reorganise them and sending them to OBUs.

XML is an inherently hierarchical data format. The most natural way to present it would be
using a tree data structure. Python provides the ElementTree XML API (60) for reading the
XML file. Figure 4.13 below defined a class called Slot where the ElementTree API helps to
read the slot XML file and store slot information. Line 39 parsed the XML file and created
an element tree where the root has a tag and a dictionary of attributes. As shown inline 41,
the root had children nodes over which we can iterate. Starting from line 41, the code
started to iterate over all the information of one slot and append it into a dictionary for

readability and faster information retrieval speed.

Slot(object):
(slot_no, edge_id, number):
.root = ET.parse(+number+).getroot()
.slot_info = {}
slot_1 .root. findall(id + + slot_no +

value = slot_l.attrib
count =
i, j value.items():
i =[]
count ==
j = jl1:-1]
X j-split():
Li.append(float(x))

li.append(j)
.slot_infol[i] = 1i
count +=

Figure 4.13: Read in the XML file in Python script

Only three vehicles were defined in this phase, therefore three for loops were needed to read
three slot.xml files. Figure 4.14 shows the implementation for one of the loops. In this code
snippet, the Slot class was initiated 5 timesm which represented there were 5 edges defined
in this vehicle's trajectory. After getting all the slot information of one vehicle, a variable
called route was utilised to store all the vehicles' information. Route variable was of type list
because the list is easy to be serialized and deserialized using pickle, and it is also mutable.
All of the slot information was packed and serialised in RSUs and then sent to OBUs using
TCP.

37

route = []
i route_1:
route_list = []

y . (5):
slot = Slot(+ str(y), 1

route_list.append(slot.slot_info)

trajectory_E36 = []
X route_list:
route.append([i, xI[

Figure 4.14: Append slot information to route list

4.2.3 0OBU

OBUs in this phase is implemented to get the slot information from the RSUs, associate it

to vehicles and send corresponding commands to them.

As mentioned in section 4.1.1, slot information was all stored in a list called route. In OBUs,
it can be easily deserialised and manipulated using pickle. Figure 4.15 below shows the
process of associating vehicles to slots using the information extracted from the slot file.
Line 88, 95 and 96 defined the positions that the vehicles should follow in the following
step.

[0] [1:-1].split()[8]1) (info@[1] [@][1:-1].split() [11)

= 1_1[stepl
1_2[stepl

(infol[1] [@] [1:-1].split() [8]1) (infol[1] [@] [1:-1].split()[11)
(info2[1] [@] [1:-1].split(", ") [8]) (info2[1][@] [1:-1].split(", '} [1])

tepl
(infol[1] [@] [1:-1].split(", ") [@]) {infol[1] [@] [1:-1].split(

Figure 4.15: Allocate a vehicle to its slot

TraCi provides various commands for controlling the vehicles. Two of them were used in the
prototype. One is moveToXY(self, vehID, edgelD, lane, x, y, angle=-1073741824.0,
keepRoute=1) and another is changelLane(self, vehID, lanelndex, duration). The first
command was used to keep sending slot positions to vehicles running in SUMO, which can
overwrite the route defined in rou.xml. All of the attributes are compulsory for using
moveToXY command. Considering there were many vehicles, edges and lanes in the traffic

network, multiple if-else loops were used to distinguish the edgelD and send the commands

38

to vehicles accordingly. This was done in the method called moveVeh, as shown in figure
4.16. In this figure, the moveVeh function differentiates the edge E33 and edge E25. If the
vehicle is going to run on edge E33, the code will go to edge E33's if statement and the
edge ID and vehicle ID would be passed to moveToXY() as parameters to move the
corresponding vehicles. This method differentiated all the edges and sent commands within

each edge's if statement.

moveVeh(edge_ID, id, x,y, info):
edge_ID == -
t()
traci.vehicle.moveToXY(id + edge_ID X, ¥)
print(.format(id, traci.vehicle.getSpeed(id)))
edge_ID ==

()
infol[@] [3:] ==
route_map.index(info) ==
traci.vehicle.changeLane(id)
(.format(id, traci.vehicle.getSpeed(id)))
step ==
traci.vehicle.changelLane(id)

Figure 4.16: Distinguish edge ID and send commands

The second command changelLane was used to change the vehicles' lane. As shown in figure
4.16 above, the vehicle was allocated to switch from lane 0 to lane 1 if that particular

vehicle is running on edge E25.

