*ﬁ VA Trinity College Dublin
'; Colaiste na Trionéide, Baile Atha Cliath
The University of Dublin

School of Computer Science and Statistics

An Evaluation of BBRv2 Congestion
Control Using NS-3

Killian Lanigan

Supervisor: Prof. Meriel Huggard
April, 2020

A Dissertation submitted in partial fulfilment
of the requirements for the degree of
Master In Computer Science

http://www.scss.tcd.ie

Declaration

I hereby declare that this project is entirely my own work and that it has not been
submitted as an exercise for a degree at this or any other university.

I have read and I understand the plagiarism provisions in the General Regulations of
the University Calendar for the current year, found at http://www.tcd.ie/calendar.

I have also completed the Online Tutorial on avoiding plagiarism ‘Ready Steady Write’,
located at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

_ . 30/4/2020

Signed: =

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

Abstract

With the ever growing demand for optimal performance of a network, a solution to
provide consistent speeds and low latency is through the introduction of new congestion
control methods in the transportation of packets across a network. In this work, the
second version of Bottleneck Bandwidth and Round Trip Time, a congestion control
algorithm developed by Google, is evaluated to see if it stays true to its claims of achieving
an optimal use of network resources. This evaluation is performed using the network
simulation tool NS-3. This new congestion control algorithm was implemented in NS-
3 along with the original version and other variations of the algorithm developed from
studies of the original Bottleneck Bandwidth and Round Trip Time algorithm. A network
topology was setup in NS-3 and simulations with multiple different network scenarios
were tested. The findings from these simulations where that this new version of BBR
improved on its predecessor in situations involving networks with multiple flows of the
same congestion control algorithm and in contention with a delay-based congestion control
algorithm. The new BBR algorithm failed to validate its claims in scenarios with a
competing flow consisting of a loss-based algorithm. This evaluation shows that there is
a positive progression in the new version of BBR in achieving its goals, however, since it
is still in development, there are still some issues that have to be addressed.

i

Acknowledgements

I would like to thank my supervisor Prof. Meriel Huggard for the support, feedback and
guidance throughout the course of this project. I would also like to thank my family
and friends for their continued support throughout the duration of my academic
journey. Finally, I would like to thank the School Of Computer Science and Statistics
for their amazing response during a time of global crisis, showing support for students

to continue their work and to stay safe.

il

Contents

1 Introduction 1
1.1 Background and Motivationo oL 1
1.2 Research Objectives. 2
1.3 Dissertation Layout o oo 3

2 Background Research 4
2.1 Congestion Control o 4

2.1.1 Network Metrics 6
2.2 BBR Overview 7
2.2.1 Startup Phaseo oo 8
2.2.2 Drain Phaseo 8
2.2.3 ProbeBW 8
2.24 ProbeRTT 8
2.25 BBR Variants 9
2.2.5.1 BBR ... 9

2252 BBRPlus 10

2253 BBR+ 10

2254 Delay-BBR oo 11

2255 BBRv2 11

2.3 Related Work In BBR Evaluation 13
2.4 Network Simulationo oo 15
2.5 NS-3 . o 18
2.6 Congestion Control In NS-3 19
2.7 Background Summary00 20

3 Implementation 21
3.1 Overview 21
3.2 BBRInNS-3 22

3.2.1 Rate Samplingo 23
3.2.2 Windowed Min-Max Filter 24

v

3.2.3 BBR Model 24

3.3 BBRv2 And Variants In NS-3 26
3.3.1 BBR’. 26
3.3.2 BBR+ 27
3.33 BBRPlus 28
3.34 Delay-BBR 28
335 BBRv2. 29

3.3.5.1 Explicit Congestion Notification Signal 30
3.3.5.2 Three Part Model 31
3.3.5.3 Startup 32
3354 Drain 33
3.3.5.5 ProbeBWo 33
3.3.5.6 ProbeRTT 36
3.3.5.7 Experimental changes 36

3.4 Simulation Setup 37
3.4.1 Topology 38
3.4.2 Attributes 38
34.3 TCP Cubic 39

4 Results and Evaluation 40

4.1 Single Flow 40
4.1.1 BBRand BBR’ 42
4.1.2 BBR+ 46
4.1.3 BBRPlus 47
414 Delay-BBR 48
4.1.5 BBRv2. 50
4.1.6 Bandwidth Variation Response 52
4.1.7 Single Flow Summary 54

4.2 Intra-Protocol 54
421 BBRand BBR’ 57
422 BBR+ . . .o 59
423 BBRPlus 61
4.24 Delay-BBRo 62
425 BBRv2. . . . 63
4.2.6 Intra-Protocol Summary 65

4.3 Inter-Protocol 67
43.1 BBRand BBR’ 68

4.3.1.1 Delay-Based 68
4.3.1.2 Loss-Based 70

4.3.2 BBR+ 71
4.3.2.1 Delay-Based o0 71

4322 Loss-Based, 72

4.3.3 BBRPlus 74
4.3.3.1 Delay-Based 74

4332 Loss-Based 75

4.3.4 Delay-BBR 75
4341 Delay-Based 75

4342 Loss-Based 76

4.3.5 BBRv2. 7
4.3.5.1 Delay-Based 7

4.3.5.2 Loss-Based o 78

4.3.6 Inter-Protocol Summaryo 79

5 Conclusion 81
5.1 OVerview e 81
5.2 Future Work 82
A1lAbbreviations 92
A2Code Listings 93
A3Figures 95

vi

List of Figures

1.1

2.1
2.2
2.3

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

OSI Network Model 1
BBR State Diagram [1] 7
BBRv2 Network Path Model [2] 12
NS-3 Simulation Structure [3]o 19
BBR Class Interaction 0L 22
BBR Function Graph [4] 25
Simulation Topology 38
BBR Single Flow Throughput 42
BBR’ Single Flow Throughput 43
BBR Single Flow RTT 45
BBR’ Single Flow RTT 45
BBR+ Single Flow RTT 46
BBR+ Single Flow Throughput A=05. 47
BBR+ Single Flow Throughput A=0.125 47
BBRPlus Single Flow Throughput 48
BBRPlus Single Flow RT'T 48
Delay-BBR Single Flow Throughput 49
Delay-BBR Single Flow RTT 50
BBRv2 Single Flow Throughput 51
BBRv2-EXP Single Flow Throughput o1
BBRv2 Single Flow RTT 52
BBR Variants Responsiveness 53
BBR RTT Responsiveness 53
BBRv2 RTT Responsiveness oo o4
BBR Multi Flow Throughput Y
BBR’ Multi Flow Throughput o7
BBR Multi Flow Loss 58
BBR’ Multi Flow Loss 29

vil

4.22 BBR+ Multi Flow Loss A =05 59

4.23 BBR+ Multi Flow Loss A=0.125 60
4.24 BBR+ Multi Flow Throughput A=05. 60
4.25 BBR+ Multi Flow Throughput A=0.125 61
4.26 BBRPlus Multi Flow Throughput 61
4.27 Delay-BBR Multi Flow Throughput 62
4.28 Delay-BBR Multi Flow Loss 63
4.29 BBRv2 Multi Flow Loss 64
4.30 BBRv2-EXP Multi Flow Loss 64
4.31 BBRv2 Multi Flow Throughput 65
4.32 BBRv2-EXP Multi Flow Throughput 65
4.33 BBR vs Vegas Throughput 69
4.34 BBR’ vs Vegas Throughput 69
4.35 BBR vs Cubic Throughput 70
4.36 BBR’ vs Cubic Throughput 71
4.37 BBR+ vs Vegas Throughput A\=05 72
4.38 BBR+ vs Vegas Throughput A=0.125 72
4.39 BBR+ vs Cubic Throughput A\=05 73
4.40 BBR+ vs Cubic Throughput A\=0.125 73
4.41 BBRPlus vs Vegas Throughput 74
4.42 BBRPlus vs Cubic Throughput 75
4.43 Delay-BBR vs Vegas Throughput 76
4.44 Delay-BBR vs Cubic Throughput 7
4.45 BBRv2 vs Vegas Throughput 78
4.46 BBRv2 vs Cubic Throughput 79
A3.1 BBR’ RTT Responsiveness 95
A3.2 BBRPlus RTT Responsiveness 95
A3.3 BBR+ RTT Responsiveness A\=05. 96
A3.4 BBR+ RTT Responsiveness A =0.125 96
A3.5 Delay-BBR RTT Responsiveness 97
A3.6 BBRv2-EXP RTT Responsiveness 97
A3.7 BBRv2 Function Graph 98

viil

List of Tables

2.1
2.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Congestion Control Algorithms Overview 5
Network Simulators Overview 18
BBRv2 Three Part Model 31
Scenario Configuration 41
Single Flow Bottleneck Configuration 41
Single Flow Results oo 44
Bandwidth Variation Bottleneck Configuration 52
Multiple Flows Bottleneck Configuration 55
Multiple Flows Results 56
Vegas Results o 67
Cubic Results 68

X

List of Code Listings

2.1 BBR’ ProbeBW Sample Code 9
2.2 BBRPlus ProbeBW Sample Code 10
3.1 BBR+ RTProp Estimation Code 27
3.2 BBRwv2 InflightHi Probe 34
A2.1 Delay-BBR OnPacketSent Code 93
A2.2 Delay-BBR OnAck Code 93
A2.3 Delay-BBR UpdateRttAndInflight Code 94
A2.4 Delay-BBR CheckIfCongestion Code 94
A2.5 Delay-BBR DrainExcessBuffer Code 94

1 Introduction

1.1 Background and Motivation

The demand for fast and reliable internet is a constant requirement in modern day
telecommunications. The use for these fast speeds is due to the increase in use of real
time applications like video streaming which requires a reliable stream of packets
varying in size with quality of video and takes up to 65% of downstream traffic in the
world [5]. Breaking down these requirements of speed and reliability into
telecommunication related terms might see them defined as the utilisation of a
bandwidth channel, a high delivery rate of packets, low latency and little to no packet
loss. These types of characteristics can be seen to be managed through the transport
layer of the OSI internet stack [6] which is represented in Figure 1.1. The layers in this
stack make up the fundamentals around transfer and use of information over the
internet with each layer serving each other. The transport layer is at the heart of the
stack and provides important protocols in order to perform effective data transfer. The
main protocol used in transport layer is Transport Control Protocol [7]. Congestion
control is a part of Transport Control Protocol and can be seen to dictate the network

metrics of bandwidth utilisation, delivery rate, latency and packet loss.

I Application Layer]

Sender
Presentation Layer] Software

[Layers
ﬂ U [Session Layer]
l

Receiver
Transport Layer] —> Heart of OSI

Network Layer]

Hardware
] Layers

l
I Data Link Layer
[

Physical Layer]

Figure 1.1: OSI Network Model

There exists a number of different congestion control algorithms that aim to provide the
optimal balance between these types of metrics in a network to achieve an efficient and
reliable connection. In order to keep up with the demand for increasing speeds and
reliability of connections, telecommunication teams in service providers like Google have
been engaging in research to implement new congestion control algorithms and
introduced a new congestion control algorithm to face the influx of increasing internet
demands and to improve the performance of all of its services. This congestion control
algorithm was called Bottleneck Bandwidth and Round Trip Time (BBR) and initially
looked to solve this demand for a high speed reliable connection [8]. This success was
short lived as extensive research into the new congestion control algorithm found flaws
and undesirable characteristics in its behaviour [9]. This encouraged Google to develop
a second version of the algorithm to overcome these issues and stay on track with a goal
of increasing reliability of data transfer whilst maintaining high speeds [2|. This new
version is still under development by Google and is an open source project. Google
encourages researchers and academics to test this new type of congestion control
algorithm and contribute to the development. The motivation behind this project is to
engage in the current research encouraged by teams at Google to help in the
development of this new congestion control algorithm by giving a good performance
evaluation of the algorithm and ultimately provide a better internet experience for users

in the long term.

1.2 Research Objectives

The main objective of this project is to apply evaluation techniques using a network
simulator to assess this new version of the bottleneck bandwidth and round trip time
using appropriate network metrics. Since this version of the bottleneck bandwidth and
round trip time congestion control algorithm is only very new, there is very little
evaluations on its performance and validations of the goals it wishes to achieve. This
project aims at validating these claims and giving a clear insight into the performance
of the new congestion control algorithm. The original algorithm along with a number of
variations suggested from related works will also be evaluated in order to compare their
performance with the new version and outline distinct differences between them in
functionality. In order to achieve these objectives, these algorithms will be implemented
in the network simulator NS-3 and appropriate network scenarios will be set up for

testing.

1.3 Dissertation Layout

Chapter 2 of this dissertation will consider the state-of-the-art and related research in
the evaluation of BBR congestion control and Network Simulation. Chapter 3 will
outline the design and technical implementation of this project. Chapter 4 will present a
critical evaluation of the results of this project. Chapter 5 will conclude this dissertation

with a summary of the key findings and a discussion of potential future work.

2 Background Research

This chapter gives an insight into the related state of art research into BBR congestion
control and Network Simulation. The approaches to BBR evaluation will be examined
in the section on related work in BBR. Network Simulation techniques and
corresponding tools will also be discussed in the section on Network Simulation and

NS-3. Abbreviation reference can be found in Appendix Al.

2.1 Congestion Control

Congestion occurs in a network when the host is unable to process the volume of traffic
it is being sent. The premise around the transportation of packets across the internet is
a concept that involves a lot of situational complexities with a series of different
protocols and techniques that make up the stack of packet transportation. Different
network-defined applications use different variations of these techniques to achieve
optimal transportation of packets. Congestion Control can be described as a solution to
the complexity problem, dealing with the problems around achieving the optimal
requirements of packet transportation. The underpinning philosophy of congestion
control is to achieve as much utilisation as possible of the network without overloading
the network. Packets typically operate in flows that represent a stream of packets from
the sender to the receiver, each flow passes through a network of switches and routers
known collectively as nodes. These switches and routers often use buffers to process the
packets passing through them. The transportation of packets itself is carried out using
the Transmission Control Protocol (TCP), which itself adopts an array of different
congestion control algorithms. TCP is the most used transport layer protocol in the
internet |7]. Such algorithms work by assessing and addressing congestion using
different techniques with unique attributes depending on network conditions and

network defined metrics.

Congestion control algorithms can be divided into groups depending on their method of
congestion detection [10]. Loss-based algorithms are ones that detect congestion when

packets are dropped from full buffers. Delay-based algorithms use round trip time

(RTT) measurements where the RTT is the amount of time taken for a packet to go
from sender to receiver and for an acknowledgement to be sent back to the sender. A
fluctuation in the RTT indicates delays due to increased buffering. Hybrid is the name
given to a class of algorithms that exploit both the previous methods for congestion
detection. Some Hybrid algorithms might classify their type of congestion control
algorithm based on their unique congestion detection method. A table of different

congestion control algorithms and their unique benefits can be see below in Table 2.1.

Table 2.1: Congestion Control Algorithms Overview

Category Algorithm Benefit
Loss-Based BIC Optimised for long fat networks, binary methods for cwnd [11]
CUBIC Enhanced version of BIC, cwnd non-dependent of RTTs [12]
Reno 3 cwnd management algorithms and 2 loss detection methods [13]
NewReno Improves retransmission during fast-recovery phase of TCP Reno [14]
Scalable Cwnd managed to benefit high speed networks [15]
HighSpeed(HSTCP) Utilises available bandwidth in networks with high BDP [16]
H-TCP Maintains consistent fairness in both high and low BDP links [17]
Delay-Based Vegas 40-70% better throughput than Reno, proactive mechanism [18]
Vegas+ Aggressive cwnd size mechanism for fairness with TCP Reno [19]
FAST Congestion measure is queuing delay, descendant of Vegas [20]
VFAST Better Fairness than FAST with smoother RTT measurements [21]
Hybrid BBR Detects actual congestion through model based methods [8]
BBR’ Slightly modified BBR that increases fairness [22]
BBRPlus Increased BBR performance by change in pacing gain method [23][22]
BBR+ Higher throughput than BBR at cost of RTT [24]
Delay-BBR Fairness, rate stability and low packet loss compared to BBR [25]
BBRv2 BBR upgrade in terms of fairness, packet loss and throughput [2][26]]27]
Illinois Uses both packet loss and queuing delay as detection, high throughput [28]
Compound TCP Has 2 different cwnds to increase accuracy of congestion detection [2§]

Congestion control algorithms continuously survey the network’s state in order to gauge
if there is congestion at the bottleneck. TCP Congestion control is window-based, the
congestion window (Cwnd) is used to limit the amount of the packets the sender can
have in the network. If there is no congestion detected at the bottleneck then the
sending rate is increased to make use of the additional bandwidth available, this is done
by increasing the congestion window size. The bottleneck is often considered the main
congestion point of a network and taken as the maximum delivery rate [29]. Congestion
occurs at the bottleneck when the sending rate is increased to a point where it can not
handle the incoming packets quickly enough; that is when packets are arriving more
quickly than they are being forwarded. Queues eventually will form at each buffer and
there is possibility of lost packets if buffer overflow occurs. Increasing the buffer size is
not necessarily a warranted solution as it causes bufferbloat which adds delay to the

packets due to the increased number of queued packets in the buffer [30]. The different

congestion control algorithms use different methods of increasing and decreasing the

congestion window to provide optimal use of network resources.

2.1.1 Network Metrics

Evaluation of congestion control algorithms is based on specific metrics that gauge the
overall effectiveness of the algorithm; for example, the sending rate and the throughput
are some of the metrics used. The flow of bits per unit time is typically known as the
bit rate [31], while the sending rate is the bit rate of a specific flow generated from a
source. Throughput represents the amount of bits that are received per unit time over a
network link. The ideal throughput is the sending rate; however, this is often not
achieved due to factors such as traffic in the system and the sharing of network
resources among other sources. Throughput can be viewed as the average utilisation
rate of the supplied bandwidth.

Although the data transfer rate might be high it is important to be able to classify the
usefulness of the received data. The transportation of packets across a network
introduces overhead due to a number of reasons including protocol computations and
retransmissions. A way to gauge the usefulness of the received data is to determine how
much is transported to the application layer. A general metric used to measure this is

the Goodput. This is represented using the formula [10]:

(Ds - Dr - Do)
At

Goodput = (1)

where Ds is the number of useful bits transmitted, D, is the number of bits
retransmitted and D, is the number of overhead bits in a time interval At. In essence,
the goodput ratio can be seen as the ratio of useful transmitted data to the total

amount of data transmitted [10].

Different devices and applications use different congestion control algorithms if they use
TCP to transmit data. The way in which these different algorithms interact with each
other and share bandwidth is referred to as fairness [32]. Fairness is broken into three
categories: (1) intra-fairness which refers to the resource distribution between flows
running the same congestion control algorithm; (2) inter-fairness which refers to the
resource distribution between flows running a different congestion control algorithm; (3)
RTT-fairness which is a property defined by the difference in resource distribution of
flows with different RT'Ts. Jain’s index [33] is a quantitative representation of fairness
through an index that ranges from 0 to 1, the closer the value is to 1 the more equal the
share of resources across the different flows are. The index is based on the sending rate

and can be defined as seen in equation 2, where n is the number of competing flows and

[x1,%2,...,%,| Tepresents each flow.

3
3

J(x1, X2, -y Xn) :(' X,-)z/an,-z (2)

2.2 BBR Overview

Bottleneck Bandwidth and Round trip time was introduced as a congestion control
algorithm by Google in 2016 [8]. In contrast to other widely used congestion control
algorithms such as Cubic and Reno, BBR continuously takes measurements of the
maximum available bandwidth (bottleneck bandwidth) and propagated round trip time
to gain an overall understanding of the activity of the network. BBR then uses these
measurements to gauge the network congestion. These measurements are taken
independently to prevent delay when probing for more bandwidth due to the creation of
a queue at the bottleneck. The goal of BBR is to operate at Kleinrock’s optimal
operating point [34] by adjusting the sending rate and manage the number of in-flight
packets to reach high throughput and low congestion in order to keep delay at a
minimum. BBR operates on the sender side and does not require any changes to the
network itself. It uses specific parameters such as pacing gain and congestion window
gain to control the sending rate in the algorithm. The pacing rate is the product of the
pacing gain and the estimated bandwidth [22]|. Pacing gain values greater than 1
increase the volume of in-flight packets and decreases the packet inter-arrival time, a
value less than 1 has the opposite effect [8]. BBR is broken up into four distinct

operational states as shown in Figure 2.1.

v
+---> Startup ----+
|
V
Drain ----+
|
V
+---> ProbeBW ----- +
-
| |
+----+
+---- ProbeRTT <---+

Figure 2.1: BBR State Diagram [1]

2.2.1 Startup Phase

Similar to how the slow start of TCP operates [35] this phase involves an exponential
increase in the sending rate where it is doubled every RTT in order to probe the max
BtlBw (Bottleneck Bandwidth). A binary search method is used and the pacing gain is
set to %(~2.89) in order to allocate this bandwidth probing. An estimate of the
maximum BtlBw is deemed to have been achieved when there is no (or very little)
increase in the sending rate after 3 RTTs and when the estimated bandwidth is 1.25
times less than the previous bandwidth value. The state switches to Drain once this
stage is reached. The expense of this stage is the development of a queue that is twice
the BDP (Bandwidth Delay Product) value (that is the propagated RTT x
bandwidth).

2.2.2 Drain Phase

In the Drain phase, the goal is to drain the queue that developed during the startup
phase of the excessive data that accumulated due to the increased sending rate. The
pacing gain is set to the inverse of the value in the startup phase of '”72 and it takes one
RTT to drain the queue. The sending rate is also set to 0.75 times the BDP value to
stop the same queue build up as in the startup phase. Once the in-flight packets match

the BDP value the state is switched to ProbeBW.

2.2.3 ProbeBW

In order to keep up with changing network conditions, BBR uses the ProbeBW phase as
a way of keeping the sending rate at a maximum. It does so by increasing the pacing
rate to 1.25 the BtlIBw (the maximum observed delivery rate during the previous 8
RTTs) for one RTT (the estimated propagated RTT). After which the rate is decreased
to 0.75 times the BtlBw in order to drain the queues of excess data. The rate then
plateaus for a further 6 RTTs at the normal BtlBw rate. This method of probing
bandwidth is known as gain cycling [8] and uses cycles of 8 RT'Ts with the sequential
use of specific pacing gain values. To compensate for the increase in sending rate, the
congestion window is set to twice the BDP value to allow for more packets to be sent.
BBR spends the majority of its time in this state [8] to allow for high utilisation of
bandwidth and throughput.

