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Abstract

Realistic body language generation for social robots and animated characters is an ex-
tremely challenging problem that has only been attacked recently. The source of the
difficulty is both finding suitable data and a good learning method. In this study, we
propose a self-supervised, adversarial architecture for learning to generate body language
from the text and the voice of the speaker. In contrast with previous attempts, our
method takes into account a representation of the personality of the speaker as well. It
trains of massive amounts of video available online. We lay out, how this design can
be evaluated, quantifying both the realism of the pose and the appropriateness of the
character.

We also propose a technique, that can be used to infer some personality traits of the
speaker in videos, such as seriousness. This permits the tracking of these personality
traits along the duration of speech, paving the way for building reactive agents.

We recognise that the current 3D human pose estimation tools are not accurate enough
to support the above project. To remedy this, we lay out a method to train a more robust
and stable pose estimator. Stability and robustness are achieved through the utilisation of
heavy data augmentation and a combination of best practices from other state-of-the-art
architectures. We lay out procedures to evaluate the resulting model, both comparing
it to other methods and measuring its stability and robustness. We detail work that
remains to be done to create a tool that fulfils our design requirements and enables the
learning of body language.
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1 Introduction

Designing interactive, adaptive, and human-like robots is still more in the realm of science
fiction, rather than of research and development. One of the main reasons for this is the
lack of necessary datasets. It is even unclear, how such data could be collected, for
example for emotional and character shifts during speeches and interviews. This is one
of the issues we encountered, while trying to design a way to teach Stevie [60], the social
robot, some social skills.

Instead, we targeted a somewhat simpler problem of generating body language that goes
along with a speech, i.e. the voice and the transcript. Solving this problem has been
attempted before. Although not exclusively [35], the general approach for this kind
of problem has been using deep learning with a combination of supervised learning,
minimising the deviation from the estimated and the ground truth pose [25, 50, 124],
and self-supervised, adversarial learning [22, 25]. These approaches do not consider an
important aspect of the speech: the person speaking, or their specific body language
‘dialect’. Even when it is acknowledged, [25], it is not part of the model, but a separate
model is trained for each person. In models with GAN-based adversarial learning [29],
the necessary entropy that permits the architecture to learn probability distributions is
also not provided.

We propose a model, that takes an implicit measure of personality, termed latent person-
ality vector. We design a GAN-based training procedure that learns to associate gestures
with the latent personality as well as the voice and the semantics of the speech. It can be
trained on a massive dataset of TED and TEDx talk videos easily available. This when
run, this model generates samples from a distribution of gestures, parameterised by the
latent personality and conditioned on the audio and the text.

We recognise that this provides an opportunity towards our initial goal, making Stevie
adaptive. This is the inverse of the problem that the generator solves (predicting latent
personality based on gestures vs. predicting gestures based on latent personality). By
training a good gesture generator on a vast dataset and looking at videos of speeches,
gradient descent optimisation can be used to find the instantaneous latent personality
most likely to perform the gestures found on the video. Observing variations in personality
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and adaptations in emotions would represent a first step towards creating datasets for
learning social skills, as mentioned earlier.

The tasks outlined above proved to be infeasible with the current state of the art, however.
Gesture learning needs highly accurate 3D poses1. These are estimated from videos
using human pose estimators. We evaluated several pre-trained tools for 3D human pose
estimation and all of them were found unsuitable. Some estimators confuse joints of the
different persons, or of the same person. Some are unusably slow. The biggest issue was,
however, ‘jitter’. A random error of a few centimeters is included in the estimate of each
joint. With the joints combined into a skeleton, this jitter gives a strong appearance of
shaking, rendering gestures less recognisable2. This is because most estimators work on
a frame-by-frame basis and do not take multiple frames into account. Most estimators
are also unable to give estimates for scenes, where only the bust of the person is visible.
They are research tools designed to perform well on test datasets, not ‘in the wild’, and
are not able to handle occlusion 3. Some also do not generalise well to scenes, lighting
conditions, and clothing styles that are different from their training conditions.

Human pose estimation initially relied on traditional computer vision techniques,
Bayesian learning, and constraints such as physically realisable poses [4, 21, 55, 92,
95]. In the past decade, however, it has become almost completely dominated by deep
learning, where constraints and distributions are learnt implicitly from data [6, 12, 20, 82,
103, 104, 119, 120]. Beyond the sub-project outlined above, human pose estimation has
many important applications, such as autonomous vehicles, action recognition, virtual
and augmented reality, robotics, and cinematic animation.

Several methods have been recently published that have a strong potential to improve
precision and robustness. However, they are not built together into a single, useful tool.
We set out to build such at tool. This tool should be:

• Accurate

• Temporally stable, without jitter

• Robust to non-ideal scenes, rooms, lighting conditions, and occlusion

This tool should be evaluated, both comparing it against other methods and verifying
that the above design requirements are met.

12D pose estimates would be explicitly less useful, as they cannot be mapped to a robot like Stevie
or a 3D animated model.

2Filtering is not useful in this application, as that would also filter out intentional episodes of high
velocity and acceleration, making any generated gesture appear overwhelmingly ‘stiff’.

3This is explicitly specified in some projects, like [126].
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This thesis is structured as follows. chapter 2 gives a brief background on deep learning
methods, pose estimation datasets, metrics, and a survey of methods for 2D and 3D
human pose estimation. It also details the previous and current attempts for generating
human body poses. Some details about gradient based network explanation is also given,
which is relevant for the human pose understanding sub-project. chapter 3 details the
design for the body pose generator architecture, explains the body pose understanding
experiment, and presents the proposed 3D human pose estimator. It also contains dis-
cussion about some of the design choices made and limitations. chapter 4 describes the
work that has been completed so far and gives procedures for evaluating all three sub-
projects. Finally, chapter 5 summarises the contributions of the work and lays out future
directions.
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2 Background

Human pose estimation is a field of computer vision that is concerned with locating body
parts of a human in an image or a video. This is generally achieved by estimating the
location of certain joints or body parts, then combining these to form a skeleton-like
model. This is a challenging task and is normally approached by learning from large
datasets using machine learning techniques.

Traditionally, human pose estimation has a wide range of applications, such as person
tracking, action recognition, VR/AR, animation, or sports analysis. The first project
of human pose generation adds to the list of areas, where human pose estimation is
useful.

2.1 Deep Learning

Deep learning is a machine learning technique that has well-established roots [90, 91], but
garnered a significant interest in the last decade due in part to the availability of sufficient
hardware [49], in part to the availability of enormous amounts of training data, and in
part the astonishing results deep learning based methods have been able to produce [44,
85, 97]. Convolutional Neural Networks (CNNs) [33, 49, 54, 100] refer to a subfamily of
deep learning based models that are particularly successful in computer vision tasks. The
majority of successful methods for human pose estimation in the last five years have been
based on CNNs, as discussed in sections 2.4 and 2.5. Therefore, I will use this section to
focus on DNNs and CNNs and provide a brief operational summary. This section omits
a lot of the details and arguments inherent to deep learning. For further details, please
consult Deep learning [28] by Goodfellow, Bengio and Courville.

2.1.1 Structure of neural networks

In their most essential form, deep learning models called deep neural networks (DNNs)
consist of a sequence of layers. These layers are able to transform the input in complex
non-linear ways, but operate on deceivingly simple principles: they are made up of affine
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transformations and non-linear activation functions.

x(l) = f (l)
(
W (l)>x(l−1) + b(l)

)
(2.1)

Here, x(l) represents the output of layer l, also called its activation. The output of an L
layers deep DNN, ŷ, is x(L). x(0) denotes the input to the model. W (l) and b(l) are the
trainable weights and biases, respectively, corresponding to layer l. f (l) symbolises the
activation function.

Although historically sigmoid σ and the related tanh were used as activation functions
[54], rectified linear units (ReLUs) and its various generalisations [34, 62] have been shown
to perform better [75] and are the preferred activation function in modern deep learning.
See equations (2.2) and (2.4) for reference. All of these functions are applied to the vector
x(l) element-wise.

The last layer of a deep neural network is treated differently, compared to the others.
When the network is trained to predict binary yes-or-no choices, the activation function of
choice is usually the sigmoid function. For categorical selection, softmax (equation (2.3))
is used. For regression problems (estimating the value of one or more real numbers), no
activation function is applied in the last layer.

σ (z) =
1

1 + e−z
tanh(z) =

ez − e−z

ez + e−z
= 2σ(2z)− 1 (2.2)

softmax(z) =
ez∑
i e

zi
(2.3)

ReLU (z) =

0 z < 0

z z ≥ 0
(2.4)

The network described above is often called a simple feed-forward neural network.

2.1.2 Training neural networks

Before the network can be trained, a loss function must be selected first, to determine a
scalar measure of the error or loss L in the model. For real number outputs, L2

2 error (also
known as mean squared error, MSE) or L1 error are common choices. For binary (sigmoid)
or categorical (softmax) outputs, cross entropy CE (or the related KL divergence) are
used. Various further regularisation terms, such as weight decay

∑
l

∥∥W (l)
∥∥2
2
, are also
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often added to the loss with appropriate weighting.

L2
2 (ŷ, y) = MSE (ŷ, y) = ‖ŷ − y‖22 =

∑
i
(ŷi − yi)2 (2.5)

L1 (ŷ, y) = ‖ŷ − y‖1 =
∑

i
|ŷi − yi| (2.6)

CE (ŷ, y) = −
∑

i
yi log (ŷi) (2.7)

The model is trained using stochastic gradient descent (SGD). Gradients ∂L
∂W (l) and ∂L

∂b(l)

are computed through the repeated application of the chain rule of calculus, and weights
and biases are adjusted in small steps in the direction opposite to the gradient. If W
represent all weights, biases, and other model parameters and η is the learning rate, the
update equation of the neural network is

W := W− η∇WL.

Stochastic gradient descent is called stochastic, because the loss L is not evaluated on
the entire batch of available training data, but a random sub-sample called a mini-batch
that is re-sampled for each update. Various tweaks on SGD have been proposed [45, 108],
but the principle remains the same.

Layers such as Dropout [101] or Batch Normalisation (batchnorm, BN) [39] can regulate,
normalise, speed up training, and facilitate the propagation of gradients.

Popular tools for implementing the methods detailed in the last two sections include
TensorFlow [64] and Pytorch [81]. They contain the necessary abstractions and infra-
structure to relatively easily define, train, and use neural networks with good perform-
ance. At their core is an engine, which performs the differentiation necessary for SGD
automatically.

2.1.3 Elements of Convolutional Neural Networks

CNNs are specialised DNNs designed to process images efficiently, with each operation
only considering a small patch of pixels. Convolutions have been a staple of image
processing even before deep learning.

In a CNN, the matrix multiplication from equation (2.1) is replaced by a 2D convolution
operation. See equations (2.8) and (2.9). The spatial size of W (l), K(l)

0 and K
(l)
1 are
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called the kernel size of the convolution.