SUMO only recognises the current time, which means only the last command will be used
while computing the simulation step. Therefore the moveVeh function for one vehicle could
only be called once in each step. To run multiple vehicles simultaneously, the code in figure
4.17 was executed. The figure clearly shows that in each simulation step, the control
commands could be sent to different vehicles sequentially to achieve the simultaneity.
step<
1t ()

moveVeh(edge_ID_0 info@)
step <

moveVeh(edge ID_1 yl, infol)

moveVeh(edge ID 2 y2, info2)
step >

moveVeh(edge_ID_1 yl, infol)

Figure 4.17: Move multiple vehicles simultaneously

4.3 Phase Three

Phase Three focused on scaling up the prototype. In Phase Two, a functional TMS has
already been implemented. However, the map used was not sufficient for a large-scale design

due to its limitation in size. Therefore more edges were added into the traffic network in this

39

phase, with all edges changed to be bi-directional. Figure 4.18 below shows the final traffic

map and vehicle routes implemented in this prototype.

Veh 0: route edges="-gneE36 -gneE25 gnekE33 gnekE37 -gnekE38"
Veh 1: route edges="-gneE24 -gneE25 gneE33 gneE37

Veh 2: route edges="-gneE25 -gnekE26 -gneE28”

Veh 3: route edges="-gneE25 gneE24 -gnekE23 —gneE35 -gneE36”

Figure 4.18: Map used in the implemented prototype

40

5 Evaluation

This chapter focuses on the evaluation of the implemented prototype. Section 5.1 details
the results obtained from the prototype, presenting images of building traffic network, slot
trajectories and code snippets. Section 5.2 evaluates the differences between the design and
the implemented prototype. Section 5.3 concludes this chapter, discussing the work that was

not done in this project and future work.

5.1 Results

As shown in figure 5.1, there are 4 vehicles (yellow triangle) running in the traffic network.
This final map consists of 12 edges and 12 junctions. All edges are bi-directional and have

two lanes.

Figure 5.1: Vehicles running in the SUMO traffic network

Accordingly, four slot.xml files were defined and each of them represented one vehicle's
trajectory during their journey on the road. The trajectory of one vehicle was made up of
slots on different edges. Figure 5.2 below shows the trajectory of vehicle 0. The rectangles
marked with number 1 to 7 represent the booked slot on each edge. Rectangles with lighter
colours demonstrate the trajectory of slots on each edge. In this figure, a vehicle with ID 0
travelled within the slot 1 on lane 0 of edge -gneE36, slot 2 on lane 0 of edge -gneE25, slot
3 on lane 1 of edge -gneE25, slot 4 on lane 0 of edge -gneE25, slot 5 on lane 0 of edge

41

gneE33, slot 6 on lane 0 of edge gneE37 and slot 6 on lane 0 of edge -gneE38. Note that it
changed the lane while travelling on edge -gneE25, thus the slot was changed
correspondingly during that period. Other vehicles' trajectories are shown in figure 5.3.
Vehicle 1 (route_2) had the route starting from lane 0 of edge -gneE24 and ending at lane
0 of edge gneE37. Vehicle 2 (route 3) had the route starting from lane 0 of edge -gneE25
and finishing at lane 0 of edge gneE28. Vehicle 3 (route 4) had the route starting from lane

0 of edge -gneE36 and ending at lane 0 of edge -gneE38.

gneE37

route_1

route_2
route_3
route_4

Figure 5.3: Trajectories of four vehicles

Slot information was read in RSUs and stored as route information in the list, which is a
Python data structure. This information was passed from RSUs to OBUs, which then

associate the slot information to vehicles using TraCi.

Using this system, users were allocated a pre-defined route containing slot information
before getting on the road. The system would keep sending commands to multiple vehicles
simultaneously to move them while the vehicles are travelling on the motorway. These
vehicles will strictly follow their trajectories and stay within their pre-defined slot during the

journey.

