
School of Computer Science and Statistics

Named Data Networking in

Vehicular Ad-Hoc Networks: The

Support of Push-Based Traffic for

Transient, Periodic Data

Christopher Lynch

Supervisor: Professor Vinny Cahill
Assistant Supervisor: Dr. Saqib Rasool Chaudhry

April 30, 2020

A Masters Dissertation submitted in partial fulfilment
of the requirements for the degree of

Master in Computer Science

http://www.scss.tcd.ie

Declaration

I hereby declare that this project is entirely my own work and that it has not been submit-
ted as an exercise for a degree at this or any other university.

I have read and I understand the plagiarism provisions in the General Regulations of the
University Calendar for the current year, found at http://www.tcd.ie/calendar.

I have also completed the Online Tutorial on avoiding plagiarism ‘Ready Steady Write’, lo-
cated at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

Signed: Date:

i

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

Abstract
The Named Data Networking (NDN) protocol is a promising network/transport layer re-
placement for TCP/IP when considering that the majority of traffic on the internet today
is content; where content is traffic that is not peer-to-peer and maintains its relevance out-
side of a conversation between two hosts. Therefore, NDN is a content-centric protocol,
focused on the desired data instead of a location where the data resides. The architecture
of NDN is pull-based, where communication occurs between consumers and producers. A
consumer must request the content that it desires and will only accept content that it has
requested. Consumers request content by name and any node that contains the content can
reply. This behaviour is supported by in-network caching, where data that passes through a
node in the network can be cached in the node’s content store (CS). NDN also has built-in
security, enabling data to live independently of location and producer. NDN supports multi-
cast behaviour by default, nodes will demultiplex data from a producer towards all requesting
consumers. Nodes will also multiplex requests for data in the upstream towards producers.

Vehicular Ad-Hoc Networks (VANET) are a subset of Intelligent Transportation Systems (ITS)
and refer to Vehicle-to-Everything communication (V2X). VANETs exhibit a set of network
conditions for which TCP/IP is ill-suited. The NDN protocol has been identified as a suitable
replacement for TCP/IP in VANETs, though previous research has identified issues with NDN
in VANETs. Congestion and delay are two issues. The use of a pull-based architecture requires
the generation of an interest packet for every piece of data consumed, adding extra overhead
to the network. This pull-based architecture also has consequences when the data is transient
in nature. Infrequent events, such as safety-critical events, and events that are periodic,
invalidating previously generated data, are two examples of transient data. Transient data
is time sensitive, which means that waiting for a consumer to request data is undesirable.
Push-based architectures might be better suited for disseminating transient data.

This dissertation evaluates the potential benefits of introducing the ability to push transient
periodic data in the NDN protocol. A Green Light Optimised Speed Advisory (GLOSA)
system is identified as an application where data is generated periodically, which invalidates
its previous incarnation. Installed in traffic lights, GLOSA systems inform vehicles of the
optimum speed for passing a traffic light during its green phase.

To evaluate the potential benefits of pushing data in the NDN protocol two pushing mech-
anisms are implemented, unsolicited data and proactive pushing. Unsolicited data refers to
nodes eavesdropping and caching packets that they detect. Proactive pushing refers to nodes
sending un-requested data into the network that all other nodes within communication range
accept into their CS.

SUMO and ndnSim are used to create a large-scale scenario with realistic traffic modelling and
network conditions. SUMO is a microscopic and continuous road traffic simulation package
and ndnSim is a network simulator used to evaluate experimentation with the NDN protocol.
A comprehensive evaluation for varying degrees of vehicle speed, vehicle density, transmission
range and data update frequency are undertaken to better understand the performance of
pure NDN, unsolicited data and proactive pushing.

The results indicate that pushing transient and periodic data greatly improves network perfor-
mance when compared to pure NDN. Unsolicited data results, on average, in a 75% decrease
in network packets and a 73% decrease in delay. Proactive pushing results, on average, in a
67% decrease in network packets and a 77% decrease in delay.

ii

Acknowledgements

I would like to thank Professor Vinny Cahill for his support and guidance over the course of
this project. The weekly meetings, consistent advice and his passion for the subject matter
ensured that I always stayed on the right course.

I would also like to thank Dr. Saqib Chaudhry for all the help, tips, examples and guidance
provided over the course of the project. There was more than one occasion where a pointer
from Saqib proved pivotal in bringing everything together.

I would like to say a big thanks to all my friends and to my girlfriend. Your encouragement
and support, the many jokes and questionable adventures, have made my time at Trinity some
of the best years of my life

Finally, I would like to say a heartfelt thanks to my family, especially my mom and dad, for
backing me every step of the way. Your unwavering support has lead to this point and I am
eternally grateful for every opportunity you have afforded me in life.

iii

Contents

1 Introduction 1

1.1 Motivation . 2
1.2 Project Overview . 3

1.2.1 Information Centric Networking . 3
1.2.2 Vehicular Ad-Hoc Networks . 3
1.2.3 Research Aims . 3
1.2.4 Potential Benefits of this Research 4
1.2.5 Project Scope . 4
1.2.6 Road Map . 4

2 Background 6

2.1 IP . 6
2.1.1 Addressing . 7
2.1.2 Domain Name System . 7
2.1.3 IP Packet . 7
2.1.4 Forwarding Information Base . 8
2.1.5 The Lack of Caching . 8
2.1.6 Security . 9

2.2 Named Data Networking . 9
2.2.1 Names as Addresses . 9
2.2.2 Packets . 9
2.2.3 Data Structures . 11
2.2.4 Forwarding and Routing . 11
2.2.5 Security . 12
2.2.6 Flow of Data . 12
2.2.7 NDN Summary . 13

2.3 Vehicular Ad-Hoc Networks . 14
2.3.1 Highly-Dynamic Topology . 14
2.3.2 Frequent Link Disruption . 15
2.3.3 Time Constraints . 15

iv

2.3.4 Wireless Access in Vehicular Environments 15
2.4 Vehicular-NDN . 16

2.4.1 Communication Roles . 16
2.4.2 The Power of Content Naming . 17
2.4.3 Caching and Forwarding . 17

2.5 GLOSA . 18
2.5.1 Traffic Light System . 18
2.5.2 CAM Packet . 18

2.6 State of the Art in Push-Based Communication in NDN 18
2.6.1 Enabling Push-Based Critical Data Forwarding in Vehicular Named

Data Networks . 19
2.6.2 Internet of Things via Named Data Networking: The Support of Push

Traffic . 20
2.7 Tools . 22

2.7.1 NdnSim . 22
2.7.2 SUMO . 24

3 Design and Implementation 25

3.1 Requirements . 25
3.1.1 Parameters . 26
3.1.2 Scope of the Data . 27

3.2 High-Level Overview . 28
3.3 NDN Forwarding Daemon . 29

3.3.1 Proactive Pushing Pipeline . 31
3.3.2 Unsolicited Data Pipeline . 32

3.4 NDN-CXX . 33
3.4.1 Meta-Information . 34
3.4.2 Type Number Assignment . 35

3.5 Scenario Design Considerations . 35
3.6 Traffic Modelling . 36

3.6.1 Road Topology . 36
3.6.2 Traffic Light System . 38
3.6.3 Traffic Demand . 38

3.7 Network Scenario . 39
3.7.1 Applications . 39
3.7.2 Consumer Application . 40
3.7.3 Producer Applications . 40
3.7.4 Scenario Design . 42
3.7.5 Summary . 44

v

4 Evaluation 45

4.1 Data Dissemination Method Testing . 45
4.1.1 Testing Metrics . 46

4.2 Results . 47
4.2.1 Congestion . 48
4.2.2 Delay . 51
4.2.3 Cache Hit ratio . 55
4.2.4 Summary . 58

5 Conclusion 59

5.1 Future Work . 60

A1Appendix 67

A1.1 Code repositories . 67

vi

List of Figures

1.1 Illustration of the communication flow the unsolicited data and proactive
pushing methods . 2

2.1 OSI model hourglass for IP and NDN from [1] 6
2.2 IP packet header . 7
2.3 Content Delivery Networks as depicted by Ashley John [2] 8
2.4 Example of name structure as seen in Networking Named Content [1] 9
2.5 Example of Interest and Data packets as seen in Named Data Networking [3] [1] 10
2.6 Forwarding process at an NDN node [3] . 13
2.7 VANET as depicted by [4] . 14
2.8 IEEE 1609 standards which make up WAVE as depicted in [5] 16
2.9 Depiction of VNDN as seen in [6] . 17
2.10 Packet flow as seen in [7], where (a) represents traditional ndn and (b)

represents Muhammad et als. alterations 19
2.11 Pseudocode for RSU or CR as seen in [7] 20
2.12 Packet flow between a consumer c and producer p for : Interest notification

(a), unsolicited data (b), and virtual interest polling (c) as seen in [7] 22
2.13 Structural diagram of the ndnSIM design components [8] 23

3.1 High Level implementation overview . 28
3.2 Overview of NFD modules and dependencies [9] 29
3.3 Overview of NFD pipelines [8] . 30
3.4 Branching options from OnIncomingData pipeline after adding the proactive

pushing pipeline, Pushed Data . 31
3.5 Data packet as seen in [10] . 34
3.6 Web portal of OSMWebWizard . 36
3.7 Node definition in .nod.xml . 37
3.8 Edge definition in .edg.xml . 37
3.9 Intersection created by NETCONVERT . 37
3.10 Flow definition in .rou.xml . 38

vii

3.11 Intersection created by NETCOVERT with traffic demand 39
3.12 Running simulation using base NDN, visualized using pyviz 44

4.1 Test road topology . 48
4.2 Overall results for congestion from all simulations 49
4.3 Graph showing results for congestion, grouped by the density of vehicle . . . 49
4.4 Graph showing results for congestion, grouped by transmission range 50
4.5 Graph showing results for congestion, grouped by vehicle speed 51
4.6 Boxplot for the number of packets in the network per method 51
4.7 Overall delay of each method for all simulations 52
4.8 Graph showing results for delay, grouped by the density of vehicle 53
4.9 Graph showing results for delay, grouped by transmission range 54
4.10 Graph showing results for delay, grouped by vehicle speed 54
4.11 Line chart using loess regression for a single simulation showing delay for each

method over time . 55
4.12 Overall results for cache hit ratio for all simulations 55
4.13 Graph showing results for cache hit ratio, grouped by the density of vehicle . 56
4.14 Graph showing results for cache hit ratio, grouped by transmission range . . 57
4.15 Graph showing results for cache hit ratio, grouped by vehicle speed 57
4.16 Example of the cache hit ratio of a node actively participating in a simulation

(5) and a node which is static at the edge of the same simulation (46) . . . 58

viii

List of Tables

4.1 Table showing the configurable attributes and values used in the scenario . . 47

ix

Nomenclature

BSS Basic Service Set
CAM Cooperative Awareness Message
CDN Content Delivery Network
CS Content Store
CR Content Router
DNS Domain Name System
DSRC Dedicated Short Range Communication
FIB Forwarding Information Base
GLOSA Green Light Optimum Speed Advisory
ICN Information Centric Networking
ITS Intelligent Transport Systems
MANET Mobile Ad-Hoc Network
NACK Negative Acknowledgement
NFD NDN Forwarding Daemon
PCPH Percentage Cars Per Hour
PIT Pending Interest Table
P2P Point to Point
QoS Quality of Service
RSU Road-Side Unit
RTT Round Trip Time
TLS Traffic Light System
TLV Type-Length-Value
WAVE Wireless Access in Vehicular Environments
VANET Vehicular Ad-Hoc Network
VIP Virtual Interest Polling
VNDN Vehicular Named Data Networking
V2V Vehicle to Vehicle
V2I Vehicle to Infrastructure
V2X Vehicle to Everything

x

1 Introduction

This dissertation investigates the potential benefits gained from pushing data that is transient
and periodic in Named Data Networking (NDN) for Vehicular Ad-Hoc Networks (VANET).
NDN is a pull-based, content-centric, network-layer protocol that has been identified as a
possible replacement for host-centric protocols such as TCP/IP [3]. This is because the
majority of traffic in the internet today is content; where content is traffic that is not peer-
to-peer and maintains its relevance outside of a conversation between two hosts. Intelligent
Transportation Systems (ITS) have been identified as a particular use-case where the content-
centric architecture of NDN could improve network performance when compared to TCP/IP
[6].

The pull-based architecture of NDN consists of communication between consumers and pro-
ducers. A consumer must request the data that it desires and will only accept data that it
has requested [10]. This pull-based architecture is not well suited to transient data which is
time sensitive. The producer of transient data must first wait for a request before forwarding
data to a consumer [7].

There are studies that have investigated the benefits of pushing methods for transient data
that is infrequent, such as the work published by Muhammad et al. [7], but no research has
been identified that investigates the potential benefits of implementing pushing methods into
the NDN protocol for data that is transient and periodic in VANETs. This dissertation will
investigate the potential benefits gained, or lack thereof, from pushing data that is transient
and periodic in Vehicular NDN (VNDN) networks.

The data dissemination methods evaluated in this dissertation are the existing method of
unsolicited data that has been requested by a third party and a novel approach called proactive
pushing by a producer. Unsolicited data is where a consumer accepts data that it has not
explicitly requested. A consumer in the network must still initiate communication with a
producer, but the corresponding reply from a producer will be cached by all consumers in the
network within range of communication. As a consumer initiates communication, unsolicited
data is not a full push-based communication method. Proactive pushing is where a producer
will send data into the network as it is created, which consumers will then accept into their
cache. As no consumer initiates communication, the proactive pushing method is a fully push-

1

based communication method. An illustration of the communication models of the unsolicited
data and proactive pushing methods can be seen in figure 1.1.

Figure 1.1: Illustration of the communication flow the unsolicited data and proactive push-
ing methods

1.1 Motivation

Transient data has a limited lifetime before its relevance expires. This limited lifetime means
any unnecessary delay in communication is undesirable. This becomes an issue in a pull-based
architecture, such as NDN [10], where delay is incurred while waiting for a request to arrive
for the transient data before inserting it into the network.

The topology of VANETs is highly dynamic [11], making data exchange between nodes chal-
lenging. NDN is a suitable network/transport layer protocol for vehicular environments due
to its focus on the what of the request instead of the where, in-network caching, inherent
multicast support and built-in security [12]. But the problem still remains for transient data,
a pull-based architecture adds undesirable delay. Also, a pull-based architecture means that
for every piece of data consumed there is a corresponding request from a consumer, which
can add extra overhead to the network.

There are proposed solutions for mitigating the delay in disseminating transient data in VNDN
which introduce push-based methods into the NDN protocol. These solutions for VNDN focus
on transient data that is infrequent, such as safety-critical events [7]. There is another type
of transient data though. Data which is periodic, meaning, there are frequent updates. One
such example of this form of transient data would be a Green Light Optimized Speed Advisory
(GLOSA) system, where vehicles can be informed of the optimum speed at which they should
proceed in order to pass a traffic light system (TLS) [13]. GLOSA systems produce frequent
updates which invalidate previously generated data. The content being produced by a GLOSA
system is transient and periodic, as the data is only valid for the duration in which no new
update has been produced. In order for a GLOSA system to function using the NDN protocol
a polling behaviour would be required. This is where consumers frequently generate requests

2

for the same information. This polling behaviour for data which is transient and periodic
could theoretically produce a lot of congestion, possibly greater than twice the congestion of
a push-based behaviour in the same scenario.

