
School of Computer Science and Statistics

A Near Real-Time Big Data
Processing Architecture

Xuming Xiu

April 30, 2020

A Final Year Project submitted in partial ful�lment

of the requirements for the degree of

MAI (Computer Engineering)

http://www.scss.tcd.ie

Declaration

I hereby declare that this project is entirely my own work and that it has not been submitted
as an exercise for a degree at this or any other university.

I have read and I understand the plagiarism provisions in the General Regulations of the
University Calendar for the current year, found at http://www.tcd.ie/calendar.

I have also completed the Online Tutorial on avoiding plagiarism `Ready Steady Write', located
at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

Signed: Date:

i

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

Abstract

Latency has been an issue that many trading �rms making e�orts to solve. When trading data
coming in the form of the streams, a system that can help to make decisions in a relatively
short time before the next data point arrives would bene�t a lot. Concerning Big Data, the
characteristics challenge the industry from Velocity, Volume, and Variety. This paper prosed
an architecture of a system that can quickly retrieve a large volume of the historical dataset,
and performing near real-time aggregation as new data coming. This project targets the
velocity and volume aspects of big data.

The paper explores the possible technical solutions to reduce the latency for trading �rms.
The performance of such a system is directly related to pro�t. The motivation of this project
is to present a solution to help with decision making and keep the latency as low as possible.
During the investigation of the technologies and the problem. Apache Spark and Kafka proved
to have good performance in terms of real-time processing. There is also a methodology of
using Geometric Brownian Motion to generate synthetic data to enrich the sample space.
This project also uses a time-series database for real-time monitoring of the volatility. Finally,
the system can aggregate 1 single column of 20 million rows with up 10 seconds in average
in the Hadoop cluster.

ii

Acknowledgements

I would �rst like to acknowledge my supervisor, Dr. Khurshid Ahmad, who has been support

me during the entire project. He led to discover my interest in big data and supported me

when I met di�culties. Sometimes, he explained more than once to me about the concepts

that I had trouble understanding.

I also would like to thank my parents who supported me to study abroad. Without them, I

wouldn't have such a fantastic opportunity to discover my interests. Finally, I also want to

thank my girlfriend who has been taking good care of me during the busy time.

iii

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Motivation and Objectives . 2

1.3 Contribution . 2

1.4 Content Structure . 3

2 Literature Review and Similar Work 4

2.1 Big Data Challenges . 4

2.1.1 Velocity . 4

2.1.2 Volume . 5

2.1.3 Variety . 5

2.2 Big Data Technologies . 6

2.2.1 Databases vs Distributed File Systems 6

2.2.2 MapReduce . 7

2.2.3 The Hadoop Architecture . 7

2.2.4 Spark . 9

2.3 Previous Work . 11

2.3.1 A real-time tra�c data analysis . 11

2.3.2 High speed log streams generated from web 12

2.4 Summary . 12

3 Design and Implementation 13

3.1 Data Source . 13

3.1.1 Data Collection . 13

3.1.2 Data Fusion . 14

3.2 Simulate Real-Time Data Streams: Ingestion Platform 18

3.2.1 Overview . 18

3.2.2 Kafka . 18

3.2.3 Implementation . 19

3.3 Real Time Processing: Spark App . 22

iv

3.3.1 Receiving the Messages . 22

3.3.2 Processing the Data . 24

3.3.3 Deploy to Dataproc . 25

3.4 Result Persistence: In�uxDB . 25

3.5 Summary . 26

4 Case Study: J.P. Morgan Stock Price Volatility 28

4.1 Background . 28

4.2 Data Fusion . 29

4.3 File Partition . 33

4.4 Data Flow . 34

4.5 Result . 35

4.6 Evaluation . 37

4.6.1 System setup . 37

4.6.2 Performance . 37

4.7 Discussion . 38

4.7.1 Data Selection . 38

4.7.2 Technologies reviews . 38

4.7.3 Challenges . 39

4.7.4 Future Work . 40

4.7.5 The 3Vs: Velocity, Volume, Variety 40

5 Conclusion 42

6 Appendix 43

6.1 A1: Calculate return of stock price . 43

6.2 A2: Geometric Brownian Motion . 43

6.3 A3: Calculate return in PySpark . 44

6.4 A4: Calculate moving average in PySpark 44

6.5 A5: Request historical 1 minute trading data from IEXCloud 45

6.6 A6: Available endpoints in the Ingestion Platform 45

Bibliography 47

v

List of Figures

2.1 The HDFS Architecture . 8

2.2 The Work�ow of Catalyst Optimizer . 9

3.1 S&P 500 index for the past 6 months . 14

3.2 Kafka . 19

3.3 Mapping Dstream . 23

3.4 Reduced Dstream . 23

3.5 Overall Flow . 25

3.6 Integrated Architecture . 27

4.1 The Candlestick Diagram . 29

4.2 JPM historical . 30

4.3 Distribution of mean . 31

4.4 Geometric Brownian Motion simulations 32

4.5 The Return of The Time Series . 35

4.6 Statistical Moments . 36

vi

List of Tables

4.1 Historical Price Overview . 29

4.2 Descriptive Statistics of Opening and Closing Prices 31

4.3 Descriptive Statistics of Large Dataset . 33

vii

Listings

3.1 Kafka message sender callback . 20

3.2 Thread sleeping time management . 21

3.3 Aggregation in real-time . 24

3.4 Using Java client to write data into In�uxDB 26

3.5 Using ReactiaveIn�ux to write stream in to In�uxDB 26

viii

1 Introduction

The Internet generates billions of Data every minute around the world. These data usually

have the properties of high velocity, large volume, and multi-variant. These data always have

valuable information along with them and waiting to be discovered. Time series is one

important category of Big Data. Apart from the general characteristics of big data, time

series Big Data is a sequence of discrete-time data that taken successively equally spaced

points in time. It is observable that potential correlations can be discovered as the data

points are collected at adjacent periods. When there is a large volume for such data in

high-frequency streams, analysis can be challenging. Such time-series data can be collected

from many di�erent places. Some typical ones are like trading data, service logs, and tra�c

data. Many applications have the capability to support time series analysis.

1.1 Problem Statement

The characteristic of Big Data includes Velocity, Volume, and Variety [30]. These are also

the major challenges of Big Data analysis. Streamed data can be even more challenging as it

requires a system to be able to continuously handle the incoming data and perform real-time

analysis. Trading data is typical streaming data. Besides, the system has to be able to

retrieve the large volume of the historical dataset in a short time. The latency is the critical

problem to streaming analysis. When the data arriving at a particular frequency, the result

of the analysis has to be �nished before the next data coming in. Especially in terms of

high-frequency trading (HFT), the reaction time is critical. Many trading �rms place the

server next to the trading house to reduce the latency. The journal [9] mentioned a new

measure to capture the reaction time which is called Decision Latency. The quickest HFT

�rm in their models �rst responds to pro�table trading openings, taking all of the pro�ts,

while the slower participants arrive slightly too late. As a consequence, minor variations in

trade pace are correlated with signi�cant changes in company-wide trade revenues, with

trading clustered among the fastest HFT industry. Another journal [15], the authors

presented a conclusion that relative latency is important for success in trading on short-lived

information. The study also suggested that lower latency can help with improving traditional

market quality measures. Latency becomes a critical issue that can signi�cantly bene�t

1

market behaviours.

In summary, latency is the problem that this project aims to solve. When trading data are

coming in as stream, a low latency decision-making mechanism is important. The decision

has to be made before the next data point arrives.

1.2 Motivation and Objectives

The motivation is to reduce Decision Latency to achieve a near-real-time analysis system. In

the previous section, we have introduced the latency in high-frequency trading and why it is

important to keep as low as possible. However, from a technical point of view, Decision

Latency can be optimized from the software level. The most direct cause of the Decision

Latency is brought by data analysis. Typically, analyzing real-time data in real-time requires

historical knowledge. Thus, the �rst objective is to collect the historical dataset for a given

stock price. Next, since the historical dataset will be used to perform real-time aggregation.

Therefore, the second objective is to quickly retrieve a large volume of the historical dataset

into the system. When making a decision, speci�cally for trading data, volatility is an

important metrics to reference. It indicates the potential pro�t or loss when making a

transaction for the next trading. Therefore, the third objective of this project is computing

statistical moments of the trading records with the latency with as low as possible. Most

importantly, the computation of these statistical moments has to be �nished before the

arrival of the next data point. To simulate the trading process, there has to be a service to

collect trading data in real-time. This is an important step to measure the Decision Latency

as it will continue sending new data as a deadline of statistical moments computation.

1.3 Contribution

This project makes contributions in reviewing the related journals in low latency trading and

trying to reduce Decision Latency as smaller as possible. While researching on other similar

systems provides inspirations, a system architecture was designed and implemented to

address the problem. The system has been proven to work as expected. However, it still has

room to improve in terms of the automation process and resource allocations. These are

pointed out in the discussion section. This is a working example for trading �rms to have a

near real-time time processing system to help making decisions based on a large volume of

historical data within a relatively short time.

2

1.4 Content Structure

In the second chapter, the Big Data related technologies and literature are reviewed.

Di�erent technologies in terms of data storage (HDFS, NoSQL, and RDBMS) and big data

processing tools (Spark and Hadoop MapReduce) are compared. These technologies and

tools are fundamentals to achieve near real-time processing. There are also Benchmarking

results included illustrating the most suitable technologies for this project. There are 2

similar projects introduced in this chapter as well. The real-time tra�c data analysis project

has demonstrated the bene�ts of using HDFS as storage technology. Another project

High-speed log streams analytics provided the guidelines of the simulation real-time trading

records using Kafka and SparkStreaming. This project is inspired by the above 2 similar

works.

The third chapter describes the design and implementation details of the architecture. There

are 2 major components in this project which are the Ingestion Platform and the Spark App.

The purpose of the Ingestion Platform is to simulate an environment of real-time trading

data stream where the velocity of data �ow can be controlled. The Spark App uses Apache

Spark [31] to perform real-time analysis. There is also an extra step to generate synthetic

data because the size of the collected data is not large enough. The synthetic data is a

simulation of the large historical datasets.

The fourth chapter is an actual case study where it uses the stock price from J.P. Morgan

Chase & Co. to test the system. It indicated that the system running in a cluster that

contains 3 nodes can aggregate a single column with 10 seconds. The evaluation part

contains the system setup speed. It discussed the advantage and disadvantages of such a

design. It also evaluates the system performance in terms of the latency. There is also a

discussion regarding the challenges that this project resolved, the reasons to use these

technologies that have been chosen for this project, and possible future work.

Finally, the conclusion chapter concludes that the Decision Latency could be reduced down

to 10 seconds for a single column using such system and con�guration. It also concludes the

drawbacks of the system and suggests some possible working solutions in future.