X(l) = f (l)
(
b(l) + W (l) ∗X(l−1)) (2.8)

x
(l)
c, s, t = f (l)

(
b(l)c +

K0−1∑
i=0

K1−1∑
j=0

w
(l)
c, :, i, j · x

(l−1)
:, s−i+bK0/2c, t−j+bK1/2c

)
(2.9)

Another common element of CNNs is a pooling layer, which downsamples the activations
according to certain rules. Most recent networks use 2 × 2 max pooling, which returns
the maximum value in each 2 pixel × 2 pixel image block and simultaneously halves the
activation image size. In some networks, pooling is not used and image size is reduced
by applying a stride to the convolution directly. In a convolution with a stride of 2, only
every second pixel is computed.

Frequently used in pose estimation is the opposite of pooling and strides, the upsampling
operation, which increases the spatial size of an activation. A common strategy for
upsampling is nearest neighbours, which duplicates pixels appropriately.

Activation size can also be increased through a transposed convolution (sometimes in-
correctly called deconvolution), denoted ∗T , which performs a convolution with fractional
strides. A more efficient way to obtain the same result as with transposed convolution
has been proposed recently, called sub-pixel convolution. [94]. All three of these
operations are used extensively in human pose estimation, as discussed in sections 2.4
and 2.5.

In some models, dilation is used in convolution layers. This spreads out the convolution
kernel wider, leaving a some gaps between the pixels to to which the convolution is
applied. This widens the field-of-view of each convolution, without affecting the amount
of computation required for it.

Importantly, all operations described above are differentiable, meaning that SGD can still
be used to train CNN models. A quick demonstration of common convolution methods
can be found at [18]1.

2.1.4 Transfer learning in computer vision

The availability of the large-scale ImageNet dataset [15] for image classification has res-
ulted in the creation of high quality feature extractor CNNs. These networks are trained
to perform well on image classification. If the last few layers are removed, however, they
output useful general abstractions or features about the image. Therefore, the last few
layers can be replaced with layers adapted to object detection or human pose estimation,

1https://github.com/vdumoulin/conv_arithmetic
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for example, rather than image classification. Good results can be achieved on these
alternative tasks with little fine-tuning of the feature extractor weights and without ex-
pensive and time consuming architecture search. The learning progress made in image
classifications can be transferred to other tasks. Although more efficient models have
been proposed since [107], many human pose estimation models make use of two feature
extractor families in particular: VGG [100] and ResNet [33].

VGG is made up of a sequence of ‘thick’ convolutions with many input and output
channels. ResNet, on the other hand, goes much ‘deeper’ and is composed of a long
sequence of residual blocks. Each residual block made up of 2 or 3 convolutions. The
output of a block is equal to the output of the last convolution, added to the block’s
input. This substructure has proved beneficial to training CNNs, and also used in as part
of networks other than feature extractors [76].

2.1.5 Data augmentation

Data augmentation is a simple method used to improve the generalisation performance
of DNNs and CNNs, without the need to collect more data. It transforms the existing
training data in ways that the machine learning model is supposed to be invariant to.
Examples of data augmenting transforms for image processing include random crop, ran-
dom scale, random rotation of the input image, or occluding parts of the image with
black or white shapes. Training the model on this extended dataset makes it more likely
to be accurate when a test input image is rotated or occluded differently compared to
the training images.

2.1.6 Generative adversarial networks

Generative adversarial networks (GANs) [2, 29, 69, 74] is an unsupervised machine learn-
ing framework with some game theoretic aspects. It was invented in its current form in
2014, but has been around for much longer [93]. They became popularised partly due to
the spectacular results they were able to achieve in image generation [44, 83]. GANs are
composed of two components: a generator and a discriminator. The generator receives
a large vector filled with random noise as input and produces an output that looks like
the training data (e.g. images, poses, etc.). The discriminator receives its input either
from the generator or from the training set, and must decide, where it came from (i.e.
whether its input real or fake). Since the discriminator is usually fully differentiable,
this it can be used as a training signal to the generator. Thus, the generator is trained
to fool the discriminator, while the discriminator is simultaneously trained to identify
the generator’s output better. This way, the generator eventually learns to reproduce
samples from the hypothetical training data distribution, parameterised by the random
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and conditional inputs. More formally, the loss function of a GAN is

LGAN (G, D) = −Ex [f (D (x | y))]− Ez [f (−D (G (z | y) | y))] ,

where G and D denote the generator and discriminator networks, respectively. x is a real
example from the training set, z is a random input, while y is the optional conditioning
input. Commonly used functions for f are f (t) = log (σ (t)) [29] or f (t) = t [2] [74].

Although the input of the generator is randomly sampled from a uniform or Gaussian
distribution, it implicitly represents a latent space to the generator, where the combin-
ation of some basis vectors decide what the output looks like. These parameters can
generally be interpolated linearly to a useful degree. For example, in a generator that
outputs images,

z(woman with sunglasses) − z(woman without sunglasses) + z(man without sunglasses) = z(man with sunglasses).

Basis vectors for these interpolations can either be found experimentally, or through one
of the various methods devised to estimate them [17, 83, 84, 111, 114]. This interpolation
makes GANs practical for generating outputs that may not be part of the training dataset,
but follow certain parameters.

2.1.7 Recurrent neural networks

Recurrent neural networks (RNNs) are a way to model temporal dependencies in deep
learning. In its simplest form, it is a DNN that takes two inputs: the actual outside input
for timestep t and its own output from the previous timestep, t− 1. More formally,

ŷ(t) = f
(
x(t), ŷ(t−1)) ,

where f is some DNN. Various improvements to this form and to f . Most commonly
used are LSTM [36] and GRU [13].

2.2 Pose estimation datasets

A large amount of data is available for research projects to learn 2D and 3D poses. These
datasets contain images or videos, with the position of joints of the human subjects
annotated. Some datasets provide data beyond the skeleton, such as depth maps or full
body meshes. Several datasets categorise poses into activities beyond. Each dataset
has a slightly different approach in collecting the images and the annotations, leading
to different strengths and weaknesses. The most important datasets are presented here,
without an expectation of completeness.
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2.2.1 2D

COCO (Common Objects in Context) [58] is a large collection of annotated images
of diverse objects and settings collected mainly from Flickr. It includes around 200
thousand images, where the 2D pose of human subjects have been hand-annotated. A
large proportion of these images show several humans, sometimes interacting with each
other. The amount and quality of the data make it a cornerstone of object detection
and 2D human pose estimation. The images provided are standalone and do not form
sequences, thus it cannot be used to learn dynamics. However, it can provide models
with useful clues about variation in texture and context.

The MPII human pose dataset [1] is somewhat smaller, containing around 25 thousand
hand annotated images. Many of these images contain several human subjects. The
focus of this dataset is to categorise the poses into one of over 400 common actions and
activities. As such, the subjects, clothing, and environment are all diverse. Although the
images were extracted from YouTube videos, only standalone frames were annotated, not
sequences. Neighbouring frames are provided for convenience without annotation.

2.2.2 3D

Human3.6M [9, 40] is the de facto standard dataset for training, evaluating, and com-
paring 3D human pose estimators. It is the largest publicly available dataset with high
definition video of 11 professional actors and actresses performing 17 types of actions. It
is composed of 3.6 million frames, including the test set (which has pose data withheld).
The video comes from 4 cameras stationed at the floor, recording simultaneously. The
accurate 3D position of 24 joints is recorded by a motion capture (mo-cap) system. Ad-
ditionally, it also comes with detailed body scans and low resolution time-of-flight (TOF)
sensor data. While the dataset provides a large amount of data, it also comes with dis-
advantages. All of the footage was recorded in the same room, making models trained
solely on this dataset prone to overfitting. The performers were wearing mo-cap markers
visible on the regular camera input. They also did not perform in varied clothing, likely
further limiting the generalisation ability of the models trained on this dataset.

HumanEva-I [96] is an older and smaller dataset that shares similarities with Hu-
man3.6M. It also uses a motion capture system for the ground truth pose data, but
is made up of approximately 40 thousand frames only. It has 4 actors performing 6 types
of actions, recorded by 3 colour and 4 grey-scale cameras in a relatively low resolution.
Beyond the smaller size of this dataset, its drawbacks follow those of Human3.6M: it is
limited by the low variation in location and clothing.

Total Capture [110] is another motion capture based dataset with almost 1.9 million
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frames from 8 cameras filming 5 subjects. Aside from providing synchronised inertial
measurement data for each joint, it shares characteristics with Human3.6M and Hu-
manEva-I.

The authors of MPII-3DHP [67] have noted the limitations of the previously available
datasets and created a new dataset attempting to alleviate some. This dataset is recorded
in a green-screen room, with the aim of facilitating data augmentation and overlaying
the subjects upon varied environments. Some of the clothing worn by the subjects were
also plain coloured to facilitate easy overlaying of textures for data augmentation. MPII
used a motion capture system that does not require the presence of markers on the
body, preventing the model from making use of the location of the maker as a hint for
the output. The marker-less motion capture system also permitted looser, more varied
apparel. The dataset includes 8 actors and actresses performing 8 types of actions.
The dataset provides over 1.3 million high resolution frames from 15 cameras at varied
angles. This dataset is an overall improvement which augments Human3.6M well, with
useful attempts to enable data augmentation techniques. The increasing the number of
performers and the variation in real apparel and scenery is still desirable, however.

The Total Motion dataset [120] aims to fill some of the gap left by Human3.6M. It was
recorded in the CMU Panoptic Studio [42] using 31 hardware-synchronised high definition
cameras, looking at highly varied angles. 40 subjects are included, wearing natural cloth-
ing. Their body pose is triangulated to a high accuracy from the aggregation of the video
feeds. This dataset also includes triangulated annotations for the hands and fingers of
the subjects. Importantly, this dataset includes an annotation for each keypoint whether
the keypoint is visible or self-occluded in a frame, allowing for algorithms that prefer dis-
carding these joints from training. Altogether, it contains around 834 thousand frames of
body annotation. While this dataset does not completely fix the issue of environmental
diversity, it ameliorates lack of the diversity of performers and clothing.

Unite the People (UP-3D) [53] is based on the images of two smaller 2D pose data-
sets (the Leeds Sports Pose dataset [41] and the FashionPose dataset [14]), which show
subjects in varied environments, often outdoors, wearing various apparel. It uses an
automated model to generate plausible 3D poses, which human annotators sort as good
or bad fits. Thus, it improves the exposure to environments, subjects, and clothing of
any model trained on this dataset. In exchange it sacrifices the accuracy provided by
motion capture systems. Furthermore, it provides relatively little data, containing 3D
pose (along with body-part segmentation and detailed 2D pose) for just over 8 thousand
images. These images do not form continuous sub-sequences (videos), meaning that this
dataset has little use in learning temporal stability.

3D Poses in the Wild (3DPW) [63] took a distinctively novel approach for enriching
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available 3D human pose data. It uses cameras and inertial measurement units (IMUs)
integrated into smartphones in conjunction with wearable IMUs at the joints of the sub-
jects. 3D human and camera pose is estimated by a graph-based optimisation model. This
approach permits the recording of human 3D pose along with video in natural, outdoor
environments (‘in-the-wild ’), where a motion capture system is not present. Clothing
worn by the subjects is also diverse. The dataset contains over 50 thousand frames.
Under the ideal conditions of the Total Capture dataset [110], the method used for estim-
ating the 3D poses reaches a mean joint error of only 26 mm. However, the demo video
on the project page2 shows pervasive errors like missed frames, noisy joints, or varying
scale. While the direction is promising, more work is needed before this dataset can be
relied upon for accuracy.