5.2 Comparison between Design and Prototype

The final prototype only implemented part of the design, therefore this section will focus on

the differentiation between implemented part and the full scope of the design.

42

5.2.1 Components

The implemented prototype is composed of three components including RSUs, OBUs and
slot information. SUMO provides the virtual traffic network for the prototype to run the
simulation. Slot information is defined in the format of XML and it is used for storing the
slot’s position, speed, ID and starting time. Each vehicle has one slot file as its trajectory
information. As for the RSU, it is implemented to be able to read slot information, reformat
the data, set up the TCP connection with OBU and send the slot information to OBU. The
OBU is responsible for receiving the slot information from RSU, extracting the information
and associating them to vehicles based on the vehicle ID. It also takes advantages of TraCi

interface to constantly send commands to vehicles running in SUMO and control them.

The overall design consists of App, load balancer, TMS centres, servers, RSUs, OBUs, the
overall database and the local databases. In the design, RSUs are partitioned and distributed
on the road every 1000 meters while the prototype didn't consider the replication because of
its small scale. OBUs in the design represent the vehicles. However, in the prototype,
SUMO was used to simulate the vehicles. Thus, OBUs only acted as an interface for TraCi
API to control the vehicles in SUMO. As for the slot, the initial design determined the slot
size to be 100 meters, while in the prototype, each edge was divided into 5 parts and the
length of each part was the length of slots. The XML file was used in prototype instead of
the relational database in the design because the data size of the prototype is small and the

data structure can be easily stored in the format of XML.

5.2.2 System Functionalities

In Chapter 3, two scenarios were discussed. First one is for booking a journey and the
second is for vehicles driving on the road. The overall system is designed to be able to
handle both scenarios. However, in the implemented prototype, the system was not
responsible for booking a slot for the users based on the road capacity and slot availability.
These routes were generated randomly and the prototype would only allocate the pre-defined
routes to vehicles. While vehicles are running on the motorway, the system in this prototype
would keep sending commands to vehicles. However, for the design, TMS will frequently
query the database to check the traffic congestion and accidents, and send move commands

to vehicles only if no accidents are happening on the road.

5.3 Future Work

As addressed in Chapter 3, high scalability, reliability, availability and low latency are the
requirements of this TMS. Even though the prototype was fully implemented, the testing of

these features is yet to be done. Thus, these testing work will all be propagated to the

43

future work for a system with a larger scale.

The current prototype is of small scale and it is necessary to scale up the overall system to
adapt to the real-world situation in the future. There are many components which haven't
been implemented in the prototype, such as databases and road servers. These are all

essential for building up a large-scale system and all the unimplemented components should

all be involved in the system implementation in the future.

44

6 Conclusion

This research aimed to develop a large-scale traffic management system using a slot-based
driving approach to remotely control vehicles and ease the traffic congestion on the
motorway. Based on the quantitative and qualitative analysis of prior work of four domains
including TMS, vehicular communication, large-scale system design and slot-based driving, it
can be concluded that such large-scale TMS design was proposed to be able to meet the
system requirements and one prototype was implemented to achieve some of the required
system functionalities. The implementation of prototype allows the TMS to assign users the
routes defined by slot trajectories and to control the vehicles while they are running on the

motorway.

There are a few requirements for the overall TMS design including high scalability,
availability, reliability and low latency. Enumerating user cases greatly helps to identify each
component’s characteristics and functionalities, which can further help to meet the system
requirements in the design. In the prototype, instead of using real-world vehicles and
sensors, traffic simulator SUMO was used to provide the virtual traffic environments and to
simulate the vehicles. It greatly reduces the implementation cost and increases development
efficiency. An open-source Python script (61) was also used to generate route.xml file to

prevent route overlap which will potentially cause traffic congestion.