The hypothesis is that implementing methods that enable push-based behaviour in the NDN
protocol for disseminating content that is transient and periodic in VANETs will reduce the
delay in receiving content and reduce the network overhead due to the number of packets
being generated. There may also be other improvements such as an increased cache-hit ratio.

1.2 Project Overview

1.2.1 Information Centric Networking

Information Centric Networking (ICN) [14] is a set of guiding principles for a possible future
internet architecture based on Named Data Objects. In ICN, content is the fundamental ele-
ment about which all network functionality is built. The concern focuses on what the content
is, instead of where the content resides. ICN leverages in network caching, multiparty com-
munication through replication, and interaction models that decouple senders from receivers.
The goal of ICN is to achieve efficient and reliable distribution of content [14].

1.2.2 Vehicular Ad-Hoc Networks

Vehicular Ad-Hoc Networks [11], derived from Mobile Ad-Hoc Networks (MANET), use ve-
hicles as mobile nodes. VANETs experience a unique set of network conditions such as high
speed, short-interconnection times and diverse mobility patterns. Vehicles can quickly move
from highly dense, to extremely sparse network scenarios. VANETs also use vehicles as inter-
mediary nodes in the network. For these reasons, specialized protocols have been designed
and implemented for VANETs, such as Dedicated Short Range Communication (DSRC) [15]
and Wireless Access in Vehicular Environments (WAVE) [5].

1.2.3 Research Aims

The aim of this research is to evaluate the effectiveness of push-based methods in VNDN, for
a scenario where the content being requested is transient and periodic. The specific objectives
of this research are.

• Implement the unsolicited data and proactive pushing methods in the NDN protocol.

• Design and implement a suitable VANET scenario of an intersection using a TLS ex-
hibiting the communication pattern of a GLOSA system.

• Evaluate the network performance of each method in comparison to pure NDN, as the

3

density of vehicles, speed of vehicles, transmission range of nodes, and frequency of
updates to the transient data change.

1.2.4 Potential Benefits of this Research

The potential benefits of this research include, but are not limited to, a reliable means of
disseminating data that is transient and periodic in VNDN. A reduction in delay experienced
in the network. A reduction in the number of packets being generated in the network. An
overall improvement in network congestion for VNDN from the removal of polling behaviour
for data that is transient and periodic. The push-based methods implemented in this project
could also apply to any transactions that require polling behaviours, regardless of whether the
data is transient.

1.2.5 Project Scope

This project will solely focus on the improvement to the network, measured in terms of
congestion, delay, and cache hit ratio, from the implementation of push-based methods in the
NDN protocol for the dissemination of content that is transient and periodic in a VANET. The
scenario chosen to evaluate potential improvements, or lack thereof, is a four way intersection
with a single TLS at the centre of the intersection. This dissertation is not concerned about the
potential change in behaviour of vehicles responding to a GLOSA system as a consequence of
the various data dissemination methods. Therefore, a GLOSA system will not be implemented
but the TLS node will approximate the data dissemination behaviour of a GLOSA system, in so
much as can be done under the NDN protocol. This dissertation is also not concerned about
any security issues that may arise from the implementation of various pushing mechanisms to
the NDN protocol. These concerns would include, enabling eavesdropping from implementing
unsolicited data or distributed-denial-of-service attacks from the ability to push data from
a producer node. These concerns and more will need to be addressed before the potential
implementation of any production ready system.

1.2.6 Road Map

Chapter 2 will provide the background information required to understand the core concepts
of this dissertation. This will leads to the state of the art, push-based communication in
the NDN protocol. After discussing the state of the art, a brief description of the tools and
technology used to evaluate the performance of the pure NDN, unsolicited data and proactive
pushing methods will be provided. Chapter 3 will discuss the design and implementation of
unsolicited data and proactive pushing. This will include a discussion of the main challenges
encountered during each methods development. Chapter 3 will also contain a comprehensive
discussion of the design and implementation of the scenario used to evaluate the performance

4

of each data dissemination method. This will include both the intended implementation and
the final design. Chapter 4 provides an evaluation of the results from the simulations running
the push-based mechanisms in comparison to pure NDN. This is accompanied by analysis and
evaluation of the overall project. Finally, chapter 5 gives a summary of the work done in this
project, the results obtained, concluding analysis, and potential future work.

5

2 Background

This chapter reviews the background information and state of the art research relevant to this
dissertation. Firstly, a discussion of the Internet Protocol (IP) and its limitations is provided.
Then, an introduction to the NDN protocol and its architecture. This is followed by an
introduction to VANETs and then NDN’s application in VANETs, which is commonly referred
to as VNDN. A brief introduction is then given to the GLOSA system about which testing
scenarios will be built. A description of the state of the art research related to the pushing of
data in the NDN protocol is then provided. Finally, the tools used to evaluate alterations to
the NDN protocol are introduced.

2.1 IP

The internet as we know it, is abstracted into several mutually exclusive layers, sometimes
referred to as the OSI stack, allowing the layers and their functionality to develop independently
of each other [16]. Interaction between layers occurs via interfaces. The IP protocol, is at the
network layer of the OSI stack [17]. Above IP are the transport layer protocols (TCP, UDP,
etc.), and the application layer protocols (HTTP, WWW, etc). Below IP is the data link layer
where Logical Link Control (LLC) and Medium Access Control (MAC) are performed. Below
the data link layer is the physical layer where information is sent through the physical medium.
This can be seen in figure 2.1.

Figure 2.1: OSI model hourglass for IP and NDN from [1]

6

IP is responsible for providing the necessary information for routing packets across a net-
work. IP uses point-to-point communication between two hosts. It is a conversation oriented
architecture for information sharing.

2.1.1 Addressing

IP uses addresses which are represented as numerical labels. There are a finite number of
addresses available. For example, IPv4 uses a 32bit address space meaning that there are
232 unique combinations. The finite number of addresses leads to address exhaustion [18],
where there are no free addresses left to assign. Address exhaustion can be partially mitigated
through the use of address assignment and aggregation strategies such as classless inter-
domain routing [19], but these strategies only delay address exhaustion.

2.1.2 Domain Name System

IP requires the Domain Name System (DNS) to function [20]. DNS is a mapping from human
readable strings, such as www.tcd.ie, to IP addresses. Every time a request is made, a lookup
is performed on a DNS server for the IP address matching the request. The purpose of DNS
is to save users having to remember IP addresses in order to browse the internet.

2.1.3 IP Packet

An IP packet has a fixed header format, as defined in [17]. The IP header can range from
20 to 60 bytes. The length of the header is specified by the Internet Header Length (IHL)
field. The minimum viable header size is 20 bytes due to the required fields. The maximum
header size is due to the IHL field being 4 bits long, with the length specified in 32 bit words.
32⇤15 = 480 bits which is 60 bytes. The total length of an IP packet is specified in the Total
Length field, with the maximum length set by the fact there are 16 bits in the total length
field.

Figure 2.2: IP packet header

7

2.1.4 Forwarding Information Base

IP uses routing protocols, such as Open Shortest Path First [21], to build its Forwarding
Information Base (FIB). The FIB informs switching decisions based on IP address prefix
matches. Each match will contain a single outgoing interface. An interface in this case is a
network interface. The outgoing interface is the next hop when forwarding a packet towards
its intended destination.

2.1.5 The Lack of Caching

An IP router does not perform any in-network caching. When a packet arrives it is placed in
a buffer for the duration required to compute the packets next hop. Once this computation is
complete, the packet is flushed from the local buffer. The consequence of this is that IP is not
built to distribute content across a network. If a piece of content is in high demand, a large
volume traffic will flow towards a common point, causing congestion as requests accumulate
near a host.

Content Delivery Networks (CDN) are one method that can alleviate the issue of congestion
due to popular content. Content Delivery Networks are cache servers setup to distribute data
across the globe and move it closer to users [22], as illustrated in figure 2.3. This allows
requests for content to be routed towards the most suitable node in a CDN for satisfying the
request at that moment in time. According to Cisco VNI [23], as of 2022, 72% of internet
traffic will be delivered by Content Delivery Networks. This shows how internet users are
increasingly consuming content instead of performing host-to-host communication. Another
method of mitigating congestion of popular content is multi-casting. Multi-casting is where
a node in the network copies an incoming piece of data and forwards it to all downstream
requesting nodes [24].

Figure 2.3: Content Delivery Networks as depicted by Ashley John [2]

8

2.1.6 Security

Security is not originally built-in to IP. The objective was to facilitate communication between
heterogeneous networks. As the internet has grown and developed, security has become a
prime concern. Security has had to be built on top of IP in response to evolving threats. The
suite of security enhancements for IP are referred to as IPSec [25]. Each security enhancement
introduces extra overhead and complexity into IP.

2.2 Named Data Networking

To address the deficiencies of IP, the idea of Information Centric Networking (ICN) has been
proposed [14]. As the name indicates, in ICN the content is the fundamental element around
which network functionality is built. ICN is concerned about what the content is, instead of
where the content resides. ICN is a list of guiding principles, with many realizations such as
the Data Oriented Network Architecture (DONA) [26] from Berkley, where DNS is replaced
with a data oriented protocol, and the Publish Subscribe Internet Routing Paradigm (PSIRP)
[27], which implements the principles of ICN through a publish-subscribe architecture. One of
the most popular implementations of the ICN paradigm is Named Data Networking [3] [10],
which grew out of Content Centric Networking [1].

2.2.1 Names as Addresses

In Named Data Networking, content is a first-class citizen. Since the focus is on the data
itself and not where it is coming from, there is no need for the location-orientated addresses of
IP. Instead the name of the data itself can be used as the address. The names are hierarchical
but are otherwise arbitrary identifiers. Name semantics are agreed upon by the applications of
the producer and consumer nodes and can be any sequence of characters. Names are opaque
to the network, with only a delimiter known to a node in order to separate out the hierarchical
structure. An example of a name in the NDN protocol can be seen below 2.4.

Figure 2.4: Example of name structure as seen in Networking Named Content [1]

2.2.2 Packets

There are three types of packets in NDN, Interest packets, Data packets, and Negative Ac-
knowledgements (NACK). An illustration of the interest and data packet formats can be seen

9

in figure 2.5.

An Interest packet is created by a consumer and is a request for a piece of data. The packet
contains the name of the requested content, selectors which are preferences about how the
interest and or data packets are forwarded along a route, and a unique identifier called a
nonce.

A Data packet is a response to an Interest packet and contains the requested data. It has the
content name, which will be used for symmetric routing back to the consumers who requested
the data. It also contains meta-information about the data itself, such as freshness period,
final block ID and application defined meta-information. It contains the data content, the
actual payload that the consumer wants. Finally, the data packet is signed and contains
information about the signer.

Figure 2.5: Example of Interest and Data packets as seen in Named Data Networking [3] [1]

A NACK packet is a negative acknowledgement. It indicates that a forwarded interest cannot
be satisfied. A NACK contains the name of the interest it cannot satisfy as well as an error
code indicating the issue. A NACK provides a timely and informative response for an interest
that cannot be satisfied.

Each NDN packet is encoded in a Type-Length-Value (TLV) format. The T in TLV indicates
the type of block i.e a Name block or Signature block. The L indicates the length of the
value block in bytes, and the V is the value of the TLV block. The TLV format allows for a
nested structure where the value component is another TLV block. Packets are distinguished
by their type number in the first and out most TLV block, TLV0. A NDN packet is mainly a
collection of TLVs inside TLV0.

The NDN packet format does not have a fixed header or protocol version number. New types
can be added and old types removed as required. The absence of a fixed header allows for
the efficient support of very small packet sizes, without the header overhead.

As an example, and according to the NDN packet format specification 0.3 [28], a Data Packet
would typically be encoded as a Data TLV, TLV0 (type 6). Inside the TLV0 block there are
another five TLVs, a name TLV (type 7), MetaInfo TLV (type 20), Content TLV (type 21),
Signature Information TLV (type 22) and Signature Value (type 23). The MetaInfo TLV has

10

more nested TLV blocks within. These are Content Type (type 24), FreshnessPeriod (type
25), and FinalBlockID (type 26).

2.2.3 Data Structures

Each NDN node has three data structures, a CS, a Pending Interest Table (PIT) and a
Forwarding Information Base (FIB).

The CS is a buffer within a node. As data is routed from a producer to a consumer, the
intermediate nodes along the route can cache the data packet being forwarded through them.
If a node along that path then receives an interest for the same piece of data, it can satisfy that
interest from its CS rather than forwarding the interest upstream to the data producer. Data
is distributed through the network in the direction of the consumers requesting it. This form
of in-network caching has the effect of reducing congestion at the producer, and improving
the locality and availability of data, essentially fulfilling the role of a CDN [29].

The PIT is a record of all interests that have been forwarded by a node but are yet to be
satisfied. A PIT entry uses the name of the requested data as its key. This maps to a list
of unique identifiers, nonces, for interest packets, and their incoming interfaces, that have
requested the data. If an interest arrives at a node that cannot be satisfied by the CS, the
node then checks its PIT. If an entry exists in the PIT for that piece of data, then the interface
which the interest packet comes from is recorded under the datas entry in the PIT, and the
interest itself is discarded. If there is no entry in the PIT for the content name then a PIT
entry is created and the interest nonce and incoming interface are recorded.

The FIB is a list of interfaces that can satisfy a request for a piece of data, similar to the
IP FIB. When a piece of data is requested that a node cannot satisfy from its CS and there
is no PIT entry for the content name, than the FIB is consulted. With each name comes a
list of known interfaces that can serve the request. The entries are ranked according to a
performance metric determined by the Forwarding Strategy of a node. If no entry exists within
the FIB of a node, then the request cannot be satisfied and a NACK packet will be returned.
The FIB is populated through the use of a routing protocol. These protocols can be adaptions
of the popular protocols used in IP routers today or something entirely new [10][30].

2.2.4 Forwarding and Routing

Forwarding decisions are made by the Forwarding Strategy module running on a NDN node.
The Forwarding Strategy is determined by the node owner. Forwarding decisions can be
influenced by many factors such as interest packet selectors, the performance of the upstream
interfaces, and the wishes of the node owner.

All packets exchanges in the NDN protocol are done through an abstraction called a Face;

11

short for interface. A consequence of this is that communication between the application layer
and the NDN protocol now occurs through an application face instead of through system level
calls.

NDN defines Forwarding pipelines which are the steps to be taken when an event occurs. The
pipelines for events can be incoming interests, incoming data, outgoing interests, unsolicited
data, and incoming NACKs to name a few. The forwarding pipelines define the steps to be
taken and the forwarding strategies make decisions as required in a pipeline.

Routing in NDN is symmetric. This means that a data packet follows the same path that was
taken by the corresponding interest packet, unlike IP where routing can be asymmetric. This
is done via the entries in a PIT. When an Interest packet is to be forwarded, the Forwarding
Strategy of the node uses its FIB to determine how to forward the packet. When a Data
packet is to be forwarded, it is sent to all interfaces in the PIT that have requested the data.
These entries were created by the interest packets as they were routed towards their desired
destination. This means NDN has inherent support for multicast operations.

2.2.5 Security

Security is built into NDN. Every Data packet that is produced must be cryptographically
signed by the producer [31]. A signature is usually signed by a certificate and this certificate
comes from a certificate authority. Any node can be a certificate authority in NDN, supporting
trust at all levels [32].

2.2.6 Flow of Data

A brief description of data flow in the NDN protocol will now be given. This flow is also
illustrated in figure 2.6. NDN is a pull-based protocol, driven by the consumer. A node
will only accept data that it has requested. When a node receives a piece of data, the first
operation performed is to check the PIT. If no entry for the received data packet exists in the
PIT of a node, than the data will be dropped.

