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1 Introduction

Hypothesis

To Verify the Field Extrapolation Method’s Accuracy in Rural Terrain Profiles and Investigate
Applicability to Urban Profiles.

1.1 Electric Field Integral Equation

The Electric Field Integral Equation is the foundation of the Field Extrapolation Method. It is
this equation that the method aims to accelerate within acceptable accuracy bounds. It is the
first step in going about testing the hypothesis, as it forms a ground truth for the Field
Extrapolation Method. In testing it with Forward Scattering and Forward-Backward methods,
as well as calculating the numerically exact solution through MATLAB’s Conjugate Gradient
Squared function, ample values are obtained against which to weigh the success or failure of
the Field Extrapolation Method, and subsequent exploratory variations. An approximate
method for interpolating the terrain profile was deployed as it was easier at the time and
generated accurate results, but it would prove to be one approximation too many for the Field
Extrapolation Method to bear. A visualisation of the problem can be found in Appendix
A.1.

1.2 Field Extrapolation Method

The Field Extrapolation Method seeks to improve the speed of execution of the Electric Field
Integral Equation by approximating a constant value K for groups of points, and using that
multiplied by the group centre’s scattering radiation to approximate the scattering from all
points of that group. An initial sample value 5 was given for debugging the method’s function.
Variations of this method included testing different values for the constant value K, calculated
by stricter and looser interpretations of its formula, and dropping its constant value for a
per-iteration value based on the angle of incidence made by scattering group to receiving
group.
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1.3 K

The calculation of K was investigated as initial results differed from the sample value 5. The
function was altered in several ways, with the most extreme alteration stripping away its
constant nature and observing the impact of the incident angle. Angle inclusion was not
expected to improve results, and it was included with an eye to testing urban environment
applicability. A visualisation of K can be found in Appendix A.2.

1.4 Terrain Profiles

The methods are first tested on a gently undulating rural terrain profile, then applied to a
mock urban terrain profile. The gaps between the 10 metre measurements were first
interpolated across X only, but the urban profile simulating a pair of buildings demanded a
more accurate interpolation method, as interpolating across x alone resulted in vertical walls
being missed. It would become plain that each point along a wall needed to be accounted for.
The Electric Field Integral Equation and the Field Extrapolation Method (including and
excluding angle) were deployed on the both terrain profiles.

1.5 Rural with Strict Interpolation

Out of curiosity and dissatisfaction with the Forward-Backward version of the Field
Extrapolation Method’s performance, the more accurate terrain interpolation method was
used, and the Field Extrapolation Method re-examined. A new ground truth was necessary, as
comparing strict terrain Field Extrapolation Method to loose terrain Electric Field Integral
Equation would be unscientific, so the Electric Field Integral Equation was also re-run.

1.6 Conclusions

The Field Extrapolation Method turned out to be a good fit for gently undulating rural
terrain. The Forward-Backward showed convergence in the end, but is much more sensitive to
input errors than the Electric Field Integral Equation and needs to be handled carefully. What
Forward-Backward promises with the Field Extrapolation Method is the provision of further
time-saving measures can be gained while maintaining good accuracy.
The incidence angle turned out to be of no import in the best case scenario, and starkly
detrimental in the worst, and the Field Extrapolation Method with and without
Forward-Backward is just as unsuitable for urban environments as the authors of the Electric
Field Integral Equation and Generalised Forward-Backward Method both concede; the
methods perform poorly where back scattering is significant and are unfit for purpose.

2



2 Literature Review

2.1 Cognitive Radio

Cognitive Radio devices are those which are able to sense their environment and make decisions
based on their sensed data, regulations to abide by (which frequencies are strictly off-limits and
which have Primary Users which, when no Primary User transmissions occur a Secondary User
may operate), the device’s own policies (battery power and memory capacity restrictions).

One of the reasons for this is the relatively rare periods of transmission in a frequency band by
the incumbent Primary User, with the paper [1] citing an actual usage of 5.2% for frequency
bands below 3 GHz in the United States. A Cognitive Radio is one which can detect when the
incumbent is or is not transmitting, and will be able to exploit the fallow spectrum for its own
purposes while avoiding interference with the incumbent.

The network support comes from Radio Environment Maps. These can be local (region around
the user device) or global (the geographic region a user device is in such as Dublin City).
Global Radio Environment Maps can be aggregated from the local Radio Environment Maps
within its boundary. The Radio Environment Map is an abstraction of real-world radio
scenarios, characterising the radio environment of a Cognitive Radio in several domains
including geographical features, regulations and policy from which Situational Awareness is
enabled at the device. It is a spatio-temporal database and supports exchanges between local
devices and the network to maintain concurrency between all local Radio Environment Maps
and the global Map.

The text [2] states Situational Awareness, key to several features of Cognitive Radio such as
knowing the radio scenario, intent of user, regulations and the device’s power supply, is
obtained by direct observation, inference from network support and by combining analysis of
local terrain propagation models with existing database structures.

Regarding observation, the cognitive radio device needs to have information about the radio
propagation characteristics of the region the Map describes. The characteristics include those
of large scale fading (path loss and shadowing). These can be effectively modelled by software
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using terrain profiles of two dimensions (3 if small scale fading effects like multipath are to be
included). The software models can be at least as accurate as empirical models, and can be
executed remotely or in the theatre of operations. As updates between local and global Maps
can be achieved, if the terrain profile of an area changes, a new propagation model can be run
and its output propagated across the network as an update to the global and to particular
devices’ local Radio Environment Map(s).

[2] describes how a legacy radio can leverage the Radio Environment Map to achieve some
characteristics of Cognitive Radio, such as by the network being aware of the device’s location
and the interference patterns at that location. It can then instruct the radio to use a different
PHY and MAC layer where necessary. The availability of network support enables this, and it
augments a purpose-built Cognitive Radio’s capabilities. With a Radio Environment Map, a
Cognitive Radio can predict radio performance in addition to its own awareness and learning
from its own actions. It then can update the Radio Environment Map after it makes or
schedules its own decisions.

5G brings challenges to the Cognitive Radio field, as it incorporates a massive and
heterogeneous superset of the 4G network. Cellular telephones will be in the same network as
devices like IoT sensors in smart buildings, or those supporting vehicle-to-anything networks.
The paper [4] details the need for Radio Environment Maps to be kept up-to-date in a timely
manner to efficiently support this vast network. It states intensive interpolation processing,
transmitter localisation, change in measurement-capable devices, and changes to propagation
models should pass to Radio Environment Map in the core network, with it occurring in local
nodes on periodic, on-demand, or emergency bases. The utility of a fast and accurate
propagation model is apparent with the emergent network.
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2.2 Electric Field Integral Equation

The Electric Field Integral Equation is a means of modelling radio propagation through a
terrain profile, accounting for the large scale fading effects of path loss and shadowing. [6]
states that using Integral Equation-based methods for modelling radio propagation was out of
favour in the 1980s and 1990s due to the effectiveness of empirical methods, and the high
computational requirements exceeding what was readily available.

In [3], an integral equation is derived for use with gently undulating rural terrain, and is
deliberately ignorant of back scattering and other reflections from objects. It is so because the
fast Rayleigh distributed fading arising from these reflections is “impossible and undesirable to
predict in detail”. The integral equation is considerate of slow, large scale fading from path loss
and shadowing. back scattering was tested numerically and shown to have a negligible
contribution from regions beyond the receiver, while side-scattering can be ignored for the
narrow band signals under experimentation.

The paper justifies the Perfect Electrical Conductor assumption by stating for vertical
polarisation it corresponds to a reflection coefficient of -1, which happens to be the case in
practice as the grazing angles are so small that the reflection coefficient is almost -1. It notably
states that the horizontal polarisation is approximately equal to vertical in the microwave
region (1 GHz to 300 GHz) where the Norton ground wave can be ignored.

The paper also states that integral equation methods have been tried before. In the 50s,
Hufford derived an equation based on the Green’s theorem, but variations of it resulted in
numerical instabilities above 10 MHz. The authors propose their integral equation would suffer
no such problems. In the experiments for path loss over a wedge at 10 MHz and 1 GHz the
equation agrees well with the Uniform Theory of Diffraction method, while the low frequency
experiments for their gently undulating rural terrain (143.9 MHz and 435 MHz) performed
extremely well. Higher frequency experiments at 970 MHz and 1.9 GHz were less accurate, but
still generated acceptable results.
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2.3 Field Extrapolation Method

The Field Extrapolation Method, introduced in [5], is a development of the Electric Field
Integral Equation that reduces computation time by grouping points into plates, whose centres
receive and scatter radiation incident upon them. With the constant K standing in for the
contributions of the other points in the group, accurate results are generated with greatly
reduced computation time. In the formulation of this constant, the angle of the group is
ignored due to the grazing angles of incidence, like in [3]. The phase is also forced to zero as
the scatterer is electrically massive. The remaining parameters of intra-group impedance
matrix elements and distances between points are constant across all groups, allowing for the
assumption of K’s constancy.

in 2005, when [5] was written, computational power had advanced so far that these equations
could be run on a common workstation. The Field Approximation Method, was run in 0.05
seconds on a PC with a 2.2 GHz processor. During the intermittent time, computers have
become even more powerful with some mid-range processors possessing several times the CPU
cores and double the clock speed, along with a myriad other hardware improvements.