2.2.4 ProbeRTT

When not in ProbeBW phase, the BBR algorithm spends the rest of its time in the
ProbeRTT phase. This phase is entered once there has been no update in the

propagated RTT value during the previous 10 seconds. In order to re-estimate the value
the amount of in-flight packets is reduced to 4 per RTT to drain any queue in the
intermediate router. The new RTT value is the minimum observed RT'T in 200ms plus
one RTT of these packets. Upon updating the RTT value the phase is set to either
Startup or ProbeBW depending on whether the pipe was filled before entering the state

8]-

2.2.5 BBR Variants

Since BBR’s release, there has been multiple studies that sought to improve its
behaviour by changing certain elements of the algorithm. In this section some of these

variants will be described.

2.2.5.1 BBFR’

As described before, the ProbeBW phase includes a gain cycling method of updating
the pacing gain with a sequence of [1.25,0.75,1,1,1,1,1,1]. In the BBR algorithm there
are two different ways of updating the pacing gain between the queue draining cycle
(pacing gain = 0.75) and the cruising cycles (pacing gain = 1). The first involves the
increase in the cycle offset when the queue draining cycle holds for one RTT, the second
is to increase the cycle offset when the in-flight packets are less than or equal to the
estimated BDP. The second method suggests that the queue was drained earlier than
expected and achieves a lower queue delay. BBR with this second pacing gain update
method is referred to as BBR’ [22][1]. As seen in line 10 in the Code Listing 2.1 there
are the two conditions for which the pacing gain is updated between queue draining
cycle and cruise cycle. The variable prior_inflight represents the amount of in-flight

data before an acknowledgement is processed.

BBRIsNextCyclePhase () :
is_full_length = (Now() - BBR.cycle_stamp) > BBR.RTprop
if (BBR.pacing_gain == 1)
return is_full_length
if (BBR.pacing_gain > 1)
return is_full_length and
(packets_lost > O or
prior_inflight >= BBRInflight (BBR.pacing_gain))
else // (BBR.pacing_gain < 1)
return is_full_length or
prior_inflight <= BBRInflight (1)

Code Listing 2.1: BBRIsNextCyclePhase() [1]

2.2.5.2 BBRPlus

BBRPlus is a variation of BBR that was introduced in a blog [23| and follows the
method of BBR’ in changing the existing ProbeBW attributes of BBR. Similar to
BBR’, the pacing gain is set to one when the in-flight packets are less than or equal to
the estimated BDP, but the main factor of change is the length of the gain cycling. A
randomisation of values between 2 and 8 is used to decide the length of the cycles, this
combined with the pacing gain optimisation reduces packet loss and improves fairness
[23]. Induced packet loss also introduces the queue draining cycle sooner. Line 5 of
Code Listing 2.2 shows the randomisation of cycle length where GAIN_LENGTH is 8 and
CYCLE_RAND is 7. The introduction of packet loss as a cycle changing condition can also

be seen in Line 13.

UpdateGainCyclePhase () :

elapsed = (Now() - BBR.cycle_stamp)

if (elapsed > cycle_len * BBR.RTprop):
BBR.cycle_stamp = Now()
cycle_len = GAIN_LENGTH - rand()’%CYCLE_RAND
BBR.pacing_gain = 1.25

if (BBR.pacing_gain == 1)
return

if (BBR.pacing_gain < 1 and prior_inflight <= BBRinflight (1)
BBR.pacing_gain = 1

if (elapsed > BBR.RTprop

and prior_inflight > 1.25 * BBRinflight (1)
or packets_lost > 0)
BBR.pacing_gain = 0.75

Code Listing 2.2: UpdateGainCyclePhase() [22]

2.2.5.3 BBR+

The idea around the design of BBR+ originated from an evaluation of TCP over LTE
on High-speed Rails (HSR) [24]. It is stated that the BBR algorithm performance is
suboptimal in networks with rapidly changing bandwidth and RTT. The changes
applied to make up the BBR+ algorithm for a more suitable environment like HSR
include the introduction of a different sequence of pacing gains as in a HSR scenario
there is a more non stable BtIBw. The sequence is [1.5,0.5,1.5,0.5,1.5,0.5,1.5,0.5] which
allows for larger fluctuations in the pacing rate. BBR+ also makes changes in how the
propagated RTT is changed in the ProbeRTT phase to compensate for the network
dynamics of HSR and the fact that there is a conservative nature to the propagated

RTT over the last 10 seconds. The formula can be seen below:

RTprop = minRTT + A\\/Var(RTT) (3)

10

It is found that the distribution of different RTT samples is Gamma with a fat tail [24],
hence the use of the shape parameter () in the formula for the calculation of

propagated RTT. The shape parameter acts as a tunable parameter to trade off
between bandwidth and RTT.

2.2.5.4 Delay-BBR

In relation to video streaming, a variant of BBR was introduced to specifically cater for
video transmission scenarios [25]. The name given to the algorithm was Delay-BBR. It
has the goal of providing lower packet loss rate and lower transmission latency with
solid throughput. The authors argue that the undesirable features of BBR that affect
any real time video transmission include the probing of bandwidth where there is a vast
increase in packets sent with the pacing gain set to 1.25 and decrease in the next cycle
at 0.75 which would induce a queue of packets going into the draining cycle that were
needed for the previous video frame. Latency increases are also introduced as the
sending rate often exceeds the bottleneck capacity and the ProbeRTT phase only sends
4 packets.

To tackle these issues it was proposed that the pacing gain’s sequence would change to
[1.11,0.9,1,1,1,1,1,1] for the gain cycle to give some stability for the consistent delivery
of video frames. The ProbeRTT phase is re-purposed to allow for excess buffered
packets to be drained and the frequency of entering this phase is drastically increased
meaning the state will be entered not just after the 10 second interval of updating the
propagated RTT. The pseudo code in A2.1 - A2.5 offers a look at the changes made
including the use of a smoothed RTT signal which allows for the draining of buffers
once it reaches a certain threshold. Congestion is detected through the smoothed RTT
signal becoming larger than the product of the base RTT (during the ProbeBW phase)
and a Beta value. When in the ProbeRT'T state the smoother RTT signal is reset and
only updated when a sequence number of an acknowledged packet is larger than the

sequence number of the last sent packet [25].

2.2.5.5 BBRv2

BBRv2 is Google’s ongoing research attempt at making BBR more robust and fair
across multiple flows [2]|[26][27]. The issues with BBR that BBRv2 looks to solve is the
low throughput when sharing with Reno or Cubic flows at the bottleneck, the high
packet loss rates if there is a bottleneck queue less than 1.5 times the BDP, aggregated
flows that result in low throughput and a varied congestion window causing low
throughput in ProbeRTT phase. BBRv2 adopts a DCTCP (Data Centre TCP) inspired
ECN (Explicit Congestion Notification) which has a main purpose of indicating
congestion without dropping packets. It should be noted that general use of ECN in

11

TCP is optional [36]. BBRv2 introduces changes to the general BBR flow cycle to

consider actual packet loss. Upper and lower bounds of the in-flight rate are introduced

as part of a three part model to represent the bounds between which the compiled

congestion signals reside. These include delivery, loss and ECN [2]. The lower bound for

bytes in flight is calculated as per equation 4 when an acknowledgement is received with

a loss indication, 3 is 0.3 [2].

The network path model is shown in Figure 2.2, this displays the points in the execution

of the algorithm where certain metrics are set. In the startup state the upper bound for

inflight _lo = max(inflight, (1 —) = inflight _lo (4)

in-flight rate is used to estimate the maximum in-flight rate when the loss rate is too

high and acts as an exit clause when it is set. The ProbeBW state is typically broken

up into probe up, probe down and probe cruise phases. These are altered from their

typical behaviour in BBR to provide a more steady variance in sending rate with

dependence on the lower and upper bounds for conversion between phases.

sequence

max_bw: bottleneck bandwidth available to this flow
min_rtt: round-trip propagation delay
max_inflight: max inflight data, based on loss/ECN

max_aggregtion: max measured aggregation level

I -<— max_aggregation

max_inflight —» I

msm Send
I mmm ACK

time

Figure 2.2: BBRv2 Network Path Model [2]

The probe cruise phase has interval adaption per RTT to update the bandwidth and

lower bound for in-flight rate using a combination of the loss and ECN signals. The

in-flight rate starts at the estimated BDP and, in order to avoid approach to the upper

bound, headroom is left as per equation 5 where headroom = 0.15. A probe refill phase

is initiated for one RTT to prepare for the probe up phase, the pipe is filled but the

queue is not. Probe up is the priority of the ProbeBW state as it is where any

unutilised bandwidth is sought. For BBRv2, the probe up phase grows exponentially

12

after each RTT to utilise any extra bandwidth and it ceases probing when the estimated
queue is 1.25 times the estimated BDP or the value of upper in-flight rate bound is set.
The upper bound for bytes in flight is set when the loss and ECN rate is too high. The
probe down phase takes up its original role of draining any excess queue built up by the
probe up phase. In order to reach its goal for a reduction in throughput variation the
ProbeRTT state is changed to reduce the congestion window to 50% of the BDP
instead of only 4 packets.

inflight = (1 — headroom) x inflight _hi (5)

2.3 Related Work In BBR Evaluation

Since its release in 2016, BBR has been carefully studied to assess the veracity of the
claims made about it by the varying of different network dynamics. The validation of
claims made in the original development of the algorithm are amongst the most popular
types of evaluations where comparisons were made to other congestion control
algorithms and assessments of its performance in variations of situations were
considered. From the literature it can be seen that BBR suffers from a number of
problems [9]|37], the most notable being in situations where there are multiple flows of
both BBR and non-BBR congestion control algorithms. BBR suffers from an RTT
unfairness issue which comes from the algorithms inability to give a fair share of the
bandwidth when flows exist with different RTTs, with BBR favouring bandwidth
allocation to the flow with the highest RT'T.

The algorithm also tends to overload the bottleneck link with coexisting flows and
buffers that are under the estimated BDP value (shallow buffer) resulting in massive
loss which goes undetected by BBR. The sharing of bandwidth amongst flows with
different congestion control algorithms has also resulted in poor performance [38][10][39]
[40] especially with loss-based congestion control algorithms like Cubic. Buffer Size
makes a difference in the behaviour with these other congestion control algorithms due
to BBR’s dependence on the BDP value.

Buffers that are greater than the estimated BDP value show cyclic behaviour with
Cubic with the throughput typically varying from high to low for the competing flows,
this is because BBR has an in-flight cap that is used once a fair estimation of the
throughput and propagated RTT is found causing a fixed rate of packets at the
bottleneck queue, Cubic takes advantage of this to expand its congestion window and
causing BBR to reduce its congestion window due to a lower observed throughput at
the bottleneck router. ProbeRTT takes hold for BBR every 10 seconds and when a

13

competing flow like Cubic is present, the queue that would supposedly be drained will
stay full due to this Cubic flow and hence cause a large re-estimate of the propagated
RTT and thus the BDP value. Consequentially, a large increase in congestion window
occurs causing high loss that goes undetected by BBR but picked up by Cubic which in
turn backs off, reducing its congestion window. This cyclic behaviour is not ideal for

networks, especially ones dependent on consistent goodput, latency and jitter.[39]

Many evaluations use custom topologies with realistic bandwidths to simulate a typical
network. The ability to dynamically change the bandwidth and RTT of the bottleneck
link allows for the characteristics of BDP to be changed, which in turn impacts on the
behaviour of BBR. In order to evaluate the behaviour of the multiple variations of BBR
mentioned in this paper, a decision would have to be made on the most appropriate

topology and network conditions to test under.

Multiple studies have used a typical dumbbell topology over a simulation of a wired
network using tools such as NS-3 or Mininet [22|[38][4] but only a limited number of
studies have been done on varying types of network. Jinting Lin performed an
evaluation of BBR over varied network conditions including LAN (Local Area
Networks), WAN (Wide Area Networks) and WLAN (Wireless Local Area Networks)
[41]. This showed that BBR does not perform well with wireless networks, in particular,
with a low rate of goodput and fairness towards other competing congestion control
algorithms. WANSs also show poor performance with the ongoing issue of high losses

and retransmissions despite having reasonable goodput.

An alternate evaluation approach is to use different content providers as test beds to see
how BBR operates in a real world scenario [42|. The behaviour was as expected, as per
recent declarations, with poor fairness in bandwidth allocation among different flows
and with content providers with conflicting congestion control algorithms. Buffer size
proved optimal in deciding BBRs dominance amongst content providers. This, along
with the methodologies of the other evaluations, would influence the decision to opt for
evaluation by simulation in a wired network where dynamic changes to network
attributes such as bandwidth, bottleneck bandwidth and propagation time are possible

in order to fully capitalise on BBR’s functionality.

The existence of many flaws in BBR’s approach to congestion control caused an influx
of suggestive changes to solve them, with common approaches targeting one or two
specific flaws. The effect of loss was a significant factor identified in the extensive initial
evaluation of BBR and some suggestions to solving this issue include a decrease in
congestion window when packet loss is above a certain threshold and when the
measured RTT is less than the propagated RTT [39]. Other changes sees the
introduction of an additional signal to detect loss before it happens [25]. RTT

14

unfairness is another important flaw that can be tackled by reducing congestion window
growth based on the last measured RTT and the propagated RTT to reduce the

creation of long queues [43] at the bottleneck.

BBRv2 takes all of these flaws into account with the aims to fix them all [2|. Research
and testing with real traffic (YouTube) is ongoing with BBRv2 and the latest release
has yet to be evaluated and validated to have solved BBR’s problems by sources other
than Google. Whilst the evaluations done by its developers proved promising [26], the
limited external evaluation provided the initial motivation for the evaluation performed
in this report. As of writing, November 2019 was the latest release of information about
BBRv2 [27|. A paper by Zhang et al. [22] is one that evaluates an earlier release of
BBRv2 alongside different variants of BBR including BBR’ [22], BBR+ [24] and
BBRPlus [23]. This evaluation found comprehensive improvements in fairness with
other congestion control algorithms and consistent performance across all other metrics
including elimination of RT'T unfairness. This evaluation hopes to achieve similar
results with the latest release of BBRv2.

2.4 Network Simulation

Congestion Control methods like BBR need to be tested in order to handle varying
changes to network dynamics and to ensure robustness before using real world traffic.
Network simulators are analytical modelling tools used in research and development for
the interpretation of network behaviour and performance. These simulators can be used
to study the current behaviour of a network or predict the outcome of a change in the
network by testing new protocols. The difficulty behind analysing network behaviour
with the increase in network scale and the development of new technology is made
easier through the use of network simulators. Experimental methods were the typical
forms of testing network behaviour with the use of a developed test bed with the
required network characteristics to carry out research on the network environment, but
as networks got increasingly more complex with the mix of wireless and wired
architectures, the ability to use experimental methods would prove costly and too strict
to its predefined characteristics. These analytical models can also prove expensive in
terms of the consumption of energy, memory, processing power and most notably time,
especially with larger scale network models. The goals of network simulation can be

seen as [44]:

e Predict the performance of current networks and protocols in order to aid
technology assessment and capacity planning and to demonstrate fulfilment of

customer goals.

15

e Predict the expected behaviour of new network protocols and designs through

qualitative or quantitative estimates of performance or correctness.

e Explore a range of potential protocol designs through rapid evaluation and

iteration.

The application of network simulators can be used across various fields of work in both
research and development of new network technologies or the validation of current
technologies. In the process of software development, network simulators can be used as
part of the workflow to enable the correctness of developed work in the necessary
network environment. Successful network simulations of a specified network behaviour
offer confidence in that protocol operating as expected in a real world

specification.

In order to gauge the effectiveness of network simulations and all its software
distributions, the results that are produced from a simulation model must be
interpreted correctly. Validation is the process of assuring that a model provides
meaningful answers to the question being investigated [44]. This is a necessity in terms
of providing clarification to the results of a simulation. Grades of validation are based
on the questions being asked and the systems being used with levels of abstraction
judged from the interpretation of the situation to be simulated. High level of detail in
certain networks will require a more complex model of simulation with a look into the
effects of the simulation on all aspects of the network through all its corresponding OSI

layers.

A comparison between a network simulation of a specified protocol versus a real world
implementation of the same protocol is the simplest means of validating the simulation
but is very restrictive to the types of protocols that can be compared due the ability to
create these protocols in a larger scaled network. Typically network protocols like for
example, TCP, have specialised design decisions that in certain cases are embodied by
the simulation model and only represent a specific "version" of that protocol. Also with
all its different implementations, TCP may have to be validated through simulation
against different implementations and any future changes that may impact it. BBR is a

prime example of one of those changes.

A robust methodology to validate a network simulation of a specific protocol is to have
an established baseline truth about that protocol to base any varied specification
comparison against. The use of specified metrics can be applied to each simulation and
presented in visualisation or graph plots in order to prove any hypotheses and validate
the simulation for the protocol in question. In the case of BBR, statistical measures
such as sent and received packets, throughput and round trip time are just a few of the

metrics can be used in the appropriate simulation comparisons.

16

Network Simulation can be broken up based on different techniques of execution. These
include; Discrete event simulation, Parallel discrete event simulation and Ultra large
scale simulation framework (USSF) [45]. Discrete event simulation models the operation
of the system as a discrete sequence of events in time. Each event occurs at a particular
instant in time and marks a change of state in the system [46]. This stateful method of
simulation provides an abstract style for which a network simulator emulates the

network layers and allows for simple interpretation of the simulators structure.

Parallel discrete event simulation is discussed by R. M. Jujimoto [47] and involves the
use of parallelism in the context of discrete event simulation. This allows for the
distribution of computational load when simulating larger networks and a general
increase in performance of network simulators. Parallelism works well for this type of
event driven system as long as systems follow certain sequencing constraints that
prevents causality errors which are a result of the parallel execution taking an event at
a timestamp that is larger than another that is executing and the larger of the two
inflicting a change of state whilst the other is still executing. There are two different
mechanisms for parallel discrete event simulation: (1) Conservative, which strictly
approaches causality errors and has a method in place to determine if it is safe to
execute an event; (2) Optimistic which takes a detection and recovery approach to

causality errors with a rollback method to recover from any errors [47].

For larger scaled systems that would usually require very long simulation times, Ultra
large scale simulation framework (USSF) was developed. USSF is built on top of two
parallel discrete event simulators, WARPED [48] and NOTIME [49]|. The framework
operates by reusing defined components and replicates the modelling constructs that
make up the simulation in order to reduce the size and consumption of the simulation,
allowing for a large amount of network nodes in a simulation. Efficient use of memory
management is employed to improve performance and the features of USSF can be
easily exploited on top of a discrete event simulator requiring only minor changes to the

application modules [50].

There are a number of different network simulator software that utilise these techniques,

the table below presents a look at a few examples with their unique features.

17

Table 2.2: Network Simulators Overview

Simulator = Method Feature

OPNET (Parallel) Discrete event Visual/GUI support, object-oriented, large scalability [51]
OMNET-++ Discrete event GUI support, component based (modular) analysis [52]
GloMoSiM (Parallel) Discrete event Large scale wireless networks, library-based [53]

QualNet (Parallel) Discrete event Commercialised GloMoSim, protocol design environment [54][55]
NetSim (Stochastic) Discrete event Development environment, feature rich (layer abstraction) [56][55]
NS-2 Discrete event Object-oriented (TCL), protocol simulation in virtual time [57]
NS-3 (Parallel) Discrete event Numerous networks types and protocol detail emphasis [58]

2.5 NS-3

Comparisons between network simulators have been carried out using various different
metrics, most notably memory usage, CPU utilisation, scalability and computation time
which is presented in a study by Khana et al. [59]. The results show that NS-3
outperforms other simulators such as OMNET++, GloMoSim and NS-2 in all the
proposed metrics. This along with the fact NS-3 has a large library of modules, is open
source and is very well documented is among the reasons for using it in the evaluation
of BBRv2. In this section the operation of NS-3 will be discussed in detail.

As mentioned before, NS-3 is a discrete event simulator with the evolution of a network
system modelled through discrete events in time. NS-3 also has the capabilities to use
parallelism to increase overall performance of simulations. It is written in C++ but also
offers the ability to use Python bindings to write modules and simulator scripts. It was
intended as a replacement for NS-2 with a complete rewrite of the core modules and the
scrap of O-TCL (Objective Tool Command Language) as the topology design

language.

The modules included in NS-3 for network simulation include numerous network devices
such as CSMA, LTE and WiFi, internet protocols such as TCP, UDP and IPv4/v6 and
routing protocols such as AODV and DSDV [60]. What separates NS-3 from its other
simulator counterparts is its attention to realism in the implementation of all its
modules. The flow and operation of the majority of its modules would be very similar

to the behaviour in a real world kernel implementation.

Given its open source nature, NS-3 allows for contributions to the expansion of its
modules making it up to speed with the latest protocols available. The tool has
maintainers that approve contributions and look after fixing any bugs that might be
discovered by its users. NS-3’s large library allows for contributions to be made simple

as long as their strict coding style is adhered to [61].

18

There is a high level of flexibility when combining modules together to form the desired
topology and configuration for the network to be simulated. NS-3 includes visualisers
and animators to visualise networks in operation of dynamically change elements in a
simulation. Tracing is available in the form of pcap files to observe per packet level

interactions and other traces can be set up to observe desired metrics of a network.

A typical simulation setup would consist of setting up a network topology first,
instantiating any of the network nodes and devices needed on the network and assigning
them the desired protocols. Application models are then produced to mimic the
creation and transportation of packets across the network setup. The simulation is
given a desired time to run and ceases at a user defined time also. Figure 2.3 shows the

typical flow of a simulation.

Topology Definition H Models H Configuration }—>| Execution

A A A

Visualisation

Cutput Analysis

Modify scenario, or independent replication

Figure 2.3: NS-3 Simulation Structure 3]

2.6 Congestion Control In NS-3

As part of its internet module, NS-3 has a TCP model to allow for bidirectional
communication using TCP, the native implementation in NS-3 supports many different
congestion control algorithms and other implementations of TCP. The attributes of
TCP are hosted in the TcpSocket class which can be reused across implementations.
The implementation of TCP greatly resembles the Linux approach by modularising
each congestion control implementation into separate classes and having an interface to

interact between the socket classes and congestion methods [62].

The TCP state machine is managed along with all the other features such as Selective
Acknowledgements (SACK), Fast Retransmit and Recovery in the TcpSocketBase
class. Congestion control algorithms are implemented as their own classes and inherit
the abstract class TcpCongestionOps in order to make their custom changes to mimic
the specialised behaviours of the congestion control algorithm. The methods that exist
in the TcpCongestionOps class are matches to the Linux implementation. These
include [63]:

e PktsAcked: When a packet is acknowledged this method is called and contains

relevant timing information including round trip time and the number of segments

19

acknowledged.

e IncreaseWindow: When new segments are acknowledged this method updates the

cwnd appropriately.

e Congestion State Set: Before the congestion state is changed, this method is
triggered to perform different events on certain congestion states, these events

vary for different congestion control algorithms.

e CwndEvent: This method is called to perform events when there is a cwnd event.

These events could include delayed acknowledgements or ECN notifications.

o GetSsthresh: When there is a loss event this method retrieves the slow start

threshold in order for TCP to recover from the loss event if required.