The flow from a consumer to a cache hit for the requested data and back to the consumer is
as follows. A consumer creates an interest packet for a piece of data that they wish to obtain.
Then, at each node the following operations are performed until the data is successfully
retrieved or a NACK is generated.

The CS is checked for the name of the Interest packet. If the data exists in the CS, then it
is returned. Otherwise, the PIT is checked to see whether an entry for the requested data
already exists. If an entry exists, then the nonce and incoming interface of the Interest are
recorded under the requested data name entry in the PIT and the interest is discarded. If
there is no entry, then an entry is created in the PIT for the name specified in the interest;

12

the nonce and incoming interface are recorded. If the interest is not discarded, then the FIB
is consulted to determine the optimal upstream interface to forward the interest. If there is
no entry in the FIB for the content then a NACK will be returned to all entries for the data in
the PIT. Otherwise, the interest will be forwarded towards the ideal interface as determined
by the Forwarding Strategy of the node.

When a cache hit for the data is achieved, then a Data packet is created and the following
happens. The PIT is checked for entries requesting the data. If one exists, than the data is
first stored in the CS of the node and then the data packet is copied and forwarded downstream
to all interfaces in the PIT that requested the data. This will continue until the data reaches
the consumers requesting it. If no entry exists for the data packet in the PIT of a node, then
the node will drop the data packet as it is unsolicited data.

The flow of data in NDN contains well defined and modular components. This gives each
node the independence to determine their own behaviour, regardless of the wider network,
through altering their implementation and control flow of different components in the NDN
protocol. The forwarding strategies allow each node to pursue a wide range of goals. The
abstractions of the NDN protocol provide a well-defined baseline to build an organic network
from.

Figure 2.6: Forwarding process at an NDN node [3]

2.2.7 NDN Summary

NDN is a content-centric protocol that follows the principles of ICN. NDN uses names as
addresses, which can be hierarchical and are opaque to the network. There are three packets
in the NDN protocol, Interest packets, Data packets and NACK packets. The TLV format
is used to encode packets. The three core data structures in NDN are the CS, which stores
data, PIT, which is a record of interests waiting to be satisfied, and the FIB, which is a list
of interfaces that can satisfy requests for data. Forwarding decisions in NDN are made by

13

Forwarding Strategies and the forwarding steps are contained in Forwarding pipelines. Routing
in NDN is symmetric. Finally, Security is built-in to the NDN protocol.

2.3 Vehicular Ad-Hoc Networks

Vehicular Ad-Hoc Networks (VANETs), a sub-domain of ITS [33], refer to Vehicle-to-Everything
communication (V2X), from inter-vehicle communication (V2V) to Vehicle-to-Infrastructure
communication (V2I) [34]. These forms of communication can be seen illustrated below in
figure 2.7. The concept of VANETs has existed for decades; spectrum has been allocated by
the US FCC since 1999 for the development of DSRC, intended for use in VANET scenarios
[15].

Figure 2.7: VANET as depicted by [4]

VANETs exhibit a unique set of network conditions. Vehicles are the mobile nodes in a VANET
which are restricted to the topology of the road. Nodes move at a high speed, in a diverse
range of mobility patterns, with short inter-connection times. Nodes can quickly move from
highly dense to extremely sparse network scenarios. This is why specialized protocols have
been designed and implemented for VANETs, such as DSRC [15] and Wireless Access in
Vehicular Environments (WAVE) [5].

2.3.1 Highly-Dynamic Topology

The topology of a VANET is in a constant state of flux; where the VANET itself is restricted
by the topology of the road but individual nodes move in a dynamic manner which is influenced
by the high speed at which nodes move and the opportunity for unpredictable behaviour that

14

comes when a human is in the loop [35]. The consequence of this is a short time within which
to communicate. In sparse scenarios, there may be no node to communicate with. Conversely,
in a dense traffic scenario and urban environments the congestion caused by the volume of
packets being requested by nodes has adverse effects on Quality-of-Service (QoS) parameters
[36].

2.3.2 Frequent Link Disruption

As a consequence of the high-mobility experienced in VANETs, link disruption is frequent,
making routing a difficult challenge. Link disruptions occur when there is opposite-flow traf-
fic, in urban localities, and in non line-of-sight situations. The problem with the first two
scenarios is intermittent communication and with the third there are QoS issues due to link
deterioration and disruption as a consequence of shadowing. To address these issues and
improve connectivity, other nodes in the network can be used as intermediaries. These nodes
can be other vehicles or road side units (RSU). A RSU would be a static or mobile access
point that can provide connectivity throughout the network, among other functions [37].

2.3.3 Time Constraints

VANETs have time sensitive situations. Safety applications are a time sensitive scenario of
particular concern, as human life is at risk [38]. Communication in safety applications much
be fast, efficient and reliable in order to give drivers adequate decision-making time. Transient
content would be another application where VANETs are delay sensitive. While not safety
critical, it is imperative to receive the data before its use has expired.

2.3.4 Wireless Access in Vehicular Environments

WAVE, consisting of the 802.11p [39] and IEEE 1609.4 standards [40], seeks to enable more
efficient and effective V2X communication. Changes are made to the Physical and Data Link
layers of the OSI stack. The set of WAVE protocols can be seen illustrated in figure 2.8.

802.11p defines a special communication mechanism, enabling operation outside the context
of a basic service set (BSS). An infrastructural BSS is a group of 802.11 stations anchored
by an AP, think of your home network where a router directs communication. In WAVE the
BSS is altered to remove the handshakes and authentication required to join a BSS. This is
replaced with the ability to broadcast all the necessary information to join a BSS. Vehicles
can then join and leave a BSS as they wish [15].

The wildcard BSSID is also introduced so that all vehicles can instantly communicate with
each other if they need to. The BSSID is the unique identifier of a BSS and is the MAC
address of the Access Point. For the wildcard, the value is set to all 1s. The wildcard value

15

can be used for the exchange of critical messages, such as safety messages [15].

IEEE 1609.4 is a MAC layer extension on top of 802.11p. The expressed goal of this protocol
is to provide multi-channel operation in the context of a single-radio device for supporting
safety and non-safety applications [41]. There are six service channels and one control channel
with a channel bandwidth of 10MHz. The 10Mhz frequency is half the bandwidth of 802.11a
[42]. As multipath propagation is an important feature in vehicular environments, the added
robustness and speed of the 10MHz frequency is an important characteristic.

Figure 2.8: IEEE 1609 standards which make up WAVE as depicted in [5]

2.4 Vehicular-NDN

The NDN architecture has been identified as a suitable network/transport layer replacement for
IP/TCP in VANETs [11]. It is better suited to a highly dynamic topology and link disruption.
NDN can use any network interface available to it. Also, the majority of requests will be for
content [23]. An illustration of VNDN can be seen in figure 2.9.

2.4.1 Communication Roles

In the VNDN design by Grassi et al. [6], a vehicle, or node, can assume any one of four roles, a
consumer, a producer, a forwarder or a data mule. A consumer is any node requesting content.
A producer is a content creating node. A forwarder is any intermediary node through which
packets can be routed. Finally, a data mule is a vehicle that is physically carrying content in
its CS away from its source.

16

Figure 2.9: Depiction of VNDN as seen in [6]

2.4.2 The Power of Content Naming

Content naming has an important role to play in VNDN aside from content identification.
Applications can embed extra information through smart naming semantics. This is displayed
in Grassi et als. paper [43], where interests are forwarded by geolocations included in the
name of an interest. Focusing on the content, instead of the host-to-host communication
found in IP, allows applications to immediately communicate with each other as two nodes
come within range.

2.4.3 Caching and Forwarding

In VANETs, it is not always guaranteed that the original content producer will be available. If
the original producer is available, there may be issues with link congestion as many nodes direct
requests towards the producer. Since a producer and the content they create are decoupled
in NDN, content can be distributed across the network. This distribution increases content
availability and reduces congestion. In the scenario where there is no connection, data can
still be distributed by data muling, making effective use of NDNs in-network caching. NDNs
multicast behaviour also serves to improve network performance by aggregating interests and
forwarding incoming data to all downstream requests at once. To further this, Yan et al.
[12], proposed altering the NDN protocol to include a Data packet aggregation scheme and
Interest packet segregation scheme to improve network utilisation efficiency.

Yan et al. [12] also propose to allow unsolicited data caching. This would increase the impact
of data muling, increasing data distribution in the network. Unsolicited data is any data that
arrives at a node for which there is no corresponding interest. Under the normal tenets of
NDN, this unsolicited data would be dropped.

17

2.5 GLOSA

A GLOSA system informs vehicles of the optimum speed at which they should proceed in
order to pass a TLS during its green phase. GLOSA systems have been shown to reduce both
C02 emissions and fuel consumption [44]. Work relating to GLOSA systems dates back as far
as 1984 [45] but technological restrictions and low adoption hindered progress. The creation
of the 802.11p protocol [39] renewed efforts to implement GLOSA systems [13].

2.5.1 Traffic Light System

In a GLOSA system, traffic lights periodically share their signal phase and timing information
with vehicles within communication range. This allows vehicles to compute the optimum
speed to pass the TLS during its green phase based on the distance of the vehicle from the
TLS and the TLS’ signal phase and timing.

TLS’ can be static or adaptive. A static TLS follows a fixed sequence of states and transitions
indefinitely, remaining in each state for a fixed time. An adaptive TLS can change the
sequence of state transitions and the time that it remains in each state, based on information
received from external inputs. These external inputs could be information about the number
of pedestrians at a crossing or the number of vehicles stopped in a lane. An adaptive TLS
controller may perform a signal change with a lead time of 1 second and the state after that
change may not be known up until 1 second before it occurs [13].

2.5.2 CAM Packet

The packet type used to disseminate information about the signal phase and timing of a TLS
is called a Co-operative Awareness Message (CAM)[46]. CAM packets are used to provide
environmental information such as the local road topology or signal phase and timing of a
TLS.

2.6 State of the Art in Push-Based Communication
in NDN

From the initial papers by Grassi et al. [6] and Yan et al. [12], it is identified that push-based
communication in the NDN protocol could be beneficial. Two papers which discuss possible
implementations of push-based communication into the NDN protocol are "Enabling Push-
Based Critical Data Forwarding in Vehicular Named Data Networks" by Muhammaed et al.
[7] and "Internet of Things via Named Data Networking: The support of push traffic" by
Madeo et al. [47].

18

2.6.1 Enabling Push-Based Critical Data Forwarding in Vehicular
Named Data Networks

Muhammad et al. [7] describe the need to implement a push-based method in VNDN for
critical-safety information dissemination. It is argued that the pull-based communication
model of VNDN proposals to date introduce sub-optimal data forwarding delay, especially
when considering critical data that needs to be forwarded promptly.

The paper implements a push-based caching and forwarding mechanism for VNDN that sup-
ports pushing content into the network to reduce content forwarding delay. To achieve this,
Muhammad et al. implement a beacon packet which is pushed into the network by a producer
with critical content. The beacon packet indicates to a consumer that they are about to re-
ceive unsolicited data and how many chunks of unsolicited data they are to receive. When
a consumer node receives this beacon packet, it creates synthetic interests in its PIT. These
synthetic interests are a means of making the data solicited, meaning that a consumer node
will now accept the incoming data chunks. The packet flow can be seen below in figure 2.10.

Figure 2.10: Packet flow as seen in [7], where (a) represents traditional ndn and (b) repre-
sents Muhammad et als. alterations

The event loop for a producer node is as follows. Any vehicle in the network can be a
producer of critical information. A producer will send a beacon towards their neighbouring
vehicle or RSU. The beacon contains information about the critical content, such as content
object name and size. Beacon packets are altered Interest packets, where an additional field
objectSize is implemented. The event loop for a producer is shown in figure 2.11. To stop
infinite reproduction of the critical data, a destination node TLV is added to the data packet.
When the critical data packet arrives at a desired RSU, it will not be forwarded.

Testing was performed using ndnSim (see section 2.7.1), in a scenario where a critical-safety
event has occurred. Two types of content forwarding are used, multi-hop and data muling.

19

Figure 2.11: Pseudocode for RSU or CR as seen in [7]

There is one mobile producer in the network, one RSU destination and several intermediary
nodes. Testing was only performed for a single speed of vehicle, so it is not known how
the pushing mechanism performs for faster and slower vehicle speeds. Initial performance
evaluation showed promising results. The latency for an RSU to receive a critical Data packet
was two to three times less than standard NDN. Muhammad et al. conclude that implementing
a push mechanism for safety applications in VNDN is promising.

2.6.2 Internet of Things via Named Data Networking: The Sup-
port of Push Traffic

In this paper, Madeo et al. [47] consider NDN as a possible replacement for IP/TCP in
I.o.T applications. It is identified that certain traits in ICN lend themselves to I.o.T networks,
namely easy and scalable data access, energy efficiency, security and mobility support [48].
They also identify undesirable traits between ICN and I.o.T networks, namely I.o.T devices
being resource-constrained, the pulling of very small amounts of data and periodic push-based
data transmission from monitoring devices. NDN inherently supports the pull-based behaviour
of I.o.T networks and so the paper focuses on three possible push mechanisms that can be
implemented into NDN for I.o.T networks. The communication flow of each mechanism can
be seen illustrated in figure 2.12.

Two I.o.T traffic types that require push behaviour are identified, Periodic data and Event-
triggered data. Madeo et al. define periodic data as as a regular flow of content packets
originating from a device towards a control unit. Event-triggered data is defined as an alarm
that occurs asynchronously. For example, if the measured blood pressure exceeds a safety
threshold, the condition must be timely and reliably reported without solicitation.

20

Madeo et al. have two main considerations when implementing each push-based communica-
tion method, reliability and the scope of the data. Reliability focuses on the countermeasures
put in place to cope with the potential loss of packets. Scope of the data is concerned about
the suitability of the proposals, given the intended use of the information. Two data scopes
are considered, local area traffic, where data is exchanged with nearby devices, and wide area
traffic, where data is transmitted over the internet.

The first push mechanism is Interest Notification, designed to support periodic and event-
triggered pushing of arbitrarily small chunks of data. This is achieved through including the
information in the Interest packet itself as a part of the name component. The idea of interest
notification originates from Francois et al. [49]. To ensure reliability, dummy data packets
are sent back from the consumer as acknowledgements. This approach does not alter the
core tenets of NDN. The use of an Interest packet means the data will not be cached in
intermediary nodes.

The second push mechanism is Unsolicited data, proposed for use at a scope of local area envi-
ronments. Unsolicited data can be used for periodic data or event-triggered contents without
any Interest solicitation. When a consumer receives Unsolicited data, they do not immedi-
ately drop the packet. First the signature is verified, duplicates are checked for and finally the
packet will be admitted into the CS of the node. For reliability purposes, an acknowledgement
data packet is then transmitted, the same as the Interest Notification implementation.