The method is applied to the same gently undulating rural terrain profile for Hjorringvej used
in[3], with its results standing in for a ground truth. The method proved to be very accurate
with just a forward scattering implementation, and ran much more quickly than the
numerically exact method (tens of minutes vs hours). It is stated that further work needs to be
done in evaluating the effects of including small scale Rayleigh fading such as multipath for
accuracy, as that gain would permit larger group sizes and faster computation times, so far
ignored by the Electric Field Integral Equation.
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2.4 Forward-Backward Method

The Forward-Backward Method is an extension of the Electric Field Integral Equation method
that includes back scattering effects by splitting the surface current at each point into its
forward and backward components. It performs the forward scattering sweep in the same way
as the Electric Field Integral Equation, then incorporates these results in a backward sweep for
back scattering effects. The incident field is calculated in the forward sweep only. One
iteration of the method consists of a forward pass and a backward pass, and it is said in [7]
that fewer than 10 iterations are required for convergence.

It then suggests using the Method of Moments to account for Perfect Electrical Conductor
obstacles encountered; ships and rogue waves in its maritime case. It uses the same Perfect
Electrical Conductor assumption for the ocean surface as [3] uses for land, but introduces new
impedance values for the obstacles. These new values are added to the self-terms of the
impedance matrix along the main diagonal corresponding to the obstacle, but leaving the lower
and upper triangular matrices untouched. The method-of-moments block accounts for
interactions between obstacle and surface, as well as interactions within the obstacle which the
conventional Forward-Backward method discounts. The paper asserts these are necessary
inclusions for the Forward-Backward method’s convergence in the presence of obstacles, as
without them convergence does not occur.

The method’s additional requirements are storage of MxM elements for an obstacle’s
impedance matrix and the associated computation cost to calculate it, for every such obstacle.
The paper demonstrates the accuracy and speed, with 6-10 iterations required for the residual
error to reach between 10e-2 to 10e-3. However, this is on a surface with just one obstacle of 15
metres squared, which may not be transferable to an Urban environment with many irregularly
shaped obstacles. A city may have hundreds of individual buildings with heights ranging from
10 metres to over 500 metres, each of which will have a different matrix that in most cases will
not be square.
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3 Overall Materials and Methods

3.1 Materials

The rural terrain profile used is the first 700 metres of a 3,840 metre span of gently undulating
landscape from Germany. The surface is assumed to be a two-dimensional Perfect Electrical
Conductor, where side scattering contributions are ignored. It is sampled at every 10 metres
along the horizontal axis. In the 700 metre segment, the highest point is 390 metres and the
lowest point is 291.27 metres, with that total descent occurring over 600 metres, yielding an
average slope of -0.16455. An excerpt was used over the entire profile to reduce running time
during debugging.

A second terrain profile is created for Urban Environment experimentation, simulating two
rectangular buildings with three sections at ground level. The first building profile is 3 metres
high and 2 metres across, the second is 10 metres high and 3 metres across. The ground level
spaces before, between and beyond the buildings are 5, 13 and 27 metres respectively.

Figure 3.1: The 700 metres of the Rural Terrain Profile used in Rural Experiments
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Figure 3.2: Field above the surface for the Rural Terrain Profile with 700 metre line marked
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Figure 3.3: The mock Urban Terrain Profile used in Urban Experiments

3.2 Methods

The method under experiment is the Forward-Backward method, in turn applied to both the
Electric Field Integral Equation and the Field Extrapolation Method. The Forward-Backward
method involves calculating the total electrical field at every point along a surface by summing
the incident field emanating from the transmitter with the forward scattering contributions
from points between the point under consideration and the transmitter, and the back
scattering contributions from points beyond the point under consideration.

Graphs and tables of Mean Absolute Error differences from the Ground Truth are used to
judge efficacy. To find where Forward-Backward acceptably converges, it was run with 4, 7 and
10 iterations. The upper limit of 10 refers to [7], which states convergence should occur within
10 iterations, although in some Field Extrapolation Method cases extra accuracy at up to 20
iterations is investigated as such additional computation time is afforded.

Samples were taken at 1
4λ metre intervals. As the terrain profile was sampled every 10 metres

along the x axis, points needed to be interpolated with 1
4λ metres between each point in order

to generate the complete discretised surface. There are different methods for interpolation in
the rural terrain profile and the urban terrain profile, both are shown in Appendix A.3.

In the rural profile, there was assumed to be a tolerance for using ∆s (λ4 ) sized segments along
x, with the Y value for each point being assigned the previous point’s value plus ∆s times the
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slope m of the current 10 metre “chunk”. In other words, the x of the right-angle triangle was
∆s and the y was ∆s ×m. The urban profile had to be stricter, with ∆s sized segments taken
along the hypotenuse instead of the simpler way of the rural profile. The reason for the stricter
tolerance is it considers large buildings with vertical walls, which have many points that would
be missed by using x instead.

The frequency of the monochromatic signal used was 970 MHz. The Electric Field Integral
Equation is

E (r) =
βη

4

∫
S

J(r ′)H
(2)
0 (β|r − r ′|)dr ′ (1)

Which through the Method of Moments is discretised into the matrix equation

E = ZJ (2)

Where:
E = E (ri ) (3)

Zji ≈ ∆s
βη

4
H

(2)
0 (β|rj − ri |) (4)

Zii ≈ ∆s
βη

4

(
1− j

2

π
ln

(
1.781β∆s

4e

))
(5)

Jj = J(rj) (6)

E (ri ) is the incident field at point i

Zji is the impedance between the point j and the point i

Zii is the impedance between the point i and itself

Jj is the surface current at point j

βη
4 is a constant that is ignored as it doesn’t impact the shape of the graph

H
(2)
0 is the zeroth order Hankel function of the second kind

∆s is the sampling interval

β is the wavenumber

|rj − ri | is the distance between points j and i.
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The forward and backward entries for J and Z can be decomposed to

Z = Zf + Zself + Zb (7)

J = Jf + Jb (8)

Which when combined with E = ZJ yields

Zself × Jfwd = Einc − Zfwd × (Jfwd + Jback) (9)

for forward scattering and

Zself × Jback = −Zback × (Jfwd + Jback) (10)

for backward scattering.

The total number of forward and backward sweeps required to achieve convergence is typically
less than 10.

The algorithm to calculate the electric field above the surface first calculates the surface current
for each point. Using this current, the field above the surface for each point is calculated. The
surface current is calculated in three ways during the experiments to follow:

1. Applying the Conjugate Gradient Squared method to find a numerically exact solution
to the E = ZJ problem

2. Performing a single pass of forward scattering

3. Performing multiple passes of the Forward-Backward method

Where the surface current is calculated by forward scattering, J is calculated by iterating over
every point P and subtracting the sum of the contributions from points 1 to P-1 from the
incident field at that point P. This summation is then divided by the self-impedance term to
gain the value for J at point P.

For back scattering this process is done in reverse (P = N - 1 to 1), while the sum of back
scattering contributions iterates from N to P + 1. In this case, the back scattering
contributions are subtracted from the current value (initially 0 + 0i), without the incident
field’s inclusion so as to not double-count it. The resulting sum is incident field + forward
scattering + back scattering for each iteration of Forward-Backward employed.

The field above the surface is calculated using one sweep of forward scattering. The methods
under experimentation differ in the calculation of the surface current only, each method uses
this same single forward sweep to calculate the field above the surface. When calculating the
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sum of forward scattering contributions, the inner loop runs to point P, unlike the surface
current’s calculation running to P - 1. This is because the field is observed at 2.4 metres above
the surface, so the current at surface point P does contribute to observation point P + (0, 2.4
m). The code that performs the surface current and field above the surface calculations can be
found in Appendix A.4.

As the impedance matrix Z exists as a lower and upper triangular matrix (for forward and
back scattering respectively), initial values can be calculated for the top-left element which has
no forward scattering to it, and then propagated through the remaining rows through forward
substitution. For back scattering, back substitution takes place from the opposite corner of the
matrix.