Based on these conclusions, some work is suggested to be propagated into the future
development process. Scaling up the system is the next step for developing this large-scale
TMS. The current prototype is of small scale and it only simulates a few components. In
future work, simulating more real-world components such as in-road sensors and cameras
will greatly improve the system’s accuracy of detecting traffic congestion and accidents. The
current prototype also lacks testing for requirements that was were used previously.
Therefore it is necessary to add testing in the future work to ensure the quality, consistency
and performance of the system. Furthermore, the slot-based driving approach should also be

considered to be developed to adapt to various environment conditions in the future.

The design demonstrated by this research project proposed a way to implement the traffic
management system using a slot-based driving approach, which is yet to be developed in a

real-world situation. It provides the approach to combine both advanced TMS and

45

autonomous driving methodology to reduce the traffic congestion caused by human-driving.
The prior slot model is utilised in this design and it is also used to define the trajectory of
vehicles (13). The use and redevelopment of this prior model greatly help to standardise
vehicles' behaviours, which potentially helps to tolerate human-driver mistakes. This
research project represents an initial exploration into integrating TMS and slot-based driving,
with the overall aim of developing an advanced large-scale distributed TMS for building a

smart traffic environment with higher efficiency and lower accident rate.

46

Bibliography

[1]

2]

3]

[4]

[5]

[6]

[7]

[8]

Martin Kleppmann. Designing data-intensive applications: The big ideas behind
reliable, scalable, and maintainable systems. " O'Reilly Media, Inc.", 2017.

Draft standard for information technology—telecommunications and information
exchange between systems—local and metropolitan area networks —specific requirements
part 11: Wireless lan medium access control (mac) and physical layer (phy)
specifications amendment 7: Wireless access in vehicular environments. /EEE
Unapproved Draft Std P802.11p/D9.0, July 2009, 20009.

clemson vehicular electronics laboratory: dedicated short range communications 2020,
2020. URL https://cecas.clemson.edu/cvel/auto/systems/DSRC.html.
[Online; accessed 06-March-2020].

J. B. Kenney. Dedicated short-range communications (dsrc) standards in the united
states. Proceedings of the IEEE, 99(7):1162-1182, 2011.

2020. URL https:
//www.cablefree.net/wirelesstechnology/4glte/lte-network-latency/.
[Online; accessed 06-March-2020].

Thiago S Gomides, Massilon L Fernandes, Fernanda Sumika Hojo de Souza, Leandro
Villas, and Daniel L Guidoni. Fire-nrd: A fully-distributed and vanets-based traffic
management system for next road decision. In 2019 15th International Conference on
Distributed Computing in Sensor Systems (DCOSS), pages 554-561. |IEEE, 20109.

Soufiene Djahel, Ronan Doolan, Gabriel-Miro Muntean, and John Murphy. A
communications-oriented perspective on traffic management systems for smart cities:
Challenges and innovative approaches. |[EEE Communications Surveys & Tutorials, 17
(1):125-151, 2014

Allan M De Souza, Celso ARL Brennand, Roberto S Yokoyama, Erick A Donato,
Edmundo RM Madeira, and Leandro A Villas. Traffic management systems: A
classification, review, challenges, and future perspectives. International Journal of
Distributed Sensor Networks, 13(4):1550147716683612, 2017.

47

https://cecas.clemson.edu/cvel/auto/systems/DSRC.html
https://www.cablefree.net/wirelesstechnology/4glte/lte-network-latency/
https://www.cablefree.net/wirelesstechnology/4glte/lte-network-latency/

[9] 2020. URL https:
//www.rac.co.uk/drive/advice/learning-to-drive/stopping-distances/.
[Online; accessed 6-May-2020].

[10] Real Python. Socket programming in python (guide) — real python, 2020. URL
https://realpython.com/python-sockets/. [Online; accessed 6-May-2020].

[11] Sameer Tikar and A. D. Jadhav. Can to wi-fi interface for vehicles. 2013.

[12] See Foxe. Over 5,000 accidents on m50 since 2017, 2020. URL
https://www.thejournal.ie/m50-crashes-foi-4278822-0ct2018/. [Online;
accessed 06-March-2020].

[13] Vinny Cahill, Aline Senart, Douglas C Schmidt, Stefan Weber, Anthony Harrington,
Barbara Hughes, Kulpreet Singh, and Mélanie Bouroche. The managed motorway:
real-time vehicle scheduling: a research agenda. In Proceedings of the 9th workshop on

Mobile computing systems and applications, pages 43-48, 2008.

