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Abstract

Concurrent systems are formally modelled by using process calculi, such as the pi-
calculus. All possible interactions of a concurrent system with its environment are
considered by generating the model’s state space, which consists of a set of states and
a set of communication transitions called the labelled transition system (LTS). The
number of states in an LTS can grow very rapidly and may be infinite, and so ordinary
LTS representations are unsatisfactory. Using the paradigm of fresh-register automata,
many supposedly infinite-state models can be represented finitely.

This dissertation investigates the generation of LTS’s from pi-calculus models through
the use of fresh-register automata and implements a tool which does this. From the
LTS generated, simple model checking can be performed, which includes verifying if a
certain state can be reached. The LTS generated also lays the groundwork for further
verification techniques like bisimulation and modal logic assertions.
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1Introduction

Concurrent systems are ubiquitous. Whether it’s devices communicating across a net-
work, or programs passing messages around, many systems exhibit concurrency of some
form. This dynamic exchange of information was remarked by Milner [1, p. x], who
described this as the advent of mobile computing, where, “people, computers and soft-
ware now continually move among each other”, and that, “some of the movement is
physical and some (e.g. the movement of links) is virtual”. This was written in 1999 and
his statements are evidenced by today’s billions of computing devices communicating
with each other in both hardware and software. As a result, the need to understand
communication and concurrency is apparent.

The most fundamental way to understanding these mobile systems is through modelling.
Modelling a concurrent system is performed through a formal language, like the pi-
calculus. From this model, we can consider all possible interactions arising from
concurrency and generate the model’s state space. This consists of a directed graph of
a set of states and a set of transitions, which is called the labelled transition system, or
LTS. The generation of LTS’s from pi-calculus models is the aim of this dissertation,
motivated by model checking in formal verification.

1.1 Motivation

The complexity of software in massively distributed and concurrent systems, such as
content storage, load balancing, and search engines, is immense. Suppose someone
wanted to make a change to a part of the system, say to improve efficiency. Most
commonly, unintended side-effects are captured by regression testing, i.e., by re-running
simple input-output tests. However, this does not capture all behaviour. Instead, we
could use regression verification where only the change made is inspected to ensure
that it respects the previous behaviour. This is the basis of compositional reasoning [2],
which reasons about a small part to compose onto a larger system. All interactions with
the small part of a system could be exhaustively checked to ensure that it is equivalent
to the former behaviour.

There is a growing need for ensuring that security-critical applications are securely built.
Consider a system where secret keys are generated and an attacker attempts to access
the system. We are not able to know exactly what the attacker would do but we can
consider all possible interactions with the system. Suppose that we observe a target state
of the system which should not occur under normal circumstances, e.g., nobody but the
system should know the secret key and the system receives an existing secret key. If we
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simulate the system and find that this state was reached, it shows that this is a possible
behaviour in the system. Following the trace leading up to that state reconstructs the
attacker’s potential actions. This helps uncover underlying bugs or vulnerabilities within
the program. Existing model checking tools like SPIN [3] do not examine all possible
interactions with the context, which makes it unsuitable for compositional reasoning.

1.1.1 Motivating example: Equivalence

As a motivating example for equivalence, consider the two Go functions below.

Listing 1.1: Ping server 1.
func ping1() {

go ping1()

message := <-channel
channel <- message

}

Listing 1.2: Ping server 2.
func ping2() {

message := <-channel

go func() {
channel <- message

}()

go ping2()
}

Both functions attempt to emulate a ping server. A sender sends a message to the receiver
(or server) and the receiver sends back the same message.

The following describes succinctly the Go syntax: go ping1() invokes a concurrent
thread to execute ping1(). message := <-channel receives a message on the channel.
The variable channel is a global variable while message is a local variable known only
to the function scope. channel <- message sends the same message back on the same
channel. go func() {}() invokes a thread with an anonymous function.

From inspection, these two seemingly different functions perform the same set of actions.
If one were to replace either function with each other, equivalent behaviour would
result. The ability to detect for equivalent behaviours would prove useful for swapping
components in a program.

To check this, for each of these two functions, the set of actions could be represented
by a graph of states and action transitions, i.e., an LTS. Then, from these LTS’s, we can
assess their equivalence using a notion called bisimulation. This is the ultimate goal of
the broader research project. However, for this dissertation, its scope only extends to
generating the LTS and performing some verification.
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1.1.2 Motivating example: Verification

As a motivating example for verification, consider the following Go program.

func clientA(as chan chan string) {
ab := make(chan string)
as <- ab
ab <- "hello"

}

func clientB(sb chan chan string) {
chnl := <-sb
msg := <-chnl

}

func serverS(as chan chan string, sb chan chan string) {
chnl := <-as
sb <- chnl

}

func main() {
as := make(chan chan string)
sb := make(chan chan string)
go clientA(as)
go clientB(sb)
go serverS(as, sb)

}

Listing 1.3: Communication between client 𝐴, client 𝐵, and server 𝑆.

A message is sent from client 𝐴 to client 𝐵 through an intermediate server 𝑆. 𝐴 creates
a new channel ab and sends this to 𝑆, who then forwards it to 𝐵. Using this channel, 𝐴
sends the message "hello" to 𝐵.

The above system will always result in 𝐵 receiving the message "hello". This is because
the communication channels as and sb created in main() are restricted for use in 𝐴, 𝐵,
and 𝑆 exclusively. Suppose that these channels are not restricted and are declared as
global variables. Another client 𝐶 could emulate 𝐴’s actions by creating a channel cb,
sending it to 𝑆, and changing the message to something else, say "olleh". 𝐵 would
then receive "olleh" through the channel cb. This would violate our assumption that
𝐵 will always receive the message "hello". An assumption of a system which states
that something will not happen is called a safety property, whereas something that must
occur in a system is called a liveness property [4, p. 125].

We can verify the property that 𝐵 always receives the message "hello". This can be
encoded by adding the assertion that msg ≠ "hello". In generating the LTS of the above
system, if the assertion is ever tripped, then we can conclude that our property has been
violated. Therefore, finding this state in the LTS would constitute to disproving this
property. Likewise, the absence of this state concludes that the system satisfies this
property (assuming the LTS is finite). We will model this example using the pi-calculus
and formally verify this property in a later chapter.
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1.2 Dissertation objectives

The work set out in this dissertation is based primarily on the paper Fresh-Register
Automata by Tzevelekos [5], and more fundamentally on the pi-calculus subject, Milner’s
seminal book Communicating and Mobile Systems: The Pi-Calculus [1].

The main objective is to generate an LTS from pi-calculus expressions for use in model
checking. This pi-calculus language is defined by Tzevelekos in his paper, called the
×𝜋-calculus. The transition rules, or transition relation, of this language is also defined,
which is represented by fresh-register automata. After repeatedly applying the rules, a set
of states are obtained, which could be reduced by applying congruence rules, i.e., finding
equivalent states. Finally, the LTS is generated which can be used for verification.

In summary, the objectives are as follows.

1. Build a parser for the ×𝜋-calculus language.
2. Implement the ×𝜋-calculus transition relation.
3. Apply congruence on the states.
4. Generate and output the LTS.
5. Verify properties of pi-calculus models.

The programming language of choice for implementing this is Go.

The next step of this project would be bisimulation, which assesses the equivalence of
two LTS’s. Although this feature is not implemented, we will explore the foundations
of it as it forms one of the primary motivations behind this dissertation.
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1.3 Dissertation structure

Chapter 2: Background describes the general related work and the fundamental back-
ground of the pi-calculus, bisimulation, and fresh-register automata.

Chapter 3: Language examines how the ×𝜋-calculus is translated into a language,
parsed, and represented internally.

Chapter 4: Transition Relation explores the ×𝜋-calculus transition relation and its
redefined rules for practical implementation.

Chapter 5: Congruence details the application of congruence rules and normalisations
to find equivalent states.

Chapter 6: Labelled Transition System outlines the generation and output of the LTS.

Chapter 7: Verification illustrates examples of pi-calculus models, generates their LTS
and verifies their properties.

Chapter 8: Evaluation assesses the LTS output and analyses the program performance.

Chapter 9: Conclusion discusses the achievements, challenges encountered, and future
work.
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2Background

2.1 General related work

Formal verification is the act of proving or disproving the correctness of a system’s
behaviour with respect to a formal specification. In a concurrent system, the specifica-
tion may require the absence of deadlocked processes (which wait indefinitely) or that
undesirable states (like system crashes) cannot be reached. The general approaches to
formal verification are model checking and deductive verification.

2.1.1 Model checking

Model checking is a method to check whether a model of a system fulfils a given
specification. For finite-state models, all states can be exhaustively explored. For
infinite-state models, we can only explore up to a certain number of states. However,
some can be represented finitely by using abstraction or by a symbolic representation.
The properties of a model can be verified by the use of a logic. An example of a
model checking tool is SPIN [3], which uses Promela as the modelling language and
linear temporal logic (LTL) as its properties language. The main advantage of model
checking is that it is often fully automatic and that it requires little-to-no user intervention.
However, its primary setback is that it suffers from the combinatorial blowup of the state
space, commonly known as the state explosion problem [6]. The work carried out in
this dissertation is based on model checking of process LTS’s, which explores the state
space of the process but also all possible interactions with its environment.

2.1.2 Deductive verification

Another approach to formal verification is deductive verification. From the system and
its specifications, a collection of correctness proofs are constructed which are then fed
into a theorem prover. Such proof assistants include Coq [7] and Isabelle [8]. Hoare
logic (HL) [9] forms the basis of deductive verification techniques, which reasons about
the preconditions and postconditions of a line of code. Rely-guarantee reasoning [10]
is an extension to Hoare logic for reasoning about concurrency. Deductive verification
requires the user to understand precisely why the system works correctly (e.g., finding
the invariant of a loop) and to convey this information in the verification system.
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2.1.3 Process calculi

A process calculus, or process algebra, provides a language to model concurrent systems
and can be used to perform both model checking and deductive verification (although
it is mostly used for the former). Process calculi provide sets of rules which can be
analysed and manipulated to reason about the relationships between processes. Signif-
icant examples of process calculi include communicating sequential processes (CSP)
by Hoare [11], which influenced Go [12], and the calculus of communicating systems
(CCS) [13]. For this dissertation, we use the pi-calculus (written as the 𝜋-calculus). The
𝜋-calculus is based on the CCS, which were both developed by Milner [1, p. 154].

In model checking, the LTS of a model can be generated from the use of process calculi.
Properties languages like Hennessy-Milner logic (HML) [14] can be used to specify the
properties of the LTS, which can then verify the model. This logic has been formalised
for the CCS [15], but there is a consensus that it also works for the 𝜋-calculus. Over the
last decades, the area of process calculi for use in formal verification has been the focus
of research.

2.2 The pi-calculus

There are many variations and slight differences in the definition of the 𝜋-calculus,
depending on the author or paper context. The 𝜋-calculus formalisations to be described
are based on Milner’s original book Communicating and Mobile Systems: The Pi-
Calculus [1].

Definition 2.1. The 𝜋-calculus. [1, p. 87, definition 9.1]. Let N be an infinite set of
objects called names. Names are usually lower case, i.e., 𝑥, 𝑦, 𝑧, ... ∈ N . The abstract
syntax for the 𝜋-calculus is defined by the following:

𝑃,𝑄 F process
𝑥(𝑦).𝑃 input
𝑥〈𝑦〉.𝑃 output
𝜈𝑥 𝑃 restriction
𝑃 +𝑄 summation
𝑃 | 𝑄 composition
!𝑃 replication
0 inaction

𝑃 and𝑄 represent processes. 𝑥(𝑦) and 𝑥〈𝑦〉 are defined as action prefixes 𝜋, representing
either receiving or sending a message (a name) through a channel.
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Input

𝑥(𝑦).𝑃 receives the name 𝑦 on channel 𝑥, and then runs process 𝑃. The received name
is bound to 𝑦. Binding results in the substitution of 𝑦 by the name. The input of a name
and subsequent binding of that name eliminates, or collapses, the action prefix.

Example 2.1. Input. Suppose we have the expression 𝑥(𝑦).𝑦(𝑧).𝑃. Upon receiving
the name 𝑤 on channel 𝑥, the resultant expression is 𝑤(𝑧).𝑃. Note the substitution of
the bound name 𝑦 by 𝑤, i.e., {𝑤/𝑦}, and the disappearance of the 𝑥(𝑦) term.

Output

𝑥〈𝑦〉.𝑃 sends 𝑦 on channel 𝑥, and then runs process 𝑃. As with input, the sending of the
name eliminates the action prefix. Input and output complement each other, and gives
rise to communication between processes.

Note the overline 𝑥 above the name 𝑥. This is called a co-name. Co-names are defined
as the set N̄ = {�̄� | 𝑎 ∈ N }, complementing the name set N .

Example 2.2. Output. Given the expression 𝑥〈𝑤〉.𝑃, 𝑤 is sent to an input channel 𝑥,
which reduces the expression to only 𝑃.

Restriction

𝜈𝑥 𝑃, also denoted as new 𝑥 𝑃, restricts the scope of the name 𝑥 to the process 𝑃. In a
restriction 𝜈𝑥 𝑃, 𝑥 is a bound name. Bound names are local to the scope of the restriction.
Names that are not bound in 𝑃 are called free names.

Example 2.3. Restriction. Consider the expression 𝜈𝑥 (𝑦(𝑧).𝑥〈𝑤〉.0). The bound
names are 𝑥 and 𝑧. The name 𝑥 is bounded by restriction. The name 𝑧 is bounded by
the input action 𝑦(𝑧). The free names are 𝑦 and 𝑤, which can be interacted with other
processes.

Summation

𝑃 +𝑄 represents a nondeterministic choice. Either process 𝑃 is run or process 𝑄 is run,
but never both.

Example 2.4. Summation. Consider the expression 𝜈𝑥 (𝑥(𝑦).�̄�〈𝑧〉.0 + 𝑥〈𝑏〉.𝑐(𝑑).0).
We run exclusively either 𝑥(𝑦).�̄�〈𝑧〉.0 or 𝑥〈𝑏〉.𝑐(𝑑).0. As a result, in this case, these two
processes will never communicate.
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Composition

𝑃 | 𝑄 means that processes 𝑃 and 𝑄 run in parallel.

Example 2.5. Composition. Consider again the previous expression but summation is
now composition 𝜈𝑥 (𝑥(𝑦).�̄�〈𝑧〉.0 | 𝑥〈𝑏〉.𝑐(𝑑).0). Since the two processes run concur-
rently, output 𝑥 communicates with input 𝑥. The name 𝑏 is sent over and the expression
is reduced to 𝜈𝑥 (�̄�〈𝑧〉.0 | 𝑐(𝑑).0).

Replication

!𝑃 continuously creates a new copy of the process 𝑃 an unlimited number of times. This
makes the process 𝑃 persistent. Replication provides the foundation for defining process
definitions 𝐴 def

= 𝑃, similar to function definitions in programming languages.

Inaction

0 is the nil or inactive process, marking the end of a process. Often, .0 is omitted in
expressions for the sake of convenience.

2.2.1 The pi-calculus: Examples

The 𝜋-calculus and its related notions are best described by the use of examples.

Example 2.6. Reactions. [1, p. 88, example 9.2]. Consider the expression.

𝑃 = 𝜈𝑧
(
(𝑥〈𝑦〉 + 𝑧(𝑤).�̄�〈𝑦〉) | 𝑥(𝑢).�̄�〈𝑣〉 | 𝑥〈𝑧〉

)
The bound names in 𝑃 are 𝑧 (by restriction) and, 𝑤 and 𝑢 (by input). The free names
are therefore 𝑥, 𝑦 and 𝑣. Complementary channels input and output of the same name
(names and co-names) can interact with each other. This is called a redex. The firing of
a redex constitutes to a reaction 𝑃→ 𝑃′.

In 𝑃, there are two redexes, the pairs 𝑥〈𝑦〉, 𝑥(𝑢) and 𝑥〈𝑧〉, 𝑥(𝑢). From this expression,
there are two possible reactions 𝑃→ 𝑃1 and 𝑃→ 𝑃2. The reactions invoke a substitution
{𝑦/𝑢} and {𝑧/𝑢}, respectively.

𝑃1 = 𝜈𝑧 (0 | �̄�〈𝑣〉 | 𝑥〈𝑧〉)
𝑃2 = 𝜈𝑧 ((𝑥〈𝑦〉 + 𝑧(𝑤).�̄�〈𝑦〉) | 𝑧〈𝑣〉 | 0)

There are no further redexes in 𝑃1. However, there is one in 𝑃2 – the pair 𝑧(𝑤), 𝑧〈𝑣〉. It
arose by substitution invoked by the first reaction. As a result, we have 𝑃2 → 𝑃3.

𝑃3 = 𝜈𝑧 (�̄�〈𝑦〉 | 0 | 0)

From the example, we see that there are a number of reactions. For each redex, the
resultant process can be viewed as a state. In the example above, the processes 𝑃, 𝑃1,
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𝑃2, and 𝑃3 are states and the redex taken to that state is a transition. In essence, this
forms a labelled transition system.

Definition 2.2. Labelled transition system (LTS). [1, p. 16, definition 3.1]. An LTS
over a set of actions L is a pair (Q, T ) consisting of

– a set Q of states,
– a ternary relation T ⊆ (Q × L ×Q), known as a transition relation.

The set of actions, or labels, L is defined by the union N ∪ N̄ . If (𝑞, 𝛼, 𝑞′) ∈ T , the
source state 𝑞 transitions to the target state 𝑞′ through action 𝛼, i.e., 𝑞 𝛼−→ 𝑞′.

Example 2.7. Reactions with the context. We revisit the previous example with
the inclusion of the environment, or the context. In the previous example, we were
only concerned exclusively with the expression given, i.e., the expression was the entire
system. However, we cannot guarantee that the above transitions are the exhaustive list
of states if the expression is placed in a wider context or larger system. Therefore, we
need to take into account all possible names in N (which is infinite).

We begin from 𝑃 again. As before, we have two possible transitions to 𝑃1 and 𝑃2.
However, because 𝑥 is not bound, the input 𝑥(𝑢) and outputs 𝑥〈𝑦〉 and 𝑥〈𝑧〉 may be
reacted with in unpredictable ways. For example, 𝑥(𝑢) may receive a free name 𝛼 that is
not 𝑢 or 𝑤, i.e., 𝛼 ∉ {𝑢, 𝑤}, 𝛼 ∈ N . In addition, the outputs 𝑥〈𝑦〉 and 𝑥〈𝑧〉 may interact
with other process with the channel name 𝑥.

For 𝑃2, note that the name 𝑧 is bounded. Therefore, this name cannot be interacted with
outside of the process. However, 𝑥〈𝑦〉 can still react with outside processes as before.
We can already see that with the context, the number of additional states can grow very
quickly, and possibly infinitely due to the infinite number of names N . An LTS diagram
captures the additional states, represented by 𝑃𝑎, 𝑃𝑏, ..., 𝑃𝑔. The dots . . . represent
possible continuations of branches of that state.

𝑃

𝑃1

𝑃𝑑 . . . 𝑃𝑒 . . .

𝑃2

𝑃3

𝑃𝑔 . . .

𝑃 𝑓 . . .

𝑃𝑎 . . . 𝑃𝑏 . . . 𝑃𝑐 . . .

𝑥〈𝑦〉

�̄�〈𝑣〉 �̄�〈𝑣〉

𝑥〈𝑧〉

𝑧〈𝑣〉

�̄�〈𝑦〉

𝑥〈𝑦〉

𝑥〈𝑦〉 𝑥(𝑢) 𝑥〈𝑢〉

Fig. 2.1: Labelled transition system with reactions from the context.
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Example 2.8. Auction. The 𝜋-calculus yields expressive capabilities in modelling
real-world scenarios. Consider three processes – an auction item 𝑎, a bidder 𝑦 and a
bidder 𝑧.

𝑃 = 𝜈𝑦
(
�̄�〈𝑦〉.�̄�〈𝑦〉

)
| 𝑎(𝑥).𝑥(𝑤).�̄�〈𝑤〉 | 𝜈𝑧

(
�̄�〈𝑧〉.𝑧〈𝑧〉

)
The bidders 𝑦 and 𝑧 both bid on the auction item 𝑎. Whichever bidder first communicates
with the auction item 𝑎 will leave the other bidder unable to obtain the item. Because of
nondeterminism, the expression can be reduced when either bidder 𝑦 or when bidder 𝑧
communicates first with the auction item 𝑎.

𝑃𝑦1 = 𝜈𝑦
(
�̄�〈𝑦〉 | 𝑦(𝑤).�̄�〈𝑤〉

)
| 𝜈𝑧

(
�̄�〈𝑧〉.𝑧〈𝑧〉

)
𝑃𝑦2 = 𝜈𝑦

(
0 | �̄�〈𝑦〉

)
| 𝜈𝑧

(
�̄�〈𝑧〉.𝑧〈𝑧〉

)
In 𝑃𝑦1, 𝑦’s process locks on with the communication channel 𝑎 and sends its name 𝑦
over. Because 𝑦 is bounded, the binding is extended to 𝑎’s process. 𝑦 sends its name
over to the auction item’s process again, reducing the expression to 𝑃𝑦2. Channel 𝑦
now broadcasts its same name. 𝑧’s process is presumably deadlocked, depending on the
context. Conversely, the same occurs for 𝑧’s process.

𝑃𝑧1 = 𝜈𝑦
(
�̄�〈𝑦〉.�̄�〈𝑦〉

)
| 𝜈𝑧

(
𝑧(𝑤).�̄�〈𝑤〉 | 𝑧〈𝑧〉

)
𝑃𝑧2 = 𝜈𝑦

(
�̄�〈𝑦〉.�̄�〈𝑦〉

)
| 𝜈𝑧

(
𝑧〈𝑧〉 | 0

)
The following is the LTS.

P

τ

τ

τ

τ

a⟨y⟩ a⟨z⟩

a(α) : α ∉ {y,z}

Fig. 2.2: Labelled transition system of the auction model.

Tau steps 𝜏 are used to denote unobservable actions, or internal actions. In this case,
there are the two 𝜏 branches representing the two reactions to 𝑃𝑦1 and 𝑃𝑧1. The second
𝜏 step of each are the further reactions to 𝑃𝑦2 and 𝑃𝑧2. Because the auction item 𝑎

is free, its channel can be communicated from both process 𝑃 and the context, which
is represented by a free name 𝛼. This transition describes a scenario where channel 𝑎
receives a name other than 𝑦 or 𝑧 from another process in the context. Alternatively, 𝑦
or 𝑧’s process may send their name to another channel 𝑎.

This small example demonstrates the powerful construct of name scoping and name
passing in the 𝜋-calculus. This can also be used as the basis for modelling cryptographic
communication protocols. Abadi and Gordon [16] developed an extension to the pi-
calculus called the ‘spi calculus’ for this purpose.
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Example 2.9. Hand-over protocol. [1, p. 80]. In a larger real-world example, consider
two transmitters and a moving car engaging in a hand-over protocol.

Control

Trans Idtrans

Car

talk1

switch1

lose1
gain1

gain2

lose2

Fig. 2.3: Diagram of the hand-over protocol.

A system with two transmitters is managed by a central controller and a moving car
connects to either transmitter. The following expressions represent the system.