For evaluating the results of the algorithms, the field above the surface in decibels is used
instead of the surface current. The decibel measurement is achieved through the
calculation

Etot(dB) = 20 log10 Etot (11)

1 is used implicitly in the denominator of the logarithm as the goal is to measure the power
difference between the signal and the absence of a signal; no other transmitters are assumed to
be present. The reason for using field above the surface instead of surface current is due to the
ill-conditioned nature of the problem. A small change in the surface current, almost
imperceptible to the human eye, can result in a large, plainly visible error in the field above
the surface.
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4 Experiments

4.1 Numerically Exact Method

The control for the future experiments is the numerically exact Conjugate Gradient Squared
solution for E = ZJ. This control was used to judge whether a method was returning
acceptable results and which method was most correct in the case of comparing multiple
methods. It depends on the fact that with the E = ZJ equation, E and Z are easily calculable.
Using MATLAB’s cgs(A,b) function, which accepts a matrix A and vector b, and attempts to
solve the system of linear equations Ax = b, J can be calculated exactly by passing the
impedance matrix M and incident field vector E as parameters A and b respectively. The
resulting J is used to calculate a field Etot above the surface to be used as a ground truth going
forward.

The forward propagation values for Z form a lower triangular matrix, while the diagonal is
composed of self-terms Zii . Using the fact that distance is always positive, and is the only
variable in the formula for Zij for a given frequency, it becomes clear that the upper triangular
portion for back scattering is a reflection of the lower triangular portion (Zij = Zji ). This
symmetry allows for a slight relaxing in computational requirements, as each calculation
effectively renders two results.

The cgs(A,b) function was called without any preconditioners, and with MATLAB’s default
tolerance of 10−6. The maximum iterations parameter was assigned 100 (it needed 78
iterations for convergence), as it did not converge within the default 20 iterations.
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Figure 4.1: The Conjugate Gradient Squared method’s result, taken to be the Ground Truth
going forward

4.2 Electric Field Integral Equation: Forward Scattering

The first experiment with the Electric Field Integral Equation was a single pass of forward
scattering. The aim was to ensure that some results close to the correct solution could be
obtained by a single pass, which could be improved with the addition of back scattering and
additional iterations. The method called for first calculating the surface current J at every
point along the surface, then using those surface currents it evaluated the field above the
surface.

The graph shows that the single forward scattering iteration of the Electric Field Integral
Equation is a very close approximation for the exact field found using the Conjugate Gradient
Squared method. In many places the two agree completely (where red occludes black), while
their differences are small in the case of the trough.

Efficient use of computational resources is gained for the accuracy lost; the single iteration of
forward scattering is much faster and requires far less memory than the Conjugate Gradient
Squared method, as each entry for Z and E can be calculated quickly on the fly instead of
stored in massive matrices. For this particular case, there are 9,060 points in the 700 metre
profile, necessitating a 9,060 element vector and 9,060 x 9,060 element matrix for E and Z
respectively, both composed of complex floats.

15



Figure 4.2: Single pass of Forward Scattering

4.3 Electric Field Integral Equation: Forward-Backward

To improve upon the results from the single forward sweep of the EFIE, the
Forward-Backward method was employed. The aims of this experiment were to investigate
whether or not it yielded a meaningful increase in accuracy over the single forward sweep, and
to determine how many iterations it needs to converge.

The back scattering code was similar to forward scattering code, but with the incident field
omitted and with iteration from final point to start point. In both cases, the current forward
and back scattering contributions are considered, but are kept separate until the final
iteration’s completion where they are summed for the complete surface current.
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Figure 4.3: Forward Scattering and 4, 7, 10 iterations of Forward-Backward

Experiment Mean Absolute Error(dB)

EFIE Forward Scattering 0.0400
EFIE Forward-Backward 4 Iterations 2.0874
EFIE Forward-Backward 7 Iterations 0.1532
EFIE Forward-Backward 10 Iterations 0.0081

The results here and in the earlier Forward Scattering experiment show that for the gently
undulating rural terrain profiles, a single pass of Forward Scattering is a very good
approximation of the total field above the surface. Forward-Backward gradually converges
towards the exact solution, with 10 iterations having almost completely occluded the exact
method’s graph. This is due to the small effect of back scattering in such a terrain, with the
only significant improvements being made at the lowest point of the trough, that corresponds
to the terrain profile descending.
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4.4 Field Extrapolation Method: Forward Scattering

As with the Electric Field Integral Equation, a single forward scattering sweep of the Field
Extrapolation Method was first tested to ensure the method was performing correctly when
applied to the rural terrain profile. A smooth region of 90 metres was introduced where
forward and back scattering contributions are ignored, to avoiding contributions which may
have been too great in the early stages. Beyond the smooth region, the volume of
contributions was considered great enough to check an errant individual contribution.

The equations it uses are the same as in the Electric Field Integral Equation, but their
application differs. Instead of visiting each point, the surface is divided into groups of 13 ∆s

segments. The size of the group depends on the terrain profile, and requires trial and error
experimentation to calculate; 13 segments is the group size suggested by the author’s
supervisor. The aggregation point, upon which the incident field falls and which receives and
transmits scattering from to the other groups respectively, is taken to be the group centre.

As stated in the paper [5], the groups are assumed to have uniform plane incident fields upon
them. Continuity of the surface current is enforced on either side of the group and the surface
current induced can be assumed to have a locally constant amplitude due to the surface’s
smoothness. The profile is extended, which artificially enforces the surface current’s continuity
across both ends of the profile. The surface current, having been induced by a uniform plane
wave, can be estimated as

Jjl ′ = −Jl ′
Zl ′l

Zjj
e−j(βsj cos θl′+φl′ ) (1)

with the resulting equation for the incident field being

El =
∑
l ′<l

∑
j∈Gl

Jl ′ |l ′l × (1− e−j(βsj cos θl′+φl′ )Zjl

Zll
) + ZllJl (2)

where:

β is the wave number

θl ′ is the angle of incidence upon group l’

φl ′ is the phase at l’

sj is the distance from the start of the group to the point j

Zjl is the impedance between the point j and the group centre
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φ is forced to zero, and θ is approximated as 0. This is because the incident fields in a gently
undulating terrain profile are grazing (small angles, cos θ approximately comes to 1), and that
the sum is dominated by near field interactions where θ is very small. K is then approximately
constant for all groups, and needs to be evaluated only once, resulting in the below

K = 1−
∑
j∈Gl

e−jβsjZjl

Zll
. (3)

In other words, the groups only differ in their distance from the transmitter; differences
between groups are negligable and it is computationally feasible to ignore them. For the
purposes of getting the Field Extrapolation Method running in both the single forward
scattering sweep and Forward-Backward methods, K was taken to be 5. K calculation code can
be found in Appendix A.5.

Figure 4.4: Forward Scattering with the Field Extrapolation Method (K=5) and 10 iterations
of Forward-Backward with the Electric Field Integral Equation

The single Forward Scattering sweep with the Field Extrapolation Method again proves to be
a good approximation for the field above the surface. The graph shows that it is appropriate to
consider K a constant value, and although its true value is unlikely to be exactly 5, it is an
encouraging start.
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4.5 Field Extrapolation Method - Forward-Backward

The Forward-Backward method was now applied to the Field Extrapolation Method. The
number of iterations used ranged from 4 to 20, as it didn’t appear to converge within 10. The
algorithm used was mechanically the same as for the Electric Field Integral Equation, with the
forward scattering and back scattering surface currents summed at the end. K is still presumed
to be 5. Field Extrapolation Method code can be found in Appendix A.6.

Figure 4.5: Forward-Backward with the Field Extrapolation Method (K=5)

Experiment (K = 5) Mean Absolute Error(dB)

FExM Forward Scattering 0.3063
FExM Forward-Backward 4 Iterations 5.8104
FExM Forward-Backward 7 Iterations 5.0190
FExM Forward-Backward 10 Iterations 5.1772
FExM Forward-Backward 13 Iterations 5.1602
FExM Forward-Backward 20 Iterations 5.1612

In this case, Forward-Backward results in a loss of accuracy instead of a gain. The trough
shows the single Forward Scattering loop result is the only Field Extrapolation Method result
that is near the actual value, with the higher iterations of Forward-Backward converging to a
higher value. A possible reason for this result is that the true value for K is not 5, as
convergence to the true solution is theoretically possible following from the Electric Field
Integral Equation experiment.
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Figure 4.6: Zoomed image of Forward-Backward with the Field Extrapolation Method (K=5)

4.6 Calculating K

This experiment was aimed at calculating the K value of 5 using the formula in the paper[5].
Leaving K as a complex number and taking its modulus were both tested. θ’s impact on the
value for K and hence the graph overall was also to be evaluated, along with the function
applied to θ. Ensuring the formula could be successfully deployed with present materials would
open up its testing with other terrain profiles and frequencies, where K may differ due to the
different group size and different sampling interval size λ

4 respectively.