The third push-based method is Virtual Interest Polling (VIP), focused only on the periodic
pushing of data. VIP uses a concept known as the long-lived interest, conceived in [50]. A
long-lived interest is maintained in the PIT of a node for a long period of time. The purpose of
this is to allow for the immediate satisfaction of any periodically generated data on a node. The
VIP algorithm works as follows. Firstly, a consumer and producer perform a configuration step
where producer p and consumer c exchange information about the maximum interval between
successive Data generation, the ⌧ parameter. Consumer c then sends a long lived interest
and waits for the agreed time interval, vRTO, to receive data. vRTO is defined as ⌧ plus
a small safety hysteresis to allow for delay. vRTO is the lifetime of the long-lived interest.
When content is received in a timely manner, the long lived interest is simply refreshed. If the
vRTO expires before data is received, the consumer sends a regular interest and sets a normal
round-trip time (RTT). If a Data packet is not received within the RTT, another interest is
sent. Otherwise, on receipt of a data packet, the vRTO timer is newly started with the long
lived interest.

The scenario, implemented in Matlab, used to test the three pushing mechanisms is a single
consumer producer pair in a local area network with the periodic pushing of data. The two
metrics measured are the overhead in the network as a result of the data dissemination method
used and the average activity time of a device running each scheme. The overhead to the

21

Figure 2.12: Packet flow between a consumer c and producer p for : Interest notification
(a), unsolicited data (b), and virtual interest polling (c) as seen in [7]

network is defined as the average number of packets required to successfully exchange a noti-
fication. The results for the three schemes showed that Interest Notification and Unsolicited
Data had a similar overhead but were almost double the overhead of VIP.

2.7 Tools

This section provides background information about the two tools that were used to develop
and evaluate the push-based communication methods in the NDN protocol. The two tools
used are ndnSim and Simulation of Urban Mobility (SUMO).

2.7.1 NdnSim

In order to perform experiments with the NDN protocol a means of evaluation is required.
This can either be a simulator or a testbed. A testbed is a real-world network which can
be used to evaluate alterations to a protocol. The team developing the NDN protocol, in
partnership with external institutions, have developed such a testbed [51]. Using a testbed
would restrict evaluation to the version of NDN which is installed on the nodes in the testbed
network [8]. This reason alone makes it impractical to use a physical testbed as a means
of evaluating alterations to the core NDN protocol. The NDN testbed mentioned in [51] is

22

static and not applicable to evaluating VANETs. It would require considerable resources to
establish a VANET testbed for VNDN evaluation, making a testbed infeasible as a means of
evaluation for this dissertation.

For quick experimentation with enhancements to the core NDN protocol, it is more desirable
to use a simulator. Several simulators have been developed for experimenting with the NDN
protocol [52][53], with the preferred simulator for this dissertation being ndnSim [8]. ndnSim
is an open source NDN simulator based on the NS-3 simulator [54]. The purpose of ndnSim
is to provide the NDN community with a common, user-friendly, and open-source simulation
platform.

The functional logic of the NDN protocol is contained in the NDN Forwarding Daemon (NFD)
[9] and the NDN primitives that allow for real world experimentation are contained in the NDN-
CXX library [55]. NdnSim integrates with both NFD and NDN-CXX which allows ndnSim
to provide an integrated simulation environment for researchers and developers to deploy and
evaluate their real-world applications and alterations to the NDN protocol at a large-scale.
The structure of ndnSim can be seen below in figure 2.13.

Figure 2.13: Structural diagram of the ndnSIM design components [8]

ndnSim provides researchers and developers with helper classes that allow for the quick and
easy configuration of scenarios. NdnSim also provides Trace helpers which simplify the collec-
tion and aggregation of various statistical information about the performance of simulations,
at all levels, into text files. As ndnSim is integrated into NFD and NDN-CXX, researchers can
use the most up to date iteration of the NDN protocol. For these reasons ndnSim is an ideal
simulator for experimentation with the NDN protocol and the chosen simulator for scenario
creation and evaluation in this project.

23

2.7.2 SUMO

SUMO is an open source traffic simulation package [56]. SUMO is a traffic simulation software
but also a suite of applications which help to prepare and perform the simulation of traffic
flows. In order to simulate traffic, two elements are required, road topology and traffic demand.

SUMO is a microscopic traffic simulator, this means that each vehicle and its dynamics are
modelled and simulated [56]. This is in comparison to macroscopic simulations where average
vehicle dynamics like traffic density and flow are simulated. For SUMO, it is assumed that the
behaviour of each vehicle depends both on the vehicles physical ability to move and the drivers
controlling behaviour [57]. SUMO’s microscopic model is based on the model developed by
Stefan Krauß[58].

Road topologies are created using the internal application NETCONVERT or its graphical
alternate NETEDIT. NETCONVERT is a command line tool which can import road topologies
from different data sources such as OpenStreetMap, OpenDrive, Shapefile or from other
simulators such as MATSim and Vissim [56]. NETCONVERT uses heuristic refinement of
missing network data to achieve the necessary level of detail for microscopic simulation such
as synthesizing TLS’ and right-of-way rules. This saves a user having to explicitly define every
component of the network.

Traffic demand can be defined as individual trips, flows or routes. The basic information
for defining traffic demand is departure time, origin, destination and transport mode such as
vehicle or pedestrian. When defining a route, a series of sequential edges to be traversed must
be provided. A flow defines the continuous insertion of vehicles into the network, distributed
either equally or randomly. These options allow for various levels of fine-grained control over
traffic generation in a simulation. Individual trips can be explicitly defined by a user or sumo
can insert vehicles into the simulation following a defined flow.

SUMO provides an array of possible output files to allow for quantitative evaluation. These
files can be enabled selectively and some possible outputs are vehicle trajectories, traffic data
from model detectors and trace files of vehicle paths during a simulation [56].

24

3 Design and Implementation

This chapter details the design and implementation of unsolicited data and proactive pushing
in the NDN protocol for the dissemination of transient and periodic data. The chapter also
details the design and implementation of the scenario used to evaluate each data dissemination
method. Explanations of the design choices are discussed in detail.

The discussion of the implementation of unsolicited data and proactive pushing is focused
on providing a detailed understanding of exactly what is required in order to successfully
implement each push-based method. Both from a high level perspective to small architectural
details.

The discussion of the implementation of the scenario used to evaluate each method is focused
on providing an accurate means of comparison between pure NDN, unsolicited data and proac-
tive pushing. The final scenario implementation allows the hypothesis to be accurately tested;
implementing push-based communication in the NDN protocol for disseminating content that
is transient and periodic in VANETs improves network performance.

The design and implementation choices lead to the successful implementation of both unso-
licited data and proactive pushing into the NDN protocol. A suitable scenario for comparing
the performance of each method is also successfully implemented. Enhancements are made to
the NFD and NDN-CXX modules to implement unsolicited data and proactive pushing. The
implemented scenario is loosely based on a GLOSA system [13] comprising of a single TLS at
a four way intersection. The road topology and traffic modelling are created in SUMO. Traffic
models for varying vehicle speed and traffic densities are exported as trace files in a format
that can be consumed by ndnSim. The trace files describe the path taken by each vehicle over
the duration of a simulation. NdnSim defines the network scenario used to generate results
for the comparison between the different data dissemination methods.

3.1 Requirements

• Implementation of unsolicited data and proactive pushing to the NDN protocol.

• Implementation of a realistic scenario where the content in demand is transient and

25

periodic.

• The scenario network conditions should have four configurable parameters. Allowing for
different configurations of vehicle density, vehicle speed, node transmission range and
data update frequency to be evaluated.

• The proactive pushing method should forward data beyond its single-hop neighbour.

3.1.1 Parameters

As stated in section 3.1, the ability to vary the vehicle density, vehicle speed, node transmission
range, and data update frequency are required. These parameters are chosen to alter the
network conditions of a simulation, allowing for a more comprehensive evaluation of each
data dissemination method.

Percentage Cars Per Hour (PCPH) defines the number of cars that use a lane per hour. PCPH
can be used as a measure of capacity for a given section of road. The Highway Capacity Report
[59] is used for vehicle density measures in this dissertation. The report defines lane capacity
as "the maximum number of vehicles that can pass a given point during a specific period under
prevailing roadway, traffic, and control conditions. This assumes that there is no influence
from downstream traffic operation, such as the backing up of traffic into the analysis point".
The PCPH of a lane should affect the volume of requests experienced in a geographic location.

Vehicle speed affects the length of time in which communication can occur between two
nodes in a network. It has been shown that in high mobility situations, network performance
is impacted by vehicle speed [60]. Therefore, it is important to test the performance of each
pushing mechanism over a range of vehicle speeds.

Transmission range impacts the effectiveness of data dissemination. Protocols have been
developed to make the best use of available transmission range in VANET environments [61];
showing that varying the physical distance at which a signal can be registered by a nodes
receiver impacts network performance.

There should be a positive correlation between the frequency of updates for transient data
and the number of packets in a network. This assumes that the frequency of updates matches
the request frequency of nodes in the network. As the frequency of updates increases, the
number of packets should increase. This could add extra overhead to the network, increasing
congestion, and so the effectiveness of each data dissemination method should be evaluated
as the update frequency of nodes increases.

26

3.1.2 Scope of the Data

The scope of the data refers to the geographic area in which the data has meaning, as
discussed in section 2.6.2. The scope of the data will impact the requirements for disseminating
information in a VANET, such as whether it is possible to route the data. If data is of a global
scope then it is important that it be routable. In the case of a GLOSA system the data only
holds significance within its immediate geographic area; the paper by Tielert et al. [44] found
communication ranges greater than 600m to not be useful in GLOSA systems. Therefore, it
can be argued that the data has a local scope, removing the necessity for it to be routable.

While the data is not required to be routable, the original design for proactive pushing had a
desire for it to be forwardable. Forwardable refers for the ability of a piece of data to continue
propagating throughout the network beyond its immediate single-hop neighbour. This means
the data is not following a symmetric route to a consumer but is still being forwarded, on a hop
by hop basis, throughout the network. There are two requirements for this to be possible. The
first requirement is that the data must not flood the network, ideally only reaching each node
once. The second requirement is that the data should not go beyond its area of significance.

The first requirement is satisfied by the CS of a node checking whether it has already received
a piece of data. If the node has the data in question in its CS then it ignores any new incoming
data. If not, then the data is stored in the CS of the node and forwarded following the original
algorithm described in section 3.3.

Two possible approaches were identified for the second requirement. In the first approach,
data could have geographic information stored in its name, similar to the method described by
Grassi et al. [43]. This geographic information could then be used to determine the distance
of the data from the producer on a hop by hop basis. Each node has a probability of forwarding
a pushed piece of data that is inversely proportional to the distance from its point of origin,
p˜ 1

d , similar to the method described by Xia et al. [62].

In the second considered approach, the data is given a lifetime, called a freshness period. The
concept of a freshness period already exists in the NDN protocol and is implemented in NFD
by default. When a piece of data is created by a producer, a freshness period TLV is encoded
into the Data packet as a sub-block of the meta-information TLV. When a piece of data
arrives at a node which satisfies the criteria to be cached, its freshness period is converted
into a timestamp that determines the point in time at which the data becomes stale. Stale
data is still valid data and it is up to the caching policy of a node to determine if the data
will be removed when it becomes stale. This means that the application has to specify that
the interests it creates should be satisfied by fresh data, as there is no guarantee that a nodes
cache replacement policy has removed stale data. This is achieved by setting the MustBeFresh
field of an Interest packet. When this boolean field is set and encoded in a Interest, it is only
allowed to be satisfied by data whose freshness period has not expired.

27

The final design implements the second considered approach for limiting the range of a data
packet. In the case of periodic data, it is known exactly when a piece of data will become stale;
when new data is generated. If a producer is creating a new piece of content every second,
then the freshness period of that piece of data is also one second. The GLOSA application
for consumers in the network sets the MustBeFresh field of the interest packets it creates and
the producer sets the freshness period to match the frequency that it generates new updates.
Another factor to be considered is the amount of divergence from the NDN protocol, this
should be kept to a minimum and is done so in this case by using the pre-existing freshness
semantics.

3.2 High-Level Overview

The core components of the solution are shown below in figure 3.1. The road topology
and traffic demand characteristics are defined using XML statements that are interpreted by
NETCONVERT to produce a network that can be read by the SUMO application. SUMO
then generates a traffic simulation. From the traffic simulation a trace file is output which
can be read by ndnSim. The trace file is used to define the path that nodes will follow in
the ndnSim simulation. The NFD and NDN-CXX modules are enhanced with two additional
methods of information dissemination, unsolicited data and proactive pushing. The scenario
is defined using ndnSim through the use of various helper classes. With the trace file, ndnSim
scenario and adjustments to the NDN protocol, testing can occur to evaluate the effectiveness
of pure NDN, unsolicited data and proactive pushing in disseminating data that is transient
and periodic.

Figure 3.1: High Level implementation overview

The core components can be broken down into three areas for discussion. Firstly, the alter-
ations required to the NFD module to implement both unsolicited data and proactive pushing.
Secondly, the alterations required to the NDN-CXX module to implement proactive pushing.
Finally, the steps required to correctly configure a suitable simulation for evaluating pure NDN,
unsolicited data and proactive pushing.

28

3.3 NDN Forwarding Daemon

NFD is the network forwarder that implements the core functionality of the NDN protocol.
The design of NFD emphasizes modularity and extensibility to allow for easy experimentation
with new protocol features, algorithms and applications [9]. The main functionality of NFD
is to forward Interest and Data packets. An overview of the modules in NFD are shown in
figure 3.2.

Figure 3.2: Overview of NFD modules and dependencies [9]

To understand the changes that are required in order to implement unsolicited data and
proactive pushing, it is best to have an understanding of the modules and their significance in
NFD. In particular the Forwarding module where the pipelines, that were discussed in section
2.2.4, are expanded to include pushing and acceptance of unsolicited data.

The core packet forwarding logic is implemented in the Forwarding module. Here the logic of
forwarding is broken down into two sub-modules, forwarding pipelines and forwarding strate-
gies.

Forwarding pipelines define a series of steps that are to be taken for each packet. For example,
if a node receives a Data packet, it is first inserted into the OnIncomingData pipeline. The
first operation performed is to check if the node contains entries in its PIT for the arriving
data. All matched entries are then selected for further processing. If no entry exists in the
PIT, then the data is sent to the OnUnsolicitedData pipeline and dropped. In the case that
matches are found, the data is added to the CS of the node and the forwarding strategy of

29

each selected entry is notified of the arrival of the data. This is because NFD is stateful,
it will track the performance of each route that interests can be forwarded down, storing
performance metrics in a measurements table. This information is used to influence future
forwarding decisions of the Forwarding Strategies for each namespace. Where a namespace
is the section of a data name that is an identifier for a grouping of related data. The final
step is to send data to all downstrean interfaces, recorded in the PIT, through which interests
for the data arrived. It is common for packets to be handed from one pipeline to another as
conditional checks on a packet are performed. This is seen in figure 3.3.

Forwarding strategies provide the intelligence to make decisions on whether, when and where
to forward interests. Forwarding strategies are invoked from forwarding pipelines as a packet
is processed. Forwarding strategies also receive metrics about the outcomes of forwarding
decisions. These outcomes will be used to inform future forwarding decisions. Forwarding
strategies can be invoked on a per namespace basis allowing applications to use the strategy
best suited for their intended function. For example a file sharing application may want to
use paths with the highest bandwidth whereas a web call application may want the path with
the least delay [9].

Figure 3.3: Overview of NFD pipelines [8]

The business logic of the proactive pushing and unsolicited data algorithms are implemented as
their own pipelines within the forwarding module of NFD. In the base NDN forwarding module
the OnUnsolcitedData pipeline exists and is entered from the OnIncomingData pipeline. The
same control flow is used to enter the proactive pushing pipeline that is created for this
dissertation; discussed in more detail in section 3.3.1. No alterations are required to implement
the desired OnUnsolicitedData behaviour, instead the ndn::UnsolicitedDataPolicy class will be
altered, discussed in section 3.3.2.

