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Abstract

Improvements in Computer Vision methods for people detection and pose estimation, com-
bined with better cameras, has allowed computer scientists to begin exploring real-world social
networks and how people interact with each other within these networks. The increased avail-
ability of modular sensors presents an opportunity to investigate social interactions using a
system that could be deployed in a lightweight, unobtrusive fashion, while also protecting the
anonymity of participants, something that is far more difficult to achieve using high-resolution
RGB images. Thermal images can provide similar amounts of information as RGB images
while also protecting the identity of participants.

This work aims to test the limits of the minimum specifications required in a thermal sensor
to enable it to identify social interactions occurring between two people when combined with
standard Computer Vision techniques. The interactions must also be measured with respect
to time and the attention paid by each participant. To achieve this, this work proposes a
system that detects, tracks and estimates the pose of a person found in a small thermal
image. Two classes of detection are defined: head, when a person is close to the sensor, and
body, when a person is standing a few metres away. A novel method to measure interactions is
proposed: each frame a participant spends facing the other person increases their "attention
score", showing which participant was more invested in an interaction.

To evaluate the system, a series of pre-recorded scenarios are played back as if it was live
data. These scenarios show the best and worst of a system working at the limits of what its
components can handle. Ultimately, it demonstrates that such a system could be deployed
successfully. This work aims to be a proof of concept that will enable direct or tangential
research in the future.
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1 Introduction

For the first time, advancements in Computer Vision (CV) methods and RGB camera quality
have allowed computer scientists to explore the dynamics of interactions that occur in the
real world. These explorations are limited to fixed environments using large, expensive and
stationary cameras. The increased availability of small modular sensors leads this dissertation
to question whether interactions can be detected and measured using a single small thermal
sensor employing CV methods, in a way that could be deployed with minimal infrastructure
and without infringing on the privacy of those who are detected by the system.

1.1 Motivation & Context

An average person tends to have two interconnected social networks: Online Social
Networks (OSNs) and real world social networks. OSNs have been a popular area of
research since their inception. For computer science, this research has come in many
different forms. In the earlier days of OSNs, the research was focused on the structures of
these networks [5] and how people and groups operate within them. In recent years, the
research has explored the more negative aspects of OSNs, including the propagation of
rumours [6], and the increased use of bot accounts [7].

By comparison, computer scientists have had little opportunity to study the real-world social
networks that people inhabit. Over the last decade, research has slowly begun to grow in
this area. This has been assisted by the improvement in CV methods to detect and track
people through video. Combined with better methods of pose estimation, this means that
interactions can be detected, social cues recognised and group dynamics understood.

The drawbacks of these systems are their use of RGB cameras and the growth in recognition
technology that allows for people to be recognised and tracked even at long distances. If
combined with systems that analyse and log their social interactions, the recognition
technology could create an even greater privacy breach.

Hence, this project aims to use a different kind of sensor to explore and categorise social
interactions: a sensor that can protect the identity of those being observed. There are a
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huge variety of sensors available today, including ultrasonic sensors, RFID sensors and
thermal sensors. For this project, a thermal imaging sensor will be used.

The social interactions being identified in this project can be characterised as short
interactions, lasting anywhere from thirty to sixty seconds, between two people. These kinds
of interactions, although logistically simple, can have enough variety to allow this system to
be presented as a proof of concept and as a first step in using thermal sensors to detect any
form of interaction between people.

1.1.1 Thermal Sensors

There is a huge diversity in the types of thermal sensors, from large handheld sensors like the
DT-9875 [8] that cost thousands of euro to small modular cameras like the AMG8833 [9]
that cost a fraction of the price and can be interfaced with a Raspberry Pi.

These modular sensors are of particular interest for this project. While they will be inferior in
terms of resolution and effective distance, they do have some advantages. They could be
deployed in a lightweight fashion that would require only a small amount of power usage and
would not be fixed pieces of infrastructure. Instead, they could be deployed more
dynamically throughout a space.