[14] Remi Tachet, Paolo Santi, Stanislav Sobolevsky, Luis Ignacio Reyes-Castro, Emilio
Frazzoli, Dirk Helbing, and Carlo Ratti. Revisiting street intersections using slot-based
systems. PloS one, 11(3), 2016.

[15] Juan Guerrero-Ibafiez, Sherali Zeadally, and Juan Contreras-Castillo. Sensor

technologies for intelligent transportation systems. Sensors, 18(4):1212, 2018.

[16] Sape Mullender et al. Distributed systems, volume 12. acm press United States of
America, 1993.

[17] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: principles and
paradigms. Prentice-Hall, 2007.

[18] Amund Aarsten, Davide Brugali, and Giuseppe Menga. Patterns for three-tier
client/server applications. Proceedings of Pattern Languages of Programs (PLoP’96), 4
(6), 1996.

[19] John M Gallaugher and Suresh C Ramanathan. Choosing a client/server architecture: a
comparison of two-and three-tier systems. Information Systems Management, 13(2):
7-13, 1996.

[20] Yingsong Hu, Liwen Peng, and Chubin Chi. Design technology of three-tier architecture
on web application based on .net [j]. Computer Engineering, 8, 2003.

[21] are you ready to consolidate databases into database clouds?, 2020. URL
https://www.oracle.com/database/. [Online; accessed 06-March-2020].

48

https://www.rac.co.uk/drive/advice/learning-to-drive/stopping-distances/
https://www.rac.co.uk/drive/advice/learning-to-drive/stopping-distances/
https://realpython.com/python-sockets/
https://www.thejournal.ie/m50-crashes-foi-4278822-Oct2018/
https://www.oracle.com/database/

[22] Ouri Wolfson, Sushil Jajodia, and Yixiu Huang. An adaptive data replication algorithm.
ACM Transactions on Database Systems (TODS), 22(2):255-314, 1997.

[23] URL https://www.mysql.com/. [Online; accessed 06-March-2020].

[24] Yoshinori Matsunobu. Semi-synchronous replication at facebook. Accessed: Jun, 25:
2019, 2014.

[25] 2020. URL https://www.ibm.com/support/knowledgecenter/en/SSQNUZ_2.5.0/
wsj/analyze-data/hadoop-environments.html. [Online; accessed

06-March-2020].

[26] 2020. URL https://www.ibm.com/analytics/hadoop/mapreduce. [Online;
accessed 06-March-2020].

[27] Yas Alsultanny. Database management and partitioning to improve database processing
performance. Journal of Database Marketing & Customer Strategy Management, 17
(3-4):271-276, 2010.

[28] data partitioning with chunks — mongodb manual 2020, 2020. URL
https://docs.mongodb.com/manual/core/sharding-data-partitioning/.
[Online; accessed 06-March-2020].

[29] Lars Hofhansl, Lars Hofhansl, and View profile. Introduction to hbase, 2020. URL
http://hadoop-hbase.blogspot.com/2011/12/introduction-to-hbase.html.
[Online; accessed 06-March-2020].

[30] 2020. URL https://docs.mongodb.com/manual/reference/command/filemd5/.
[Online; accessed 06-March-2020].

[31] 2020. URL https://www.agilelab.it/
secondary-indexing-on-hbase-a-k-a-nosql-is-good-but-the-world-is-not-key-value/.

[Online; accessed 06-March-2020].

[32] Rusty Klophaus, Pavel Hardak, Dorothy Pults, Dorothy Pults, and Dorothy Pults.
Secondary indexes in riak, 2020. URL https:
//riak.com/posts/technical/secondary-indexes-in-riak/index.html.
[Online; accessed 06-March-2020].

[33] Bhawna Dhawan and Tanu Preet Singh. Efficient data dissemination techniques in

vanets: a review. International Journal of Computer Applications, 116(7), 2015.

[34] Daniel Jiang and Luca Delgrossi. leee 802.11 p: Towards an international standard for
wireless access in vehicular environments. In VTC Spring 2008-1EEE Vehicular
Technology Conference, pages 2036-2040. IEEE, 2008.