Both methods could be implemented in the OnIncomingData pipeline, but this would harm

30

the future modularity and extensibility of the forwarding pipelines. Instead the unsolicited data
and proactive pushing methods should have their own pipelines. The pipelines are invoked
from the OnIncomingData pipeline, as a results of conditional logic invoked by the state of
an arriving data packet, which is discussed in section 3.4. The updated branching options for
the OnIncomingData pipeline can be seen in figure 3.4.

Figure 3.4: Branching options from OnIncomingData pipeline after adding the proactive
pushing pipeline, Pushed Data

3.3.1 Proactive Pushing Pipeline

The proactive pushing pipeline, referred to as the Pushed Data pipeline, is invoked from the
OnIncomingData pipeline, as mentioned in 3.3. When a piece of data enters the Pushed Data
pipeline, the CS of a node will be checked to see if it already contains the data. If it does,
then the data is ignored, otherwise the data is inserted into the nodes CS. This check occurs
to stop data flooding the network, satisfying the first requirement for forwarding, as discussed
in section 3.1.2.

If data was inserted into the CS of a node, it should be forwarded. Since NDN uses symmetric
routing, as mentioned in section 2.2.4, data follows the exact path taken by a corresponding
interest packet; this is not possible with pushed data. To enable forwarding of pushed data,
a node must know where it wishes to send data. Pure NDN will perform a PIT lookup to
discover the faces data should be forwarded to in order to satisfy requests, as discussed in
section 2.2.4. In the case of pushed data, there will be no PIT entries. Instead the FIB is
used to direct forwarding, as would be done for an interest packet. A FIB lookup performs a
longest prefix match on the name of the data packet and returns a list of possible next hops.
To ensure a next hop is returned, the producer application configures the FIB with a network
interface that can broadcast data to be pushed, discussed in section 3.7.3. The pipeline then
determines the lowest cost next hop. The cost of a hop is determined by the Forwarding
Strategy for a namespace or manually configured on startup. When the lowest cost hop is
found the data is pushed to that Face.

31

Algorithm 3.1: Pushed Data pipeline
Input: Data

1 if !(Data in CS) then

2 Insert Data into CS ;
3 Get possible next hops for Data from FIB
4 for Possible next hops do

5 if hop.cost < minCost then

6 minCost hop.Cost;
7 end

8 end

9 for Possible next hops do

10 if hop.cost == minCost then

11 Send data to hop;
12 end

13 end

14 end

It should be noted that when a packet arrives at a node, the NDN protocol sets the cost of
the face to 231. This is a check in the NDN protocol to stop any packet being forwarded back
through the face that it came through. Nodes are only aware of one network face to push
data through. The consequence of this is that pushed data will always be forwarded up to the
application layer on arrival at a node because the application face will have the lowest cost.
If pushed data is to be forwarded then it will have to be done so at the application layer in
the same way a producer would push data. This created another issue, the data that is sent
back down from the application layer to be further forwarded will be ignored. This is because
it is still marked as a pushed data packet and will therefore enter the pushed data pipeline.
Here is will fail the first conditional check as the data will already be contained in the CS of
the node.

These issues were discovered late in the development cycle of this project and there was
insufficient time to implement a fix that would allow the pushed data to be forwarded through
the network. One possible solution is to make nodes aware of many network interfaces to
forward the pushed data to as well as the application face. Another potential solution is to
have separate control flows for incoming and outgoing data. This can be achieved by checking
the type of face that the data has arrived from. If it is an application face, then the data
is outgoing and should ignore the Data in CS check. If the data has arrived from a network
face, than the data is incoming and should be subjected to the CS check.

3.3.2 Unsolicited Data Pipeline

The pipeline for unsolicited data is invoked from the OnIncomingData pipeline. Each node
has a UnsolicitedDataPolicy which is consulted when deciding whether an incoming piece

32

of unsolicited data will be accepted in the CS of a node. The policy is by default set to
DropAllUnsolicitedDataPolicy, but can also be one of AdmitLocalUnsolicitedDataPolicy, Ad-
mitNetworkUnsolictedDataPolicy or AdmitAllUnsolicitedDataPolicy.

AdmitLocalUnsolicitedDataPolicy will accept unsolicited local data packets. A local data
packet is any packet generated under the "localhost" prefix. This is used for communication
between the NFD instance of a node and the applications running on a node.

AdmitNetworkUnsolictedDataPolicy will accept unsolicited network data packets. A network
data packet is any packet coming from a network interface on a node.

AdmitAllUnsolicitedDataPolicy will accept all unsolicited data packets. This is a catch all that
encompasses the AdmitLocalUnsolicitedDataPolicy and AdmitNetworkUnsolictedDataPolicy
unsolicited data policies.

The desired type of unsolicited data is network packets. Therefore, to enable the correct un-
solicited data, the AdmitNetworkUnsolictedDataPolicy needs to be selected. This is achieved
through altering the NFD source code with a default of AdmitNetworkUnsolictedDataPolicy.
This would not be sufficient for a production system where different applications will require
different caching behaviour but is suitable for the purpose of evaluating the performance of
unsolicited data against pure NDN and proactive pushing.

The pipeline itself is a check of the UnsolicitedDataPolicy of the NFD instance running on a
node.

Algorithm 3.2: Unsolicited Data pipeline
Input: Data

1 decision UnsolicitedDataPolicy .decide(Data);
2 if decision = cachethedata then

3 insert data into CS;
4 end

3.4 NDN-CXX

NDN-CXX is a C++ library implementing primitives for NDN. It is used by NFD for an
implementation of the TLV format, encoding, security, data packets, interest packets, face
abstraction and more. To stay within scope, only primitives requiring alteration in the imple-
mentation of pushing mechanisms will be discussed, namely the Data packet, meta-information
and TLV encoding primitives.

As mentioned in section 3.3, how incoming data packets are processed depends on conditional
logic evaluated based on the state of the packet. In order to implement a proactive pushing
mechanism into the NDN protocol, it must be possible to infer whether a data packet has been

33

pushed. This is achieved by adding a flag to the Data packet primitive, indicating whether a
packet has been pushed.

A Data packet is simply a collection of TLVs under TLV0, which indicates the type of packet,
as discussed in section 2.2.2. A data packet is comprised of its name, meta-information,
content and signature. A data packets meta-information block is a sub-TLV consisting of
Content Type, Freshness Period, Final Block ID and additional application meta-information.
This is shown in figure 3.5

Figure 3.5: Data packet as seen in [10]

3.4.1 Meta-Information

A data packet being pushed can be represented by a boolean flag that adds information
about the state of the packet. As being pushed is additional information about the state of
a packet, the pushed member variable is implemented in the meta-information primitive and
not the Data packet itself. Adding a pushed flag to the meta-information block is not a simple
process and any misstep will cause the packet to be incorrectly encoded and decoded, losing
information.

The final design includes the addition of a flag indicating that a data packet is pushed to the
meta-information primitive. When encoding a new block into the meta-information TLV there
are three requirements, a type number, length and value. The type number assignment is
discussed in section 3.4.2. The NDN-CXX library comes with a block helper class for encoding
different formats, such as string or integer values. An empty block can be used to signify if a
piece of data is pushed. An empty block refers to the value section being empty but the type
and length components still contain information. The existence of an empty block indicates
that the data packet has been pushed. This was determined to be the most memory efficient
implementation of the pushed member variable, keeping the header size to a minimum.

With the updated meta-information primitive, the Data packet can now be updated to include
getter and setter methods that allow for conditional logic to be performed on a Data packet
within the forwarding pipelines as outlined in section 3.3.

34

3.4.2 Type Number Assignment

A new TLV type is created for the pushed flag. NDN has a packet format specification
[63] which defines how the TLV system is used in the NDN protocol and the type number
reservations. A type number of 32 is reserved for pushed data. This was formerly reserved for
SelectedDelegation but will have no impact or significance on the encoding and decoding of
a data packet.

3.5 Scenario Design Considerations

This dissertation aims to evaluate the performance of the pure NDN, unsolicited data and
proactive pushing data dissemination methods in a scenario where the data is transient and
periodic. A GLOSA system was identified as a scenario that satisfies those criteria. The
scenario development is broken down into two components, traffic simulation and network
simulation. SUMO [56] is used to define the road topology and traffic demand, performing
traffic simulations of an intersection for various speeds and densities of vehicle. NdnSim [8]
is then used to define the network characteristics, varying the data update frequency and
transmission range of nodes in the network.

It is possible to link the simulators, having ndnSim perform V2X communication during the
runtime of a SUMO traffic simulation. To achieve this, a middleware such as VSimRTI
can be used [64]. This allows for a full, comprehensive ITS simulation, where vehicles can
alter their behaviour as a result of network communication between V2X applications. This
approach is not necessary in the final design used to evaluate the performance of each data
dissemination method. This dissertation aims to compare the performance of each pushing
method under near identical network conditions. If nodes alter their behaviour during the
course of a simulation due to the data dissemination method being used, then each comparison
is not being subjected to exactly the same network conditions. The density of vehicles in a
given area can alter as well as the speed vehicles are travelling. This is also the reason that the
applications developed for use in the evaluation only emulate the communication patterns of a
GLOSA system; it should not cause any dynamic behaviour in vehicles. The network conditions
that each method of data dissemination is subjected to should be as similar as possible so as
to have a fair and accurate comparison for transient and periodic data dissemination methods.

The approach implemented in this dissertation is that the path taken by each vehicle in each
SUMO simulation is imported into ndnSim by the use of trace files. The trace files are
output at the end of a SUMO traffic simulation and are used to inform ndnSim about the
number of nodes required and each nodes mobility for the duration of the network simulation.
The use of trace files ensures that the network conditions are as similar as possible for each
data dissemination method. The design and implementation of traffic modelling is discussed

35

in section 3.6 and the design and implementation of the network simulation is discussed in
section 3.7.

3.6 Traffic Modelling

SUMO is used to define the road topology and simulate traffic models. SUMO provides a well
documented and mature set of tools to accurately simulate traffic models. On top of this,
SUMO provides support to export trace files that can be then be used in ndnSim to define
the nodes path during network simulations. There are two key parameters that will be defined
in SUMO, speed and PCPH. Speed is configured when creating the road topology, as will be
shown in section 3.6.1, and PCPH is configured when defining traffic flows, as discussed in
section 3.6.3.

3.6.1 Road Topology

It is possible to quickly create a road topology using the OSM Web Wizard tool [65] that is
packaged with SUMO. The tool opens a webbrowser and allows a user to select geographic
regions from OpenStreetMaps. It also provides some controls for specifying random traffic
demand for different traffic modes. Figure 3.6 shows an image of the OSMWebWizard portal.

Figure 3.6: Web portal of OSMWebWizard

The tool is easy to use and allows users to quickly generate road topologies and traffic demand.
OSMWebWizzard is not used in the final design because the tool lacks fine grained control
over traffic demand, which is randomly generated when using the OSMWebWizard tool [56].
When attempting to re-create real world road topologies, the OSMWebWizzard tool would
be an ideal candidate. But the scenario required for this dissertation is a simple intersection
topology and so it is preferred to manually configure the road topology in order to have greater
control over traffic demand in the simulations.

Manual configuration of road topology is achieved through the use of XML definitions that
are input into NETCONVERT. NETCONVERT generates the road topology used by SUMO
in simulating traffic. Road topologies are defined as a series of nodes and edges. Nodes are

36

defined in a .nod.xml file. Each row in the document defines a node, giving the node an id,
x position, y position and optional type. This is seen below in figure 3.7.

Figure 3.7: Node definition in .nod.xml

Edges are defined in a .edg.xml file. Edges define the connections between two nodes in the
road topology. Each row in the schema defines an edge. An edge consists of an edge ID,
from node ID, to node ID, lane priority, the number of lanes and the max speed of a lane.
The priority is an ordinal number that determines right-of-way rules. An edge definition can
be seen velow in figure 3.8. The edges and nodes are all that NETCONVERT requires to
generate the topology of an intersection.

Figure 3.8: Edge definition in .edg.xml

The incoming and outgoing edges to an intersection must also be defined. This is done in
a .con.xml file. Vehicles in the network that are approaching an intersection need to know
whether they may perform a right turn, left turn, U turn or continue straight and which lane
a vehicle needs to be in to perform these actions.

Combining the .con.xml, .nod.xml and .edg.xml file, the four way intersection shown in fig-
ure 3.9. Each road consists of six lanes, three in and three out. NETCONVERTs heuristic
refinement of missing data means that not every detail needs to be defined [56], allowing
unimportant features to be completed by NETCONVERT. Certain features of the road topol-
ogy, such as right of way rules at the intersection, are not of major concern so long as each
lane receives the intended PCPH.

Figure 3.9: Intersection created by NETCONVERT

37

3.6.2 Traffic Light System

As explained in section 1.2.5, a fully functional GLOSA system is not implemented. This
means that a static TLS can be defined using SUMO. A static TLS refers to the sequence of
signal phase and timings being fixed. NETCONVERT will automatically generate traffic light
programs for junctions during the construction of networks.

3.6.3 Traffic Demand

Traffic demand for simulations in SUMO can be defined as singular trips, routes or flows as
mentioned in section 2.7.2. The definition of traffic demand is done manually using XML and
is defined in a .rou.xml file. A row can define one of four things, a vehicle type (vType), a
route, a vehicle, or a flow. A vehicle type defines the characteristics of a type of vehicle in
the network, such as acceleration, deceleration, top speed, length and so on. A vehicle is an
instance of a vehicle type, with an ID, a departure time, a colour, and a route. A route defines
a series of edges in the network to be traversed. A flow defines repeated vehicle emissions
into the network following a distribution or equi-distant time spacing.

Flows are used for the generation of vehicles in the simulation. With flows, vehicles will enter
the network distributed either equally or randomly over a given time period, depending on the
chosen flow and value. There are three possible types of flow to choose from, vehsPerHour,
period, and probability. In the vehsPerHour flow, vehicles enter the network equally spaced,
determined by the chosen value, to ensure that an exact amount of vehicles travel on a lane
per hour. If a value of two hundred is chosen, then a vehicle will enter the network every
eighteen seconds, per lane. The period flow defines the equally spaced insertion of vehicles
into the network at a given period. The probability flow has a chance of inserting a vehicle
into the network each second with probability p.

The vehicles per hour flow was chosen to satisfy the PCPH parameter requirement, discussed
in section 3.1.1. Each lane has a flow specifying the flow ID, start time, end time, from lane,
to lane and the vehPerHour, as seen in figure 3.10.

Figure 3.10: Flow definition in .rou.xml

After defining the traffic demand for a simulation the road topology will be populated with
vehicles when a simulation is run. Vehicles will be inserted into the road network following
the flow that has been defined. Figure 3.11 shows the intersection populated with vehicles
after the traffic demand has been specified.

38

Figure 3.11: Intersection created by NETCOVERT with traffic demand

3.7 Network Scenario

The network scenario design can be broken down into three components, the consumer ap-
plication, producer application and scenario configuration. A custom consumer and proactive
producer application are developed. These custom applications as well as the ndnSim example
producer application are used to exhibit a communication pattern similar to that of a GLOSA
system. Network configuration and setup is performed in what ndnSim calls a scenario. The
network scenario defines the nodes in the network, the mobility patterns that they will follow,
the full network stack running on the nodes and the applications installed on each node. The
network scenario is also where the run-time for the simulation is defined as well as defining
the network tracing to be used over the duration of a simulation, which will provide the data
required to evaluate each simulation.