Additionally, these modular sensors would help to protect the identity of the people detected.
Larger thermal cameras can record at a resolution that makes facial features apparent
enough to allow for recognition. The modular cameras are small enough that facial features
will not be apparent in the images, while still allowing for a person to be detected.

The hardware considered for this project will test the boundaries of what information can be
gleaned from very small sensors using conventional CV methods.

1.2 Aims

This project aims to answer the question of whether social interactions can be identified and
categorised using low-resolution thermal imagery. To achieve this goal, a number of aims
will be outlined.

Detect People in Low Resolution Images - The system will need to be able to detect
people who are close to the sensor, meaning only their head and shoulders are visible,
and people who are distant from the sensor, where their whole body is visible. Then a
person will need to be tracked from their duration in frame and forgotten once they
leave.

Build a Pose Classifier - A pose classifier estimates which way a person is facing using
either head pose estimation or body pose estimation. Both are crucial functions in any

2



system that attempts to identify interactions.

Track Interactions - Once two people have been identified and their poses have been
estimated, the system will need to decide whether an interaction is taking place. It
does this using the pose information and the location of people in frame, before
monitoring the interaction for total duration and measuring the attention of those
involved.

1.3 Methodology

The methodology used to achieve these aims can generally be considered a version of the
Action Research method [10]. This is an iterative process where, when possible, research
and prototype work happen in parallel. This method is particularly applicable to the first two
aims: detecting people and classifying poses. There are a plethora of potential methods, as
will be outlined in the literature review and throughout prototyping. These methods will be
tested and some will be rejected as unsuitable. Meanwhile, research for new methods will be
carried out. This will repeat itself until an adequate method is found, at which point the
next problem will be addressed using a similar methodology.

A novel approach to test the system will be considered, as currently there is no rigid way to
appraise interactions. A series of scenarios will be acted out and recorded by a thermal
sensor. These scenarios will be manually measured for duration and metrics related to the
attention of the participants. The scenarios will then be played through the system, and its
results will be compared to the expected values. These results will form the basis for the
conclusion of the dissertation.

1.4 Dissertation Outline

The other chapters in this dissertation are summarised as follows:

Chapter 2, "Literature Review," will examine technologies and methods that have been used
in research to achieve similar goals as those outlined above. These include the popular
methods in Computer Vision for the detection of people in both RGB and thermal images,
methods for tracking people on screen, head and body pose estimation methods and ways to
categorise interactions.

Chapter 3, "Design," will discuss the chosen technologies, hardware and methods for the
project, outlining the strengths and weaknesses of what was chosen, and comparing and
contrasting what was chosen with the other potential options.

Chapter 4, "Implementation," goes in-depth into how the methods described in the previous

3



chapter are employed in the project. It will also discuss what, if any, deviations from the
described methods were made and why.

Chapter 5, "Evaluation," briefly outlines what metrics are taken into account when
appraising the performance of firstly the pose classifiers and later the system itself.

Chapter 6, "Results," uses tables, graphs and screenshots from test videos to outline a series
of scenarios used to test the system. It concludes by discussing the strengths and
weaknesses of the system that become apparent through testing.

Chapter 7, "Conclusion," compares the initial aims set out in this project with what was
achieved during the implementation and discusses what worked well within the project and
what fell short. Lastly, some potential future work is outlined.
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2 Literature Review

This chapter will examine various methods that exist in Computer Vision that can help the
project to achieve its aims. These methods will broadly fall into one of these four
categories:

• Detect People in images

• Tracking People between frames

• Detecting Pose

• Categorising Interactions

This will give an idea of the potential methods available to this project.

2.1 Detecting People

Detecting people is an important area of research in computer vision, and many different
methods are viable. These methods often detect a specific part of the anatomy like the face
or head or the entire body. All three of these detection types will be considered here.
Although a significant amount of research has gone into people detection in RGB images,
the same cannot be said of thermal images. This has led to already proven methods in RGB
images being applied to thermal images with minimal changes. Therefore, methods for both
RGB images and thermal images will be examined.