3

2 Literature Review and Similar Work

This chapter includes some of similar work and review of the related literature about the Big

Data technologies. There are great amount of previous work and papers to reference about

big data. Some techniques and methodologies provide very insightful guidelines for this

project. The most critical part of this project is the issue brought by properties of big data.

There are some of previous work that provide similar uses cases for addressing these

challenges in related to High Frequency Trading data.

2.1 Big Data Challenges

The de�nition of Big Data is given as massive data sets having large, more varied and

complex structure with the di�culties of storing, analyzing and visualizing for further

processes or results [30]. This de�nition provides perspectives of potential problems that are

needed to be addressed when working with big data. The following three introduce the

challenges of Big Data in terms of Velocity, Volume, and Variety.

2.1.1 Velocity

The �rst problem facing is that the issue of velocity. The velocity is directly related to

latency when data coming as stream. The limitation of velocity is not only in terms of the

data �ow but also is required for all processing unit. A typical question is how fast we can

process the incoming data [30]. Latency is a critical challenge that needs to be solved.

There are some components that may slow down the computation from di�erent aspects.

The latency comes from hardware level mostly related to the network. As the the nodes

within the cluster are connected via local network, a decrease in time taken for a packet

traverses switches would result in faster communication [32]. From operating system point

of view, a well con�gured scheduler and resource allocator will signi�cantly increase the

speed [32]. Hadoop Yarn is a perfect choice as a role of scheduler no matter in cluster or a

single machine.

4

2.1.2 Volume

Other than velocity, volume is also a critical feature of big data [30]. Volume generally

means the size of the big data. With that being introduced, the challenge facing with

volume is the storage. Since the data tend to be very large, traditional �le systems or

databases hosting on single node is not able to handle such amount of data. The enterprise

level big data could be in tarabytes or even petabytes. These data are even more complex

rather than just big in �le size. They could cover multi dimensional data which makes it

more di�cult to perform analysis against these data [25].

2.1.3 Variety

Variety refers to the data coming from multiple sources and the data itself consists multiple

types both structured and unstructured [30]. To analysis big data that has such

characteristic, the Dimensional Data Analysis (DDA) technique is recommended [14]. The

algorithm basically works as follows:

for dataset in each schema:

if number of rows > 1:

get number of rows

get number of unique columns

get number of values

else:

continue;

Once the metrics are collected, they are used to compare with ideal and vestigial values to

determine approximate structural model. The performance benchmarks indicated that using

such algorithm, analyst can �nish data ingestion 2 million data points within 400 seconds

[14].

With more study in Big Data, there are more challenges discovered in Big Data. There are

extra dimensions added to the Big Data concept [5]. Variability refers to inconsistent of

data �ow. It can be hard to manager particular for unstructured data. Value indicates data

cannot be meaningless. There are also valuable information can be concluded from big data.

Veracity refers to the quality of data. With the size of of data growing large, the data

quality can be challenging. Validity can help with making correct and accurate decisions.

Visualization is a task to present the data with the most intuitive approach. Despite new

studies keep adding more characteristics to Big Data concept, this project will focus only on

Velocity, Volume, and Variety.

5

2.2 Big Data Technologies

2.2.1 Databases vs Distributed File Systems

The database has always been playing an important role in data storage technologies. A

relational database can store data in table format. The great advantage of relational

databases is that it supports schema which makes data modelling easier. One of the aims of

RDBMS is to enforcing data integrity. To achieve this, a proper design of tables is always

required by RDBMS. This may be achievable when the data is relatively small. However,

when dealing with big data, this can be signi�cantly expensive as the normalization process

requires table joins and searching for keys throughout the entire dataset. NoSQL is expected

to be out-performed than RDBMS since there are no requirements of normalization.

Besides, the variety also challenges the RDBMS since the database schema of the dataset

can be di�cult to design.

NoSQL uses a new way of storage. It supports key-value storage, document-oriented

storage, wide-column storage, and graph database. MongoDB as one of the most popular

document-oriented database has grown very fast with its scalability and reliability [23]. A

comparison between RDBMS and NoSQL database indicates that the di�erence in average

time CRUD operations of NoSQL is increasing as the size of data increases [12]. Therefore,

a valid conclusion can be drawn that in NoSQL database is more suitable than RDBMS for

big data applications.

With the development of the hardware, this challenge can also be addressed by using a

cluster. Instead of using a single machine to store everything, a group of computers that are

physically distributed and connected by a local area network (LAN) are used to share data

and storage resources. This is also known as the Distributed File System (DFS). Larger

main memories with less expensive price enable the exponential increment in caching

performance. Optical disk and optical �bre networks make it faster to access the resources

and to communicate among the nodes. Battery-backed memory can enhance the reliability

of main memories caches as well [20]. As the hardware development reaches the bottleneck,

the software design level has been put into consideration.

Other new technologies were invented to deal with volume issue for the past years. Google

developed Google File System (GFS) which is believed to be outperformed than Hadoop �le

system to address their challenge [10]. GFS integrates MapReduce and o�ers the capability

of byte-stream-based �le view of big data that is partitioned over several hundreds of nodes

within a cluster.

6

2.2.2 MapReduce

MapReduce is introduced as one of the approaches to process big data e�ciently. Notably,

MapReduce as the programing model works independently with storage layers. MapReduce

can be considered as a monument in the history of Big Data technologies. MapReduce is a

programming model for processing a large volume of data. There are 2 phases in this

programing model namely Map and Reduce. Both phases allow programmers to customize

the function to achieve the goal. Map phase takes inputs and transforms inputs to the

key-value pair format. Then the key-value pairs received by the reducer and performed

aggregations by the reduc. Before the key-value pairs received by the reducer, there is also a

step in between whose task is to shu�e the key-value pairs to consolidate records from the

mapper. MapReduce is expected to have a good performance under the parallel environment

as mapper and reducer are separately doing tasks. A survey [19] investigated the MapReduce

programming model from various dimensions include usability, �exibility, fault tolerance, and

e�ciency. The survey took the implementation of MapReduce, Hadoop, to examine the

performance under the parallel processing environment. It concludes that as Hadoop uses

checkpoints frequently, the e�ciency could be dropped by I/O operations. However, the pros

of using checkpoints can signi�cantly increase the ability of fault tolerance and scalability.

When using MapReduce programming model to process big data, the clear drawback

comparing to DBMS is that it is schema-less [26]. A MapReduce job can be triggered

immediately when the data is loaded. At this stage, there is no data modeling involved and

hence the data is not indexed by the MapReduce job. This faster in processing large volume

of data but insu�cient for modeling.

2.2.3 The Hadoop Architecture

The combination of MapReduce and DFS has made huge progress in processing a large

volume of data. Hadoop is an excellent implementation of MapReduce has connected

MapReduce and distributed �le system successfully. The ecosystem even supports other big

data technologies like Cassandra and Hive [6]. The core components of Hadoop includes

Hadoop MapReduce, Hadoop Distributed File System (HDFS), and Hadoop Yarn for

resource management and job scheduling. Hadoop makes MapReduce running more

e�ciently on distributed nodes with the help of Yarn. Yarn can dynamically allocate

resources to applications on demands. Comparing to the pure combination of MapReduce

application and DFS, it can utilize the resources and application performance. Yarn default

scheduler processes jobs in First In First Out (FIFO) policy. The global ResourceManager is

responsible for taking jobs submitted by users, scheduling these jobs, and allocating

resources to them. In each node, there is a NodeManager installed monitoring and reporting

the current resources available to the global ResourceManager to assign the resources to

7

each application. NodeManager also takes control of Resource Containers The

ApplicationManager is responsible for negotiating resources for each submitted tasks to

ensure utilizing the tasks.

While Hadoop MapReduce focusing on the processing of big data, HDFS takes care of the

data storage. A diagram of the HDFS architecture has been shown in Figure 2.1. HDFS

consists of NameNode and DataNode where NameNode manages the name, location, the

permission of each block of a dataset and DataNode stores replication of data blocks in

memory and process I/O operations [36]. HDFS provides reliable fault tolerance ability by 2

policies, replication and checkpoint recovery. Since HDFS works on multiple nodes, the data

could be replicated anywhere on DataNode within the cluster. With the help of the

NameNode, retrieving the data could be done e�ciently. Using checkpoint recovery help to

improve the fault tolerance by rolling back the last saved synchronization point and restart

all transactions if a failure occurs.

Figure 2.1: The HDFS Architecture

8

In summary, the optimized hardware and choice of frameworks can signi�cantly reduce some

of the challenges of Big Data. The Hadoop ecosystem provides the ability to integrate the

distributed computation resources and storage resources to allow users processing and

storing a large volume of data. The combination of the MapReduce programming model and

Distributed File System (DFS) will make signi�cantly huge improvements in terms of

performance. An analytical study [33] compared di�erent major DFSs and concludes that

MapReduce is the perfect framework to apply to DFSs to maintain the performance and

satisfy the requirements.

2.2.4 Spark

Hadoop MapReduce is not the only MapReduce paradigm, there are many implementations

of MapReduce in the market holding di�erent purposes. Among all of them, Spark is famous

for its processing speed. While the Hadoop MapReduce reads in �les as stream and stores

each record in the result �le after reduce, Spark uses in-memory processing to increase the

speed. A very important concept in Spark is Resilient Distributed Dataset (RDD) which is

an immutable and fault-tolerant collection of elements [29]. These RDDs are created when

loading the �les from the DFS. Users have options to persist them in memory. Since the

RDDs are immutable, in the later releases, Spark introduced DataFrame API which allows

users to perform aggregations, joins, and other relational operations. The best feature of

DataFrame is that it supports schema inference. The data lives within the DataFrame is

almost equivalent to a relational table. Thanks to this feature, there is no need to use

Java/Scala serialization when writing the data to disk (or distribute on clusters) as Spark in

nature knows the schema. Moreover, when the user de�nes the mapper and reducer

functions, no execution occurs until the user calls an output operation. This is known as the

logical plan.

Figure 2.2: The Work�ow of Catalyst Optimizer

SparkSQL is a framework associated with DataFrame API. It supports multiple data sources

as input. It also supports user-de�ned types as semi-structured data. Therefore, when

9

loading the data into memory, it will automatically deserialize to Java/Scala objects. A very

important feature in SparkSQL is the Catalyst Optimizer [8]. The Catalyst Optimizer is

designed for tackling di�erent optimization tasks in Big Data. The implementation of

Catalyst Optimizer is based on Tree data structure. The nodes in the tree can be

manipulated by rules which are the rule. Rules are nothing but functions to transform the

input tree to another output tree and �nally to an RDD. As Figure 2.2, the Optimizer starts

to perform logical optimization �rst after resolving the logical plan. This is done by analysis

rules to determine which operations to perform �rst when having multiple

transforms/actions. After this phase is done, it takes the optimized logical plan to generate

one or more physical plans. Then Spark Engine will evaluate these physical plans against the

cost model. �nally, the most optimized plan is selected and used for execution [8].