3.7.1 Applications

Applications in ndnSim inherit from the ndn::App class which contain methods triggered when
packets arrive at or leave the application layer through an application interface. To receive
packets the OnData, OnInterest, and OnNack methods of the ndn::App class need to be
overridden. To send packets to the instance of the NDN protocol on a node, the SendData
and SendInterest methods of the ndn:App class should be used, passing a correctly formed
Data and Interest packet respectively.

39

3.7.2 Consumer Application

A custom consumer application is designed and implemented that periodically requests up-
dates for content under a given namespace. The consumer application has three configurable
attributes, the name of the data to be requested, the frequency that data will be requested,
and a trace object for recording application level metrics. Upon startup, the application waits
a random back-off time before requesting the first packet. This time is determined by a
uniform distribution between 0 and 2 ⇤ 1/frequency which is seeded to ensure reproducibility.
This is done to ensure that all consumers in the network do not request updates at the same
time as this is unlikely to occur in a real world scenario. After requesting the first packet,
a consumer application requests updates at a fixed period. Request scheduling is performed
by the NS-3 scheduler. NS-3 [54], which is the basis that ndnSim is built from, uses its own
internal simulation time. When scheduling events during the course of a simulation, the NS-3
scheduler should be used to ensure that events are scheduled with respect to the simulation
time and not the system time.

Algorithm 3.3: Push VNDN Event loop for Consumer c
Possible Events: startup s, creation of interest i , arrival of data d

1 switch event do

2 case s do

3 Schedule Next Packet;
4 case i do

5 create valid interest i ;
6 tell i it must collect fresh data;
7 broadcast interest i ;
8 Schedule Next Packet;
9 case d do

10 Send information about arrival of packet d to application layer tracing;
11 end

3.7.3 Producer Applications

Two producer applications are used. For simulations using the pure NDN protocol and for
unsolicited data scenarios, the example producer application that is packaged with ndnSim is
used. For simulations using the proactive pushing method, a custom producer application is
used that is able to push data packets into the network. For all producer applications, the
freshness period of a piece of data is the same as the update frequency for the transient data.
The size of the data packet is fixed at 600 bytes. This was found to be the upper bound of
CAM packet sizes of a Renault vehicle in an urban or highway environment [66].

40

Pure NDN and Unsolicited Data Application

In the pure NDN and unsolicited data scenarios the producer is required to reply to arriving
Interest packets with Data packets of a set size and with an identical name to the incoming
interest. The example producer application satisfies these requirements. It has a set of
attributes that can be set defining the namespace it contains data for, the payload size of data
packet responses, the freshness period of data packets it creates, application specific signatures
for security features and a postfix that is appended to the name of created data packets. Only
the namespace, payload size and freshness period attributes need to be configured for a
scenario evaluating pure NDN or unsolicited data.

Proactive Pushing Application

The proactive producer application has two functions. It will respond with a data packet to
any for data in a given namespace and it will push data packets into the network at a fixed
period under the same namespace. The proactive producer application has four attributes, a
name prefix that the application responds to, the payload size for data packets it produces, the
freshness period of data packets it produces, and the update frequency for the transient data
that the proactive producer is pushing into the network. As with the consumer application,
the proactive producer will wait a random back-off time defined by a uniform distribution
before starting to push data into the network at a given period.

The proactive producer requires an entry in its FIB for the namespace under which it pushes
data. To create an entry, the "Face" of a network device will be required as well as an assigned
cost. All communication in NDN is performed through the "Face" abstraction, regardless of
whether the packet originates from an application on the node or from a network device. The
NDN protocol API, installed on each node, is used to get the Face associated with a given
network device. The NDN API is then used once again to add the network device Face, with a
cost of 1, as a path for data in the nodes FIB. A cost of one is provided so that the Forwarding
Strategy of a node uses the manually configured path.

There are two scenarios when a producer will forward data into the network, when responding
to an interest packet or when pushing data into the network. The only difference between
the state of the two generated data packets is that one is pushed and the other is not. A
boolean flag is added to the application logic for sending data packets to indicate whether
the generated packet should contain the pushed TLV block, discussed in section 3.4, or not.

41

Algorithm 3.4: Push VNDN Event loop for Producer p
Possible Events: startup s, arrival of interest i , pushing of d

1 switch event do

2 case s do

3 Get Network Interface;
4 Add path to FIB for prefix with interface and cost 0;
5 Schedule Next Packet;
6 case i do

7 SendData(false);
8 case d do

9 SendData(true);
10 Schedule Next Packet;
11 end

12 Function SendData(isPushed: bool) is

13 Create valid data packet;
14 Set freshness period to request frequency;
15 if isPushed = true then

16 set pushed flag of data packet to true value;
17 end

18 Send Data packet to NDN protocol;
19 end

3.7.4 Scenario Design

To create a scenario in ndnSim, the environment in which simulations will run must be
configured. As mentioned in section 2.7.1, ndnSim has helper classes that can be used to
configure the network stacks of each node in the simulation, install applications, configure
tracing, configure how nodes move in the network and much more.

The components that need to be configured for the simulation are the mobility models of
nodes, the physical layer characteristics, the data link layer characteristics, the network/transport
layer, the applications running on the nodes, and tracing to gather data for evaluation.

NdnSim inherits mobility models from the NS-3 simulator. These models allow nodes to
physically move over the course of a simulation. The models are simplistic, allowing for
nodes to perform random walks, move in straight lines or follow some pre-defined route. It
quickly becomes apparent that the pre-defined mobility models are not sufficient when trying
to realistically simulate traffic flow. This is why the trace file function from NS-3 is used. The
trace file explicitly defines the route of every node in the simulation and is coded in an NS-3

42

specific format. SUMO can export the route taken by every vehicle in a traffic simulation
as an NS-3 formatted trace file. The trace file method is used to define the mobility of the
consumer nodes during a ndnSim simulation. The producer node, which is a single TLS at
the centre of an intersection, uses a constant position mobility model that means it is fixed
in place.

The IEEE WAVE protocol [41] is chosen for the physical and data link layer over a cellular
equivalent such as LTE-V [67]. The WAVE protocol is well supported in NS-3, allowing for the
simple and accurate physical and data-link layer implementation for a VANET scenario. The
Yet Another Network Simulator (YANS) [68] helper within NS-3 is used to configure the WAVE
network controllers on each node. NS-3 allows the stacking of different propagation delay and
loss models for tuning wireless channel characteristics through various combinations of pre-
built and custom models. The transmission range of a node can be configured using YANS.
This is achieved through using YANS implementation of the constant speed propagation
delay model and YANS log distance propagation loss model, varying the exponent value of
the propagation loss model to control transmission range.

A propagation loss model defines how signal power decreases as it travels through the physical
medium. The log distance model is the default model for YANS calculated as such L =

L0 + 10n log (d
d0
) where L0 is the path loss at the reference distance, n is the path loss

distance exponent, d is the distance in metres, and d0 is a reference distance. In the case of
YANS, the reference distance d0 is 1 metre and the default value of the exponent n is 3 [68].

A propagation delay model defines the speed at which a signal travels through the physical
medium. Using a constant speed propagation delay model results in signals travelling at a
fixed speed which is the speed of light in vacuum by default. Unfortunately, the only reasoning
for this choice is the transmission range for nodes in the network could not be altered unless
this model was used with the log loss model as described above. The use of a constant speed
propagation model will not harm the results of the simulation as the differences in performance
of each data dissemination mechanism will be the same.

Through experimentation it was found that setting the exponent of the log loss model to 3,
2.72 and 2.55 will provide a transmission range of 100m, 200m and 300m respectively.

The NDN protocol is used for the network/transport layer of each node. NdnSim has the
ndn::StackHelper class to allow for the quick and easy installation and configuration of the
NDN protocol on each node in the network. Using the stack helper, the consumer nodes are
configured with default routes, are set with a CS size of 2, though this is not required, and
are set to use a least recently used cache replacement policy. The only required difference
for the producer node is disabling the cache. The producers cache is disabled to prevent the
constant caching of data packets that the node is producing as it was found to inhibit the
dissemination of pushed data. For a production system the cache needs to be enabled so the

43

TLS could take on the role of a road-side unit (RSU).

The final scenario configuration step is installing applications on nodes in the network. Three
applications are used, one consumer application for all simulations and two producer applica-
tions, one for base NDN and unsolicited data dissemination simulations and one for proactive
pushing simulations. The ndn::AppHelper is used to install applications on nodes in the
network. This helper class allows the application attributes to be set.

After configuration the scenario is ready to run. NdnSim uses the python build tool waf to
compile and run scenarios. Figure 3.12 shows a running simulation being visualized using the
pyviz application that comes with ndnSim.

Figure 3.12: Running simulation using base NDN, visualized using pyviz

3.7.5 Summary

This chapter detailed the design and implementation of two additional data dissemination
methods into the NDN protocol, unsolicited data and proactive pushing. The design and
implementation of a scenario used to evaluate each method and pure NDN was also discussed.
Both unsolicited data and proactive pushing were successfully implemented, but the forwarding
of data in the proactive pushing method could not be achieved during the time frame of
this project. A scenario, consisting of a four way intersection with a TLS at its centre, is
implemented using SUMO and ndnSim. SUMO is used to perform the traffic modelling which
is recorded in trace files. NdnSim is used to perform network simulations, importing the trace
files exported by SUMO to define the consumers mobility.

44

4 Evaluation

In this chapter, the performance of unsolicited data and proactive pushing are examined.
Pure NDN is used as the control case. Evaluation is performed using the scenario described
in section 3.7.4; a four lane intersection with a TLS exhibiting the communication pattern of
a GLOSA system. A simulation is run for each combination of vehicle density, vehicle speed,
update frequency and node transmission range, totalling 162 unique simulations. Congestion,
delay and cache hit ratio, defined below in section 4.1.1, are the three metrics used to measure
network performance.

4.1 Data Dissemination Method Testing

To ensure a fair and accurate evaluation of pure NDN, unsolicited data and proactive pushing,
each method is evaluated using the same trace files. Each method is simulated in ndnSim for
all combinations of trace file, transmission range and update frequency. All distributions are
seeded to ensure deterministic behaviour where possible, such as the back-off time before a
node starts to communicate. The possible values of each parameter, defined in section 3.1.1,
are shown below.

• PCPH: 285v, 950v and 1900v where v stands for vehicles per lane per hour

• Vehicle Speed: 30km/h, 60km/h and 100km/h where km/h stands for kilometres per
hour

• Transmission Range: 100m, 200m, 300m where m stands for metres

• Update Frequency: 100ms, 1s

The HCM manual [59] defines 1900 PCPH as 100% utilisation of a lane. The values of 285v,
950v, and 1900v, representing 15%, 50% and 100% lane utilisation respectively, are chosen
to represent sparse, medium and dense scenarios.

45

4.1.1 Testing Metrics

As stated in chapter 1, transient and periodic data in NDN could have a negative affect on
the congestion and delay experienced in a network. Therefore, the metrics described below
are chosen based on their suitability in measuring the performance of a network in terms of
congestion and delay. The three metrics used are congestion, delay and cache hit ratio.

Congestion

Congestion is measured as the total number of packets in the network for all simulations.
The rate tracer provided by ndnSim is used to calculate the congestion in the network. Any
packet being received or sent from a face in a node is recorded; this includes application and
system-level faces. The rate tracer encodes a timestamp, node ID, face ID, face description,
packet type, packet rate, kilobyte rate, packet numbers and kilobyte throughput into each
recorded metric. The only desired information is the timestamp, face description and packet
count. The packet numbers is the total number of packets recorded during a time period,
which is one second for the simulations. The face description is required to filter out any
non-network face.

As the number of packets in the network increases, the network overhead increases, which
increases the likelihood of negatives effects such as packet drop and low throughput [36].

Delay

Delay is measured as the average time taken for the most recent interest to be satisfied for
all nodes in the network over all simulations. The application tracer provided by ndnSim is
used to calculate delay. Delay is measured as last delay, which is the time taken for the most
recently created interest for a piece of data to be satisfied. The application tracer encodes a
timestamp, node ID, application ID, sequence number, delay type, delay in seconds, delay in
micro-seconds, a re-transmission count and a hop count into each recorded metric. For the
purpose of this dissertation only the timestamp, delay type, delay in seconds and hop count
are used. The delay type can be either last delay or first delay. First delay is the time taken
for the first interest created for a piece of content to be satisfied. Last Delay is the time taken
for the most recently created interest for a piece of content to be satisfied.

Cache Hit Ratio

Cache Hit ratio is measured as the average cache hit ratio for all nodes for all simulations. A
cache hit ratio is the number of cache hits over the number of cache hits and cache misses.
The CS tracer provided by ndnSim is used to calculate the cache hit ratio of each node during a
simulation. In-network caching is an important feature of the NDN protocol and is an effective
tool for disseminating information. A cache hit ratio can indicate how effectively data is being

46

disseminated in the network. The CS tracer encodes into each metric a timestamp, node
ID, type of counter for the time period and packet count for the time period. The type of
counter for the time period can be one of cache hits or cache misses. For better processing
the metrics are converted to a tidy data format [69] where cache hits and cache misses are
their own variables. The cache hit ratio is calculated with the formula described below.

Ratio =
CacheHits

CacheHits + CacheMisses

4.2 Results

162 unique simulations were run, each simulation ran for a duration of 100 seconds and every
combination of vehicle density, vehicle speed, transmission range, update frequency were
tested for each method. All vehicles in the network drove using the same model implemented
in SUMO and developed by Krauß[58]. Network conditions were identical in each simulation
apart from the data dissemination method used. The physical and data link layers use the
WAVE protocols. The link speed is 6Mbps with a channel bandwidth of 10MHz. Vehicles
entered the network at the incoming links on the edge of the road topology, labelled 1, 2, 3
and 4 in figure 4.1. The comprehensive testing done allowed each method to be evaluated
in a number of ways. It was possible to see how the performance of each method improved
or degraded as either vehicle density, vehicle speed, update frequency or node transmission
range changed. All graphs show the performance of each method for each update frequency.

Attribute Value

Phy/Mac layer IEEE 802.11p, IEEE 1609.4
Bandwidth 10MHz
Bit Rate 6Mbps

Network/Transport layer NDN
Applications Consumer, Standard Producer, Proactive Producer

Simulation Time 100 seconds
Data Packet Size 600 bytes
Vehicle Density 15%, 50%, 100%
Vehicle Speed 30km/h, 60km/h, 100km/h

Transmission Range 100m, 200m, 300m
Update Frequency 1s, 100ms

Table 4.1: Table showing the configurable attributes and values used in the scenario

47

Figure 4.1: Test road topology

4.2.1 Congestion

The results for congestion can be seen in figure 4.2. Unsolicited data and proactive pushing
resulted in a decrease in congestion of 75% and 67.2% respectively, at a frequency of 1s. There
was a noticeable increase in overall congestion when the update frequency was increased to
100ms. This is expected with a reduced freshness period that requires all nodes in the
network to request content more frequently. Proactive pushing resulted in more congestion in
the network when compared to pure NDN (6.4%) at a update frequency of 100ms. In general,
when compared to pure NDN, unsolicited data produces the least amount of congestion, with
a reduction of 75% and 21.4% at update frequencies of 1s and 100ms respectively.