2.1.1 Face Detection

One of the most popular methods of object recognition in Computer Vision is the use of
Cascade Classifiers. The cascade proposed by Viola & Jones in 2001 [1] chains a set of weak
classifiers together to form a strong classifier. In this case, each weak classifier was made of
a Haar feature.

The Haar features used in this case are similar to those used in the generic object detector
proposed by Freeman [11]. A Haar feature is a function that measures and compares the
average intensity of one area of an image to another. These features can be represented by
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Figure 2.1: Simple Features used in the face detection cascade [1]

rectangles as in fig 2.1. The face classifier uses three different types of features. (1) A
two-rectangle feature, which computes the difference in the sum of the pixels within each
rectangle, which are both of the same dimensions and area. (2) A three-rectangle feature,
which compares the sum of both outer rectangles with the inner rectangle. (3) A
four-rectangle feature, that compares the difference in the sum of the pixels in each diagonal
pair of rectangles.

At each stage of the cascade, one of these features is used that best describe some aspect of
a human face. For example, in photographs, a person’s eyes will often appear to be one of
the darkest regions of their face. One two-rectangle feature in the cascade may compare the
difference in intensity of the eyes versus the cheeks, or a three-rectangle feature could
compare the intensity between both eyes and the nose.

Once the best features are chosen, the cascade searches an image with a default window size
of 24x24 pixels. Each possible position that the window can search is passed through the
cascade. If a sub-image of that window fails any stage of the cascade, it is rejected
entirely.

The cascade classifier was considered fast at the time of the original study and is still
considered so today. What makes it so fast is the adaptive boosted training algorithm. This
algorithm chooses the best feature from a pool of 180,00 potential features at each stage of
the cascade. This means that incorrect faces are unlikely to make it through earlier stages of
the cascade which speeds up the process. The classifier was tested on thermal images and
compared against other face detection methods [12]. The other methods [13, 14] proved to
be slower and less accurate than the cascade classifier.

The cascade’s speed is of interest to this project, as the system aims to do the classifications
in real time. One concern is the search window size of 24x24 pixels given that the size of the
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Figure 2.2: The HOG detection method [2]

sensor that this project aims to use is not much larger than the search window.

A similar set of Haar-like features were used to detect people from long range using a
camera mounted on a UAV used for search and rescue [15]. This shows that the simple
features could potentially be applied to also detect bodies. Although, in this experiment,
they were likely to misclassify other objects as people too.

Haar features can be limited by their simplicity. An alternative feature type that can be used
with cascade classifiers is Local Binary Patterns (LBP) [16]. Rather than computing the
difference between rectangular regions, the LBP searches a 3x3 neighbourhood around each
pixel in the search window. If the value of that pixel is higher than the surround pixels it is
assigned a 1. Otherwise, it is assigned a 0. This is repeated for the entire search window
which creates a histogram that describes the texture of the search window in a binary
context.

This kind of feature could be used instead of a Haar features in a cascade classifier, and may
perform better on the small image sizes, however the additional noise that exists in thermal
images may pose a different kind of problem for the LBP.

2.1.2 Body Detection

Histograms of Oriented Gradients (HOG) was first proposed in 2005 by Dalal & Triggs [2] as
a method for people detection in RGB images. HOG breaks images down into small regions
or ’cells.’ For each cell, it builds a 1-D histogram of gradient directions or edge orientations.
These cells are normalised by taking a larger section of the image that would encompass
several cells and calculating the 1-D histogram for that block. Combining this grid of
normalised cells with a Support Vector Machine-based window classifier forms the person
detector.

HOGs have been deployed successfully for use in infrared images [17] to detect pedestrians
and to detect people in low-resolution infrared video [18]. HOGs clearly have the ability to
work with images outside of the RGB spectrum. However, it is unclear how they will
perform with thermal images.