𝐶𝑎𝑟 (𝑡𝑎𝑙𝑘, 𝑠𝑤𝑖𝑡𝑐ℎ) def
= 𝑡𝑎𝑙𝑘 .𝐶𝑎𝑟 〈𝑡𝑎𝑙𝑘, 𝑠𝑤𝑖𝑡𝑐ℎ〉 + 𝑠𝑤𝑖𝑡𝑐ℎ(𝑡, 𝑠).𝐶𝑎𝑟 〈𝑡, 𝑠〉

𝑇𝑟𝑎𝑛𝑠1(𝑡𝑎𝑙𝑘1, 𝑠𝑤𝑖𝑡𝑐ℎ1, 𝑔𝑎𝑖𝑛1, 𝑙𝑜𝑠𝑒1)
def
= 𝑡𝑎𝑙𝑘1.𝑇𝑟𝑎𝑛𝑠1〈𝑡𝑎𝑙𝑘1, 𝑠𝑤𝑖𝑡𝑐ℎ1, 𝑔𝑎𝑖𝑛1, 𝑙𝑜𝑠𝑒1〉
+ 𝑙𝑜𝑠𝑒1(𝑡, 𝑠).𝑠𝑤𝑖𝑡𝑐ℎ1〈𝑡, 𝑠〉.𝐼𝑑𝑡𝑟𝑎𝑛𝑠1〈𝑔𝑎𝑖𝑛1, 𝑙𝑜𝑠𝑒1〉

𝐼𝑑𝑡𝑟𝑎𝑛𝑠1(𝑔𝑎𝑖𝑛1, 𝑙𝑜𝑠𝑒1)
def
= 𝑔𝑎𝑖𝑛1(𝑡, 𝑠).𝑇𝑟𝑎𝑛𝑠1〈𝑡, 𝑠, 𝑔𝑎𝑖𝑛1, 𝑙𝑜𝑠𝑒1〉

𝑇𝑟𝑎𝑛𝑠2(𝑡𝑎𝑙𝑘2, 𝑠𝑤𝑖𝑡𝑐ℎ2, 𝑔𝑎𝑖𝑛2, 𝑙𝑜𝑠𝑒2)
def
= 𝑡𝑎𝑙𝑘2.𝑇𝑟𝑎𝑛𝑠2〈𝑡𝑎𝑙𝑘2, 𝑠𝑤𝑖𝑡𝑐ℎ2, 𝑔𝑎𝑖𝑛2, 𝑙𝑜𝑠𝑒2〉
+ 𝑙𝑜𝑠𝑒2(𝑡, 𝑠).𝑠𝑤𝑖𝑡𝑐ℎ2〈𝑡, 𝑠〉.𝐼𝑑𝑡𝑟𝑎𝑛𝑠2〈𝑔𝑎𝑖𝑛2, 𝑙𝑜𝑠𝑒2〉

𝐼𝑑𝑡𝑟𝑎𝑛𝑠2(𝑔𝑎𝑖𝑛2, 𝑙𝑜𝑠𝑒2)
def
= 𝑔𝑎𝑖𝑛2(𝑡, 𝑠).𝑇𝑟𝑎𝑛𝑠2〈𝑡, 𝑠, 𝑔𝑎𝑖𝑛2, 𝑙𝑜𝑠𝑒2〉

𝐶𝑜𝑛𝑡𝑟𝑜𝑙1
def
= 𝑙𝑜𝑠𝑒1〈𝑡𝑎𝑙𝑘2, 𝑠𝑤𝑖𝑡𝑐ℎ2〉.𝑔𝑎𝑖𝑛2〈𝑡𝑎𝑙𝑘2, 𝑠𝑤𝑖𝑡𝑐ℎ2〉.𝐶𝑜𝑛𝑡𝑟𝑜𝑙2

𝐶𝑜𝑛𝑡𝑟𝑜𝑙2
def
= 𝑙𝑜𝑠𝑒2〈𝑡𝑎𝑙𝑘1, 𝑠𝑤𝑖𝑡𝑐ℎ1〉.𝑔𝑎𝑖𝑛1〈𝑡𝑎𝑙𝑘1, 𝑠𝑤𝑖𝑡𝑐ℎ1〉.𝐶𝑜𝑛𝑡𝑟𝑜𝑙1

The system is initialised with the expression

𝑆𝑦𝑠𝑡𝑒𝑚1
def
= 𝜈 𝑡𝑎𝑙𝑘1, 𝑠𝑤𝑖𝑡𝑐ℎ1, 𝑔𝑎𝑖𝑛1, 𝑙𝑜𝑠𝑒1, 𝑡𝑎𝑙𝑘2, 𝑠𝑤𝑖𝑡𝑐ℎ2, 𝑔𝑎𝑖𝑛2, 𝑙𝑜𝑠𝑒2

(𝐶𝑎𝑟 〈𝑡𝑎𝑙𝑘1, 𝑠𝑤𝑖𝑡𝑐ℎ1〉 | 𝑇𝑟𝑎𝑛𝑠1 | 𝐼𝑑𝑡𝑟𝑎𝑛𝑠2 | 𝐶𝑜𝑛𝑡𝑟𝑜𝑙1)

The car continually talks with one transmitter, until it is notified to switch transmitters.
The central controller tells one transmitter to lose the car, so the transmitter tells the car
to switch. The transmitter becomes idle. Consequently, the central controller tells the
second transmitter to gain a car.

Note that 𝑡𝑎𝑙𝑘 and 𝑡𝑎𝑙𝑘 is syntactic sugar for sending/receiving the same name on the
channel, i.e., this is short for 𝑡𝑎𝑙𝑘 〈𝑡𝑎𝑙𝑘〉 and 𝑡𝑎𝑙𝑘 (𝑡𝑎𝑙𝑘).
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Car(talk1, switch1)

Car(talk2, switch2)

talk1

switch2(talk1, switch1) switch1(talk2, switch2)

talk2

switch(α, β) : (α, β) ≠ (talk2, switch2)

switch(α, β) : (α, β) ≠ (talk1, switch1)

Control1

Control2

lose1⟨talk2, switch2⟩

gain2⟨talk2, switch2⟩ lose2⟨talk1, switch1⟩

gain1⟨talk1, switch1⟩

Idtrans1(gain1, lose1)

Trans1(talk1, switch1, gain1, lose1)

Trans2(talk2, switch2, gain2, lose2)

Idtrans2(gain2, lose2)

talk1

lose1(t, s)

switch1⟨talk2, switch2⟩

gain1(talk1, switch1)

gain(α, β) : (α, β) ≠ (talk1, switch1)

lose2(t, s)
switch2⟨α, β⟩ : ⟨α, β⟩ ≠ ⟨talk1, switch1⟩

switch2⟨talk1, switch1⟩
switch1⟨α, β⟩ : ⟨α, β⟩ ≠ ⟨talk2, switch2⟩

talk2

gain2(talk2, switch2)

gain(α, β) : (α, β) ≠ (talk1, switch1)

Fig. 2.4: Processes of the hand-over protocol model.

The above is an informal representation of the processes of the system. The dashed lines
represent communication channels between the processes. Note the transitions where
the names are not defined in the expressions which lead to undefined behaviours, e.g.,
switch(𝛼, 𝛽) : (𝛼, 𝛽) ≠ (talk2, switch2). These transitions represent the behaviour of
all the other names in the context. This captures the full behaviour of the process when
placed in any context. Each process at a given state relative to the other processes in the
system would constitute an overall state in the LTS of the model.

2.3 Bisimulation

To check for equivalence of LTS’s, we use the notion of bisimulation. Bisimulations
check if one system simulates the other and vice versa.

2.3.1 Strong simulation

We consider a notion of equivalence between two states in an LTS called simulation.

Definition 2.3. Strong simulation. [1, p. 17, definition 3.3]. Let (Q, T ) be an
LTS. Let S be a binary relation over Q. S is called a strong simulation over (Q, T ) if
whenever 𝑝S𝑞,

if 𝑝 𝛼−→ 𝑝′, then ∃𝑞′ ∈ Q : 𝑞 𝛼−→ 𝑞′ ∧ 𝑝′S𝑞′.
𝑞 strongly simulates 𝑝 if there exists a strong simulation S such that 𝑝S𝑞.
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Example 2.10. Strong simulation. [1, p. 18, example 3.4]. Consider the two LTS’s.

𝑝0 𝑝1

𝑝2

𝑝3

a

b

c
𝑞0

𝑞1

𝑞′1

𝑞2

𝑞3

a

a

b

c

If we define S to be

S = {(𝑞0, 𝑝0), (𝑞1, 𝑝1), (𝑞′1, 𝑝1), (𝑞2, 𝑝2), (𝑞3, 𝑝3)}

then S is a strong simulation. Hence, 𝑝0 strongly simulates 𝑞0, or in other words, 𝑞0 is
strongly simulated by 𝑝0, i.e., 𝑞S𝑝. This is verified by examining each pair (𝑞, 𝑝) ∈ S
and considering every transition 𝑞 𝛼−→ 𝑞′, and show that 𝑞 is matched by some transition
𝑝

𝛼−→ 𝑝′ of 𝑝.

For example, consider the pair (𝑞′1, 𝑝1) ∈ S. 𝑞′1 contains one transition 𝑞′1
𝑐−→ 𝑞3, which

is matched by 𝑝1
𝑐−→ 𝑝3 because (𝑞3, 𝑝3) ∈ S .

2.3.2 Strong bisimulation

The converse R−1 of any binary relation R is the set of pairs (𝑦, 𝑥) such that (𝑥, 𝑦) ∈ R.
A strong bisimulation occurs when both 𝑝 strongly simulates 𝑞 and 𝑞 strongly simulates
𝑝.

Definition 2.4. Strong bisimulation, strong equivalence. [1, p. 18, definition 3.6].
A binary relation S over Q is a strong bisimulation over the LTS (Q, T ) if both S and
its converse are simulations. If there exists a strong bisimulation S such that 𝑝S𝑞, we
say that 𝑝 and 𝑞 are strongly bisimilar or strongly equivalent, written 𝑝 ∼ 𝑞.

Example 2.11. Strong bisimulation. [1, p. 18, example 3.7]. Consider the two LTS’s.

𝑝0 𝑝1

𝑝2

𝑞0

𝑞2

𝑞1

a

a a

b

a

b

a

a

b
a
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We show that S is a bisimulation by defining

S = {(𝑝0, 𝑞0), (𝑝0, 𝑞2), (𝑝1, 𝑞1), (𝑝2, 𝑞1)}

This proves that 𝑝0 ∼ 𝑞0, i.e., 𝑝0S𝑞0.

For example, consider the pair (𝑝0, 𝑞0) ∈ S. 𝑝0 contains two transitions 𝑝0
𝑎−→ 𝑝1 and

𝑝0
𝑎−→ 𝑝2. 𝑝0

𝑎−→ 𝑝1 is matched by 𝑞0
𝑎−→ 𝑞1 because (𝑝1, 𝑞1) ∈ S. This also applies

conversely, 𝑞0
𝑎−→ 𝑞1 is matched by 𝑝0

𝑎−→ 𝑝1 because (𝑞1, 𝑝1) ∈ S−1.

It often aids understanding to show a graphical representation of bisimulation by linking
the related states on the transition graph, as shown below.

𝑝0 𝑝1

𝑝2

𝑞0

𝑞2

𝑞1

a

a a

b

a

b

a

a

b
a

2.3.3 Weak bisimulation

So far, we have explored the rigid notion of equivalence related to strong simulation and
strong bisimulation. However, there exist LTS’s which have different internal behaviours
but may nevertheless be considered equivalent. One such notion of equivalence which
addresses this is weak bisimulation.

Any action 𝜆−→, with 𝜆 ∈ L is called an observation. An experiment 𝑒 is a sequence
𝑒 = 𝜆1 . . . 𝜆𝑛 of observable actions. Internal actions may occur from these observable
actions, which are in itself unobservable. For example, the interaction between �̄�−→
(output) and 𝑎−→ (input).

Definition 2.5. Experiment relations. [1, p. 52, definition 6.1]. The relations =⇒ and
𝑠
=⇒, ∀𝑠 ∈ L∗, are defined as follows:

(1) 𝑃 =⇒ 𝑄. There is a sequence of zero or more reactions 𝑃 → · · · → 𝑄, i.e.,

=⇒ def
= −→∗.

(2) 𝑃
𝑠
=⇒ 𝑄. Let 𝑠 = 𝛼1 . . . 𝛼𝑛. There is a sequence of reactions defined by 𝑠 denoting

𝑃 =⇒ 𝛼1−−→ 𝑃1 . . . =⇒
𝛼𝑛−−→ 𝑃𝑛 =⇒ 𝑄, i.e.,

𝑠
=⇒ def

= =⇒ 𝛼1−−→ =⇒ . . . =⇒ 𝛼𝑛−−→ =⇒.
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𝑃 =⇒ 𝑄 defines an unspecified number of reactions, or transitions, to reach state 𝑄 from

state 𝑃. 𝑃
𝑠
=⇒ 𝑄 defines a specified sequence 𝑠 of transitions to reach state 𝑄 from state

𝑃.

Definition 2.6. Weak bisimulation. [1, p. 53, definition 6.2, definition 6.5]. Let S be
a binary relation over P . Then S is a weak bisimulation if, whenever 𝑃S𝑄,

(1) if 𝑃
𝑒
=⇒ 𝑃′, then ∃𝑄 ′ ∈ P : 𝑄

𝑒
=⇒ 𝑄 ′ ∧ 𝑃′S𝑄 ′, and

(2) the converse of (1) on the actions from Q.
𝑃 and 𝑄 are weakly bisimiliar, weakly equivalent, or observation equivalent, written
𝑃 ≈ 𝑄, if there exists a weak bisimulation S such that 𝑃S𝑄.

Proposition 2.1. [1, p. 54, proposition 6.6]. A strong bisimulation implies a weak
bisimulation, i.e., 𝑃 ∼ 𝑄 implies 𝑃 ≈ 𝑄.

Example 2.12. Weak bisimulation. [17, p. 111, example 4.2.3]. Consider the
following weak bisimulation

𝜏.𝑎 ≈ 𝑎

To prove this is a weak bisimulation S, we define S to be

S = {(𝑎, 𝑎), (0, 0), (𝜏.𝑎, 𝑎)}

The process 𝜏.𝑎 has two possible transitions 𝜏.𝑎
𝜏
=⇒ 𝑎 and 𝜏.𝑎

𝑎
=⇒ 0. The first is matched

by 𝑎 =⇒ 𝑎, i.e., 𝑎S𝑎, and the second is matched by 𝑎
𝑎
=⇒ 0, i.e., 0S0. Conversely, the

process 𝑎 has one possible transition 𝑎
𝑎
=⇒ 0. This is matched by 𝜏.𝑎

𝑎
=⇒ 0, i.e., 𝜏.𝑎S𝑎.

This move matching is often referred to as the bisimulation game.

The above are the fundamentals of bisimulation. Many notions of bisimulation exist,
which include environmental bisimulations [18] and up-to bisimulations [19]. We
will later encounter a notion of bisimulation specific to the 𝜋-calculus in fresh-register
automata.

2.4 Fresh-register automata

In the 𝜋-calculus examples, we explored how placing processes in any context can lead
to a potentially infinite number of states. This is due to the infinite set of names N and
names arising from dynamic name generation. As a result, representing systems in an
LTS can be a challenge. By using a new class of automata developed by Tzevelekos [5]
called fresh-register automata (FRA), we are presented with an approach which allows
for many infinite-state LTS’s to be represented finitely.

We begin by exploring the rationale behind FRA’s. The creation of new entities is a
common abstraction in programming. For example, the declaration of a new object in
Java, the allocation of memory in C, or the declaration of a restricted name 𝜈𝑎 in the
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𝜋-calculus. These entities can be created at will and in such a manner that newly created
entities are always fresh, i.e., it has never been generated before. We call these entities
names [20]. As a result, the set of names is infinite. Finite-memory automata (FMA)
operate over infinite alphabets, introduced by Kaminski and Francez [21] in 1994. An
FMA consists of an automaton attached with a finite number of name-storing registers.

An FMA can access its registers by either comparing an input name to a stored one, or
by storing an input name in one of its registers. A name is stored only if it is locally
fresh, i.e., it does not appear in any register. Therefore, FMA’s are history-free, meaning
that their computational steps rely only on their current registers.

Example 2.13. Local freshness. In relation to the 𝜋-calculus, consider the process

𝑎(𝑥).𝑃

In an FMA, when we encounter the input name 𝑥, its name originates from the context.
It could be either a name which we encountered before (like 𝑎, 𝑏, etc.) or an entirely
new name, i.e., a locally fresh name.

FRA’s extend FMA’s by capturing global freshness, giving rise to a basic automata-
theoretic model of names. An input name is stored in a register just in case it is fresh
in the whole current run. This history-sensitive feature precisely captures fresh-name
creation.

Example 2.14. Global freshness. Consider the 𝜋-calculus expression given by
Tzevelekos [5, p. 303, example 31]

𝜈𝑏.𝑝(𝑎, 𝑏) with definition 𝑝(𝑎, 𝑏) = �̄�〈𝑏〉.𝜈𝑐.𝑝(𝑏, 𝑐)

We repeatedly generate a fresh name and output this name. A fresh name is created by
the restriction 𝜈𝑏 (and 𝜈𝑐). When the output action is performed, we send this name
over to a receiver in the context. The environment can potentially remember this fresh
name (i.e., its name is globally fresh), along with the subsequent infinite stream of fresh
names. So the FRA accepts this fresh name (which we did not see before), stores it in a
register, and repeats this process.

In fact, FMA’s cannot represent the above expression due to fresh-name creation. How-
ever, FRA’s are able to represent this using a single state with one register, which we
will see in a later chapter.

We build up the definition of FRA. There are two sets of input symbols:
• A is an infinite set of names. Let characters 𝑎, 𝑏, etc. range over names.
• C is a finite set of constants. Constants have an auxiliary role and are non-storable.

A∗ is the set of finite strings of names.
A⊛ is the set of finite strings of names containing only pairwise distinct names.
®𝑎 = 𝑎1 . . . 𝑎𝑛 is a vector of strings.
img( ®𝑎) = {𝑎1, ..., 𝑎𝑛} is a set of strings.
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For each 𝑛 ∈ 𝜔 (ordinal number), [𝑛] is the set {1, ..., 𝑛}. We define

L𝑛 = C ∪ { 𝑖, 𝑖•, 𝑖⊛ | 𝑖 ∈ [𝑛] }

where labels of the form 𝑖 are known transitions.
𝑖• is a locally fresh transition.
𝑖⊛ is a globally fresh transition.

L𝑛 is the set of labels generated by [𝑛]. L𝑛 consists of the set of constants C combined
with transition labels from the set [𝑛]. Let

Reg𝑛 = { 𝜎 : [𝑛] → A∪{♯} | ∀𝑖 ≠ 𝑗 . 𝜎(𝑖) = 𝜎( 𝑗) =⇒ 𝜎(𝑖) = ♯ }

be the set of register assignments of size 𝑛. The register assignment 𝜎 is a function
which maps elements from the set [𝑛] to a name in the set of names A combined with
the special name ♯. The only name which can exist more than once in the registers is ♯.
Let

img(𝜎) = { 𝑎 ∈ A | ∃𝑖. 𝜎(𝑖) = 𝑎 }

be the name-range of𝜎, i.e., the set of all the names which exist in the register assignment.
Let

dom(𝜎) = { 𝑖 ∈ [𝑛] | 𝜎(𝑖) ∈ A }

be the domain of𝜎, i.e., the set of all transition labels which map to a name in the register
assignment. Whenever 𝑎 ∉ img(𝜎), i.e., a name is not in the register assignment,

𝜎[𝑖 ↦→ 𝑎] = { (𝑖, 𝑎) } ∪ { ( 𝑗 , 𝜎( 𝑗)) | 𝑗 ∈ [𝑛] \ {𝑖} }

is an update of 𝜎, for any 𝑖 ∈ [𝑛]. This update operation adds the label-name pair
(𝑖, 𝑎) to the registers, or overwrites the label-name pair if the label already exists in a
register.

Definition 2.7. Fresh-register automaton (FRA). [5, p. 296, definition 1]. An FRA
of 𝑛 registers is a quintuple A =

⟨
𝑄, 𝑞0, 𝜎0, 𝛿, 𝐹

⟩
where:

• 𝑄 is a finite set of states,
• 𝑞0 is the initial state,
• 𝜎0 ∈ Reg𝑛 is the initial register assignment,
• 𝛿 ⊆ 𝑄 × L𝑛 ×𝑄 is the transition relation,
• 𝐹 ⊆ 𝑄 is the set of final states.

A is a register automaton (RA) if there are no globally fresh transitions, i.e., ∄ 𝑞, 𝑞′, 𝑖
such that (𝑞, 𝑖⊛, 𝑞′) ∈ 𝜎.

Example 2.15. Fresh-register automata. [5, p. 296]. Suppose A is at state 𝑞1 with
the current register assignment 𝜎. If input ℓ ∈ C ∪ A arrives then:

• If ℓ ∈ C and (𝑞1, ℓ, 𝑞2) ∈ 𝛿 then A accepts ℓ and moves to 𝑞2. This means that ℓ
is a label constant and the transition ℓ is taken to reach state 𝑞2.
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• If ℓ ∈ A and (𝑞1, 𝑖, 𝑞2) ∈ 𝛿 and 𝜎(𝑖) = ℓ then A accepts ℓ and moves to 𝑞2. In
this case, ℓ is a name, so a lookup is performed on the registers 𝜎 to find the label
𝑖. This transition 𝑖 is taken to reach state 𝑞2.

• If ℓ ∈ A and (𝑞1, 𝑖
•, 𝑞2) ∈ 𝛿 and ℓ is not stored in 𝜎 then A accepts ℓ, it sets

𝜎(𝑖) = ℓ and moves to 𝑞2. This is a locally fresh transition. Since the name ℓ
does not exist in the registers 𝜎, an update is performed and a label 𝑖 in 𝜎 is set to
ℓ. The transition 𝑖 is taken to reach state 𝑞2.

• If ℓ ∈ A and (𝑞1, 𝑖
⊛, 𝑞2) ∈ 𝛿 and ℓ ∉ img(𝜎0) and ℓ has not appeared in the

current run then A accepts ℓ, it sets 𝜎(𝑖) = ℓ and moves to 𝑞2. This is a globally
fresh transition. In this case, the name ℓ has never appeared in the registers 𝜎. As
a result, an update is performed and a label 𝑖 in 𝜎 is set to ℓ and the transition 𝑖 is
taken to reach state 𝑞2.

The above example is formally defined by means of configurations. Configurations
represent the intended current state of the automaton. In addition to the state, the
configuration contains information on the current register assignment and the history.
The history is the set of names that have appeared thus far, which is a component
necessary for globally fresh transitions.

Definition 2.8. Configuration. [5, p. 297, definition 2]. A configuration of A is a
triple (𝑞, 𝜎, 𝐻) ∈ �̂�, where 𝑞 is the state, 𝜎 is the register assignment and 𝐻 represents
the history, with

�̂� = 𝑄 × Reg𝑛 × Pfn(A)

and Pfn(A) being the set of finite subsets of A. From 𝛿 define a transition on configura-
tions

−−→𝛿 ⊆ �̂� × (C ∪ A) × �̂�

as follows. For all (𝑞, 𝜎, 𝐻) ∈ �̂� and (𝑞, ℓ, 𝑞′) ∈ 𝛿:

• If ℓ ∈ C then (𝑞, 𝜎, 𝐻) ℓ−−−→𝛿 (𝑞′, 𝜎, 𝐻). The transition ℓ is taken from the
configuration (𝑞, 𝜎, 𝐻) to reach the configuration (𝑞′, 𝜎, 𝐻).

• If ℓ = 𝑖 and 𝜎(𝑖) = 𝑎 then (𝑞, 𝜎, 𝐻) 𝑎−−−→𝛿 (𝑞′, 𝜎, 𝐻 ∪ {𝑎}). ℓ is a label that
corresponds with the name 𝑎 in the registers 𝜎. The transition 𝑎 is taken to reach
the configuration (𝑞′, 𝜎, 𝐻 ∪ {𝑎}), where 𝑎 is added to the history.

• If ℓ = 𝑖• and 𝑎 ∉ img(𝜎) then (𝑞, 𝜎, 𝐻) 𝑎−−−→𝛿 (𝑞′, 𝜎′, 𝐻 ′) with 𝜎′ = 𝜎[𝑖 ↦→ 𝑎]
and 𝐻 ′ = 𝐻 ∪ {𝑎}. This is a locally fresh transition. If the name 𝑎 does not exist
in the registers 𝜎, a transition is taken to the configuration (𝑞′, 𝜎′, 𝐻 ′). In this
configuration, the registers are updated to include the label-name pair (𝑖, 𝑎) and
the history adds 𝑎.

• If ℓ = 𝑖⊛ and 𝑎 ∉ 𝐻∪img(𝜎0) then (𝑞, 𝜎, 𝐻) 𝑎−−−→𝛿 (𝑞′, 𝜎′, 𝐻 ′) with 𝜎′ =
𝜎[𝑖 ↦→ 𝑎] and 𝐻 ′ = 𝐻 ∪ {𝑎}. This is a globally fresh transition. If the name
𝑎 does not exist in either the history or the registers, a transition is taken to the
configuration (𝑞′, 𝜎′, 𝐻 ′). Like with the locally fresh transition, the registers are
updated with the name 𝑎 and added to the history.
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3Language

3.1 The extended pi-calculus

To directly represent the 𝜋-calculus by fresh-register automata, Tzevelekos defines the
extended 𝜋-calculus, or ×𝜋-calculus.

Definition 3.1. The ×𝜋-calculus. [5, p. 302, definition 29]. The set of main
constructions Π is defined by the following:

𝑃,𝑄 F process
𝑎(𝑏).𝑃 input
�̄�〈𝑏〉.𝑃 output
[𝑎=𝑏]𝑃 equality
[𝑎≠𝑏]𝑃 inequality†

𝜈𝑎.𝑃 restriction
𝑃 +𝑄 summation
𝑃 | 𝑄 composition
𝑝( ®𝑎) process
0 inaction

The sets of intermediate constructions Πout and Πinp are defined as:

𝑃out F 𝑏.𝑃 | 𝜈𝑎.𝑃out | 𝑃 | 𝑃out | 𝑃out | 𝑃
𝑃inp F (𝑏).𝑃 | 𝜈𝑎.𝑃inp | 𝑃 | 𝑃inp | 𝑃inp | 𝑃

We write Π̂ for Π ∪ Πout ∪ Πinp and let �̂�, �̂�, ... range over its elements.

The purpose of the intermediate constructionsΠout andΠinp is to account for the fact that
transitions are multi-symbol and the FRA recognises one symbol at a time [5, p. 302].
The main constructions Π are near-identical to the original 𝜋-calculus, except for some
small additions and changes.

• The equality construct is introduced. This means 𝑃 is run only if the two names
𝑎 and 𝑏 are equal, equivalent to an ‘if’ statement.

• † Although not defined by Tzevelekos, we introduce the inequality term. This is
the negated equality condition.

• Replication 𝑃! is replaced by a process definition 𝑝( ®𝑎) = 𝑃. This means that
processes can be called with (or without) a vector of names as arguments. This is
similar to a function call in programming languages.

• A cosmetic change of a dot is placed between 𝑎 and 𝑃 in restriction.
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3.2 Lexer

The lexer is implemented in Ragel [22], which generates a lexical analyser in Go code.

The×𝜋-calculus syntax is converted into ASCII characters for standard input and parsing.
The following are the ASCII counterparts.