SURREAL [112] is a large synthetic dataset. It is made up of 6 million frames of
CGI (computer generated imagery) based humans inserted into model environments and
rendered in a photo-realistic manner. The poses of the humans were mapped based on
motion capture data. As the entire environment is synthetic, a large amount of data
can be collected, such as depth, optical flow, or even surface normals. However, CGI
based images lack some of the complexity and noise of real photos and videos, and
some CNN-based models may struggle to generalise between real-world and computer-
generated textures.

2.3 Pose metrics

When evaluating pose estimates, it is crucial to select reliable metrics to quantify their
accuracy. In the following, the metrics most frequently employed by the literature are
summarised.

MPJPE (mean per-joint position error) is the benchmark metric for several 3D
pose datasets, such as Human3.6M and HumanEva-I [40, 96]. It is simply the Euclidean
distance between the estimated and the target positions, averaged over all joints: see
equation (2.10). A lower MPJPE means the estimated joint positions are closer to the
target joints, indicating a better model. This metric is said to be less robust [40], as it can
be overwhelmed by both a single, badly predicted joint and many well-predicted joints
with minor errors. The related PA-MPJPE is also in use. In this metric, a rigid-body
transform called Procrustes Analysis is used to shift, rotate, and scale the estimated
skeleton before computing the MPJPE. This metric is designed to penalise the errors in
the pose itself, rather than its alignment with the coordinate system. A further related
metric is MPJAE (mean per-joint angle error), where the mean is computed over
the angles between neighbouring joints. As most contemporary methods predict joint

2https://virtualhumans.mpi-inf.mpg.de/3DPW/
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positions, rather than joint angles, this metric is seen applied less often.

MPJPE (p̂, p) =

∑
i∈joints ‖p̂− p‖2
|joints|

(2.10)

PCP@α (percentage of correct (body)parts), described in [19], is the fraction of
body parts estimated correctly. It counts a body part correct if its estimated length (the
distance between its two end joints) is within a threshold fraction α of the expected length
for that body part: |l̂i−li|

li
< α. A common value for α is 0.5. The /a larger value of PCP

indicates a better model. This metric gives small limbs much harsher error margins than
large limbs, is relatively forgiving about joint position. It can be most often seen used in
2D pose estimation.

PCK@α or PCKh@α (percentage of correct keypoints), as used in [109], is the
fraction of joints (i.e. keypoints), where the estimate is within a threshold distance of the
target. For PCK@α, this threshold is taken as α times the diameter of the torso. For
PCKh@α, the threshold is α times the lenght of the ‘head bone’, the distance between
the bottom of the neck and the head joints. For PCK, particularly in 3D estimation, the
arbitrary threshold of 150 mm is also used sometimes [67]. This metric can be further
extended and made more informative computing it over a range of thresholds and integ-
rating it to from the AUC (area under curve) or AP (average precision). While
PCK was initially a 2D metric, it is now also in use in 3D estimation. Some authors
advocate for its use in 3D [67], claiming that it is more robust, and preferring it over
MPJPE. [40] proposes this metric for 3D under the name of MPJLE (mean per-joint
localisation error). A higher PCK corresponds to a better model.

OKS (object keypoint similarity), proposed in [88], is a novel metric, targeting 2D
estimation in particular. It interprets the joint estimates as realisations of a 2D Gaussian
distribution over the image. The mean of this distribution is the ground truth location
for that particular joint. The variance is the variance amongst human annotators for the
joint (ki in equation (2.11)), scaled based on the size of the skeleton within the image (s in
equation (2.11)). The OKS is equal to the mean of the unnormalised probability density
value sampled at the estimated location for each visible joint, as shown in equation (2.11).
The goal of this metric is to increase robustness. It assigns little error to differences
that human annotators cannot easily differentiate, like the precise pixel-wise position
of the estimate, while it assigns a large error to blunders where the estimate no longer
corresponds to the correct joint. OKS ranges from 0 to 1, with a higher value indicating
a better prediction.

OKS (p̂, p) =

∑
i∈joints exp

(
‖p̂i−pi‖22
2s2k2i

)
1joint i visible∑

i∈joints 1joint i visible
(2.11)

13



2.4 2D pose estimation

To solve 3D pose estimation, the simpler subtask of 2D pose estimation must be solved
first.

2.4.1 Common design choices

Deep learning: The vast majority of well-performing recent techniques use the deep
learning framework. Some outdated approaches [4, 55, 92, 95] use Bayesian methods, that
manipulate explicit probability distributions to satisfy constraints. These approaches are
also mostly concerned with 3D pose estimation.

Top-down vs. bottom-up detection: Many images, where human pose must be
estimated, do not only contain a single human, but several. Two approaches are generally
in use to go around this issue. The more straightforward one is the top-down approach,
where object detection tools are first used to identify the locations of all humans in the
image, which are then cropped. Top-down pose estimation algorithms simplify multi-
person pose estimation to estimating the pose of the single person at the centre of the
cropped regions. Most techniques discussed in section 2.4.3 are either single-person or
follow a top-down approach.

However, humans often overlap or interact, making it impossible to cleanly crop images to
individuals. The bottom-up approach [6, 7, 48], instead, pinpoints all skeleton parts (body
parts or joints) on the image, then uses matching algorithms to find the best combination.
As a downside, however, these matching algorithms are usually computationally expensive
and non-differentiable.

Repeated refinement: A recurring pattern in pose estimation architectures is defining
a large stage and using it repeatedly to build more accurate estimates [6, 7, 76, 109, 116].
These stages are chained sequentially, the output of one stage becoming the input of
the next. Some papers use a technique called intermediate supervision, where the same
learning target and loss function is applied to all stages.

Multi-scale processing: It is clear that processing the image at several scales is ne-
cessary for accurate human pose estimation. For example, the position and orientation
of the arms and hands provide useful clues to for the location of the shoulder. A located
shoulder, in turn, help locating the arms and hands better. Some authors [76, 102] try
to aid this process explicitly by building it into the network architecture directly.
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Output types: Human pose estimation is generally considered a regression problem
[104, 109], meaning that the target is an estimate of a set of real numbers. Yet, the
outputs of the neural networks include some variation. DeepPose [109] used this directly,
fully-connected layers to output real numbers directly from the image. Most approaches,
however, output a heatmap for each joint. A heatmap is a single channel image, with
the value of each pixel representing the unnormalised likelihood of the joint being located
at that pixel. It is generally assumed, that the generated heatmaps resemble Gaussian
distributions, so location estimate for each joint is then taken as the location with the
maximum value (argmax, mode) in the respective joint’s heatmap. More recently, Integ-
ral Pose Regression [104] argues against this approach and instead uses the expectation
(soft-argmax) of the heatmap for the pose estimate. Vector fields (represented as sets of
2-channel images) are also a useful network output to refine estimates and learn relation-
ships between parts [6, 48].

2.4.2 Tools

Many, though not all researchers release their research code and some trained model as
open source following the publication of a study or paper (e.g. [76, 102, 116]). However,
they ten are often not maintained, some are convoluted to account for different research
scenarios and difficult to run due to dated dependencies. Their purpose is research and
verification, not continued use.

Fortunately, there are also maintained libraries to contrast. These are written to be easy
to use and well documented. They are maintained, keeping track of changing libraries
and environments, so that running them is as easy as downloading (and in some cases,
compiling). Their purpose is to be used as reliable tools.

Most popular of these tools is OpenPose3 [6, 7, 98], detailed in section 2.4.3 on page 17. It
runs on a wide variety of input formats, operating systems (Linux, Mac, Windows), and
platforms (CPU, GPU, Nvidia Jetson, Unity). It uses a bottom-up architecture, and can
scale to various hardware budgets. It is maintained with regular bug fixes and occasional
feature additions. It is also trained for hand, finger, and feet pose estimation.

One of its main ‘rivals’ is AlphaPose4 [20, 56, 122], which uses a completely different,
top-down approach, based on a refined object detection algorithm detailed in [20]. It
claims better precision than OpenPose and is constantly optimised for even better speed
and results.

Another easy-to-use and well-maintained tool is Detectron25 [119]. It is a framework
3https://github.com/CMU-Perceptual-Computing-Lab/openpose
4https://github.com/MVIG-SJTU/AlphaPose
5https://github.com/facebookresearch/detectron2
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mainly based on Mask R-CNN [32], a landmark architecture for object detection and
semantic segmentation. Beyond keypoint detection, it has several other useful ‘heads’
that can be attached, like object detection, instance segmentation, or dense pose estim-
ation.

2.4.3 Some notable approaches

DeepPose [109] is the first attempt at using CNNs and deep learning to perform pose
estimation from 2014. Toshev and Szegedy interpret the setting as a simple regression
problem and solve it using 5 convolutional layers followed by 2 fully connected layers. It is
a top-down approach and regression outputs are normalised to the person bounding box.
The project demonstrates the feasibility of using deep learning for pose estimation and
its ability generalise across datasets. The accuracy (PCP) it achieves counted as state-
of-the-art at the time, but the skeletons it produces only look approximate. In order to
improve the accuracy of the estimates, they also use a multi-stage approach, where all
stages are based on the same architecture, but are trained to estimate the error of the
previous stage. The authors found that using a second stage adds a few percentages to
the accuracy, but the effects are diminished for more than two stages.

While DeepPose treats the pose as a direct regression problem, trying to estimate the
joint coordinates as real numbers, almost all techniques in the following take a different
approach. Instead they predict heatmaps for each joint. A heatmap is a 2D single-channel
image, with each pixel representing the unnormalised likelihood of the joint being located
at that pixel. The location estimate for each joint is then taken as the location with the
maximum value (mode) in the respective joint’s heatmap.

Many network architectures following DeepPose, including the notable example of Con-
volutional Pose Machine [116], build on the idea of stage-wise refining the pose estim-
ate. They use a sequence of large stages with repeated structure, but different weights.
The same target and loss function is applied after each stage (a technique named inter-
mediate supervision), making each stage rely on the previous stage’s estimate to make
a better one. In the case of Convolutional Pose Machines, the stages are composed of
large 11 × 11, 9 × 9, 5 × 5, and 1 × 1 convolutions, along with max pooling. Stages 2
and onward receive both the output of the previous stage, and the input image, with a
separate set of convolutions applied.

Convolutional Pose Machines only perform top-down processing. Resolution only
ever lowers (through pooling) and low-resolution abstractions cannot influence higher-
resolution processing in a later stage. The authors of Stacked Hourglass [76] note
that interleaved steps of top-down and bottom-up processing is necessary. Top-down
processing is achieved through repeated 3× 3 convolutions in the form of residual blocks
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[33] combined with max pooling, while the bottom-up processing is simply made of
nearest-neighbour image upsampling and further residual skip connections. This hour-
glass module is similar to the U-Net architecture [89], which is successful in the related
field of semantic segmentation. Newell et al. argue, that stacked application of this
hourglass module and using intermediate supervision helps the network to consolidate
features at different scales, leading to a better understanding of the image and estimate
of the pose.