2.7 Background Summary

Congestion control evaluation is a widely explored topic through academia and research
due to the changing nature of the internet and demand for consistent performance.
BBR as a recent introduction into the area of congestion control gives opportunity to
explore ways of increasing general internet performance from a TCP standpoint and as
mentioned before has been made evident in the number of evaluations and proposed

variations that look to improve the congestion control algorithm.

The introduction of BBRv2 was discussed in this chapter and as the newest official form
of BBR it leaves the ability to explore its performance and features. The manner in
which so will be through the use of NS-3 which provides the sufficient architecture to

carry out such experiments as explained previously.

20

3 Implementation

In this chapter the detail of the design and implementation of the simulations required
to evaluate BBR, BBRv2 and the other variations in NS-3 will be discussed. All of the
following implementation is available on Github with sufficient instructions on how to

reproduce simulations!.

3.1 Overview

Developing on the knowledge received from the research studied in the background
section, the approach to this implementation was decided. The process for evaluating
congestion control algorithms in NS-3 involves specifying the type of congestion control
to use when creating the executable simulation script and following with the desired
network setup and characteristics. NS-3 has a large variety of congestion controls to
choose from but unfortunately does not have TCP-BBR implemented onto its TCP
stack. In order to carry out the desired evaluation, NS-3 has to be extended to include
BBR, BBRv2 and all the other variants in its TCP implementation. Adding a
congestion control is something that NS-3 does allow and supports through its
documentation [62|. Fortunately, Vivek Jain et al. implements BBR in NS-3 using
version 3.27 [4]. The implementation follows the NS-3 guidelines in terms of approach
to realism and coding style making it an appropriate NS-3 congestion control with the
aim of having it merged onto the official NS-3 development distribution. The
implementation outlined in this dissertation uses Jain’s implementation to include
BBRv2 and the other variants discussed in the background in NS-3.

The approach at the development of BBRv2 and the other BBR variants in NS-3
adopts a software engineering methodology in order to allow for separation between
variants and flexibility of use. This is done by using Git [64] and Github [65]. The full
executable NS-3 environment is placed in a repository and for every BBR variation
implemented a separate branch is used and merged onto the master branch after a pull

request is self reviewed to ensure code compliance with NS-3 coding standard and

Thttps://github.com/lanigan23 /BBRv2-Eval-ns-3

21

readability. This is to allow for consistency across implementation and follow the
realism element that NS-3 adopts to match the corresponding Linux implementations of

the congestion control.

3.2 BBR In NS-3

The implementation of BBR in NS-3 involves using the modular architecture of NS-3
and introducing BBR as a class of its own that uses the interface to interact between
the relevant TCP classes and methods. As discussed in the background the
TcpCongestionOps class contains all the overridable methods that BBR needs to
inherit in order for it to operate. The layout of the interactions between the classes can
be seen in Figure 3.1. TcpSocketState is encapsulated by the TcpSocketBase class and
represents the state of the TCP socket.

TcpSocketState
Containsg -~~~ »>
TepSocketBase -----------------]){ TepCongestionOps

A [A

| TcpBbr ‘ ‘ TcpCubic | - TcpVegas

A

TepBbr' ‘ ‘ TepBbrPlus | | TcpBbre2 ‘ ‘ TcpBbr-Delay | TcpBbr+

Figure 3.1: BBR Class Interaction

The Linux implementation of BBR contains a function called cong_control [66] which
upon the acknowledgement of a packet, is used to update the control parameters of
BBR including congestion window and pacing rate from the estimated delivery rate. It
is also solely responsible for instigation of the stateful functionality of BBR, updating
the propagated RTT, bottleneck bandwidth and then the BBR state based on these
updates. Unfortunately NS-3 has no such implementation of this function and the
TcpCongestionOps class needed to be extended to include it. This function replaces the
need to use the IncreaseWindow function to update the congestion window, a Boolean
function HasCongControl is used to clarify if the current congestion control is using the

CongControl function.

22

3.2.1 Rate Sampling

Another modification that had to be introduced into the TCP flow of NS-3 was the
inclusion of delivery rate estimation for BBR. Neal Cardwell et al. (the team behind the
introduction of BBR) implements a specialised algorithm to carry out such estimation
that contributes particularly to the operation of BBR [67]. A delivery rate sample
records the estimated rate at which the network delivered packets for a single flow,
calculated over the time interval between the transmission of a data packet and the

acknowledgement of that packet.

The delivery rate estimate is used in the calculation of the pacing rate and in turn, the
BDP for BBR. The algorithm used to produce the delivery rate does so by using
per-connection and per-packet state measurements. Per-connection state information is
taken for each connection and consists of the amount of data delivered over the lifetime
of the connection as well as the time in which it was last updated. It also contains an
indicator if the connection is application limited and a variable to hold either the send
time of the packet last marked as delivered if the packets are in flight or the send time
of the most recently sent packet if the connection is idle. In NS-3 the TcpSocketState

class holds this connection information.

When a packet is transmitted or retransmitted the per-packet information is recorded
as the same information held by the per-connection state just at the time of the packet
being sent. The time at which the packet was sent is also recorded among the
per-packet state variables. When an acknowledgement is received a rate sample object
is filled based on the previously gathered per-connection and per-packet information.
This rate sample object holds the information that is used in BBR calculations. If the
packet was newly acknowledged then the existing rate sample is updated with the

per-packet information from the time at which the packet was last transmitted.

The delivery rate is calculated as by equation 1 where the delivered member is the
amount of data delivered over the lifetime of the connection stored in the
per-connection state minus the amount delivered from the most recent delivered packet.
The interval is the maximum value between the send time interval from the most recent
delivered packet and the acknowledge time from the most recent delivered packet [67].
These calculations are performed in the TcpSocketBase class. In addition to storing
this information about the delivery rate, the rate sample object implemented in NS-3

also stores the amount of bytes lost in flight as a packet loss indicator.

deliveryRate = delivered /interval (1)

23

3.2.2 Windowed Min-Max Filter

Keeping track of delivery rate estimates is necessary for updating BDP values in BBR
especially when it is continuously updated. A windowed min-max filter is used to keep
track of these estimates in the Linux implementation of BBR [66]. A windowed filter
operates in general by keeping track of three of the estimates of a certain type over a
specified window length using a min or max comparison. Every time the filter needs to
be updated with a new estimate it checks the previous three estimates against the new
estimate using the min or max comparison and updates the stored estimates relevantly.
If the window length has expired, the best estimate expires and the second best and

third best estimate get promoted to first and second best.

In addition to this, at the quarter point and half way point of the window length, the
second best estimate is taken from the second quarter of the window and the third best
estimate is taken from the second half of the window respectively. In the case of BBR,
the type of value that is the estimate is the delivery rate, the comparison used is the
maximum of the rates and the window length is the number of round trips in which the
default value is 10 [66]. The implementation of this in NS-3 is taken from a Chromium
implementation that is adapted for NS-3 [4][68].

3.2.3 BBR Model

The TcpBbr class that inherits TcpCongestionOps implements the appropriate methods
to follow the state functionality of the algorithm. The corresponding Enter and Exit
methods exist for each of the Startup, Drain, ProbeBW and ProbeRTT phases. The
behaviour of these phases is initiated in each of these methods through the use of
specific functions for each phase. For example, AdvanceCyclePhase is responsible for
the gain cycling functionality of adjusting the pacing rate over a fixed number of cycles
in order to probe for more bandwidth in ProbeBW. HandleProbeRTT maintains the
ProbeRTT phase for 200ms plus one RTT whilst a new propagated RTT is being

estimated.

24

—b[UpdateRTprop () EnterProbeRTT ()]

= = = = ¥ External Call
——> Internal Call RestoreCwnd ()]
ern | : I

CheckProbeRTT () HandleProbeRTT [}]
UpdateModelAndState () |—)[ExitProbeRTT ()
- HasCongControl () UpdateBtiBw ()]—)[UpdateRound ()]

-)[GetSsThresh () H SaveCwnd ()] '—)m
_b[CheckDrain ()]
--- M— | I EnterProbeBW () |j : I AdvanceCyclePhase ()]
- CongestionStateSet () CheckCyclePhase () InFlight ()
IsNextCyclePhase ()
!l
- ')‘l CcwndEvent [}_J 'l SetPacingRate ()]
-)[UpdateComrolParameters 0 UpdateTargetCwnd ()
l EnterStartup () I SetSendQuantum []]

N

ql SetCwnd ()

ModulateCwndForRecovery ()

ModulateCwndForProbeRTT ()]

Figure 3.2: BBR Function Graph [4]

A graph for the flow of each BBR specific method can be seen in Figure 3.2, it can be
seen that the flow can be separated in to two main functions. The
UpdateModelAndState method is for updating the BDP of BBR and the instigation of
the BBR phases whilst the UpdateControlParameters method maintains the pacing
rate and congestion window. As made clear by Jain et al. [4] the send quantum
functionality of BBR is not supported in the implementation as NS-3 does not have

segmentation offloading available.

BBR in NS-3 overrides a number of methods in TcpCongestionOps in order to tailor for
its specialised behaviour. The GetSshThresh method which usually returns the value of
the slow start threshold after a loss event but in the case of the BBR implementation
returns a maximum integer value as the slow start threshold value does not apply to the
functionality of the algorithm. As a reactive method, CwndEvent typically gets called
when a particular event occurs that affects the congestion window. BBR overrides this

function to restore the congestion window to its prior value after a congestion recovery

25

event. The congestion state machine is an important component to represent the
situation of a TCP socket from the point of view of the congestion control. There are
different states that represent different congestion situations and the actions that have

to be taken based on these situations.

CongestionStateSet is the function that decides on the actions to be taken and is
overridden by the BBR class to perform BBR specific behaviours on these congestion
events. CA_OPEN represents the normal state with no congestion events and acts as a
point of entry for BBR into the Startup phase, initialising all appropriate RTT and
congestion window measurements. CA_LOSS is an event based on the timeout of the
retransmission timer which can indicate loss. The behaviour of BBR in this event is to
save the value of the congestion window at the time of this loss in order to restore the
congestion window when it is safe to do so and restart the round. CA_RECOVERY is
triggered when there are Selective Acknowledgements (SACKs) or duplicate
acknowledgements and these type of acknowledgements reach a certain threshold or
when loss is indicated which initiates fast retransmission of packets. BBR saves the
value of the congestion window at the time of this event and then adjusts the

congestion window accordingly to cater for the retransmission of packets.

3.3 BBRv2 And Variants In NS-3

The approach taken to implement the version two of BBR and its variants outlined in
the background into NS-3 was to contain each variant within the BBR class mainly
because the functionality of each variant does not change from the overall stateful
behaviour of BBR. This allows for a global attribute to be used to decide between what
variation to set at simulation time and gives a clear distinction between what variation
is in use. This section describes the necessary changes needed in the BBR and TCP

classes to implement BBRv2 and the other variations.

3.3.1 BBR’

The adaption of the BBR’ variant involves the lesser changes out of all the variations
since it only involves the separation between the two conditions for which the pacing
gain cycle offset in ProbeBW is updated. The condition that distinguishes the variation
to be BBR’ is updating the offset when the prior bytes in flight are less than or equal to
the current in flight bytes rather than updating the offset after one round trip. This
change is applied to the IsNextCyclePhase function which is responsible for checking if

it is time to advance the pacing gain cycle.

26

1

3.3.2 BBR+

There are two major changes required in the behaviour of BBR to be made in order to
match the BBR+ variation used in the study of TCP over LTE in a HSR scenario [24].
Firstly, the values for the pacing gain cycle were updated to those used in the study.
The sequence changes from [1.25, 0.75, 1, 1, 1, 1, 1, 1] to [1.5, 0.5, 1.5, 0.5, 1.5, 0.5, 1.5,
0.5] with the pacing gain being set to these values during ProbeBW when the variation
is set to BBR+. Secondly, the way the propagated RTT is calculated needed to be
changed based on the variance of the RT'T and a shape parameter lambda to make the
distribution of RTT samples a Gamma one. The lambda value is made to be a tunable
attribute of the BBR class that could be set at simulation time.

Before the implementation of BBR+, the RTT information estimated in the TCP
socket classes were only the minimum RTT and most recent RTT through the use of
the RTTEstimator class which estimates and stores different information about the
RTT samples. Fortunately, this class also stores information on the variance of the RTT
samples which is needed in the calculation of the propagated RTT in BBR+. The
TcpSocketBase class is updated to take RTT variance as a measurement as well as the
minimum RTT and most recent RTT. Line 11 in the Code Listing 3.1 shows the use of
the RT'T variance in the calculation of the propagated RTT based off equation 3

outlined in the background.

void

> TcpBbr::UpdateRTprop (Ptr<TcpSocketState> tcb)

3 {

NS_LOG_FUNCTION (this << tcb);

m_rtPropExpired = Simulator::Now () > m_rtPropStamp +
m_rtPropFilterLen) ;

if (tcb->m_lastRtt >= Seconds (0) && (tcb->m_lastRtt <= m_rtProp ||
m_rtPropExpired))

{
if (m_variant == Bbr::BBR_HSR)
{
double rttVar = sqrt((tcb->m_rttVar).GetDouble ());
m_rtProp = tcb->m_lastRtt + m_lambda * MilliSeconds (rttVar);
}
else
{
m_rtProp = tcb->m_lastRtt;
¥
m_rtPropStamp = Simulator::Now ();
}

Code Listing 3.1: UpdateRTprop()

27

3.3.3 BBRPlus

The BBRPlus variant is implemented as a patch of the Linux C file of BBR in the blog
in which it was introduced [23]. The underlying functional changes in the Linux file had
to be adapted for NS-3 in its native C+-+ language. In order to capture the behaviour
of the BBRPlus variant of BBR in NS-3, changes to the behaviour of the pacing gain
cycle had to be made. BBRPlus changes the assignment of the pacing gain from a
sequential action to a non-sequential one through the SetCycleIndex method. This
allows for the probe up, probe down and probe cruise phases of ProbeBW to be
dynamically changed based on certain conditions. The function DrainToTargetCycling
replaces the AdvanceCyclePhase flow in the case of BBRPlus to carry out these

assignments of pacing gain.

The other major change to the activity of the pacing gain cycle was the randomisation
of the length of the cycle between the values of two to eight cycles. This length is set in
the initial probe up phase of ProbeBW. This can result in a variance of the amount of
packets to be sent in a round trip. A different approach to how the probe down phase of
ProbeBW is entered is also implemented in the DrainToTargetCycling method where
any packet loss detected in the rate sample causes the pacing gain cycle to enter probe
down phase as a condition as well as the expiry of the cycle stamp or the prior bytes in

flight being less than current bytes in flight.

3.3.4 Delay-BBR

As a variant of BBR tailored for the purpose of video transmission [25], Delay-BBR
offers significant changes to the operation of BBR in NS-3 needed to emulate its
behaviour. The first is the change in the pacing gain values to probe more
conservatively to allow video frames to be less broken up upon a queue forming at the
bottleneck. The sequence is changed to [1.11, 0.9, 1, 1, 1, 1, 1, 1] with these values
assigned to the pacing gain when the variant is set to Delay-BBR.

srtt > (baseRtt * beta) (2)

Secondly the introduction of a congestion delay signal involving a new smoothed RTT
signal value and its estimation was a new component as a part of the implementation of
Delay-BBR in NS-3. This new component of the algorithm updates the overall
operation of BBR in NS-3 with the purpose of entering the ProbeRTT phase more
frequently. The CheckCongestionDelay function is responsible for setting this new
congestion signal during ProbeBW phase. The condition for which it is set is based off
equation 2 where the srtt is the smoothed RTT, the baseRTT is the base line RTT
during ProbeBW and beta is a value of 1.2 as outlined in the implementation by Zhang

28

et al. [25]. When this congestion signal is set, the phase will change to ProbeRTT
which is instigated by CheckProbeRTT where it checks if the congestion delay signal is
set. The process for updating the smoothed RTT signal takes place in the
CheckCongestionDelay method also as per equation 3 where alpha is a fixed value of
0.9 [25], oldSrtt is the previous stored smoothed RTT signal and newRTT is the most
recent RTT. The base line RTT is updated with the value of the smoothed RTT when

it is less than the current base line.
newSrtt = (1 — alpha) = oldSrtt + alpha * newRtt (3)

The smoothed RTT signal is only updated on the condition that the sequence number
of the last acknowledged packet is greater than the sequence number of the most recent
sent packet. Unfortunately only the sequence number of the last acknowledged packet is
recorded by the TCP socket classes. In order to overcome this, the TcpSocketBase class
needed to be modified to record the sequence number of the most recently sent packet.
Fortunately, A buffer is used to store the sequence numbers of the most recently sent
packets, so the head of this buffer is retrieved and stored once a packet is sent. Upon
setting the congestion delay signal in CheckCongestionDelay, the sequence number of
the most recently sent packet is set to be used in comparison with the sequence number
of the last acknowledged packet. The last changes that needed to be made to make
Delay-BBR compatible was the adjusting of the congestion window during ProbeRTT
to having a capacity based off of 0.75 times the current BDP value instead of limiting it
to just 4 packets for the duration of the ProbeRTT phase. The smoothed RTT signal

value is reset when ProbeRTT has concluded.

3.3.5 BBRv2

As the integral part of this evaluation, BBRv2 involves the most changes to the BBR
workflow in NS-3. BBRv2 keeps the core principles of BBR in its stateful manner but
adds a lot more characteristics that makes its distinction from the original algorithm.
There are two different versions of BBRv2 that are implemented, both are based off the
Linux kernel code from the official repository on Github?. These consist of the alpha
release and the alpha release with experimental changes. BBRv2 is implemented on top
of the original BBR code base with the new functions filtered out at the bottom of the
source code in the kernel implementation. This style is followed in the NS-3
implementation of the congestion control algorithm. The explanation of the adaption of
BBRv2 on top of BBR will be broken up into appropriate sections representing the
changes needed to the TCP socket classes and the corresponding BBR states. An

Zhttps://github.com /google/bbr

29

updated function call diagram can be seen in Figure A3.7 showing the additional

BBRv2 methods added to the flow.

3.3.5.1 Explicit Congestion Notification Signal

BBRv2 adds the use of an Explicit Congestion Notification Signal which enables the
ability to have another congestion condition to adjust the network model appropriately
to. The basic operation of ECN entails having flags in the IP header and TCP header to
enable the signal and notify if congestion is experienced. ECN Capable Transport (ECT
bit) and Congestion Experienced (CE bit) for IP headers and Congestion Window
Reduced (CWR) and ECN Echo (ECE) for TCP headers. NS-3 implements ECN in its
versions 3.30 and above, strictly following the Request For Comments (RFC) guidelines
[36]. Since the version used in this implementation of BBRv2 in NS-3 is 3.27, the ECN
component had to be added, adapted from the later versions of NS-3.

The operation of ECN in NS-3 mainly takes place in the TCP socket classes with the
enabling of the component done through an attribute of the class. The steps for
initialising ECN takes place in the three-way handshake of TCP. The sender first sends
an empty packet with the CWR and ECE bits as well as the usual synchronize (SYN)
bit and the receiver sends the same with an acknowledgement in place of the CWR bit.
The sender then sends an acknowledgement upon receipt of the receivers
acknowledgement. This causes ECT bits to be set in the IP header of every packet sent
by the sender enabling use of ECN.

ECN in NS-3 has stateful properties when reacting to congestion, transitioning from
different states in the TCP socket classes in response to the TCP headers bits being set.

The state transitions operate as follows as per NS-3 documentation [62]:
1. Before initialisation the sender and receiver have the ECN state set to disabled.

2. After the TCP three-way handshake is successful, the ECN state is set to idle for
both sender and receiver meaning they are ready to react to receipt of ECE or
CWR bits.

3. When the receiver receives a packet with the CE bit set in the IP header, the
ECN state is set as CE received. The receiver sends an ACK with the ECE bit set
causing the ECN state to switch to the sending ECE state. This state is then
changed to ECN idle once a packet with the CWR bit is received from the sender.

4. The senders ECN states transition first from idle to ECE received once the ACK
with ECE bit set is obtained from the receiver. The state then moves to CWR
sent when it sends a packet with the CWR bit set, retaining this state until
another ACK with an ECE is received changing back to ECE received.

30

These state transitions impact the behaviour of BBRv2 in its implementation with the
tracking of the amount of ECN occurrences in a round trip and reactions to congestion
window events caused by ECN, all contributing to the updating of the network model
for BBRv2. An ECN alpha value is calculated at the start of every round trip in the
implementation of BBRv2 in NS-3 to be used in handling ECN signals. The alpha value
is calculated as per equation 4 where ecnGain is a predetermined value of 1/16 taken
from the kernel source code. The ecnAlpha is the previous value of the alpha value (1 if
not initialised). EceRatio is calculated as per equation 5 where deliveredEce is the
amount of data delivered so far with an ECE mark minus the previous delivered bytes
with an ECE marked when the ECN alpha was last updated. Delivered is the total
amount of data delivered so far minus the previous delivered bytes when the ECN alpha
was last updated. The amount of data delivered so far with an ECE mark is set when

there is a congestion window event triggered by a CE mark.
ecnAlpha = (1 — ecnGain) x ecnAlpha + ecnGain x eceRatio (4)

eceRatio = deliveredEce / delivered (5)

3.3.5.2 Three Part Model

As discussed in the background, BBRv2 uses a new model in which it operates from in
both bandwidth and in-flight bytes. This model is used to adapt the bandwidth and
in-flight bytes appropriately when probing for bandwidth. The bounds themselves are
set based on the congestion signals consisting of a mixture of loss and ECN. In the
implementation of BBRv2 it uses three operating points from the model which are
outlined in the table below.

Table 3.1: BBRv2 Three Part Model

Operating Point Description Variables

Latest Latest measurement from the current round trip m_bwLatest, m_inflightLatest
Upper Bound Robust, optimistic, long-term upper bound m_bwHi[2], m_inflightHi
Lower Bound Robust, conservative, short-term lower bound m_bwLo, m_inflightLo

The UpdateCongestionSignals method updates the congestion signals throughout the
round trip based off information from the rate sample. The amount of loss and ECN in
a round trip is recorded and the latest bandwidth and in-flight bytes are updated as
part of the model. If there is loss or ECN the lower bounds for bandwidth are adjusted
in response. The lower bounds can not be changed if the network is being probed for

bandwidth and these bounds adjusted differently depending on if loss or ECN is

31

experienced.
ecninflightLo = inflightLo x (1 — (ecnAlpha % ecnFactor)) (6)

For the case of ECN, the lower bound for in-flight bytes is set as per equation 6 where
the ecnFactor variable is a predefined value of 1/3 determined from the kernel source
code and the ecnAlpha value is calculated as outlined in the previous section. Inflightlo
is the current value of the lower bound for in-flight rate and is set to the current

congestion window if it has not been initialised before.
bwlLo = max(bwLatest, (bwlLo * (1 — beta))) (7)

inflightLo = max(inflightLatest, (inflightLo * (1 — beta))) (8)

When there is packet loss in the round, the lower bound for bandwidth and in-flight
bytes are set as per equation 7 and 8. In the equations, the variables bwlatest and
inflightLatest are the latest bandwidth and in-flight samples from the latest round trip,
bwlLo and inflightLo are the previous values for the bandwidth and in-flight lower
bounds and beta is a constant set to 3/10 taken from the official source code for
BBRv2. If they have not been used before, the values for bwlLo and inflightLo in the
equation are set to the maximum bandwidth in the bandwidth filter and the congestion
window value respectively. The resulting value of the lower bound for in-flight bytes is
the minimum between the in-flight bound calculated in the case of ECN and the case of

packet loss.