×𝜋-calculus syntax ASCII form
𝑃 F P = process
𝑎(𝑏).𝑃 a(b).P input
�̄�〈𝑏〉.𝑃 a'<b>.P output
[𝑎=𝑎]𝑃 [a=a]P equality
[𝑎≠𝑏]𝑃 [a!=b]P inequality
𝜈𝑎.𝑃 $a.P restriction
𝑃 +𝑄 P + Q summation
𝑃 | 𝑄 P | Q composition
𝑃(𝑎, 𝑏, 𝑐) P(a,b,c) process
0 0 inaction

Tab. 3.1: ×𝜋-calculus syntax and their ASCII counterparts.

The special characters (=, $, +, etc.) are recognised as single characters while the names
a, b, c, P and Q are expressed as a regular expression [a-zA-z0-9]+.

3.3 Grammar

The parser is implemented with goyacc [23], a version of Yacc (Yet Another Compiler-
Compiler) in Go for generating the parser. The parser generated is LR(1), which means
that the input is parsed bottom-up and that there is a lookahead of one token.

The grammar of the language is described in Backus-Naur form (BNF), with the excep-
tion of 〈𝑖𝑑𝑒𝑛𝑡〉, which is represented as a regular expression.

〈ident〉 ::= [a-zA-z0-9]+

〈stmts〉 ::= ‘’
| 〈stmts〉 〈stmt〉

〈stmt〉 ::= 〈decl-process〉
| 〈decl-params-process〉
| 〈undecl-process〉

〈decl-process〉 ::= 〈ident〉 ‘=’ 〈elem〉
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〈decl-params-process〉 ::= 〈ident〉 ‘(’ 〈decl-params〉 ‘=’ 〈elem〉

〈decl-params〉 ::= 〈ident〉 ‘,’ 〈decl-params〉
| 〈ident〉 ‘)’

〈undecl-process〉 ::= 〈elem〉

〈elem〉 ::= 〈parentheses〉
| 〈parallel〉
| 〈sum〉
| 〈output〉
| 〈input〉
| 〈equality〉
| 〈inequality〉
| 〈restriction〉
| 〈nil〉
| 〈process〉
| 〈params-process〉

〈parentheses〉 ::= ‘(’ 〈elem〉 ‘)’

〈parallel〉 ::= 〈elem〉 ‘|’ 〈elem〉

〈sum〉 ::= 〈elem〉 ‘+’ 〈elem〉

〈output〉 ::= 〈ident〉 ‘'’ ‘<’ 〈ident〉 ‘>’ ‘.’ 〈elem〉
| 〈ident〉 ‘<’ 〈ident〉 ‘>’ ‘.’ 〈elem〉

〈input〉 ::= 〈ident〉 ‘(’ 〈ident〉 ‘)’ ‘.’ 〈elem〉

〈equality〉 ::= ‘[’ 〈ident〉 ‘=’ 〈ident〉 ‘]’ 〈elem〉

〈inequality〉 ::= ‘[’ 〈ident〉 ‘!=’ 〈ident〉 ‘]’ 〈elem〉

〈restriction〉 ::= ‘$’ 〈name〉 ‘.’ 〈elem〉

〈nil〉 ::= ‘0’

〈process〉 ::= 〈ident〉

〈params-process〉 ::= 〈ident〉 ‘(’ 〈params〉

〈params〉 ::= 〈ident〉 ‘,’
| 〈name〉 ‘)’
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3.3.1 Shift-reduce conflicts

The main challenge in constructing the grammar was the resolution of shift-reduce
conflicts. Shift-reduce conflicts result from ambiguous grammars.

Operator associativity

There are two binary operators in the ×𝜋-calculus, summation 𝑃 + 𝑄 and composition
𝑃 | 𝑄. Without specifying associativity and given the expression 𝑃 +𝑄 | 𝑅, this can be
interpreted as (𝑃 +𝑄) | 𝑅 or 𝑃 + (𝑄 | 𝑅), resulting in ambiguity.

Operator precedence is usually reserved for practical use in process calculi, as in this
case, so theoretical papers and books usually do not discuss it. Neither Milner nor
Tzevelekos specifies a precedence. As a result, we define that summation binds more
tightly than composition. We specify that + has higher precedence and both + and | are
right associative. In Yacc, we declare

%right VERTBAR

%right PLUS

So 𝐴 + 𝐵 + 𝐶 | 𝐷 | 𝐸 | 𝐹 is parsed as (𝐴 + (𝐵 + 𝐶)) | (𝐷 | (𝐸 | 𝐹)).

Grammar rules precedence

Specifying precedence in grammar rules is also required to resolve conflicts. For
example, we encounter a conflict if we do not provide precedence, written %prec TOKEN

in Yacc, in the following grammar.

〈process〉 ::= 〈ident〉 %prec LOWER

| 〈ident〉 ‘(’ 〈params〉

This specifies that the first statement has a lower precedence than the left bracket of the
second statement. This informs the parser that when we encounter 〈𝑖𝑛𝑑𝑒𝑛𝑡〉 and a left
bracket proceeds, then the rule must be the second statement.

3.4 Elements

The ×𝜋-calculus constructs consist of structs of type Element, given below.

type Element interface {
Type() ElementType

}

Listing 3.1: The element base type of the ×𝜋-calculus constructs.

The Element type is subtyped into its specific construct. These subtypes contain relevant
information about that construct. All elements implement the Type() function to allow
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for identification. A data type representing a name is common to most constructs and is
given below.

type Name struct {
Name string
Type NameType

}

Listing 3.2: The name struct.

Channels and variables are represented by the struct Name. The type of the name is either
free or bound. We now describe the elements from the main constructions set Π.

Nil

type ElemNil struct {}

Listing 3.3: The nil element struct.

The simplest element is the nil process. The struct holds no data and serves as a terminal
node.

Process

type ElemProcess struct {
Name string
Parameters []Name

}

Listing 3.4: The process element struct.

The only other terminal node is the process. The process represents both the process 𝑃
and parameterised process 𝑝( ®𝑎). In the process 𝑃 without parameters, the Name is 𝑃 and
the Parameters are empty. In 𝑝(𝑎, 𝑏, 𝑐), the Parameters are a list of names 𝑎, 𝑏 and 𝑐.

Output

type ElemOutput struct {
Channel Name
Output Name
Next Element

}

Listing 3.5: The output element struct.

In �̄�〈𝑏〉.𝑃, the element ElemOutput holds Channel 𝑎 and Output 𝑏. The next element is
an ElemProcess 𝑃.
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Input

type ElemInput struct {
Channel Name
Input Name
Next Element

}

Listing 3.6: The input element struct.

In 𝑎(𝑥).𝑎〈𝑏〉.𝑃, ElemInput holds Channel 𝑎 and Input 𝑥. The next element is an
ElemOutput, followed by an ElemProcess 𝑃.

Equality and inequality

type ElemEquality struct {
Inequality bool
NameL Name
NameR Name
Next Element

}

Listing 3.7: The equality element struct.

In [𝑎=𝑏]𝑃, ElemEquality holds NameL 𝑎 and NameR 𝑏. The next element is an ElemProcess

𝑃. In [𝑎≠𝑏]𝑃, the element holds the same data, with the addition that Inequality is
true.

Restriction

type ElemRestriction struct {
Restrict Name
Next Element

}

Listing 3.8: The restriction element struct.

In 𝜈𝑎.𝑃, ElemRestriction holds 𝑎 as Restrict. The next element is an ElemProcess

𝑃.

Sum

type ElemSum struct {
ProcessL Element
ProcessR Element

}

Listing 3.9: The sum element struct.

In 𝑎(𝑥).0+𝑏〈𝑐〉.0, ElemSum contains ElemInput as ProcessL and ElemOutput as ProcessR.
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Parallel

type ElemParallel struct {
ProcessL Element
ProcessR Element

}

Listing 3.10: The parallel element struct.

Replacing the previous sum expression with a parallel, 𝑎(𝑥).0 | 𝑏〈𝑐〉.0, we get an
ElemParallel containing ElemInput as ProcessL and ElemOutput as ProcessR.

3.5 Abstract syntax tree

Together with the grammar and element definitions, the abstract syntax tree (AST) of
the processes can be built. Action symbols are added to the grammar to construct a
symbol table containing information on how to structure the AST’s. The procedure is
best described using examples with increasing complexity.

Example 3.1. Unary elements. We define unary elements to be output, input,
restriction, and equality/inequality because they point to only one element. We consider
the nil and process constructs to be nullary elements because they are terminal elements,
i.e., they do not point to any element. Consider the ×𝜋-calculus expression in ASCII
form

$a.b'<a>.c(x).[b=x]0

The expression contains unary ×𝜋-calculus constructs in the order restriction, output,
input, and equality, and ends with the nullary element nil.

$a b'<a> c(x) [b=x] 0

Fig. 3.1: Unary elements restriction, output, input, and equality in an AST.

The first element that the bottom-up parser encounters is nil, then equality, then the
elements up to restriction. The symbol table contains a variable containing the current
element. This variable is assigned as the terminal element ElemNil when encountered.
When it encounters the subsequent construct, it points this new element to the current
element and assigns itself as the current element. As a result, each element is linked
together by using the Next struct member, creating a linked list.

Example 3.2. Binary elements. In contrast to the unary elements above, we call
summation and composition binary elements due to their ability to point to two processes.
Consider

a(x).P | b'<c>.0 | Q

The order in which the elements are parsed are P, a(x), |, 0, b'<c>, |, and Q. When
the first | is reached, the current element comprises of a(x).P. The current element is

3 Language 26



pushed to a stack and the current element variable is reset. When the second | is reached,
the current element b'<c>.0 is again pushed to the stack and the variable is reset. The
final element is parsed, which is Q. At this point, all elements (for this example) are
popped off the stack to form a right-leaning ElemParallel chain.

|

|

b'<c>

0

a(x)

Q

P

Fig. 3.2: The binary element parallel in an AST comprises of two child elements.

The same algorithm is used for summation, with the use of a different stack.

Example 3.3. Parenthesised processes. The use of parentheses introduces the concept
of scope to the language. Consider

a(b).(P + ((A + B) | C) + R)

where we add nested parentheses to specify bindings. Processes are enclosed inside
brackets. We need to keep track of how many summations and compositions that occur
inside the current bracket level so we know how many elements to pop off their stacks.

The elements parsed in order are (, P, +, (, (, A, +, B, ), |, C, ), +, R, ), and a(b). When
an opening parenthesis is encountered, the number of summations are saved to a stack
and the number of summations are reset to zero. When a ‘+’ is parsed, this value is
incremented. When the final right-hand side of the summation process in the current
bracket level is parsed (in the case of (A + B), this is B), elements are popped from
the stack up to the current number of summations. Ultimately, a closing parenthesis is
encountered and the number of summations from the previous scope is popped from the
stack and restored. The same procedure follows for composition.
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a(b)

+

P +

| R

C+

A B

Fig. 3.3: Resultant AST of a parenthesised expression which captures the scoping of elements.

Example 3.4. Declared processes. So far, we have only described a single undeclared
process, i.e., processes without the prefix ‘P =’. However, the grammar supports multi-
line statements of declared processes with names and parameters. An undeclared process
initialises the program, similar to a main function. It is expected that only one undeclared
process exists. Consider the program

P(a,b) = a(x).b'<b>.0

Q = c(y).0

P(i,j) | Q

where we declare P with parameters a and b, Q with no parameters and an undeclared
process. From this program, we gather three AST’s.

P(a,b)

a(x)

b'<b>

0

Q

c(y)

0

|

P(i,j) Q

Fig. 3.4: Declared processes P(a,b) and Q, along with an undeclared parallel process.

Declared processes are stored in a map which maps the process name to a struct con-
taining the parameters and associated process. In this case, P is mapped to a struct
containing a and b as the parameters and a(x).b'<b>.0 as the process. Q, with no pa-
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rameters, is mapped to c(y).0. In the diagram, these are represented by rectangles. The
sole undeclared process is stored as a variable.

Root element

In anticipation of the implementation of the ×𝜋-calculus transition relation, a root
element is appended to the top-most undeclared element. This allows for recursive
AST manipulation operations to be implemented cleanly, e.g., if we want to replace the
top-most element, we simply point the root’s Next to the new element instead of keeping
track a head variable. The root acts as the head of the element and is never replaced.

3.6 Alpha-conversion

The name 𝑏 is bound in restriction 𝜈𝑏.𝑃 and input 𝑎(𝑏).𝑃. We denote the bound names
of 𝑃 to be bn(𝑃), and the free names, i.e., not bound, of 𝑃 to be fn(𝑃). The changing
of a bound name into a fresh name, i.e., a name not encountered before, is called
alpha-conversion [1, p. 29]. Alpha-conversion is performed in order to accomplish
substitution properly.

Example 3.5. Alpha-conversion. Consider the expression

𝑎(𝑎).𝜈𝑎.𝑎(𝑎).𝑎〈𝑎〉.0

It is difficult to differentiate between the free names and the scope of the bound names.
When we alpha-convert, we obtain

𝑎(𝑎1).𝜈𝑎2.𝑎2(𝑎3).𝑎3〈𝑎3〉.0

where the subscript numbered 𝑎’s are different bound names. Note how the restriction
name 𝑎2 overshadows 𝑎1, and how the input name 𝑎3 does the same for 𝑎2.

There are approaches to resolving alpha-conversion practically. One such notion is De
Bruĳn indices which originates from the lambda calculus [24]. This does so without
naming the bound variables and assigns indices to the binders. However, we choose a
simpler approach that converts the expression to a form which follows the Barendrecht-
convention. In the expression, all bound names are uniquely named corresponding to
their binders, as with the example above.

An algorithm was written to perform this, and its pseudocode is given below. The
element AST is traversed. When an input or restriction is encountered, a bound name is
generated in the form "x_1", "y_2", etc., and takes the place of the original name. The
tree is traversed again from that point, and this time the original name is replaced by the
new bound name, up until an input or restriction with the same original name.

3 Language 29



Algorithm 3.1 Performs alpha-conversion on a process
1: function alphaConvert(𝑒𝑙𝑒𝑚)
2: switch 𝑒𝑙𝑒𝑚.Type() do
3: case input
4: 𝑜𝑙𝑑𝑁𝑎𝑚𝑒 ← 𝑒𝑙𝑒𝑚.𝐼𝑛𝑝𝑢𝑡.𝑁𝑎𝑚𝑒

5: 𝑏𝑜𝑢𝑛𝑑𝑁𝑎𝑚𝑒 ← generateBoundName()
6: 𝑒𝑙𝑒𝑚.𝐼𝑛𝑝𝑢𝑡 ← Name{𝑏𝑜𝑢𝑛𝑑𝑁𝑎𝑚𝑒, bound}
7: substituteBoundNames(𝑒𝑙𝑒𝑚.𝑁𝑒𝑥𝑡, 𝑜𝑙𝑑𝑁𝑎𝑚𝑒, 𝑏𝑜𝑢𝑛𝑑𝑁𝑎𝑚𝑒)
8: alphaConvert(𝑒𝑙𝑒𝑚.𝑁𝑒𝑥𝑡)
9: case restriction

10: 𝑜𝑙𝑑𝑁𝑎𝑚𝑒 ← 𝑒𝑙𝑒𝑚.𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡.𝑁𝑎𝑚𝑒

11: 𝑏𝑜𝑢𝑛𝑑𝑁𝑎𝑚𝑒 ← generateBoundName()
12: 𝑒𝑙𝑒𝑚.𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 ← Name{𝑏𝑜𝑢𝑛𝑑𝑁𝑎𝑚𝑒, bound}
13: substituteBoundNames(𝑒𝑙𝑒𝑚.𝑁𝑒𝑥𝑡, 𝑜𝑙𝑑𝑁𝑎𝑚𝑒, 𝑏𝑜𝑢𝑛𝑑𝑁𝑎𝑚𝑒)
14: alphaConvert(𝑒𝑙𝑒𝑚.𝑁𝑒𝑥𝑡)
15: case unary
16: alphaConvert(𝑒𝑙𝑒𝑚.𝑁𝑒𝑥𝑡)
17: case binary
18: alphaConvert(𝑒𝑙𝑒𝑚.𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐿)
19: alphaConvert(𝑒𝑙𝑒𝑚.𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑅)
20: function substituteBoundNames(𝑒𝑙𝑒𝑚, 𝑜𝑙𝑑𝑁𝑎𝑚𝑒, 𝑏𝑜𝑢𝑛𝑑𝑁𝑎𝑚𝑒)
21: switch 𝑒𝑙𝑒𝑚.Type() do
22: case input
23: if 𝑒𝑙𝑒𝑚.𝐶ℎ𝑎𝑛𝑛𝑒𝑙.𝑁𝑎𝑚𝑒 = 𝑜𝑙𝑑𝑁𝑎𝑚𝑒 then
24: 𝑒𝑙𝑒𝑚.𝐶ℎ𝑎𝑛𝑛𝑒𝑙 ← Name{𝑏𝑜𝑢𝑛𝑑𝑁𝑎𝑚𝑒, bound}
25: if 𝑒𝑙𝑒𝑚.𝐼𝑛𝑝𝑢𝑡.𝑁𝑎𝑚𝑒 ≠ 𝑜𝑙𝑑𝑁𝑎𝑚𝑒 then
26: substituteBoundNames(𝑒𝑙𝑒𝑚.𝑁𝑒𝑥𝑡, 𝑜𝑙𝑑𝑁𝑎𝑚𝑒, 𝑏𝑜𝑢𝑛𝑑𝑁𝑎𝑚𝑒)
27: case restriction
28: if 𝑒𝑙𝑒𝑚.𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡.𝑁𝑎𝑚𝑒 ≠ 𝑜𝑙𝑑𝑁𝑎𝑚𝑒 then
29: substituteBoundNames(𝑒𝑙𝑒𝑚.𝑁𝑒𝑥𝑡, 𝑜𝑙𝑑𝑁𝑎𝑚𝑒, 𝑏𝑜𝑢𝑛𝑑𝑁𝑎𝑚𝑒)
30: case process
31: for 𝑖, 𝑝𝑎𝑟𝑎𝑚 ∈ 𝑒𝑙𝑒𝑚.𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 do
32: if 𝑝𝑎𝑟𝑎𝑚.𝑁𝑎𝑚𝑒 = 𝑜𝑙𝑑𝑁𝑎𝑚𝑒 then
33: 𝑒𝑙𝑒𝑚.𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠[𝑖] ← Name{𝑏𝑜𝑢𝑛𝑑𝑁𝑎𝑚𝑒, bound}
34: case unary
35: for 𝑑𝑎𝑡𝑎 ∈ {𝐶ℎ𝑎𝑛𝑛𝑒𝑙, 𝑂𝑢𝑡𝑝𝑢𝑡, 𝑁𝑎𝑚𝑒𝐿, 𝑁𝑎𝑚𝑒𝑅} do
36: if 𝑒𝑙𝑒𝑚.𝑑𝑎𝑡𝑎.𝑁𝑎𝑚𝑒 = 𝑜𝑙𝑑𝑁𝑎𝑚𝑒 then
37: 𝑒𝑙𝑒𝑚.𝑑𝑎𝑡𝑎 ← Name{𝑏𝑜𝑢𝑛𝑑𝑁𝑎𝑚𝑒, bound}
38: substituteBoundNames(𝑒𝑙𝑒𝑚.𝑁𝑒𝑥𝑡, 𝑜𝑙𝑑𝑁𝑎𝑚𝑒, 𝑏𝑜𝑢𝑛𝑑𝑁𝑎𝑚𝑒)
39: case binary
40: substituteBoundNames(𝑒𝑙𝑒𝑚.𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐿)
41: substituteBoundNames(𝑒𝑙𝑒𝑚.𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑅)
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4Transition Relation

The transition relation, or transition rules, describes instructions to translate the ×𝜋-
calculus to fresh-register automata. We formalise the LTS of the ×𝜋-calculus with the
following definitions.

Definition 4.1. States. [5, p. 303]. The set of states is defined as 𝑂 (�̂�) with each a
process-in-context 𝑂 (𝜎, �̂�), denoted as 𝜎 ` �̂�.

Each state is also called a configuration which borrows the concept from FRA’s. Only
states from 𝑂 (𝐾) are final, where there are no intermediate stages in the process 𝑃.

Definition 4.2. Labels. [5, p. 303, definition 30]. The set of labels 𝛼 is defined as

𝛼 F 𝑖 | 𝑖• | 𝑖⊛ | 𝜏 | 𝑖 𝑗 | 𝑖 𝑗⊛ | 𝑖 𝑗 | 𝑖 𝑗•

where 𝑖, 𝑗 ∈ 𝜔.

The transition labels borrow notation from FRA’s, with 𝑖• meaning fresh inputs and 𝑖⊛

representing fresh outputs.

The full transition relation defined by Tzevelekos is given in table 4.1. The rules follow
structural operational semantics which is in the form of inference rules. We refer to the
transition(s) at the top the line as the premise(s) and the transition at the bottom of the
line as the conclusion. As a general guide to interpreting the rules, if the starting state
𝑂 (�̂�) of the conclusion is pattern matched, then try performing the transition(s) denoted
in premise(s). If a transition can be taken, then the next state 𝑂 (�̂�) of the conclusion
can be formed. Side conditions to the right of the rule may exist, which must be fulfilled
in order to take the transition. We will explore each rule in greater depth in the later
section.

31



Inp1
𝜎 (𝑖)=𝑎

𝜎 ` 𝑎(𝑏).𝑃 𝑖−−→ 𝜎 ` (𝑏).𝑃

Inp2a
𝜎 (𝑖)=𝑎

𝜎 ` (𝑏).𝑃 𝑖−−→ 𝜎 ` 𝑃{𝑎/𝑏}

Inp2b
𝑖=min{ 𝑖 | 𝜎 (𝑖)∉fn(𝑃) }
𝑏∉img(𝜎)

𝜎 ` (𝑏).𝑃 𝑖•−−→ 𝜎[𝑖 ↦→ 𝑏] ` 𝑃

DblInp 𝜎 ` 𝑃 𝑖−−→ 𝜎 ` 𝑃inp
𝑗/ 𝑗•−−−→ 𝜎′ ` 𝑃′

𝜎 ` 𝑃 𝑖 𝑗/𝑖 𝑗•−−−−−→ 𝜎′ ` 𝑃′

Out1
𝜎 (𝑖)=𝑎

𝜎 ` �̄�𝑏.𝑃 𝑖−−→ 𝜎 ` 𝑏.𝑃 Out2
𝜎 (𝑖)=𝑏

𝜎 ` 𝑏.𝑃 𝑖−−→ 𝜎 ` 𝑃

DblOut 𝜎 ` 𝑃 𝑖−−→ 𝜎 ` 𝑃out
𝑗/ 𝑗⊛−−−−→ 𝜎′ ` 𝑃′

𝜎 ` 𝑃 𝑖 𝑗/𝑖 𝑗⊛−−−−−→ 𝜎′ ` 𝑃′

Res (𝜎 + 𝑎) ` �̂� 𝛼−−→ (𝜎′ + 𝑎) ` 𝑃′
𝛼≠( |𝜎 |)+1)

𝜎 ` 𝜈𝑎.�̂� 𝛼−−→ 𝜎′ ` 𝜈𝑎.𝑃′

Open
𝜎[𝑖 ↦→ 𝑎] ` 𝑃out

𝑖−−→ 𝜎[𝑖 ↦→ 𝑎] ` 𝑃 𝑖=min{ 𝑖 | 𝜎 (𝑖)∉fn(𝑃) }
𝑎∉img(𝜎)

𝜎 ` 𝜈𝑎.𝑃out
𝑖⊛−−→ 𝜎[𝑖 ↦→ 𝑎] ` 𝑃

Match 𝜎 ` 𝑃 𝛼−−→ 𝜎 ` 𝑃′
𝜎 ` [𝑎 = 𝑎]𝑃 𝛼−−→ 𝜎 ` 𝑃′

Rec 𝜎 ` 𝑃{ ®𝑎/®𝑏} 𝛼−−→ 𝜎 ` 𝑃′
𝑝 ( ®𝑏)=𝑃

𝜎 ` 𝑝( ®𝑎) 𝛼−−→ 𝜎 ` 𝑃′

Sum 𝜎 ` 𝑃 𝛼−−→ 𝜎 ` 𝑃′
𝜎 ` 𝑃 +𝑄 𝛼−−→ 𝜎 ` 𝑃′

Sumsym
𝜎 ` 𝑄 𝛼−−→ 𝜎 ` �̂� ′

𝜎 ` 𝑃 +𝑄 𝛼−−→ 𝜎 ` �̂� ′

Par1 𝜎 ` 𝑃 𝛼−−→ 𝜎 ` 𝑃′
𝜎 ` 𝑃 | 𝑄 𝛼−−→ 𝜎 ` 𝑃′ | 𝑄

Par1sym
𝜎 ` 𝑄 𝛼−−→ 𝜎 ` �̂� ′

𝜎 ` 𝑃 | 𝑄 𝛼−−→ 𝜎 ` 𝑃 | �̂� ′

Par2
𝜎 ` �̂� 𝑖•/𝑖⊛−−−−→ 𝜎[𝑖 ↦→ 𝑏] ` 𝑃′

𝑗=min{ 𝑗 | 𝜎 ( 𝑗)∉fn(𝑃′,𝑄) }

𝜎 ` �̂� | 𝑄 𝑗•/ 𝑗⊛−−−−−→ 𝜎[ 𝑗 ↦→ 𝑏] ` 𝑃′ | 𝑄

Par2sym
𝜎 ` �̂� 𝑖•/𝑖⊛−−−−→ 𝜎[𝑖 ↦→ 𝑏] ` 𝑄 ′

𝑗=min{ 𝑗 | 𝜎 ( 𝑗)∉fn(𝑃,𝑄′) }

𝜎 ` 𝑃 | �̂� 𝑗•/ 𝑗⊛−−−−−→ 𝜎[ 𝑗 ↦→ 𝑏] ` 𝑃 | 𝑄 ′

Comm 𝜎 ` 𝑃 𝑖 𝑗−−→ 𝜎 ` 𝑃′ 𝜎 ` 𝑄 𝑖 𝑗−−→ 𝜎 ` 𝑄 ′

𝜎 ` 𝑃 | 𝑄 𝜏−−→ 𝜎 ` 𝑃′ | 𝑄 ′

Commsym
𝜎 ` 𝑃 𝑖 𝑗−−→ 𝜎 ` 𝑃′ 𝜎 ` 𝑄 𝑖 𝑗−−→ 𝜎 ` 𝑄 ′

𝜎 ` 𝑃 | 𝑄 𝜏−−→ 𝜎 ` 𝑃′ | 𝑄 ′

Close (♯ + 𝜎) ` 𝑃 𝑖1⊛−−−→ (𝑏 + 𝜎) ` 𝑃′ (♯ + 𝜎) ` 𝑄 𝑖1•−−→ (𝑏 + 𝜎) ` 𝑄 ′

𝜎 ` 𝑃 | 𝑄 𝜏−−→ 𝜎 ` 𝜈𝑏.(𝑃′ | 𝑄 ′)

Closesym
(♯ + 𝜎) ` 𝑃 𝑖1•−−→ (𝑏 + 𝜎) ` 𝑃′ (♯ + 𝜎) ` 𝑄 𝑖1⊛−−−→ (𝑏 + 𝜎) ` 𝑄 ′

𝜎 ` 𝑃 | 𝑄 𝜏−−→ 𝜎 ` 𝜈𝑏.(𝑃′ | 𝑄 ′)

Tab. 4.1: The transition relation for the ×𝜋-calculus [5, p. 304, table 1].
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4.1 Ambiguous transition rules

If we study closely the transition rules, there are alternative levels of the transition
derivation tree where the rules can be applied. In other words, there are multiple ways
of generating the same LTS. Take the configuration

{(1, 𝑎)} ` [𝑎=𝑎]𝑎(𝑏).0

The rule Match is pattern matched, and so we try the transition of the premise with
𝑎(𝑏).0. Inp1 is pattern matched, which becomes (𝑏).0 after taking the transition with
label 1. The Match premise states that any label 𝛼, either single or double, can be taken
which leads to any process �̂�, intermediate or not, as in this case. As a result, we can
take the Match conclusion.