SparkSQL reduces latency by using in-memory caching and query optimization.

SparkStreaming is a scalable fault-tolerant streaming processing tools also works for batch

workloads. SparkStreaming will receive real-time data from di�erent sources and transfer the

processed data into di�erent storage technologies such as database, or live dashboard. The

high-level abstraction of SparkStreaming is Discretized Stream which is known as Dstream

object in Scala [31]. The major aspects of SparkStreaming are fast recovery from failures,

better load balancing and resource usage. More importantly, it supports interactive queries

between streaming data and static datasets. The use of SparkStreaming will help to achieve

near-real-time analysis for big data.

While both Hadoop MapReduce and spark are designed for big data processing. However,

their use cases are di�erent in many ways. Spark supports in-memory processing and linear

processing which means there is no need to load the data in every time to perform a query.

It is especially good for near real-time processing when more hardware is available. However,

Hadoop MapReduce is designed for more general purpose. A comparison conducted came

out a conclusion that Spark is the framework for processing a large number of data after

considering various algorithms[35] because of in-memory processing. When processing large

scale of data from a di�erent resource, the performance of Hadoop MapReduce is observed

for ine�cient in the analysis.

10

2.3 Previous Work

There are several applications which focusing on streaming data analysis. Although they

have applied in di�erent areas, some design techniques worth referencing. When designing

the streaming data analysis architecture, there are two major challenges need to put into

consideration. The main challenges in the storage layer are the capability of storing a large

volume of data, data loss, and consistency. A proper designed DFS like HDFS could resolve

the above challenges together with distributed infrastructure. From the processing layer

perspective, latency, scalability and fault-tolerance are primary requirements.

2.3.1 A real-time tra�c data analysis

A similar application of big data real-time streaming analysis in tra�c data area [21]. In

these projects, the authors emphasized the velocity of Big Data. The data source is

collected from various tra�c sensors and are preprocessed. There are several phases involved

in this architecture.

• Ingestion and aggregations Apache Flume is chosen as the technology to ingest the

data from di�erent sources. The data source is from GPS data, from taxi and road

weather data, from weather stations and then ingested and forwarded to Spark for

preprocessing. At the same time, data are stored as a raw �le in HDFS.

• Real-time analysis In this phase, the tra�c �ow indicator values will be calculated in

real-time with the input given as GPS event. The main operations are based on

Sparks's map, reduce, and �lter. The results are also stored in HDFS.

• Periodic batch analysis There are also batch analysis carried out periodically. This is

executed separately in a child process so that the error resiliency could be improved.

The latency results higher when using Hive over Impala.

• Archiving data The data then is archived to Impala data tables.

The main latencies in this project are accumulated in preprocessing, Impala table updating,

query execution, and Ingestion. The main reasons for these latencies including the

con�guration of the Messaging system, I/O performance, and network resource. Our project

can inspire from this project by optimizing the I/O performance. This can be archived by

choosing the di�erent size of partitions of the raw �le according to the requirements. Since

our project will be running on the cloud environment, more enhanced computing resources

will be available. Moreover, this project has proved that HDFS is a perfect choice of storage

technologies for our project. However, it remains doubtful if it is suitable in terms of

methodologies of the ingestion phase because we don't have a large volume of streaming

data.

11

2.3.2 High speed log streams generated from web

As the development of web technologies, there are always valuable insights in logs of

web-based applications. These logs will help to �nd usage patterns, potential failures, and so

on. This project proposed architecture for high-speed web log analysis [3]. The overall

architecture consists of a Kafka Server for accessing weblogs, SparkStreaming for processing

the incoming logs in memory and then output the results to storage places. The most

critical part of this project is the usage of Kafka. As the velocity can be fully controlled by

using a message queue, which is very similar to our project goal, Kafka is an ideal message

tooling. Moreover, Kafka provides large scalability by distributing messages on di�erent

machines. It also has a great mechanism for preventing data loss by using replicated and

persistent storage [7]. The results of the projects also proved Kafka is the most suitable tool

for message queue and satisfy our requirements. The details about the usage of message

queue will be introduced in the next chapter.

2.4 Summary

This chapter reviews the possible technologies to build a real-time analysis system to reduce

Decision Latency. The comparison between Spark and Hadoop MapReduce suggests that

Spark is more suitable for this project because of the in-memory processing. HDFS have

better performance in terms of storing a large volume of data. However, it is schema-less. It

can work with Spark and make use of Spark-SQL to set the schema of the data manually

while maintaining the e�ciency of processing. The review of the 2 examples of similar

architectures inspired the design of this project. Kafka works as a messaging system can be

used to simulate the real-time trading records and HDFS can be used to store the historical

data with large volumes.

12

3 Design and Implementation

This chapter will present the methodologies of solution design, a detailed introduction of the

proposed architecture, and work�ow process. There are many types of streaming data. The

data source could be from sensors on IoT devices, service logs, or even �nancial data. The

common nature of the streaming data is that they are time-series data. With this being

introduced, the proposed architecture will focus on �nancial trading data and perform a

real-time calculation of volatility. As it has discussed in the previous chapter, the main

challenges in for streaming data analytics occurs to the storage layer and processing layer.

Therefore, this project aims to design an architecture using available technologies to exam

the latencies and where they might happen. This project also highlighted how cloud

environments can impact on latency.

3.1 Data Source

3.1.1 Data Collection

Historical stock prices are extremely valuable. It re�ects the performance of the company in

the past. Such data usually not available for free or only available for a limited period of

times. The maximize the data volume, this project uses the intraday stock prices with

1-minute bar. The historical stock price provider is IEXCloud [16]. This platform o�ers a

free plan with a limited number of request. The APIs available for intraday is designed to

request the minute �le on the current day. However, it is possible to con�gure to get the

historical data if parsing a speci�c date in the request body. Therefore, the logic is for a

particular stock, keep requesting for the records on previous day until there is no record

available. The more historical data we have, the more synthesis data we can generate.

IEXCloud also provides other APIs for market indexes, cryptocurrencies, options and so on.

However, due to the limited number of requests, another open-source platform needs to be

used for this project.

Alpha Vintage [34], is a provider for real-time and historical data on stocks, forex, and

cryptocurrencies. However, this platform does not support historical data in 1 minute for a

13

relatively long time. Some tests conducted using this platform indicates that Alpha Vintage

will provide historical data for 1-minute stock prices up to a week. This will not satisfy the

requirement of using big data. Therefore, the combined usage of the above 2 is

essential.

3.1.2 Data Fusion

Using IEXCloud allows collecting historical data for the past 1 years. However, the data

collected can not satisfy the requirement of Big Data because the volume is not large

enough. The nature of the stock trading data is time-series data, data is in series of

particular periods or intervals. Trading data as such series has the property of discreteness.

The E�cient Market Hypothesis indicates that the history of a stock price can be fully

re�ected in current prices and if any new information about the stock, the market will always

respond [11]. Given these two properties, a valid assumption can be made that current price

can also have an impact on the expected future prices. However, there remain uncertainties

brought by unexpected events.

Figure 3.1: S&P 500 index for the past 6 months

14

The above diagram 3.1 shows the index prices changing over the past 6 months where the

y-axis is the price and x-axis is the time. S&P 500 indicates the stock performance of the

large 500 companies listed in the US stock exchange. This is some way can present an

overall picture of the market. As mentioned before in the EMH, the market will respond

with the information about the stock. Due to the global pandemic happened in March 2020,

the index drastically decreased. Later in early April, the US government announced the

Quantitative Easing(QE) to save the US stock market. Then the indexes went up to re�ect

such e�ort made by the government.

From the diagram 3.1, it can also be concluded that the change of the stock prices depends

very much on the previous state. Therefore, the change of price is following the Markov

chain where the Markov chain describes the stochastic process of changing.

Geometric Brownian Motion

Geometric Brownian Motion model is a stochastic model with continuous time, where the

random variable follows the Brownian motion [4]. The stock prices also have a similarity

with the Markov process which is also known as the Wiener Process. Traditional Brownian

Motion describes the random motion of a part in a �uid. The mathematical properties of

the stochastic process in linear dimension can be de�ned by Geometric Brownian Motion.

The stock prices behave similarly to the stochastic process in continuous time where they

both have long term trend and short term �uctuation. The study [4] shows that using

Geometric Brownian Motion can have a reliable prediction of a short term with Mean

Absolute Percentage Error (MAPE) less than 20%.

There are 2 components in the Geometric Brownian Motion model which are Drift and

di�usion. 2 metrics are important for this model which are the mean and standard deviation

of the return. The return of the stock prices at time k is given by the following equation:

rk =
Sk − Sk−1

Sk−1
(1)

Where S is the price of the stock.

The mean µ of the return can be calculated by summing of the return within the historical

range divided by the total number of data points.

µ =
1

|k |
∗
∑

rk (2)

The mean or the expected value can be used in the drift function to re�ect the longer-term

trend. If the mean is negative, it indicates the return is negative on average within the

15

historical period. When the average return is negative, it suggests that there will be a

loss.

The positivity of the mean determines the if the stock price goes up or down. However, the

stocks prices never grow smoothly. Standard deviation will help to incorporate random

shocks. Standard deviation determines the magnitude of the movement. The equation of

standard deviation σ is given as:

σ =

√
1

|k |
∗
∑

(rk − µ)2 (3)

With the mean and standard deviation being introduced, the drift function is de�ned as

follow:

driftk = µ− 1

2
σ2 (4)

Since the drift function (4) contains only µ and σ, this function is constant. The value

determines if the stock prices is going to increase from a longer-term perspective. If not

applying random shock to the series, the series will change smoothly. Recall the Markov

process of the stock prices indicates that the current state is impacted by the previous state.

Therefore, to use the drift can be used to determine the next state. Given the previous stock

price at time k-1, to calculate the price at k :

Sk = Sk−1 ∗ eµ− 1
2σ

2

(5)

Di�usion can be used to re�ects shorter-term �uctuations. such �uctuation normally is

introduced by random shock. Recall we discussed previously, the market will always respond

to the news. Therefore, the curve cannot be smooth. It is changing almost every time.