Given the generic nature of how people appear in thermal images, there is the possibility of
using template matching [19]. Template matching is a simple method where a search image
or template is created, and any target image is searched for that template. Template
matching has several limitations. One template only describes one orientation of an object
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Figure 2.3: How a person appears in a thermal image and in the CSM [3]

or person. The size of the template can be changed but, if not done carefully, that may
change how the template looks and render it useless. A template matching result is given a
score, and is then thresholded, so an image is likely to include several false positives or
negatives depending on the threshold.

However, more complicated methods that incorporate template matching can, in fact,
achieve more reliable results. One method proposed is a two-stage approach [3] that was
designed to work specifically on thermal imagery. The system detects people from varying
distances using a high-resolution thermal sensor. The first step was to create a method to
separate foreground objects (people) from the background. This was done by creating a
background thermal image of the space, the median or mean image for the space over a
period of time. Then, for each pixel in a test image, the minimum of the input gradient
magnitude and the background gradient magnitude is chosen. If the input gradient is the
minimum then that pixel is set to a 1, otherwise, it is set to a 0. This creates a binary image
where only the pixels that are assumed to be the foreground are displayed. This is called a
Contour Saliency Map (CSM).

The second step is to create a generalised person template, to do that, several cropped
windows of people from sample CSMs were manually extracted, and normalised. The CSM
often returns windows containing people, partial people and other foreground objects that
are not people. From there an Adaptive Boosted Classifier is created chaining weak
classifiers together to form a strong classifier.

A method that could perform both head detection and body detection together is Statistical
Pattern Recognition [20]. Pattern recognition has been used in a variety of engineering and
computer science areas, including computer vision. There are two forms of pattern matching.
Supervised classification is where a given object or pattern is classified into a predefined
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group. Unsupervised classification is where a pattern is assigned to an unknown class. The
latter is more reminiscent of clustering. In this project, supervised classification could allow
for both head and body classification to be completed using the same methodology.

In CV, Statistical Pattern Recognition is applied to features of contours or edges. Edges
images are binary images that represent all of the edges found in an image, in the same style
as the CSM above. However, these edges can be found through first derivatives, second
derivatives or Canny [21]. Edges images are created using Binary Chain Codes (BCC) [11].
A BCC starts with a pixel value (x, y), then each of the possible following neighbouring
pixels in the chain is represented by a number between 0 and 7.

Once an edges image is created, each contour can be measured for several features.
Examples include width, height, area and circularity. These features can be used to create
classes based on the expected value of features for certain classes. This could enable head
and body pose to be done together with two different classes defined.

2.2 Tracking People

Once a person is detected, they will need to be tracked in order to maintain continuity
across interactions and avoid duplicate detection. Ren [22] uses archive footage (from
Casablanca, 1942) to showcase a system of tracking by detection. A cascade classifier [1] is
used to detect faces in the video. Once a face is recognised, a track is created for it. As the
face is continually recognised, the track is considered ‘good’ and will be given priority in
later frames.

However, there are many reasons a track can fail including low image quality, poor lighting,
and the person being tracked turning away from the camera. To account for these instances,
a low-level tracking method is implemented. A simple head template is used, and a small
window around where the head was last detected is searched. If found, the predicted
location is updated accordingly. Something similar can be applied to low-resolution thermal
images. A track is created for each person detected and is updated on each frame. In the
case of this project, the focus will be on using the tracker to guarantee that the noise in the
image does not result in duplicate detection.