The attempts to follow the formula in the [5] resulted in a K value of 3.5538. Further
investigation into the calculation of K was necessary, as it did not return 5, for the current
group size and signal frequency. With the aid of a fellow student it became apparent that to
achieve a value close to 5, an additional ∆s term needed to be added to the formula’s
denominator, effectively replacing the Zji calculation with just the Hankel function. This
resulted in the value of 5.1052. At the advice of my supervisor, sigma’s subtraction from 1 was
replaced with subtraction from 0 resulting in a final value of 4.1052.
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Figure 4.7: Forward-Backward with the Field Extrapolation Method (K=4.1052)

Experiment (K = 4.1052) Mean Absolute Error(dB)

FExM Forward Scattering 1.2188
FExM Forward-Backward 4 Iterations 3.6877
FExM Forward-Backward 7 Iterations 3.3646
FExM Forward-Backward 10 Iterations 3.3787
FExM Forward-Backward 13 Iterations 3.3786
FExM Forward-Backward 20 Iterations 3.3787

With the new value for K, the Field Extrapolation Method performs better overall. The single
pass of Forward Scattering approximates the trough less accurately, but the Forward-Backward
graphs all approximate it better than before. As before with the value of 5, their
approximation does not improve with increased iterations, suggesting that although they do
not converge to an exact solution, they do so extremely rapidly. The Field Extrapolation
Method with this new K also approximates the first dip in the trough much better than it did
before, suggesting that there may be a value for K which allows the method to return highly
accurate results quicker than the exact and the Electric Field Integral Equation methods.
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Figure 4.8: Forward-Backward with the Field Extrapolation Method, K left as complex number

Experiment (K = 4.0884 + 0.37057i) Mean Absolute Error(dB)

FExM Forward Scattering 1.4875
FExM Forward-Backward 4 Iterations 4.0646
FExM Forward-Backward 7 Iterations 3.8876
FExM Forward-Backward 10 Iterations 3.8885
FExM Forward-Backward 13 Iterations 3.8876
FExM Forward-Backward 20 Iterations 3.8874

Including θ required a new value for K for every unique combination of group centres, as θ
depended on the angle of incidence that the ray from the scattering group makes with the
normal vector of the receiving group. There also needed to be values for back scattering, as the
angle of incidence of the ray from the first centre to the second centre is not the same as from
the second centre to the first centre. This resulted in a matrix similar in structure to the Z
matrix from the exact Conjugate Gradient Squared method, but 132 times smaller.

First, the target centre’s normal was calculated by taking the angle α the group makes with
the horizontal, adding 90 degrees to it for a positive rotation (to ensure the normal points “up”
to the sky and not “down” into the earth) gaining the angle β. The normal vector was then
[cosβ, sinβ], whose modulus is 1. Finally the angle of incidence was found by taking the dot
product between the vector made by subtracting the target centre from the source centre, and
the target centre’s normal vector. For back scattering, the angle α is calculated for the other
plate, and the centres are swapped in the function call. The code for θ’s inclusion is listed in
Appendix A.7.
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The experiment of θ’s impact was tested with sin θ as well as cos θ as in the original
formulation. The reason for trying sin θ is that θ was originally presumed to be the angle
between plates, but the incident ray forms the angle θ with the receiving group’s surface
normal which is at +90 degrees to the group itself.

Figure 4.9: Forward-Backward with the Field Extrapolation Method, accounting for θ
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Figure 4.10: Zoomed in image of Forward-Backward with the Field Extrapolation Method,
accounting for θ

Experiment K = 4.1052 Base, accounting for θ Mean Absolute Error(dB)

FExM Forward Scattering 1.2188
FExM Forward-Backward 10 Iterations 3.3787

FExM Forward-Backward 10 Iterations sin θ 3.4580
FExM Forward-Backward 10 Iterations cos θ 3.3636× 103

The first graph confirms the suspicions about the cosine function. When cos θ is used for the K
values, it diverges massively from the actual solution. sin θ does better, although it does
perform worse than a single forward scattering loop, 4 iterations of Forward-Backward, and all
Electric Field Integral Equation results. In this scenario with gently undulating rural terrain,
it is not surprising that accounting for the angles does not aid in convergence, but that it
diverges more from the single Forward Scattering result than the Forward-Backward with
constant K result is a surprise.

Forward Scattering FExM continues to be a decent approximation for gently undulating rural
environments, while including back scattering and incidence angles hinders rather than helps,
possibly because they do not play a strong role in the real-world version of this profile and too
much weight is being attached to these parameters. The different K value causes an
improvement in accuracy, suggesting there may be a way to calculate K in order to achieve
excellent accuracy with low compute time.
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4.7 Urban Profile

The urban profile was then fed through the same battery of tests:

• Conjugate Gradient Squared method

• Electric Field Integral Equation - Forward Scattering and Forward-Backward (10
iterations)

• Field Extrapolation Method - Forward Scattering and Forward-Backward (10 iterations)

• Field Extrapolation Method - Accounting for θ

Figure 4.11: Electric Field Integral Equation in the Urban Terrain Profile

Experiment Urban EFIE Mean Absolute Error(dB)

EFIE Forward Scattering 3.8452
EFIE Forward-Backward 10 Iterations 43.8480

Using the Forward-Backward method in the urban profile results in a divergence from the
actual solution. The single Forward Scattering result in this case is a much better match for
the exact Conjugate Gradient Squared method for the horizontal parts of the profile, but their
degree of agreement along the walls is unclear from the graphs (the walls are at 5, 10, 15 and
20 metres along X).
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Figure 4.12: Field Extrapolation Method in the Urban Environment

Experiment K = 4.1052 Mean Absolute Error(dB)

FExM Forward Scattering 25.3653
FExM Forward-Backward 4 Iterations 58.6645
FExM Forward-Backward 7 Iterations 87.9287
FExM Forward-Backward 10 Iterations 120.5459
FExM Forward-Backward 13 Iterations 151.2804
FExM Forward-Backward 20 Iterations 223.6432

Divergence occurs with Forward-Backward in the Field Extrapolation Method, and the single
forward scattering loop is much less accurate than it was with the rural profile. None of the
graphs follow the exact method’s shape.

θ’s inclusion was then examined, as it may now play a more significant role with the sheer
vertical walls. As no significant improvements in accuracy accrued from increasing iterations
beyond 10, 10 iterations of Forward-Backward were used for the θ experiments. As with the
rural profile, including θ greatly increased computation time.
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Figure 4.13: Forward-Backward with the Field Extrapolation Method, accounting for θ

Figure 4.14: Zoomed in image of Forward-Backward with the Field Extrapolation Method,
accounting for θ
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Experiment K = 4.1052 Base, accounting for θ Mean Absolute Error(dB)

FExM Forward Scattering 20.9366
FExM Forward-Backward 10 Iterations 116.0372

FExM Forward-Backward 10 Iterations sin θ 474.7822
FExM Forward-Backward 10 Iterations cos θ 3.7764× 103

Including the angle θ for the urban profile does nothing to improve accuracy, being just as
divergent as it was in the rural terrain profile. None of the methods tested show convergence in
the urban profile. It is likely that the Ground Truth is inaccurate to begin with, as it is the
exact solution for an equation that is unsuitable for use outside of gentle rural terrain.
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4.8 Re-running Rural Profile using Stricter Terrain Interpola-
tion

The results from running the previous Field Extrapolation Method experiments were
inconsistent with those from the Electric Field Integral Equation. Forward-Backward was
showing convergent behaviour but not towards the Ground Truth. This opened the question
about the sensitivity of the method to errors, and so the Field Extrapolation Method was
re-examined with the rural profile, but using the stricter urban terrain profile interpolation
method to remove this source of error.

Each value of K was tested again; 5, 3.5538, 4.1052 and 4.0884 + 0.37057i. Re-trying 3.5538
was prudent as it was found with a strict interpretation of the K formula. The Electric Field
Integral Equation was also re-tested to make sure it was not greatly affected by the previous
approximate interpolation method.