More recently, HRNet [102] focuses on the combination of top-down and bottom-up
processing to improve results and amalgamates them into a joint ‘exchange unit ’. The
network is made up of several streams, each processing the image using residual blocks
[33], working at different resolutions. After every four residual blocks, all streams merge
information with one another in an exchange unit. In these units, higher resolution
streams pass their activations down through a set of strided convolution layers, while
lower resolution streams pass activations up through a set of blocks composed of an up-
sampling and a convolution. Intermediate supervision is dropped, as it did not bring
an improvement of performance on this architecture. At a comparable computational re-
quirement and number of parameters, HRNet outperforms previous approaches by several
percentage points and shows that in the OKS and PCKh metrics. It demonstrates that
multi-scale processing is a useful and important tool for human pose estimation.

Xiao et al. intend to put a point of reference into the increasingly chaotic landscape of
complex network architectures. Simple Baselines [121] uses transfer learning to extract
features from the image (generally a form of ResNet), followed just by a few layers of
transposed convolution to finally arrive at a set of heatmaps. It produces surprisingly
precise results, achieving state-of the art in some metrics at the time of its publication.
This architecture of feature extraction followed by transposed convolution is used by sev-
eral other works. These include AlphaPose [20, 56, 122] and Detectron/Detectron2
[27, 119], both of which are built on top of object detection architectures [32, 86].

OpenPose [6, 7, 98] is one of the cornerstones of human pose estimation. It is the
most popular and widely applicable library for 2D human pose estimation. It uses a
bottom-up approach of part confidence maps (heatmaps of body parts) and part affinity
fields (PAFs). A part affinity field is a 2D vector field, where the orientation of each
vector represents the orientation of the body part under that pixel (or 0 if the pixel
is not part of a body part). This PAF is output from the network as an image with
2 channels per body part. The network itself is generally similar to the architecture
described in Convolutional Pose Machines [116]. The input image is first processed by
part of VGG [100]. Then, the first stage of convolutions estimates the PAF and stages 2-6
estimate and refine the part confidence maps. Following the part confidence maps and the
PAFs, OpenPose uses traditional, non-learned algorithms to arrive at a list of skeletons.
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The part confidence maps are transformed into body part candidates by non-maximum
suppression and bipartite matching [52] matches part candidates to skeletons optimally
with the help of the PAFs. While more accurate architectures have been proposed, it is
packaged as a simple-to-use tool that runs on a wide variety of platforms.

PifPaf [48] furthers OpenPose’s approach of vector fields and confidence maps. It is
another bottom-up architecture and its network predicts part intensity fields (PIFs) and
part association fields (PAFs). Each joint estimated has its own PIF, which is composed
of a 2D vector field and two scalar images. At each pixel in the PIF of joint j, the vector is
trained to point at the nearest joint of type j and the two scalar images estimate the size of
that joint on the image and the confidence in these estimates, respectively. The network
also estimates one PAF for each body part of the skeleton (connection between joints). A
PAF is made up of two 2D vector fields and three scalar images. In the PAF of body part
p, the vectors in the vector fields point to the two end joints of the nearest part p, two of
the scalar images estimate the sizes of the respective joints, and the third image estimates
the confidence in the predictions of the pixel in question. These fields are then fused into
skeletons using a greedy matching algorithm. PifPaf significantly outperformed OpenPose
and demonstrated the benefit of explicitly estimating relationships and orientations of
joints and body parts.

While most previous works used the mode(s) of the generated heat maps, Integral Pose
Regression [104] instead normalises the heat map into a probability mass function using
the softmax function and computes the expectation of the joint position with respect to
that distribution. Thus it uses the soft-argmax operation instead of argmax. This has a
two-fold advantage. First, it takes more of the abstracted information into account during
inference. The heat maps freely generated by the neural networks have been shown to
be somewhat dissimilar from the Gaussian distribution [38, 61, 78], and the exact pixel
selected by argmax introduces a substantial amount of noise. Instead, the expectation
over a distribution is influenced by the entire distribution and is less prone to error.
Second, the argmax operation is not meaningfully differentiable and heatmap targets
must be generated for training. The soft-argmax operation is differentiable, so end-to-end
training may be used. Empirically, soft-argmax leads to a better pose estimate for single-
person estimation. However, it cannot trivially deal with a multi-mode distribution, such
as the one arising in multi-person pose estimation.

2.5 3D pose estimation

Beyond simply pinpointing the location of joints on the image, 3D pose estimation also
estimates a depth component for each joint, providing a full skeleton that can potentially
be used in 3D computer graphics or mapped onto the joints of a humanoid robot. This
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is a significantly more challenging task than 2D pose estimation.

2.5.1 Some notable approaches

How much harder is 3D than 2D? Martinez et al. investigated in [65], whether it
is much more difficult to estimate a 3D pose than a 2D pose. They used a decidedly
simple model to extract 3D poses from 2D pose estimates only. The results of this model
improved by over 25 % when supplied with the ground truth 2D positions instead of
positions estimated by a Stacked Hourglass model (discussed in section 2.4.3 on page 16).
This places the remaining nearly 75 % of the MPJPE error, 45.5 mm, on the estimation
of joint depth. Interestingly, when using 2D ground truth poses as input, the estimations
are remarkably smooth and noiseless, even without taking time into account as part of the
model. This implies, that if 2D predictions are sufficiently accurate and stable, estimating
good 3D positions is also feasible.

2D pose + matching: Chen et al. in introduce [11] an interesting way to provide a
baseline for 3D human pose estimation. Instead of using a deep learning based model
for the depth information, they compile a large library, mapping 2D poses to 3D poses.
During inference, they use Convolutional Pose Machines (section 2.4.3 on page 16) to
extract 2D coordinates and use them as a key to select a 3D pose from the library. The
selection is made based on the Euclidean distance between the respective joints of the 2D
pose and the projections of the library (nearest neighbour). While the results are neither
particularly accurate, nor smooth, it is one of the simplest possible methods, so it is a
basis that more sophisticated method can be compared against. In a sense, it calibrates
the error metrics used in 3D pose estimation.

Using CNNs: [57] is amongst the first presentations of using a CNN to directly es-
timate 3D joint locations. They broke the problem down to two tasks: joint location
estimation and joint detection. The first outputs a the position of each joint relative to
its parent joint as a vector, while the second predicts, whether the joint is present in the
cropping frame. Although the results on Human3.6M are inaccurate by today’s stand-
ards, the method represents a first step and a proof of concept, which can be improved
upon in later works.

Integral Pose Regression [104] by Sun et al., described in section 2.4.3, can also be
easily extended into the depth dimension. Instead of a single heat map per joint, multiple
heat maps can be generated with a depth value assigned to each. This collection of heat
maps can be interpreted as a 3D probability mass distribution for a joint when normalised
using the softmax function. Therefore an expectation of the 3D position can be computed
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in a way compatible with back-propagation. The model achieved state-of-the-art results
on Human3.6M at the time of its publishing.

2D marginal heat maps [77] recognises that 2D pose heatmaps are, in fact, marginal
distributions of the full 3D pose heatmaps. Instead of predicting many heatmaps con-
ditioned on depth as in [104], Margipose predicts 3 marginal heatmaps, for the xy, xz,
and yz planes, respectively. They also use regularisation on the shape of the heatmaps
to make them more localised. The authors implement a multi-stage estimator with in-
termediate supervision and residual blocks, somewhat resembling Stacked Hourglass [76]
(section 2.4.3 on page 16), and reach competitive results.

Monocular Total Capture (MTC) [120] uses a CNN almost identical to an older
version of OpenPose [7] (section 2.4.3 on page 17) as its first step, the difference being
that the vectors in the PAFs it generates are 3 dimensional, rather than 2. Furthermore, it
does not simply estimate a skeleton, but a parameterised full-body mesh [43]. To achieve
this, rather than estimating the pose parameters directly, as most other models do, this
model establishes a loss function and performs a form of gradient descent optimisation
to arrive at the best pose. This optimisation takes several factors into account:

• The difference between the 2D projection of the 3D pose and the 2D OpenPose
estimates

• The alignment of the body parts with their respective PAFs

• Optionally a prior about what poses are likely, learned from the training dataset

• Regularisation terms

MTC performs this optimisation not only for body pose, but for hands, feet, and face as
well.

Additionally, when temporal consistency is enabled for videos, a second pass of optim-
isation is also performed. This pass includes additional terms in the loss function. MTC
projects the frame onto the mesh, extracting the texture. Then, it uses this texture to
project the next frame’s mesh onto the next frame. MTC minimises the optical flow
between the two projected frames, along with a smoothness constraint. While the results
published are spectacularly accurate and smooth, the repeated optimisation proves to be
a very time consuming and computationally expensive procedure.

Explicit Spatio-temporal Joint Relation Learning: Sun et al. propose a method
in [103] (shortened ExplicitPose in the following) to improve accuracy by explicitly
targeting not only the locations of joints, but the relationships between them. The create
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a CNN very closely based on the Simple Baselines CNN (section 2.4.3 on page 17). Their
network has three sets of outputs:

• A heatmap for each joint, localising it on the image

• Relations to other joints. Specifically, a 3D vector field for each joint, estimating
the direction and distance to its parent joint. The impact of each vector in the
vector field is weighed during inference by the heatmap.

• Relations of a joint to itself in neighbouring frames. A 3D vector field is estim-
ated for each joint and temporal difference combination. Several configurations for
frames were tried and the best accuracy were found when estimating displacement
for all of the following distances from each frame: -3, -2, -1, 1, 2, and 3. Perform-
ance or latency was not taken into account. The impact of each vector in the vector
field is, again, weighed during inference by the heatmap.

Just like in MTC, a second round of optimisation is used to arrive at the final estim-
ate. Without the repeated rounds of texture extraction and re-projection, however, this
optimisation is much less expensive computationally.

The authors argue that this temporal relation learning is an improvement over optical
flow. Instead of trying to make use of a generic optical flow (often itself estimated by a
CNN), the network is encouraged to learn the part of the motion that is useful to making
accurate pose estimates, and do that more precisely.

Interestingly, the temporal relation learning appears to be robust to variations of frame
rate, probably because the network is shown both frames of the relation when making its
estimate.

This approach can also be compared with the VideoPose3D method (section 2.5.1).
VideoPose3D uses simple 1D convolution passing through the sequence of frames in a
video, considering some neighbouring frames at each step. ExplicitPose also passes over
neighbouring frames in a manner similar to convolution but it performs a more complic-
ated and non-linear function over them.

VideoPose3D [82] is a method for estimating 3D pose in videos based from 2D pose
estimates, rather than the video frames directly. The CNN uses 1D dilated convolutions,
arranged in residual blocks. The dilation increases the receptive field of each convolu-
tion enormously, allowing the model to quickly learn temporal dependencies with several
frames difference. Although the accuracy saturates after a few tens of frames of total
receptive field, the best performing model used in the paper has a total receptive field
of 243. The model also makes use of a form of self-supervision during training, requir-
ing estimated 3D poses to remain faithful to the 2D poses, when projected back. The
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method gives strikingly smooth results on videos under ideal conditions. However, it has
no ability to handle occlusion.