However, di�erent random event may apply di�erent scale of impact on the stock price. In

the di�usion function, the standard deviation σ is used to control the magnitude of the

�uctuation in a constant range.

diffusionk = σ ∗ zk (6)

where z is the e�ectiveness of the random shock at time k Since the drift function is

constant, the di�usion process will help to simulate the trend under di�erent scenarios by

applying di�erent scale of random shocks. In summary, to model the stock price at time k

16

given the value at k-1, adding di�usion term to function (5) gives:

Sk = Sk−1 ∗ e(µ− 1
2σ

2+σ∗zk) (7)

The above equations allows to make prediction for the next data point. If to predict of the

stock price for the next 4 times, the function is given by:

Sk+4 = Sk ∗e(µ− 1
2σ

2+σ∗zk)∗e(µ− 1
2σ

2+σ∗zk+1)∗e(µ− 1
2σ

2+σ∗zk+2)∗e(µ− 1
2σ

2+σ∗zk+3) (8)

the above function can also be generalized to make the prediction of the stock price at time

k given the start price S0 :

Sk = S0 ∗
k∏

i=1

e(µ− 1
2∗σ

2+σ∗zi) (9)

Notably, the drift term is constant and each time the di�usion updated by multiplying its

previous value. Therefore, function (9) can be rewritten as:

Sk = S0 ∗ e((µ− 1
2∗σ

2)∗k+σ∗
∑k

i=1 zi) (10)

The �nal function 10 will be used to generate synthetic series. The stochastic process then

can be simulated by Geometric Brownian Motion. The Geometric Brownian Motion does

not guarantee the mean value of the generated series remaining the same as the original

series because of the random shock. In another word, the longer-term trend of the

generating series can be di�erent from the original series. Although the theoretical value of

the mean should be 0 in an in�nite amount of time, the mean of generated series can still be

greater than or less than 0. This is because it is impossible to have an in�nite number of

data points.

In more general scenarios, Geometric Brownian Motion can also be used to predict the

future changes of the stock prices. This is based on EMH where the past prices are already

interpolated. The stock prices changing is a Markov process. Therefore, the prediction can

represent the future changes at some level based on the assumptions of EMH and Markov

process.

17

3.2 Simulate Real-Time Data Streams: Ingestion Plat-

form

3.2.1 Overview

Realtime Streaming data is another important aspect of this project. Realtime is the

problem that needs to be resolved which is related to the velocity of the big data. When

real-time trading data arrive in the system, the system also has to be able to analyze the

volatility and risk of real-time. This component is responsible to create real-time data

streams that can be con�gured in terms of the velocity and data source. This a Spring boot

web application that integrates with Kafka. It can collect the data source in various format

and from various sites. There are 3 endpoints available at the moment.

1. Retrieve Data GET /retrieveData/symbol/function/timeInterval

This allows retrieving the trading records for a speci�c symbol in the given time

interval in JSON format. Functions are available for TIME_SERIES_INTRADAY,

TIME_SERIES_DAILY, TIME_SERIES_WEEKLY, and TIME_SERIES_MONTHLY.The

available options for time interval are 1 minute, 5 minutes, 15 minutes, 30 minutes,

and 60 minutes when TIME_SERIES_INTRADAY.

2. Download File GET /retrieveData/symbol/function/timeInterval/download

The path variables are almost the same except the download at the very back. This

will download the record as a CSV �le. Then the �le will be scanned line by line. It

will also send each line as a message through Kafka.

3. check �les GET /�le/symbol

This will allow getting all the �les for a particular symbol. This is not the main

endpoint but an endpoint for debugging purpose.

4. check �les GET /�le/symbol/date

This will allow getting all the �les for a particular symbol on the user-de�ned date.

This is not the main endpoint but an endpoint for debugging purpose.

3.2.2 Kafka

delivering real-time trading record. A messaging system is a producer-consumer model where

the producer sends the message to the consumer and the consumer receives the message

from the producer. Kafka as an open-source messaging system has been used a lot in big

data architecture. It is designed to be fast, scalable, and durable [7].

18

Figure 3.2: Kafka

The producer will publish a message to one or more Kafka topics. The consumer will be able

to receive the message if it subscribes the same Kafka topic. Using a Queue data structure

allows the message being processed sequentially. A Kafka topic lives with Kafka broker

together with the partition id. Kafka is also a distributed architecture that can supports

message replication among the nodes in the cluster. This keeps the availability of the data.

Based on the above features, Kafka can help to achieve delivering the trading record in

real-time.

3.2.3 Implementation

Setup Kafka Cluster

The features of Kafka have been introduced previously. To set up a Kafka Cluster on a local

machine, the Docker container was used. Using the Docker container allows creating

isolated virtual environments. There is no requirement of having multiple physical machines

if using a swarm of Docker engines. The virtual instances also included a Zookeeper instance

19

which manages the Kafka broker. The message logs are partitioned within the virtual Kafka

instances and mounted into the host machine. The port number is also exposed to the host

machine to make it accessible from outside of the Docker container. Docker-compose is a

YAML �le that contains the con�gurations about the each Docker containers including base

image, dependencies, network con�gurations and interaction between the container and the

host machine.

Migrating Kafka to Google PubSub

Google PubSub is another messaging system developed by Google. It follows almost the

same design of Kafka but provides large storage capability in the native cloud environment.

It also provides a UI to allow tracking messages. These are huge advantages compare to

local Kafka in a Docker container. Thus, Kafka is replaced by Google PubSub.

Web Service

Spring Boot is a popular web application development framework. It is a Java framework

that allows developers to focus on the business logic without worrying too much on the

other details. The most important concept in Spring boot is Aspect-Oriented Programming

(AOP) and Inversion Of Control (IOC). AOP allows modularizing the functions that are

being used multiple points of an application. This is also known as cross-cutting concerns

[1]. The common functionalities are de�ned in one place when using AOP. However, these

functionalities can be adjusted without modifying the class to be used in the new features.

In this application, there are 3 modules created and implemented. FileManager is responsible

for managing �les in the folder including scan �le records. IngestionManager is responsible

for retrieving the data from Datasource and download the data in either CSV or JSON

format. The messaging module implemented the Kafka API and is responsible for sending

and receiving the message.

When there is a GET request received by the download endpoint managed by

IngestionManager, Kafka will send a message containing the �le path, symbol name, and

function when this the download is completed. IngestionManager will also generate a

timestamp that is unique to every downloaded �le. The message will be received by the web

application itself. Kafka provides Java APIs which have call back functions to check if a

message has been sent successfully. A log message will be printed either onSuccess or

onFailure.

Listing 3.1: Kafka message sender callback

future.addCallback(new ListenableFutureCallback<>() {

@Override

public void onFailure(Throwable throwable) {

20

LOGGER.error("Unable to send message: [{}]",

throwable.getMessage());

}

@Override

public void onSuccess(String message) {

LOGGER.info("Sent message [{}]", message);

}

});

The message body contains the symbol, the highest price, the lowest price, opening price,

closing price and the trading volume; After the message is successfully sent, FileManager will

start working on reading the �le and extracting the records. FileManager Interface will

manage every �le in every folder as if a data pool manager. When the message is received

by the FileManager, it will use the �le path contained in the message payload to read the

�le. Then, the content of the �le will be saved in memory as a HashMap. Typically, a �le of

the 1-minute bar in a trading day will only have up to 480 trading records. This is tolerant

for JVM to load the entire �le. The HashMap will be parsed to message sender again. This

time, each Entry in the HashMap will be sent as a message in user-de�ned frequency. To

achieve this, it implemented Java Runnable interface to control the frequency. An integer

value is passed into the application as Springboot properties [2]. This thread will sleep for

the interval passed in. Also, the return of the stock price will be calculated and saved into

the In�uxDB.

Listing 3.2: Thread sleeping time management

try {

LOGGER.info("The next message will be sent after [{}]

milliseconds",getSleepTime(timeInterval));

Thread.sleep(getSleepTime(timeInterval));

} catch (InterruptedException e) {

LOGGER.error("Thread interrupted");

}

If no value parsed into the application, it will use the frequency in the �le. If the requested

�le is 1 minute, the message will be sent every minute. The message will be received by the

Spark App to perform real-time analysis. The downloaded �les will also be categorized by

their symbol since the symbol is unique for every stock.

This service is one of the core components of the entire architecture. It also has integrated

with Swagger UI to document the endpoints that are currently available. Data Ingestion is

21

very important to satisfy the variety and the velocity requirement of big data. The Ingestion

Platform itself is highly con�gurable in terms of data sources, stock markets, as well as the

velocity of simulating the real-time data. The platform can be used as a stress test tooling

for big data applications by adjusting the frequency of sending messages.

3.3 Real Time Processing: Spark App

The real-time analysis application was chosen to use Apache Spark. As it has been

introduced in the previous chapter, the benchmark results of Spark and Hadoop MapReduce

indicates Spark has better performance when processing the real-time data stream. Due to

the feature of in-memory processing, it shows faster in terms of processing. Spark Streaming

is another reason for this framework being used. By using this, the application can consume

the messages sent by Kafka. [31].

To use Spark in the application, the spark context has to be con�gured. The con�guration

includes spark checkpoint, Google Cloud credentials, Application name, and the number of

thread to be used int local machine. Spark context also allows choose con�guration at

runtime depends on di�erent requirements [8]. In this application, there are 2 con�gurations

required. The �rst one is for spark streaming context. When running spark locally, the

checkpoint directory is set to a local folder. When running spark on the cloud, this is set to

a folder in Google Cloud Storage (GCS). The application is set to local[*] which means as

many as worker threads as logical cores available [31]. Another con�guration is the Google

Cloud Storage con�guration for loading the historical �le. Since the Google Cloud Storage

backed up GFS, providing the link starting with gs:// link to the �le location can load the

�le. The Hadoop Distributed File System is also implemented based on GFS. Therefore, it is

also important to add the Hadoop con�guration when loading the �le from GCS. After the

SparkStreaming context has been created, it will be connected to the messaging system to

consume the message. Spark streaming provides Dstream which is a high-level abstraction

of Discretized Stream. When the input stream is received by Spark Streaming, it will be

divided into small batches and then processed by Spark Engine.

3.3.1 Receiving the Messages

A DStream contains a series of Resilient Distributed Datasets (RDD). The features of RDDs

have been introduced in the previous chapter. Notably, there are some operations can be

applied to a Dstream object. The operations can be categorized into Transformations and

Actions. These operations often have no impact on RDDs since RDDs are immutable. Map

is one of the Transformations. When mapping a Dstream, it creates a new Dstream of

di�erent objects. The map function takes the original RDD type as a parameter and returns

the target RDD type. Another function in Transformations is Filter. The �lter function also

22

takes in the original RDD type and return a boolean variable. This function is applied when

�ltering for the resulting RDDs. In this application, the source of the Dstream is from the

Ingestion Platform in the forms of the message. In the map function, a deserialization

method is de�ned to convert the input stream of String type to a Java Object. In the code,

it de�ned a class GCSRecord which contains all �elds of the trading records. Spark can

apply the map function in small batches. Figure 3.3 illustrates the process of applying map

function to the incoming stream. The transformed Dstream will be used to perform

real-time data analysis.