49

https://www.mysql.com/
https://www.ibm.com/support/knowledgecenter/en/SSQNUZ_2.5.0/wsj/analyze-data/hadoop-environments.html
https://www.ibm.com/support/knowledgecenter/en/SSQNUZ_2.5.0/wsj/analyze-data/hadoop-environments.html
https://www.ibm.com/analytics/hadoop/mapreduce
https://docs.mongodb.com/manual/core/sharding-data-partitioning/
http://hadoop-hbase.blogspot.com/2011/12/introduction-to-hbase.html
https://docs.mongodb.com/manual/reference/command/filemd5/
https://www.agilelab.it/secondary-indexing-on-hbase-a-k-a-nosql-is-good-but-the-world-is-not-key-value/
https://www.agilelab.it/secondary-indexing-on-hbase-a-k-a-nosql-is-good-but-the-world-is-not-key-value/
https://riak.com/posts/technical/secondary-indexes-in-riak/index.html
https://riak.com/posts/technical/secondary-indexes-in-riak/index.html

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Zhigang Xu, Xiaochi Li, Xiangmo Zhao, Michael H Zhang, and Zhongren Wang. Dsrc
versus 4g-Ite for connected vehicle applications: A study on field experiments of
vehicular communication performance. Journal of Advanced Transportation, 2017,
2017.

Q. Yang, L. Wang, W. Xia, Y. Wu, and L. Shen. Development of on-board unit in
vehicular ad-hoc network for highways. In 2014 International Conference on Connected
Vehicles and Expo (ICCVE), pages 457-462, 2014.

Yanwen Wu and Qi Luo. High Performance Networking, Computing, Communication
Systems, and Mathematical Foundations: International Conferences, ICHCC
2009-ICTMF 2009, Sanya, Hainan Island, China, December 13-14, 2009. Proceedings,
volume 66. Springer Science & Business Media, 2010.

B. Aslam, F. Amjad, and C. C. Zou. Optimal roadside units placement in urban areas
for vehicular networks. In 2012 IEEE Symposium on Computers and Communications
(ISCC), pages 000423-000429, 2012.

S. Sou and O. K. Tonguz. Enhancing vanet connectivity through roadside units on
highways. IEEE Transactions on Vehicular Technology, 60(8):3586-3602, 2011.

Phil Goodwin. The economic costs of road traffic congestion. 2004.

2020. URL https://ec.europa.eu/transport/media/news/
2016-09-16-european-mobility-week_en. [Online; accessed 06-March-2020].

Guy A Boy. The handbook of human-machine interaction: a human-centered design
approach. CRC Press, 2017.

Jonathan Turner. New directions in communications(or which way to the information
age?). IEEE communications Magazine, 24(10):8-15, 1986.

Ricardo Morla. Sentient future competition: Vision of congestion-free road traffic and
cooperating objects. 2006.

Nishkam Ravi, Stephen Smaldone, Liviu Iftode, and Mario Gerla. Lane reservation for
highways (position paper). In 2007 IEEE Intelligent Transportation Systems
Conference, pages 795-800. IEEE, 2007.

Dan Marinescu, Jan Curn, Mélanie Bouroche, and Vinny Cahill. On-ramp traffic
merging using cooperative intelligent vehicles: A slot-based approach. In 2012 15th
International IEEE Conference on Intelligent Transportation Systems, pages 900-906.
IEEE, 2012.

50

https://ec.europa.eu/transport/media/news/2016-09-16-european-mobility-week_en
https://ec.europa.eu/transport/media/news/2016-09-16-european-mobility-week_en

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Wikipedia contributors. Interchange (road) — Wikipedia, the free encyclopedia, 2020.
URL https://en.wikipedia.org/w/index.php?title=Interchange_(road)
&01di1d=955099555. [Online; accessed 6-May-2020].

Magnus Sellén. Average car length - list of car lengths - mechanic base, 2020. URL

https://mechanicbase.com/cars/average-car-length/. [Online; accessed
06-March-2020].