Occlusion and geometry awareness: There are approaches that try to encode prior
knowledge about the mechanics of 3D human poses with the aim of improving accuracy.
Several methods, such as [82, 127], penalise changes in bone lenght. [87] Tries to learn
to predict, what the pose would look like in different camera orientations, thus gaining
a better understanding of the 3D pose. [12] uses a cylinder-based person model during
training to understand, which joints are self-occluded in each frame. Discarding these
unreliable joints for training improves the accuracy of the estimator significantly. The
CNN uses Stacked Hourglass for 2D pose estimation and temporal convolution based
model similar to VideoPose3D for 3D pose estimation.

2.5.2 Multi-person 3D pose estimation

Most 3D pose estimation design proposals are not concerned with multiple persons being
in the source photo and expect a scene with a single person. [68] introduces a bottom-
up approach to deal with this issue (see section 2.4.1 on page 14 for the top-down vs.
bottom-up distinction). They build on OpenPose’s approach [6] (section 2.4.3 on page 17)
for PAF based estimation and matching. They create a network, which outputs location
maps : images, which give a location estimate for each pixel. They are able to build a
large amount of information redundancy into their algorithm, improving its ability to
deal with occlusion and nearby persons.

In contrast, [70] uses top-down processing. They use three separate CNNs: one to detect
persons in the image and estimate bounding boxes, one to estimate the distance (root)
relative to the camera and the size of the person, and a third for estimating pose within
the cropped bounding boxes (based on Integral Pose Regression [104], section 2.5.1 on
page 19).

2.5.3 In the wild estimation

As accurate 3D pose ground truth is difficult to obtain, most 3D pose estimators are
trained on exceedingly homogeneous data: few actors indoors in the same room, per-
forming the same actions, with little variation in apparel. This situation is likely to lead
to overfitting, where the estimator performs well on the validation and testing part of
the data, but does not perform well on unseen images and videos recorded in different
environments, i.e. ‘in the wild’. A few attempts have been focused on circumventing this
issue.
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Training data One of the simplest ways to improve the diversity of training data is
to estimate the 3D pose based on the 2D pose, rather than the image. This way, a 2D
pose estimator model may be used, which is pretrained on diverse 2D pose datasets such
as COCO. The simplicity comes with the cost, however, that the image can no longer
be taken into account to decipher the depth information. Methods using this approach
include [65], [11], and [82].

Weak/Self-supervision A more advanced approach is to make use of prior knowledge
and weak/self-supervision. It can be generally assumed that the ratio between the lengths
of various joints changes little among people. Therefore a term enforcing this assumption
can be added to the loss, allowing all output paths of the network to be trained even
on images where the depth information is not available. This approach is taken by [82,
127]. It can also be assumed that the 2D projection of the estimated 3D pose should be
the same as the 2D pose. Any deviations can similarly be included in the loss, providing
extra gradients without requiring more data. Examples of methods including this factor
are [115], [3], and [120].

Adversarial learning has also been proposed to add supervision losses to models
without additional ground truth data. [123] proposes a GAN-based architecture. It has
a discriminator model learning to decide whether the pose is estimated or ground-truth.
The estimator model is trained to fool the discriminator instead. This architecture results
in some accuracy improvement, but is still limited by the lack of diverse ground truth 3D
pose data both while training the discriminator and during the validation phase.

2.5.4 Temporal consistency

Few past works have studied the exact temporal discrepancy of in pose estimates quant-
itatively, but experience shows that results often jump and jitter a lot in a random-like
motion. This is confirmed by the number of attempts aiming to give more stable estim-
ates [3, 12, 37, 82, 120]. While the state of the art MPJPE error is decreasing with time,
the average ∼ 50+ mm per-joint error is distributed unevenly across video frames unless
special care is taken. This is acceptable for some applications, such as activity detection,
but seems visually incorrect to the human eye.

Note that the field of human pose tracking [26, 79, 121] generally refers to tracking of
persons with the goal of assigning a consistent identity across frames and not tracking of
joints with a goal of smoothness.

Recurrent neural networks have been investigated with the expectation that they
would be able to abstract some of the dynamics of the human pose and yield smooth
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results. In particular [37] uses a model traditionally used for machine translation [36,
105]. Although it did gain in MPJPE accuracy, demos show that the results are not
much smoother.

Inference-time optimisation: Some works try to improve smoothness by establishing
an error manifold over the body coordinates, which includes an inter-frame error term.
They then perform gradient descent during inference to find the best pose. [3] simply tries
to minimise the difference between the pose of two consecutive frames, achieving little
gains. MTC [120], on the other hand, performs a complicated texture extraction and
re-projection procedure over a full-body mesh, minimising the optical flow between the
re-projection and the actual next frame, as summarised in section 2.5.1 on page 20. Little
work was done to evaluate or quantify its accuracy following this optimisation, it brings
unprecedented accuracy qualitatively 6. It comes at a cost, however. [3] reports requiring
8 minutes for a 10 second video, or approximately 2 seconds per frame. [120] does not
report speed, but took approximately 3 hours per 20 second clip in my experience, or
roughly 18 seconds per frame, 21⁄2 orders of magnitude slower than ‘real time’.

Temporal convolution: Another promising direction of research aiming to stabilise
video is the use of temporal convolution, as in VideoPose3D [82] [12] (section 2.5.1 on
page 21 and on page 22). This approach computes the output of a 1D CNN over some
abstraction from each frame, usually the 2D pose coordinates. The convolution is able to
consider multiple frames at the same time and perform a non-linear function over them.
It can gain some understanding of the motion of the subject and try to correct for any
erroneous motion. This approach is simple, efficient, and effective, yielding very smooth
poses on ideal videos. Its performance tends to deteriorate, however, when conditions are
not ideal, such as when only a part of the body is visible.

Explicitly learning temporal relationships [103] tries to force the CNN to under-
stand the motion better. Requiring to estimate the movement of joints between various
frames can regularise the jitter, which cannot be accounted for by the video. In contrast
with optical flow based methods, which can fail in scenarios relevant to pose estimation
(changing lighting, non-rigid body, uniform texture), this approach is taught to learn the
motion of joints of interest specifically. Also, like temporal convolution based methods, it
is taught to perform a non-linear function over a set of neighbouring frames to improve
the estimates. Experiments in [103] show some improvement due to this method.

6https://youtu.be/rZn15BRf77E
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2.5.5 Tools

The tools publicly available to perform 3D pose estimation are not nearly as abundant as
for 2D. For many promising projects, code and pretrained networks are not made available
[12, 103, 104]. Most remaining ones are written with the goal of research and not usage.
They are not maintained and are left severely out of date. It takes a considerable amount
of time, before they can be installed and their operation can be understood. I detail my
experiences with them in chapter 4.

2.6 Human pose generation

Human pose generation, or gesture generation, solves a problem similar to human pose
estimation. Its output is a sequence of skeleton coordinates given inputs such as text
or voice. Unlike human pose estimation, where the output is constrained to strictly
correspond to the pose in the input image, human pose generators enjoy a considerable
freedom in the output. The target is to be perceived real, not to be numerically accurate.
Accordingly, it is somewhat more difficult to train and evaluate.

Human pose generators have various applications, such as conversational agents in robot-
ics, AR/VR, video games or cinematic animation. Due to its complexity, this problem
was traditionally attacked by using naive, manually designed, rule based methods. Future
machine learning based methods have a potential to be widely useful and achieve remark-
able results. There have been a few studies about their realisation very recently.

Gesture typology: The study of gestures distinguishes amongst four major types of
gestures [51, 66]: beat, deictic, iconic, and metaphoric. Beat gestures are the simplest,
emphasising certain syllables and following the rhythm of the speech. Deictic gestures
point towards an object or in a certain direction. Iconic gestures represent something
being described by the speaker, while metaphoric gestures represent an abstract idea,
such as a thumbs up. The timing and the tone of the speech is essential for beat gestures,
while semantic information is necessary for the most types. Some works described in the
paragraphs distinguish among these gesture types.

Is it a realistic goal? Wolfert et al. studied in [118], whether a current machine learn-
ing based approach to gesture generation is perceived more natural by human subjects.
They used the design from [50] by Kucherenko et al. They make use of a variational au-
toencoder (VAE) architecture: a non-linear dimensionality reduction tool made up of an
encoder and a decoder part. This is trained to abstract a latent representation about pose
sequences. Next, the encoder is discarded and is replaced with one trained to produce
the latent representation of the corresponding pose for a given voice, thus creating a path
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from voice to gestures. The design was trained on a small dataset that includes almost
3 hours timed audio and pose of two individuals. Subjects in the user study watched a
video of a skeleton performing gestures generated for a speech audio clip. The machine
learning generated gestures were preferred significantly over manually crafted, timed, and
random gesture patterns.

TED from text: Yoon et al. tried to increase the amount of training data available
to them by using TED talk videos [124]. They cited difficulties using previous work to
estimate 3D poses from the videos. This mirrors my experience. To circumvent this
issue, they discarded 87 % of their data, where conditions are not ideal, and and trained
a simple DNN to convert 2D poses from OpenPose [6] to 3D poses. The accuracy of this
estimator is not disclosed. The authors also broke up the video into separate scenes using
[8]. They published the resulting dataset, including YouTube links, scene limits, 2D, and
3D pose estimates, totalling to 14 000 shots or 53 hours of video.

To learn poses, they used a very simple RNN model that is traditionally used in machine
translation tasks [105], augmented by neural attention [5]. The model does not take
the voice or the identity of the speaker into account, only the transcript, transformed
into simple word embeddings. They simply minimised the mean squared error from
the ground truth pose and the velocity of the generated poses, while maximising the
variance of the pose sequences. The authors observed the synthesis of all four gesture
types. They also mapped the generated poses to a robot prototype. In a perception-
based study, the authors found that the proposed method outperformed random gestures
in anthropomorphism and speech-gesture-correlation, but had little gain over a baseline
method that selected a gesture from a dictionary based on text similarity. Participants
were divided, whether the motion corresponded to the speech, likely due to the lack of
audio input to the model.

Personality-based gestures from audio: Ginosar et al. recognised that personality
impacts gestures significantly. They devised a GAN architecture that uses an U-Net-
like block [89] with 1D convolutions to generate 2D gestures [25]. Personality is not
an input to the model, rather the same architecture is trained on 10 public individuals,
such as TV show hosts, separately. Altogether, they used a considerable 144 hours of
video for the training and used OpenPose-generated [6] 2D poses as target. The lack of
depth information makes it more difficult to potentially remap these poses to a robot. For
quantitative evaluation, the authors use the L1 distance and the PCK metrics (section 2.3
on page 13). This is somewhat ill-fated, as the goal of the network is to produce plausible
gestures, not exact ones. Nevertheless, the architecture was shown to learn significantly
different pose sequences for different individuals. In a perception-based study, where they
asked participants whether a gesture corresponded to the audio or not, they found that
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the generated gestures were on par with gestures selected randomly or simply based on
audio similarity.

Multiple objectives: Ferstl et al. used [22] used an RNN and GAN-based neural
network with several adversarial components to produce motion. Each adversarial com-
ponent has a different view of the model inputs and outputs and adds different penalties
to achieve overall realism. The generator takes the voice as input, tries to explicitly pre-
dict the gesture phase at the moment in question, which it then also uses to produce a
pose output. To aid their efforts, they recorded a dataset of over 6 hours of a single actor
talking and gesticulating. The datasets consists of the actor’s voice, his pose captures
by a mo-cap system, and partial hand annotations about the phase of gestures he is in
at any moment. The approach makes clever use of additional constraints to make better
use of limited data, but little evaluation was performed.