3.3.5.3 Startup

The goal of startup in BBRv2 remains the same as with BBR, rapidly discover the
available bandwidth in the network. A pacing gain of é is set as normally set with
BBR. The conditions for which startup exits is changed to include loss and ECN as well
as having the pipe at capacity for 3 round trips. The CheckExcessiveLossStartup
method keeps a tally of loss events at the end of each round trip in the startup phase
through the packet loss recorded by the rate sample. The packet loss is checked against
the bytes in flight rate multiplied by a loss threshold constant of 2/100, another value
taken from the official implementation by Google. Along with this, the amount of data
marked with an ECE mark over the rate sampling interval is compared against the total
amount delivered multiplied by an ECN threshold (similar to the loss threshold) of 1/2.
If either of these conditions hold, then the in-flight rate is deemed as too high.

This behaviour takes place in the IsInflightTooHigh method and if this method

returns true and the loss events tally in startup equal or exceed a value of 8 then

32

startup is exited. This method of exiting startup causes the upper bound of in-flight
bytes to be set to the current BDP value. As well keeping a tally of loss events in
startup to exit upon, a tally of ECN flags is kept when the ECN alpha value is updated
at the start of every round trip. This tally is increased when the eceRatio, seen in
equation 5, is greater than the ECN threshold. If this tally equals or exceeds a value of
2, then startup is exited and similar to the loss event exit, the upper bound in-flight

rate is set to the current BDP value.

3.3.5.4 Drain

The Drain phase for BBRv2 remains the same for the majority of the functionality in
In2
2
drain any excess packets from the queue at the buffer. This is still done until the bytes

comparison to the Drain phase for BBR in that the pacing gain is set to in order to
in flight are less than or equal to the current BDP value. The only difference between
the adaption of the later version of BBR is that the congestion signals, including the
loss and ECN counts for the round trip, are reset to a zero value in order to be used

again once the Drain phase is over.

3.3.5.5 ProbeBW

The most substantial implementation changes that had to take place to adopt the
behaviour of BBRv2 was to the ProbeBW phase of BBR. This phase is completely
re-worked in order to efficiently probe for more bandwidth whilst maintaining low loss
and ECN signals. This is done by leaving behind the fixed cyclic pacing gains and
dynamically switching through the ProbeBW phases of probe up, probe down, probe
cruise and probe refill. The UpdateCyclePhase function is solely responsible for
updating the phases of ProbeBW in the implementation of BBRv2 in NS-3. The
maintaining of the upper bounds of the three part model also takes place in the
ProbeBW phase of BBRv2 and occurs every time UpdateCyclePhase is initiated in a
round trip. In fact, the ProbeBW is only advanced if the upper bounds were adjusted
successfully. A number of tracking variables are used in the phase to handle different
scenarios in which the upper bounds are adjusted. An acknowledgement phase indicator
is used to show the relation between the ACK stream and the bandwidth probing done
in ProbeBW. These are set in each ProbeBW phase based on the type of probing being

done, for example, in probe up, the indicator is set to probe starting and so on.

The use of these acknowledgement phase indicators comes in to play when the upper
bounds are being adjusted at the start of a round trip. When probing is indicated to be
stopping, the bandwidth filter is advanced so that the older bandwidth samples can be
forgotten. Along with this, tracked variables that are used to assess if a probe is risky

and if the previous probe was too high are checked and if it is deemed that the probe is

33

risky and the previous probe was not too high then the refill phase is entered. The
upper bounds themselves are set based on if the in-flight rate is too high or not. If the
in-flight rate is too high and this is as a result of further probing by the probe refill
phase then this is handled. Consequently, the previous probe is deemed too high and
the upper bound for in-flight bytes is set as per equation 9. BytesInFlight is the current
amount of in-flight rate, BDP is the estimated bandwidth multiplied by the propagated
RTT and the beta value is a constant of 3/10 used before in the calculation of the lower

bound. The probe down phase is entered upon the inflightHi being set in this case.
inflightHi = max(bytesinFlight, BDP x (1 — beta)) 9)

In the case that the in-flight rate is not deemed too high, the upper bound for in-flight
bytes is set to the current bytes in flight rate given that it is greater than the previous
value for the upper in-flight bound. If the ProbeBW phase is in probe up during this
assignment then the upper bound is further increased. The method for which this is
done is presented in the Code Listing 3.2 where m_bwProbeUpAcks is a count of how
many packets were selectively acknowledged per increase in the upper bound of in-flight
bytes set by the last selectively acknowledged bytes in the rate sample. The
m_bwProbeUpCount variable holds the amount of delivered packets per increase in the
upper bound of in-flight bytes. This variable is set upon the start of the round trip as
per equation 10 where initialCwnd is the initial value of the congestion window and
bwProbeUpRounds is a count of how many round trips are spent in probe up which is
incremented every time this equation is executed. Upon entering the ProbeBW phase in
BBRv2 for the first time in an execution of the congestion control algorithm, the probe
down phase is the first to be entered. This happens when the ProbeBW is re-entered

again but only for one round trip as it is followed by the probe cruise phase.

I m_bwProbeUpAcks += rs->m_lastAckedSackedBytes;
2 if (m_bwProbeUpAcks >= m_bwProbeUpCount)
s A
m_bwProbeUpAcks -= (m_bwProbeUpAcks / m_bwProbeUpCount) *
m_bwProbeUpCount;
5 m_inflightHi += m_bwProbeUpAcks / m_bwProbeUpCount;
6 }

Code Listing 3.2: Probelnflight HighUpward()

bwProbeUpCount = max(initial Cwnd / bwProbeUpRounds, 1) (10)

Probe Down - The probe down phase behaviour is the same as in BBR with the

draining of excess packets from the queue at the buffer as a result of probing for more

34

bandwidth. The application of this phase in BBRv2 involves resetting the congestion
signals (like in the Drain phase), the count of round trips spent in the probe up phase
and the timestamp for the gain cycle. A variable is used to track the number of round
trips there has been since the last probe of bandwidth. In this phase, this is reset to a
random variable between 0 and 2, following from the methodology in the official kernel
implementation. This tracking variable is incremented at the start of every round
trip.

roundsSinceProbe >= min(bwProbeMaxRounds, BDP x renoGain) (11)

Probe down exits based on two conditions in the UpdateCyclePhase method.
IsTimeToProbe is a function that checks if it is reasonable to start probing for more
bandwidth based on if a round trip has passed or an equation used specifically for Reno
coexistence holds. This equation can be seen in equation 11 with the roundsSinceProbe
being the count of round trips there has been since the last probe of bandwidth,
bwProbeMaxRounds is a constant for the maximum number of rounds that bandwidth
can be probed which is set as the same value of the kernel implementation of 63. The
BDP is the BDP value at the time and renoGain is set to 1. The probe refill phase is

entered if either of these conditions hold.

IsTimeToCruise checks if the network model is in a state to transition from probe
down to probe cruise. This decision is made to be true when the prior bytes in flight are
less than or equal to the BDP value at the time or if a round trip has passed. The prior
bytes in flight are also compared against the upper bound for in-flight bytes with
headroom taken away to determine if there is enough headroom left for cruising at a
pacing gain of one. The method returns false when the prior bytes in flight are greater
than this upper bound minus headroom meaning there is not enough headroom left.
Headroom is calculated as seen in equation 12 where the inflightHi is the upper bound
for in-flight bytes and inflightHeadroom is a fixed constant of 15/100, a value determined
by the official implementation by Google.

headroom = inflightHi * inflightHeadroom (12)

Probe Up - When the probe up phase of ProbeBW is entered, the actions for
probing for more bandwidth begin. The pacing rate is set to 1.25 the BDP and the
tracker of probe up rounds is incremented along with the count of delivered packets per
probe up round as calculated by equation 10. The timestamp for the ProbeBW cycle is
reset in this phase as it may take a number of rounds to probe for more bandwidth until
one of the exit conditions for the phase is hit. These exit conditions include if the
previous probe was a risky one and if there is a queue forming at the bottleneck. A

probe is gauged as risky if the previous probe was too high i.e. loss or ECN was

35

detected and if the prior bytes in flight go above the upper bound for in-flight bytes. A
queue can be seen as forming at the bottleneck if a full round trip has passed and the
prior bytes in flight are greater than the BDP value at a pacing gain of 1.25.
Consequently, the probe down phase is entered if these conditions are met in order to

drain any excess packets from the queue as a result of the bandwidth probing.

Probe Refill - The responsibility of the probe refill phase is to prepare the network
model for that of the probe up phase in the discovery of more bandwidth with the three
part model coming into play. The lower bounds get reset in order to set them to new
values based on the success of the probing of bandwidth. The phase enters the probe up

phase immediately after preparing the model for probing.

Probe Cruise - When entered from the probe down phase the probe cruise phase
sets the pacing rate back to a value of one of the BDP value. In the implementation of
BBRv2, it also sets the value for the lower bound of the in-flight rate in order to set the
appropriate interval between that lower bound and the upper bound as a result of the
previous probing for bandwidth. During this phase, the UpdateCyclePhase method
constantly checks if the network is in a state to probe for more bandwidth through the
use of the IsTimeToProbe function and transitions to the probe refill phase if the

conditions in this method hold.

3.3.5.6 ProbeRTT

The behaviour of the ProbeRTT phase in the implementation of BBRv2 in NS-3 is, for
the most part, the same as that of BBR apart from the regulation of the congestion
window which is controlled based on the three part model. The
BoundCwndForInflightModel method is responsible for performing this behaviour on
the congestion window. When in ProbeRTT the congestion window is set as in equation
13 where the inflightHeadroom variable is the upper bound of the in-flight rate minus
the headroom calculated in equation 12. InflightLo is the lower bound of the in-flight
rate, the minCwnd is the minimum value the congestion window can be (4 packets) and

the cwnd is the current value of the congestion window.

cwnd = min(max(min(inflightHeadroom, inflightLo), minCwnd), cwnd) (13)

3.3.5.7 Experimental changes

The experimental changes made to BBRv2 are also implemented in NS-3 and can be set
to be on or off in simulations through a configuration attribute. The changes include an

update to the adaption of the lower and upper bounds for the three part model. The

36

lower bound for bandwidth is initialised to be the maximum bandwidth in the
bandwidth filter and if ECN is experienced it is set based on equation 14 where bwlo is
the previous lower bound for bandwidth, ecnAlpha is the alpha value from the ECN
calculations and ecnFactor is set to 1/2 in the case of the experimental changes. This
applies to the ecnFactor used in all other calculations involving the constant for the

experimental changes.
ecnBwlLo = bwlo x (1 — (ecnAlpha x ecnFactor)) (14)

In the adaption of the upper bounds of the three part model, the upper bound for
bandwidth is set to the delivery rate from the most recent rate sample if it is higher
than the current upper bound for bandwidth. This applies when the in-flight rate is not
deemed as too high. If it is the case that the in-flight rate is too high and needs to be
handled as a result of refilling the pipe, the upper bound for bandwidth is set as per
equation 15 where bwHi is the previous value for the upper bound for bandwidth,
ecnAlpha is the alpha value based on ECN calculations and ecnFactor is 1/2 as

mentioned before.
bwHi = bwHi x (1 — (ecnAlpha x ecnFactor)) (15)

The final experimental change that was adapted in the implementation of BBRv2 in
NS-3 was made to both the upper bound for the bytes in flight and the bandwidth
when assessing if the network is in a state to probe for more bandwidth. If there is an
ECN signal detected in the ProbeBW cycle but there is no ECN mark in the
acknowledgement of the most recent packet then the upper bound for bytes in flight is
incremented and the upper bound for bandwidth is set as seen in equation 16. The
bwHi variable is the current value for the upper bound for bandwidth and rtProp is the
value of the propagated RTT. As a result of these changes to the two upper bounds, the
probe refill phase of ProbeBW is entered.

bwHi = bwHi + (bwHi /rtProp) (16)

3.4 Simulation Setup

The simulation for evaluating BBRv2 and the other variants of BBR in NS-3 is
encapsulated in one executable script that is configured appropriately to simulate the
desired scenario. NS-3 allows for traces to be set up for each network node in order to
record certain network metrics over the simulation time. The traced metrics in each

simulation include congestion window size, round trip time, retransmission timeout time

37

and bytes in flight. A file stream is set up to output each metric to a file for each
scenario. For packet level analysis NS-3 includes the ability to generate pcap (packet
capture) files for each flow. Statistics like packet size, flags, arrival time and contents
can be seen using these files. FlowMonitor is a class in NS-3 that retrieves attributes of
a flow in a simulation such as delay, loss, jitter, number of sent and received packets and
times packets where forwarded. This means that the likes of throughput, transmission
delay and packet loss ratio can be traced throughout the simulation and also outputted

to a file using a file stream.

3.4.1 Topology

The topology adopted in the simulations was a dumbbell topology which is broken up
into a number of sender and receiver leaf nodes linked to a router. The two routers are
connected at the bottleneck link. A representation of the topology can be seen in Figure
3.3 where there are two leaf nodes on each side. NS-3 provides helper classes for
creating dumbbell topologies, by simply including the number of left and right leaves
along with a point-to-point device to represent the leaves. IP addresses are assigned to
each leaf after the devices are installed. Point-to-point devices represent the network
nodes for a simple point-to-point network and contain attributes like data rate and
delay that can be set in order for specific behaviour to be performed in the network. In
the case of this evaluation TCP applications are assigned to the sender and receiver
nodes with distinct start and stop times to send and receive packets. Following this, the

routing tables are populated for each of the nodes in the network in order for distinct

Figure 3.3: Simulation Topology

routes to be set up between all the nodes.

N
=

3.4.2 Attributes

Bottleneck Link

Router

The network attributes are managed through a number of variables that can be changed

depending on the scenario to be simulated. The bandwidth and delay for both the

38

access links between nodes, routers and the bottleneck links are set and assigned to the
point-to-point devices representing both. The attributes for the TCP application
including segment size, buffer size, initial congestion window size, minimum
retransmission timeout and the congestion control algorithm itself are controlled
through these variables and configured before the creation of the TCP applications. In
the case of this implementation, the simulation script includes the ability to switch
between variations of BBR including BBRv2 by changing an attribute for the
congestion control. Other attributes that are configured especially for the evaluation of
BBRv2 and its variants include the number of leaf nodes to be used so that the number
of flows can be increased or decreased in a simulation, the control of the lambda shape
parameter value for the BBR+ variant and the enabling of ECN and experimental
changes for BBRv2. All these attributes allow for a wide number of scenarios to be

simulated in the evaluation of the different BBR variations.

3.4.3 TCP Cubic

As the default congestion control in the Linux kernel and a widely used one in
implementations of TCP across the internet, TCP Cubic is an essential congestion
control algorithm to simulate against, especially in the case of this evaluation of BBRv2
and the other variants. Unfortunately, NS-3 does not have an implementation for TCP
Cubic as one of its congestion control modules by default. Fortunately, in 2014 Brett
Levasseur et al. designed and implemented TCP Cubic for NS-3 with appropriate
validation with the Linux version [69]. This implementation of TCP Cubic in NS-3 is

adapted and used in this evaluation of BBRv2 and its variants.

39

4 Results and Evaluation

This chapter will evaluate and discuss the results obtained from running simulations in
NS-3 using BBRv2 congestion control and the other variations discussed. The details of
each simulation will be outlined with an analysis into the results of the simulation in
correspondence to the variant of BBR congestion control used in that simulation. The
figures that show the results are plotted using R [70]. Every configuration that is ran is
plotted using a number of different network metrics. Plots that are not displayed in this
section can be found in the results folder of the source code for this project in the
Github repository!. The results and evaluation are broken up into the following

sections:
e Single Flow - Evaluation of a network with one flow of BBRv2 or a variant.

e Intra-Protocol - Evaluation of a network with multiple flows of BBRv2 or a

variant.

e Inter-Protocol - Evaluation of a network with multiple flows of BBRv2 or a

variant with a loss-based or delay-based algorithm.

4.1 Single Flow

A network environment for a single TCP flow transportation over the network is used to
analyse the characteristics of a congestion control algorithm with no contention for
bandwidth. A number of single flow scenarios are set up in NS-3 using different network
attributes. In order to keep a consistency across each simulation, a number of network
attributes in the simulation scenarios in NS-3 are kept the same. These are displayed in
Table 4.1. The access bandwidth and delay correspond to the bandwidth and delay of
each leaf node access link. The value of 40Mbps and 1ms was chosen as a consistent
value across all simulations with no extreme variation in bandwidth between the access
links and bottleneck links. The buffer size is kept consistent at 1.5 times the BDP

value. This value is chosen to keep the buffer at a medium size to show the optimal

Thttps://github.com /lanigan23/BBRv2-Eval-ns-3

40

behaviour of the congestion control being simulated in this single flow scenario.

Table 4.1: Scenario Configuration

Attribute Value

Access Bandwidth 40 Mbps

Access Delay 1 ms
Simulation Time 100 Seconds
Segment Size 536 Bytes
Initial Cwnd 10 Segments
Buffer Size 1.5 * BDP

Minimum RTO 200 ms

The network attributes that are changed for each simulation include the bottleneck
bandwidth and bottleneck delay. The values for these attributes for this single flow
scenario are outlined in Table 4.2. These values are chosen to show any distinction in
behaviour of the congestion control algorithm in different variations of bandwidth and
delay at the bottleneck. A number of algorithm specific attributes are also set for
particular algorithms including BBR+ and BBRv2. These include the lambda shape
parameter value for BBR+ which is involved in the calculation of propagated RTT
value for that algorithm. This lambda value is set the same as demonstrated in the
introduction of the algorithm [24] with the value of 0.5 and 0.125. The simulations are
ran twice to compensate for this change in value and to distinguish any difference
between them. The attribute for BBRv2 which is enabled at simulation time is the
enabling of the experimental changes for the algorithm, which as discussed before,
makes changes to the three-part model of the algorithm. Like BBR+, the simulations

are ran twice with and without this attribute set.

Table 4.2: Single Flow Bottleneck Configuration

Bandwidth Delay

5 Mbps 10 ms
5 Mbps 40 ms
5 Mbps 100 ms
10 Mbps 10 ms
10 Mbps 40 ms
10 Mbps 100 ms

Bandwidth utilisation is looked at through the outputted throughput and goodput of

the congestion control algorithm being used in a simulation. The comparison of

41

throughput over time compared with the actual bottleneck bandwidth is a good
indication of an algorithms performance. The average goodput is taken through NS-3’s
packet sink which eliminates the overhead in the transported packets to output the
useful bits transported and forwarded on for use in the application layer of the network
stack. BBR has the goal of a highly consistent throughput across the network, Figure 2
of [8] shows a high bandwidth utilisation in the official verification of the algorithm in
2017. The variations of BBR follow suit in aiming to achieve high bandwidth utilisation
without drastically changing the characteristics of the algorithm. The Table 4.3 shows
the average throughput and goodput achieved in each simulation scenario for every
variation of BBR including BBRv2. Particularly for BBR, the RTT value obtained
gives insight into how the propagated RTT is having an effect on the re-estimation of

the BDP value and the transition between states of the algorithm.

4.1.1 BBR and BBR’

BBR and BBR’ contain few differences in functionality with the major difference being
in the advancement in the gain cycling when probing for more bandwidth. For a single
uncontested flow, both show a high utilisation of bandwidth with minuscule difference
between the two types of algorithm. The trend of a high throughput rate can be seen
throughout the 100 second simulation in Figures 4.1 and 4.2. The distinct curve of the
line shows the phases of BBR. The startup phase is shown by the sharp increase at the
start of the simulation all the way up to the bottleneck bandwidth. A small decrease in
bandwidth shows the draining of the queue followed by further probing up to the
estimated bottleneck bandwidth. This pattern continues for the remainder of the
simulation with shorter drain times and a gradual convergence at the estimated
bottleneck bandwidth.

BBR 5Mbps 10ms

oughput(Mbps)

Thre

60
Time(s)

Figure 4.1: BBR Single Flow Throughput

42

BBR' 5Mbps 10ms

oughput(Mbps)

Thre

60
Time(s)

Figure 4.2: BBR’ Single Flow Throughput

An interesting observation is the utilisation of only 50% bandwidth for a 100ms delay in
the bottleneck for a 10Mbps flow. This is due to the inability to probe at a sufficient
rate in the startup phase because of the increased delay at the bottleneck. The
estimated bottleneck value is only set to half of the utilised bandwidth in this case and

is unable to probe beyond this during the ProbeBW phase.