Figure 3.3: Mapping Dstream

In terms of the Actions operations, Action is a method to access the actual data in an RDD.

Action operations are suitable for the small size of data [31]. The incoming dataset

compared to the historical data is extremely small. Therefore, some Action operations can

be applied. Reduce is one of the most important and commonly used one which is used to

perform aggregations. The reduce function has to input parameters which are the RDDs and

return the aggregated results. The reduce function was used to �nd the return of the stock

prices. Recall the equation for calculating the return stated in equation (1), it requires 2

Figure 3.4: Reduced Dstream

parameters. The current stock price and the previous stock price. The �gure 3.4 shows the

work�ow of aggregations over previous 2 GSCRecords to calculate the return.

SparkStreaming provides a sliding window API which can be used. The window length of 1.5

minutes was de�ned. The reduce function will aggregate all of the RDDs within this batch

interval. In the con�guration of this project, the number of RDDs within this window should

23

be 2. After the return RDD is calculated, each RDD will be delivered into the In�uxDB

instance. The timestamp is created at the time of which the In�uxPoint object is

created.

3.3.2 Processing the Data

This project aims to calculate the volatility in real-time. Therefore, the statistics calculated

include mean and standard deviation for both opening prices and closing prices and an

additional �eld using mean divided by the standard deviation. When a new message coming

in, it will use the historical data into the memory and append the new data at the end of the

historical datasets. Since RDDs are immutable, Spark provides another API called DataSet

[8]. The datasets object allows joining, aggregation, and other relational operations. RDDs

are operated with functional programming constructs that include and expand based on map

and reduce. SparkSQL provides APIs for aggregation including mean and standard deviation.

The RDDs in Dstream processed sequentially. Each RDD will be used to created a new

DataSet and union with the historical Dataset. Then calculate the average and standard

deviation at the current timestamp.

Listing 3.3: Aggregation in real-time

Dataset<GCSRecord> tempDataSet =

context.createDataset(gcsRecordJavaRDD.rdd(), gcsRecordEncoder);

dataset = dataset.union(tempDataSet);

double avgOpenReturn = dataset.agg(functions.avg("openReturn"));

double stdOpenReturn = dataset.agg(functions.stddev("openReturn"))

The historical DataSet was used repeatedly. Therefore, it could be cached into the memory

for saving loading times. This transformation also creates a new Dstream. The new

Dstream was connected by a sink to In�uxDB and store the calculated RDDs there. Figure

3.5 illustrates the overall �ow of Dstream. Reactivein�ux [28] was used as SparkStreaming

In�uxDB connector. It is a Non-blocking In�uxDB driver supported by Spark.

24

Figure 3.5: Overall Flow

3.3.3 Deploy to Dataproc

Dataproc [22] is developed by Google which provides a Hadoop or Spark Clusters in the

cloud. It allows dynamical resources allocation for better performance. For this purpose, the

Dataproc cluster was created with 1 master node and 3 worker nodes. The Spark job can be

submitted through the gcloud command line. A Spark job is considered as an executable jar

where all the classes, methods, and dependencies are packaged. Without further

programmatic work, the methods of packaging have to be con�gured. Maven was used as

dependency management as well as package management. Since Spark is written in Scala, it

should compile Scala and bundle into the jar. The submission of a Spark job included the

executable jar, a cluster name, and the Google Cloud credentials.

3.4 Result Persistence: In�uxDB

In�uxDB [17] is an open-source time-series database. In�uxDB has been used widely for log

monitoring and other time series related applications. In�ux data also provides visualization

utilities. The data visualization tool also provided by In�ux data has the functionalities of

creating real-time visualization dashboard. In�uxDB provides SQL like queries so that users

can query the database without requirement of learning new syntax. In�uxDB is also

supported for distributed storage and strong performance. Therefore, it is a perfect

persistent service in this project.

To deploy In�uxDB to Google cloud, a Kubernetes engine instance was setup with Ubuntu

18.4 Operating System. In�uxDB can be installed and con�gured via command line. After

installation, the instance has to be accessible from other machines. So, the next step was to

expose the port number together with external IP addresses.

In the Ingestion Platform, the Java client of In�uxDB was added as a maven dependency.

When writing a record to the database, the connection was established programmatically. In

contrast to the Ingestion Platform, the In�uxDB connection is handled by ReactiaveIn�ux in

Spark App. The connection information is con�gured in the context.

25

Listing 3.4: Using Java client to write data into In�uxDB

public void saveToInflux(HashMap<String,String> record){

InfluxDB client = InfluxDBFactory.connect(connectionURL);

String databaseName = "final_year_project";

String retentionPolicyName = "one_day_only";

client.query(new Query("CREATE RETENTION POLICY " + retentionPolicyName

+ " ON " + databaseName + " DURATION 1d REPLICATION 1 DEFAULT"));

client.setRetentionPolicy(retentionPolicyName);

client.setDatabase("final_year_project");

Point point = Point.measurement("time_series_return")

.fields(new HashMap<>(record)).time(System.currentTimeMillis(),

TimeUnit.MILLISECONDS)

.build();

LOGGER.info("writing to influx db");

client.write(point);

}

Listing 3.5: Using ReactiaveIn�ux to write stream in to In�uxDB

JavaDStream<JavaPoint> InfluxReturnStream = returnStream.map(message

->tradingRecord.getInfluxPoint(message,"return"));

sparkInflux.saveToInflux(InfluxReturnStream);

3.5 Summary

In this chapter, the core components and their implementations have been introduced.

Figure 3.6 provides an overview of the integrated architecture of the whole design. The core

components In�uxDB, Ingestion Platform, the method for generating synthetic data, and

Spark App have been detailed explained regarding the implementations. The Ingestion

Platform is responsible for collecting the trading data from various sources. The calculated

return of the prices will be stored into In�uxDB. At the same time, it will also send the

records through the messaging system. The messages are then received by the Spark App

and perform real-time analysis. The Spark App also interacts with GCS to read the historical

�les into the memory. Synthetic Data Generation Utils is the implementation of Geometric

Brownian Motion. The generating series are also stored in GCS. An actual use case and

performance evaluation will be discussed in the next chapter.

26

Figure 3.6: Integrated Architecture

27

4 Case Study: J.P. Morgan Stock

Price Volatility

In this chapter, it will focus on the performance of the architecture on an actual use case.

This chapter is divided into background introduction, work�ow of the architecture, and the

evaluation of the architecture in terms of the latency.

4.1 Background

J.P.Morgan Chase & Co is an American investment bank. It is the largest bank in the

United States [18]. Its main business include investment bank and �nancial services, assets

management. As one of the largest banks in the market, it represents the banking and

�nancial services industry at some level. The stock prices of J.P.Morgan also re�ects the

con�dence of the traders in the stock market. Therefore, this is a typical example for to be

used for analysis of the volatility.

The J.P.Morgan historical stock prices dataset is collected from IEXCloud [16] for the past 1

year dated back to 1st April 2019. The collected dataset contains the following �eld:

• date, the timestamp of the data

• high, the highest price at the current timestamp

• low, the lowest price at the current timestamp

• open, the opening price at the current timestamp

• close, the closing price at the current timestamp

• volume, the trading volume at the current timestamp

• average, the average price at the current timestamp

To be more speci�c about each category of the price, in diagram 4.1 illustrates the opening

price, closing price, the highest price, and the lowest price. When the opening price is greater

28

than the closing, it means the the return at the current timestamp is negative. In contrast,

the return is positive. This is important to understand when calculate the return.

Figure 4.1: The Candlestick Diagram

4.2 Data Fusion

The project uses the historical stock prices from JP Morgan Chase as an example retrieved

from IEXCloud. The table 4.1 gives an overview of the raw data collected from IEXCloud.

The table is indexed by timestamp and parsed into DataFrame using Pandas [24]. The prices

Table 4.1: Historical Price Overview

that are usually used for analysis are opening and closing prices. A visualization for both

opening series and closing series is created. The diagram 4.2 is the visualization of historical

prices in past one year. The x-axis is the time and y-axis shows the open price and the close

price. The diagram 4.2 is created by Plotly [27]. This Library allows to create interactive

29

visualizations in python. Recall that the stock price changing is a stochastic process.

Therefore, the Geometric Brownian Motion model is used to generate the synthetic data

Although the general trend of this stock prices is growing, it is not growing smoothly. It is

Figure 4.2: JPM historical

observable that the prices are �uctuating constantly. An initial analysis of the series

indicates that the di�usion term could be relatively large in the entire dataset. To calculate

the drift term and di�usion term, it must require the descriptive statistics especially mean

and standard deviation.

The �rst step is to calculate the return of both opening series and closing series. Recall the

function (1) for calculating the return, it uses the prices between 2 timestamps to calculate

the return. The build in functions in pandas [24] has the ability to calculate the return as

well as moving average.

30

Figure 4.3: Distribution of mean

Using the mean and standard deviation, we can use equation (4) and equation (6) to get

drift and di�usion. The distribution of the return of opening is showing in �gure 4.3. The

majority of the return values are distributed around 0. Therefore, the mean should be close

to 0. Since the prices changed with large amplitude, the standard deviation should be much

larger than mean.

The descriptive statistics are important because they will be used in Drift(4) and Di�usion

(6). The table shows that the mean of the return on open price and close price are both

-0.000002 whereas the standard deviation are 0.001304 and 0.001295 respectively. This

means in a longer-term, there is likely to have a loss.

Table 4.2: Descriptive Statistics of Opening and Closing Prices

31

We use the open price as an example and to show the impact of random shock on the stock

price using Geometric Brownian Motion. We use function 9 to generate the 200 simulations

over the next 500 trading minutes. For each of the simulations, the drifts and di�usions for

the next 500 trading minutes were calculated.

Figure 4.4: Geometric Brownian Motion simulations

32

The �gure 4.3 shows the stock prices will not necessarily fall due to the e�ect of the random

shock. It can have various behaviours due to random shock. Using this technique, we

generate a large �le containing the open price and the close price and the return for both.

There is a total number of 20 million data points generated using this technique. Due to the

size of the dataset is too large, pandas will slow down the speed in processing the data at

this scale. Therefore, we use pySpark to process it. Again, the �rst step is to calculate the

Table 4.3: Descriptive Statistics of Large Dataset

descriptive statistics of the return. PySpark also provides build-in functions to achieve this.

Using PySpark allows processing a large volume of data in a relatively short time. It is

observable that the mean values slightly changed while the standard deviation remained the

same in table 4.3. This is because of the e�ect of random shock. This �le was then

partitioned into small chunks and stored in Google Cloud Storage.

4.3 File Partition

The generated �le size is 2.05GB. The �le is partitioned and stored in Google Cloud Storage.