Figure 4.15: Electric Field Integral Equation Re-Run with stricter Terrain Profile

Experiment Mean Absolute Error(dB)

EFIE Forward Scattering 0.0243
EFIE Forward-Backward 10 Iterations 0.0151
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Figure 4.16: Field Extrapolation Method Re-Run with stricter Terrain Profile, K = 5

Experiment K = 5 Mean Absolute Error(dB)

FExM Forward Scattering 0.1492
FExM Forward-Backward 5 Iterations 4.7264
FExM Forward-Backward 10 Iterations 2.7644
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Figure 4.17: Field Extrapolation Method Re-Run with stricter Terrain Profile, K = 4.0884 +
0.37057i

Experiment K = 4.0884 + 0.37057i Mean Absolute Error(dB)

FExM Forward Scattering 1.1978
FExM Forward-Backward 5 Iterations 1.2211
FExM Forward-Backward 10 Iterations 0.8443
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Figure 4.18: Field Extrapolation Method Re-Run with stricter Terrain Profile, K = 4.1052

Experiment K = 4.1052 Mean Absolute Error(dB)

FExM Forward Scattering 0.9300
FExM Forward-Backward 5 Iterations 1.0658
FExM Forward-Backward 10 Iterations 0.5509
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Figure 4.19: Field Extrapolation Method Re-Run with stricter Terrain Profile, K = 3.5508

Experiment K = 3.5508 Mean Absolute Error(dB)

FExM Forward Scattering 1.7743
FExM Forward-Backward 5 Iterations 0.5581
FExM Forward-Backward 10 Iterations 0.4953
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Figure 4.20: Field Extrapolation Method Re-Run with stricter Terrain Profile, K = 4.1052,
accounting for θ

Figure 4.21: Zoomed in Field Extrapolation Method Re-Run with stricter Terrain Profile, K =
4.1052, accounting for θ
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Experiment K = 4.1052, accounting for θ Mean Absolute Error(dB)

FExM Forward Scattering 0.9300
FExM Forward-Backward 10 Iterations 0.5509

FExM Forward-Backward 10 Iterations cos θ 4.9866× 103

FExM Forward-Backward 10 Iterations sin θ 0.9320

In the case of the Electric Field Integral Equation, the results were the same; forward
scattering is a good approximation for the gently undulating profile and Forward-Backward
improves the accuracy further.

Major changes do occur in the adoption of the new interpolation method for the Field
Extrapolation Method. Its sensitivity to error is apparent, while the Electric Field Integral
Equation is more robust. This property is demonstrated in the difference between the now
good approximation and the one before it. The forward scattering approach is as good as it
was, but the Forward-Backward method now converges to a more accurate solution than
forward scattering.

Interestingly, forward scattering accuracy increases with increasing K values, while
Forward-Backward converges towards a more correct solution, more rapidly, with smaller K
values. Additionally, the 5 iteration loop provides an accuracy gain over forward scattering
with small K, and an accuracy loss with large K, but the most accurate Forward-Backward
solution does not outperform the most accurate forward scattering solution.

The inclusion of θ does not make the method more accurate. cos θ is again three orders of
magnitude off, but sin θ is 0.002 dB off the forward scattering loop. This is a good result on its
own, however considering the vastly greater run time and memory requirements involved, it
cannot be taken as a net positive. It is also outperformed by the Forward-Backward method
with a constant K value and the same number of iterations, rendering the result topically
interesting but ultimately inconsequential.
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5 Discussion and Further Work

Overall, the single forward scattering Field Extrapolation Method works well for Rural
environments, relative to the exact Conjugate Gradient Squared method. On balance, the
accuracy lost vs single forward scattering Field Extrapolation Method and Forward-Backward
Electric Field Integral Equation is made up for in the speed of calculation, and is suitable
where close approximations are appropriate. In the Field Extrapolation Method, while
Forward-Backward does not reach the same accuracy as forward scattering, it may be accurate
enough that the group size can be enlarged for greater calculation speed.

A bizarre effect observed is that of the change in accuracy of forward scattering and
Forward-Backward with respect to K. When K is 5, the forward scattering pass yields a very
accurate result on its own, and the Forward-Backward method does not converge. When K is
3.5538, forward scattering is very inaccurate, and Forward-Backward converges to its most
accurate solution, without the characteristic accuracy loss at 5 iterations that is suffered in
other runs and for 4 iterations in the Electric Field Integral Equation. The author observed
that forward scattering did not become more accurate for K larger than 5 (5.1052 when 1− Σ

was still a part of the K calculation), nor did Forward-Backward with K = 3.0 (arbitrary value
less than 3.5538). It would seem a large K can better approximate forward scattering, while a
small K does not, but better approximates back scattering, likely because the large K
multiplies the back scattering effects beyond their actual contribution.

A more comprehensive idea of the efficacy of the algorithms could be found by using multiple
terrain profiles with their measured results available to compare to. This, however, was not
possible due to the untimely COVID-19 pandemic and subsequent lockdown. These data were
not accessible remotely, and so could not be used for more complete verification. An actual
urban terrain profile would have been invaluable but as it stood, a mock urban profile had to
be created, and the Conjugate Gradient Squared method trusted completely. Different signals
could also have been used, as in [3], but 970 MHz was kept to due to the time used in the work
done on K.

The reduction in memory requirements is encouraging for Cognitive Radio. A Cognitive Radio
device is likely to have memory precluding the affordability of storing an impedance matrix.
9,060 x 9,060 elements is the size of the matrix for a 700 metre two-dimensional profile with a
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0.0773 metre sampling interval, nearly on the order of 1010 complex floats. In the case of
considering Rayleigh scattering effects by the addition of a Z axis (for side-scattering
contributions which an urban environment is certain to have), enlarging the area, and
shortening the wavelength will all be means of increasing the size of this matrix quickly beyond
a limited device’s capacity.

This can theoretically be alleviated by paging, using storage to hold entries not immediately to
be used, but this exacerbates a secondary problem that holding it in memory brings. The
access time of memory is extremely long, with the cost of major page faults being longer still.
Computing these entries on-the-fly offers a reduction in memory capacity requirements.
Further, where capacity may not be a concern, it removes the mental burden of arranging the
data structure optimally for avoiding costly cache misses.

The Field Extrapolation Method will need more work done regarding the calculation of K. Its
exact formulation needs to be developed, with the roles played by the angle of incidence and
the phase investigated, along with the vanished δs term and 1− Σ. It’s clear that K does
provide an accuracy increase for both forward scattering and Forward-Backward
implementations of the Field Extrapolation Method; calculating it correctly and gaining the
best possible accuracy with the very low computation time is something The Author could not
complete.

A means of determining the size of the group for the Field Extrapolation Method based on
accuracy vs speed should be developed, as 13 segments will not fit all profiles. [5] states with
additional accuracy an already large 10 metre group can be enlarged for extra speed (keeping
in mind a different profile used within); accurately determining the degree of enlargement
would be beneficial.
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6 Conclusions

The Field Extrapolation Method takes the savings in compute time made by the Electric Field
Integral Equation further by calculating K once at the beginning of the algorithm, allowing for
points to be grouped and their collective contributions to be calculated as a function of the
incident field and the factor K multiplied by scattering contributions from neighbouring groups
where applicable. The increase in speed and decrease in memory consumption compared to the
Electric Field Integral Equation method is proportional to the group size eg. 13 segments per
group → one 13th the memory required for J and Etot vectors and one 13th the number of
iterations per forward and back scattering loop.

The accuracy of the single pass of forward scattering both in the Electric Field Integral
Equation method and the Field Extrapolation Method and small improvement towards the
Conjugate Gradient Squared method in the case of the former under Forward-Backward
demonstrates that the single pass of forward scattering is a very strong approximation of the
field above the surface for gently undulating rural terrain.

The Field Extrapolation Method is very sensitive to error, highlighted in applying the
Forward-Backward method. While the condition number for the impedance matrix in the
Electric Field Integral Equation is only 59.7445, and for the same (though much smaller)
matrix in the Field Extrapolation Method it is 4.5652, the difference made by a seemingly
insignificant change in the terrain profile’s interpolation determined the Forward -Backward
method’s convergence. The condition number of the impedance matrix does not tell the full
story of the problem’s ill-conditioned nature.