Wikipedia contributors. Http compression — Wikipedia, the free encyclopedia, 2020.
URL https://en.wikipedia.org/w/index.php?title=HTTP_compression&
01did=951714277. [Online; accessed 6-May-2020].

URL https://www.£f5.com/services/resources/glossary/load-balancer.

[Online; accessed 6-May-2020].

What is load balancing? how load balancers work. URL

https://www.nginx.com/resources/glossary/load-balancing/. [Onling;

accessed 6-May-2020].

Wikipedia contributors. Load balancing (computing) — Wikipedia, the free
encyclopedia, 2020. URL https://en.wikipedia.org/w/index.php?title=Load_
balancing_(computing)&oldid=951440733. [Online; accessed 8-May-2020)].

2020. URL http://nginx.org/en/docs/http/load_balancing.html. [Online;
accessed 6-May-2020].

2020. URL https://www.brianstorti.com/replication/. [Online; accessed
6-May-2020].

2020. URL https://blog.cloud66.com/
3-tips-for-selecting-the-right-database-for-your-app/. [Online; accessed
6-May-2020].

2020. URL https://sumo.dlr.de/docs/NETEDIT.html. [Online; accessed
6-May-2020].

Margaret Rouse. What is tcp (transmission control protocol)?, Apr 2020. URL
https://searchnetworking.techtarget.com/definition/TCP. [Online; accessed
6-May-2020].

URL
https://sumo.dlr.de/docs/TraCIl/Interfacing_TraCI_from_Python.html.

2020. URL https://sumo.dlr.de/docs/TraCI.html. [Online; accessed
6-May-2020].

51

https://en.wikipedia.org/w/index.php?title=Interchange_(road)&oldid=955099555
https://en.wikipedia.org/w/index.php?title=Interchange_(road)&oldid=955099555
https://mechanicbase.com/cars/average-car-length/
https://en.wikipedia.org/w/index.php?title=HTTP_compression&oldid=951714277
https://en.wikipedia.org/w/index.php?title=HTTP_compression&oldid=951714277
https://www.f5.com/services/resources/glossary/load-balancer
https://www.nginx.com/resources/glossary/load-balancing/
https://en.wikipedia.org/w/index.php?title=Load_balancing_(computing)&oldid=951440733
https://en.wikipedia.org/w/index.php?title=Load_balancing_(computing)&oldid=951440733
http://nginx.org/en/docs/http/load_balancing.html
https://www.brianstorti.com/replication/
https://blog.cloud66.com/3-tips-for-selecting-the-right-database-for-your-app/
https://blog.cloud66.com/3-tips-for-selecting-the-right-database-for-your-app/
https://sumo.dlr.de/docs/NETEDIT.html
https://searchnetworking.techtarget.com/definition/TCP
https://sumo.dlr.de/docs/TraCI/Interfacing_TraCI_from_Python.html
https://sumo.dlr.de/docs/TraCI.html

[60] 2020. URL
https://docs.python.org/2/library/xml.etree.elementtree.html. [Online;
accessed 6-May-2020].

[61] 2020. URL
https://github.com/eclipse/sumo/blob/master/tools/randomTrips.py.
[Online; accessed 6-May-2020].

52

https://docs.python.org/2/library/xml.etree.elementtree.html
https://github.com/eclipse/sumo/blob/master/tools/randomTrips.py

	Introduction
	Research Motivation
	Research Objectives
	Overview of Achievements
	Improvements and Future work
	Thesis Structure

	Background
	Distributed System
	System Architecture
	Replication
	Partitioning

	Vehicular Communication
	Slot-based Driving
	Traffic Management System
	Conclusion

	System Design
	Overviews
	Slot Design
	Overall Architecture Design
	App
	Load Balancer
	TMS Centre
	Road Servers
	RSU
	OBU
	Database

	User Case Scenario
	Booking Journey
	Driving on Road

	Implementation
	Phase One
	Environments and Software Setup
	RSU
	OBU

	Phase Two
	Define Slot
	RSU
	OBU

	Phase Three

	Evaluation
	Results
	Comparison between Design and Prototype
	Components
	System Functionalities

	Future Work

	Conclusion