The partition number depends very much on the number of cores. The default number of

partitions is 200 by Spark. When loading the �les, Spark will only keep the memory utilized.

If the memory is not su�cient for the entire �le, Spark will only read the partitions that

within the allowance of the memory and spill the rest of the partitions on the disk.

According to Spark documentation, the best practices for the number of partitions. If an

RDD has too many partitions, the task scheduler will take more than the execution time to

schedule the tasks. This will signi�cantly increase the latency in actual real-time processing.

If the number of partitions is to less, it will result in some of the cores in the idle state hence

resulting in less concurrency. The number of partitions is initially set to 22 after the �le is

generated. When reading the �le through the spark application, the �le gets repartitioned.

In local environments, the computer has 4 cores and �les are partitioned into 8 chunks.

When performing the calculation, it takes 2 minutes locally. However, the latency could be

33

reduced drastically using cluster on the cloud. The Dataproc was used in order to speed up

the calculation with 3 nodes and each node has 4 cores. The �le then was partitioned into

24 chunks. The execution time was much faster. The speed of computation can be

determined by hardware as well as the number of partitions. The goal is to utilize the cores

and maximize the parallelism in execution.

4.4 Data Flow

With the historical data stored in GCS, the new incoming data are ingested from Alpha

Vintage. In this case study, we use the one minute stock price of J.P. Morgan Chase & Co.

In the Ingestion Platform, the endpoint to download the �le was used. When this endpoint

gets queried, it will request the target �le from Alpha Vintage. The function used is

TIME_SERIES_INTRADAY with 1 minute interval and the symbol for J.P. Morgan Chase

& Co. is JPM. When the �le is downloaded, as explained in the previous chapter, the

FileManager will start to read the content of the �le and send them to Message Sender. The

message sender will send the trading records in user de�ned frequency. The default value in

this case was 1 minute. However, during testing, this rate was adjusted to 30 seconds to

test the limit of the system. The results will be discussed later. The trading records are

persist in Google PubSub and and waiting to be polled by the Spark App. There is a topic

created for simulate the trading data �ow in real time. This topic is also subscribed by the

Spark App so that the Spark App has the ability to access the persistent messages.

The Spark App will continuously consume the messages and processing them. The incoming

messages are deserialized into a Java Class. When the Spark App is running, it will load in

the partitions into the memory.

In this project, the means and standard deviations for both open price and close at real time

were calculated. These 2 statistics represents the volatility of the stock price. Volatility

represents the historical �uctuations of the price at the past. The value of this property

changes as new trading records coming in. The reason why volatility is important is because

it is an indicator of the optimism or the fear in the market. This is also important for

assessing the performance of the stock. As in has been introduced in the Geometric

Brownian Motion, the �uctuation (the di�usion term) is directly related to standard

deviation. The magnitude of the volatility depends on the standard deviation (variance) as

well. With higher value of standard deviation, the large magnitude of �uctuation can appear

on the stock price. Traders use volatility to measure the risk of the stock. If the volatility

increase, it increases the chance of mis predicting.

Calculations for big data can be expensive. Especially the aggregation, most of the

aggregation involves iterating whole data. The aggregation functions in Spark provides the

34

capability of calculating mean and standard deviation. There is no inclusion of shu�ing

when using aggregation alone. Recall the diagram 3.5, the RDDs of the historical data will

be used together with incoming record to perform aggregation.

The calculated volatilities at real time are stored in In�uxDB. In in�uxDB, the two measures

was created. The �rst measure is the return of the stock price and the second measure was

created for tracking volatility at real time. The measurements of the volatility and returns

will persist in the database. Since the instance is hosted on cloud, Google provide high

availability for reading and writing data. The con�gurations for In�uxDB for the Ingestion

Platform and the Spark App are di�erent because of the di�erent usage of the In�uxDB. In

the Ingestion Platform, the Java client was created with hardcoded endpoint. In the Spark

App, it uses the connector as the stream will be written directly to In�uxDB.

4.5 Result

The results are evaluated by examining the timestamp of 2 measurements and comparing

the latency. The return traces are populated into the measurement in a �xed rate of 1

minute. The latency is measured by the time di�erence between the return and the

statistical moments. For example, the �rst return record arrived to the database at 25th

March 2020, 17:45:20 and the associated statistical moments arrived at 25th March 2020,

17:45:54. Therefore, there is a 34 seconds latency. The return of which calculated between

the current trading record and the previous data arrived at the database before the new

records coming in. The average time of statistical moments is computed take up to 40

seconds. This has a negative e�ect on decision making when the data are arriving in

1-minute frequency. The screenshot 4.5 of the measurement in the In�uxDB instance hosted

on the Compute Engine. In the screenshot 4.5, the return is computed using the equation 1.

Figure 4.5: The Return of The Time Series

The timestamp uses the system time instead of the original trading time. The reason for not

35

using the original trading time is for the purpose of latency investigation. In the �ow

introduced in Figure 3.5, the return was computed using reduce function. This step involves

shu�ing. However, when the size of the RDD is 2 under the normal circumstance.

Therefore, it is not time-consuming. The MapReduce �ow in the SparkStreaming produces

the results and stored into the In�uxDB.

The return RDD is then used to compute the statistical moments. As it produces a Dstream

of the return RDDs, without the need of collecting the RDDs in the stream, it can then be

used for computing the mean and standard deviation together with the historical dataset.

The computation of mean and standard deviation could be slow as it will aggregate the

20000000 rows of data. The union is a very e�cient operation in Spark. It will only combine

2 partitions without moving any other partitions around. Therefore, the new incoming data

unions with the historical dataset and then the aggregation functions are applied. In �gure

Figure 4.6: Statistical Moments

screenshot 4.6, the measurements for volatility is computed and stored into the database.

Note the �rst record is not the result, the statistical moments of all historical datasets are

calculated on application start. Therefore, when estimating the latency, this record will not

be considered. In average, the trace gets populated on average 40 seconds late than the

arriving of the original data. This means the aggregation time for data takes 40 seconds for

both opening prices and closing prices. There are 2 statistical properties and for two types pf

prices calculated in the total. Therefore, to compute each of them, it takes about 10

seconds in worst case.

The results suggested the system can tolerant with the trading frequency at 1 trade per

minute. In the algorithm trading environment, the trading frequency can be much higher.

Therefore, a more robust system would be required to measure risk in real-time. At the

36

moment, the response time for the system can satisfy the requirement of trading at

1-minute frequency. The parallelism of Spark Engine plays a critical role. This is directly

related to the partition which has been mentioned in previous sections.

4.6 Evaluation

4.6.1 System setup

The system contains a Google PubSub instance, an in�uxDB instance, a Spring boot web

app for ingesting the data from the source, a Spark application for processing the streaming

data, and a Google Cloud Storage for �les storage. The Dataproc cluster provided by Google

running Hadoop to perform Spark jobs execution. To measure the real-time risk for a

speci�c stock price, the �rst step is to collect enough amount of historical dataset. In this

case study, because there was no enough amount of historical dataset available, the

Geometric Brownian Motion technique was used to generate the synthetic data. This

technique uses the mean and standard deviation from sample space to ensure the generate

data complies with the statistical properties of sample data. The Hadoop cluster was setup

containing 3 nodes. Each node has 4 cores and 500 GB of disk size. The con�guration of

this cluster can satisfy all requirements of such a system. Dataproc will allocate the

resources dynamically. The �le partitioner was also con�gured manually to make the best

use of the environments. This is the only place that involves system tuning. For di�erent

cluster con�gurations, the number of partitions is di�erent. For this speci�c case, 24 was

tested to have the best performance.

Due to the limited budget on Google Cloud, the most economical con�guration for the

cluster was chosen as such. Dynamically generating synthetic data and �le partition is not

available for this project. This is considered as further improvements to be made.

4.6.2 Performance

The performance of the system can be evaluated from the computation speed and stability.

These 2 metrics are the key performance indexes of the system as well as the key

objectives.

The speed of computation is evaluated by computing the delay of the statistical moments.

In the screenshots of the databases, it is observed that the average delay is 30 seconds for

means and standard deviations for both opening price return and closing price return. The

system can support trading in 1 minute. The designed big data processing systems that

allow quick retrieval of large items of historical data and allow for high-speed computation.

The performance can be further improved with stronger hardwares and more e�cient

37

approaches of computation resources allocation. In a study, [37] investigated the Spark-GPU

acceleration when running Spark SQL queries. It suggested that for SQL queries, it can be

up to 4.83 times faster.

The most critical component to evaluate the stability of the system is the messaging system.

The proposed components in this architecture are connected by messaging. Messaging is

also an approach to simulate real-time trading. When using PubSub in this project, the

messages are guaranteed to be delivered. Unlike Kafka, PubSub requires manually ACK on

the consumer side. This means any failure message will be persisted and observable until

they are consumed. Apache Bahir is developed as a connector particularly for Google

PubSub and Spark Streaming. It makes use of the manually ACK feature of Google PubSub

to prevent data loss during the message travel.

4.7 Discussion

4.7.1 Data Selection

The historical dataset for J.P.Morgan Chase & Co. only available till 1st of April 2019. The

�le size is not large enough to satisfy the volume in Big Data. Therefore, we had to use

Geometric Brownian Motion to generate synthetic data. The key �nding in the dataset

generated by GBM is that the mean of return is not stable. Since we applied random shock

on the drift, the mean return is determined by the random variable. Thus, each simulation

can have di�erent results. However, the standard deviation remains the same as the

magnitude of change is bounded by the original standard deviation. Therefore, the generated

data can only represent part of the original universe. Based on this fact, the results

computed by the system can only be referenced based on the generated data universe. If

there were more historical datasets available, the result could be more representative.

4.7.2 Technologies reviews

In the literature review section, the main focus was on MapReduce and its open-source

implementations, particularly in Spark and Hadoop. However other open source technologies

were also considered. Recall one of the goals of the project is to produce data stream and

control the speed, the streaming tool was considered as the �rst options. The major

technologies include Apache Spark, Apache Flink, and Apache Storm. The benchmark

results conducted for the above three technologies. The study [13] showed that

SparkStreaming process the new events in a stepwise manner while the other tow is linear.

The causes for this is because of the micro-batching design in SparkStreaming [31].

Although the study concludes that Apache Flink and Apache Storm are more successful in

near real-time processing with lower latency, it is also worth to mention Spark can process

38

data with higher throughput. However, under the low throughput rate such as under 50000

per seconds, there is no di�erence among Storm, Flink, and SparkStreaming. The original

design of this project was to have the capability of handling the data from multiple sources

at the same time. Therefore, it was expected to have a higher throughput rate. The second

reason why SparkStreaming was chosen as the streaming technology is that it is as a part of

the Spark ecosystem that can integrate well enough with other Spark suites such as Spark

SQL.