The Field Extrapolation Method requires a short smooth region at the beginning of the terrain
profile when applying the Forward-Backward method, along with an accurate value for K and
a strict interpolation of the points. Without the combination of all of these, the
Forward-Backward method does not converge to an accurate solution for the Field
Extrapolation Method, but will converge to an inaccurate solution. The Electric Field Integral
Equation is more robust to inaccurate terrain interpolations and does not require a smooth
region, as the greater volume of points to consider scattering effects to and from overpowers
the errors which the Field Extrapolation Method is vulnerable to.
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Forward-Backward applied to the Field Extrapolation Method did not converge to the most
accurate solution. The single forward scattering run of the Field Extrapolation Method with K
= 5 yielded the result with the smallest mean absolute error, with the most accurate 10
iterations of Forward -Backward with K = 3.5538 having an error 3.5x greater. It’s an
acceptable result as it’s still half a dB off the Conjugate Gradient Squared method, but is less
accurate than forward scattering, and a great deal slower.

Including the angle of incidence the scattering plate’s ray makes with the receiving plate does
nothing to improve accuracy in any case, amplifying them in most cases. It greatly increases
the computation time and memory requirements, as an NxN matrix needs to be calculated and
stored in memory. Its best performance was equalling the single forward scattering Field
Extrapolation Method run with an enormous increase in computational complexity and
memory storage.

As expected following reading of the [3] and [7] papers, the Forward-Backward method with
both the Electric Field Integral Equation and Field Extrapolation Method fared poorly in the
urban profile, with only two buildings and two dimensions. The urban profile is one where
back scattering effects are very strong, as the buildings make 90 degree angles with the ground.
There are interactions between building and surface, as well as within building, that the
Forward-Backward method doesn’t account for. [7] states a generalisation can be made to the
impedance matrix, but in an urban setting with many buildings and other large, arbitrarily
shaped and possibly moving obstacles it is not suitable to consider.
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A1 Problem Geometry

Visualisation of the problem geometry. The surface point is irradiated by an incident field,
forward scattering contributions from points between it and the transmitter, and back
scattering contributions from points beyond. Side-scattering contributions are ignored; as such,
there is no Z axis to consider.
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A2 K Visualisation

Visualisation of the calculation of K. K represents the aggregation of an entire group’s
scattering contributions and is approximately constant for all groups, allowing us to forego
their direct calculation and to consider scattering from the centre.
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A3 Terrain Interpolation

1 function TP = import_terrain_profile(d_s , max_x , N)
2 % function to read the terrain profile file with points every 10m along
3 % x, and interpolate the missing points at lambda /4 metres along the x
4 % axis. Rather than try to fit X samples within each 10 metres
5 % (lambda /4 doesn ’t divide 10 evenly), it creates a series of
6 % (i-1)*lambda/4, where i is the index in the series beginning at 1
7 % because MATLAB. For the y points , having seeded the first y value
8 % with the first given in the terrain profile , it uses the slope
9 % between the current point and the next point , multiplies that slope

10 % by lambda/4, and then adds that to the current y in order to find
11 % the next y (slope will be either positive or negative).
12

13 terrain_file = fopen ("X.04");
14 data = textscan(terrain_file , "%s");
15 fclose(terrain_file);
16

17 % rtp = rough terrain profile
18 rtp = [str2double(data {1}(1:2: end)), str2double(data {1}(2:2: end))];
19 clear data
20 clear terrain_file
21

22 % frtp = filtered rough terrain profile (discard entries beyond max_x - for
23 % testing purposes only , remove when processing full profile)
24 frtp = rtp(rtp ~= inf & rtp(:,1) <= max_x);
25

26 % reshaped frtp to array of N (x,y) points
27 xy_rtp = reshape(frtp , length(frtp) / 2, 2);
28

29 % Every X value is an integer multiple of d_s (lambda / 4)
30 % go as far as N-1, falls just short of the maximum X value but yields
31 % an array of points the same length as the arrays J, E_tot
32 TP = [d_s *(0:N-1); zeros(1,N)]’;
33

34 % seed the first Y value
35 TP(1,2) = xy_rtp (1,2);
36

37 % instead of finding angle theta with tan^-1 and then performing
38 % x*tan(theta) to get y, can instead multiply x by the slope
39 % y in long form is x*tan(tan^-1(dy/dx)) which is equivalent to
40 % x * (dy/dx), trig functions being redundant
41 slopes = get_slopes(xy_rtp);
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42

43 % iterating from 2 to the end instead of 1 to the end can be thought of
44 % as populating a list of "next y" values
45 for i = 2:N
46 % x increments in steps of 10, get index for slope array by
47 % dividing the current x by 10 and rounding up - the rounding up is
48 % due to MATLAB array indices starting at 1
49

50 ind = ceil(TP(i,1) / 10);
51

52 % we will inevitably run to the end of the terrain profile , where
53 % there is no possible slope beyond the final point but the array
54 % size *must* be consistent with those of E and J - continue with
55 % previous slope values for now , and later determine what to do
56 % with the terminal point
57

58 if (ind > length(slopes))
59 ind = ind - 1;
60 end
61 m = slopes(ind);
62 TP(i,2) = TP(i-1,2) + d_s * m;
63 end
64 end
65

66 function slopes = get_slopes(rtp)
67 rtp_y1s = rtp(1: length(rtp) -1,2);
68 rtp_y2s = rtp(2: length(rtp), 2);
69 slopes = (rtp_y2s - rtp_y1s) / 10; % m = y2-y1 / x2 -x1 , always 10 in this

case
70 end
71

72 function d = dist(x_1 , y_1 , x_2 , y_2)
73 d = sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2);
74 end

This code block is the erroneous terrain profile interpolation code. It is included as despite the
flaws, it did not hinder the Electric Field Integral Equation’s generation of an acceptable
output. Only the Field Extrapolation Method suffered accuracy losses due to the
interpolation.
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1 % this script has no clearvars function call , as it is called by another script
instead of being run on its

2 % own , and so should have access to the caller ’s globals
3 EFIE_group_points = import_terrain_profile ();
4

5 function d = dist(pt1 , pt2)
6 % changed prototype to points instead of point ordinates as it reads easier

when called
7 d = sqrt((pt2(1) - pt1 (1))^2 + (pt2 (2) - pt1(2))^2);
8 end
9

10 function group_points = import_terrain_profile ()
11

12 global N_for_TP d_s max_x
13

14 % terrain_file = fopen("X.04");
15 terrain_file = fopen (" andrew_urban_simple.txt");
16 data = textscan(terrain_file , "%s");
17 fclose(terrain_file);
18

19 % rtp = rough terrain profile
20 rtp = [str2double(data {1}(1:2: end)), str2double(data {1}(2:2: end))];
21 clear data terrain_file
22

23 % frtp = filtered rough terrain profile (discard entries beyond max_x - for
24 % testing purposes only , remove when processing full profile)
25 frtp = rtp(rtp ~= inf & rtp(:,1) <= max_x);
26

27 % reshaped frtp to array of n_grps (x,y) points
28 xy_rtp = reshape(frtp , length(frtp) / 2, 2);
29 TP = [zeros(1,N_for_TP); zeros(1,N_for_TP)]’;
30

31 % seed the first Y value
32 TP(1,2) = xy_rtp (1,2);
33 j = 2;
34 p1 = TP(1,:);
35

36 for i = 1 : length(xy_rtp) - 1
37 p2 = xy_rtp(i+1,:); % "next" point
38 p2_vec = p2(:) - p1(:); % vector to next point
39 p2_vec_len = dist(p1 , p2);
40

41 m = p2_vec (2) / p2_vec (1); % slope of the vector
42 alpha = atand(m);
43 num_points = floor(p2_vec_len / d_s); % total points to add this

iteration (how many d_s
44 % segments fit between current point and next point)
45

46 points_xs = p1(1) + [1: num_points] * d_s * cosd(alpha); % calculate
these points

47 points_ys = p1(2) + [1: num_points] * d_s * sind(alpha);
48 points = [points_xs ; points_ys]’; % assign to vector
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49

50 TP(j:j+num_points -1, :) = points; % overwrite blank at position j and
advance index j

51 j = j + num_points;
52 p1 = p2; % next point
53 end
54

55 net_points = [1; find(TP(:,1) > 0)]; % ignore the zeros beyond the last
point for neatness

56 group_points = TP(net_points ,:);
57 end

The more accurate interpolation code, which when combined with an appropriate K value
allowed the forward-backward method to converge with the Field Extrapolation Method
(3.5538 worked well for K).
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A4 Electric Field Integral Equation: Forward-
Backward

J - Surface Current

1 J_BS = zeros(N, 1);
2 J_FS = zeros(N,1);
3

4

5 for loop_iter = 1 : iters
6 for p = 1 : N
7 % FORWARD SCATTERING - J_BS ZERO WHEN EXCLUDING back scattering SWEEPS
8 sigma = 0;
9

10 for q = 1 : p - 1
11 r_j_i = dist(EFIE_group_points(q,1), EFIE_group_points(q,2),

EFIE_group_points(p,1), EFIE_group_points(p,2));
12 % inclusion of the back scattering term
13 sigma = sigma + (J_FS(q) + J_BS(q)) * Z_ji(Kzc , beta * r_j_i);
14 end
15

16 r = dist(tx_x , tx_y , EFIE_group_points(p,1), EFIE_group_points(p,2));
17 J_FS(p) = (Ei(beta * r) - sigma) / Z_ii;
18 end
19

20 for p = N - 1 : -1 : 1
21 % BACK SCATTERING
22 sigma = 0;
23

24 for q = N : -1 : p + 1
25 % iterating from the end towards the point immediately in front of p
26 r_j_i = dist(EFIE_group_points(q,1), EFIE_group_points(q,2),

EFIE_group_points(p,1), EFIE_group_points(p,2));
27 sigma = sigma + (J_BS(q) + J_FS(q)) * Z_ji(Kzc , beta * r_j_i);
28 end
29 % absence of incident field , avoid double -counting it
30 J_BS(p) = -sigma / Z_ii;
31 end
32 end
33 J_fsbs = J_FS + J_BS;

Additional iterations occur, back scattering is deployed as the reverse of forward scattering.
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Summation occurs after the completion of forward and back scattering calculations, and not
each time a forward and back scattering vector is calculated.