Gesticulator: In a study contemporary with my work (published after I moved my
focus to 3D pose estimation), Kucherenko et al. built a gesture generator [51] that bears
some similarities to my design. They used two inputs for their network: the text timed
and transformed to latent features using BERT [16], and the voice transformed to a
mel-spectogram image. The network outputs a pose corresponding to the end of the
input. The architecture itself is a relatively simple deep neural network, with some
added conditioning on the previous frame’s pose. Mean squared error of joint position
and velocity were used as loss. The network was able to organically (without specific
instruction) learn to generate not only beat gestures, but some iconic and metaphoric
gestures as well. With quantitative analysis, they found that the gestures generated by
all of the proposed model variants were significantly slower than the ground truth gestures.
They also performed a perception-based ablation study, observing that both voice and
text are essential inputs to their design. They also showed that the PCA dimensionality
reduction introduced in [124] is detrimental to the naturalness of the learned gestures.
Although videos show that it is clear that the model learned gesture-like motion, the
majority of participants (∼ 90 %) preferred the ground-truth pose sequences over the
generated ones.

Normalising flows: MoGlow [35] is an interesting design that uses a more novel, prob-
abilistic approach to machine learning called normalising flows [46] to synthesise control-
lable general motion, such as the motion of an animal or a human. It is also contemporary
with my work. The architecture of MoGlow is grounded both in invertible transforms
of probability distributions and in RNNs. They trained on approximately 21/2 hours of
human and canine data. Although the study is focused on walking, rather than gestures,
it is relevant nonetheless. The authors performed a perception-based evaluation, where
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they found that the output of their model was rated highly ‘natural’, outperforming some
other RNN or variational autoencoder based method, second only to ground truth mo-
tion. The distribution of produced poses, including mean and standard deviation, also
matched the distribution of ground truth poses quite closely.

2.7 DeepDream and gradient-based explanation

An active area of machine learning research is explainability. Mechanisms of deep learning
models are convoluted and models produce outputs without clues for their ‘reasoning’.
Gradient methods have long been used in explainability efforts [10, 99].

DeepDream, also called Inceptionism, is an tool for explaining CNNs, but became popular
for generating eerie images [72, 73]. It is illustrated in figure 2.1. DeepDream is generally
applied to image classification CNNs, initially to Inception [106].

DeepDream performs repeated gradient ascent. Unlike gradient descent happening during
training in which model weights are adjusted, however, this optimisation is performed on
the input image while model weights are held constant. The target of DeepDream is to
increase the mean of the activations of certain layers within th CNN. It strives to make
the CNN react more vigorously to the input image.

DeepDream is, in fact, part of a spectrum of methods that use the gradients of CNNs to
generate images about their internal ‘beliefs’ of images, as presented in a well illustrated
article [80]. These methods optimise the input image with the help of various forms of
regularisation terms. They often start from random noise, and are able to produce images
resembling desired classes (figure 2.2).

28



(a) Original photo

−→

−→

(b) Mean of internal activations of cer-
tain layers maximised

(c) Cross entropy loss of the output
against the correct class minimised

Figure 2.1: DeepDream applied to an image of a dog. Gradient ascent is performed on the
input image on the left to make it look even more like a dog. After a few iterations, this
process results in the images on the right. The CNN believes even more strongly, that both
(b) and (c) are Labradors, even more so than for (a). Images cVon.grzanka and Google,
respectively. From https://www.tensorflow.org/tutorials/generative/deepdream.

Figure 2.2: Input image optimised to increase the magnitude of activation of certain
‘neurons’ in a CNN. From [80] c Olah, Mordvintsev and Schubert, Google.

29

https://www.tensorflow.org/tutorials/generative/deepdream


3 Design

My focus for the project changed significantly over the duration of the duration of the
course. I describe the design for my initial project about body language in sections 3.1
and 3.2. Then, I detail my second project about 3D human pose estimation in section 3.3
on page 40.

3.1 Body language generation

I propose a method to generate body language using a Conditional GAN (CGAN) that
takes text, voice, and personality into account. This GAN is trained on large amounts of
video easily available of many individuals.

3.1.1 Model

The full block diagram of the body language GAN is shown on figure 3.1. The generator
is an LSTM (figure 3.3) that outputs a 3D pose estimate at each timestep. It takes three
inputs:

• Audio features: The audio of the speech provides the bulk of the timing and tonal
information. It is passed through a fast-Fourier-transformer to obtain the log-power
Mel-spectogram. This spectogram is processed using a set of 2D convolutions to
compress it to into a single fixed-size audio feature vector per timestep. This is
done similarly to [25]. A diagram of this CNN is shown in figure 3.2.

• Word features: To make use of the semantics information, the transcript of the
speech is passed into GPT-2 [85], one of the state-of-the-art language modelling
architectures. At each word, GPT-2 is allowed to see all of the words that come
before (up to an arbitrary cutoff), but none that come after. Note, that GPT-2
itself is not trained or fine-tuned as part of this project, but is used as-is. The
output of GPT-2 is used as latent features in a manner similar to how ResNet and
VGG are used in the case of images (section 2.1.4 on page 7).

Using Gentle [59], these words, and thus the word features, can be aligned to the
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audio. The features from GPT-2 are repeated in every timestep for the duration of
each word. A special token (empirically determined, such as 0 or −1) is used for
any periods of silence.

• Latent input: The latent input of the adjusts all the variation in body language
that is feasible for the same text and voice (e.g. how wide, vigorous, or serious
gestures are and what kind of gestures the speaker uses to emphasise their point).
Therefore, this input is called latent personality for this project. It is a vector
with its components randomly drawn from a Gaussian distribution. It is constant
for each person and does not very with time.

Within the generator, the estimate from the previous timestep is also propagated as an
input to the current timestep.

The discriminator is also an LSTM, shown in figure 3.4. It receives the audio and the word
features like the generator, as these are the conditioning parameters of this CGAN. It also
receives the pose estimates which it must evaluate. The source of these pose estimates
is selected at random: they are either produced by the generator, or are estimated from
the speech video and used as pseudo ground truth. The discriminator tries to predict at
every timestep, whether it is seeing real or generated poses.

The Wasserstein loss setup is used for training [2], with an additional L1 term that gives
helps the generator discover what gestures look like, while simultaneously ensuring that
the generated gestures keep relatively high fidelity to the ground truth gestures. The
models are trained using SGD, or a variant such as Adam [45].

3.1.2 Dataset

Deep learning and GANs in particular excel in regimes with massive datasets. Therefore,
this body language generator is trained on as much video and as many individuals as
possible.

TED is a popular series of short conference presentations of a diverse range of topics. It
was selected as the initial source of the data, for several reasons:

• It is easily available through on internet [23].

• It is of high quality. Speakers are well prepared, speak clearly, and visibly gesticulate
to enhance their point. Videos are curated, some are even manually transcribed.

• Large quantities are available. To date, approximately 30 days worth of TED talks
have been filmed, presented by nearly 3200 unique individuals.

This dataset can be easily extended with the much larger but less curated TEDx [24],
since it has a very similar format. TEDx has potentially 4000 years of video from more
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Figure 3.1: Architecture of the body language GAN. Boxes with depth represent time-
series data. Green blocks are available from the ground truth dataset. Red blocks are
randomly generated. Yellow rounded blocks are pre-trained tools that are used as-is,
and are not themselves within the scope of this project.
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Figure 3.2: Audio CNN network design. F is represents the length of a timestep, k is a
constant, depending on the sampling rate of the audio and the window size of the FFT.
Naudio, in is the number of Mel filterbanks produced by the FFT. Naudio, out is the size of
the audio features input into the GAN. The best output size, number of convolutional
blocks, and number of channels within the convolutions can be found empirically. Note,
that the convolutional kernels and the sizes of the pooling windows do not need to be
square: rectangular kernels and windows may also be used in order to have different
fields of view in the temporal and in the spectral dimensions and to arrived at the desired
output size.
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than 150 000 speakers1. This is more than what could be processed with reasonable
resources but the benefit gained by adding tens of thousands of further speakers likely
also diminishes.

It is assumed that there is only one speaker in each video. Therefore, videos longer than
20 minutes are discarded.

Where transcripts are not available, automatically transcribed subtitles from YouTube or
Google’s Speech-to-Text transcription service [30] can be used. Using metadata from the
video and naïve dictionary search, foreign-language presentations can be excluded.

The videos are cut into scenes using PySceneDetect [8], then passed into a state-of-the-art
3D pose estimator, that provides the pseudo-ground-truth pose of the speaker. Scenes
that are below a threshold length, where a no pose is recognised, or where the pose is
static (the slides are shown, rather than the speaker) are discarded.

The small portion of the remaining data is held out to form the validation set, while the
rest can be used for training.

3.1.3 Potential variations

Several simple variations can be devised for this generator that can be implemented
and tested using the same setup and may or may not alter the model’s performance.
The individual benefit of each of these modifications can be evaluated empirically using
ablation studies.

Context is important for gestures. Some gestures include preparation [22], while others
are influenced by words that follow. The base architecture presented in section 3.1.1 is
causal, i.e. it only considers past context. Causality is advantageous in certain circum-
stances: in robotics or video game applications, the response may be improvised and the
speech may only be synthesised seconds ahead of time or even less. Depending on the
application, a compromise may be found by making the generator network look ahead by
only a limited amount.

There are two straightforward ways to include future context in this architecture. First,
the sizes of the convolution kernels in the Audio CNN can be tuned to increase or decrease
the network’s field of view in the temporal dimension. This method is useful to include
immediate future context about the next few milliseconds. Second, the context can be
given to the network explicitly. If ∆ is the maximum look-ahead time permitted, input
text up to t+ ∆ may be passed through a second GPT-2 block at time t. Features from

1There are over 150 000 videos on the TEDxTalks YouTube channel. The last ∼ 5000 videos have an
average duration of 13 minutes each.
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this look-ahead GPT-2 can given to the generator as an additional, fifth input (not shown
on figure 3.3).

More latent input: Constraining the latent input to the generator to be constant with
time could be too restrictive. An addition latent term could be added as input to the gen-
erator, that changes on each timestep. This could better account for the full extent of the
gesture distribution even better. However, it would probably also somewhat undermine
the body language understanding project (section 3.2 on the following page).

Dropout [101] (also used by Yoon et al. and Ferstl et al.) and input dropout in par-
ticular is a technique that can improve the robustness of networks to limited amounts of
erroneous data. In GANs, it can also form a supplementary latent input [117]. It can be
expected to have a beneficial effect to the performance, though the noise in the generator
could possibly also degrade naturalness.

Attention [5] (also used by Yoon et al.) is a simple addition to the network. It can
emphasise inputs from timesteps it learned as important and diminish the significance
of timesteps that are less useful, making a more informed estimate. It would likely
improve the performance of the generator and the discriminator with little additional
computation.

More adversaries: Ferstl et al. presented a GAN that used several adversaries to
train its generator. The ‘motion realism discriminator’ is already part of the current
model. Other adversaries, such as the ‘minibatch discriminator’ and the ‘displacement
discriminator’ are easy and useful additions. Furthermore, it has been shown in [71],
that using an ensemble discriminators with the same architecture can further improve
performance.