The Hadoop MapReduce was also mentioned as another MapReduce paradigm. However, it

is impossible to use Hadoop standalone to achieve the object of processing real-time events.

Another consideration for not using Hadoop MapReduce is that it was required to perform

an aggregation over a large volume of Historical datasets frequently. Since in-memory

processing is not supported by Hadoop MapReduce, an extra latency could have been

introduced if not using Spark. The usage of SparkStreaming for this project also proved that

SparkStreaming has the capability of processing the data in near real-time in this case study.

However, the experiment of handling messages from multiple sources have not been

conducted. This is considered as an improvement to be made in future.

In terms of the simulation component, Kafka was initially used for messaging system set up

on the local machine. As it was introduced, the log �les will be stored on disk in di�erent

partitions. However, when having a large volume of incoming messages, the disk overhead

gets large. This is a challenge to storage ability to the local machine. However, when

deploying to Google Cloud, the Kafka cluster requires extra VM instances. Due to the above

considerations, Google PubSub was replaced for native cloud environments with equally well

performance.

4.7.3 Challenges

This project focused on the velocity and volume aspects of big data. With the help of cloud

services, the large volume of data can be stored easily. The velocity is measured by the

latency of computation. During the implementations of the architecture, there are some

challenges faced and worth mentioning. The �rst challenge was encountered during the

deployment of the Ingestion Platform. The Google App Engine uses internal production

server while Spring boot uses tomcat as an embedded server. Normally, when having the

Spring boot running on the server or local machine, it uses Tomcat as the default server. It

will handle the incoming requests from the clients. However, App Engine is a fully managed

platform and allows to scale the application with a minimum amount of con�guration.

There was the compatibility issue with the App Engine and Tomcat server. The workaround

was to remove the Tomcat dependency from Spring boot and use the default servlet

con�guration. Then the application was successfully deployed on App Engine.

39

Another challenge faced was running the parameters for Spark Engine and �le partition. To

achieve the maximum parallelism, it uses all worker nodes available. There were some

experiments conducted to test the speed of processing regarding the number of partitions. It

concluded that around 22 to 24 partitions the Spark Engine has the maximum processing

speed. A problem for applying to reduce function for calculating the return is that when the

messages are failed or delivered lately, the return is calculated incorrectly. This is highly

depending on the stability of the messaging system. There is no feasible solution for these

challenges and this requires future work.

4.7.4 Future Work

The �rst and the most important work is to have a disaster recovery mechanism for

messaging module to ensure the correctness of the return. The messaging module acts like a

middleware that connects the Ingestion Platform and Spark App together. As discussed

previously, if the message module is down or even a message is delivered late, the

computation result is di�erent. Therefore, the message module has to be stable and

continuously deliver the message in user-de�ned frequency.

Another future work is for testing the performance of multi-source processing. The design of

the system has put this requirement into consideration. Therefore, SparkStreaming was

chosen to handle the situation of a high throughput rate. Due to time constraint, there is no

actual performance testing in terms of this aspect.

Finally, the automation process of generating synthetic data is another important future

work. The purpose of generating synthetic data is the volume of the original data is not

large enough to satisfy the requirement of Big Data. However, if for speci�c stock prices, a

large volume of historical datasets is available, the step of generating synthetic data is no

longer required.

4.7.5 The 3Vs: Velocity, Volume, Variety

The Velocity refers to the latency. In this project, the Decision Latency is measured by the

time di�erence between the arrival of return and the computed mean return and standard

deviation return. The latency is brought down to 10 seconds to aggregate over a single

column. This is because the con�guration that utilize the worker nodes. The time spent to

calculate the statistical moments is made up of several components. The �rst one is

aggregating the historical dataset. The aggregation function requires to iterate all rows. If

the number of rows is de�ned as N, the time complexity is O(4N) as it will calculate mean

and standard deviation for both opening and closing prices. The second cause of latency is

that when the application starts, it will also take O(N) time to load the historical datasets.

The union operation can be treated as constant time complexity. Therefore, the total time

40

complexity is O(4N) and can be written as O(N) for computing the statistical moment every

time.

With the help of cloud services, Big Data storage is not an issue anymore. Volume can

easily be resolved by adding more hardwares. Google Cloud Storage is built on top of Google

File System which is easy to scale.

Variety is the aspect that did not get chance to experiment in this case study. The idea of

variety is to investigate if di�erent stock prices have in�uence on each other. Due to the

time constrain, this experiment was not conducted. However, as mentioned above in 4.7.4,

the design of the system has put this into the consideration. SparkStreaming is able receive

the messages from multiple sources. The initial idea was to set the context to each stock

price when it is ingested by Kafka to allow SparkStreaming to process di�erent stock prices

in one spark job. This will potentially a�ect the speed of calculation.

41

5 Conclusion

This paper has contributed to reviewing the suitable technologies to build low latency

decision system. The reviews the latency problem, particularly in High-Frequency Trading

industry, suggested that higher latency can result in decreasing in market quality. This

project aims to simulate a trading environment and perform near-real-time analysis hence to

reduce the latency as much as possible.

This project has tested under the trading frequency of 1 trade per minute, the decision time

can take up to 40 seconds based on 20 million rows of the historical dataset. The users for

such systems is targeted to analysts in the �nancial service industry. This architecture

involves Big Data technologies and aims to solve the challenges of Big Data in terms of

Velocity and Volume. This project answers the questions the response of retrieving large

data in a relatively smaller amount of time. The system also achieves the average

computation time of a single statistical moment of in 10 seconds. The frequency challenges

the system from the computation speed aspect. This trading frequency is lower-bounded by

the computation time. The current system is capable of analyzing the risk of trading in near

real-time and help to decide before the next transaction is made.

In the current implementation, the system can potentially fail if the messaging module is

congested. The default con�guration of the window size is 1.5 minute in SparkStreaming to

allow 2 RDDs to exist at the same time. This can allow calculating the return using the

current price and the previous price. For example, if the messaging module failed to deliver

one message, the RDDs in the de�ned window length will be incorrect and hence the return

is calculated incorrectly.One possible �x can use a load balancer and monitor the healthiness

of the messaging module. When it is discovered o�ine, replace with backup servers.

In future, it may worth investigating the possible approaches to decrease the latency from

the optimization of Logical Execution Plan in Spark MapReduce, dynamically resource

allocation algorithm on the cloud environments (particularly in �le partition), and �nally, the

Spark Engine parameters tuning.

42

6 Appendix

This chapter contains the some of the code snippets and pictures in some of key

components in this architecture.

6.1 A1: Calculate return of stock price

def get_return_stats(df, range_of_time='default'):

df_copy = pd.DataFrame()

for col in df.columns:

if df[col].dtype != 'datetime64[ns]':

df_copy[col] = df[col].pct_change(num)

df_copy[col+'_movingAvg'] = get_moving_average(df_copy[col],num)

return df_copy

6.2 A2: Geometric Brownian Motion

def brownian_motion(df,base_price,num_simulations, size):

#volitility measured by std of return

df is return

mean = df.mean()

variance = df.var()

volitility = df.std()

res = {}

t = np.linspace(0,1,int(size)+1)

for i in range(1,num_simulations):

temp = [k for k in range(size+1)]

temp[0] = base_price

noise = standard_brownian_motion(size)

for j in range(1, int(size+1)):

drift = (mean - 0.5 *variance)*noise

43

diffusion = volitility*noise[j-1]

#print('drift:' + str(drift))

#print('diffusion: '+str(diffusion))

temp[j] = base_price*np.exp(drift + diffusion)

res.update({i:temp})

return res

def standard_brownian_motion(size):

np.random.seed()

dt = 1/size+1

W = np.random.standard_normal(int(size+1))

W = np.cumsum(W)*np.sqrt(dt)

return W

6.3 A3: Calculate return in PySpark

df_open_lag =

df.withColumn('prev_open',func.lag(df['open']).over(Window.orderBy('index')))

df = df_open_lag.withColumn('open_return', (df_open_lag['open'] -

df_open_lag['prev_open']) / df_open_lag['open'])

df_close_lag =

df.withColumn('prev_close',func.lag(df['close']).over(Window.orderBy('index')))

df = df_close_lag.withColumn('close_return', (df_close_lag['close'] -

df_close_lag['prev_close']) / df_close_lag['close'])

6.4 A4: Calculate moving average in PySpark

df=df.withColumn('moving_average_open',func.avg('open_return').over(Window.orderBy('index').rangeBetween(-1,0)))

df=df.withColumn('cum_sum_open',func.sum('open_return').over(Window.orderBy('index').rangeBetween(Window.unboundedPreceding,0)))

df = df.withColumn('moving_average_open',df['cum_sum_open']/df['index'])

df=df.withColumn('moving_average_close',func.avg('close_return').over(Window.orderBy('index').rangeBetween(-1,0)))

df=df.withColumn('cum_sum_close',func.sum('close_return').over(Window.orderBy('index').rangeBetween(Window.unboundedPreceding,0)))

df = df.withColumn('moving_average_close',df['cum_sum_close']/df['index'])

44

6.5 A5: Request historical 1 minute trading data from

IEXCloud

def get_file(num_days, symbol):

URL = 'https://cloud.iexapis.com/v1/stock/' + symbol + '/intraday-prices'

df = pd.DataFrame()

PARAMS = {'token': 'secret_token'}

columns_to_drop = ['marketAverage', 'marketNumberOfTrades', 'minute',

'label', 'notional', 'numberOfTrades',

'marketHigh', 'marketLow', 'marketVolume',

'marketNotional', 'marketOpen', 'marketClose',

'changeOverTime', 'marketChangeOverTime']

for i in range(1, num_days):

logging.info('getting record ' + str(i) + 'remaining: ' + str(num_days

- i))

day = datetime.date.today() - datetime.timedelta(days=i)

PARAMS.update({'exactDate': day.strftime("%Y%m%d")})

r = requests.get(url=URL, params=PARAMS)

data = r.json()

try:

data[0]['date']

except:

continue

df_temp = pd.DataFrame.from_dict(r.json())

df_temp['date'] = df_temp['date'].str.cat(df_temp['minute'], sep='-')

df_temp.drop(columns_to_drop, inplace=True, axis=1)

df_temp.fillna(df_temp.mean(), inplace=True)

df = df.append(df_temp)

return df

6.6 A6: Available endpoints in the Ingestion Plat-

form

45

46

Bibliography

[1] url: https://docs.spring.io/spring/docs/4.3.12.RELEASE/spring-

framework-reference/html/aop.html.

[2] url: https://docs.spring.io/spring-

boot/docs/current/reference/html/appendix-application-

properties.html.

[3] S. Agarwal and B. R. Prasad. �High speed streaming data analysis of web generated

log streams�. In: 2015 IEEE 10th International Conference on Industrial and

Information Systems (ICIIS). 2015, pp. 413�418.