However, from this point (𝑏).0 with label 1, we also pattern match with the rules
Inp2a and Inp2b, both resulting in 0. We are able to return the result at this stage too.
Furthermore, from these two states, we can apply DblInp, resulting in the double labels
11 and 11•. Additionally from this point, we can return back to the Match rule. This
behaviour is captured informally with the diagram below. The arrows returning to the
Match rule denotes the returning of a transition result.

[𝑎=𝑎]𝑎(𝑏).0

Match

𝑎(𝑏).0

(𝑏).0

00

00

1Inp

1•
inp2b

1
inp2a

11•

dblInp
11

dblInp

Fig. 4.1: Illustrating multiple points in the transition derivation tree where the rules can be
applied.

The next transition labels that we should receive only are 11 and 11•. In a practical
setting, these rules become problematic and are non-ideal for implementation. Duplicate
transitions may arise as a result of nested transition rule applications. This ambiguity
also occurs for the rules Res, Sum, Rec, and Par. Due to this, we define a revised
×𝜋-calculus transition relation where rules are applied only in one place of the transition
derivation tree.
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4.2 Revised transition relation

The source of ambiguity in the original transition relation was the decomposition of the
input and output processes into intermediate stages. These intermediate stages formed
final double labels with the DblInp and DblOut rules. In the revised transition relation,
we completely eliminate the use of intermediate steps. Therefore, we redefine the set of
labels, which consists of only the tau and double labels.

Definition 4.3. Revised labels. The set of revised labels 𝛼 is defined as

𝛼 F 𝜏 | 𝑖 𝑗 | 𝑖 𝑗⊛ | 𝑖 𝑗 | 𝑖 𝑗•

In addition, we introduce the following definitions to help us refine the transition rela-
tion.

Definition 4.4. Label index. A register label index is defined as ind(𝛼) : P (N) where

ind(𝜏) = ∅
ind(𝑖 𝑗) = {𝑖, 𝑗}
ind(𝑖 𝑗⊛) = {𝑖, 𝑗}
ind(𝑖 𝑗) = {𝑖, 𝑗}
ind(𝑖 𝑗•) = {𝑖, 𝑗}

ind(𝛼) is the set of single label indices of a label in the set of labels 𝛼. We require this
due to vagueness with the notation 𝛼 ≠ (|𝜎 | +1) in the Res rule. This side condition may
seem clear for single labels in 𝛼. However, 𝛼 contains double labels, so this notation
does not clarify if it includes the first label or second label. The label index definition
makes this intent more rigourous.

Definition 4.5. Label symbol. A label symbol is defined as sym(𝛼) where

sym(𝜏) = {𝜏}
sym(𝑖 𝑗) = {𝑖, 𝑗}
sym(𝑖 𝑗⊛) = {𝑖, 𝑗⊛}
sym(𝑖 𝑗) = {𝑖, 𝑗}
sym(𝑖 𝑗•) = {𝑖, 𝑗•}

sym(𝛼) is the set of single label symbols of a label in the set of labels 𝛼 which recognises
the type of the label.

Finally, we define the revised ×𝜋-calculus transition relation in table 4.2.
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Inp1 𝜎 ` 𝑎(𝑏).𝑃 𝑖−−→ 𝜎 ` (𝑏).𝑃 𝑗−−→ 𝜎 ` 𝑃{𝑐/𝑏} 𝜎 (𝑖)=𝑎
𝜎 ( 𝑗)=𝑐

𝜎 ` 𝑎(𝑏).𝑃 𝑖 𝑗−−→ 𝜎 ` 𝑃{𝑐/𝑏}

Inp2
𝜎 ` 𝑎(𝑏).𝑃 𝑖−−→ 𝜎 ` (𝑏).𝑃 𝑗•−−→ 𝜎[ 𝑗 ↦→ 𝑏] ` 𝑃 𝜎 (𝑖)=𝑎

𝑗=min{ 𝑗 | 𝜎 ( 𝑗)∉fn(𝑃) }
𝑏∉img(𝜎)𝜎 ` 𝑎(𝑏).𝑃 𝑖 𝑗•−−→ 𝜎[ 𝑗 ↦→ 𝑏] ` 𝑃

Out 𝜎 ` �̄�𝑏.𝑃 𝑖−−→ 𝜎 ` 𝑏.𝑃 𝑗−−→ 𝜎 ` 𝑃 𝜎 (𝑖)=𝑎
𝜎 ( 𝑗)=𝑏

𝜎 ` �̄�𝑏.𝑃 𝑖 𝑗−−→ 𝜎 ` 𝑃

Res (𝜎 + 𝑎) ` 𝑃 𝛼−−→ (𝜎′ + 𝑎) ` 𝑃′
( |𝜎 |+1)∉ind(𝛼)

𝜎 ` 𝜈𝑎.𝑃 𝛼−−→ 𝜎′ ` 𝜈𝑎.𝑃′

Open (𝜎 + 𝑎) ` 𝑃 𝑖 𝑗−−→ (𝜎 + 𝑎) ` 𝑃′
𝑖≠ 𝑗

𝑗=( |𝜎 |+1)
𝑘=min{ 𝑖 | 𝜎 (𝑖)∉fn(𝑃′) }
𝑎∉img(𝜎)𝜎 ` 𝜈𝑎.𝑃 𝑖𝑘⊛−−−→ 𝜎[𝑘 ↦→ 𝑎] ` 𝑃′

Match1 𝜎 ` 𝑃 𝛼−−→ 𝜎′ ` 𝑃′

𝜎 ` [𝑎 = 𝑎]𝑃 𝛼−−→ 𝜎′ ` 𝑃′
Match2 𝜎 ` 𝑃 𝛼−−→ 𝜎′ ` 𝑃′

𝜎 ` [𝑎 ≠ 𝑏]𝑃 𝛼−−→ 𝜎′ ` 𝑃′

Rec 𝜎 ` 𝑃{ ®𝑎/®𝑏} 𝛼−−→ 𝜎′ ` 𝑃′
𝑝 ( ®𝑏)=𝑃

𝜎 ` 𝑝( ®𝑎) 𝛼−−→ 𝜎′ ` 𝑃′

Sum 𝜎 ` 𝑃 𝛼−−→ 𝜎′ ` 𝑃′

𝜎 ` 𝑃 +𝑄 𝛼−−→ 𝜎′ ` 𝑃′
Sumsym

𝜎 ` 𝑄 𝛼−−→ 𝜎′ ` 𝑄 ′

𝜎 ` 𝑃 +𝑄 𝛼−−→ 𝜎′ ` 𝑄 ′

Par1 𝜎 ` 𝑃 𝛼−−→ 𝜎 ` 𝑃′
𝑗•, 𝑗⊛∉sym(𝛼)

𝜎 ` 𝑃 | 𝑄 𝛼−−→ 𝜎 ` 𝑃′ | 𝑄

Par1sym
𝜎 ` 𝑄 𝛼−−→ 𝜎 ` 𝑄 ′

𝑗•, 𝑗⊛∉sym(𝛼)
𝜎 ` 𝑃 | 𝑄 𝛼−−→ 𝜎 ` 𝑃 | 𝑄 ′

Par2 𝜎 ` 𝑃 𝑖 𝑗•/𝑖 𝑗⊛−−−−−−→ 𝜎[ 𝑗 ↦→ 𝑏] ` 𝑃′
𝑘=min{ 𝑗 | 𝜎 ( 𝑗)∉fn(𝑃′,𝑄) }

𝜎 ` 𝑃 | 𝑄 𝑖𝑘•/𝑖𝑘⊛−−−−−−→ 𝜎[𝑘 ↦→ 𝑏] ` 𝑃′ | 𝑄

Par2sym
𝜎 ` 𝑄 𝑖 𝑗•/𝑖 𝑗⊛−−−−−−→ 𝜎[ 𝑗 ↦→ 𝑏] ` 𝑄 ′

𝑘=min{ 𝑗 | 𝜎 ( 𝑗)∉fn(𝑃,𝑄′) }

𝜎 ` 𝑃 | 𝑄 𝑖𝑘•/𝑖𝑘⊛−−−−−−→ 𝜎[𝑘 ↦→ 𝑏] ` 𝑃 | 𝑄 ′

Comm 𝜎 ` 𝑃 𝑖 𝑗−−→ 𝜎 ` 𝑃′ 𝜎 ` 𝑄 𝑖 𝑗−−→ 𝜎 ` 𝑄 ′

𝜎 ` 𝑃 | 𝑄 𝜏−−→ 𝜎 ` 𝑃′ | 𝑄 ′

Commsym
𝜎 ` 𝑃 𝑖 𝑗−−→ 𝜎 ` 𝑃′ 𝜎 ` 𝑄 𝑖 𝑗−−→ 𝜎 ` 𝑄 ′

𝜎 ` 𝑃 | 𝑄 𝜏−−→ 𝜎 ` 𝑃′ | 𝑄 ′

Close (♯ + 𝜎) ` 𝑃 𝑖1⊛−−−→ (𝑏 + 𝜎) ` 𝑃′ (♯ + 𝜎) ` 𝑄 𝑖1•−−→ (𝑏 + 𝜎) ` 𝑄 ′

𝜎 ` 𝑃 | 𝑄 𝜏−−→ 𝜎 ` 𝜈𝑏.(𝑃′ | 𝑄 ′)

Closesym
(♯ + 𝜎) ` 𝑃 𝑖1•−−→ (𝑏 + 𝜎) ` 𝑃′ (♯ + 𝜎) ` 𝑄 𝑖1⊛−−−→ (𝑏 + 𝜎) ` 𝑄 ′

𝜎 ` 𝑃 | 𝑄 𝜏−−→ 𝜎 ` 𝜈𝑏.(𝑃′ | 𝑄 ′)

Tab. 4.2: The revised transition relation for the ×𝜋-calculus.
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4.3 Transition relation structure

4.3.1 Data types

We define some structs to represent the configurations, registers, and labels.

type Configuration struct {
Process Element
Registers Registers
Label Label

}

type Registers struct {
Size int
Registers map[int]string

}

type Label struct {
Symbol Symbol
Symbol2 Symbol

}

type Symbol struct {
Type SymbolType
Value int

}

Listing 4.1: Data types to represent configurations, registers, and labels.

A configuration consists of a process, a register assignment, and a label taken to reach
this configuration. The register assignment holds a map which maps a label integer to a
name string. The label, representing an element in set 𝛼, is only a single type, which is
not polymorphised for practical convenience. The symbol struct holds the label symbol
type and label value. The symbol type represents the element types in sym(𝛼).

4.3.2 Register initialisation

The register assignment of the root configuration is initialised by populating the registers
with the free names of the undeclared and declared processes. 𝑛 number of free names
are sorted lexicographically and are assigned a label from 1 to 𝑛. The undeclared process,
already alpha-converted, is passed through a function which traverses the AST and finds
the free names. For declared processes, we alpha-convert the tree and find the free
names. For recursive process calls, a set of visited processes prevents infinite cycles.

The Size attribute of the register assignment is initialised by default to be virtually
unlimited. In practice, this is 230 (half of the positives in int32). The reason for the
finiteness of the registers is due to Tzevelekos’ definition of FRA’s. There is also a
practical purpose to having registers of limited size, which we will see in the transition
rules.
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4.3.3 Top-level transition function

trans() is a top-level function which performs all the transition rules by pattern matching
the first element in the process. Its function signature is

func trans(conf Configuration) []Configuration

which takes in a configuration and returns a list of all possible next configurations.

4.4 Transition rules

We shall now examine the rules thoroughly and how they differ from the original
transition rules. Transition rules are described by example for better understanding.
Implementation details can be extrapolated because the examples themselves describe
well the algorithm. Assume that all expressions given have undergone alpha-conversion,
and so the bound names correspond uniquely to their respective binders.

4.4.1 Input

Inp1 𝜎 ` 𝑎(𝑏).𝑃 𝑖−−→ 𝜎 ` (𝑏).𝑃 𝑗−−→ 𝜎 ` 𝑃{𝑐/𝑏} 𝜎 (𝑖)=𝑎
𝜎 ( 𝑗)=𝑐

𝜎 ` 𝑎(𝑏).𝑃 𝑖 𝑗−−→ 𝜎 ` 𝑃{𝑐/𝑏}

Inp2
𝜎 ` 𝑎(𝑏).𝑃 𝑖−−→ 𝜎 ` (𝑏).𝑃 𝑗•−−→ 𝜎[ 𝑗 ↦→ 𝑏] ` 𝑃 𝜎 (𝑖)=𝑎

𝑗=min{ 𝑗 | 𝜎 ( 𝑗)∉fn(𝑃) }
𝑏∉img(𝜎)𝜎 ` 𝑎(𝑏).𝑃 𝑖 𝑗•−−→ 𝜎[ 𝑗 ↦→ 𝑏] ` 𝑃

Tab. 4.3: The revised ×𝜋-calculus transition relation for input.

Inp1
𝜎 (𝑖)=𝑎

𝜎 ` 𝑎(𝑏).𝑃 𝑖−−→ 𝜎 ` (𝑏).𝑃

Inp2a
𝜎 (𝑖)=𝑎

𝜎 ` (𝑏).𝑃 𝑖−−→ 𝜎 ` 𝑃{𝑎/𝑏}

Inp2b
𝑖=min{ 𝑖 | 𝜎 (𝑖)∉fn(𝑃) }
𝑏∉img(𝜎)

𝜎 ` (𝑏).𝑃 𝑖•−−→ 𝜎[𝑖 ↦→ 𝑏] ` 𝑃

DblInp 𝜎 ` 𝑃 𝑖−−→ 𝜎 ` 𝑃inp
𝑗/ 𝑗•−−−→ 𝜎′ ` 𝑃′

𝜎 ` 𝑃 𝑖 𝑗/𝑖 𝑗•−−−−−→ 𝜎′ ` 𝑃′

Tab. 4.4: The original ×𝜋-calculus transition relation for input.

The two revised Inp rules replace the four original Inp and DblInp rules.
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Example 4.1. Input transition rule. Consider the configuration

{(1, 𝑎), (2, 𝑏)} ` 𝑎(𝑥).�̄�〈𝑥〉.0

From the original Inp1, this rule has no premise. As a result, we can directly take
the transition to (𝑥).�̄�〈𝑥〉.0 with label 𝑖. From the side condition, label 𝑖 is defined as
𝜎(𝑖) = 𝑎, meaning that 𝑖 is a label corresponding to the channel name 𝑎 in the registers
𝜎. In this case, 𝜎(1) = 𝑎, so 𝑖 = 1.

From (𝑥).�̄�〈𝑥〉.0, we can take both Inp2a and Inp2b. In Inp2a, the input intermediate
stage takes label 𝑖 to �̄�〈𝑥〉.0. From the side condition, 𝑖 corresponds to every name in
the register assignment, so we get two labels 1 and 2 from this rule, corresponding to 𝑎
and 𝑏, respectively. The conclusion also states that we must substitute the 𝑥’s in �̄�〈𝑥〉.0
with the label name. So the result becomes 1−−→ 𝜎 ` �̄�〈𝑎〉.0 and 2−−→ 𝜎 ` �̄�〈𝑏〉.0, with
𝜎 remaining the same. Inp2a represents the resultant configurations when the name
received on the channel is a name in the registers.

In Inp2b, from (𝑥).�̄�〈𝑥〉.0, we take the transition 𝑖• to �̄�〈𝑥〉.0. Notice the update on the
registers 𝜎[𝑖 ↦→ 𝑏]. 𝑖 is the minimum label of the register assignment where the name
corresponding to that label does not occur as a free name in �̄�〈𝑥〉.0. We see that 𝑎 does
not appear in 𝑃, so the result becomes 1•−−→ {(1, 𝑥), (2, 𝑏)} ` �̄�〈𝑥〉.0. If 𝑎 and 𝑏 did
appear in 𝑃, then the result becomes 3•−−→ {(1, 𝑎), (2, 𝑏), (3, 𝑥)} ` 𝑃, where we use the
next available label in 𝜎. 𝑏 ∉ img(𝜎) means to use a name which does not exist in the
register assignment. Since we alpha-converted the bound names to a generated name to
their binder, this cannot occur, and 𝑏 remains always unique.

From the above Inp rules, we get 𝑃 1−−→ 𝑃′
1−−→ 𝑄, 𝑃 1−−→ 𝑃′

2−−→ 𝑄 ′, and 𝑃
1−−→

𝑃′
1•−−→ 𝑄 ′′, where 𝑃, 𝑃′, 𝑄, 𝑄 ′, 𝑄 ′′ ∈ 𝑂 (�̂�). These transitions match with the premise

of DblInp, and as a result form 𝑃
11−−→ 𝑄, 𝑃 12−−→ 𝑄 ′, and 𝑃 11•−−→ 𝑄 ′′.

The revised transition relation performs the same steps but combines the original rules
Inp1, Inp2a, and DblInp to form Inp1 and Inp1, Inp2b, and DblInp to form Inp2.
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4.4.2 Output

Out 𝜎 ` �̄�𝑏.𝑃 𝑖−−→ 𝜎 ` 𝑏.𝑃 𝑗−−→ 𝜎 ` 𝑃 𝜎 (𝑖)=𝑎
𝜎 ( 𝑗)=𝑏

𝜎 ` �̄�𝑏.𝑃 𝑖 𝑗−−→ 𝜎 ` 𝑃

Tab. 4.5: The revised ×𝜋-calculus transition relation for output.

Out1
𝜎 (𝑖)=𝑎

𝜎 ` �̄�𝑏.𝑃 𝑖−−→ 𝜎 ` 𝑏.𝑃 Out2
𝜎 (𝑖)=𝑏

𝜎 ` 𝑏.𝑃 𝑖−−→ 𝜎 ` 𝑃

DblOut 𝜎 ` 𝑃 𝑖−−→ 𝜎 ` 𝑃out
𝑗/ 𝑗⊛−−−−→ 𝜎′ ` 𝑃′

𝜎 ` 𝑃 𝑖 𝑗/𝑖 𝑗⊛−−−−−→ 𝜎′ ` 𝑃′

Tab. 4.6: The original ×𝜋-calculus transition relation for output.

Example 4.2. Output transition rule. Consider the configuration 𝜎 ` 𝑃

{(1, 𝑎), (2, 𝑏)} ` �̄�〈𝑏〉.0

From the original Out1, we take the transition 1−−→ 𝜎 ` 〈𝑏〉.0, with 1 corresponding to
the channel name 𝑎. Consequently, we apply the rule Out2, where we get 𝜎 ` 〈𝑏〉.0 2−−→
𝜎 ` 0. The label 2 corresponds to the output name 𝑏. With the transition 𝜎 ` �̄�〈𝑏〉.0 1−−→
𝜎 ` 〈𝑏〉.0 2−−→ 𝜎 ` 0, we apply DblOut to get 𝜎 ` �̄�〈𝑏〉.0 1̄2−−→ 𝜎 ` 0. This can be read
as on the channel name with label 1 (corresponding to the name 𝑎), output the name
with label 2 (corresponding to the name 𝑏).

In the revised Out rule, the actions described above are combined into one rule.

4.4.3 Restriction

Res (𝜎 + 𝑎) ` 𝑃 𝛼−−→ (𝜎′ + 𝑎) ` 𝑃′
( |𝜎 |+1)∉ind(𝛼)

𝜎 ` 𝜈𝑎.𝑃 𝛼−−→ 𝜎′ ` 𝜈𝑎.𝑃′

Tab. 4.7: The revised ×𝜋-calculus transition rule for restriction.

Res (𝜎 + 𝑎) ` �̂� 𝛼−−→ (𝜎′ + 𝑎) ` 𝑃′
𝛼≠( |𝜎 |)+1)

𝜎 ` 𝜈𝑎.�̂� 𝛼−−→ 𝜎′ ` 𝜈𝑎.𝑃′

Tab. 4.8: The original ×𝜋-calculus transition rule for restriction.
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In the revised Res rule, there are some small differences compared with the original
rule. Note the replacement �̂� with 𝑃, which now excludes intermediate stages. 𝛼

is redefined to eliminate single label transitions. The side condition provides a more
rigorous definition than the original.

Note the syntax (𝜎 + 𝑎). This is defined as 𝜎 + 𝑣 = 𝜎 ∪ {(|𝜎 |+1, 𝑣)}. This means
placing a name at the register assignment size+1’th label of the registers. Register
assignment size refers to the maximum size of the registers, not the number of existing
label-name pairs in the register assignment. For implementing this operation, by default
we previously specified the size of the registers to be extremely large (230). This specifies
a label index to place a name and that populating all the register slots up to this point
becomes unlikely.

Example 4.3. Restriction transition rule. Consider the configuration

{(1, 𝑎)} ` 𝜈𝑏.𝑎(𝑥).0

and suppose the size of the registers is 100. The restriction element pattern matches
with the revised Res rule. We perform the premise and apply the (𝜎 + 𝑎) operation.
The bound name 𝑏 is placed at the label 101, resulting in {(1, 𝑎), (101, 𝑏)}. With
this register assignment, we gather the next transitions 11−−→ {(1, 𝑎), (101, 𝑏)} ` 0 and
11•−−→ {(1, 𝑥), (101, 𝑏)} ` 0. In the premise, note that the registers 𝜎 may change, hence
𝜎′. This occurs for the second result. In the conclusion, we must remove the name
added at the label register assignment size+1, but retain the altered labels of 𝜎′. We do
this and also decrement the register assignment size by one, which allows for keeping
track of nested restrictions. As a result, the conclusions are 11−−→ {(1, 𝑎)} ` 𝜈𝑏.0 and
11•−−→ {(1, 𝑥)} ` 𝜈𝑏.0.

Consider also the configuration

{(1, 𝑎)} ` 𝜈𝑏.�̄�〈𝑎〉.0

From inspection, we see that this expression is ‘stuck’. This is because the name 𝑏 is
bound and we attempt to send a name on this bound channel. As a result, we expect no
next transitions. The side condition of the Res rule captures this behaviour and prevents
these potential transitions. We attempt the premise of the rule and find the transition
101 1−−−−→ {(1, 𝑥), (101, 𝑏)} ` 0. However, the side condition states that neither the first

nor second label should be the bound name label 101. Therefore, we discard our only
transition, which results in no conclusions. When the second label is the bound name,
the Open rule takes effect.
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4.4.4 Open

Open (𝜎 + 𝑎) ` 𝑃 𝑖 𝑗−−→ (𝜎 + 𝑎) ` 𝑃′
𝑖≠ 𝑗

𝑗=( |𝜎 |+1)
𝑘=min{ 𝑖 | 𝜎 (𝑖)∉fn(𝑃′) }
𝑎∉img(𝜎)𝜎 ` 𝜈𝑎.𝑃 𝑖𝑘⊛−−−→ 𝜎[𝑘 ↦→ 𝑎] ` 𝑃′

Tab. 4.9: The revised ×𝜋-calculus transition rule for open.