43

Table 4.3: Single Flow Results

Algorithm | Bandwidth Delay ‘ Average Throughput Average Goodput
5 Mbps 10 ms 4.38 Mbps 3.80 Mbps
5 Mbps 40 ms 4.20 Mbps 3.52 Mbps
BBR 5 Mbps 100 ms 4.25 Mbps 3.39 Mbps
10 Mbps 10 ms 8.99 Mbps 7.25 Mbps
10 Mbps 40 ms 9.01 Mbps 6.89 Mbps
10 Mbps 100 ms 5.14 Mbps 3.91 Mbps
5 Mbps 10 ms 4.28 Mbps 3.80 Mbps
5 Mbps 40 ms 4.05 Mbps 3.52 Mbps
BBR’ 5 Mbps 100 ms 4.25 Mbps 3.39 Mbps
10 Mbps 10 ms 8.84 Mbps 7.25 Mbps
10 Mbps 40 ms 9.00 Mbps 6.89 Mbps
10 Mbps 100 ms 5.13 Mbps 3.91 Mbps
3.48 Mbps (A =0.125 3.80 Mbps (A =0.125
5 Mbps 10 ms ps () ps ()
3.48 Mbps (A =0.5) 3.80 Mbps (A =0.5)
4.50 Mbps (A =0.125 3.51 Mbps (A =0.125
BBR ¢ 5Mbps 40 ms ps () ps ()
4.50 Mbps (A = 0.5) 3.51 Mbps (A =0.5)
4.23 Mbps (A = 0.125 3.38 Mbps (A =0.125
5 Mbps 100 ms ps () ps ()
4.23 Mbps (A = 0.5) 3.38 Mbps (A =0.5)
9.02 Mbps (A =0.12 .25 Mbps (A =0.12
10 Mbps 10 ms ps (0125) 725 ps (0.125)
9.02 Mbps (A =0.5) 7.25 Mbps (A =0.5)
9.03 Mbps (A = 0.125 6.89 Mbps (A =0.12
10 Mbps 40 ms ps () ps (0125)
9.03 Mbps (A =0.5) 6.89 Mbps (A = 0.5)
5.15 Mbps (A = 0.125 3.92 Mbps (A =0.12
10 Mbps 100 ms ps () ps (A =0.125)
5.15 Mbps (A = 0.5) 3.92 Mbps (A =0.5)
5 Mbps 10 ms 4.38 Mbps 3.80 Mbps
5 Mbps 40 ms 4.50 Mbps 3.51 Mbps
Mbps 1 3 4.23 Mbps . 3
BBRPlus 5 DS 00 ms 3 Mbps 3.40 Mbps
10 Mbps 10 ms 9.02 Mbps 7.25 Mbps
10 Mbps 40 ms 9.03 Mbps 6.89 Mbps
10 Mbps 100 ms 5.16 Mbps 3.93 Mbps
5 Mbps 10 ms 4.60 Mbps 3.82 Mbps
5 Mbps 40 ms 4.44 Mbps 3.60 Mbps
Delay- 5 Mbps 100 ms 4.60 Mbps 3.49 Mbps
BBR 10 Mbps 10 ms 9.31 Mbps 7.33 Mbps
10 Mbps 40 ms 9.33 Mbps 7.06 Mbps
10 Mbps 100 ms 5.26 Mbps 3.97 Mbps
4.16 Mbps 3.80 Mbps
5 Mbps 10 ms
4.16 Mbps (exp) 3.80 Mbps (exp)
3.90 Mbps 3.51 Mbps
BBRv2 5 Mbps 40 ms
3.90 Mbps (exp) 3.51 Mbps (exp)
4.21 Mbps 3.40 Mbps
5 Mbps 100 ms bs bs
4.21 Mbps (exp) 3.40 Mbps (exp)
8.77 Mbps 7.25 Mbps
10 Mbps 10 ms
8.77 Mbps (exp) 7.25 Mbps (exp)
8.97 Mbps 6.89 Mbps
10 Mbps 40 ms
8.97 Mbps (exp) 6.89 Mbps (exp)
5.11 Mbps 3.89 Mbps
10 Mbps 100 ms

5.11 Mbps (exp)

3.89 Mbps (exp)

44

BBR-5Mbps-10ms BBR-5Mbps-40ms BBR-5Mbps-100ms.

I
RTT(S)
aic)

w0 50 £ 100 o 20) 50 50 100) 20 w0 50 50 100

Time(s) Time(s) Time(s)

BBR-10Mbps-10ms BBR-10Mbps-40ms BBR-10Mbps-100ms.

T
TI(S)

004 006 o008 o010 o012
)

Time(s) Time(s) Time(s)

Figure 4.3: BBR Single Flow RTT

The round trip times of each configuration can be seen for both BBR and BBR’ in
Figures 4.3 and 4.4. The variation of the RT'T in comparison between the corresponding
configurations of the two algorithms show the difference that the change in gain cycling
method has with a greater variation in BBR’ when the state is in ProbeBW phase
indicated with the area between the dips in the line. The re-estimation of the
propagated RTT can also be seen in a dip in the line every 10 seconds when ProbeRTT
phase is entered. For configurations with higher delay at the bottleneck the RTT values
are consistently higher and vary less because of the added delay at the bottleneck.

PRIME-5Mbps-10ms BER-PRIME-5Mbps-40ms BER-PRIME-5Mbps-100ms

E £ E
H
8 g 4 8
T T < T T T T T T T T T T
© @ w 100 o » © o w0 10 o » © o w0 10
Time(s) Time(s) Time(s)
BBR-PRIME-10Mbps-10ms BBR-PRIME-10Mbps-40ms BBR-PRIME-10Mbps-100ms
3
H s
£ E 59 £
E 4
5]
g § 1 g

Time(s) Time(s) Time(s)

Figure 4.4: BBR’ Single Flow RTT

45

4.1.2 BBR+

The changes made to make BBR more adaptable to high speed environments are
reflected in the simulation of BBR+ in a single flow scenario. The outputted throughput
and goodput however for each different lambda value contrast that of the evaluation
over high speed rails [24], with virtually no difference between the simulations ran with
different lambda values as seen in Table 4.3. However, there is some difference in
comparison to the other variations of the BBR algorithm with the changes to the gain
cycling and the estimation of the propagated RTT taking effect as see in Figure 4.5
when the lambda value is 0.5. The RT'T varies drastically in ProbeBW due to the sharp
increase in pacing rate when probing for more bandwidth with BBR+ and also through

the use of the lambda value to estimate the propagated RTT every 10 seconds.

) 50 0 100 0 20) 50 £ 100 0 2)
Time(s) Time(s) Time(s)

BER+10Mbps-10ms-lambda=0.5 BBR+-10Mbps-40ms-lambda=0.5 BBR+-10Mbps-100ms-lambda=0.5

TI(S)
RTTES)

Time(s) Time(s) Time(s)

Figure 4.5: BBR+ Single Flow RTT

The values obtained for the throughput over time for each value of lambda used in the
simulation of BBR+ congestion control can be seen in Figures 4.6 and 4.7. This
supports that there is no difference in throughput variance over time for the two
different values of lambda used contradictory of that in the evaluation over high speed
rails [24]. The behaviour of the line in the plots of the throughput reflects the change in
the BDP estimation since the estimation for the propagated RTT is different. After the
startup phase reaches a throughput of over 4 Mbps seen in the plots it can be seen

draining to a throughput of just under 3 Mbps due to this BDP estimation.

46

BBR+ lambda=0.5 5Mbps 10ms

oughput(Mbps)

Thre

60
Time(s)

Figure 4.6: BBR+ Single Flow Throughput A = 0.5

BBR+ lambda=0.125 5Mbps 10ms

Throughput(Mbps)

60
Time(s)

Figure 4.7: BBR+ Single Flow Throughput A = 0.125

4.1.3 BBRPlus

The performance of the BBRPlus variant of BBR in terms of throughput and goodput
shows high bandwidth utilisation as per the values in the Table 4.3. The Figure 4.8
shows a consistent probing for more bandwidth using the updated methodology of the

algorithm which dynamically changes through the phases of ProbeBW.

47

BBRPIus 5Mbps 10ms

oughput(Mbps)

Thre

60
Time(s)

Figure 4.8: BBRPlus Single Flow Throughput

The RTT plots also reflects the good performance of the variant in Figure 4.9 with a
consistent round trip time during the ProbeBW phase before the propagated RTT is
re-estimated every 10 seconds. One of the goals of this variation was to achieve a higher
throughput for wifi and other paths including wired networks [23]. These results reflect
a slight improvement over the original algorithm in this scenario of an uncontested

single flow network.

BBR-PLUS-5Mbps-10ms BER-PLUS-5Mbps-40ms BER-PLUS-5Mbps-100ms

TT(s)
RTI(S)
TT(s)

BEBR-PLUS-10Mbps-10ms BER-PLUS-10Mbps-40ms BER-PLUS-10Mbps-100ms

TT(s)
TT(s)

004 005 008 010 O
TT(s)

Time(s) Time(s) Time(s)

Figure 4.9: BBRPlus Single Flow RTT

4.1.4 Delay-BBR

This variation of BBR, which tailors towards video streaming, performs with the

greatest increase in throughput over the original BBR algorithm, as seen in the values

48

of each simulation of Table 4.3. The Figure 4.10 of the throughput over time for the
configuration of 10Mbps bottleneck bandwidth with a 10ms delay gives evidence of the
change in behaviour of the variation of the algorithm. This is through the consistent
line at approximately 9Mbps which deviates very slightly every 10 seconds. This is due
to the changed values for the pacing gain cycle which are far more conservative when

probing for bandwidth and draining the queues at the buffer.

Delay-BBR 10Mbps 10ms

oughput(Mbps)

Thre

0
Time(s)

Figure 4.10: Delay-BBR Single Flow Throughput

This convincing performance of the Delay-BBR comes at cost of higher RTT values, as
seen in Figure 4.11, where values are far greater than that of BBR or any other
variation of the algorithm. The use of the smoothed round trip signal causes this since
the ProbeRTT phase is entered more frequently and instead of allowing only 4 packets
in this phase the congestion window is set to have a value of 3/4 the BDP value. This
causes queues to stay built up at the buffer when typically this phase is for draining
those queues. Consequently, this leads to longer round trip times. This is not captured
in the evaluation of the variant by Zhang et al. [25]|. Despite this, the high throughput
output of the algorithm correlates with Figure 7 of the evaluation of the proposed

algorithm by Zhang et al.

49

BBR-PLUS-5Mbps-10ms BER-PLUS-5Mbps-40ms BER-PLUS-5Mbps-100ms

I
RTT(S)
aic)

) 50 £ 100 0 20) 50 £ 100 0 2 o

Time(s) Time(s) Time(s)

BEBR-PLUS-10Mbps-10ms BER-PLUS-10Mbps-40ms BER-PLUS-10Mbps-100ms

T

RTT(S)
%

)

Time(s) Time(s) Time(s)

Figure 4.11: Delay-BBR Single Flow RTT

4.1.5 BBRv2

The results obtained for throughput for the second version of the BBR algorithm reflects
the claims made in the introduction of the algorithm. Figure 1 of the evaluation by the
team behind the development of the algorithm shows that the algorithm under-performs
that of the original algorithm in a single flow test [26]. This is the case in this
evaluation of the implemented algorithm in NS-3 as outlined in Table 4.3. Although not
significantly lower than that of the original, the throughput is still relatively high in
terms of bandwidth utilisation and the goodput rate remains in or around the same as
BBR. BBRv2 with experimental changes is also simulated using the same scenarios as
the algorithm without these changes. The results show little to no effect to the
simulation with the experimental alterations. This is due to the experimental changes
being related to the use of the ECN signal which is not experienced in these scenarios.
There is no congestion experienced so there is no evidence of the scenarios of congestion
for which BBRv2 deals with. The trends of the Figures of the throughput of BBRv2
4.12 and 4.13 are similar to that of the plots depicted in the introduction of the
algorithm [2]. The ProbeBW phases are identified with the subtle dips in the line
corresponding to the probe down phase. The increase in bandwidth after this represents
the probe refill and probe up phase exploring more bandwidth. The narrowing of the
area between every probe as the simulation continues shows the increase of the lower

and upper bounds of the three part model of the algorithm.

20

BBRV2-ECN 10Mbps 40ms

oughput(Mbps)

Thre

60
Time(s)

Figure 4.12: BBRv2 Single Flow Throughput

BBRv2-EXP-ECN 10Mbps 40ms

Throughput(Mbps)

50
Time(s)

Figure 4.13: BBRv2-EXP Single Flow Throughput

The RTT values obtained are displayed for each configuration in Figure 4.14. These
values show a different trend to the other variations of BBR with a consistently low
RTT value after a large spike in the 20-30 second range. This spike is down to the
initial exponential startup phase and this can be seen to calm to a consistent RTT value

after the Drain phase is entered and the propagated RTT is updated.

o1

RTT(S)

RTTES)
o

RTT(S)

RTT(S)

)

Time(s)

BBR-V2-ECN-10Mbps-10ms

)

Time(s)

BBR-V2-ECN-10Mbps-40ms

)

Time(s)

BBR-V2-ECN-10Mbps-100ms

RTT(S)
00

RTTES)

Time(s)

Figure 4.14: BBRv2 Single Flow RTT

4.1.6 Bandwidth Variation Response

In the official evaluation of the BBR congestion control algorithm, a scenario that is
evaluated in order to discover the responsiveness of the algorithm is one that entails
changing the bandwidth dynamically for a single flow. The results for this scenario are
in Figure 3 of the paper [8]. This scenario is simulated for each variation of BBR in this
project in NS-3 in order to validate the behaviours of algorithms against their original
claims. An increase from 10Mbps to 20Mbps is used for the variation in bottleneck
bandwidth in these simulation scenarios. The bottleneck bandwidth and delay
configurations for these simulations are outlined in the Table 4.4. All of the other
network characteristics that were used in the single flow simulations are kept the same

including queue size.

Table 4.4: Bandwidth Variation Bottleneck Configuration

Bandwidth Delay

10 Mbps 10 ms
10 Mbps 40 ms
10 Mbps 100 ms

The Figure 4.15 shows the behaviour of all the variants of BBR explored in this
evaluation and their response to the bandwidth doubling when the bottleneck
bandwidth is initially 10Mbps and the bottleneck delay is 10ms. The event of increasing
the bandwidth was scheduled for 50 seconds into the simulation and as seen in the plot

every algorithm instantaneously explores the new available bandwidth quickly, reaching

52

15Mbps in the next 50 seconds. This behaviour shows similarity to that of the Figure 3
of [8] where the estimated bandwidth is doubled.

10Mbps->20Mbps 10ms

oughput(Mbps)

Thre

Time(s)

Figure 4.15: BBR Variants Responsiveness

The most important adaption of this behaviour is the minimal effects on the RT'T when
this change in bandwidth occurs. The only activity that happens to the RTT estimates
is a spike when the new maximum bottleneck bandwidth estimate is reached. The RTT
values in this scenario for BBR and BBRv2 are shown in Figures 4.16 and 4.17. The
spike in RT'T mentioned can be seen at the 100 second mark when the new maximum
bandwidth estimate is reached and the pipe is full. The RTT values quickly stabilise
back to their original values, showing each of the algorithms abilities to adapt to this
specific scenario. The same RTT activity can be seen for the other variations in Figures
A3.1 - A3.6.

BBR-10Mbps->20Mbps-10ms

0.06 0.07
I |

0.05
I

RTT(s)

0.02
I

0.01
I

T T T T T
0 50 100 150 200

Time(s)

Figure 4.16: BBR RTT Responsiveness

93

BBR-V2-ECN-10Mbps->20Mbps-10ms

0.06 0.07
I I

0.05
I

RTT(s)

0.03
I

0.02
I

0.01
I

0.00
|

T T T T T
0 50 100 150 200

Time(s)

Figure 4.17: BBRv2 RTT Responsiveness

4.1.7 Single Flow Summary

The results of BBRv2 and each variant in a single flow uncontested network show values
that respectively reflect the claims made by each algorithm in their unique differences
from the original BBR algorithm. BBRv2 especially stays on track with its goal of
keeping the similarities of the original algorithm in terms of bandwidth utilisation. The
decreased RT'T values of BBRv2 in comparison to BBR and the other variants shows a
good improvement of the change in the ProbeBW phase of the algorithm to efficiently
probe for more bandwidth without the sacrifice of RTT times. The single flow scenario
itself shows the trends between results when the variable bandwidth and delays are
changed. The high RTT values for configurations with higher delay apply for all
variations as seen in their respective figures of RTT over the simulation time. These
higher delay configurations gives an insight into a more realistic LAN network scenario
where delays may vary at the bottleneck link. The results of the dynamic variance in
bandwidth in the middle of a simulation to test the responsiveness of the algorithms
further validate BBRv2 in keeping to the same core behaviours of the original BBR

algorithm and show the consistence across all the variants.

4.2 Intra-Protocol

The simulation of more than one TCP flow in a network shows the competition between
these flows for the available bandwidth. The use of the same congestion control
algorithm can give an insight into how the same behaviour of these algorithms can work
with each other with the given network resources. This type of simulation is performed
in NS-3 with 4 flows of the same variation of BBR. This is achieved through the

o4

increasing of the number leaves in the dumbbell topology setup. The network

characteristics are kept the same as seen in Table 4.1 apart from the buffer size and

simulation time. The buffer size is varied in order to test the interaction of multiple

flows in a shallow, medium and large buffer. In previous studies of BBR, it is known

that the algorithm experiences high packet loss in shallow buffers [9][37]|. This is tied

into the over estimation of the bottleneck bandwidth when probing for bandwidth in

these multiple flow scenarios. The simulation time is set to 200 seconds to allow for

more time for the flows to run a desirable amount of round trips.

Table 4.5: Multiple Flows Bottleneck Configuration

Bandwidth Delay

Buffer Size

10 Mbps
10 Mbps
10 Mbps
10 Mbps
10 Mbps
10 Mbps
10 Mbps
10 Mbps
10 Mbps

10 ms
10 ms
10 ms
40 ms
40 ms
40 ms
100 ms
100 ms
100 ms

0.5 * BDP
1.5 * BDP
3 * BDP
0.5 * BDP
1.5 * BDP
3 * BDP
0.5 * BDP
1.5 * BDP
3 * BDP

The Table 4.5 displays the configurations ran in the simulations of the multiple flows of

BBRv2 and the other BBR variants. The flows themselves have separated starting

times of 20 second intervals. This is done to observe the convergence towards the

fairness line and responsiveness of the simulated variation of BBR. Fairness itself is the

most important metric taken away from these simulations with the fairness line

corresponding to the throughput value that represents the equal share between the

number of flows and the available bandwidth. Jain’s index is used as a metric to

represent fairness as a numeric value. This is calculated using equation 1 where n is the

number of competing flows and [xq,xz,...,x,| represents the average throughput of each

flow. The closer the result is to 1 the greater the fairness between the flows competing

for bandwidth is.

J(x1, X2, oo Xn) = (ZX")Z/”.ZX/'Z

i=1

Table 4.6 displays the obtained results for these multi flow simulations, including

metrics such as average throughput for each flow, goodput of all combined 4 flows as

well as the total packet loss and Jain’s index of fairness between the flows.

95

(1)

66°0 66°0 66'0 s3oRd 0 s30Rd 0 sPped 0 sdqN 8z'. sdqi8z'L sdqUszL sdqoge sdqoge sdqiN oge | sw 0T sdqy 01 (axa)
66°0 66°0 60 syexRRd () sjoxped 0 spoxed 69¢ sdqIN 8L, s 8LL sdqN 89 sdqIN €9'¢ sdqIN €9°¢ sdqIN 8L°C | sw OF sdqN 01 ZAe
L6°0 96°0 860 SR OF syopd F9E sioyped 61¢ sdqIN 808 sAqN €18 sdqN 808 sdqiy gg'e sdqIU Lp'e sdq Fge | swor sdqy 0T
66°0 66°0 66°0 syexRRd (syexRRd (spoed T sdqN ge'L sdqN gel sdqiN 1L sdqN 8g'e sdqIN 8z’ sAqIN 8g'E | SW (0T sdqN 01
660 66°0 60 syaxRRd () sgaxRRd () spoxped 696 SAqN 66°L sAqIN g6, sAqIN 89 sdqIN €¢'e sdqIN €6°¢ sdqIN 8L°C | sw OF sdqIN 0T caad
66°0 96°0 86°0 sjoxped OF s1eyPed F98 spesoed 61¢ sAqIN LT°8 sdqN ¢T'8 sdqIN 80’8 sdqIN gg'¢ sdqIN Lp¢ sAqIN $Ge | sw QT sdqIN 0T
L6°0 160 L8°0 s3o3Rd 0 s3o%Rd 0 spoxoed 61 sdqiN 2672 sdqiv Ag'L sdqN w9 sdqn zze sdqW Lze sdqN oge | sw 0T sdqy 01 —
L8°0 99°0 880 spspRd 18 SIOYORJ Fog SRR olh sAqIN €08 sdAIv Lg. sdqnToL sdawzee sdq il sdqN 18T | swop sdq 0T Ao
88°0 06°0 ¥L0 spxped QEy sioyded 8¢9 s1oxped Fe¢ sdqN 618 sAqIN 18 sdqIN 1’8 sdqIN 6T¢ sdqN 8T'¢ sAqIN 86°C | SW 0T sdqy 01
L6°0 160 €L°0 sy%Rd 0 spooed 0 syoprd 66T sdqIN Lgs sdq gL sdq FRG sdqN T0e sdqN T0'e sdqIN T6'T | sw 0T sdqy 0T
G6°0 760 9.0 syxped (sysped 67 s1oPed ¢L0T sAqIN 68°L sdqN €9°L sdqN Gg9 sdqIN Lg'e sdqIN 90°¢ sAqIN 60'C | suw OF sdqy 01 snggdd
160 86°0 96°0 sjoed 999 spoed €89 syped €46 sAqN 01’8 sdqIN GT'8 sdqIN TT'8 sdqiN €1 sdqIN ¢’ sdqIN 0g'¢ | sw QT sdqy 01
160 1670 LL0 syxped (syxped (sposped €61 sdqIN 072 sdq 0F'L sAqIN 212 sdqiN ¢o'e sAqIN ¢0'e sdqIN 8G'g | sut 00T sdqy 01 (Ge1°0
96°0 68°0 760 spxped OFT s1oed g68 s¥oped L10€ sAqIN 88°L sAqIN ¥9°L sdqN 90°L sAqIN 00¢ sdqIN LL'c sAqIN 9L | sw OF sdqIN 0T =YX)
16°0 16°0 €6°0 syoxped FRET s1oxed 89z s1opded gele sdqN gT's sdqin 91’8 sdqiN 908 sdqiN 92z sdqIN 62z sAqIN 00°¢ | Swr QT sdqIN 0T +ydd
L6°0 L6°0 LL°0 s303ped O sPpRd 0 spsprd €T sdqN op'L sdq opL sdqN AT sdqiN goe sdqIN g0t sdqIN 8GT | sur 0T sdqIN 0T (60="Y)
96°0 68°0 ¥6°0 syoxped 9FT sioxped g68 S1OORd L108 SAqIN 88°L SAqIN $9°L sAqIN 90°2 sdqN 00'¢ sAqIN L2 sAqIN 9L°C | sw OF sdqy 01 tgad
16°0 16°0 €6°0 syoxped FRET s1oxed 89z s1osped gele sdq gr's sdqy 91’8 sdqiv 908 sdqiN 92z sdqIN 62z sAqIN 00°¢ | Swr QT sdqy 01
86°0 86°0 290 sjoxRRd 0 sjexRRd (syoxped ¢ sdqy ge'. sdqiy ge'L sdqiN 609 sdqIN 90'¢ sAqIN 90'¢ sAqIN GF'g | sw 00T sdqN 01
760 06°0 860 syaxRRd () sjoxed gee spesed 96 SAqIN 16 sdqN 022 sdqIN 8z, sdqIN 8¢ sAqIN gL'e sAqIN L9°C | sw OF sdqIN 0T Aadad
96°0 86°0 G6°0 sjoxped 06 s¥OoRd gGT s¥esped ¢gl sAqN 91’8 sdqIN LTS8 sdqIN FT'8 sdqiN eg'e¢ sdqN pe'e sdqIN L6'T | sw 0T sdqIN 01
160 16°0 o syaxRRd () sjaxRRd () spoxed 6¢ sdqIy 6¢7L sdqN 6L sdqN €6 sdqIN €0'e sdqIN €0'¢ SAqIN TL'T | sw 00T sdqIN 0T
€60 0L0 60 syaxed () spoxped FGg s1oded 180T sAqIN 68°L sdqIN 79°L sdqIN 669 sdqIN gg'e sAqIN 07 sAqIN ¢F'g | Sw OF sdqN 01 udad
780 16°0 16°0 spoxped FIF s¥osoed ghg s1oxped ¢99 sAqN ¢T'8 sdqN 91’8 sdqIN 218 sdqIN L0°¢ sdqN ¢g'e sdqIN €T'¢ | sw 0T sdqIN 0T
dade d4ddde1T ddadeo dade dads't ddadso dadge dadse't dddso dade dads'T ddadso | Aep@ uyipmmpueq | WyiLos[y
Xopuj s urep ssor] joxded mdpoon) mdySnoay,J, aSeteAy

symsoy smofd o[dBMIN 9°F O[qRL

26

4.2.1 BBR and BBR’

It is clear from the results gathered in Table 4.6 for BBR and BBR’ that despite the
small difference in functionality between them, these multi flow simulations display
different results. The problems around BBR suffering in lower sized buffers remain true
[9][38], as seen in the high packet loss rates of both BBR and BBR’ for a buffer of size
half of the BDP value. The BBR’ variant shows better fairness overall with high Jain

index values representing a good share of the bandwidth between the four flows.