3.1.4 Discussion

Yoon et al. [124] also used TED talks as their training dataset. However, they discarded
the vast majority of their data and could only use some ideal scenes. This was caused, by
the lack of a reliable pose estimation tool. As it turns out, I was not able to circumvent
this issue either. However, using only 13 % of the data would have a strong adverse
effect on the performance my project: all available data must be utilised efficiently in
order to train the latent personality accurately and make the second part of the project
(section 3.2) feasible.

Multiple other authors attempted using GANs for generating human pose sequences
[22, 25]. However, they only used textual or audio input to the generator, not both.
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Furthermore, they omitted the latent input, which helps GANs generate non-deterministic
outputs and learn output distributions.

Some studies ([124] and [22]) include future context using a bidirectional LSTM [31]: an
architecture that has a second LSTM sequence, starting at the end of the sentence and
working backwards. This approach sacrifices the causality of the network and makes it
more complicated to generate poses to improvised inputs.

Some works use an L2 loss as a guide for the pose generator [22, 51, 124], while others use
L1 [25]. Both have been shown to be effective for the regression of human poses. However,
L2 penalises large deviations from the target much more heavily than L1, which penalises
large and small deviations equally. This is undesirable in a setting that tries to provide
the generator some flexibility in the exact pose. L1 is also shown to work better in pose
estimation [104].

The dataset used can also be extended to different data sources, such as lectures, news,
or talk shows. However, it is possible that that would be detrimental to the performance
of the model, as these videos have a different presentation format and the speakers may
gesticulate somewhat differently.

An improved policy to include videos that show a series of speakers sequentially would
be to use a state-of-the-art face matching CNN to identify and potentially re-identify
speakers. Face matching would also be useful if videos with more than one individual
were used, studying gestures of conversation. However both of these improvements are
outside the scope of this project.

Unlike BERT [16] used in the contemporary Gesticulator [51], GPT-2 is autoregressive,
which means that it can be easily applied word by word, without looking ahead beyond
the current word. This is important, for robotics applications, as the text may not be
known very much ahead of time. GPT-2 is also trained on a much larger text corpus.

3.2 Body language understanding

By training the GAN on a large amount of data to synthesise body language, the net-
work is also trained to have a good understanding of gesture space and the correlation
of personality and body language. The generator part may be used for a secondary
purpose: to understand body language present in videos. The technique for this highly
resembles the gradient methods discussed in section 2.7 on page 28 and it is illustrated
in figure 3.5.

The generator is repeatedly evaluated on small segments of a speech. These segments
may be part of the training set. From these, the generator produces 3D pose sequences.
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The L1 error compared to the pseudo ground truth pose sequence is computed. Using
gradient descent, the latent personality is adjusted to diminish this L1 error, while keeping
all model parameters constant (frozen).

Some additional terms may be beneficial. Maximise intermediate activations of the net-
work (like DeepDream) may produce more typical, emphasised results. It may also ne-
cessary to add a regulariser term that keeps the latent personality within a likely region
of the latent personality distribution.

The latent personality is initialised for gradient descent with the latent personality used
for training the generator if the video clip is part of the training set, or with an arbitrary
random vector otherwise.

The above procedure produces latent personality values that are most likely to gestic-
ulate with the exact gestures seen in the video segment, according to the perception of
the network. By analysing changes over time of this inferred personality for the same
individual, their behaviour can be studied. Are they nervous or excited at the beginning?
Do they become more jovial at some part of the speech? How do they react to the clap
of the audience? Similar questions can be answered by correlating the inferred latent
personalities with latent personalities of real individuals.

The inferred latent personality can be analysed by calculating its distance to latent per-
sonalities of a few, manually selected individuals. However, these vectors are expected
to carry a substantial amount of noise, making analysis difficult. A more advanced ap-
proach to this comparison is to train a small DNN classifier on latent personalities of few
manually selected real individuals. For example, by selecting a few dozen generally jovial
speakers and a few dozen serious speakers, a classifier can place an inferred personality
on this spectrum.

The generator is trained in section 3.1 with a constant latent personality over time for
each individual. The speaker has slight variations and adjustments in body language,
but does not change character completely. The latent personality used for training is the
mean character of the individual over the few minutes of the video.

Gradient optimisation is a slow and computationally expensive method. The target of this
technique is not real-time use. Instead, studying reactions and adjustments in character
of real individuals can pave the way to create improvising robotic systems that adjust
some parameters of their personality on-the-fly to appear more natural.
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Figure 3.5: Block diagram of the body language understanding model. It is simply an
alteration the body language generation architecture from figure 3.1. Boxes with depth
represent time series data. Grey blocks are only evaluated forwards, gradients are not
propagated back through them. Red arrows show the propagation of the gradient.
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3.3 3D pose estimation

After I recognised that the project in sections 3.1 and 3.2 is infeasible due to the lack of
a reliable 3D pose estimator, I shifted my attention to this issue.

3.3.1 Dataset

The pose estimator is trained on as much data as available to improve its generalisation
to unseen scenarios. Primarily, it is trained on Human3.6M [40], Total Capture [110],
Total Motion dataset [120], and MPII-3DHP [67]. These are all mo-cap based indoors
datasets with 7.7 million frames of 56 actors and actresses from 4 different rooms and
lighting conditions.

The 2D COCO pose dataset is also used from semi-supervised training to improve in-
the-wild accuracy.

Data augmentation

Data augmentation is a crucial part of this design aiming to be robust to a wide range
of scenarios and imperfections.

Texture: MPII-3DHP is filmed in a way permitting the augmentation of the back-
ground and the actors foreign textures. A random variation of textures are applied in
this design, as recommended by [67].

Random crop, rotate & flip is a standard data augmentation technique used by
many CNNs. Input images are rotated with a small but random angle (e.g. −45°–45°)
and then cropped to a random size such that a at least a few joints of the person is still
visible. Unlike some other works, this setup allows parts of the person to be cut off.
Specifically, the dataset is augmented with images, where the legs and/or one arm have
been cropped and only the bust is visible.

The pose labels are transformed accordingly. Any joint that ends up outside the image
after the transformations is marked as such, so that its position error can be discarded.
Furthermore, the image and the pose are flipped around the vertical axis with a 50 %

probability.

Occlusion and self-occlusion: Small parts of the image are hidden by rectangles of
random colours to make the model robust against occlusion by objects. Any joint that
falls under a rectangle is marked as occluded.
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Joints in Total Motion are marked for self-occlusion. For the other three 3D datasets,
the ground truth 3D poses and the ‘cylinder man’ model from [12] are used to mark
self-occluded joints.

3.3.2 Model architecture

The model architecture is made up of two main phases: the backbone and the heads.

EfficientNet [107] is used as a backbone. The architecture taps into the activations at
the output of stages 5 and 7 of EfficientNet. Resolution of the latter stage is increased
using a transposed convolution to equal the resolution of the former stage. The two
are concatenated in the channel dimension, and resolution is increased once again with
another transposed convolution. The result forms the input to the heads.

There are three heads used in collaboration in this design. All of them use the stages laid
out by OpenPose [6]. This provides sufficient complexity and opportunity for intermediate
supervision.

The joint head consists of two OpenPose stages. It outputs a 2D heatmap and a 1D depth
map for each joint. Together, this is (2 + 1) × |joints| output channels. The heatmap
estimates the likelihood that the respective joint is at under a pixel, while the depth map
estimates the dept of that joint, relative to the skeleton root.

The spatial relation head consists of four OpenPose stages. It outputs a 3D vector field
for each pre-defined joint pair, thus requiring 3×|joint pairs| output channels. It predicts
the vector to pointing to the location of the second joint in the pair given that the first
joint is located at the current pixel. A the most straightforward set of pairs is parent →
child.

The temporal relation head is a little more involved. It considers a set of frame pairs.
For illustration, a suitable set of pairs is {(−8, 0), (−4, 0), (−2, 0), (−1, 0), (1, 0), (2, 0),

(4, 0), (8, 0)}, where the numbers represent the distance in frames from the ‘currently
processed’ frame. This allows several relevant scales of motion to contribute to the
estimate. However, this can be adjusted based on the maximum permissible temporal
field of view. Pairs with positive indices can be dropped if a causal system is required.
First, the backbone outputs from the last transpose convolutions of the two frames in
a each pair are concatenated in the channel direction. Then, four OpenPose stages are
computed on the combined features, which output a 3D vector field for each joint and
temporal pair (i.e. 3× |joints| × |temporal pairs| channels). They are trained to predict
the displacement of the same joint between the two time steps of the pair.

The next step is to combine the information inferred in these heads into a pose estimate.
This is done by combining the separate estimates of each head.
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The spatial estimate of the joint head is the spatial expectation of the heatmap. The
depth estimate is the expectation of the depth map, weighed by the heatmap.

For the estimates of the relation heads, the vector fields in each relation are weighted by
the heatmaps of the parent joint in the relation. The expectation is calculated, resulting
in an estimated vector displacement for the relation. To form a location estimate for
the head, this displacement is added to the estimated location of the parent joint in the
relation. The root joint is defined to have a depth of 0.

The final estimate is a linear combination of the estimate the joint, the spatial, and each
each temporal head.

Training losses

The joint depth, spatial, and temporal relation heads are trained explicitly using the
ground truth vectors of their respective relations. Heatmap heads are trained implicitly,
through the regression loss [104].

Heatmap pixels near a joint have a stronger clue about the location of the joint than pixels
further away. In order to train the networks to produce localised heatmaps, the Jensen-
Shannon divergence of the heatmaps from a Gaussian distribution heatmap, centred at
the ground truth location and a variance of 1 pixel is added to the loss [77].

Weak supervision is applied with a small weighting, penalising the changes in ratios of
bones.

Intermediate supervision has been shown to have a strong beneficial effect on accuracy.
Accordingly, multiple identical OpenPose modules are given the same target and are
included in the loss. They are expected to provide more and more refined estimates.

Terms due to joints that are not visible on the image (occluded or self-occluded) are not
included in the final loss, as it was shown in [12] that including them has a significant
detrimental effect to accuracy.

3.3.3 Discussion

Data augmentation beyond basic random rotation, cropping, and flipping is not per-
formed in most works, because they are expected to perform well only on the validation
set of full-body datasets. It is, however, crucial in a tool that is expected to work in a
variety of scenarios.

EfficientNet: ResNet [33] and VGG [100], used in the majority of transfer learning
based CNNs, were proposed in 2016 and 2014, respectively. Significant progress has
been made since. EfficientNet can produce better features for an order of magnitude
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less computation. While it has some academic value to compare works using the same
backbone, it is desirable to use the state of the art when building a tool for accuracy.

Heads: Several near-state-of-the-art pose estimator works (e.g. [104] and [103]) include
exciting innovations, but are likely limited by the head they use: simply two transpose
convolutions following the backbone, like Simple Baselines [121]. This is a decidedly
simple architecture for 2D pose and may not be able to encode a sufficient complexity for
accurate 3D pose estimation. Accordingly, the presented design uses more convolutions
in the form of OpenPose blocks following the transpose convolutions, allowing it to arrive
at a more precise estimate.