Open
𝜎[𝑖 ↦→ 𝑎] ` 𝑃out

𝑖−−→ 𝜎[𝑖 ↦→ 𝑎] ` 𝑃 𝑖=min{ 𝑖 | 𝜎 (𝑖)∉fn(𝑃) }
𝑎∉img(𝜎)

𝜎 ` 𝜈𝑎.𝑃out
𝑖⊛−−→ 𝜎[𝑖 ↦→ 𝑎] ` 𝑃

Tab. 4.10: The original ×𝜋-calculus transition rule for open.

The Open rule captures the transition of fresh outputs where a bound name of a restriction
is sent as an output name. In the revised rule, we make a number of changes. The
intermediate stage of 𝑃out cannot occur anymore and the intended transition is converted
to a double label. Instead of placing the bound name at the minimum available label
𝜎[𝑖 ↦→ 𝑎] at the premise, we place it at the register assignment size+1 label (𝜎 + 𝑎), like
with Res. Also, instead of representing the bound name transition implicitly in the rule,
we introduce the side condition such that the second label 𝑗 = (|𝜎 | + 1). In addition,
𝑖 ≠ 𝑗 , so that the channel name cannot be the bound name. Finally, if we do fulfil the
premise, we place this bound name at the minimum available label 𝜎[𝑘 ↦→ 𝑎]. Because
of alpha-conversion, we do not need to take any actions for 𝑎 ∉ img(𝜎).

Example 4.4. Open transition rule. Consider the configuration 𝜎 ` 𝜈𝑎.𝑃

{(1, 𝑎)} ` 𝜈𝑏.�̄�〈𝑏〉.0

and suppose the size of the registers is 100. We perform the operation (𝜎+𝑎) and gather

the transition for 𝑃, resulting in 1̄ 101−−−−→ {(1, 𝑎), (101, 𝑏)} ` 0. We see that the this is an
output with the second label corresponding to the bound name 𝑏, i.e., it sends the bound
name 𝑏 on channel 𝑎. The premise is fulfilled and we form the conclusion. We take the
starting 𝜎 and place the bound name at the minimum label where that label’s name is not
used in 𝑃′. This label also replaces the second label of the conclusion and is converted

to a fresh output label symbol. As a result, we form the conclusion 11⊛−−−→ {(1, 𝑏)} ` 0.
The restriction disappears as it is now a free name.
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4.4.5 Match

Match1 𝜎 ` 𝑃 𝛼−−→ 𝜎′ ` 𝑃′

𝜎 ` [𝑎 = 𝑎]𝑃 𝛼−−→ 𝜎′ ` 𝑃′
Match2 𝜎 ` 𝑃 𝛼−−→ 𝜎′ ` 𝑃′

𝜎 ` [𝑎 ≠ 𝑏]𝑃 𝛼−−→ 𝜎′ ` 𝑃′

Tab. 4.11: The revised ×𝜋-calculus transition rule for match.

Match 𝜎 ` 𝑃 𝛼−−→ 𝜎 ` 𝑃′
𝜎 ` [𝑎 = 𝑎]𝑃 𝛼−−→ 𝜎 ` 𝑃′

Tab. 4.12: The original ×𝜋-calculus transition relation for match.

The revised Match1 rule differs subtly from the original. �̂� is replaced with 𝑃, which
excludes the intermediate input/outputs. 𝜎 becomes 𝜎′, meaning that in the revised rule,
the registers may be subject to change. Also note that 𝛼 is redefined, which includes
only double transitions and tau steps only.

The Match2 rule is introduced to accommodate for the inequality construct [𝑎≠𝑏]𝑃,
which was not originally defined in the ×𝜋-calculus language by Tzevelekos. Its rule is
identical to Match1, except that the condition is inequality rather than equality.

Example 4.5. Match transition rule. Consider the configuration

{(1, 𝑎)} ` 𝑎(𝑥).[𝑎=𝑥]𝜈𝑏.�̄�〈𝑏〉.0

We take 11−−→ {(1, 𝑎)} ` [𝑎=𝑎]𝜈𝑏.�̄�〈𝑏〉.0 from Inp1 and 12•−−→ {(1, 𝑎), (1, 𝑥)} ` [𝑎=𝑥]𝜈𝑏.�̄�〈𝑏〉.0
from Inp2. For the first result where the bound name 𝑥 is substituted with 𝑎, the Match1
rule to can proceed. In contrast, for the second result, the name 𝑥 becomes a fresh input,
thus the equality 𝑎=𝑥 does not hold, and so the expression cannot be reduced further.

From the first result, we can therefore apply the Match1 rule, resulting in 1̄1⊛−−−→ {(1, 𝑏)} `
0 from Open. This result shows the rationale behind the 𝜎′ in the revised rule, as 𝜎 may
change from the starting registers, as in this case. For the second result, if the construct
is [𝑎≠𝑥]𝑃, then we would be able to continue by the Match2 rule.
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4.4.6 Recursion

Rec 𝜎 ` 𝑃{ ®𝑎/®𝑏} 𝛼−−→ 𝜎′ ` 𝑃′
𝑝 ( ®𝑏)=𝑃

𝜎 ` 𝑝( ®𝑎) 𝛼−−→ 𝜎′ ` 𝑃′

Tab. 4.13: The revised ×𝜋-calculus transition rule for recursion.

Rec 𝜎 ` 𝑃{ ®𝑎/®𝑏} 𝛼−−→ 𝜎 ` 𝑃′
𝑝 ( ®𝑏)=𝑃

𝜎 ` 𝑝( ®𝑎) 𝛼−−→ 𝜎 ` 𝑃′

Tab. 4.14: The original ×𝜋-calculus transition rule for recursion.

Note the changes in 𝑃′, 𝜎′, and the redefined 𝛼.

Example 4.6. Recursion transition rule. Consider the definition and configuration

𝑝(𝑥, 𝑦) = 𝑥〈𝑦〉.0
{(1, 𝑎)} ` 𝑎(𝑏).𝑝(𝑎, 𝑏)

We take 11−−→ {(1, 𝑎)} ` 𝑝(𝑎, 𝑎) from Inp1 and 12•−−→ {(1, 𝑎), (2, 𝑏)} ` 𝑝(𝑎, 𝑏) from Inp2.
When we encounter a process call, we replace the names ®𝑏 of the process definition
with the names ®𝑎 of the process call, similar to function parameters and arguments
in programming languages. Unfolding the definition, the first result’s process resolves
to �̄�〈𝑎〉.0 and the second to �̄�〈𝑏〉.0. The next transition from the first result gathers
1̄1−−→ {(1, 𝑎)} ` 0 and from the second 1̄2−−→ {(1, 𝑎), (2, 𝑏)} ` 0.

4.4.7 Sum

Sum 𝜎 ` 𝑃 𝛼−−→ 𝜎′ ` 𝑃′

𝜎 ` 𝑃 +𝑄 𝛼−−→ 𝜎′ ` 𝑃′
Sumsym

𝜎 ` 𝑄 𝛼−−→ 𝜎′ ` 𝑄 ′

𝜎 ` 𝑃 +𝑄 𝛼−−→ 𝜎′ ` 𝑄 ′

Tab. 4.15: The revised ×𝜋-calculus transition relation for summation.

Sum 𝜎 ` 𝑃 𝛼−−→ 𝜎 ` 𝑃′
𝜎 ` 𝑃 +𝑄 𝛼−−→ 𝜎 ` 𝑃′

Sumsym
𝜎 ` 𝑄 𝛼−−→ 𝜎 ` �̂� ′

𝜎 ` 𝑃 +𝑄 𝛼−−→ 𝜎 ` �̂� ′

Tab. 4.16: The original ×𝜋-calculus transition relation for summation.
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The summation transition relation comprises of both the Sum rule and its symmetric
counterpart Sumsym, representing the selection of the left-hand side process and right-
hand side process, respectively.

Example 4.7. Sum transition rule. Consider the configuration with process 𝑃 +𝑄,

{(1, 𝑎), (2, 𝑏)} ` �̄�〈𝑏〉.0 + 𝑎(𝑥).0

The Sum rule attempts the premise, which gathers the transition 1̄2−−→ {(1, 𝑎), (2, 𝑏)} ` 0.
This transition is also the conclusion which discards the possibility of taking the process
𝑄. In addition, the Sumsym rule also applies, which performs the same rule for the process
𝑄. We get 11−−→ {(1, 𝑎), (2, 𝑏)} ` 0, 12−−→ {(1, 𝑎), (2, 𝑏)} ` 0, and 11•−−→ {(1, 𝑥), (1, 𝑏)} ` 0.
Note that the registers change to 𝜎′ for the last result, which is present only in the revised
transition rule.

4.4.8 Parallel

Par1 𝜎 ` 𝑃 𝛼−−→ 𝜎 ` 𝑃′
𝑗•, 𝑗⊛∉sym(𝛼)

𝜎 ` 𝑃 | 𝑄 𝛼−−→ 𝜎 ` 𝑃′ | 𝑄

Par1sym
𝜎 ` 𝑄 𝛼−−→ 𝜎 ` 𝑄 ′

𝑗•, 𝑗⊛∉sym(𝛼)
𝜎 ` 𝑃 | 𝑄 𝛼−−→ 𝜎 ` 𝑃 | 𝑄 ′

Par2 𝜎 ` 𝑃 𝑖 𝑗•/𝑖 𝑗⊛−−−−−−→ 𝜎[ 𝑗 ↦→ 𝑏] ` 𝑃′
𝑘=min{ 𝑗 | 𝜎 ( 𝑗)∉fn(𝑃′,𝑄) }

𝜎 ` 𝑃 | 𝑄 𝑖𝑘•/𝑖𝑘⊛−−−−−−→ 𝜎[𝑘 ↦→ 𝑏] ` 𝑃′ | 𝑄

Par2sym
𝜎 ` 𝑄 𝑖 𝑗•/𝑖 𝑗⊛−−−−−−→ 𝜎[ 𝑗 ↦→ 𝑏] ` 𝑄 ′

𝑘=min{ 𝑗 | 𝜎 ( 𝑗)∉fn(𝑃,𝑄′) }

𝜎 ` 𝑃 | 𝑄 𝑖𝑘•/𝑖𝑘⊛−−−−−−→ 𝜎[𝑘 ↦→ 𝑏] ` 𝑃 | 𝑄 ′

Tab. 4.17: The revised ×𝜋-calculus transition relation for composition.

Par1 𝜎 ` 𝑃 𝛼−−→ 𝜎 ` 𝑃′
𝜎 ` 𝑃 | 𝑄 𝛼−−→ 𝜎 ` 𝑃′ | 𝑄

Par1sym
𝜎 ` 𝑄 𝛼−−→ 𝜎 ` �̂� ′

𝜎 ` 𝑃 | 𝑄 𝛼−−→ 𝜎 ` 𝑃 | �̂� ′

Par2
𝜎 ` �̂� 𝑖•/𝑖⊛−−−−→ 𝜎[𝑖 ↦→ 𝑏] ` 𝑃′

𝑗=min{ 𝑗 | 𝜎 ( 𝑗)∉fn(𝑃′,𝑄) }

𝜎 ` �̂� | 𝑄 𝑗•/ 𝑗⊛−−−−−→ 𝜎[ 𝑗 ↦→ 𝑏] ` 𝑃′ | 𝑄

Par2sym
𝜎 ` �̂� 𝑖•/𝑖⊛−−−−→ 𝜎[𝑖 ↦→ 𝑏] ` 𝑄 ′

𝑗=min{ 𝑗 | 𝜎 ( 𝑗)∉fn(𝑃,𝑄′) }

𝜎 ` 𝑃 | �̂� 𝑗•/ 𝑗⊛−−−−−→ 𝜎[ 𝑗 ↦→ 𝑏] ` 𝑃 | 𝑄 ′

Tab. 4.18: The original ×𝜋-calculus transition relation for composition.
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Two rules Par1 and Par2, and their symmetric counterparts, are required to deal with
the fresh input/output cases. In the revised rule, we make it explicit in Par1 that
the rule only deals with non-fresh input/outputs. In contrast, in the original Par1,
this non-fresh input/output rule is implicitly captured by the unchanged 𝜎, because
only fresh input/outputs can change the registers. So, for practicality and clarity, the
𝑗•, 𝑗⊛ ∉ sym(𝛼) side condition was added to the revised Par1.

The Par2 rule was revised to take into account only double fresh input/outputs, since
single labels are eliminated. The differences are slight. In the revised rule, we check
the second label to see if it’s a fresh input/output, and if so, then move its label to the
minimum label as per the side condition, which is performed also in the original rule.

Example 4.8. Parallel transition rule. Consider the configuration with process 𝑃 | 𝑄,

{(1, 𝑎), (2, 𝑏)} ` �̄�〈𝑏〉.0 | 𝑏(𝑥).0

The starting configuration of the premise of the revised Par1 and Par2 do not differ.
The premise’s result of the two rules are disjoint. As a result, we can gather the results
and see which Par rule they match with. Taking the premise transitions of 𝑃, the result

is 1̄2−−→ {(1, 𝑎), (2, 𝑏)} ` 0. We see that this is not a fresh input/output, so we can take
the conclusion of Par1 using this transition. As a result, we form a parallel with 𝑄 and

get 1̄2−−→ {(1, 𝑎), (2, 𝑏)} ` 0 | 𝑏(𝑥).0.

Performing the premise of the symmetric rules Par1sym and Par2sym on the other process
𝑄, we get 21−−→ {(1, 𝑎), (2, 𝑏)} ` 0, 22−−→ {(1, 𝑎), (2, 𝑏)} ` 0, and 23•−−→ {(1, 𝑎), (2, 𝑏), (3, 𝑥)} `
0. The first and second result matches with Par1sym, resulting in 21−−→ {(1, 𝑎), (2, 𝑏)} `
�̄�〈𝑏〉.0 | 0 and 22−−→ {(1, 𝑎), (2, 𝑏)} ` �̄�〈𝑏〉.0 | 0. However, for the third result, we can
see that the second label contains a fresh input, thus it matches with the Par2sym rule.
From the resultant configuration of the premise, the registers become 𝜎[ 𝑗 ↦→ 𝑏]. In his
case, 𝑗 = 3, which maps to the name 𝑥. The conclusion maps this name to a label 𝑘 ,
as specified by the side condition, which states that 𝑘 is the minimum label where the
name at that label does not appear as a free name in 𝑃 or 𝑄 ′. This means that we use
the minimum unused label. However, in this case, we see that the names 𝑎 and 𝑏 appear
in 𝑃, so the minimum label is the next available label, which is 3. So the conclusion
is 23•−−→ {(1, 𝑎), (2, 𝑏), (3, 𝑥)} ` �̄�〈𝑏〉.0 | 0. If 𝑎 did not appear in 𝑃 or 𝑄 ′, we would
get the label 21• and register assignment {(1, 𝑥), (2, 𝑏)}, where the name 𝑎 in label 1 is
overwritten.
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4.4.9 Communication

Comm 𝜎 ` 𝑃 𝑖 𝑗−−→ 𝜎 ` 𝑃′ 𝜎 ` 𝑄 𝑖 𝑗−−→ 𝜎 ` 𝑄 ′

𝜎 ` 𝑃 | 𝑄 𝜏−−→ 𝜎 ` 𝑃′ | 𝑄 ′

Commsym
𝜎 ` 𝑃 𝑖 𝑗−−→ 𝜎 ` 𝑃′ 𝜎 ` 𝑄 𝑖 𝑗−−→ 𝜎 ` 𝑄 ′

𝜎 ` 𝑃 | 𝑄 𝜏−−→ 𝜎 ` 𝑃′ | 𝑄 ′

Tab. 4.19: The ×𝜋-calculus transition relation (both original and revised) for communication.

The revised communication rule is identical to the original rule due to the exclusive
use of double transitions and taus. The communication rule captures the sending and
receiving of a variable along channels of the same name in parallel processes. Notice that
there are two premises for Comm, one each for the left and right-hand side processes.

Example 4.9. Communication transition rule. Consider the configuration with
process 𝑃 | 𝑄,

{(1, 𝑎), (2, 𝑏)} ` �̄�〈𝑏〉.0 | 𝑎(𝑥).0

By taking the transitions of 𝑃, we get 1̄2−−→ {(1, 𝑎), (2, 𝑏)} ` 0. The transitions of 𝑄
are 11−−→ {(1, 𝑎), (2, 𝑏)} ` 0, 12−−→ {(1, 𝑎), (2, 𝑏)} ` 0, and 11•−−→ {(1, 𝑥), (2, 𝑏)} ` 0. The
Comm rule states that the double output labels of the left-hand side 𝑃 must match with
the double input labels of the right-hand side 𝑄, i.e., 𝑖 = 𝑖 ∧ 𝑗 = 𝑗 . In this case, we see
the paired labels 1̄2 and 12. As a result, we can take the tau step conclusion, resulting in
𝜏−−→ {(1, 𝑎), (2, 𝑏)} ` 0 | 0. The Commsym rule performs the equivalent steps, except the

input and output sides are swapped.

4.4.10 Close

Close (♯ + 𝜎) ` 𝑃 𝑖1⊛−−−→ (𝑏 + 𝜎) ` 𝑃′ (♯ + 𝜎) ` 𝑄 𝑖1•−−→ (𝑏 + 𝜎) ` 𝑄 ′

𝜎 ` 𝑃 | 𝑄 𝜏−−→ 𝜎 ` 𝜈𝑏.(𝑃′ | 𝑄 ′)

Closesym
(♯ + 𝜎) ` 𝑃 𝑖1•−−→ (𝑏 + 𝜎) ` 𝑃′ (♯ + 𝜎) ` 𝑄 𝑖1⊛−−−→ (𝑏 + 𝜎) ` 𝑄 ′

𝜎 ` 𝑃 | 𝑄 𝜏−−→ 𝜎 ` 𝜈𝑏.(𝑃′ | 𝑄 ′)

Tab. 4.20: The ×𝜋-calculus transition relation (both original and revised) for close.

The close rule is no different for the revised transition relation. The rule captures scope
extension of a restriction in one process to include two processes.
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Note the syntax (♯ + 𝜎). This is defined as 𝑣 + 𝜎 = {(1, 𝑣)} ∪ {(𝑖+1, 𝑣′) | (𝑖, 𝑣′) ∈ 𝜎}.
This means incrementing all the labels by one in the registers while retaining a mapping
to their names. Then, we place the special name ♯ at label 1.

Example 4.10. Close transition rule. Consider the configuration with process 𝑃 | 𝑄,

{(1, 𝑎)} ` 𝜈𝑏.�̄�〈𝑏〉.0 | 𝑎(𝑐).0

We perform the operation (♯ + 𝜎) on the registers and find the transitions of 𝑃. The

result is 2̄1⊛−−−→ {(1, 𝑏), (2, 𝑎)} ` 0 from Open. Note the position of (2, 𝑎) because
we shifted the label-names right by one. We fulfil the premise’s transition criteria
of 𝑖1⊛. Conversely, we perform the (♯ + 𝜎) operation and find the transitions of
𝑄. We gather 21−−→ {(1, ♯), (2, 𝑎)} ` 0 and 22−−→ {(1, ♯), (2, 𝑎)} ` 0 from Inp1, and
21•−−→ {(1, 𝑐), (2, 𝑎)} ` 0 from Inp2. Because of the 𝑖1• condition for𝑄, we can disregard

the first two results.

This leaves us with the matching premises 2̄1⊛−−−→ {(1, 𝑏), (2, 𝑎)} ` 0 and 21•−−→ {(1, 𝑐), (2, 𝑎)} `
0. Note that that the second result does not match exactly with the premise due to a
different name 𝑐 at label 1 in the register assignment. The rule states that the both the
resultant registers should be (𝑏+𝜎). However, it is expected that the names are different
because it is impossible to have a fresh output and fresh input to be of the same name
due to alpha-conversion. To amend this, we substitute the name 𝑐 with 𝑏, so𝑄 ′ becomes
𝑄 ′{𝑏/𝑐}. This is allowed because any fresh name can be chosen for fresh input. In the
Close rule, this subtle step is implicit. As a result from these two premises, we can
form the conclusion 𝜏−−→ {(1, 𝑏), (2, 𝑎)} ` 𝜈𝑏.(0 | 0).
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5Congruence

After applying the transition rules, we find that there are seemingly different states, or
configurations, which can be considered equivalent.

5.1 Structural congruence

Definition 5.1. Structural congruence. [1, p. 31, definition 4.7]. Structural con-
gruence, written ≡, is the process congruence over P determined by the following
equations:

(1) Change of bound names (alpha-conversion)
(2) Reordering of terms in a summation
(3) 𝑃 |0 ≡ 𝑃, 𝑃 |𝑄 ≡ 𝑄 |𝑃, 𝑃 | (𝑄 |𝑅) ≡ (𝑃 |𝑄) |𝑅
(4) 𝜈𝑎.(𝑃 |𝑄) ≡ 𝑃 |𝜈𝑎.𝑄 if 𝑎 ∉ fn(𝑃)

𝜈𝑎.0 ≡ 0, 𝜈𝑎.𝜈𝑏.𝑃 ≡ 𝜈𝑏.𝜈𝑎.𝑃
(5) 𝐴〈®𝑏〉 ≡ {®𝑏/®𝑎}𝑃𝐴 if 𝐴( ®𝑎) def

= 𝑃𝐴

5.2 Configuration congruence

Structural congruence only deals with processes. However, in our case, each state
comprises of both a process and a register assignment. Therefore, we extend this
notion of congruence in order to accommodate the definition of configurations in the
×𝜋-calculus. A number of definitions are introduced to build up the definition of
configuration congruence.

Definition 5.2. Well-formed configuration. A configuration 𝜎 ` 𝑃 ∈ 𝑂 (𝐾) is
well-formed when

(1) 𝜎 is a register assignment, and
(2) ∀𝑎 ∈ fn(𝑃), ∃𝑖 : 𝜎(𝑖) = 𝑎

𝜎 is the register assignment from the set of register assignments Reg𝑛 as defined by
FRA’s, with register size of size 𝑛. There must not be any duplicate names in the
registers. For all the free names in the process 𝑃, there exists a label in the register
assignment corresponding to that name. Fulfilling these criteria constitutes to a valid or
well-formed configuration 𝜎 ` 𝑃.
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Definition 5.3. Permutation. A permutation is a function 𝜋 : N ⇄ N . 𝜋 is a total
bĳective mapping between names, where N is the set of free names.

The notion of a permutation is formalised by De Vries and Koutavas [25, p. 6] in the paper
Locally Nameless Permutation Types. In this case, we use a permutation to bĳectively
map free names. For example, the configurations {(1, 𝑎)} ` �̄�〈𝑎〉.0 and {(1, 𝑏)} `
�̄�〈𝑏〉.0 are equivalent in all but the free name. However, for the second configuration, if
we have the permutation 𝜋(𝑏) = 𝑎, then the process becomes {(1, 𝑎)} ` �̄�〈𝑎〉.0, which
matches with the first configuration. We formally define permutations for registers and
processes.

Definition 5.4. Permuted registers. A permutation 𝜋 on register assignment 𝜎 is
defined as

𝜋𝜎 = {(𝑖, 𝜋(𝑎)) | 𝜎(𝑖) = 𝑎}

This applies the permutation 𝜋 on all names in the register assignment 𝜎.

Definition 5.5. Permuted process. A permutation 𝜋 on process 𝑃 is defined as 𝜋𝑃,
where

𝜋𝑎(𝑏).𝑃 = 𝜋(𝑎) (𝑏).𝜋𝑃
𝜋�̄�〈𝑏〉.𝑃 = 𝜋(𝑎)〈𝜋(𝑏)〉.𝜋𝑃
𝜋[𝑎=𝑏]𝑃 = [𝜋(𝑎)=𝜋(𝑏)]𝜋𝑃
𝜋[𝑎≠𝑏]𝑃 = [𝜋(𝑎)≠𝜋(𝑏)]𝜋𝑃
𝜋𝜈𝑎.𝑃 = 𝜈𝑎.𝜋𝑃

𝜋(𝑃 +𝑄) = 𝜋𝑃 + 𝜋𝑄
𝜋(𝑃 | 𝑄) = 𝜋𝑃 | 𝜋𝑄
𝜋𝑝( ®𝑎) = 𝑝({𝜋(𝑎) | 𝑎 ∈ ®𝑎})
𝜋0 = 0

This applies the permutation 𝜋 on all ×𝜋-calculus constructs in the process 𝑃. Note that
the bound names in input and restriction are left untouched. Since bound names are
placeholders, these can be represented by any name.

Definition 5.6. Permuted configuration. A permutation 𝜋 on configuration 𝜎 ` 𝑃 is
defined as 𝜋(𝜎 ` 𝑃) = 𝜋𝜎 ` 𝜋𝑃.

This applies the permutation 𝜋 on the configuration 𝜎 ` 𝑃. Finally, from this definition,
we introduce configuration congruence.
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Definition 5.7. Configuration congruence. Two configurations 𝜎 ` 𝑃 and 𝜎′ ` 𝑃′
are configuration congruent, written 𝜎 ` 𝑃 ≡ 𝜎′ ` 𝑃′, if ∃𝜋 such that

(1) 𝜎 = 𝜋𝜎′, and
(2) 𝑃 ≡ 𝜋𝑃′

This states that if there is a permutation 𝜋 which matches the names of 𝜎′ ` 𝑃′ to the
names of 𝜎 ` 𝑃, then we can conclude that the two configurations are equivalent. From
this definition, we can derive some interesting properties.