Etot - Field above the surface

1

2 for p = 1 : N
3 sigma = 0;
4

5 for q = 1 : p
6 % include the height of the observer in the distance calculations
7 r_j_i = dist(EFIE_group_points(q,1), EFIE_group_points(q,2),

EFIE_group_points(p,1), EFIE_group_points(p,2) + obs_y_offset);
8

9 % while the J loops in Forward -Backward will iterate over points
behind for forward

10 % scattering and points beyond for back scattering , the field above
the surface

11 % calculation only considers forward scattering
12 sigma = sigma + J(q) * Z_ji(Kzc , beta * r_j_i);
13 end
14

15 r = dist(tx_x , tx_y , EFIE_group_points(p,1), EFIE_group_points(p,2) +
obs_y_offset);

16 E_tot (p) = Ei(beta * r) - sigma;
17 end
18

19

20 function Ei = Ei(x)
21 Ei = H02(x);
22 end
23

24 function Z_ji = Z_ji(Kzc , x)
25 Z_ji = Kzc * H02(x);
26 % including the bottom line for sanity check , but this library function
27 % runs quite slowly
28 % besselh(0, 2, beta * r_ji);
29 end
30

31 % happily , euclidean distance is always positive
32 function d = dist(x_1 , y_1 , x_2 , y_2)
33 d = sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2);
34 end
35

36 % zeroth order hankel function of the second kind
37 function hankel_out = H02(x)
38 hankel_out = sqrt(2 / (pi * x )) * exp(-1j * (x - (pi / 4)));
39 end
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A5 K Calculation Code

1 function K_out = calculate_k(L)
2 % function to calculate an approximate value for K generally using
3 % either the "l in the group centre" approach or the
4 % "l at the group end" approach
5 sigma_k = 0;
6 global beta Z_ii sfc_pts grp_segs
7

8

9 for p = 1 : grp_segs
10 % s_p is the distance between start point and point p. exclude when p
11 % and l are the same point , as the hankel function when given 0 for
12 % the distance parameter returns (inf , inf)
13 s_p = dist(sfc_pts(1, :), sfc_pts(p, :));
14

15 if p ~= L
16 % exp maybe distance from start of group to j instead of j to l
17 s_p_l = dist(sfc_pts(L, :), sfc_pts(p, :));
18 loop_val = exp(-1j * beta * s_p) * Z_ji(beta * s_p_l); % -1j == iota
19 sigma_k = sigma_k + loop_val;
20 else
21 loop_val = exp(-1j * beta * s_p) * Z_ii;
22 sigma_k = sigma_k + loop_val;
23 end
24 end
25

26 % Z_ii denominator for entire summation , can be taken out of those loops for
speed

27 K_out = 1 - (sigma_k / Z_ii);
28 end

Calculation for K strictly following the [5].
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1 function K_out = k_with_theta(p, alpha , f_theta)
2 % This function is a generalised K calculator that can be used for either

calculating K once at the % start or at every iteration with a new angle
3 % Where theta is being ignored , pass 0 to alpha and 1 to f_theta
4 % alpha parameter is the plate ’s orientation to the horizontal , used to

interpolate group points
5 % f_theta parameter instead of cos(alpha) later on as sin and cos were both

used
6 % p is the index of the group under consideration
7 sigma_k = 0;
8

9 global beta Z_ii num_group_points group_points group_centres d_s
10

11 group_start = group_points(p, :);
12 centre = group_centres(p, :);
13

14 pts = [
15 group_start (1) + d_s * cosd(alpha) * [0 : num_group_points] ;
16 group_start (2) + d_s * sind(alpha) * [0 : num_group_points]
17 ]’;
18

19 for i = 1 : num_group_points
20 % points interpolation here is a hangover from earlier interpolation of

points. with the
21 % updated approach developed during urban profile testing abs(7-i) * d_s

would be correct as
22 % the points become interpolated along the hypotenuse instead of along x
23 sj = dist(pts(i, :), centre);
24

25 if i == 7
26 % oddly , no additional d_s term is necessary for this term
27 k_temp = ( exp(-1j * beta * sj * f_theta) * Z_ii ) / Z_ii;
28 else
29 % below is the d_s term in the denominator that was missing
30 k_temp = ( exp(-1j * beta * sj * f_theta) * Z_ji(sj) ) / (d_s * Z_ii

);
31 end
32

33 sigma_k = sigma_k + k_temp;
34 end
35 % to be strict , K should be 1 - sigma to yield approx. 5, but absolute value

needs to be
36 % taken instead to preserve the positivity that the function otherwise

returns. sigma_k at
37 % this stage is -4.1052
38 K_out = abs(sigma_k);
39 end

The K calculation code that resulted in K = 4.1052. Different from the strict interpretation in
the extra ∆s term and what distances it calculates (paper defines sj for the exponential
function as distance from start of group to point j, and the sj that’s passed to Zji as being the
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distance from point j to the centre of the group).
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A6 Field Extrapolation Method: Forward-
Backward

J - Surface Current

1

2 J = zeros(n_grps , 1);
3 % BACK AND FORWARD SCATTERING
4 J_FS = zeros(n_grps , 1);
5

6

7 J_BS = zeros(n_grps , 1);
8

9 for loop_iter = 1 : 10
10 % FORWARD SCATTERING
11 for p = 1 : n_grps
12 sigma = 0;
13

14 for q = smooth_region_index : p - 1
15 r_j_i = dist(group_centres(q, :), group_centres(p, :));
16 sigma = sigma + ((J_FS(q) + J_BS(q)) * Z_ji(r_j_i));
17 end
18 end
19

20 r = dist(tx_pt , group_centres(p, :));
21 J_FS(p) = (Ei(beta * r) - (K * sigma)) / Z_ii;
22 end
23 end
24

25 for p = n_grps - 1 : -1 : smooth_region_index
26 % BACK SCATTERING
27 sigma = 0;
28

29 for q = n_grps : -1 : p + 1
30 r_j_i = dist(group_centres(q, :), group_centres(p, :));
31 sigma = sigma + ((J_BS(q) + J_FS(q)) * (Z_ji(r_j_i)));
32 end
33

34 J_BS(p) = -(K * sigma) / Z_ii;
35 end
36 end
37 J = J_BS + J_FS;
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Etot - Field above the surface

1 E_tot = zeros(n_grps , 1);
2 for p = 1 : n_grps
3 sigma = 0;
4

5 for q = smooth_region_index : p
6 r_j_i = dist(group_centres(q, :), (group_centres(p, :) + [0, obs_y]));
7 sigma = sigma + (J(q) * Z_ji(r_j_i));
8 end
9

10 r = dist(tx_pt , group_centres(p, :) + [0, obs_y]);
11 E_tot(p) = Ei(beta * r) - (K * sigma);
12 end
13

14

15

16 function Ei = Ei(x)
17 % x here is beta * r_ij
18 Ei = H02(x);
19 end
20

21 function Z_ji = Z_ji(r_ij)
22 % beta * r_ij not passed as single x param as beta is used more than once
23 global d_s beta eta
24 Z_ji = d_s * H02(beta * r_ij); % * ((beta * eta) / 4)
25

26 end
27

28 % happily , euclidean distance is always positive
29 function d = dist(pt1 , pt2)
30 d = sqrt((pt2(1) - pt1 (1))^2 + (pt2 (2) - pt1(2))^2);
31 end
32