— Fowone
— FowTie
— FouThree
FowFour
E9 % i %
Time(s)

Figure 4.18: BBR Multi Flow Throughput

BBR 10Mbps 10ms 0.5BDP

oughput(Mbps)

Thre

BBR' 10Mbps 10ms 0.5BDP

— Flowone
— FowTwo
— FowThree
/L\#\ :
% o 3 20
Time(s)

Figure 4.19: BBR’ Multi Flow Throughput

oughput(bps)

Thre

The difference in the time between the advancement of the gain cycling in the

ProbeBW phase in both algorithms is the root cause of the difference in fairness

o7

between the two algorithms with BBR taking one whole round trip to advance in
comparison to the case of BBR’ where the in-flight rate is seen to have a decrease on
the previous round trip. This means that the queue was drained earlier in BBR’
resulting in a lower queue delay. The overestimation of the bottleneck issue that is
found to be a big flaw of the BBR algorithm in multi flow scenarios [9] can be seen in
Figures 4.18 and 4.19. The throughput values over time of both algorithms show the
sum of all flows operating above the actual bottleneck bandwidth of 10Mbps. This
results in an increased amount of packet loss since BBR does not consider loss as a

method of congestion detection in the network.

Hence, there is no response to packet loss which occurs because of a full queue at the
buffer. This loss over time for each flow for both BBR and BBR’ can be seen in Figures
4.20 and 4.21.

BBR 10Mbps 10ms 0.5BDP

]
P

Time(s)

Figure 4.20: BBR Multi Flow Loss

o8

BBR' 10Mbps 10ms 0.5BDP

P

[N
B

Time(s)

Figure 4.21: BBR’ Multi Flow Loss

4.2.2 BBR+

BBR+ exhibits massive packet loss in the results of the simulation of the algorithm in a
multiple flow scenario. This is due to the aggressiveness of its probing strategy having
gain cycle values of 1.5 every second cycle, meaning the pacing rate is the estimated
bandwidth multiplied by 1.5 every 4 cycles of the 8 cycle ProbeBW phase. Since there
is no change in consideration for packet loss in this variation of the BBR algorithm,
packets are dropped at an alarming rate. Figures 4.22 and 4.23 displays this over the

200 second simulation time.

BBR+ 10Mbps 10ms 1.5BDP lambda=0.5

P

[
H

Time(s)

Figure 4.22: BBR+ Multi Flow Loss A = 0.5

29

BBR+ 10Mbps 10ms 1.5BDP lambda=0.125

[N
B

P

Time(s)

Figure 4.23: BBR+ Multi Flow Loss A = 0.125

Once again, there is no difference in the change of the lambda shape parameter value
involved in the estimation of the propagated RTT for BBR+, contrary of the results of
the evaluations performed in the introduction of the variation [24]. It is believed that
the different estimations of the RT'T by the two shape parameter values do not have a
impact on the variance of the BDP and give the same outcome. In Zhang et al.’s
evaluation of BBR+ the results of the rate dynamics of BBR+ for a medium sized
buffer shown in Figure 11 of the paper [22] match that of the results obtained in this
evaluation, as seen in Figures 4.24 and 4.25, validating the behaviours of the algorithm

in this type of scenario.

BBR+ 10Mbps 10ms 1.5BDP lambda=0.5

oughput(Mbps)

1
H

Thre

Time(s)

Figure 4.24: BBR+ Multi Flow Throughput A = 0.5

60

BBR+ 10Mbps 10ms 1.5BDP lambda=0.125

oughput(Mbps)
|

FF9

i g3

Thre

|

Time(s)

Figure 4.25: BBR+ Multi Flow Throughput A = 0.125

4.2.3 BBRPlus

The evaluation of the BBRPlus variation of BBR over a network with multiple flows
with the same congestion control give a good indication of a steady convergence towards
the fairness line as outlined in Figure 4.26 but with the sacrifice of dropping packets
similar to that of BBR. The change in the behaviour of the algorithm includes the
consideration of packet loss as a condition to reduce the sending rate in the ProbeBW
phase but this has ill-effect as seen in the values of packet loss in Table 4.6. Good
fairness shown by Jain’s index is clouded by the poor packet loss of this variation of
BBR, not reaching the goal set in its introduction to reduce the packet loss of the

congestion control [23].

BBRPIus 10Mbps 10ms 3BDP

oughput(Mbps)
|
g9

Thre

%

Time(s)

Figure 4.26: BBRPlus Multi Flow Throughput

61

4.2.4 Delay-BBR

In Figure 6 and 8 of the introductory paper of the Delay-BBR variation as an
alternative to BBR for video streaming, the rate dynamics of the algorithm are shown
[25]. These results show stability in the multiple flows and a convergence towards the
fairness line. The evaluation performed in this project using the same algorithm
achieves similar results, with a high degree of fairness indicated by Jain’s index and a
visual convergence of the flows, shown in Figure 4.27, matching the plots in the original
paper. Delay-BBR shows some improvement in the overestimation of the bottleneck
bandwidth in shallow and medium sized buffers in the values for the average
throughput but unfortunately it is not enough to convince that the variation has solved

the ongoing issue found by Hock et al. [9].

Delay-BBR 10Mbps 100ms 3BDP

oughput(Mbps)
|

Thre

Time(s)

Figure 4.27: Delay-BBR Multi Flow Throughput

This BBR variation shows a good improvement of a decrease in packet loss experienced
at the bottleneck when the buffer is under the estimated BDP value. This is presented
in the plot 4.28 where in comparison to the variations there is a less aggressive increase
in the loss of packets. This is due to the combination of the use of the additional
congestion signal based on round trip values and the less progressive pacing gain values
in the ProbeBW phase. When the queue at the buffer fills up, the round trip times
increase and in the case of Delay-BBR this enables the smoothed RT'T value that is
monitored during the ProbeBW phase to increase and reach a point where it is greater
than the base line RT'T in the ProbeBW phase, enabling the congestion delay signal.
The ProbeRTT phase is entered consequently with the pacing rate set to drain any

excess packets at the buffer hence preventing the excess packet loss.

62

Delay-BBR 10Mbps 40ms 0.5BDP

Figure 4.28: Delay-BBR Multi Flow Loss

Time(s)

4.2.5 BBRv2

The balance of probing for more bandwidth whilst avoiding excessive bottleneck
congestion is something that BBRv2 manages very well in the simulation tests with
multiple flows of the same congestion control. Table 4.6 shows the lowest packet loss
values and impressive fairness indexes for all buffer sizes, outperforming all the other
variations and most importantly the original BBR algorithm. Since the introduction of
the new version of BBR, one of the main goals was to overcome the issue that BBR has
with packet loss in shallow buffers [2|. The Figures 4.29 and 4.30 of the packet loss over
a buffer that is less than the BDP value reflects the improvement to reach this goal.
This is down to the introduction of both packet loss and ECN as an additional signal
for congestion detection in the algorithm, reducing the sending rate appropriately when
either is detected at the bottleneck link.

63

BBRV2-ECN 10Mbps 10ms 0.5BDP

F
|1

359
78¢

Flo
’—ﬁ—/ Flow Four
I

Time(s)

Figure 4.29: BBRv2 Multi Flow Loss

BBRv2-EXP-ECN 10Mbps 10ms 0.5BDP

Flow
’—ﬁ—/ Flow Four
_ T

Time(s)

Figure 4.30: BBRv2-EXP Multi Flow Loss

The experimental changes are enabled and ran with the same simulation configuration
to compare the differences made. The results show that there is little to no difference in
performance similar to that of the single flow test cases. The upper and lower bounds
that are part of the three part model in the newest version of BBR are used to manage
the area in which the bandwidth and in-flight rate can operate. They are set to
converge on the fairness line with a good distribution of the available bandwidth
between all the flows in these simulated scenarios. Figures 4.31 and 4.32 shows the
fairness between the flows of BBRv2 for a small sized buffer. These plots show how the
lines representing each flow converge towards each other, as each flow is introduced, to
fairly share the available bandwidth.

64

BBRV2-ECN 10Mbps 10ms 0.5BDP

oughput(Mbps)

Thre

Time(s)

Figure 4.31: BBRv2 Multi Flow Throughput

BBRv2-EXP-ECN 10Mbps 10ms 0.5BDP

Throughput(Mbps)

Time(s)

Figure 4.32: BBRv2-EXP Multi Flow Throughput

4.2.6 Intra-Protocol Summary

The simulations of these contested networks using the same congestion control
algorithm displays results reflecting the claims of these algorithms along with the
residing issues of some. Delay-BBR stays consistent in being a good improvement over
the original BBR algorithm showing an all round increase in fairness and less packet
loss. BBRv2 takes the spotlight in showing vast improvement over BBR. The increase
of delay in the simulated scenarios sees a trend in a decrease in packet loss and greater
fairness across the results for BBRv2 and all the other variations. This increase in delay
allows for more retransmissions of packets with no received acknowledgements allowing

for the reduction in drop rate for those packets. The goodput is consistently high for all

65

the variations of BBR despite there being difference in packet loss and fairness between
the results of the simulations. The existence of the problems of performance in a
shallow buffer still persists in the majority of the variations apart from BBRv2, this
gives a good indication of the effectiveness of the changes the algorithm has. Packet loss
occurs in the other algorithms because of the inability to deal with the filling of the
queue at the buffer which forces the dropping of these packets when the buffer
overflows. The great performance of BBRv2 in these multi flow scenarios overcoming
the fairness problems and the shallow buffer issues of its predecessor shows the
progression towards its initial goals of increased fairness across multiple flows and
becoming an overall improvement over BBR [2]. The only issue that is predominant
with BBRv2 and all the other variations of BBR is the overestimation of the bottleneck
bandwidth value as seen in the product of the average throughput and number of flows
in each configuration in Table 4.6. This is why some packet loss still exists in low delay
networks, despite BBRv2 explicitly having loss as a clear indicator of its need to adjust
the three part model that it adopts. This feature is included ultimately to reduce the
sending rate to a point that stabilises the bandwidth consumption of any flows using

the new version of BBR as a congestion control.

66

4.3 Inter-Protocol

Real world networks can have TCP connections using numerous different types of

congestion control algorithms. It is important for these congestion controls to operate

well together and share the available resources evenly. An inter-protocol simulation

scenario is set up in NS-3 to evaluate BBRv2 and the other BBR variants against a

loss-based and a delay-based congestion control algorithm. The loss-based and
delay-based algorithms of choice respectively are TCP Cubic [12] and TCP Vegas [18].

One flow of a chosen BBR variant is pitched against one flow of Cubic or Vegas.

Table 4.7: Vegas Results

Algorithm | Bandwidth Delay ‘ Average Throughput (BBR/Vegas Ratio) Goodput Packet Loss Jain’s Index

10 Mbps 10 ms 4.54 Mbps (17.37) 8.06 Mbps 0 Packets 0.56

BBR 10 Mbps 40 ms 4.55 Mbps (21.91) 7.80 Mbps 0 Packets 0.55
10 Mbps 100 ms 4.39 Mbps (1.42) 7.15 Mbps 0 Packets 0.97

10 Mbps 10 ms 4.51 Mbps (9.07) 8.07 Mbps 0 Packets 0.61

BBR’ 10 Mbps 40 ms 4.56 Mbps (14.02) 7.81 Mbps 0 Packets 0.57
10 Mbps 100 ms 4.39 Mbps (1.42) 7.15 Mbps 0 Packets 0.97

BBR. 10 Mbps 10 ms 4.54 Mbps (19.00) 8.04 Mbps 61 Packets 0.55
0 _'0 5) 10 Mbps 40 ms 4.55 Mbps (25.18) 7.80 Mbps 0 Packets 0.54
o 10 Mbps 100 ms 4.26 Mbps (1.51) 7.14 Mbps 0 Packets 0.96
BBR+ 10 Mbps 10 ms 4.54 Mbps (19.00) 8.04 Mbps 61 Packets 0.55
(A= 10 Mbps 40 ms 4.55 Mbps (25.18) 7.80 Mbps 0 Packets 0.54
0.125) 10 Mbps 100 ms 4.26 Mbps (1.51) 7.14 Mbps 0 Packets 0.96
10 Mbps 10 ms 4.55 Mbps (18.20) 8.06 Mbps 0 Packets 0.55

BBRPlus 10 Mbps 40 ms 4.56 Mbps (21.21) 7.81 Mbps 0 Packets 0.55
10 Mbps 100 ms 4.38 Mbps (1.42) 7.14 Mbps 0 Packets 0.97

Del 10 Mbps 10 ms 4.71 Mbps (0.06) 7.54 Mbps 0 Packets 0.56
B;;y' 10 Mbps 40 ms 4.72 Mbps (21.02) 8.02 Mbps 0 Packets 0.55
10 Mbps 100 ms 4.45 Mbps (1.44) 7.22 Mbps 0 Packets 0.97

10 Mbps 10 ms 4.60 Mbps (1.79) 8.10 Mbps 0 Packets 0.93

BBRv2 10 Mbps 40 ms 4.62 Mbps (4.30) 7.84 Mbps 0 Packets 0.72
10 Mbps 100 ms 4.36 Mbps (1.46) 7.11 Mbps 0 Packets 0.97

BBRv2 10 Mbps 10 ms 4.60 Mbps (1.79) 8.10 Mbps 0 Packets 0.93
(EXPY) 10 Mbps 40 ms 4.62 Mbps (4.30) 7.84 Mbps 0 Packets 0.72
10 Mbps 100 ms 4.36 Mbps (1.46) 7.11 Mbps 0 Packets 0.97

67

The network attributes stay consistent to those set in the single flow simulations, seen in
Table 4.2, with the difference of a longer simulation time of 200 seconds to allow for the
contesting flows to fully settle before being observed. The constraints for the bottleneck
bandwidth and delay are set to the configurations, seen in Table 4.4, for each test case.
The contesting Cubic or Vegas flow is set to begin 20 seconds after the BBR variant of
choice has began. The network metrics being observed in these test cases match those
studied in the intra-protocol scenarios with Jain’s index being estimated using equation
1. An additional observation to the results obtained is the ratio of the two throughputs
against each other in order to gauge a gap in the throughput values with respect to the
assigned bottleneck bandwidth. Tables 4.7 and 4.8 show the gathered results for these

simulations for contested networks with Vegas and Cubic respectively.

Table 4.8: Cubic Results

Algorithm | Bandwidth Delay | Average Throughput (BBR/Cubic Ratio) Goodput Packet Loss Jain’s Index
g g g

10 Mbps 10 ms 4.89 Mbps (1.14) 8.14 Mbps 1056 Packets 0.99
BBR 10 Mbps 40 ms 4.96 Mbps (0.98) 8.02 Mbps 0 Packets 1
10 Mbps 100 ms 4.64 Mbps (0.97) 7.46 Mbps 0 Packets 1

10 Mbps 10 ms 4.95 Mbps (0.63) 8.12 Mbps 1109 Packets 0.95

BBR’ 10 Mbps 40 ms 5.01 Mbps (0.69) 8.02 Mbps 0 Packets 0.97
10 Mbps 100 ms 4.64 Mbps (0.97) 7.46 Mbps 0 Packets 1

BBR. 10 Mbps 10 ms 3.36 Mbps (1.39) 8.10 Mbps 2348 Packets 0.97
(A= 05) 10 Mbps 40 ms 4.96 Mbps (0.97) 8.02 Mbps 0 Packets 1
o 10 Mbps 100 ms 4.63 Mbps (0.97) 7.45 Mbps 0 Packets 1

BBR+ 10 Mbps 10 ms 3.36 Mbps (1.39) 8.10 Mbps 2348 Packets 0.97
(A= 10 Mbps 40 ms 4.96 Mbps (0.97) 8.02 Mbps 0 Packets 1
0.125) 10 Mbps 100 ms 4.63 Mbps (0.97) 7.45 Mbps 0 Packets 1
10 Mbps 10 ms 4.76 Mbps (1.06) 8.14 Mbps 1240 Packets 1
BBRPlus 10 Mbps 40 ms 4.96 Mbps (1.03) 8.02 Mbps 0 Packets 1
10 Mbps 100 ms 4.63 Mbps (0.96) 7.45 Mbps 0 Packets 1

Del 10 Mbps 10 ms 4.82 Mbps (0.04) 7.46 Mbps 369 Packets 0.54

elay-

BBRy 10 Mbps 40 ms 4.98 Mbps (1.07) 8.04 Mbps 0 Packets 1
10 Mbps 100 ms 4.73 Mbps (0.99) 7.58 Mbps 0 Packets 1

10 Mbps 10 ms 5.09 Mbps (0.24) 8.12 Mbps 822 Packets 0.73

BBRv2 10 Mbps 40 ms 5.12 Mbps (0.26) 8.02 Mbps 0 Packets 0.74

10 Mbps 100 ms 4.66 Mbps (0.80) 7.46 Mbps 0 Packets 0.99

BERv2 10 Mbps 10 ms 5.09 Mbps (0.24) 8.12 Mbps 822 Packets 0.73

(EXPV) 10 Mbps 40 ms 5.12 Mbps (0.26) 8.02 Mbps 0 Packets 0.74

10 Mbps 100 ms 4.66 Mbps (0.80) 7.46 Mbps 0 Packets 0.99

4.3.1 BBR and BBR’

4.3.1.1 Delay-Based

Previous work that has evaluated BBR with a delay-based algorithm like TCP Vegas
has shown poor performance of the algorithm with low fairness of bandwidth [38]. This

is replicated in the simulations performed in this evaluation represented by the low

68

fairness index values for both BBR and BBR’ in Table 4.7. Figures 4.33 and 4.34 show
the poor distribution of bandwidth between the two flows for BBR and BBR’. The split
of bandwidth for BBR’ is slightly better than BBR but with not enough impact to

register as a fair distribution.

BBR vs Vegas 10Mbps 40ms

oughput(Mbps)

Thre

[\\

Time(s)

Figure 4.33: BBR vs Vegas Throughput

BBR' vs Vegas 10Mbps 40ms

oughput(Mbps)

Thre

Time(s)

Figure 4.34: BBR’ vs Vegas Throughput

This type of behaviour occurs with Vegas due to a constant queue being maintained at
the bottleneck, with BBR sending at a high estimated bottleneck bandwidth value that
is measured due to Vegas lowering its congestion window when delay is detected. This
queue is unable to be drained as when BBR is in ProbeRTT, Vegas increases its
congestion window size. This is because it measures lower RTT values so it deems it

safe to do so. This increase in congestion window size along with BBR returning to a

69

high sending rate after the ProbeRTT phase keeps the queue constantly filled. Thus,

fairness values are excessively low between the two congestion control algorithms.

4.3.1.2 Loss-Based

BBR and Cubic are the main two congestion control algorithms put together for
evaluations of inter-protocol behaviour in previous studies [9][38][39][10][37][40]. The
conclusion from these studies is that in shallow buffer scenarios, BBR and Cubic exhibit
poor fairness and have a trend to show an oscillating behaviour between the competing
flows. In the case of medium to large buffer sizes (1.5 BDP and above) there is fairness
between the competing congestion control algorithms. The results obtained in this
simulation reflect that since a medium sized buffer is used. There is a very high Jain’s
index in the case of both BBR and BBR’ but with BBR having a more even ratio split

of throughput between the low delay scenarios seen in Table 4.8.

BBR vs Cubic 10Mbps 10ms

Throughput(Mbps)

Time(s)

Figure 4.35: BBR vs Cubic Throughput

70

BBR' vs Cubic 10Mbps 10ms

oughput(Mbps)

Thre

Time(s)

Figure 4.36: BBR’ vs Cubic Throughput

High packet loss is evident due to conflicts between the two different bandwidth probing
strategies, Cubic fills up the buffers quickly whilst BBR takes measurements of the
propagated RTT, which ends up being a high value as the buffers are full. This results
in packet loss and a reduced sending rate for Cubic whilst queues at the buffers are
being drained. The constant filling up of the queues at the bottleneck leads to increased
time gap between BBR’s ability to probe for more bandwidth in the ProbeBW phase.
Since the primary difference between BBR and BBR’ is the methodology in advancing
the cycle of probing, the reason why BBR outperforms BBR’ is because the queues are
already full in the case of BBR’ when probing and it relies on the previous bytes in
flight to be lower than that of the current bytes in flight as a condition to advance. This
condition will not hold because the queues are full and results in a longer time between
the advancement in the gain cycle. Figures 4.35 and 4.36 shows the difference in the
throughput ratio between BBR and the BBR’ variant.

4.3.2 BBR+

4.3.2.1 Delay-Based

BBR+ has its functionality changed to deal with high speed environments but does not
contain changes to deal with the contesting of network resources with other congestion
control algorithms like Vegas. Along with this, BBR+ has a more aggressive gain cycle
increase in ProbeBW phase so the results reflect a worsened fairness metric than that of
BBR. A higher maximum bottleneck bandwidth estimate value is set because the
pacing gain probe up value is 1.5 and this bandwidth estimate is the constant value
that the sending rate is set too leaving little bandwidth for Vegas to use. The

performance of BBR+ also introduces packet loss in a low delay bottleneck from the

71

buffer overflowing due to the constant queue. The gap between the flows is displayed in
the Figures 4.37 and 4.38 of BBR+, each with different values for lambda used in the
calculation of the propagated RTT. Following from the trend of the previous results, the
lambda has no effect on the obtained results for BBR+ with Vegas.