Lemma 5.1. 𝜎 ` 𝑃 ≡ 𝜎′ ` 𝑃′ implies 𝜎 ` 𝑃 ×𝜋∼ 𝜎′ ` 𝑃′, where ×𝜋∼ is an ×𝜋-
bisimulation as defined by Tzevelekos [5, p. 303, definition 33].

If two configurations are congruent, then it is no surprise that they are bisimilar.

Lemma 5.2. 𝜎 ` 𝑃 ≡ 𝜎′ ` 𝑃′ implies 𝜋 · 𝜋 · 𝑃 = 𝑃.

Applying the permutation 𝜋 on 𝑃 results in 𝜋𝑃 which matches with the names of 𝑃′.
Applying the same permutation 𝜋 on 𝜋𝑃 results in 𝜋𝜋𝑃 which is the same as 𝜋𝑃′, or
𝑃.

Corollary 5.1. 𝜎 ` 𝑃 ≡ 𝜎′ ` 𝑃′ implies 𝑃 = 𝜋𝑃′⇒ 𝑃′ = 𝜋𝑃.

If a permutation 𝜋 exists for 𝑃′ matching 𝑃, then there also exists a permutation for 𝑃
matching 𝑃′.

Lemma 5.2 and corollary 5.1 can also be extended to include exclusively the registers 𝜎
and also the entire configuration 𝜎 ` 𝑃.

5.3 Normalisation

From these definitions, the goal is to convert a configuration 𝜎 ` 𝑃 into a normal form,
so that equivalent configurations can be detected.

5.3.1 Configuration key

The practical approach to assessing for configuration congruence is to stringify, or pretty-
print, the registers and process and concatenate the two strings. Obtaining the key of a
configuration 𝜎 ` 𝑃 is

key(𝜎 ` 𝑃) = str(𝜎) + str(𝑃)

where str() stringifies the registers or process, + concatenates two strings, and key()
is a function which gets the configuration key. The key is the unique identifier of the
configuration and can be thought of as a fingerprint or hash.
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5.3.2 Free name normalisation

The root configuration 𝜎 ` 𝑃 is initialised to a normalised register assignment and
process. Normalising the names in the registers 𝜎 consist of applying a permutation 𝜋
to the names. This is achieved by the following definition.

Definition 5.8. Normalised registers. A register assignment 𝜎 of size 𝑛 is normalised
when a function 𝜋 is applied on 𝜎, which is defined as

𝜋𝜎 =
−−−−→(𝑖, 𝑎𝑖) =

−−−−−→( 𝑗 , 𝑎 𝑗) ∪ {(𝑖, #𝑖) | 𝑖 ≤ 𝑛, 𝑖 ∉ { ®𝑗}, #𝑖 ∉ { ®𝑎 𝑗}}

A normalised register assignment is one where all the names in the registers are renamed
to a generated free name of the form #1, #2, ..., #𝑛, 𝑛 ∈ N. For example, the normalised
registers of {(1, 𝑎), (2, 𝑏), (3, 𝑥)} is {(1, #1), (2, #2), (3, #3)}. The initialisation of a
normalised register assignment becomes useful for detecting equivalent configurations
in fresh input/outputs and standardises the free names.

Following from the definition of a well-formed configuration, applying the above proce-
dure also implies that the names in process 𝑃 are renamed to the normalised name.

5.3.3 Bound and fresh name normalisation

The need to normalise bound and fresh names is best explained through an example.

Example 5.1. Bound and fresh name normalisation. Consider the configuration

{(1, 𝑎)} ` 𝑎(𝑥).0 + 𝑎(𝑦).0

After alpha-conversion, the process becomes 𝑎(𝑥_0).0+ 𝑎(𝑦_1).0. After the sum rule is
applied, the result for the left-hand side process is 11−−→ {(1, 𝑎)} ` 0 and 11•−−→ {(1, 𝑥_0)} `
0. The result for the right-hand side process is 11−−→ {(1, 𝑎)} ` 0 and 11•−−→ {(1, 𝑦_1)} ` 0.
We see that the results 11−−→ {(1, 𝑎)} ` 0 from the left and right-hand side are configuration
congruent. For the remaining results, we see that the second left and right-hand side
processes are equivalent in all but the fresh name in the registers.

The name of a bound name is unimportant in a process. The name only identifies its
binding scope. When the bound name becomes free under fresh input/output, its name is
placed in a register. For convenience, we use the bound name, as in this case. However,
as we can see, the use of this causes difficulty for detecting congruence. As a result, we
need to normalise the bound and fresh names.

Before the application of the transition rules, a configuration undergoes name normalisa-
tion steps. The 𝑛 unique bound names in the process are converted to a normalised name
of the form &1,&2, ...,&𝑛. So 𝑎(𝑥_0).0 + 𝑎(𝑦_1).0 becomes 𝑎(&1).0 + 𝑎(&2).0. We
then apply the rules to obtain the fresh input results 11•−−→ {(1,&1)} ` 0 for the left-hand
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side and 11•−−→ {(1,&2)} ` 0 for the right-hand side. However, we are not finished yet
because the names in the registers still differ.

Fresh name normalisation consists of scanning the register assignment and detecting
names with the prefix ‘&’. For every name with the prefix ‘&’, we generate the minimum
available fresh name of the form #1, #2, ..., #𝑛, 𝑛 ∈ N, and replace the name in the register
with this generated fresh name. Also, the prefixed ‘&’ names in the process are replaced
with the corresponding prefixed ‘#’ fresh name. When we apply this algorithm to the
above results, we obtain {(1, #1)} ` 0 and {(1, #1)} ` 0. The configuration key of these
two results are equivalent, which implies configuration congruence.

5.3.4 Nil process removal

There are three equations of structural congruence where the nil process appears,
𝜈𝑎.0 ≡ 0, 𝑃 |0 ≡ 0, and by rule of 𝑃 |𝑄 ≡ 𝑄 |𝑃, 0|𝑃 ≡ 0. Reducing the expression
to their simplified counterparts is a matter of straightforward AST manipulation. A
top-level function with signature

func rmNilProc(elem Element) Element

recursively traverses the AST and returns the next element. If a restriction is matched
and its next element is a nil process, then return the nil process. The callee assigns
this element as its next element, thus removing the restriction. Likewise, if a parallel
is matched and its left-hand side process is an inaction, then return the right-hand side
process. The procedure is the same for the right-hand side parallel process. If an element
is neither a restriction nor a parallel, then assign its next/left/right element as the return
element of the function call.

5.3.5 Unused restriction removal

From the structural congruence rules, we can derive the ability to remove unused restric-
tions.

𝜈𝑎.𝑃 ≡ 𝜈𝑎.(𝑃 |0) 𝑃 ≡ 𝑃 |0
≡ 𝑃 |𝜈𝑎.0 if 𝑎 ∉ fn(𝑃) 𝜈𝑎.(𝑃 |𝑄) ≡ 𝑃 |𝜈𝑎.𝑄 if 𝑎 ∉ fn(𝑃)
≡ 𝑃 |0 if 𝑎 ∉ fn(𝑃) 𝜈𝑎.0 ≡ 0
≡ 𝑃 if 𝑎 ∉ fn(𝑃) 𝑃 |0 ≡ 𝑃

Therefore, if a process 𝜈𝑎.𝑃 does not use a restriction 𝑎, i.e., 𝑎 ∉ fn(𝑃), then we can
drop the restriction. In practice, this involves recursively traversing the AST to find
restrictions and calling a helper function appearsIn() to return true or false whether a
name is found in a process. If the name is used in the process, then the traversal function
returns the restriction element and the callee assigns this as its next element. If the name
is not used, then return the restriction’s next element, thus removing the restriction from
the AST.
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5.3.6 Restriction scoping

The rule 𝜈𝑎.(𝑃 |𝑄) ≡ 𝑃 |𝜈𝑎.𝑄 if 𝑎 ∉ fn(𝑃) narrows the scope of a restriction to the
relevant process.

Example 5.2. Restriction scoping. Consider the processes

𝜈𝑎.𝜈𝑏.𝜈𝑐.(�̄�〈𝑎〉.0 | �̄�〈𝑏〉.𝑐〈𝑐〉.0)

and

𝜈𝑎.�̄�〈𝑎〉.0 | 𝜈𝑏.𝜈𝑐.�̄�〈𝑏〉.𝑐〈𝑐〉.0

These two processes are structurally equivalent as per the rule above. The restrictions
of the former expression can be scoped down to their respective processes. Restrictions
preceding a parallel are found in the AST. In this case, 𝜈𝑐 is identified, which comes
before a parallel. Using the appearsIn() function, we find whether the name 𝑐 appears
in the left-hand side process and right-hand side process. 𝑐 does not appear in the LHS
process but appears in the RHS process. With this result, we can place the restriction
𝜈𝑐 on the RHS process, resulting in 𝜈𝑎.𝜈𝑏.(�̄�〈𝑎〉.0 | 𝜈𝑐.�̄�〈𝑏〉.𝑐〈𝑐〉.0). The results from
appearsIn() and resulting behaviour can be encoded as a truth table.

restriction restriction
appears in LHS appears in RHS behaviour

false false remove restriction
false true place restriction in RHS process
true false place restriction in LHS process
true true leave restriction

Tab. 5.1: Restriction preceding parallel scoping behaviour.

The algorithm operates bottom-up, so the same can be done for 𝜈𝑏, for which we get
𝜈𝑎.(�̄�〈𝑎〉.0 | 𝜈𝑏.𝜈𝑐.�̄�〈𝑏〉.𝑐〈𝑐〉.0). Finally, the procedure is applied for 𝜈𝑎 and this gives
us the final result of 𝜈𝑎.�̄�〈𝑎〉.0 | 𝜈𝑏.𝜈𝑐.�̄�〈𝑏〉.𝑐〈𝑐〉.0, which is equivalent to the latter
expression.

5.3.7 Restriction sorting

The rule 𝜈𝑎.𝜈𝑏.𝑃 ≡ 𝜈𝑏.𝜈𝑎.𝑃 is made possible by adjusting the bound name normalisa-
tion algorithm before sorting the restrictions.

Example 5.3. Restriction sorting. Consider the two processes with an empty 𝜎

𝜈𝑎.𝜈𝑏.𝑎(𝑥).𝑏(𝑦).0
𝜈𝑏.𝜈𝑎.𝑎(𝑥).𝑏(𝑦).0
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From the rule, these two processes are equivalent. However, if we apply the name
normalisation algorithm and replace the restriction bound names with the generated
bound name, we get

𝜈&1.𝜈&2.&1(&3).&2(&4).0
𝜈&1.𝜈&2.&2(&3).&1(&4).0

which is not equal if we stringify the process. In order to resolve this, on the first pass of
the bound name normalisation AST traversal, we only consider non-restriction elements.
So after the first pass for each process, the result becomes

𝜈𝑎.𝜈𝑏.&0(&2).&1(&3).0
𝜈𝑏.𝜈𝑎.&0(&2).&1(&3).0

A map containing a pair (𝑜𝑙𝑑𝑁𝑎𝑚𝑒, 𝑛𝑒𝑤𝑁𝑎𝑚𝑒) was stored. On the second pass, the
restriction elements are renamed based on the map pairs, resulting in

𝜈&0.𝜈&1.&0(&2).&1(&3).0
𝜈&1.𝜈&0.&0(&2).&1(&3).0

Finally, we sort the restrictions lexicographically by gathering adjacent restrictions and
building a sorted linked list of restriction elements. The processes become

𝜈&0.𝜈&1.&0(&2).&1(&3).0
𝜈&0.𝜈&1.&0(&2).&1(&3).0

which are equal. Since both of the registers are empty, these two configurations are
configuration congruent.

5.3.8 Summation and composition sorting

This algorithm implements structural congruence rule (2), Reordering of terms in a
summation, and the remaining equations in rule (3), 𝑃 |𝑄 ≡ 𝑄 |𝑃 and 𝑃 | (𝑄 |𝑅) ≡
(𝑃 |𝑄) |𝑅. Summation and composition expressions with different bracketing and process
positioning are converted into a standard form to detect for structural congruence.

Example 5.4. Summation and composition sorting. Consider the two expressions
(1) and (2)

(𝑃 | 𝑄) | ((𝐴 + 𝐶) + 𝐵) (1)
((𝐵 + (𝐶 + 𝐴)) | 𝑄) | 𝑃 (2)

From the rules, these two expressions are structurally congruent. When we normalise
these expressions and stringify the process, we obtain equivalent strings. We define a
top-level function to normalise a process to be

func sortSumPar(elem Element) Element
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which follows the same procedure as rmNilProc() where the AST is traversed recursively
and returns the next element. When a parallel element is encountered, the non-parallel
children of the adjacent parallels are recursively gathered. For process (1), the elements
collected are {𝑃,𝑄, (𝐴 + 𝐶) + 𝐵}. A call is made to sortSumPar() for each of these
elements. In this manner, the summations and compositions are sorted bottom-up.

We call sortSumPar() with the element (𝐴 + 𝐶) + 𝐵. The procedure is identical for
summation. The elements collected are {𝐴,𝐶, 𝐵}. As all of these elements contain no
sum/parallels, calling the top-level function yields no effect. We sort the element list
{𝐴,𝐶, 𝐵} based on the lexicographic order of the stringified process and get {𝐴, 𝐵, 𝐶}.
The next step is building a right-leaning summation tree from these sorted elements,
which gives 𝐴 + (𝐵 + 𝐶). Finally, we return this tree.

Returning from the sortSumPar() call, the element (𝐴 + 𝐶) + 𝐵 becomes 𝐴 + (𝐵 + 𝐶).
When we sort the list, as above, we get {𝐴 + (𝐵 + 𝐶), 𝑃, 𝑄}. Again, a right-leaning
tree is constructed with these sorted elements, this time with compositions. We get the
normalised form (𝐴 + (𝐵 + 𝐶)) | (𝑃 | 𝑄) as the final result.

When we apply the algorithm above for process (2), we expect to receive the same
normalised form.

5.3.9 Process definition

Structural congruence rule (5) defining process definitions 𝐴〈®𝑏〉 ≡ {®𝑏/®𝑎}𝑃𝐴 if 𝐴( ®𝑎) def
= 𝑃𝐴

is implicitly implemented by the transition rule Rec. The Rec rule unfolds the process
definitions, substitutes the names and takes the process definition’s next transitions.

Example 5.5. Process definition congruence. Consider the configuration and process
definition 𝑃

{(1, 𝑎)} ` 𝑃 + �̄�〈𝑎〉.0 with definition 𝑃 = �̄�〈𝑎〉.0

This configuration only has one transition 1̄1−−→ {(1, 𝑎)} ` 0, regardless of whichever
side of the summation process it takes. This is because the process on the left and
right-hand side are equivalent. This also demonstrates that the Res rule already captures
the structural congruence process definition rule.
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5.4 Garbage collection

A further approach to reduce the amount of potentially equivalent states is to garbage
collect the unused names in the registers.

Lemma 5.3. Garbarge collection (GC). Given the configuration 𝜎 ` 𝑃, if

𝜎′ = {(𝑖, 𝑎) | 𝜎(𝑖) = 𝑎, 𝑎 ∈ fn(𝑃)}

then 𝜎 ` 𝑃 ×𝜋∼ 𝜎′ ` 𝑃, where ×𝜋∼ is an ×𝜋-bisimulation.

Let 𝜎′ be the garbage collected register assignment such that for all the names in the
registers 𝜎′, there exists a free name in 𝑃 corresponding to that name. In other words,
all registers with names 𝑎 ∉ fn(𝑃) are removed from the register assignment 𝜎. For
example, the garbage collected configuration of {(1, 𝑎), (2, 𝑏), (3, 𝑐), (4, 𝑑)} ` �̄�〈𝑑〉.0
is {(2, 𝑏), (4, 𝑑)} ` �̄�〈𝑑〉.0 because 𝑎 and 𝑐 are not used in 𝑃. The assumption is that
𝜎 ` 𝑃 and 𝜎′ ` 𝑃 are ×𝜋-bisimilar.

It may seem odd that the configurations of the original and filtered registers are bisimiliar.
For example, Inp1’s transitions depends on the contents of the registers. However,
Tzevelekos’ definition of bisimilarity is not in the standard sense. ×𝜋-bisimulation is
based on a notion of register matching, which makes this equivalence possible. This
lemma has been verified by Tzevelekos. Since the GC’ed configuration and non-GC’ed
configuration are bisimiliar, garbage collection can be implemented.
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6Labelled Transition System

The application of congruence rules transforms the configurations into a normal form,
which allows us to detect equivalent configurations which appear seemingly different.
With this, we can generate states, apply these rules, and explore the states of a model,
thus generating the labelled transition system.

6.1 LTS generation structure

We define structs to represent the LTS.

type Lts struct {
States map[int]Configuration
Transitions []Transition

}

type Transition struct {
Source int
Destination int
Label Label

}

Listing 6.1: Data types to represent the labelled transition system.

Lts is a directed graph of the labelled transition system, consisting of a set of states and
list of transitions. The set of states are represented by a map which maps a state ID to a
configuration. The Transition data type comprises of the source and destination state
ID and transition label.

6.2 State exploration

The LTS is explored in a breadth-first search (BFS) manner. The psuedocode is provided
below and is supplemented with an example.
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Algorithm 6.1 Explore the states and return the labelled transition system
1: function explore(𝑟𝑜𝑜𝑡) return Lts{𝑠𝑡𝑎𝑡𝑒𝑠, 𝑡𝑟𝑛𝑠}
2: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← {}, 𝑡𝑟𝑛𝑠𝑆𝑒𝑒𝑛← {}, 𝑠𝑡𝑎𝑡𝑒𝑠← {}, 𝑡𝑟𝑛𝑠← {}
3: applyCongruence(𝑟𝑜𝑜𝑡)
4: 𝑘𝑒𝑦 ← getConfKey(𝑟𝑜𝑜𝑡)
5: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑘𝑒𝑦] ← 0, 𝑠𝑡𝑎𝑡𝑒𝑠[0] ← 𝑟𝑜𝑜𝑡

6: 𝑠𝑡𝑎𝑡𝑒𝐼𝐷 ← 1, 𝑞𝑢𝑒𝑢𝑒 ← 𝑞𝑢𝑒𝑢𝑒().𝑝𝑢𝑠ℎ(𝑟𝑜𝑜𝑡)
7: 𝑠𝑡𝑎𝑡𝑒𝑠𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑 ← 0
8: for 𝑞𝑢𝑒𝑢𝑒.𝑙𝑒𝑛𝑔𝑡ℎ > 0 ∧ 𝑠𝑡𝑎𝑡𝑒𝑠𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑 < 𝑚𝑎𝑥𝑆𝑡𝑎𝑡𝑒𝑠𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑 do
9: 𝑠𝑟𝑐 ← 𝑞𝑢𝑒𝑢𝑒.𝑑𝑒𝑞𝑢𝑒𝑢𝑒()

10: 𝑠𝑟𝑐𝐼𝐷 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [getConfKey(𝑠𝑟𝑐)]
11: 𝑐𝑜𝑛 𝑓 𝑠← trans(𝑠𝑟𝑐)
12: for 𝑐𝑜𝑛 𝑓 ∈ 𝑐𝑜𝑛 𝑓 𝑠 do
13: applyCongruence(𝑐𝑜𝑛 𝑓 )
14: 𝑑𝑠𝑡𝐾𝑒𝑦 ← getConfKey(𝑐𝑜𝑛 𝑓 )
15: if 𝑑𝑠𝑡𝐾𝑒𝑦 ∉ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then
16: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑑𝑠𝑡𝐾𝑒𝑦] ← 𝑠𝑡𝑎𝑡𝑒𝐼𝐷

17: 𝑠𝑡𝑎𝑡𝑒𝑠[𝑠𝑡𝑎𝑡𝑒𝐼𝐷] ← 𝑐𝑜𝑛 𝑓

18: 𝑠𝑡𝑎𝑡𝑒𝐼𝐷++
19: 𝑞𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ(𝑐𝑜𝑛 𝑓 )
20: 𝑡𝑟𝑛← Transition{𝑠𝑟𝑐𝐼𝐷, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑑𝑠𝑡𝐾𝑒𝑦], 𝑐𝑜𝑛 𝑓 .𝐿𝑎𝑏𝑒𝑙}
21: if 𝑡𝑟𝑛 ∉ 𝑡𝑟𝑛𝑠𝑆𝑒𝑒𝑛 then
22: 𝑡𝑟𝑛𝑠𝑆𝑒𝑒𝑛← 𝑡𝑟𝑛𝑠𝑆𝑒𝑒𝑛 ∪ 𝑡𝑟𝑛
23: 𝑡𝑟𝑛𝑠← 𝑡𝑟𝑛𝑠 ∪ 𝑡𝑟𝑛
24: 𝑠𝑡𝑎𝑡𝑒𝑠𝐸𝑥𝑝𝑙𝑜𝑟𝑒𝑑++

Example 6.1. State exploration. Consider a number of states defined by the set of
final configurations 𝑂 (𝐾),

𝑠0, 𝑠1, 𝑠2, 𝑠3 ∈ 𝑂 (𝐾)

The root configuration is always 𝑠0. The root configuration undergoes structural and
configuration congruence rules. The key of the configuration is obtained in the form
of a stringified register assignment and process. This key is the unique identifier of the
state, and is used to detect previously visited states of the same congruence.

The LTS is traversed breadth-first using a queue. We pass 𝑠0 to trans() and get the
next states 𝑠1, 𝑠2, and 𝑠3. For 𝑠1, we apply congruence rules and garbage collection,
and obtain the configuration’s key. This state has not been encountered before, so
we append 𝑠1 to the queue, as well as to the transition results list. This repeats for
𝑠2. However, for 𝑠3, we see that that the configuration’s key matches 𝑠1’s key and the
transition 𝑠0

𝛼−−→ 𝑠1 ≡ 𝑠0
𝛼−−→ 𝑠3 has been encountered before. In this case, we do not

append neither 𝑠3 to the queue, nor its transition to the results list.
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The BFS queue is dequeued and the procedure repeats until there are no states left in the
queue or if the number of states explored reaches its maximum user-specified limit (the
default is 20).

6.3 LTS output

After exploring the states, we are left with a labelled transition system data structure
which we can output to any form of our choosing. We output the LTS in two formats –
a pretty-printed form and a graph description language.

6.3.1 Pretty-printed LTS

Given the expression

$x.a'<x>.b'<x>.0 | b(y).0

the pretty-printed LTS output is

s0 = {(1,#1),(2,#2)} |- (#2(&2).0 | $&1.#1'<&1>.#2'<&1>.0)
s0 2 1 s1 = {(1,#1),(2,#2)} |- $&1.#1'<&1>.#2'<&1>.0
s0 2 2 s1 = {(1,#1),(2,#2)} |- $&1.#1'<&1>.#2'<&1>.0
s0 2 3* s1 = {(1,#1),(2,#2)} |- $&1.#1'<&1>.#2'<&1>.0
s0 1'1^ s2 = {(1,#1),(2,#2)} |- (#2'<#1>.0 | #2(&1).0)
s1 1'1^ s3 = {(1,#1),(2,#2)} |- #2'<#1>.0
s2 2'1 s4 = {(2,#2)} |- #2(&1).0
s2 2 1 s3 = {(1,#1),(2,#2)} |- #2'<#1>.0
s2 2 2 s3 = {(1,#1),(2,#2)} |- #2'<#1>.0
s2 2 3* s3 = {(1,#1),(2,#2)} |- #2'<#1>.0
s2 t s5 = {} |- 0
s3 2'1 s5 = {} |- 0
s4 2 2 s5 = {} |- 0
s4 2 1* s5 = {} |- 0

Listing 6.2: Pretty-printed LTS output.

The LTS is outputted as human-readable ASCII text for use in inspecting the results
in the command-line interface or in a text file. The symbols used match closely to the
mathematical syntax, as to be as intuitive to the user as possible. There is some use of
special characters, which are denoted below.
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pretty-printed mathematical
notation notation
{} |- P {} ` 𝑃 configuration
#1 𝑎1 free name
&1 𝑥1 bound name
1 1 11 known input
1'1 1̄1 known output
1 1* 11• fresh input
1'1^ 1̄1⊛ fresh output
t 𝜏 tau step

Tab. 6.1: Pretty-printed LTS output legend.

The line s0 2 3* s1 means that from state 𝑠0 take the transition 2 3• to reach 𝑠1. 𝑠1’s
configuration is shown after the =.
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6.3.2 Graph description language

The graph description language used is the GraphViz DOT language [26]. GraphViz is an
open-source tool which generates visualisations of graphs defined by the DOT language.
In addition, many libraries in various programming languages exist for parsing the DOT
language, should one wish to import the LTS file.