[4] W Farida Agustini, Ika Restu A�anti, and Endah RM Putri. �Stock price prediction

using geometric Brownian motion�. In: Journal of Physics: Conference Series 974

(2018), p. 012047. doi: 10.1088/1742-6596/974/1/012047. url:

https://doi.org/10.1088%2F1742-6596%2F974%2F1%2F012047.

[5] Fernando Almeida. �Big Data: Concept, Potentialities and Vulnerabilities�. In:

Emerging Science Journal 2.1` (). issn: 2610-9182. doi:

https://doi.org/10.28991/esj-2018-01123.

[6] Apache Hadoop. url: https://hadoop.apache.org/.

[7] Apache Kafka. url: https://kafka.apache.org/.

[8] Michael Armbrust et al. �Spark SQL: Relational Data Processing in Spark�. In:

Proceedings of the 2015 ACM SIGMOD International Conference on Management of

Data. SIGMOD '15. Association for Computing Machinery, 2015, 1383�1394. isbn:

9781450327589. doi: 10.1145/2723372.2742797. url:

https://doi.org/10.1145/2723372.2742797.

[9] Matthew Baron et al. �Risk and Return in High-Frequency Trading�. In: Journal of

Financial and Quantitative Analysis 54.3 (2019), 993�1024. doi:

10.1017/S0022109018001096.

47

https://docs.spring.io/spring/docs/4.3.12.RELEASE/spring-framework-reference/html/aop.html
https://docs.spring.io/spring/docs/4.3.12.RELEASE/spring-framework-reference/html/aop.html
https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-application-properties.html
https://doi.org/10.1088/1742-6596/974/1/012047
https://doi.org/10.1088%2F1742-6596%2F974%2F1%2F012047
https://doi.org/https://doi.org/10.28991/esj-2018-01123
https://hadoop.apache.org/
https://kafka.apache.org/
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1017/S0022109018001096

[10] Vinayak R. Borkar, Michael J. Carey, and Chen Li. �Big Data Platforms: What's

Next?� In: XRDS 19.1 (Sept. 2012), 44�49. issn: 1528-4972. doi:

10.1145/2331042.2331057. url:

https://doi-org.elib.tcd.ie/10.1145/2331042.2331057.

[11] PhD Burns William E. �E�cient-market hypothesis (EMH).� In: Salem Press

Encyclopedia (2020). url: http://elib.tcd.ie/login?url=http:

//search.ebscohost.com/login.aspx?direct=true&db=ers&AN=113931145.

[12] S. Chickerur, A. Goudar, and A. Kinnerkar. �Comparison of Relational Database with

Document-Oriented Database (MongoDB) for Big Data Applications�. In: 2015 8th

International Conference on Advanced Software Engineering Its Applications (ASEA).

2015, pp. 41�47.

[13] S. Chintapalli et al. �Benchmarking Streaming Computation Engines: Storm, Flink and

Spark Streaming�. In: 2016 IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW). 2016, pp. 1789�1792.

[14] V. Gadepally and J. Kepner. �Big data dimensional analysis�. In: 2014 IEEE High

Performance Extreme Computing Conference (HPEC). 2014, pp. 1�6.

[15] Joel Hasbrouck and Gideon Saar. �Low-latency trading�. In: Journal of Financial

Markets 16.4 (2013). High-Frequency Trading, pp. 646 �679. issn: 1386-4181. doi:

https://doi.org/10.1016/j.finmar.2013.05.003. url:

http://www.sciencedirect.com/science/article/pii/S1386418113000165.

[16] IEX Cloud: Financial Data Infrastructure. url: https://iexcloud.io/.

[17] In�uxDB 1.8 documentation. url:

https://docs.influxdata.com/influxdb/v1.8/.

[18] JPM.N - JPMorgan Chase & Co. Pro�le. url:

https://www.reuters.com/companies/JPM.N.

[19] Kyong-Ha Lee et al. �Parallel Data Processing with MapReduce: A Survey�. In:

SIGMOD Rec. 40.4 (Jan. 2012), 11�20. issn: 0163-5808. doi:

10.1145/2094114.2094118. url: https://doi.org/10.1145/2094114.2094118.

[20] Eliezer Levy and Abraham Silberschatz. �Distributed File Systems: Concepts and

Examples�. In: ACM Comput. Surv. 22.4 (Dec. 1990), 321�374. issn: 0360-0300.

doi: 10.1145/98163.98169. url:

https://doi-org.elib.tcd.ie/10.1145/98163.98169.

[21] A. I. Maarala et al. �Low latency analytics for streaming tra�c data with Apache

Spark�. In: 2015 IEEE International Conference on Big Data (Big Data). 2015,

pp. 2855�2858.

48

https://doi.org/10.1145/2331042.2331057
https://doi-org.elib.tcd.ie/10.1145/2331042.2331057
http://elib.tcd.ie/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=ers&AN=113931145
http://elib.tcd.ie/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=ers&AN=113931145
https://doi.org/https://doi.org/10.1016/j.finmar.2013.05.003
http://www.sciencedirect.com/science/article/pii/S1386418113000165
https://iexcloud.io/
https://docs.influxdata.com/influxdb/v1.8/
https://www.reuters.com/companies/JPM.N
https://doi.org/10.1145/2094114.2094118
https://doi.org/10.1145/2094114.2094118
https://doi.org/10.1145/98163.98169
https://doi-org.elib.tcd.ie/10.1145/98163.98169

[22] Migrating Apache Spark Jobs to Dataproc | Migrating Hadoop to GCP. url:

https://cloud.google.com/solutions/migration/hadoop/migrating-

apache-spark-jobs-to-cloud-dataproc.

[23] NoSQL Databases Explained. url: https://www.mongodb.com/nosql-explained.

[24] pandas. url: https://pandas.pydata.org/.

[25] J. Patel. �An E�ective and Scalable Data Modeling for Enterprise Big Data Platform�.

In: 2019 IEEE International Conference on Big Data (Big Data). 2019, pp. 2691�2697.

[26] Andrew Pavlo et al. �A Comparison of Approaches to Large-Scale Data Analysis�. In:

Proceedings of the 2009 ACM SIGMOD International Conference on Management of

Data. SIGMOD '09. Association for Computing Machinery, 2009, 165�178. isbn:

9781605585512. doi: 10.1145/1559845.1559865. url:

https://doi.org/10.1145/1559845.1559865.

[27] Plotly Python Graphing Library. url: https://plotly.com/python/.

[28] Pygmalios. pygmalios/reactivein�ux. url:

https://github.com/pygmalios/reactiveinflux.

[29] RDD Programming Guide. url: https://spark.apache.org/docs/latest/rdd-

programming-guide.html#resilient-distributed-datasets-rdds.

[30] S. Sagiroglu and D. Sinanc. �Big data: A review�. In: 2013 International Conference

on Collaboration Technologies and Systems (CTS). 2013, pp. 42�47.

[31] Spark Streaming: Apache Spark. url: https://spark.apache.org/streaming/.

[32] Xinhui Tian et al. �Latency critical big data computing in �nance�. In: The Journal of

Finance and Data Science 1.1 (2015), pp. 33 �41. issn: 2405-9188. doi:

https://doi.org/10.1016/j.jfds.2015.07.002. url:

http://www.sciencedirect.com/science/article/pii/S2405918815000045.

[33] Madhavi Vaidya and Shrinivas Deshpande. �Critical Study of Performance Parameters

on Distributed File Systems Using MapReduce�. In: Procedia Computer Science 78

(2016). 1st International Conference on Information Security & Privacy 2015, pp. 224

�232. issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2016.02.037.

url:

http://www.sciencedirect.com/science/article/pii/S1877050916000399.

[34] Alpha Vantage. ALPHA VANTAGE. url: https://www.alphavantage.co/.

[35] A. Verma, A. H. Mansuri, and N. Jain. �Big data management processing with

Hadoop MapReduce and spark technology: A comparison�. In: 2016 Symposium on

Colossal Data Analysis and Networking (CDAN). 2016, pp. 1�4.

49

https://cloud.google.com/solutions/migration/hadoop/migrating-apache-spark-jobs-to-cloud-dataproc
https://cloud.google.com/solutions/migration/hadoop/migrating-apache-spark-jobs-to-cloud-dataproc
https://www.mongodb.com/nosql-explained
https://pandas.pydata.org/
https://doi.org/10.1145/1559845.1559865
https://doi.org/10.1145/1559845.1559865
https://plotly.com/python/
https://github.com/pygmalios/reactiveinflux
https://spark.apache.org/docs/latest/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/latest/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/streaming/
https://doi.org/https://doi.org/10.1016/j.jfds.2015.07.002
http://www.sciencedirect.com/science/article/pii/S2405918815000045
https://doi.org/https://doi.org/10.1016/j.procs.2016.02.037
http://www.sciencedirect.com/science/article/pii/S1877050916000399
https://www.alphavantage.co/

[36] Hugh J. Watson. �Tutorial: Big Data Analytics: Concepts, Technologies, and

Applications�. In: Communications of the Association for Information Systems 34

(2014). doi: 10.17705/1cais.03465.

[37] Y. Yuan et al. �Spark-GPU: An accelerated in-memory data processing engine on

clusters�. In: 2016 IEEE International Conference on Big Data (Big Data). 2016,

pp. 273�283.

50

https://doi.org/10.17705/1cais.03465

	Introduction
	Problem Statement
	Motivation and Objectives
	Contribution
	Content Structure

	Literature Review and Similar Work
	Big Data Challenges
	Velocity
	Volume
	Variety

	Big Data Technologies
	Databases vs Distributed File Systems
	MapReduce
	The Hadoop Architecture
	Spark

	Previous Work
	A real-time traffic data analysis
	High speed log streams generated from web

	Summary

	Design and Implementation
	Data Source
	Data Collection
	Data Fusion

	Simulate Real-Time Data Streams: Ingestion Platform
	Overview
	Kafka
	Implementation

	Real Time Processing: Spark App
	Receiving the Messages
	Processing the Data
	Deploy to Dataproc

	Result Persistence: InfluxDB
	Summary

	Case Study: J.P. Morgan Stock Price Volatility
	Background
	Data Fusion
	File Partition
	Data Flow
	Result
	Evaluation
	System setup
	Performance

	Discussion
	Data Selection
	Technologies reviews
	Challenges
	Future Work
	The 3Vs: Velocity, Volume, Variety

	Conclusion
	Appendix
	A1: Calculate return of stock price
	A2: Geometric Brownian Motion
	A3: Calculate return in PySpark
	A4: Calculate moving average in PySpark
	A5: Request historical 1 minute trading data from IEXCloud
	A6: Available endpoints in the Ingestion Platform

	Bibliography