33 % zeroth order hankel function of the second kind
34 function hankel_out = H02(x)
35 % avoiding besselh(0,2,x) as it adds computation time to get same result
36 hankel_out = sqrt(2 / (pi * x )) * exp(-1j * (x - (pi / 4)));
37 end
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A7 Including θ

1

2 K_sine_array = zeros(n_grps ,n_grps);
3 K_cosine_array = zeros(n_grps ,n_grps);
4

5 for p = 1 : n_grps
6 p2c2 = group_centres(p, :) - group_points(p,:);
7 % p2c2 (2) is y2-y1 , p2c2 (1) is x2 -x1
8 m2 = p2c2 (2) / p2c2 (1);
9 % orientation of group obtained by slope of vector from start point to

centre
10 alpha_FS = atand(m2);
11 % The self -term shouldn ’t be 0, but should be the standard K
12 K_sine_array(p,p) = K;
13 K_cosine_array(p,p) = K;
14

15 for q = 1 : p - 1
16 theta_forward = calculate_theta(group_centres(q, :), group_centres(p, :)

, alpha_FS);
17 K_sine_array(p,q) = k_with_theta(p, alpha_FS , sind(theta_forward));
18 K_cosine_array(p,q) = k_with_theta(p, alpha_FS , cosd(theta_forward));
19

20 % slope of qth point for points behind the pth point , used for
calculating

21 % the angle from p to q for back scattering ks
22

23 % same process as ps with indices swapped for direction change
24 p1c1 = group_centres(q, :) - group_points(q,:);
25 m1 = p1c1 (2) / p1c1 (1);
26 alpha_BS = atand(m1);
27

28 theta_backward = calculate_theta(group_centres(p, :), group_centres(q,
:), alpha_BS);

29

30 % upper triangular matrix for Ks is back scattering , like how
31 % it was for impedance matrix
32 K_sine_array(q,p) = k_with_theta(q, alpha_BS , sind(theta_backward));
33 K_cosine_array(q,p) = k_with_theta(q, alpha_BS , cosd(theta_backward));
34 end
35 end
36

37 J_FS_ONLY = zeros(n_grps , 1); % enforcing strict separation of this quantity
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from paranoia
38

39 for test = 1 : 4
40 J = zeros(n_grps , 1);
41 % BACK AND FORWARD SCATTERING
42 J_FS = zeros(n_grps , 1);
43 J_BS = zeros(n_grps , 1);
44

45 for loop_iter = 1 : 10
46 % FORWARD SCATTERING
47 for p = 1 : n_grps
48 sigma = 0;
49

50 for q = smooth_region_index : p - 1
51 r_j_i = dist(group_centres(q, :), group_centres(p, :));
52

53 % test == 1 and 2 are the sine and cosine inclusion loops , in
them the K for the

54 % current combination of points is used here , not at the end
55 if test == 1
56 sigma = sigma + (K_sine_array(p,q) * ((J_FS(q) + J_BS(q)) *

Z_ji(r_j_i)));
57 elseif test == 2
58 sigma = sigma + (K_cosine_array(p,q) * ((J_FS(q) + J_BS(q))

* Z_ji(r_j_i)));
59 elseif test == 3 && loop_iter == 1
60 sigma = sigma + (( J_FS_ONLY(q)) * Z_ji(r_j_i));
61 elseif test == 4
62 sigma = sigma + ((J_FS(q) + J_BS(q)) * Z_ji(r_j_i));
63 end
64 end
65

66 r = dist(tx_pt , group_centres(p, :));
67

68 if test < 3
69 % avoiding use of K here
70 J_FS(p) = (Ei(beta * r) - (sigma)) / Z_ii;
71 elseif test == 3 && loop_iter == 1
72 J_FS_ONLY(p) = (Ei(beta * r) - (K * sigma)) / Z_ii;
73 elseif test == 4
74 J_FS(p) = (Ei(beta * r) - (K * sigma)) / Z_ii;
75 end
76 end
77

78 if test == 3 && loop_iter == 1
79 % break for the forward scattering comparison
80 break
81 end
82

83 for p = n_grps - 1 : -1 : smooth_region_index
84 % BACK SCATTERING
85 sigma = 0;
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86

87 for q = n_grps : -1 : p + 1
88 r_j_i = dist(group_centres(q, :), group_centres(p, :));
89

90 % same general rules apply , but the indices for K arrays
reversed

91 if test == 1
92 sigma = sigma + K_sine_array(q,p) * ((J_BS(q) + J_FS(q)) *

(Z_ji(r_j_i)));
93 elseif test == 2
94 sigma = sigma + K_cosine_array(q,p) * ((J_BS(q) + J_FS(q))

* (Z_ji(r_j_i)));
95 elseif test == 4
96 sigma = sigma + ((J_BS(q) + J_FS(q)) * (Z_ji(r_j_i)));
97 end
98 end
99

100 if test < 3
101 J_BS(p) = -sigma / Z_ii;
102 elseif test == 4
103 J_BS(p) = -(K * sigma) / Z_ii;
104 end
105 end
106 end
107 J = J_BS + J_FS;
108

109 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
110 % Second loop to find E_tot up to (700 ,1) %
111 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
112

113 for p = 1 : n_grps
114 sigma = 0;
115

116 for q = smooth_region_index : p
117 r_j_i = dist(group_centres(q, :), (group_centres(p, :) + [0, obs_y])

);
118

119 if test == 1
120 sigma = sigma + K_sine_array(p,q) * (J(q) * Z_ji(r_j_i));
121 elseif test == 2
122 sigma = sigma + K_cosine_array(p,q) * (J(q) * Z_ji(r_j_i));
123 elseif test == 3
124 sigma = sigma + (J_FS_ONLY(q) * Z_ji(r_j_i));
125 elseif test == 4
126 sigma = sigma + (J(q) * Z_ji(r_j_i));
127 end
128 end
129

130 r = dist(tx_pt , group_centres(p, :) + [0, obs_y]);
131

132 if test < 3
133 E_tot(p) = Ei(beta * r) - (sigma);
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134 else
135 E_tot(p) = Ei(beta * r) - (K * sigma);
136 end
137 end
138 % plotting logic included , to serve as demonstration of how the multi -graphs

were generated
139 figure (2);
140 hold on
141

142 plot(group_centres (:,1), 20 * (log10(abs(E_tot))));
143 hold off
144

145 end
146 plot(EFIE_group_points (:,1), 20 * (log10(abs(EFIE_E_tot_cgs))));
147 plot(EFIE_group_points (:,1), 20 * (log10(abs(EFIE_E_tot_fs))));
148 plot(EFIE_group_points (:,1), 20 * (log10(abs(EFIE_E_tot_fsbs))));
149

150

151

152

153

154 hold off
155 legend(test_labels , ’FontSize ’, 14);
156 title(" Plots of 20* log10(| E_t_o_t |): ");
157 ylabel ("| E_t_o_t| (dB)");
158 xlabel (" Metres ");
159

160

161 function Ei = Ei(x)
162 % x here is beta * r_ij
163 Ei = H02(x);
164 end
165

166 function Z_ji = Z_ji(r_ij)
167 % beta * r_ij not passed as single x param as beta is used more than once
168 global d_s beta eta
169 Z_ji = d_s * H02(beta * r_ij); % * ((beta * eta) / 4)
170

171 end
172

173 % happily , euclidean distance is always positive
174 function d = dist(pt1 , pt2)
175 d = sqrt((pt2(1) - pt1 (1))^2 + (pt2 (2) - pt1(2))^2);
176 end
177

178 % zeroth order hankel function of the second kind
179 function hankel_out = H02(x)
180 % avoiding besselh(0,2,x) as it adds computation time to get same result
181 hankel_out = sqrt(2 / (pi * x )) * exp(-1j * (x - (pi / 4)));
182 end
183

184
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185

186 function theta = calculate_theta(c1, c2, alpha)
187 % normal is +90 degrees to group orientation , -90 would send it into the

earth
188 N_dir = alpha + (90);
189 % just cos and sin as the normal vector has unit length
190 N_vec = [cosd(N_dir), sind(N_dir)];
191 ray_vec = c2 - c1;
192 % formula cos(c) = v1.v2 / |v1|.|v2| for angle between vectors v1 , v2
193 c = dot(N_vec , ray_vec) / (norm(N_vec) * norm(ray_vec));
194 theta = acosd(c);
195 end

Code attempting to account for the changing thetas at every iteration of forward and
backward scattering. It never proved more accurate than the most accurate forward scattering,
and had a much greater computational and memory capacity overhead.
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