A template was written which captures the syntax of the DOT language and generates a
file based on the LTS provided. So for the same program as above, we get the following
file.

digraph {
s0 [peripheries=2,label="{(1,#1),(2,#2)} |-

(#2(&2).0 | $&1.#1'<&1>.#2'<&1>.0)"]
s1 [label="{(1,#1),(2,#2)} |-

$&1.#1'<&1>.#2'<&1>.0"]
s2 [label="{(1,#1),(2,#2)} |-

(#2'<#1>.0 | #2(&1).0)"]
s3 [label="{(1,#1),(2,#2)} |-

#2'<#1>.0"]
s4 [label="{(2,#2)} |-

#2(&1).0"]
s5 [label="{} |-

0"]

s0 -> s1 [label="2 1"]
s0 -> s1 [label="2 2"]
s0 -> s1 [label="2 3*"]
s0 -> s2 [label="1' 1^"]
s1 -> s3 [label="1' 1^"]
s2 -> s4 [label="2' 1"]
s2 -> s3 [label="2 1"]
s2 -> s3 [label="2 2"]
s2 -> s3 [label="2 3*"]
s2 -> s5 [label="t"]
s3 -> s5 [label="2' 1"]
s4 -> s5 [label="2 2"]
s4 -> s5 [label="2 1*"]

}

Listing 6.3: LTS output in the GraphViz DOT language (UTF-8 characters are replaced with
ASCII equivalents).

Using the GraphViz toolset, we generate the graph visualisation with the command

$ dot -Tpdf -o lts.pdf lts.dot

and obtain the following graphical visualisation.
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{(1,#1),(2,#2)} ⊢
(#2(&2).0 | $&1.#1'<&1>.#2'<&1>.0)

{(1,#1),(2,#2)} ⊢
$&1.#1'<&1>.#2'<&1>.0

2 1 2 2 2 3●

{(1,#1),(2,#2)} ⊢
(#2'<#1>.0 | #2(&1).0)

1' 1⊛

{(1,#1),(2,#2)} ⊢
#2'<#1>.0

1' 1⊛ 2 1 2 2 2 3●

{(2,#2)} ⊢
#2(&1).0

2' 1

{} ⊢
0

τ

2' 1 2 22 1●

Fig. 6.1: LTS visualisation from the GraphViz DOT language with configurations as nodes.

Note that the starting state is denoted by a double periphery. The user can also specify
the use of state numbers as nodes instead of configurations, which is helpful for cases
when the graph becomes too large.

s0

s1

2 1 2 2 2 3●

s2

1' 1⊛

s3

1' 1⊛ 2 1 2 2 2 3●

s4

2' 1

s5

τ

2' 1 2 22 1●

Fig. 6.2: LTS visualisation from the GraphViz DOT language with state numbers as nodes.
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The LTS can also be outputted as a DOT file which uses LaTeX labels. This allows
for the use of standard mathematical notation for configurations and is useful for cases
where the user would not be too familiar with the meanings of the special symbols.
Using the dot2tex tool [27], the DOT file can be converted to a LaTeX file, which can
then be compiled into a PDF containing the visualisation. The commands below

$ dot2tex -o lts.tex lts.dot
$ pdflatex lts.tex

generate the following visualisation.

{(1, a1), (2, a2)} `
ā2〈a1〉.0

{(1, a1), (2, a2)} `
(ā2〈a1〉.0 | a2(x1).0)

{(1, a1), (2, a2)} `
νx1.ā1〈x1〉.ā2〈x1〉.0

{(1, a1), (2, a2)} `
(a2(x2).0 | νx1.ā1〈x1〉.ā2〈x1〉.0)

{} `
0

{(2, a2)} `
a2(x1).0

1̄ 1~

2 1 2 2 2 3•

τ

2̄ 12 1 2 2 2 3•

1̄ 1~

2 2 2 1•2̄ 1

Fig. 6.3: LTS visualisation with configurations produced using dot2tex.

The free names are named as 𝑎 subscripted with their number and the bound names are
named as 𝑥, also subscripted with their number.
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We can also specify the use of state numbers instead of configurations with LaTeX
styling.

s3

s2s1

s0

s5

s4

1̄ 1~

2 1 2 2 2 3•

τ

2̄ 12 1 2 2 2 3•

1̄ 1~

2 2 2 1•2̄ 1

Fig. 6.4: LTS visualisation with state numbers produced using dot2tex.

6.4 Command-line tool

The tool is built as a command-line program. Its name is pifra, an acronym for the
pi-calculus fresh-register automata. Command-line flags are used to adjust program
parameters and output styles. The full range of options are presented below.

$ pifra --help
pifra generates labelled transition systems (LTS) of
pi-calculus models represented by fresh-register automata.

Usage:
pifra [OPTION...] FILE

Options:
-n, --max-states int maximum number of states explored (default 20)
-r, --max-registers int maximum number of registers (default is unlimited)
-d, --disable-gc disable garbage collection
-i, --interactive inspect interactively the LTS in a prompt
-o, --output string output the LTS to a file (default format is the Graphviz DOT language)
-t, --output-tex output the LTS file with LaTeX labels for use with dot2tex
-p, --output-pretty output the LTS file in a pretty-printed format
-s, --output-states output state numbers instead of configurations for the Graphviz DOT file
-l, --output-layout string layout of the GraphViz DOT file, e.g., "rankdir=TB; margin=0;"
-q, --quiet do not print or output the LTS
-v, --stats print LTS generation statistics
-h, --help show this help message and exit

Listing 6.4: Help message of the pifra program.
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7Verification

With the generation of the LTS, we open up the possibility of performing some simple
model checking verification. We are able to prove or disprove if a system reaches a
certain state.

7.1 Name marking

The ability to ‘mark’ names is added to the tool to assess for state reachability.

Example 7.1. Name marking. Consider the program

$a.a'<a>.b'<b>.c'<c>.0

This model only has one state regardless of the context, namely

s0 = {(1,#1),(2,#2)} |- $&1.&1'<&1>.#1'<#1>.#2'<#2>.0

This is because the name 𝑎 is restricted and we attempt to send a name on this restricted
channel, which will never have any receivers. As a result, the proceeding output action
�̄�〈𝑏〉 is impossible. The names in the configuration are normalised after the application
of congruence rules, hence &1 for 𝑎, #1 for 𝑏, and #2 for 𝑐. Note that in this simple case,
𝑏 will always reside in the register label 1. Therefore, if we check that the transition 1̄1
(known output) does not exist in the LTS, then the model cannot reach this state, i.e.,
running

$ pifra lts.pi | grep "1'1"

yields no results, and verifies that this state cannot be reached. After name normalisation,
it is difficult to keep track of which name appears where, especially if the names in the
registers change. Hence, it would be helpful if our target name could be marked. Names
can be marked with the prefix "_". So the above program marking the name 𝑏 becomes

$a.a'<a>._b'<_b>.c'<c>.0

and its only state becomes

s0 = {(1,_b),(2,#1)} |- $&1.&1'<&1>._b'<_b>.#1'<#1>.0

Marked names are consistently placed at the starting labels of the register assignment
of the root configuration. For cases of non-state reachability, it is presumed that the
marked name will persist throughout all states, hence avoiding garbage collection.
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7.2 State reachability

To summarise the above example, state reachability verification can be performed by the
following. In the pi-calculus model of a system,

• designate an output _b'<_b> to signal the target state, marking the name as _b,
• generate the LTS, and
• search the output for the transition 1'1.

If the transition 1'1 exists, then this state has been reached. If not, then this state is not
reachable in the model (if exhaustively explored, i.e., its LTS is finite). As a result, we
can mark any target state and check if it is reachable or not.

7.3 Verification: Examples

Example 7.2. Fresh name generation. This example was provided by Koutavas.
Consider the two systems

GenFreshA(a) = $fr. a'<fr>. GenFreshA(a)

and

GenFreshB(a) = $fr5. GF1(a,fr5)
GF1(a,fr5) = $fr1. a'<fr1>. GF2(a,fr5)
GF2(a,fr5) = $fr2. a'<fr2>. GF3(a,fr5)
GF3(a,fr5) = $fr3. a'<fr3>. GF4(a,fr5)
GF4(a,fr5) = $fr4. a'<fr4>. GF5(a,fr5)
GF5(a,fr5) = a'<fr5>. GF1(a,fr5) + $fr6. a'<fr6>. GF1(a,fr5)

These two systems are not bisimilar and are not equivalent under any reasonable equiva-
lence relation. The reason is that the former generates an infinite stream of fresh names
on a, whereas the latter may reuse the 5th output. Note that for GF5, there are two options.
The first choice outputs the bound name fr5 as a fresh name, and may use this name
to output again after 5 outputs. The other choice outputs a fresh name, and repeats the
cycle. Therefore, we cannot guarantee that the latter system outputs a fresh name every
time, in contrast with the former system. With the current state of the tool, there is no
manner to formally prove or disprove bisimilarity. However, we can create a test which
outputs on a marked name representing the target state if it detects the same fresh output
twice. The test is

Test(a) = Inp(a) | a(x). a(y). [x=y] _BAD'<_BAD>. $dummy. dummy'<_BAD>.0
Inp(a) = a(z). Inp(a)

An input process Inp performs arbitrary inputs to capture any potential non-consecutive
identical outputs (as in the case of the latter system). The second process of Test inputs
two names and checks if they are equal. If they are, then our target state _BAD'<_BAD>

would be reached. For clarity, the dummy action proceeding it preserves the name _BAD

in the register assignment so garbage collection will not collect it. So when searching
for this bad state, its transition label name is clear.
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We can now consider two tests

$a. (GenFreshA(a) | Test(a))

and

$a. (GenFreshB(a) | Test(a))

which consist of their respective systems in parallel with the test process and restricts
the channel a. This binding of a is required to restrict the behaviour to only the above
system. If a is not bound, we may receive two identical names on a from the context,
thus defeating the purpose of the system test.

We generate the respective exhaustive LTS’s (both of which are finite-state models) and
search for the action transition 1'1.

$ pifra -n 100 gen-fresh-a.pi | grep "1'1"
$ pifra -n 100 gen-fresh-b.pi | grep "1'1"
s28 1'1 s31 = {(1,_BAD)} |- ($&3.&3'<_BAD>.0 | $&1.$&2.(GF1(&1, &2) | Inp(&1)))

The LTS of GenFreshA does not have this action, meaning that the ‘bad’ state was never
reached. The LTS of GenFreshB finds an instance of the bad state being reached. This
verifies the property that an infinite stream of fresh outputs occurs for the first system,
and disproves it for the second system.

This verification procedure of encoding target states in the system and grep-ing for these
states is performed manually. For different systems and different properties, we would
have different tests. If the LTS is finite, we can exhaustively check for all states and
prove whether the system satisfies the property. However, for infinite-state LTS’s, we
can only prove that the system satisfies the property up to the given number of states
explored. With this, it is better to encode a certain property in an infinite-state LTS and
attempt to disprove it, rather than to prove it.

Example 7.3. Password system. We examine an example devised by Koutavas.
Consider a system where a secret is generated from a password.

GenPass(requestNewPass) = requestNewPass(x). $pass. x'<pass>.0

KeepSecret(requestNewPass) = $p. requestNewPass'<p>. p(pass). (
StoreSecret(pass) | TestSecret(pass) )

StoreSecret(pass) = $secret. pass'<secret>. StoreSecret(pass)

TestSecret(pass) = pub(x). pass(secret). (
TestSecret(pass) + [x=secret] _BAD'<_BAD>.0 )

$requestNewPass. (
GenPass(requestNewPass) | KeepSecret(requestNewPass) )

The system is initialised by the process KeepSecret, which sends a restricted channel p
over to the GenPass. GenPass generates a password pass and sends this over to KeepSecret

on the restricted channel. KeepSecret now does two things – it continuously generates a
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secret and sends this over the password channel in StoreSecret and checks to see if this
secret can appear over the public channel pub in TestSecret.

We evaluate whether the secret is exposed by checking if the input on the public channel
is ever equal to the secret. If this occurs, the target state _BAD'<_BAD> would be reached
by action 1'1. We check for this in the finite-state model with

$ pifra password.pi | grep "1'1"

and find no results. Therefore, the system is secure. The assertion x=secret will never
be true, no matter how the context of this system interacts with it. We can conclude that
the context will never learn the secret.

We investigate a scenario which makes this system insecure. Suppose that the channel
requestNewPass is not restricted, i.e., the system is initialised with

GenPass(requestNewPass) | KeepSecret(requestNewPass)

We grep for our target state and find

$ pifra -n 127 password-insecure.pi | grep "1'1"
s126 1'1 s651 = {(1,_BAD),(3,#2)} |- (GenPass(#2) | StoreSecret(_BAD))

which proves that this system is not secure, as the target state was reached. This is
because the communication channel between KeepSecret and GenPass is not restricted.
Think about these two processes as computers over a network. A third process, called
Attacker could intercept the channel if requestNewPass is not secure.

Attacker(requestNewPass) =
requestNewPass(x). $pass. x'<pass>. pass(secret). pub'<secret>. 0

The rogue process generates a password and sends it over to KeepSecret, as with GenPass.
Additionally, the process gathers the secret from the password channel and sends over
the secret to the public channel pub, which triggers the assertion. This behaviour is
captured by the LTS without explicitly encoding the attacker. The LTS accounts for
all behaviour of the model when placed in any context, and thus finds that these set of
insecure actions are a possibility.

Example 7.4. Intermediate server system. We revisit the example described in the
motivating example of the introduction. Recall that a message "hello" is sent from
client 𝐴 to client 𝐵 through an intermediate server 𝑆. This system is modelled in the
pi-calculus as the following.

A(as) = $ab. as'<ab>. ab'<hello>. 0

B(sb) = sb(chnl). chnl(msg). [msg!=hello] _BAD'<_BAD>. 0

S(as,sb) = as(chnl). sb'<chnl>. 0

$as. $sb. ( A(as) | B(sb) | S(as, sb) )

We also encode the safety property that the message msg received on 𝐵 must be "hello".
To check for this, if the message is not "hello", then the target state _BAD'<_BAD> would
be reached, signalling a violation of our property. We produce the LTS
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$ pifra server.pi
s0 = {(1,_BAD),(2,#1)} |- $&1.($&2.(B(&2) | S(&1, &2)) | A(&1))
s0 t s1 = {(1,_BAD),(2,#1)} |- $&2.($&1.(&1'<&2>.0 | B(&1)) | &2'<#1>.0)
s1 t s2 = {(1,_BAD),(2,#1)} |- $&1.(&1'<#1>.0 | &1(&2).[&2!=#1]_BAD'<_BAD>.0)
s2 t s3 = {(1,_BAD),(2,#1)} |- [#1!=#1]_BAD'<_BAD>.0

and find that the action 1'1 does not appear, thus verifying the property. From the LTS,
we can see clearly the behaviour of the system. Given the initial state, the only transition
is a number of tau steps to reach a final state where the name msg will always be "hello".

Consider the case where the name as is not restricted, i.e., we initialise the system with

$sb. ( A(as) | B(sb) | S(as, sb) )

In this case, we expose as to the context, which may lead to the scenario where a client
𝐶 sends a different message over to 𝐵, as in the introductory example. We check for this
with

$ pifra -n 22 server2.pi | grep "1'1"
s21 1'1 s42 = {(2,#1),(3,#2)} |- A(#1)

and it results in the violation of the property. Likewise, suppose that sb is not restricted,
i.e., we initialise the system with

$as. ( A(as) | B(sb) | S(as, sb) )

We can reason why the message received on 𝐵 would not be guaranteed to be "hello".
A channel could be sent to sb and a different message could be sent over this channel.
We check this with

$ pifra -n 7 server3.pi | grep "1'1"
s6 1'1 s23 = {(2,#1),(3,#2)} |- $&1.(A(&1) | S(&1, #2))

which confirms our reasoning, and verifies the violation of the property. With certain
names unrestricted, we can see how subtle changes in the system can result in unintended
interactions with the context. By generating the LTS, we can detect these behaviours
from seemingly correct systems. This is important when placing a small part into a larger
system. We want to ensure that the small part does not result in unforeseen behaviour.

The above are examples of how a model could be verified for certain properties. All
safety properties can be encoded using runtime monitors [28, p. 34]. Monitors work by
monitoring execution steps of some system and checks if it violates a security policy by
reaching a target state. This is what we do when we use _BAD'<_BAD> to signal the target
state. Schneider [28, p. 31] refers to this as execution monitoring (EM) which would be
applicable to security in kernels, firewalls, and operating systems.
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8Evaluation

The program is evaluated with finite-state and infinite-state models using certain criteria
for each.

8.1 Finite-state models

For each finite-state model, we investigate the LTS output and the LTS generation
statistics.

Tzevelekos’ example

This model is an example from the FRA paper [5, p. 303, example 31], and is referred
to in the global freshness example 2.14.

P(a,b) = a'<b>.$c.P(b,c)
$b.P(a,b)

Listing 8.1: tzevelekos model.

The program gives the LTS as described in the example. Its pretty-printed LTS is

s0 = {(1,#1)} |- $&1.P(#1, &1)
s0 1'1^ s0 = {(1,#1)} |- $&1.P(#1, &1)

Listing 8.2: tzevelekos LTS.

and its graph visualisation generated from the corresponding Graphviz DOT file with
LaTeX labels is

{(1, a1)} `
νx1.P (a1, x1) 1̄ 1~

Fig. 8.1: tzevelekos visualisation.
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The LTS generation statistics are

states explored 1
states generated 1
states unique 1
transitions 1
time I/O 302.5µs
time LTS generation 350.2µs

Listing 8.3: tzevelekos statistics.

and each statistic is described as the following.
• A state which is explored means that trans() was called using that state, and that

all transitions from this state have been exhaustively found.
• The number of generated states is the total number of states obtained by calling
trans() from an explored state.

• The number of unique states are those that have been uniquely identified after
undergoing congruence rules. This is also the number of states shown in the LTS.

• The number of transitions is the total number of labelled actions in the LTS.
• The input/output (I/O) time is the total wall clock time spent reading the input file

and writing/printing the LTS output.
• The LTS generation time is the total wall clock time spent generating the LTS,

which includes parsing the model and gathering the states and transitions of the
LTS.
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vk-fin-st1

The models prefixed by ‘vk’ were written by Koutavas, who provided a test suite to
evaluate the program. ‘fin-st’ means finite-state.

P = a(x).($y.x'<y>.P)
P

Listing 8.4: vk-fin-st1 model.

s0 = {(1,#1)} |- P
s0 1 1 s1 = {(1,#1)} |- $&1.#1'<&1>.P
s0 1 2* s2 = {(1,#1),(2,#2)} |- $&1.#2'<&1>.P
s1 1'2^ s0 = {(1,#1)} |- P
s2 2'2^ s0 = {(1,#1)} |- P

Listing 8.5: vk-fin-st1 LTS.

{(1, a1), (2, a2)} `
νx1.ā2〈x1〉.P

{(1, a1)} `
νx1.ā1〈x1〉.P

{(1, a1)} `
P

1 1 1 2•1̄ 2~ 2̄ 2~

Fig. 8.2: vk-fin-st1 visualisation.

states explored 3
states generated 4
states unique 3
transitions 4
time I/O 566.9µs
time LTS generation 832.3µs

Listing 8.6: vk-fin-st1 statistics.

The number of generated states is 4 and the number of unique states is 3, meaning that
one state was identified to be congruent. For exhaustively explored finite-state models,
the explored states is equal to the unique states, as we explored every possible state in
the LTS.

The remainder of the finite-state models are left for the reader to inspect.
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vk-fin-st2

P(a) = a(x).$y.(x'<y>.0 | y(z).P(z))
P(a)

Listing 8.7: vk-fin-st2 model.

s0 = {(1,#1)} |- P(#1)
s0 1 1 s1 = {(1,#1)} |- $&1.(#1'<&1>.0 | &1(&2).P(&2))
s0 1 1* s1 = {(1,#1)} |- $&1.(#1'<&1>.0 | &1(&2).P(&2))
s1 1'1^ s2 = {(1,#1)} |- #1(&1).P(&1)
s2 1 1 s0 = {(1,#1)} |- P(#1)
s2 1 1* s0 = {(1,#1)} |- P(#1)

Listing 8.8: vk-fin-st2 LTS.

{(1, a1)} `
a1(x1).P (x1)

{(1, a1)} `
νx1.(ā1〈x1〉.0 | x1(x2).P (x2))

{(1, a1)} `
P (a1)

1 1 1 1•

1 1 1 1•

1̄ 1~

Fig. 8.3: vk-fin-st2 visualisation.

states explored 3
states generated 5
states unique 3
transitions 5
time I/O 368.2µs
time LTS generation 839.3µs

Listing 8.9: vk-fin-st2 statistics.
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vk-fin-st3

P(a) = a(x).$y.(x'<y>.0 | b(z).[z=y] P(a))
P(a)

Listing 8.10: vk-fin-st3 model.

s0 = {(1,#1),(2,#2)} |- P(#1)
s0 1 1 s1 = {(1,#1),(2,#2)} |- $&1.(#1'<&1>.0 | #2(&2).[&2=&1]P(#1))
s0 1 2 s2 = {(1,#1),(2,#2)} |- $&1.(#2'<&1>.0 | #2(&2).[&2=&1]P(#1))
s0 1 3* s3 = {(1,#1),(2,#2),(3,#3)} |- $&1.(#2(&2).[&2=&1]P(#1) | #3'<&1>.0)
s1 1'3^ s4 = {(1,#1),(2,#2),(3,#3)} |- #2(&1).[&1=#3]P(#1)
s1 2 1 s5 = {(1,#1),(2,#2)} |- $&1.(#1'<&1>.0 | [#1=&1]P(#1))
s1 2 2 s6 = {(1,#1),(2,#2)} |- $&1.(#1'<&1>.0 | [#2=&1]P(#1))
s1 2 3* s7 = {(1,#1),(2,#2),(3,#3)} |- $&1.(#1'<&1>.0 | [#3=&1]P(#1))
s2 2'3^ s4 = {(1,#1),(2,#2),(3,#3)} |- #2(&1).[&1=#3]P(#1)
s2 2 1 s8 = {(1,#1),(2,#2)} |- $&1.(#2'<&1>.0 | [#1=&1]P(#1))
s2 2 2 s9 = {(1,#1),(2,#2)} |- $&1.(#2'<&1>.0 | [#2=&1]P(#1))
s2 2 3* s10 = {(1,#1),(2,#2),(3,#3)} |- $&1.(#2'<&1>.0 | [#3=&1]P(#1))
s2 t s11 = {(1,#1),(2,#2)} |- $&1.[&1=&1]P(#1)
s3 2 1 s12 = {(1,#1),(2,#2),(3,#3)} |- $&1.(#3'<&1>.0 | [#1=&1]P(#1))
s3 2 2 s13 = {(1,#1),(2,#2),(3,#3)} |- $&1.(#3'<&1>.0 | [#2=&1]P(#1))
s3 2 3 s14 = {(1,#1),(2,#2),(3,#3)} |- $&1.(#3'<&1>.0 | [#3=&1]P(#1))
s3 2 4* s15 = {(1,#1),(2,#2),(3,#3),(4,#4)} |- $&1.(#3'<&1>.0 | [#4=&1]P(#1))
s3 3'3^ s4 = {(1,#1),(2,#2),(3,#3)} |- #2(&1).[&1=#3]P(#1)
s4 2 1 s16 = {(1,#1),(2,#2),(3,#3)} |- [#1=#3]P(#1)
s4 2 2 s17 = {(1,#1),(2,#2),(3,#3)} |- [#2=#3]P(#1)
s4 2 3 s18 = {(1,#1),(2,#2),(3,#3)} |- [#3=#3]P(#1)
s4 2 4* s19 = {(1,#1),(2,#2),(3,#3),(4,#4)} |- [#4=#3]P(#1)
s5 1'3^ s16 = {(1,#1),(2,#2),(3,#3)} |- [#1=#3]P(#1)
s6 1'3^ s17 = {(1,#1),(2,#2),(3,#3)} |- [#2=#3]P(#1)
s7 1'4^ s20 = {(1,#1),(2,#2),(3,#3),(4,#4)} |- [#3=#4]P(#1)
s8 2'3^ s16 = {(1,#1),(2,#2),(3,#3)} |- [#1=#3]P(#1)
s9 2'3^ s17 = {(1,#1),(2,#2),(3,#3)} |- [#2=#3]P(#1)
s10 2'4^ s20 = {(1,#1),(2,#2),(3,#3),(4,#4)} |- [#3=#4]P(#1)
s11 1 1 s1 = {(1,#1),(2,#2)} |- $&1.(#1'<&1>.0 | #2(&2).[&2=&1]P(#1))
s11 1 2 s2 = {(1,#1),(2,#2)} |- $&1.(#2'<&1>.0 | #2(&2).[&2=&1]P(#1))
s11 1 3* s3 = {(1,#1),(2,#2),(3,#3)} |- $&1.(#2(&2).[&2=&1]P(#1) | #3'<&1>.0)
s12 3'3^ s16 = {(1,#1),(2,#2),(3,#3)} |- [#1=#3]P(#1)
s13 3'3^ s17 = {(1,#1),(2,#2),(3,#3)} |- [#2=#3]P(#1)
s14 3'4^ s20 = {(1,#1),(2,#2),(3,#3),(4,#4)} |- [#3=#4]P(#1)
s15 3'3^ s19 = {(1,#1),(2,#2),(3,#3),(4,#4)} |- [#4=#3]P(#1)
s18 1 1 s1 = {(1,#1),(2,#2)} |- $&1.(#1'<&1>.0 | #2(&2).[&2=&1]P(#1))
s18 1 2 s2 = {(1,#1),(2,#2)} |- $&1.(#2'<&1>.0 | #2(&2).[&2=&1]P(#1))
s18 1 3 s3 = {(1,#1),(2,#2),(3,#3)} |- $&1.(#2(&2).[&2=&1]P(#1) | #3'<&1>.0)
s18 1 3* s3 = {(1,#1),(2,#2),(3,#3)} |- $&1.(#2(&2).[&2=&1]P(#1) | #3'<&1>.0)

Listing 8.11: vk-fin-st3 LTS.

states explored 21
states generated 38
states unique 21
transitions 38
time I/O 338.3µs
time LTS generation 3.6937ms

Listing 8.12: vk-fin-st3 statistics.
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{(1, a1), (2, a2), (3, a3)} `
[a1 = a3].P (a1)

{(1, a1), (2, a2)} `
νx1.(ā2〈x1〉.0 | [a2 = x1].P (a1))

{(1, a1), (2, a2)} `
νx1.(ā2〈x1〉.0 | [a1 = x1].P (a1))

{(1, a1), (2, a2), (3, a3)} `
[a2 = a3].P (a1)

{(1, a1), (2, a2), (3, a3)} `
νx1.(ā2〈x1〉.0 | [a3 = x1].P (a1))

{(1, a1), (2, a2), (3, a3)} `
νx1.(a2(x2).[x2 = x1].P (a1) | ā3〈x1〉.0)

{(1, a1), (2, a2)} `
νx1.(ā2〈x1〉.0 | a2(x2).[x2 = x1].P (a1))

{(1, a1), (2, a2)} `
νx1.(ā1〈x1〉.0 | a2(x2).[x2 = x1].P (a1))

{(1, a1), (2, a2)} `
P (a1)

{(1, a1), (2, a2), (3, a3)} `
νx1.(ā1〈x1〉.0 | [a3 = x1].P (a1))

{(1, a1), (2, a2)} `
νx1.(ā1〈x1〉.0 | [a2 = x1].P (a1))

{(1, a1), (2, a2)} `
νx1.(ā1〈x1〉.0 | [a1 = x1].P (a1))

{(1, a1), (2, a2), (3, a3)} `
a2(x1).[x1 = a3].P (a1)

{(1, a1), (2, a2), (3, a3)} `
νx1.(ā3〈x1〉.0 | [a2 = x1].P (a1))

{(1, a1), (2, a2), (3, a3), (4, a4)} `
[a3 = a4].P (a1)

{(1, a1), (2, a2), (3, a3)} `
[a3 = a3].P (a1)

{(1, a1), (2, a2), (3, a3), (4, a4)} `
νx1.(ā3〈x1〉.0 | [a4 = x1].P (a1))

{(1, a1), (2, a2), (3, a3)} `
νx1.(ā3〈x1〉.0 | [a1 = x1].P (a1))

{(1, a1), (2, a2), (3, a3), (4, a4)} `
[a4 = a3].P (a1)

{(1, a1), (2, a2), (3, a3)} `
νx1.(ā3〈x1〉.0 | [a3 = x1].P (a1))

{(1, a1), (2, a2)} `
νx1.[x1 = x1].P (a1)
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Fig. 8.4: vk-fin-st3 visualisation.
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vk-fin-st4

P(a) = a(x).$y.(x'<y>.0 | P(y))
P(a)

Listing 8.13: vk-fin-st4 model.

s0 = {(1,#1)} |- P(#1)
s0 1 1 s1 = {(1,#1)} |- $&1.(#1'<&1>.0 | P(&1))
s0 1 1* s1 = {(1,#1)} |- $&1.(#1'<&1>.0 | P(&1))
s1 1'1^ s0 = {(1,#1)} |- P(#1)

Listing 8.14: vk-fin-st4 LTS.