BBR+ vs Vegas 10Mbps 10ms lambda=0.5

oughput(Mbps)

Thre

Figure 4.37: BBR+ vs Vegas Throughput A = 0.5

Time(s)

BBR+ vs Vegas 10Mbps 10ms lambda=0.125

Throughput(Mbps)

[F

Figure 4.38: BBR+ vs Vegas Throughput A = 0.125

Time(s)

4.3.2.2 Loss-Based

When simulated with a Cubic flow, BBR+ continues the trend of amplifying on the
results obtained for BBR due to its more aggressive nature, shown in Table 4.8. Very
high packet loss is exhibited in the scenario where there is a 10 ms delay but keeps a

high fairness index. The scenarios with a higher delay at the bottleneck provide an ideal

72

state of no packet loss and a perfect amount of fairness. This can be seen in Figures
4.39 and 4.40 where both flows converge very close to the fairness line. Higher delay
scenarios are producing these results as more time is being spent in the ProbeRTT

phase, allowing for any packets built up in the queues at the buffers to be drained.

BBR+ vs Cubic 10Mbps 40ms lambda=0.5

oughput(Mbps)

Thre

Time(s)

Figure 4.39: BBR+ vs Cubic Throughput A = 0.5

BBR+ vs Cubic 10Mbps 40ms lambda=0.125

Throughput(Mbps)

Time(s)

Figure 4.40: BBR+ vs Cubic Throughput A = 0.125

73

4.3.3 BBRPlus

4.3.3.1 Delay-Based

BBRPIus vs Vegas 10Mbps 10ms

ughput(Mbps)

aaaaaaa

Throt

Figure 4.41: BBRPlus vs Vegas Throughput

Time(s)

Similar to that of BBR, BBRPlus obtains values of poor fairness in its performance
with Vegas, as seen in Table 4.7. Since Vegas is a delay-based algorithm, the changes
made to BBRPlus with the inclusion of packet loss as a congestion detection come to no
effect as before packet loss is induced by the full queue at the bottleneck. Vegas reduces
its congestion window when an alteration in RT'T is detected. Thus, the same effects
that BBR has with Vegas take hold with BBRPlus sending at a constant high estimated
bandwidth whilst Vegas struggles to compete for a share of bandwidth. The Figure 4.41
highlights this with a stark similarity in the behaviour of the flows to the plots of

BBR.

74

4.3.3.2 Loss-Based

BBRPIus vs Cubic 10Mbps 10ms

aaaaaaa

oughput(Mbps)

Thre

Time(s)

Figure 4.42: BBRPlus vs Cubic Throughput

BBRPlus again captures similar behaviour to that of BBR when competing with Cubic
in the simulations ran, but with more positive results than that of the contest with
Vegas. An even ratio of throughput across all cases with the highest possible Jain index
is evident, however, the large amount of packet loss clouds this with the algorithms
inability to deal with packet loss effectively, even though it was a key part of the
changes that separated BBRPlus from BBR. Figure 4.42 shows the response that
BBRPlus has when Cubic is introduced into the network. Cubics aggressive probe for
bandwidth forces BBRPlus to decrease its sending rate after the queues fill up at the
buffer shown by the decrease in the BBRPlus flow in the plot of throughput over time.
This can be seen to then plateau out to a fair share of bandwidth with some small
overlapping of the flows due to the increase and decrease of their respective congestion

windows when Cubic and BBRPlus are trying to probe for more bandwidth.

4.3.4 Delay-BBR

4.3.4.1 Delay-Based

Since the introduction of Delay-BBR, there has been no evaluation of this variation in a
network contested with a delay-based algorithm [25]. Contrary to the belief that this
variation might contain few differences between it and the original BBR, the results
obtained reflect the use of the congestion signal used to show interesting behaviour.
Vegas bases its congestion detection off delay in an increase in RTT values and the
introduced congestion signal that operates in Delay-BBR is set based on a condition
that uses the variation of RTT values with a maintained RTT value in ProbeBW. For a

75

low delay bottleneck there is a high variation of RTT values and in competition with
Vegas, BBRPlus is unable to operate at a high capacity and gives up the majority of
bandwidth to Vegas. This scenario is displayed in Figure 4.43 where after the
introduction of Vegas, represented by the blue line, it quickly increases its sending rate
to a high constant value. This is due to the more frequent visiting of the ProbeRTT
phase by BBRPlus and since the algorithm initially set a low estimated bottleneck
bandwidth combined with Vegas taking up the majority of the bandwidth, when it exits
ProbeRTT it can never recover to a reasonable sending rate. Once the bottleneck delay
is set to a higher value like the 40ms simulation scenario, the common BBR behaviour
with Vegas returns due to less of a variation in the RTT values consequently leading to
a less frequent decrease of Vegas’s congestion window. Poor fairness and throughput

ratio is then shown again.

Delay-BBR vs Vegas 10Mbps 10ms

Throughput(Mbps)

Time(s)

Figure 4.43: Delay-BBR vs Vegas Throughput

4.3.4.2 Loss-Based

In comparison to the results found in the contention of Delay-BBR and Vegas, the same
behaviour occurs for this variation of BBR in a low delay bottleneck. The variation in
the RT'T values deviates the congestion delay signal and Delay-BBR suffers a very low
bandwidth utilisation which is capitalised on by the Cubic flow as seen in Figure 4.44.
A lower packet loss is achieved in this case as the queues at the bottleneck do not fill as
quickly in comparison with a more contending variation of BBR. The increase in delay
for the other simulated cases sees a more similar behavioural outcome to that of BBR

with high fairness between these flows in a medium sized buffer.

76

Delay-BBR vs Cubic 10Mbps 10ms

ccccc

oughput(Mbps)

Thre

Time(s)

Figure 4.44: Delay-BBR vs Cubic Throughput

4.3.5 BBRv2

4.3.5.1 Delay-Based

The coexistence of the newest version of BBR with a delay-based congestion control
algorithm is a type of situation not evaluated by the development team, as outlined by
the introductory slides [2][26][27]. As a relevant issue with the original BBR algorithm
it is important that the newer versions address it. The obtained results on the BBRv2
simulation reveal an improvement in the fairness between the two different types of
congestion control algorithms represented by the high Jain index values in Table 4.7.
Figure 4.45 shows the convergence towards the fairness line of 5 Mbps by the two flows.
Although BBRv2 still dominates the share of bandwidth, Vegas is allowed to explore
more bandwidth. This is because of the changes to the activity in the ProbeRTT phase
which sets the congestion window size to adapt to the monitored bounds for the bytes
in flight rate as part of the three part model introduced in BBRv2. This congestion
window value increases the draining of the constant queue that forms at the bottleneck,

allowing for more probing of bandwidth.

77

BBRv2-ECN vs Vegas 10Mbps 10ms

oughput(Mbps)

Thre

Time(s)

Figure 4.45: BBRv2 vs Vegas Throughput

The experimental changes introduced to BBRv2 contained relevant changes to updating
the bandwidth bounds of the three-part model, especially when ECN signals occur in a
network. It appears in these test cases with Vegas in contention that there is no
instigation of ECN signals when there is congestion in the network, which make the
changes irrelevant, as made clear in the identical values of BBRv2 and BBRv2-EXP in
Table 4.7.

4.3.5.2 Loss-Based

BBRv2 exclusively makes changes in order to co-exist with loss-based algorithms like
Cubic in a shared network. These include having a more conservative approach towards
probing for more bandwidth in the ProbeBW phase by appropriately setting the upper
bound and lower bounds of the in-flight rate and taking packet loss and ECN into
consideration when looking to probe for more bandwidth. There is also specific a
condition tailored for loss based co-existence introduced to check when it is reasonable
to probe for bandwidth based on if the number of rounds since the last probe is greater
than the BDP value. The results obtained show little effect of these changes towards
increasing the co-existence between these different types of congestion control
algorithms. A moderate fairness is achieved with an uneven ratio of throughput
between the two flows. This is highlighted in the plot of the two flows 4.46 where it can
be see upon introduction, Cubic dominates the share of resources. It is to be believed
that this is down to the loss detected when Cubic probes for bandwidth causing the
ProbeBW phase of BBRv2 to be set to probe down continuously for the duration of the

simulation.

78

BBRv2-ECN vs Cubic 10Mbps 10ms

aaaaaaa

oughput(Mbps)

Thre

Time(s)

Figure 4.46: BBRv2 vs Cubic Throughput

On the initial transition into the ProbeBW phase the probe down state of ProbeBW is
entered which drains any excess packets at the buffer and resets the congestion signals
that BBRv2 operates on. When Cubic is introduced, it is not deemed safe to probe for
more bandwidth but the flow is forced out of the probe down phase after one round
trip. The probe refill state is entered and consequently the probe up phase which then
quickly transitions back into the probe down phase as the loss detected from Cubic
causes the in-flight rate to be deemed too high. This constant loop continues as long as
Cubic is operating and is seen by the decrease of throughput by BBRv2 in Figure 4.46.
The Table 4.8 shows the inability of the experimental changes to have an effect on this

behaviour similar to the previous simulated scenarios.

4.3.6 Inter-Protocol Summary

The inter-protocol scenarios are set up to emulate the potential real world behaviour of
the interactions between BBRv2 and the other variants with common delay-based and
loss-based algorithms that are widely used across the internet. BBRv2 shows
progression in increasing fairness towards delay-based algorithms but does not obtain
its goal of a fair share of bandwidth with loss-based algorithms like Cubic. Problems
still persist with the algorithms inability to react proactively with the introduction of a
loss-based algorithm into the network. The reproduction of BBR’s behaviour with
delay-based algorithms stays consistent with claims of previous studies [38] whilst the
simulations with Cubic only account for a specific scenario with a medium buffer. This
highlights the positive interactions with loss-based algorithms whereas the problems
with loss-based algorithms lie in shallow buffer scenarios [9]. The other variants overall

show little improvement over the original behaviour of BBR with the likes of BBRPlus

79

displaying disappointing results for its interactions with Cubic despite having a focus on
preventing packet loss. Delay-BBR exhibits unique behaviour in low delay scenarios due
to the use of a round trip time dependent congestion signal. BBR+ is situationally
specific and shows its inability to perform with other types of algorithms in these
simulations. The collection of algorithms again show the underutilisation of bandwidth
in high delay scenarios, seen in the values in Tables 4.7 and 4.8. The inability to fill the
buffer at the bottleneck and probe for more bandwidth leads to only a 50% utilisation
of bandwidth, however, this bodes well for the inter-protocol scenarios allowing both

Vegas and Cubic to get a fair share of the bandwidth.

80

5 Conclusion

5.1 Overview

In this project an evaluation of BBRv2 was performed along with BBR and variants of
the congestion control algorithm. A network simulation was set up using the network
simulator NS-3 and a number of different test cases where simulated to evaluate the
algorithms in different situations. The different algorithms where implemented into the
NS-3 architecture. Evaluating BBRv2 with the different variations of BBR gave an
insight into the functional differences between the algorithms and outlines the effects
that these differences have in comparison with each other. Delay-BBR was a variant of
BBR that displayed its conservative methods of probing by showing an increase in
performance over BBR in single flow and intra-protocol scenarios. BBRPlus adopted
techniques that looked to improve BBR in situations that involved packet loss but this
was not reflected in the results as there was little change in behaviour, especially when
the variation contested with delay-based and loss-based congestion control algorithms.
BBR+ performed as expected, producing poor performance in the wired network
simulation. This variation was designed to operate in an environment that involved high
speed transportation and an LTE connection, so the functional changes that separated it
from BBR came to ill-effect in the simulation setup. BBR’ contains little difference with
the original BBR algorithm but this difference proved to have an effect in the outcome
of results. BBR’ shows slight improvement in intra-protocol scenarios, giving evidence
that the changing in the strategy in which the gain cycle advances gives a shorter time
between the draining of the queues at the bottleneck. Otherwise, BBR’ shows similar

results to that of BBR in the single flow and inter-protocol test cases.

In terms of simulation outcome, BBRv2 was found to excel in some areas but not
others. Single flow simulations showed validation of a well rounded performance of
BBRv2 with a slight decrease in bandwidth utilisation in comparison with its
predecessor. A consistent bandwidth variation response shows the stability of the core
features of the algorithm. The improvements that can be seen in BBRv2 over BBR and

its variations is through the competing of network resources with multiple flows of itself

81

and also the delay-based algorithm Vegas. There is clear contrast in the values obtained
for fairness in the simulated situations for these types of intra-protocol and
inter-protocol test cases that gives a positive impression of BBRv2. The disappointment
in performance is the new algorithms fairness with the loss-based algorithm Cubic, one
issue that resided in the previous version and was made a main goal of the new version.
The possible flaw found in the ProbeBW phase of the algorithm could be narrowed
down to the implementation of the algorithm in the simulation architecture. This
implementation was taken from a Linux kernel adaption written in the C language.
Disparity between the translation in the C code to NS-3 style C++ could result in
values having different effects in the network simulator in comparison to the Linux
kernel implementation. Testing a congestion control in a network simulator like NS-3
was a difficulty in this project and there is no certainty that all the new parts of BBRv2
work effectively. That of the Explicit Congestion Notification which works between two
layers of the network stack and could very well operate differently in a real test-bed in

comparison to a network simulator.

This also could not be the case as it is seen in single flow plots that the core behaviours
work effectively, with efficient alteration between the probing of more bandwidth and
draining of the bottleneck queue. BBRv2 remains very youthful in its development with
further evaluations needed to verify these behaviours in different network situations. A
general evaluation like the one performed in this project gives a good idea of the core
functionalities of the new algorithm. Whilst a performance evaluation is important for a
new algorithm like this, it can be said that a greater in-depth analysis of the algorithm
is needed before suggested changes can come to light. This could include a look into
more of the algorithms specific behaviours in each of its phases rather than an overall
view of the performance. The objective of this project was to evaluate the congestion
control algorithm BBRv2 and pitch it against its predecessor and variants of that. An
insight was gained into the new algorithms distinct differences between the original
version and the variations in that of the operation to prevent congestion in a network
and the effects it has to ultimately achieve the goal of a high throughput and low delay

network.

5.2 Future Work

It has to be noted that the BBRv2 evaluated in this project is an alpha version of the
algorithm and the final algorithm has not been released at the time of writing this
dissertation. The types of simulations performed in this project only scrape the surface
of the performance and operation scenarios to be tested on a congestion control

algorithm, especially one as complex as BBRv2. This was a general evaluation with a

82

high-level examination of network metrics that are typically considered when looking at
congestion control algorithms. Component specific tests are examples of further
evaluations that can be done with the introduction of many different components in
BBRv2 including Explicit Congestion Notification Signal which is a part of TCP that
can be dynamically set. In turn, it can be seen if the effects of Explicit Congestion
Notification have a big effect on the network model of BBRv2. Different network
constraints can be included in future tests including wireless and wide area networks
which bring different network dynamics into play when simulating network protocols.
The configurations used in these simulations are one of many with multiple different
variations of values to set the bandwidth, delay, buffer size and other network
characteristics. Especially with inter-protocol scenarios where buffer size can be seen to
have an effect in previous iterations of BBR. NS-3 is used in this project but different
network simulators that are mentioned in the background can be used to validate
results across simulators. Along with this, real world evaluations of BBRv2 external
from that at Google are yet to be performed using a physical test bed consisting of
routers and devices. It is expected that further evaluations of all these different types
will be performed on this new version of BBR as development continues and upon final
release. At the time of writing this Google has tested the latest alpha version on its
Youtube service for a small group of users and continues to test it internally with active

work on preparation for a full scale deployment [27].

83

Bibliography

1]

2]

3]

4]

5]

[6]

7]

Yuchung Cheng, Neal Cardwell, Van Jacobson, and Soheil Yeganeh. BBR
Congestion Control, 2016. URL https:
//tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control-00.

Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, Ian Swett, Victor Vasiliev,
Priyaranjan Jha, Yousuk Seung, Matt Mathis, and Van Jacobson. BBR v2 A
Model-based Congestion Control IETF 104 Update. IETF, page 36, 2019.
https://datatracker.ietf.org/meeting/104/materials/
slides-104-iccrg-an-update-on-bbr-00.

Mathieu Lacage. An ns-3 tutorial,
https://www.nsnam.org/tutorials/ns-3-tutorial-tunis-apr09.pdf, last
accessed on 2020-03-18, 2009.

Vivek Jain, Viyom Mittal, and Mohit P. Tahiliani. Design and implementation of
TCP BBR in ns-3. In Proceedings of the 10th Workshop on ns-3 - WNS3 ’18, pages
1622, Surathkal, India, 2018. ACM Press. ISBN 978-1-4503-6413-3. doi:
10.1145/3199902.3199911. URL
http://dl.acm.org/citation.cfm?doid=3199902.3199911.

Sandvine. The mobile internet phenomena report, february 2020.
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2020/
Phenomena/Mobile’%20Phenomena’20Report’201H%202020%2020200219. pdf,
February 2020.

J. D. Day and H. Zimmermann. The osi reference model. Proceedings of the IEEFE,
71(12):1334-1340, 1983.

DongJin Lee, Brian E Carpenter, and Nevil Brownlee. Media streaming
observations: Trends in udp to tcp ratio. International Journal on Advances in
Systems and Measurements, 3(3-4), 2010.

84

https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://datatracker.ietf.org/meeting/104/materials/slides-104-iccrg-an-update-on-bbr-00
https://datatracker.ietf.org/meeting/104/materials/slides-104-iccrg-an-update-on-bbr-00
https://www.nsnam.org/tutorials/ns-3-tutorial-tunis-apr09.pdf
http://dl.acm.org/citation.cfm?doid=3199902.3199911
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2020/Phenomena/Mobile%20Phenomena%20Report%201H%202020%2020200219.pdf
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2020/Phenomena/Mobile%20Phenomena%20Report%201H%202020%2020200219.pdf

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and Van
Jacobson. BBR: congestion-based congestion control. Communications of the
ACM, 60(2):58-66, January 2017. ISSN 00010782. doi: 10.1145/3009824. URL
http://dl.acm.org/citation.cfm?doid=3042068.3009824.

Mario Hock, Roland Bless, and Martina Zitterbart. Experimental evaluation of
BBR congestion control. In 2017 IEEE 25th International Conference on Network
Protocols (ICNP), pages 1-10, October 2017. doi: 10.1109/ICNP.2017.8117540.

Belma Turkovic, Fernando A. Kuipers, and Steve Uhlig. Fifty Shades of
Congestion Control: A Performance and Interactions Evaluation. arXiv:1903.03852
[es], March 2019. URL http://arxiv.org/abs/1903.03852. arXiv: 1903.03852.

Lisong Xu, K. Harfoush, and Injong Rhee. Binary increase congestion control
(BIC) for fast long-distance networks. In IEEE INFOCOM 2004, volume 4, pages
2514-2524 vol.4, March 2004. doi: 10.1109/INFCOM.2004.1354672. ISSN:
0743-166X.

HaSangtae, Rheelnjong, and XuLisong. CUBIC. ACM SIGOPS Operating Systems
Review, July 2008. URL
https://dl.acm.org/doi/abs/10.1145/1400097.1400105.

Vladimir Kokshenev and Sergey Suschenko. Analytical Model of the TCP Reno
Congestion Control Procedure through a Discrete-Time Markov Chain. In
Vladimir Vishnevsky, Dmitry Kozyrev, and Andrey Larionov, editors, Distributed
Computer and Communication Networks, Communications in Computer and
Information Science, pages 124-135, Cham, 2014. Springer International
Publishing. ISBN 978-3-319-05209-0. doi: 10.1007,/978-3-319-05209-0 11.

Sally Floyd, Andrei Gurtov, Yoshifumi Nishida, and Tom Henderson. The
NewReno Modification to TCP’s Fast Recovery Algorithm, 2012. URL
https://tools.ietf.org/html/rfc6582.

Tom Kelly. Scalable TCP: improving performance in highspeed wide area
networks. ACM SIGCOMM Computer Communication Review, 33(2):83, April
2003. ISSN 01464833. doi: 10.1145/956981.956989. URL
http://portal.acm.org/citation.cfm?doid=956981.956989.

Sally Floyd <floyd@acm.org>. HighSpeed TCP for Large Congestion Windows,
2003. URL https://tools.ietf.org/html/rfc3649#page-25.

Grenville Armitage, Lawrence Stewart, Michael Welzl, and James Healy. An

independent H-TCP implementation under FreeBSD 7.0: description and observed

85

http://dl.acm.org/citation.cfm?doid=3042068.3009824
http://arxiv.org/abs/1903.03852
https://dl.acm.org/doi/abs/10.1145/1400097.1400105
https://tools.ietf.org/html/rfc6582
http://portal.acm.org/citation.cfm?doid=956981.956989
https://tools.ietf.org/html/rfc3649#page-25

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

behaviour. ACM SIGCOMM Computer Communication Review, 38(3):27, July
2008. ISSN 01464833. doi: 10.1145/1384609.1384613. URL
http://portal.acm.org/citation.cfm?doid=1384609.1384613.

Lawrence S. Brakmo, Sean W. O’malley, and Larry L. Peterson. TCP Vegas: New
techniques for congestion detection and avoidance. In In SIGCOMM, 1994.

G. Hasegawa, K. Kurata, and M. Murata. Analysis and improvement of fairness
between TCP Reno and Vegas for deployment of TCP Vegas to the Internet. In
Proceedings 2000 International Conference on Network Protocols, pages 177186,
November 2000. doi: 10.1109/ICNP.2000.896302.

David X. Wei, Cheng Jin, Steven H. Low, and Sanjay Hegde. FAST TCP:
Motivation, Architecture, Algorithms, Performance. IEEE/ACM Transactions on
Networking, 14(6):1246-1259, December 2006. ISSN 1558-2566. doi:
10.1109/TNET.2006.886335.

Salem Belhaj and Moncef Tagina. VFAST TCP: An improvement of FAST TCP.
In Tenth International Conference on Computer Modeling and Simulation (uksim
2008), pages 88-93, April 2008. doi: 10.1109/UKSIM.2008.50.

Songyang Zhang. An Evaluation of BBR and its variants. arXiv:1909.03673 [cs],
September 2019. URL http://arxiv.org/abs/1909.03673. arXiv: 1909.03673.

dog250. TCP BBR v2.0, which keeps people waiting for a long time, is coming
soon!, 2018. URL https://blog.csdn.net/dog250/article/details/80629551.

Jing Wang, Yuanjie Li, Xiufeng Xie, Yi Sun, Zhongfeng Wang, Yufan Zheng,
Yunzhe Ni, Chenren Xu, Feng Qian, Wangyang Li, Wantong Jiang, Yihua Cheng,
and Zhuo Cheng. An Active-Passive Measurement Study of TCP Performance over
LTE on High-speed Rails. In The 25th Annual International Conference on Mobile
Computing and Networking - MobiCom ’19, pages 1-16, Los Cabos, Mexico, 2019.
ACM Press. ISBN 978-1-4503-6169-9. doi: 10.1145/3300061.3300123. URL
http://dl.acm.org/citation.cfm?doid=3300061.3300123.