48

Figure 4.2: Overall results for congestion from all simulations

The behaviour of each data dissemination method as the density of vehicle changes can be
seen in figure 4.3. At a update frequency of one second, congestion in the network increases
as the density of vehicle increases. Both unsolicited data and proactive pushing resulted in far
fewer packets in the network than the control case of pure NDN. Unsolicited data is marginally
better than proactive pushing. At a update frequency of 100ms, as the density of vehicle in
the network increased, the use of the proactive pushing resulted in a much greater number of
network packets. In this case, the proactive pushing method causes more congestion caused
than pure NDN.

Figure 4.3: Graph showing results for congestion, grouped by the density of vehicle

49

The behaviour of each data dissemination method as transmission range changes can be
seen in figure 4.4. As transmission range increased, congestion in the network was expected
to diminish; this does not appear to be the case. At an update frequency of 1s, the pure
NDN method increases congestion in the network as transmission range increases, whereas
unsolicited data and proactive pushing remain relatively stable. At 100ms, the number of
packets in the network for each dissemination method does not appear to be consistent. Pure
NDN decreases as the transmission range increases, unsolicited data remains the same, and
proactive pushing does not follow any discernible pattern.

Figure 4.4: Graph showing results for congestion, grouped by transmission range

The behaviour of each data dissemination method as vehicle speed changes can be seen in
figure 4.5. Changes in vehicle speed do not have an effect on congestion in the network of
any method. This is understandable in the context of an intersection. Vehicles must slow as
they approach an intersection potentially leading to similar communication times.

50

Figure 4.5: Graph showing results for congestion, grouped by vehicle speed

The distribution of the congestion measurements in one second time periods for each method,
seen in figure 4.6, displays a positive correlation between update frequency and the variance of
packet numbers in the network. There is a large variance in congestion at an update frequency
of 100ms.

Figure 4.6: Boxplot for the number of packets in the network per method

4.2.2 Delay

The results can be seen in figure 4.7. The results showed that a pushing method greatly
reduced delay experienced in the network. Unsolicited data and proactive pushing reduced
delay by 73.2% and 59.7% at a update frequency of 1s, when compared to NDN. Unsolicited

51

data and proactive pushing reduced delay by 52.6% and 75.9% at a update frequency of
100ms, when compared to pure NDN. At a update frequency of 1s, the unsolicited data
method outperforms the proactive pushing method, but when the update frequency is 100ms
the proactive pushing method produces better results. It is observed that as the frequency of
pushing increases, the mean delay for the proactive pushing method decreases.

Figure 4.7: Overall delay of each method for all simulations

The behaviour of each data dissemination method as the density of vehicle changes can be
seen in figure 4.8. At an update frequency of 1s, the mean delay of each method trends
downwards as the density of vehicle increases, but at 100ms the opposite effect is observed.
At a update frequency of 100ms there could be a greater chance for a node to not contain
desired data in its cache, either because it is yet to receive a copy of the data or because its
copy has become stale. As the density of vehicle increases, the number of nodes that require
new data would be amplified. An update frequency of 1s may be a sufficiently long period of
time to see greater impact of the positive effects on delay of pushing data.

52

Figure 4.8: Graph showing results for delay, grouped by the density of vehicle

The behaviour of each data dissemination method as transmission range changes can be seen
in figure 4.8. At an update frequency of 1s, there is a downwards trends for the delay of each
method as the transmission range of nodes increases. The unsolicited data method performs
the best in this case. It was expected that the proactive pushing method, at a higher update
frequency, would perform the best as the transmission range increased. While this is the case
for ranges of 100m and 200m, at 300m the delay actually increases. This could possibly be
an artifact of the scenario setup. The edge of the simulation is at 400m and every node that
is yet to start following its route waits at the edge of the simulation. It is possible that at a
transmission range of 300m nodes that are waiting at the simulation edges are communicating
with nodes in the process of following their pre-defined route. This communication with nodes
that are not yet fully participating in the simulation would increase mean delay.

53

Figure 4.9: Graph showing results for delay, grouped by transmission range

Delay experienced in the network as the speed of vehicles changes remains steady. Once again
this is to be expected as vehicles slow down when approaching the intersection.

Figure 4.10: Graph showing results for delay, grouped by vehicle speed

Due to the scenario design, there is always a large spike in delay as the first vehicles come
within range of the producer. After the initial spike, when a stream of vehicles are entering
communication range, the delay in the network drops significantly. This can be seen in figure
4.11. To account for this period before the network reaches a settled state, only data 20
seconds after the simulation starts is included when calculating the results.

54

Figure 4.11: Line chart using loess regression for a single simulation showing delay for each
method over time

4.2.3 Cache Hit ratio

The effective use of in-network caching was measured using the cache hit ratio of all nodes
in the network. The results can be seen in figure 4.12. The results showed that proactive
pushing has the highest cache hit ratio at 31.38% and 47.17% at an update frequencies of
1s and 100ms respectively. This is in line with expectations as the proactive pushing method
places data in the CS of nodes in the network, before they require the data. Unsolicited data
at 100ms is not in line with expectations, with a cache hit ratio of 30%, which is less than
the 36.4% cache hit ratio of pure NDN.

Figure 4.12: Overall results for cache hit ratio for all simulations

55

The behaviour of each data dissemination method as the density of vehicle changes can be
seen in figure 4.13. The cache hit ratio for each method has a positive correlation with the
density of vehicle in the network. The proactive pushing method at a 100ms update frequency
performs the best and this is in line with expectations. As stated earlier, the unsolicited data
method at a 100ms update frequency under-performs.

Figure 4.13: Graph showing results for cache hit ratio, grouped by the density of vehicle

The behaviour of each data dissemination method as transmission range changes can be seen
in figure 4.14. The proactive pushing method achieves a greater than 80% cache hit ratio
at a transmission range of 300m and update frequency of 100ms. There is a clear positive
correlation between cache hit ratio and transmission range. This makes sense as the larger
the communication range, the higher the number of nodes that will receive data directly from
a producer. At a transmission range of 100m, both the unsolicited data and proactive pushing
method have a lower cache hit ratio than pure NDN, which is unexpected. It could be possible
that 100m is not a sufficient distance from the producer to make effective use of a nodes cache
in a GLOSA scenario, as nodes move in and out of the radius of communication relatively
quickly.

56

Figure 4.14: Graph showing results for cache hit ratio, grouped by transmission range

The behaviour of each data dissemination method as transmission range changes can be seen
in figure 4.15. There is a slight downwards trend of the cache hit ratio of each method with
respect to vehicle speed. Some nodes should pass through the intersection at their maximum
speed during a green phase leading to a possibly reduced chance of receiving data into the
cache of a node.

Figure 4.15: Graph showing results for cache hit ratio, grouped by vehicle speed

The cache hit ratios were generally below expectations. After testing the scenario setup it was
determined that nodes waiting at the edge of the simulation were responsible for lowering the

57

values. NdnSim requires that all nodes in a simulation are created at the start of the simulation.
This leads to a large pool of static nodes at the outer edges that are communicating. These
non-participant nodes do not have access to the data and therefore skew the cache hit ratio
towards a lower value. This can be seen below in figure 4.16.

Figure 4.16: Example of the cache hit ratio of a node actively participating in a simulation
(5) and a node which is static at the edge of the same simulation (46)

4.2.4 Summary

At a update frequency of 1s, unsolicited data and proactive pushing are an improvement over
pure NDN in terms of congestion, delay and cache hit ratio. Proactive pushing has similar
results to unsolicited data in terms of congestion and delay but is a marked improvement in
terms of cache hit ratio. There appears to be a trade-off between increased network congestion
and reduced network delay for the proactive pushing method at the higher frequency. This
is seen when contrasting the results in figure 4.2 against figure 4.7, the delay results. In
terms of congestion, the proactive pushing method performs noticeably worse than unsolicited
data and is marginally worse than pure NDN. When looking at delay, proactive pushing
outperforms both unsolicited data and pure NDN. The cache hit ratio of proactive pushing
is a noticeable improvement over both pure NDN and unsolicited data. If the network can
handle the increased congestion from proactive pushing at an update frequency of 100ms then
it is a clear improvement. At an update frequency of 1s, the results show that unsolicited
data and proactive pushing could be an ideal candidate for data which is both transient and
periodic.

58

5 Conclusion

This project implemented and evaluated push-based data dissemination methods methods
in the NDN protocol for the dissemination of transient and periodic data in VANETs. The
hypothesis was that push-based methods improve network performance in terms of congestion
and delay. The push-based data dissemination methods were unsolicited data and proactive
pushing. The scenario used to evaluate each methods performance is designed to replicate
vehicles approaching an intersection with a GLOSA enabled TLS, where every node in the
network is emulating the communication pattern of a GLOSA system.

The results discussed in Chapter 4 show two stories when comparing each method with
respect to the update frequency of the transient data. At a low update frequency of 1s, the
unsolicited data and proactive pushing methods significantly improve the network performance
when compared to the control case of pure NDN. At a 1s update frequency, unsolicited data
performs better than proactive pushing in terms of congestion and delay in the network, but
proactive pushing has a noticeably better cache-hit ratio. When the update frequency is
100ms, the improvement from pushing methods for network congestion is less noticeable, or
worse, in the case of proactive pushing. At 100ms, pushing methods greatly reduce the delay
experienced in the network, with proactive pushing performing the best. There appears to be
a trade-off between congestion and delay with the proactive pushing method at higher update
frequencies. The cache-hit ratio of the proactive pushing method is a significant improvement
over the control case of pure NDN. The unsolicited data method performed the worst which
was not expected.

Overall, the following results were gathered for each pushing method when compared to the
control case of pure NDN. At an update frequency of 1s, the unsolicited data method resulted
in 75% less congestion, 73.2% less delay, and a 13% increase in cache-hit ratio. At an update
frequency of 100ms, the unsolicited data method resulted in 21.4% less congestion, 52.6% less
delay, and a 17.9% decrease in cache-hit ratio. At an update frequency of 1s, the proactive
pushing method resulted in 67.2% less congestion, 59.7% less delay, and 53.3% increase in
cache-hit ratio. At an update frequency of 100ms, the proactive pushing method resulted in a
6.4% increase in congestion, 75.9% decrease in delay and a 29.5% increase in cache-hit ratio.
These results provide valuable evidence towards proving the hypothesis that implementing

59

pushing methods into the NDN protocol for the dissemination of transient and periodic data
in VANETs greatly improves network performance.

5.1 Future Work

The results gathered in this project are promising but can be further improved upon. The
poor cache-hit ratio of unsolicited data at 100ms is unexplained and suggests that further
work can be done on the scenario design and evaluation. The static nodes at the edge of
the scenario were shown to be unduly skewing results in section 4.2.3 and should be removed
in any future iteration of the scenario design. Evaluation of delay in terms of first delay and
the time taken for the first interest packet to be satisfied, may be more accurate. A more
rigorous examination of unexpected patterns identified in the results should also take place.
A statistical analysis of the differences between each data dissemination method with respect
to changing parameters should take place. Overall, there is potential for a more rigorous
evaluation.

The algorithm used to implement the proactive pushing method should be updated to allow
the forwarding of pushed data packets. Two possible solutions to be investigated are detailed
in section 3.3.1. The first possible solution is to make nodes aware of many network interfaces
to forward the pushed data to as well as the application face. Another potential solution is
to have separate control flows for incoming and outgoing data. This could be achieved by
checking the type of face that the data has arrived from. If it is an application face, then
the data is outgoing and should ignore the Data in CS check. If the data has arrived from
a network face, than the data is incoming and should be subjected to the CS check. After
altering the proactive pushing method to forward data packets, the analysis should be rerun
to see how the results change.

The scenario is also very simplistic, consisting of a single four lane intersection. A more
complex road topology which consists of multiple intersections could be evaluated, similar
to the scenario evaluated by Tielert et al. [44]. This evaluation would indicate whether the
benefits of pushing methods are diminished by multiple competing intersections.

60

Bibliography

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N. Briggs, and R. Braynard,
“Networking named content,” Commun. ACM, vol. 55, no. 1, p. 117–124, Jan. 2012.
[Online]. Available: https://doi-org.elib.tcd.ie/10.1145/2063176.2063204

[2] A. John, “Why use a cdn? here are 10 data-
driven reasons,” 2019. [Online]. Available: https://hackernoon.com/
why-use-a-cdn-here-are-10-data-driven-reasons-ee0a02672988

[3] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley, C. Papadopoulos,
L. Wang, and B. Zhang, “Named data networking,” SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 3, p. 66–73, Jul. 2014.

[4] H. Khelifi, S. Luo, B. Nour, H. Moungla, Y. Faheem, R. Hussain, and A. Ksentini,
“Named data networking in vehicular ad hoc networks: State-of-the-art and challenges,”
IEEE Communications Surveys Tutorials, vol. 22, no. 1, pp. 320–351, Firstquarter 2020.

[5] “Ieee guide for wireless access in vehicular environments (wave) - architecture,” IEEE Std
1609.0-2013, pp. 1–78, March 2014.

[6] G. Grassi, D. Pesavento, L. Wang, G. Pau, R. Vuyyuru, R. Wakikawa, and L. Zhang,
“Acm hotmobile 2013 poster: Vehicular inter-networking via named data,” SIGMOBILE
Mob. Comput. Commun. Rev., vol. 17, no. 3, p. 23–24, Nov. 2013. [Online]. Available:
https://doi.org/10.1145/2542095.2542108

[7] M. F. Majeed, S. H. Ahmed, and M. N. Dailey, “Enabling push-based critical data
forwarding in vehicular named data networks,” IEEE Communications Letters, vol. 21,
no. 4, pp. 873–876, April 2017.

[8] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM 2: An updated NDN
simulator for NS-3,” p. 8.

[9] N. Team, “Nfd developer’s guide,” Dept. Comput. Sci.

[10] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters, B. Zhang,
G. Tsudik, D. Massey, C. Papadopoulos et al., “Named data networking (ndn) project,”

61

https://doi-org.elib.tcd.ie/10.1145/2063176.2063204
https://hackernoon.com/why-use-a-cdn-here-are-10-data-driven-reasons-ee0a02672988
https://hackernoon.com/why-use-a-cdn-here-are-10-data-driven-reasons-ee0a02672988
https://doi.org/10.1145/2542095.2542108

Relatório Técnico NDN-0001, Xerox Palo Alto Research Center-PARC, vol. 157, p. 158,
2010.

[11] R. A. Rehman and B. Kim, “Lomcf: Forwarding and caching in named data networking
based manets,” IEEE Transactions on Vehicular Technology, vol. 66, no. 10, pp. 9350–
9364, Oct 2017.

[12] Z. Yan, S. Zeadally, and Y. Park, “A novel vehicular information network architecture
based on named data networking (ndn),” IEEE Internet of Things Journal, vol. 1, no. 6,
pp. 525–532, Dec 2014.

[13] R. Bodenheimer, D. Eckhoff, and R. German, “Glosa for adaptive traffic lights: Methods
and evaluation,” in 2015 7th International Workshop on Reliable Networks Design and
Modeling (RNDM), 2015, pp. 320–328.

[14] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos, K. V.
Katsaros, and G. C. Polyzos, “A survey of information-centric networking research,” IEEE
Communications Surveys Tutorials, vol. 16, no. 2, pp. 1024–1049, Second 2014.

[15] J. B. Kenney, “Dedicated short-range communications (dsrc) standards in the united
states,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1162–1182, July 2011.

[16] H. Zimmermann, “Osi reference model - the iso model of architecture for open systems
interconnection,” IEEE Transactions on Communications, vol. 28, no. 4, pp. 425–432,
April 1980.