{(1, a1)} `
νx1.(ā1〈x1〉.0 | P (x1))

{(1, a1)} `
P (a1)

1 1 1 1• 1̄ 1~

Fig. 8.5: vk-fin-st4 visualisation.

states explored 2
states generated 3
states unique 2
transitions 3
time I/O 301.4µs
time LTS generation 712.5µs

Listing 8.15: vk-fin-st4 statistics.
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Password system

This model is the secure version of the password system from example 7.3.

GenPass(requestNewPass) = requestNewPass(x). $pass. x'<pass>.0

KeepSecret(requestNewPass) = $p. requestNewPass'<p>. p(pass). (
StoreSecret(pass) | TestSecret(pass) )

StoreSecret(pass) = $secret. pass'<secret>. StoreSecret(pass)

TestSecret(pass) = pub(x). pass(secret). (
TestSecret(pass) + [x=secret] _BAD'<_BAD>.0 )

$requestNewPass. (
GenPass(requestNewPass) | KeepSecret(requestNewPass) )

Listing 8.16: password model.

s0 = {(1,_BAD),(2,#1)} |- $&1.(GenPass(&1) | KeepSecret(&1))
s0 t s1 = {(1,_BAD),(2,#1)} |- $&1.($&2.&1'<&2>.0 | &1(&3).(StoreSecret(&3) | TestSecret(&3)))
s1 t s2 = {(1,_BAD),(2,#1)} |- $&1.(StoreSecret(&1) | TestSecret(&1))
s2 2 1 s3 = {(1,_BAD),(2,#1)} |- $&1.(&1(&2).(TestSecret(&1) + [_BAD=&2]_BAD'<_BAD>.0) | StoreSecret

(&1))
s2 2 2 s4 = {(1,_BAD),(2,#1)} |- $&1.(&1(&2).(TestSecret(&1) + [#1=&2]_BAD'<_BAD>.0) | StoreSecret(&1)

)
s2 2 3* s5 = {(1,_BAD),(2,#1),(3,#2)} |- $&1.(&1(&2).(TestSecret(&1) + [#2=&2]_BAD'<_BAD>.0) |

StoreSecret(&1))
s3 t s6 = {(1,_BAD),(2,#1)} |- $&1.(($&2.[_BAD=&2]_BAD'<_BAD>.0 + TestSecret(&1)) | StoreSecret(&1))
s4 t s7 = {(1,_BAD),(2,#1)} |- $&1.(($&2.[#1=&2]_BAD'<_BAD>.0 + TestSecret(&1)) | StoreSecret(&1))
s5 t s8 = {(1,_BAD),(2,#1),(3,#2)} |- $&1.(($&2.[#2=&2]_BAD'<_BAD>.0 + TestSecret(&1)) | StoreSecret

(&1))
s6 2 1 s3 = {(1,_BAD),(2,#1)} |- $&1.(&1(&2).(TestSecret(&1) + [_BAD=&2]_BAD'<_BAD>.0) | StoreSecret

(&1))
s6 2 2 s4 = {(1,_BAD),(2,#1)} |- $&1.(&1(&2).(TestSecret(&1) + [#1=&2]_BAD'<_BAD>.0) | StoreSecret(&1)

)
s6 2 3* s5 = {(1,_BAD),(2,#1),(3,#2)} |- $&1.(&1(&2).(TestSecret(&1) + [#2=&2]_BAD'<_BAD>.0) |

StoreSecret(&1))
s7 2 1 s3 = {(1,_BAD),(2,#1)} |- $&1.(&1(&2).(TestSecret(&1) + [_BAD=&2]_BAD'<_BAD>.0) | StoreSecret

(&1))
s7 2 2 s4 = {(1,_BAD),(2,#1)} |- $&1.(&1(&2).(TestSecret(&1) + [#1=&2]_BAD'<_BAD>.0) | StoreSecret(&1)

)
s7 2 3* s5 = {(1,_BAD),(2,#1),(3,#2)} |- $&1.(&1(&2).(TestSecret(&1) + [#2=&2]_BAD'<_BAD>.0) |

StoreSecret(&1))
s8 2 1 s3 = {(1,_BAD),(2,#1)} |- $&1.(&1(&2).(TestSecret(&1) + [_BAD=&2]_BAD'<_BAD>.0) | StoreSecret

(&1))
s8 2 2 s4 = {(1,_BAD),(2,#1)} |- $&1.(&1(&2).(TestSecret(&1) + [#1=&2]_BAD'<_BAD>.0) | StoreSecret(&1)

)
s8 2 3 s5 = {(1,_BAD),(2,#1),(3,#2)} |- $&1.(&1(&2).(TestSecret(&1) + [#2=&2]_BAD'<_BAD>.0) |

StoreSecret(&1))
s8 2 3* s5 = {(1,_BAD),(2,#1),(3,#2)} |- $&1.(&1(&2).(TestSecret(&1) + [#2=&2]_BAD'<_BAD>.0) |

StoreSecret(&1))

Listing 8.17: password LTS.

states explored 9
states generated 18
states unique 9
transitions 18
time I/O 353.9µs
time LTS generation 4.7428ms

Listing 8.18: password statistics.
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{(1, BAD), (2, a1), (3, a2)} `
νx1.((νx2.[a2 = x2]. ¯BAD〈BAD〉.0 + TestSecret(x1)) | StoreSecret(x1))

{(1, BAD), (2, a1)} `
νx1.(x1(x2).(TestSecret(x1) + [BAD = x2]. ¯BAD〈BAD〉.0) | StoreSecret(x1))

{(1, BAD), (2, a1)} `
νx1.(StoreSecret(x1) | TestSecret(x1))

{(1, BAD), (2, a1)} `
νx1.(νx2.x̄1〈x2〉.0 | x1(x3).(StoreSecret(x3) | TestSecret(x3)))

{(1, BAD), (2, a1)} `
νx1.(GenPass(x1) | KeepSecret(x1))

{(1, BAD), (2, a1)} `
νx1.((νx2.[a1 = x2]. ¯BAD〈BAD〉.0 + TestSecret(x1)) | StoreSecret(x1))

{(1, BAD), (2, a1)} `
νx1.((νx2.[BAD = x2]. ¯BAD〈BAD〉.0 + TestSecret(x1)) | StoreSecret(x1))

{(1, BAD), (2, a1), (3, a2)} `
νx1.(x1(x2).(TestSecret(x1) + [a2 = x2]. ¯BAD〈BAD〉.0) | StoreSecret(x1))

{(1, BAD), (2, a1)} `
νx1.(x1(x2).(TestSecret(x1) + [a1 = x2]. ¯BAD〈BAD〉.0) | StoreSecret(x1))

τ

2 2

τ

τ

2 3•
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2 1

τ

2 3•

τ
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Fig. 8.6: password visualisation.
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8.2 Infinite-state models

For infinite-state models, it is not possible to represent the LTS finitely. However, we
can investigate the performance of the LTS generation by assessing the time taken at
different state exploration limits.

In measuring the performance of the program, the CPU used is an Intel Core i7-9750H
with 16GB of RAM running Ubuntu 18.04. For the run times shown, the program is run
for a total of five times and the average time is calculated.

For the purpose of graphing the performance, in an LTS we define 𝑁 to be the set of
states Q and transitions T , i.e., 𝑁 = Q ∪ T . In a graph 𝐺 = (𝑉, 𝐸), this is the set of
vertices and edges (𝑉+𝐸).

vk-inf-reg2

‘inf-reg’ means that the number of registers grow indefinitely and as result there are an
infinite number of states.

P = $x. a'<x>.( $y. y'<x>.0 | P )
P

Listing 8.19: vk-inf-reg2 model.

s3 1'5^ s4 = {(1,#1),(2,#2),(3,#3),(4,#4),(5,#5)} |- ($&1.&1'<#2>.0 | ($&2.&2'<#3>.0 | ($
&3.&3'<#4>.0 | ($&4.&4'<#5>.0 | P))))

Listing 8.20: vk-inf-reg2 sample state.
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Fig. 8.7: vk-inf-reg2 performance.
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The time taken to generate the LTS grows exponentially with the number of states and
transitions gathered. The ‘elbow’ of the graph lies somewhere near 33 𝑁 . From this
point, the time taken to generate the next states increases significantly. This is mainly
due to nested parallel elements. For parallel elements 𝑃 | 𝑄, we call trans() four times
using the following states: 𝜎 ` 𝑃, 𝜎 ` 𝑄, (♯ + 𝜎) ` 𝑃, and (♯ + 𝜎) ` 𝑄 from the
transition rules Par, Comm and Close, and their symmetric counterparts. trans() is
called recursively a number of times, resulting in the rapid time growth rate.

The state at the elbow of the graph contains 16 processes in parallel. Therefore, with
states with more than 16 processes and beyond in parallel, it is expected that the time
taken to generate the next states will be computationally expensive.

The following table summarises the cost of recursive calls to trans() corresponding to
each element.

no. of calls
element to trans() configurations passed to trans()

input 𝑎(𝑏).𝑃 0
output �̄�〈𝑏〉.𝑃 0
equality [𝑎=𝑎]𝑃 1 𝜎 ` 𝑃
inequality [𝑎≠𝑏]𝑃 1 𝜎 ` 𝑃
restriction 𝜈𝑎.𝑃 1 (𝜎 + 𝑎) ` 𝑃
summation 𝑃 +𝑄 2 𝜎 ` 𝑃, 𝜎 ` 𝑄
composition 𝑃 | 𝑄 4 𝜎 ` 𝑃, 𝜎 ` 𝑄, (♯ + 𝜎) ` 𝑃, (♯ + 𝜎) ` 𝑄
process 𝑝( ®𝑎) 1 𝜎 ` 𝑃{ ®𝑎/®𝑏}
inaction 0 0

Tab. 8.1: Elements and their number of calls to trans() and their configurations passed to
trans().

We can see that the two binary elements composition and summation are the most costly
elements at 4 and 2 calls to trans(), respectively.
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vk-inf-reg1

P = $x. a'<x>.( x(y).0 | P )
P

Listing 8.21: vk-inf-reg1 model.

s19 1'6^ s15 = {(1,#1),(2,#2),(3,#3),(4,#4),(5,#5),(6,#6)} |- (#2(&1).0 | (#3(&2).0 |
(#4(&3).0 | (#5(&4).0 | (#6(&5).0 | P)))))

Listing 8.22: vk-inf-reg1 sample state.
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Fig. 8.8: vk-inf-reg1 performance.

The shape of the graph is exponential but its pattern is staggered. Since the experiment is
repeated five times, we offset any potential observational errors. Therefore, the pattern
found is consistent.

Note the small increments in time taken between 535 and 7289 𝑁 , and then a sudden
jump in time taken at 8750 𝑁 . The same occurs from 16414 to 20261 𝑁 , and then a jump
at 22067 𝑁 . This pattern occurs because during the linear step increases (535-7289 𝑁 ,
16414-20261 𝑁), many states and transitions are found from the states in the queue, so
the pattern is linear. However, once all of these states are dequeued, only a small number
of states and transitions are found from those in the queue. The small size of 𝑁 does not
reflect the increase in time taken to generate them, hence the sharp rise in the graph.
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vk-inf-st3

P = a(x). ( P | P )
P

Listing 8.23: vk-inf-st3 model.

s12 1 2* s13 = {(1,#1)} |- (P | (P | (P | (P | (P | (P | (P | (P | (P | (P | (P | (P | (P |
P)))))))))))))

Listing 8.24: vk-inf-st3 sample state.
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Fig. 8.9: vk-inf-st3 performance.

The growth pattern is exponential due to the increasing number of parallel elements.
The elbow of the graph at 46 𝑁 contains 16 processes in parallel, which is consistent
with the number of parallels as seen before at this point. Therefore, gathering next states
with more than 16 processes in parallel becomes highly expensive.
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vk-inf-st4

P(a) = a(x). ( P(x) | P(x) )
P(a)

Listing 8.25: vk-inf-st4 model.

s196 6 7* s553 = {(1,#1),(2,#2),(3,#3),(4,#4),(5,#5),(6,#6),(7,#7)} |- (P(#1) | (P(#2) | (P
(#3) | (P(#4) | (P(#5) | (P(#6) | (P(#7) | P(#7))))))))

Listing 8.26: vk-inf-st4 sample state.
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Fig. 8.10: vk-inf-st4 performance.

The time taken to generate the LTS grows linearly with the number of states and transi-
tions gathered. The expression is quite similar to the previous vk-inf-st3 model, except
that this process definition takes in a name. It seems perplexing that the two expressions
result in different growth patterns.

The reason for this is due to the different frontier sizes. The frontier of an LTS is a
state where the next states are generated. For vk-inf-st3, the frontier size grows by 2 for
each state explored. For vk-inf-st4, the frontier size grows exponentially for each state
explored. Therefore, these new states and transitions found add to the size of 𝑁 and
maintain the graph at a linear pattern. To demonstrate, 𝑠10 for vk-inf-st3 is

s9 1 1 s10 = {(1,#1)} |- (P | (P | (P | (P | (P | (P | (P | (P | (P | (P | P)
)))))))))

and for vk-inf-st4, the state is

s4 1 1 s10 = {(1,#1)} |- (P(#1) | (P(#1) | (P(#1) | (P(#1) | P(#1)))))

Note how for vk-inf-st4, 𝑠10 is generated from 𝑠4, indicating that new states are added
to the queue at an early stage. For vk-inf-st3, 𝑠10 is generated from 𝑠9, indicating a
small frontier size. Essentially, each state generation for vk-inf-st3 yields only 2 new
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states (regardless of the number of parallel elements), whereas for vk-inf-st4, each state
exploration will yield an increasing number of states. So even with the additional time
taken due to the number of parallels, its number of new states and transitions found will
offset the generation time. The next models will make this clearer.

vk-inf-st1

P = a'<a>.( P | $y. (y'<y>.0 | y(x).0) )
P

Listing 8.27: vk-inf-st1 model.

s3 1'1 s4 = {(1,#1)} |- ($&1.(&1'<&1>.0 | &1(&2).0) | ($&3.(&3'<&3>.0 | &3(&4).0) | ($
&5.(&5'<&5>.0 | &5(&6).0) | ($&7.(&7'<&7>.0 | &7(&8).0) | P))))

Listing 8.28: vk-inf-st1 sample state.
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Fig. 8.11: vk-inf-st1 performance.
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{(1, a1)} `
(νx1.(x̄1〈x1〉.0 | x1(x2).0) | (νx3.(x̄3〈x3〉.0 | x3(x4).0) | (νx5.(x̄5〈x5〉.0 | x5(x6).0) | P )))

{(1, a1)} `
(νx1.(x̄1〈x1〉.0 | x1(x2).0) | (νx3.(x̄3〈x3〉.0 | x3(x4).0) | P ))

{(1, a1)} `
(νx1.(x̄1〈x1〉.0 | x1(x2).0) | P )

{(1, a1)} `
P

{(1, a1)} `
(νx1.(x̄1〈x1〉.0 | x1(x2).0) | (νx3.(x̄3〈x3〉.0 | x3(x4).0) | (νx5.(x̄5〈x5〉.0 | x5(x6).0) | (νx7.(x̄7〈x7〉.0 | x7(x8).0) | P ))))

τ

1̄ 1 τ

1̄ 1

τ

1̄ 1

1̄ 1

Fig. 8.12: vk-inf-st1 visualisation with 4 states explored.

With the visualisation of 4 states explored, the frontier of the LTS can be clearly seen.
Only one next state is found for each state explored, even though the number of parallel
processes increases at each state. The calling of trans() becomes more computationally
expensive at each exploration, contributing to the exponential trend of the graph.

vk-inf-st2

P = a(x).( P | $y. x'<y>.0 )
P

Listing 8.29: vk-inf-st2 model.

s99 1 5* s386 = {(1,#1),(2,#2),(3,#3),(4,#4),(5,#5)} |- ($&1.#2'<&1>.0 | ($&2.#3'<&2>.0 | ($
&3.#4'<&3>.0 | ($&4.#2'<&4>.0 | ($&5.#5'<&5>.0 | P)))))

Listing 8.30: vk-inf-st2 sample state.
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Fig. 8.13: vk-inf-st2 performance.

{(1, a1)} `
(νx1.ā1〈x1〉.0 | (νx2.ā1〈x2〉.0 | (νx3.ā1〈x3〉.0 | P )))

{(1, a1), (2, a2), (3, a3)} `
(νx1.ā2〈x1〉.0 | (νx2.ā3〈x2〉.0 | P ))

{(1, a1), (2, a2)} `
(νx1.ā1〈x1〉.0 | (νx2.ā1〈x2〉.0 | (νx3.ā2〈x3〉.0 | P )))

{(1, a1)} `
(νx1.ā1〈x1〉.0 | (νx2.ā1〈x2〉.0 | P ))

{(1, a1), (2, a2)} `
(νx1.ā2〈x1〉.0 | P )

{(1, a1)} `
(νx1.ā1〈x1〉.0 | P )

{(1, a1)} `
P

{(1, a1), (2, a2)} `
(νx1.ā2〈x1〉.0 | (νx2.ā2〈x2〉.0 | P ))

{(1, a1), (2, a2)} `
(νx1.ā2〈x1〉.0 | (νx2.ā1〈x2〉.0 | P ))

{(1, a1)} `
(νx1.νx2.x̄1〈x2〉.0 | P )

{(1, a1), (2, a2)} `
(νx1.ā1〈x1〉.0 | (νx2.ā2〈x2〉.0 | P ))

{(1, a1)} `
(νx1.ā1〈x1〉.0 | (νx2.νx3.x̄2〈x3〉.0 | P ))
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Fig. 8.14: vk-inf-st2 visualisation with 4 states explored.

From the visualisation, the frontier increases exponentially in size for this model. Ex-
ploring a state finds many more new states (and transitions), which therefore increases
the size of 𝑁 . This makes it such that for every new state explored, the number of states
and transitions found from calling trans() scales with the number of parallel processes.
As a result, the shape of the graph becomes linear.
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9Conclusion

The goal of the dissertation was to generate an LTS from pi-calculus models through
the use of fresh-register automata. This was fully achieved through the construction of
a tool which implemented the underlying theory to perform this.

9.1 Achievements

To our knowledge, this is the only implementation of an LTS generation tool of pi-
calculus models by using fresh-register automata. In 2011, Tzevelekos defined FRA’s
and the FRA transition relation for the pi-calculus. The dissertation aimed to implement
Tzevelekos’ theory and this was realised.

We began by specifying the×𝜋-calculus grammar, parsing its language, and representing
the models internally. From these input models, we translated them to FRA’s through a
transition relation. The original ×𝜋-calculus transition relation was revised to improve
practicality and each rule was thoroughly implemented. Using structural congruence
as a starting point, we expanded the definition of congruence in order to accommodate
the definition of configurations in FRA’s. We devised algorithms to normalise config-
urations, thereby enabling the detection of equivalent states. By exploring the states
breadth-first using the transition relation and normalising each state, we constructed a
minimised directed graph, thus forming the LTS of a model. We demonstrated the via-
bility of using the generated LTS as a verification tool by proving or disproving whether
a target state can be reached. Finally, we showcased LTS’s from a number of finite and
infinite-state models generated using the tool.

The tool produced is encapsulated in an intuitive command-line program, which allows
for maximum compatibility and scripting capabilities. Hopefully, this tool will aid
researchers and learners in this area and is used as a stepping stone for building model
checking tools for wider applications.
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9.2 Challenges

During the implementation of the transition relation, it was not apparent that certain tran-
sition rules could be applied at different points of the derivation tree due to intermediate
stages. This led to confusion in terms of the design and approach. There was discussion
about having a tentative LTS and applying the Dbl rules on the second pass. This ap-
proach would have been more complex, as well as being more algorithmically inefficient.
In the end, the rules were reviewed and modified to simplify the implementation.

Structural congruence with processes was well established by Milner. However, equiv-
alence needed to be extended to configurations, which contain both the registers and
the process. This was not mentioned in the FRA paper. Therefore, we developed and
formalised the definition of configuration congruence.

The idea of garbage collection was not referred to in the FRA paper and its feasibility
required further investigation. Koutavas theorised that removing names that did not
appear in the process from the registers did not interfere with the LTS generation.
However, transition rules like the revised Inp1 rule depended on the contents of the
registers. After an exchange of emails between Koutavas and Tzevelekos, Tzevelekos
confirmed the viability of garbage collection, which would result in a bisimilar LTS under
the×𝜋-bisimilarity notion. As a result, GC could be implemented without compromising
correctness.

Models containing states with many parallel processes (>16) are subject to performance
bottlenecks due to nested calls to trans(). The revised transition relation was imple-
mented faithfully with no little to no deviations. Perhaps the transition rules could
have been rewritten with optimisations which reduces the number of calls to trans().
However, this was not performed because there was a trade-off between correctness and
performance, and we chose the former. Heavy modification to the rules could have
resulted in an incorrect LTS.

Throughout the development of the LTS generation tool, a number of issues and bugs
were encountered, which were eventually resolved. The use of unit tests and writing
clean code helped to uncover instances of bugs. Numerous parts of the codebase were
continuously iterated upon in terms of its structure, algorithms, and data structures.
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9.3 Future work

At present, state reachability checks are performed by manually encoding the target state
and searching for the corresponding action transition. This verification procedure can
be formalised through the use of a properties language. An example is a modal logic like
LTL [29] which encodes conditions of the LTS, e.g., a state will eventually be reached.
Future work would examine how a properties language like LTL could be integrated
with the tool.

It was anticipated that this dissertation would not cover the scope of the broader research
project. However, the foundational step of generating a labelled transition system from
pi-calculus models was achieved. The next stage of the research project is bisimulation.
From two LTS’s generated using the tool, can a bisimulation be found between these
two systems? Since the LTS modelled by the 𝜋-calculus is represented by FRA’s, we
need to use Tzevelekos’ definition of ×𝜋-bisimulation. Known algorithms for solving
standard bisimulations like weak and strong exist, including the Paige-Tarjan algorithm
[30] and Kanellakis-Smolka algorithms [31]. However, these algorithms would need
to be modified in order to work for ×𝜋-bisimulations. Future work would focus on
investigating how these algorithms would operate with ×𝜋-bisimulations.
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Source Code

The source code, tests, and documentation for this tool can be found at
https://github.com/sengleung/pifra.
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