Songyang Zhang, Weimin Lei, Wei Zhang, Yunchong Guan, and Hao Li.
Congestion Control and Packet Scheduling for Multipath Real Time Video
Streaming. IEEE Access, 7:59758-59770, 2019. ISSN 2169-3536. doi:
10.1109/ACCESS.2019.2913902. URL
https://ieeexplore.ieee.org/document/8701688/.

Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, Priyaranjan Jha, Yousuk
Seung, lan Swett, Victor Vasiliev, Bin Wu, Matt Mathis, and Van Jacobson. BBR

86

http://portal.acm.org/citation.cfm?doid=1384609.1384613
http://arxiv.org/abs/1909.03673
https://blog.csdn.net/dog250/article/details/80629551
http://dl.acm.org/citation.cfm?doid=3300061.3300123
https://ieeexplore.ieee.org/document/8701688/

27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

v2: A Model-based Congestion Control IETF 105 Update. IETF, page 21, 2019.
https://datatracker.ietf.org/meeting/105/materials/

slides-105-iccrg-bbr-v2-a-model-based-congestion-control-00.

Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, Priyaranjan Jha, Yousuk
Seung, Kevin Yang, Ian Swett, Victor Vasiliev, Bin Wu, Luke Hsiao, Matt Mathis,
and Van Jacobson. BBR v2: A Model-based Congestion Control Performance
Optimizations IETF 106 Update. IETF, page 32, 2019. https://datatracker.
ietf.org/meeting/106/materials/slides-106-iccrg-update-on-bbrv2.

Douglas J Leith, Lachlan L H Andrew, Tom Quetchenbach, Robert N Shorten, and
Kfir Lavi. Experimental Evaluation of Delay/Loss-based TCP Congestion Control

Algorithms. Proceedings of the 6th International Workshop on Protocols for Fast
Long-Distance Networks (PFLDnet 2008), page 6, 2008.

Jean-Yves Le Boudec. Rate adaptation, Congestion Control and Fairness: A
Tutorial. EPFL, page 54, 2019.

Jim Gettys. Bufferbloat: Dark Buffers in the Internet. IEEE Internet Computing,
15(3):96-96, May 2011. ISSN 1941-0131. doi: 10.1109/MIC.2011.56.

P.C. GUPTA. DATA COMMUNICATIONS AND COMPUTER NETWORKS.
PHI Learning, 2006. ISBN 9788120328464. URL
https://books.google.ie/books?id=-kNn_p6WA38C.

Christos Douligeris and Lakshmana N Kumar. Fairness issues in the networking
environment. Computer Communications, 18(4):288 — 299, 1995. ISSN 0140-3664.
doi: https://doi.org/10.1016,/0140-3664(95)93446-B. URL
http://www.sciencedirect.com/science/article/pii/014036649593446B.

R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure Of Fairness And
Discrimination For Resource Allocation In Shared Computer Systems.

arXiv:cs /9809099, September 1998. URL http://arxiv.org/abs/cs/9809099.
arXiv: ¢s/9809099.

L. Kleinrock. Power and deterministic rules of thumb for probabilistic problems in
computer communications. In Conference Record, International Conference on

Communications, pages 43.1.1-43.1.10, Boston, Massachusetts, June 1979.

Ethan Blanton and Mark Allman. TCP Congestion Control, 2009. URL
https://tools.ietf.org/html/rfc5681#page-4.

87

https://datatracker.ietf.org/meeting/105/materials/slides-105-iccrg-bbr-v2-a-model-based-congestion-control-00
https://datatracker.ietf.org/meeting/105/materials/slides-105-iccrg-bbr-v2-a-model-based-congestion-control-00
https://datatracker.ietf.org/meeting/106/materials/slides-106-iccrg-update-on-bbrv2
https://datatracker.ietf.org/meeting/106/materials/slides-106-iccrg-update-on-bbrv2
https://books.google.ie/books?id=-kNn_p6WA38C
http://www.sciencedirect.com/science/article/pii/014036649593446B
http://arxiv.org/abs/cs/9809099
https://tools.ietf.org/html/rfc5681#page-4

[36]

37]

38

[39]

[40]

[41]

42]

[43]

|44]

Sally Floyd, K. K. Ramakrishnan, and David L. Black. The Addition of Explicit
Congestion Notification (ECN) to IP, 2001. URL
https://tools.ietf.org/html/rfc3168.

Kouto Miyazawa, Kanon Sasaki, Naoki Oda, and Saneyasu Yamaguchi. Cycle and
Divergence of Performance on TCP BBR. In 2018 IEEE 7th International
Conference on Cloud Networking (CloudNet), pages 1-6, October 2018. doi:
10.1109/CloudNet.2018.8549411.

Benedikt Jaeger, Dominik Scholz, Daniel Raumer, Fabien Geyer, and Georg Carle.
Reproducible measurements of TCP BBR congestion control. Computer
Communications, 144:31-43, August 2019. ISSN 01403664. doi:
10.1016/j.comcom.2019.05.011. URL
https://linkinghub.elsevier.com/retrieve/pii/S0140366419303470.

Saahil M Claypool. Sharing but not Caring - Performance of TCP BBR and TCP
CUBIC at the Network Bottleneck. WPI, page 55, 2019.

Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine Sherry.
Modeling BBR’s Interactions with Loss-Based Congestion Control. In Proceedings
of the Internet Measurement Conference on - IMC' ’19, pages 137-143, Amsterdam,
Netherlands, 2019. ACM Press. ISBN 978-1-4503-6948-0. doi:
10.1145/3355369.3355604. URL
http://dl.acm.org/citation.cfm?doid=3355369.3355604.

Jinting Lin, Lin Cui, Yuxiang Zhang, Fung Po Tso, and Quanlong Guan. Extensive
evaluation on the performance and behaviour of TCP congestion control protocols
under varied network scenarios. Computer Networks, 163:106872, November 2019.
ISSN 13891286. doi: 10.1016/j.comnet.2019.106872. URL
https://linkinghub.elsevier.com/retrieve/pii/S1389128618311265.

Jan Riith, Tke Kunze, and Oliver Hohlfeld. An Empirical View on Content
Provider Fairness. arXiv:1905.07152 [cs], May 2019. URL
http://arxiv.org/abs/1905.07152. arXiv: 1905.07152.

Geon-Hwan Kim, Yeong-Jun Song, Imtiaz Mahmud, and You-Ze Cho. Enhanced
BBR Congestion Control Algorithm for Improving RTT Fairness. In 2019 Eleventh
International Conference on Ubiquitous and Future Networks (ICUFN), pages
358-360, July 2019. doi: 10.1109/ICUFN.2019.8806064. ISSN: 2165-8528.

John Heidemann, Kevin Mills, and Sri Kumar. Expanding Confidence in Network
Simulation. IEEE, page 9, 2000.

88

https://tools.ietf.org/html/rfc3168
https://linkinghub.elsevier.com/retrieve/pii/S0140366419303470
http://dl.acm.org/citation.cfm?doid=3355369.3355604
https://linkinghub.elsevier.com/retrieve/pii/S1389128618311265
http://arxiv.org/abs/1905.07152

[45] Gypsy Nandi Gayatry Borboruah. A Study on Large Scale Network Simulators,
2014. URL https://pdfs.semanticscholar.org/17bl/
7b6£d993deal3b7accbad7400e95c9£f03e733. pdf.

[46] Stewart Robinson. Simulation: The practice of model development and use. In
Stmulation: The Practice of Model Development and Use, 2004.

[47] Richard M. Fujimoto. Parallel discrete event simulation. Communications of the
ACM, 33(10):30-53, October 1990. ISSN 0001-0782. doi: 10.1145/84537.84545.
URL https://doi.org/10.1145/84537.84545.

[48] Dale Martin, Timothy McBrayer, and Philip Wilsey. Warped: Time warp
simulation kernel for analysis and application development. In WARPFED: Time
Warp Simulation Kernel for Analysis, volume 1, pages 383386, 01 1996. doi:
10.1109/HICSS.1996.495485.

[49] Dhananjai Madhava Rao, Narayanan V. Thondugulam, Radharamanan
Radhakrishnan, and Philip A. Wilsey. Unsynchronized parallel discrete event

simulation. In Proceedings of the 30th Conference on Winter Simulation, WSC 98,

page 1563-1570, Washington, DC, USA, 1998. IEEE Computer Society Press.
ISBN 0780351347.

[50] Dhananjai M Rao and Philip A Wilsey. An ultra-large-scale simulation framework.
Journal of Parallel and Distributed Computing, 62(11):1670-1693, November 2002.
ISSN 07437315. doi: 10.1016/S0743-7315(02)00003-5. URL
https://linkinghub.elsevier.com/retrieve/pii/S0743731502000035.

[51] Chang Xinjie. Network simulations with opnet. WSC’99. 1999 Winter Simulation
Conference Proceedings. "Simulation - A Bridge to the Future’ (Cat.
No.99CH37038), Simulation Conference Proceedings, 1999 Winter, 1:307, 1999.
ISSN 0-7803-5780-9. URL
https://ieeexplore.ieee.org/document/8230897arnumber=823089.

[52] Andras Varga. The omnet++ discrete event simulation system. Proc. ESM’2001,
9:247, 01 2001. URL http://www.sfu.ca/"1jilja/ENSC835/Spring08/News/

Presentations/0OMNeT++/usman. pdf.

[53] X. Zeng, R. Bagrodia, and M. Gerla. Glomosim: a library for parallel simulation of

large-scale wireless networks. Proceedings. Twelfth Workshop on Parallel and
Distributed Simulation PADS 98 (Cat. No.98TB100233), Parallel and Distributed
Stmulation, 1998. PADS 98. Proceedings. Twelfth Workshop on, pages 154 — 161,
1998. ISSN 0-8186-8457-7. URL
https://ieeexplore.ieee.org/document/685281.

89

https://pdfs.semanticscholar.org/17b1/7b6fd993dea3b7acc5ad7400e95c9f03e733.pdf
https://pdfs.semanticscholar.org/17b1/7b6fd993dea3b7acc5ad7400e95c9f03e733.pdf
https://doi.org/10.1145/84537.84545
https://linkinghub.elsevier.com/retrieve/pii/S0743731502000035
https://ieeexplore.ieee.org/document/823089?arnumber=823089
http://www.sfu.ca/~ljilja/ENSC835/Spring08/News/Presentations/OMNeT++/usman.pdf
http://www.sfu.ca/~ljilja/ENSC835/Spring08/News/Presentations/OMNeT++/usman.pdf
https://ieeexplore.ieee.org/document/685281

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

63]

[64]
[65]

|66]

Scalable Networks. Qualnet - network simulation software, https:
//www.scalable-networks.com/qualnet-network-simulation-software-tool,
last accessed on 2020-03-18, 2020.

Mohammed Kabir, Syful Islam, Md Hossain, and Sazzad Hossain. Detail
comparison of network simulators. International Journal of Scientific and
Engineering Research, 5:203, 11 2014.

Tetcos. Netsim, https://www.tetcos.com/index.html, last accessed on
2020-03-18,, 2020.

LBL, Xerox PARC, UCB, and USC/ISI. Ns-2, https://www.1isi.edu/nsnam/ns/,
last accessed on 2020-03-18,, 2020.

George F Riley and Thomas R Henderson. The ns-3 network simulator. In
Modeling and tools for network simulation, pages 15-34. Springer, 2010.

Atta ur Rehman Khana, Sardar M. Bilalb, and Mazliza Othmana. A Performance
Comparison of Network Simulators for Wireless Networks. arXiv:1307.4129 [cs],
July 2013. URL http://arxiv.org/abs/1307.4129. arXiv: 1307.4129.

Tom Henderson (University of Washington). Ns-3 introduction,
https://www.nsnam.org/docs/ns-3-overview.pdf, last accessed on 2020-03-18,
2014.

Nsnam. Ns-3 coding style,
https://www.nsnam.org/develop/contributing-code/coding-style/, last
accessed on 2020-03-18, 2020.

Nsnam. Tcp models in ns-3,
https://www.nsnam.org/docs/models/html/tcp.html, last accessed on
2020-03-19, 2020.

Nsnam. TcpCongestionOps class reference,
https://www.nsnam.org/doxygen/classns3_1_1_tcp_congestion_ops.html#
aed9a4df8aa78e5746830709f2c72d972, last accessed on 2020-03-19, 2020.

Git. Git, https://git-scm.com/, last accessed on 2020-03-20, 2020.
Github, Inc. Github, https://github.com/, last accessed on 2020-03-20, 2020.

C. Stephen Gunn Soheil Hassas Yeganeh Van Jacobson Neal Cardwell,
Yuchung Cheng. tcp bbr.c, 2016. URL https://git.kernel.org/pub/scm/
linux/kernel/git/netdev/net-next.git/tree/net/ipv4/tcp_bbr.c.

90

https://www.scalable-networks.com/qualnet-network-simulation-software-tool
https://www.scalable-networks.com/qualnet-network-simulation-software-tool
https://www.tetcos.com/index.html
https://www.isi.edu/nsnam/ns/
http://arxiv.org/abs/1307.4129
https://www.nsnam.org/docs/ns-3-overview.pdf
https://www.nsnam.org/develop/contributing-code/coding-style/
https://www.nsnam.org/docs/models/html/tcp.html
https://www.nsnam.org/doxygen/classns3_1_1_tcp_congestion_ops.html#aed9a4df8aa78e5746830709f2c72d972
https://www.nsnam.org/doxygen/classns3_1_1_tcp_congestion_ops.html#aed9a4df8aa78e5746830709f2c72d972
https://git-scm.com/
https://github.com/
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/tree/net/ipv4/tcp_bbr.c
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/tree/net/ipv4/tcp_bbr.c

67]

|68

[69]

[70]

Soheil Yeganeh, Yuchung Cheng, Neal Cardwell, and Van Jacobson. Delivery Rate
Estimation, 2017. URL https:
//tools.ietf.org/html/draft-cheng-iccrg-delivery-rate-estimation-00.
Library Catalog: tools.ietf.org.

David Schinazi QUICHE team. windowed filter.h, 2019. URL
https://cs.chromium.org/chromium/src/net/third_party/quiche/src/quic/

core/congestion_control/windowed_filter.h.

Brett Levasseur, Mark Claypool, and Robert Kinicki. A TCP CUBIC
implementation in ns-3. In Proceedings of the 2014 Workshop on ns-3 - WNS3 14,
pages 1-8, Atlanta, Georgia, 2014. ACM Press. ISBN 978-1-4503-3003-9. doi:
10.1145/2630777.2630780. URL
http://dl.acm.org/citation.cfm?doid=2630777.2630780.

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2013. URL
http://www.R-project.org/.

91

https://tools.ietf.org/html/draft-cheng-iccrg-delivery-rate-estimation-00
https://tools.ietf.org/html/draft-cheng-iccrg-delivery-rate-estimation-00
https://cs.chromium.org/chromium/src/net/third_party/quiche/src/quic/core/congestion_control/windowed_filter.h
https://cs.chromium.org/chromium/src/net/third_party/quiche/src/quic/core/congestion_control/windowed_filter.h
http://dl.acm.org/citation.cfm?doid=2630777.2630780
http://www.R-project.org/

Al Abbreviations
BBR Bottleneck Bandwidth And Round Trip Time
RTT Round Trip Time
TCP Transmission Control Protocol
CWND Congestion WiNDow
BDP Bandwidth Delay Product
BtiIBw Bottlneck Bandwidth
HSR High Speed Rails
ECN Explicit Congestion Notification
USSF Ultra Large Scale Simulation Framework
OPNET OPtimized Network Engineering Tool
OMNET++ | Objective Modular NEtwork Tool in C++
GloMoSim | Global Mobile Information Systen Simulator
ACK ACKnowledgement
SACK Selective ACKnowledgement
ECT ECN Capable Transport
CE Congestion Experienced
CWR Congestion Window Reduced
ECE ECN ECho

92

N

A2 Code Listings

Require timestamp (now), sequence(seq) and payload length of sent
packet
OnPacketSent () :

info.sent_ts = timestamp

info.bytes = payload

sent_packets_map.insert(seq, info)

inflight = inflight + payload

last_sent_packet = seq

Code Listing A2.1: OnPacketSent()[25]

Require ack received timestamp(now) and acked sequence number (seq)
OnAck () :
UpdateRttAndInflight (now, seq)
congested = CheckIfCongested ()
if (now - min_rtt > kMinRttExpiry):
min_rtt_expired = 1

DrainExcessBuffer (now, min_rtt_expired, congested)

Code Listing A2.2: OnAck()[25]

93

Require ack received timestamp(now) and acked sequence number (seq)

UpdateRttAndInflight () :

info = sent_packets_map.get

rtt = info.sent_ts - now

inlflight = info.bytes

if (rtt < min_rtt or min_rtt == 0):
min_rtt = rtt
min_rtt_ts = now

if (rtt < kSimilarMinRtt * min_rtt):
min_rtt_ts = now

if (seq > seq_at_backoff):
if (rtt < base_line_rtt):

base_line_rtt = rtt
srtt = rtt
sttt = (1 - «) * srtt + o * rtt
Code Listing A2.3: UpdateRttAndInflight()[25]
CheckIfCongestion () :
if (srtt == 0 or base_line_rtt == +00):
return O
if (mode == ProbeBW and srtt > [* base_line_rtt):
return 1

Code Listing A2.4: CheckIfCongestion()[25]

(now, min_rtt_expired, congested)
DrainExcessBuffer ():

if (mode != PRobeRTT and (min_rtt_expired or congested)):

mode = ProbeRTT
seq_at_backoff = last_sent_packet
srtt = 0
base_line_rtt = +00
pacing_gain = 0.75
bdp = bw * min_rtt
if (mode == ProbeRTT):
if (inflight < bdp):
EnterProbeBwMode ()

Code Listing A2.5: DrainExcessBuffer()[25]

94

A3 Figures

BBR-PRIME-10Mbps->20Mbps-10ms

0.08
|

0.06
I

RTT(s)
0.04
L
-

ri—E Y A L
(; 5'0 1(;0 1;0 2(')0
Time(s)
Figure A3.1: BBR’ RTT Responsiveness
BBR-PLUS-10Mbps->20Mbps-10ms
2
(; 5'0 1(;0 1;0 2(;0
Time(s)

Figure A3.2: BBRPlus RTT Responsiveness

95

RTT(s)

RTT(s)

0.08

0.06

0.04

0.02

0.00

0.08

0.06

0.04

0.02

0.00

BBR+-10Mbps->20Mbps-10ms-lambda=0.5

o

T T T
50 100 150

Time(s)

Figure A3.3: BBR+ RTT Responsiveness A = 0.5

BBR+-10Mbps->20Mbps-10ms-lambda=0.125

o 4

T T T
50 100 150

Time(s)

Figure A3.4: BBR+ RTT Responsiveness A = 0.125

96

200

RTT(s)

RTT(s)

Delay-BBR-10Mbps->20Mbps-10ms

012
|

0.10
I

0.08
1

0.06
I

0.04
1

0.02
I

0.00
|

T T T T
0 50 100 150

Time(s)

Figure A3.5: Delay-BBR RTT Responsiveness

BBR-V2-EXP-ECN-10Mbps->20Mbps-10ms

200

0.05 0.06 0.07
I I I

0.04
1

0.03
I

0.02
I

0.01
I

0.00
|

T T
0 50 100 150

Time(s)

Figure A3.6: BBRv2-EXP RTT Responsiveness

97

T
200

ydeir) uorpunyg gagde L'€Y oIS

lodpumapunog

0 wibiunabiser

() uBiHooLIBuIBIRUEH

— () L1yeqoidIodpumoereinpo 0 pumotes

T|

— () fianoseyiogpumpeIenpopy —c wnuent

Je—{o

usﬁﬁ_._T

I—c pumoiebirel srepdn — () everburoedies _\m

JE

T ybiHooy) In

() ua3yBiHoo LuBILUIBIPUEH

o=

" 0 ndepy I () sreuBisuonsabuoderepdn Tl

—c Eoeuna:.:_gzn_::_} 0 ssinigoLawLs| T

4

A,

— 0 uBuul

ﬂ_ () dnueisuBiHoo uaTH8UD I () uozerepdn T|

| 0masaciqisz _ M _
LN

‘e (o

Y

() asinugaqoigiaug _U

e

Buogiesay | L

_ [— T|_

_ () xapujsjafores

0 yaysqoidiag |«

0 dnegoidiag |«

" 0 3q01doLauILS] TL'

() agoagogawi]s|

) premdnuBiuBiyuragoid

0 adojsiHuBipulsstey

0 12y 4xepmgaoueapy

— 0 punoyaiepdn I 0 mangarepdn

() dnueisiaiug

PUMD _——

B

() 195e1E15U0RSaBUOY) | - - -

() payoysnid -

— 0 pumpaneg T () ysaurssizo T -

() jonuogBuoosey -

0 LLy2qoigxg T|_
LN

() awrspuyiepoparepdn

() Liysgoidoaun

—c Llysgoigalpuey

— () pumpaioisay _M _

— () Liysgoigiaug

— () dosd L yarepdn —A|

() spunograddmidepy |«

EA|

1B (P3| ———
116D [PUIRIXT « = = = =

zwuga i
uas i

0
(=]

	Introduction
	Background and Motivation
	Research Objectives
	Dissertation Layout

	Background Research
	Congestion Control
	Network Metrics

	BBR Overview
	Startup Phase
	Drain Phase
	ProbeBW
	ProbeRTT
	BBR Variants
	BBR'
	BBRPlus
	BBR+
	Delay-BBR
	BBRv2

	Related Work In BBR Evaluation
	Network Simulation
	NS-3
	Congestion Control In NS-3
	Background Summary

	Implementation
	Overview
	BBR In NS-3
	Rate Sampling
	Windowed Min-Max Filter
	BBR Model

	BBRv2 And Variants In NS-3
	BBR'
	BBR+
	BBRPlus
	Delay-BBR
	BBRv2
	Explicit Congestion Notification Signal
	Three Part Model
	Startup
	Drain
	ProbeBW
	ProbeRTT
	Experimental changes

	Simulation Setup
	Topology
	Attributes
	TCP Cubic

	Results and Evaluation
	Single Flow
	BBR and BBR'
	BBR+
	BBRPlus
	Delay-BBR
	BBRv2
	Bandwidth Variation Response
	Single Flow Summary

	Intra-Protocol
	BBR and BBR'
	BBR+
	BBRPlus
	Delay-BBR
	BBRv2
	Intra-Protocol Summary

	Inter-Protocol
	BBR and BBR'
	Delay-Based
	Loss-Based

	BBR+
	Delay-Based
	Loss-Based

	BBRPlus
	Delay-Based
	Loss-Based

	Delay-BBR
	Delay-Based
	Loss-Based

	BBRv2
	Delay-Based
	Loss-Based

	Inter-Protocol Summary

	Conclusion
	Overview
	Future Work

	Abbreviations
	Code Listings
	Figures