[104] has shown, that using the expectation of a likelihood map instead of the mode
enables it to consider more of the information encoded in the map and return a better
estimate. Therefore, expectation is used extensively in this implementation.

The overall output structure was most influenced by ExplicitPose [103]. The use of
OpenPose blocks is similar to Monocular Total Capture [120], which uses the older Con-
volutional Pose Machine block [116].
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4 Evaluation

4.1 Body Language

4.1.1 Progress to date

Dataset

I began the project by assembling the dataset. Using a simple script and the youtube-dl
project [125], I downloaded over 100 days worth of TED and TEDx talks.

Pseudo ground truth poses

I then evaluated several 3D pose estimation tools. Due to the unmaintained nature of
these projects, it took days for each to fix all version issues and bugs and figure out, how
to run them. Here I discuss my experience the most relevant projects I attempted.

There are two main issues generally encountered: inconsistent poses and jitter. Incon-
sistent poses happen when the estimator confuses parts of two individuals or of the same
individual. This is less common. Jitter is a more common issue, present in nearly all
estimates, particularly when the scene is not ideal. In this error mode, the estimator
estimates the rough area of joint correctly, but misses the exact joint location slightly.
At the scale of the skeleton, this is an error on the order of a a few centimetres. However,
the direction of the error varies from frame to frame, based on small random details and
noise in the input frame. When the estimators are applied to videos, these inconsistent
errors create a sense of shaking and make it more difficult to discern gestures purely from
the resulting skeleton.

Though an interesting idea, Margipose [77] was not able to give stable estimates. It
moved a lot between frames and struggled significantly both with cropped bodies and
people in the background. Significant jitter is also present.

Hossain et al. reported good results in their paper [37]. However, pose estimates appear
unreliable and unstable in their demo video.
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OpenPose [6] and AlphaPose [20] produced good estimates of the 2D poses. Jitter was
still present, but not as much as in 3D pose estimators. However, these tools do not
output depth information, rendering the body language GAN unable to learn the full
3D skeleton, making generated poses more difficult to remap to a robot or a 3D model,
resulting in a less useful project.

VideoPose3D [82] has looks very smooth in demos. However, I soon discovered that
it only works on full body images. This is likely because it does not take the image,
occlusion, or joint confidences into account in its convolutions. When part of the body
is occluded, the rest of the joint estimates become unreliable too.

Monocular Total Capture [120] was the most promising tool due to its amazingly stable
demo video. Unfortunately, it rendered all-black frames once I managed to get it running,
which I was not able to fix. However, it became apparent that it is a very slow method,
taking 3 hours for 20 second video segments. This is too slow for a large dataset, making
the method infeasible.

Unfortunately, there was no code published for ExplicitPose [103] and Occlusion-Aware
Networks [12], therefore I could not evaluate them.

4.1.2 Metrics

The discriminator of a GAN can be evaluated by computing, what percentage of its input
it is able to correctly classify as real or fake. The generator can be evaluated by computing
what percentage of its outputs manages to fool the discriminator. By withholding a small
portion of the dataset from training, the generalising ability of the discriminator can also
be validated.

A simple evaluation strategy to measure the similarity between th ground truth and
the generated gestures is to cut up the gesture into smaller, sub-second chunks. These
chunks can be considered rigid-bodies and they can be slid/stretched in time slightly to
create a better alignment without reordering (for example through Procrustes analysis).
Similarity between pose sequences can be measured after the realignment. This gives
a more robust estimate than a simple L1 difference. In a way this metric is similar to
PA-MPJPE of 3D pose estimation.

To further evaluate the generator, a user study must be conducted, similarly to [25] or
[124]. A good venue for this is Amazon Mechanical Turk. Subjects watch a stick figure
perform the gestures generated by the model, along with the audio. They are then asked
to grade the performance on several axes, loosely following [124], such as: Natural–Fake,
Artificial–Lifelike, Rigid–Elegant, Like–Dislike, Jovial–Serious, Extroverted–Introverted
or gesture-speech correlation. They model can be compared against random and nearest-
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(a) Estimate from VideoPose3D in a cropped setting. While the incor-
rect legs could be removed through a combination with 2D methods,
this setting also impacts the accuracy and smoothness of other joints.

(b) A near perfect estimate from VideoPose3D in a rare, ideal scene

(c) Margipose is not robust
to images that do not include
the entire body. It also has a
limited field of view.

(d) SPIN [47] (not listed on
the previous page) is also not
robust to cropped images.

(e) A good 2D only estimate
from AlphaPose. Some jitter
is still visible in a video.

Figure 4.1: Example frames from the outputs of some of pose estimators available online
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neighbour baselines. These baselines can also be used to filter out uncommitted subjects.
By varying the latent personality, its effect can be quantified

If Stevie [60] is available, particularly if he gains lower arms, joints can be remapped
and he can also be used to augment the evaluation process. Subjects watch a speech
performed by Stevie, that is spoken by a famous person, with that person’s face on
Stevie’s LCD. The gestures performed are either the real gestures used, another person’s
gestures, or generated gestures. Subjects are asked to rate, whether they believe it was
the real speaker’s body language.

The inferred latent personality is likely to be very noisy. Therefore a frequency space
analysis, looking for low frequency variations is necessary. Furthermore, the data char-
acterising of latent personalities in the Amazon Mechanical Turk study can be used to
train a small DNN that classifies latent personalities along some of the above spectra.
Running this DNN on the inferred personalities and observing changes in character along
time is the main form of evaluation and the target of the body language understanding
project.

4.2 3D pose estimation

4.2.1 Progress to date

Throughout the project, I used Python and the Pytorch deep learning framework [81]. I
built an easily configurable framework that allows for different backbones and heads. I
built a dataset reader for the Total Motion and the Human3.6M datasets. I implemented
all necessary components of the network and the main loss functions. Weak supervision
and intermediate supervision are not yet implemented. I created some tools to visualise
heatmaps, vector fields and pose estimates generated by the network. However, not all
bugs have been fixed yet, resulting in inaccurate outputs.

4.2.2 Metrics

The model is evaluated on 3D datasets using the standard MPJPE metric. PA-MPJPE
is also evaluated, but that is not the main focus of the project. In Procrustes analysis,
the skeleton is realigned on every frame, presenting for an opportunity to absorb some of
remaining the jitter.

Calculating MPJPE on in-the-wild images and videos is not possible, as 3D ground truth
is not available. The 2D pose can be evaluated on 2D datasets using the OKS and the
AP metrics.

The weak supervision signal can also be used, computing the variance of the ratio between
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lengths of various pairs of joints of all people in the dataset, and also of a set of distinct
individuals. The TED dataset from the gesture generation project may be practical for
this purpose.

One of the goals of this project is to create a tool that is robust to scenarios like cropped
images or occluded joints. Accordingly, the tool is also evaluated, when fed the same
random augmented data as used for training in section 3.3.1.

The temporal stability is also evaluated on videos from the 3D datasets. The velocity of
a joint can be calculated by taking the difference between frames. Its acceleration can
be calculated using second order differences, i.e. using the difference between adjacent
velocities. To evaluate the temporal stability, the mean and variance of the difference
between the estimated and the ground truth velocities and accelerations. These measures
characterise the erroneous velocity and acceleration.

Another way to evaluate jitter, which can be done without ground truth poses, is to
modify the input frames. These modifications can be diverse, such as: an imperceptible
amount of additive Gaussian white noise added to the image, shits of only a few pixels,
or rotations of only a few degrees. The network will react to these conditions slightly
differently each time, showing any frailties. The jitter can be quantified by the variance
of these estimates.
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5 Conclusion

The contributions of this work are threefold:

1. It proposes an architecture to learn character-dependent body language, that is in
line with progress from previous research. It also provides a brief survey of this
research and some novel methods for evaluating the architecture’s performance.
The task requires enormous amounts of data, particularly to make sub-project 2
feasible, but an easily available source of this data is also pointed out. This study
shows the opportunity present in the quantities of data available today. It also
recognises and details the limitations of currently available tools that prevent the
learning from being carried out to its full intended extent.

2. It presents a way to solve the inverse problem of learning character-dependent body
language: inferring character based on body language. This is done without any
explicit supervision data being available for it. Rather, it takes advantage of a well
trained model from the first sub-project. To the best of my knowledge, such a
project has not been attempted before. Getting this to work well can pave the way
to creating improvising and character-adjusting agents in video games and robots.
For this it requires high quality tools to extract robust data from videos and a good
model for sub-project 1.

3. After recognising a gap between the required and available 3D pose estimation
tools, a method is presented for training a more robust tool by incorporating good
practices from state-of-the-art studies. These practices and studies are summarised
in a short survey. This work also proposes a set of evaluation measures that can
not only compare it to other works, but measure, weather the targeted increase in
robustness and joint stability has been achieved.

The outset of this work targeted teaching Stevie social skill, focusing on body language.
While the first and and particularly the second sub-project initially seemed to be on
the edge of what is feasible, it turned out to be extremely ambitious, perhaps too much
so for the constraints of this course. This is in part, due to the overestimation of the
performance state of the art of 3D human pose estimators. 3D pose estimation was taken
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as a nearly solved problem, but it was shown that more work needs to be done. The
project was re-targeted to address this issue and significant progress has been made in
the very limited time frame that was left as part of this course. More work remains to
be done before the issue can be considered solved.

5.1 Future work

5.1.1 Body language

The project was hindered by the lack of a robust and stable 3D pose estimator. Once
such a tool is ready, the GAN can be trained and evaluated. Evaluating, how capable
the architecture is of learning idiosyncrasies and using it in further projects that enable
improvisation and adjustment of character would be an exciting outcome.

While RNNs, including LSTMs, have shown excellent performance on sequential data,
they have more recently been outperformed by Transformer-based non-recurrent models
in language modelling [16, 85, 113]. Dilated temporal convolutional networks, demon-
strated in VideoPose3D [82], for example, have also shown surprisingly good performance.
It would be an interesting direction for future work to try out these architectures for hu-
man pose generation.

Normalising flows, used successfully in [35], is a recent innovation that excels at learning
probability distributions in a self-supervised manner. It is a machine learning framework,
that is computed somewhat differently, compared to deep learning and GANs. Since this
project tries to learn a probability distribution of gestures and personalities, porting it
to normalising flow would be an exciting future path.

5.1.2 Pose estimation

Most important for the pose estimator is to bring it in line with the design laid out in
section 3.3. It must be quantitatively evaluated, then published so that other researchers
and engineers can benefit from it. Extending it to also include hand coordinates would
be relatively simple, but highly beneficial. Extending the estimator for multi-person
estimation and pose-root estimation are non-trivial, but existing work details, how it can
be done.

It would be an interesting way of evaluation to train a small CNN on the outputs of
specific joints. This CNN is optimised to predict the error the estimator will make in
its estimate, based on a small cropping around the joint. This could demonstrate, how
much of the jitter is purely random, and how much is a deficiency in the model.

Inference time optimisation, though results in stable images, is a very expensive
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operation and must be avoided for a near-real-time application. However, studies that
used it so far have relied on inefficient, single-core CPU implementations. It would be
interesting to try an efficient GPU implementation, and compare the accuracy vs.
compute time trade-off.
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