[17] J. Postel, “Rfc0791: Internet protocol,” 1981.

[18] D. Wing, “Network address translation: Extending the internet address space,” IEEE
Internet Computing, vol. 14, no. 4, pp. 66–70, July 2010.

[19] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless inter-domain routing (cidr): an
address assignment and aggregation strategy,” 1993.

[20] P. Mockapetris and K. J. Dunlap, “Development of the domain name system,” in Sym-
posium Proceedings on Communications Architectures and Protocols, ser. SIGCOMM
’88. New York, NY, USA: Association for Computing Machinery, 1988, p. 123–133.
[Online]. Available: https://doi.org/10.1145/52324.52338

[21] J. Moy et al., “Ospf version 2,” 1998.

[22] A. Vakali and G. Pallis, “Content delivery networks: status and trends,” IEEE Internet
Computing, vol. 7, no. 6, pp. 68–74, Nov 2003.

[23] Cisco, “Cisco visual networking index: Forecast and trends, 2017–2022 white paper,”
Tech. Rep., 2017. [Online]. Available: https://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html

62

https://doi.org/10.1145/52324.52338
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html

[24] Yang-hua Chu, S. G. Rao, S. Seshan, and Hui Zhang, “A case for end system multicast,”
IEEE Journal on Selected Areas in Communications, vol. 20, no. 8, pp. 1456–1471, Oct
2002.

[25] B. Daya, “Network security: History, importance, and future,” University of Florida De-
partment of Electrical and Computer Engineering, vol. 4, 2013.

[26] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker,
and I. Stoica, “A data-oriented (and beyond) network architecture,” in Proceedings
of the 2007 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, ser. SIGCOMM ’07. New York, NY, USA:
Association for Computing Machinery, 2007, p. 181–192. [Online]. Available:
https://doi.org/10.1145/1282380.1282402

[27] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos, “Developing information network-
ing further: From psirp to pursuit,” in International Conference on Broadband Commu-
nications, Networks and Systems. Springer, 2010, pp. 1–13.

[28] Named-Data, “NDN Packet Format Specification — NDN Packet Format Spec-
ification 0.3 documentation.” [Online]. Available: https://named-data.net/doc/
NDN-packet-spec/current/index.html

[29] A. Vakali and G. Pallis, “Content delivery networks: status and trends,” IEEE Internet
Computing, vol. 7, no. 6, pp. 68–74, 2003.

[30] C. Ghasemi, H. Yousefi, K. G. Shin, and B. Zhang, “Poster abstract: Routing meets
caching in named data networks,” in IEEE INFOCOM 2018 - IEEE Conference on Com-
puter Communications Workshops (INFOCOM WKSHPS), April 2018, pp. 1–2.

[31] A. Afanasyev, J. A. Halderman, S. Ruoti, K. Seamons, Y. Yu, D. Zappala, and L. Zhang,
“Content-based security for the web,” in Proceedings of the 2016 New Security Paradigms
Workshop, ser. NSPW ’16. New York, NY, USA: Association for Computing Machinery,
2016, p. 49–60. [Online]. Available: https://doi.org/10.1145/3011883.3011890

[32] Z. Zhang, Y. Yu, A. Afanasyev, and L. Zhang, “Ndn certificate management protocol
(ndncert),” NDN, Technical Report NDN-0050, 2017.

[33] U. F. C. Commission et al., “Standard specification for telecommunications and informa-
tion exchange between roadside and vehicle systems-5 ghz band dedicated short range
communications (dsrc) medium access control (mac) and physical layer (phy) specifica-
tions,” Washington, DC (September 2003), 2003.

[34] H. Hartenstein and L. P. Laberteaux, “A tutorial survey on vehicular ad hoc networks,”
IEEE Communications Magazine, vol. 46, no. 6, pp. 164–171, June 2008.

63

https://doi.org/10.1145/1282380.1282402
https://named-data.net/doc/NDN-packet-spec/current/index.html
https://named-data.net/doc/NDN-packet-spec/current/index.html
https://doi.org/10.1145/3011883.3011890

[35] M. Laroui, A. Sellami, B. Nour, H. Moungla, H. Afifi, and S. B. Hacene, “Driving path
stability in vanets,” in 2018 IEEE Global Communications Conference (GLOBECOM),
Dec 2018, pp. 1–6.

[36] Z. Cao, K. Shi, Q. Song, and J. Wang, “Analysis of correlation between vehicle density and
network congestion in vanets,” in 2017 7th IEEE International Conference on Electronics
Information and Emergency Communication (ICEIEC), July 2017, pp. 409–412.

[37] D. Kim, Y. Velasco, W. Wang, R. N. Uma, R. Hussain, and S. Lee, “A new comprehen-
sive rsu installation strategy for cost-efficient vanet deployment,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 5, pp. 4200–4211, May 2017.

[38] X. Ma, J. Zhang, X. Yin, and K. S. Trivedi, “Design and analysis of a robust broadcast
scheme for vanet safety-related services,” IEEE Transactions on Vehicular Technology,
vol. 61, no. 1, pp. 46–61, Jan 2012.

[39] D. Jiang and L. Delgrossi, “Ieee 802.11p: Towards an international standard for wireless
access in vehicular environments,” in VTC Spring 2008 - IEEE Vehicular Technology
Conference, May 2008, pp. 2036–2040.

[40] “Ieee standard for wireless access in vehicular environments (wave) – multi-channel op-
eration,” IEEE Std 1609.4-2016 (Revision of IEEE Std 1609.4-2010), pp. 1–94, March
2016.

[41] J. Bu, G. Tan, N. Ding, M. Liu, and C. Son, “Implementation and evaluation of wave
1609.4/802.11p in ns-3,” in Proceedings of the 2014 Workshop on Ns-3, ser. WNS3 ’14.
New York, NY, USA: Association for Computing Machinery, 2014. [Online]. Available:
https://doi-org.elib.tcd.ie/10.1145/2630777.2630778

[42] D. Su, M. Zargari, P. Yue, S. Rabii, D. Weber, B. Kaczynski, S. Mehta, K. Singh,
S. Mendis, and B. Wooley, “A 5 ghz cmos transceiver for ieee 802.11a wireless lan,”
in 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers
(Cat. No.02CH37315), vol. 1, Feb 2002, pp. 92–449 vol.1.

[43] G. Grassi, D. Pesavento, G. Pau, L. Zhang, and S. Fdida, “Navigo: Interest forwarding
by geolocations in vehicular named data networking,” in 2015 IEEE 16th International
Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM),
June 2015, pp. 1–10.

[44] T. Tielert, M. Killat, H. Hartenstein, R. Luz, S. Hausberger, and T. Benz, “The impact
of traffic-light-to-vehicle communication on fuel consumption and emissions,” in 2010
Internet of Things (IOT), 2010, pp. 1–8.

[45] W. Zimdahl, “Guidelines and some developments for a new modular driver information
system,” in 34th IEEE Vehicular Technology Conference, vol. 34, 1984, pp. 178–182.

64

https://doi-org.elib.tcd.ie/10.1145/2630777.2630778

[46] Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applica-
tions; Part 2: Specification of Cooperative Awareness Basic Service, ETSI, 2014.

[47] M. Amadeo, C. Campolo, and A. Molinaro, “Internet of things via named data networking:
The support of push traffic,” in 2014 International Conference and Workshop on the
Network of the Future (NOF), Dec 2014, pp. 1–5.

[48] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro, “Named data networking for iot: An
architectural perspective,” in 2014 European Conference on Networks and Communica-
tions (EuCNC), June 2014, pp. 1–5.

[49] J. François, T. Cholez, and T. Engel, “Ccn traffic optimization for iot,” in 2013 Fourth
International Conference on the Network of the Future (NoF), Oct 2013, pp. 1–5.

[50] Z. Zhu, S. Wang, X. Yang, V. Jacobson, and L. Zhang, “Act: Audio
conference tool over named data networking,” in Proceedings of the ACM SIGCOMM
Workshop on Information-Centric Networking, ser. ICN ’11. New York, NY,
USA: Association for Computing Machinery, 2011, p. 68–73. [Online]. Available:
https://doi-org.elib.tcd.ie/10.1145/2018584.2018601

[51] C. Bian, Z. Zhu, A. Afanasyev, E. Uzun, and L. Zhang, “Deploying key management on
ndn testbed,” UCLA, Peking University and PARC, Tech. Rep, 2013.

[52] R. Chiocchetti, D. Rossi, and G. Rossini, “ccnsim: An highly scalable ccn simulator,” in
2013 IEEE International Conference on Communications (ICC), 2013, pp. 2309–2314.

[53] C. Tschudin, C. Scherb et al., “Ccn lite: Lightweight implementation of the content
centric networking protocol,” 2018.

[54] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena, “Network simulations
with the ns-3 simulator,” SIGCOMM demonstration, vol. 14, no. 14, p. 527, 2008.

[55] J. Thompson and J. Burke, “Ndn common client libraries,” Technical Report NDN-0024,
Revision 1. NDN Project, 2014.

[56] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich,
L. Lücken, J. Rummel, P. Wagner, and E. Wießner, “Microscopic traffic simulation
using sumo,” in The 21st IEEE International Conference on Intelligent Transportation
Systems. IEEE, 2018. [Online]. Available: <https://elib.dlr.de/124092/

[57] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO – Simulation of Urban
MObility,” p. 6.

[58] S. Krauß, “Microscopic modeling of traffic flow: Investigation of collision free vehicle
dynamics,” Ph.D. dissertation, 1998.

65

https://doi-org.elib.tcd.ie/10.1145/2018584.2018601
%3Chttps://elib.dlr.de/124092/

[59] N. R. C. (U.S.), Ed., Highway capacity manual. Washington, D.C: Transportation
Research Board, National Research Council, 2000.

[60] J. Yin, T. ElBatt, G. Yeung, B. Ryu, S. Habermas, H. Krishnan, and T. Talty,
“Performance evaluation of safety applications over dsrc vehicular ad hoc networks,”
in Proceedings of the 1st ACM International Workshop on Vehicular Ad Hoc Networks,
ser. VANET ’04. New York, NY, USA: Association for Computing Machinery, 2004, p.
1–9. [Online]. Available: https://doi.org/10.1145/1023875.1023877

[61] M. M. Alotaibi and H. T. Mouftah, “Data dissemination for heterogeneous transmission
ranges in vanets,” in 2015 IEEE 40th Local Computer Networks Conference Workshops
(LCN Workshops), 2015, pp. 818–825.

[62] Z. Xia, P. Yu, and Y. Zhang, “Improving traffic information retrieval in vanet with
ndn,” in 2018 1st IEEE International Conference on Hot Information-Centric Networking
(HotICN), 2018, pp. 100–106.

[63] “Name — NDN Packet Format Specification 0.3 documentation.” [Online]. Available:
https://named-data.net/doc/NDN-packet-spec/current/name.html

[64] D. Rieck, B. Schünemann, I. Radusch, and C. Meinel, “Efficient traffic
simulator coupling in a distributed v2x simulation environment,” in Proceedings
of the 3rd International ICST Conference on Simulation Tools and Techniques, ser.
SIMUTools ’10. Brussels, BEL: ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2010. [Online]. Available: https:
//doi.org/10.4108/ICST.SIMUTOOLS2010.8640

[65] “Tutorials/OSMWebWizard - SUMO Documentation,” library Catalog: sumo.dlr.de.
[Online]. Available: https://sumo.dlr.de/docs/Tutorials/OSMWebWizard.html

[66] “Survey on cam statistics,” Car 2 Car communication consortium, 2018. [Online]. Avail-
able: https://www.car-2-car.org/fileadmin/documents/General_Documents/C2CCC_
TR_2052_Survey_on_CAM_statistics.pdf

[67] R. Molina-Masegosa and J. Gozalvez, “Lte-v for sidelink 5g v2x vehicular communica-
tions: A new 5g technology for short-range vehicle-to-everything communications,” IEEE
Vehicular Technology Magazine, vol. 12, no. 4, pp. 30–39, Dec 2017.

[68] M. Lacage and T. R. Henderson, “Yet another network simulator,” in Proceeding from
the 2006 Workshop on Ns-2: The IP Network Simulator, ser. WNS2 ’06. New York,
NY, USA: Association for Computing Machinery, 2006, p. 12–es. [Online]. Available:
https://doi.org/10.1145/1190455.1190467

[69] H. Wickham et al., “Tidy data,” Journal of Statistical Software, vol. 59, no. 10, pp. 1–23,
2014.

66

https://doi.org/10.1145/1023875.1023877
https://named-data.net/doc/NDN-packet-spec/current/name.html
https://doi.org/10.4108/ICST.SIMUTOOLS2010.8640
https://doi.org/10.4108/ICST.SIMUTOOLS2010.8640
https://sumo.dlr.de/docs/Tutorials/OSMWebWizard.html
https://www.car-2-car.org/fileadmin/documents/General_Documents/C2CCC_TR_2052_Survey_on_CAM_statistics.pdf
https://www.car-2-car.org/fileadmin/documents/General_Documents/C2CCC_TR_2052_Survey_on_CAM_statistics.pdf
https://doi.org/10.1145/1190455.1190467

A1 Appendix

A1.1 Code repositories

Scenario design repository:

https://github.com/ChrisLynch96/transient-periodic-information-dissemination-in-VNDN

NFD alterations repository:

https://github.com/ChrisLynch96/NFD

NDN-CXX alterations repository:

https://github.com/ChrisLynch96/ndn-cxx

67

https://github.com/ChrisLynch96/transient-periodic-information-dissemination-in-VNDN
https://github.com/ChrisLynch96/NFD
https://github.com/ChrisLynch96/ndn-cxx

	Introduction
	Motivation
	Project Overview
	Information Centric Networking
	Vehicular Ad-Hoc Networks
	Research Aims
	Potential Benefits of this Research
	Project Scope
	Road Map

	Background
	IP
	Addressing
	Domain Name System
	IP Packet
	Forwarding Information Base
	The Lack of Caching
	Security

	Named Data Networking
	Names as Addresses
	Packets
	Data Structures
	Forwarding and Routing
	Security
	Flow of Data
	NDN Summary

	Vehicular Ad-Hoc Networks
	Highly-Dynamic Topology
	Frequent Link Disruption
	Time Constraints
	Wireless Access in Vehicular Environments

	Vehicular-NDN
	Communication Roles
	The Power of Content Naming
	Caching and Forwarding

	GLOSA
	Traffic Light System
	CAM Packet

	State of the Art in Push-Based Communication in NDN
	Enabling Push-Based Critical Data Forwarding in Vehicular Named Data Networks
	Internet of Things via Named Data Networking: The Support of Push Traffic

	Tools
	NdnSim
	SUMO

	Design and Implementation
	Requirements
	Parameters
	Scope of the Data

	High-Level Overview
	NDN Forwarding Daemon
	Proactive Pushing Pipeline
	Unsolicited Data Pipeline

	NDN-CXX
	Meta-Information
	Type Number Assignment

	Scenario Design Considerations
	Traffic Modelling
	Road Topology
	Traffic Light System
	Traffic Demand

	Network Scenario
	Applications
	Consumer Application
	Producer Applications
	Scenario Design
	Summary

	Evaluation
	Data Dissemination Method Testing
	Testing Metrics

	Results
	Congestion
	Delay
	Cache Hit ratio
	Summary

	Conclusion
	Future Work

	Appendix
	Code repositories