2.3 Estimate Pose

Pose Estimation has been an area of research in computer vision for decades. It is seen as an
important step in improving the performance of human-robot interactions [23] and in the
improving of crowd tracking technology [24]. Pose estimation can be broadly divided into
head pose and body pose estimation. Methods of each are discussed below.
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2.3.1 Estimating Head Pose

A huge amount of social context is gained through non-verbal actions such as where a
person stands or the direction they look. For example, if a group of programmers is having a
daily stand up meeting, we can understand who is taking part in the meeting by who is
standing. If someone in that meeting is speaking, more often than not, the rest of the
participants will be looking in their direction. Therefore, being able to ascertain which
direction a person is looking can be crucial to understanding a social interaction. Without
the use of eye tracking technology, it is very difficult to know for certain where someone’s
gaze is directed. Instead, many methods exist to estimate where someone is looking based
on their head position.

Many different Head Pose estimation methods have been documented [25] including:

Appearance Template Methods Uses a set of templates for different head positions
with matching techniques.

Detector Array Methods Trains several detectors to each recognise a specific pose [26].

Geometric methods Attempts to identify aspects of the face such as the eyes, mouth or
nose to discern head position.

Tracking methods Using tracking techniques to note changes to head position between
video frames.

Hybrid methods Combines aspects from one or more of these methods to attempt to
overcome the individual methods’ shortcomings.

The appearance template method would be considered the simplest method. The method
has some advantages in terms of flexibility. It works on both high and low resolution images
and does not need negative examples to train. However, the templates can struggle to
identify small changes in pose and are more likely to be error-prone.

Detector array methods build on the success of face detection algorithms such as [1] and
extend these algorithms to train classifiers to recognise specific head poses. Issues arise in
training many detectors for a complex set of potential poses. It takes a significant length of
time and requires a large number of positive and negative samples. However, for this
project, a detector array method may prove the best option due to the well-documented
speed of the cascade classifier as discussed above.

2.3.2 Estimating Body Pose

Body pose is a more challenging subject to estimate. Although great strides have been made
in recent years in classifying Body Pose in RGB images, little has been done in the thermal
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spectrum. Using RGB images, methods are divided by their use to human body models [27],
their use of low-level pixel analysis or high-level person detection and their use of one-stage
or multistage deep learning.

Even in the Internet of Things (IoT) space [28], there is a heavy reliance on the use of body
part and joint detection. This is a potential issue for this project as joints will most likely be
undetectable in low-resolution thermal images. Therefore, an adaptation of the detector
array methods described above may be the best route forward.

2.4 Categorising Interactions

Categorising interactions has becoming a growing area of research in the last decade. This
section will examine two of these systems.

2.4.1 Logging Office Interactions

This system [4] combines several components in order to log the behavioural patterns of
people working in a research lab. By tracking people’s behavioural patterns the system can
create a heat map of the most common positions people sit in throughout the day and who
they interact with the most. The system is comprised of 3 components. A RFID Reader
notes the identity of anyone who enters the research lab and initiates the tracker. The
tracker follows each person as the move around the lab, remembers where they were if they
are obscured from the camera and picks them up again once they are back in frame. The
Head Orientation Estimator, is a weak system that has 8 possible directions that are
manually labelled throughout training samples to build a classifier.

Using these components together can allow the system to identify primitive human
interactions connected to head pose. If two or more people are looking at each other, they
are considered to be interacting. The system is tested with small interactions of 2 people, up
to full group meetings of 5 people, and the interaction classifier achieves an overall precision
of 71%.

For this project simplifying the head pose problem can be a viable way forward, focusing on
a set number of directions rather than trying to estimate specific angles of pose.

2.4.2 Children’s Social Behaviour Classification

Research into children’s social behaviour is an import part of developmental psychology.
Creating systems that can handle, at least in part, some of the analysis process can save a
significant amount of time. This paper [29] divides children’s interactions into three
categories. (1) Solitary Play - A child plays apart from other children, they are concentrated
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Figure 2.4: Heatmap of office interactions created by the system [4]

on their own activity and pay little or no attention to anyone else. (2) Parallel Play - A child
plays independently, while also paying some attention to other children the other children’s
activities. (3) Group Play - A child is playing with other children and there is a common
goal or purpose in the activity.

The system attempts to classify the category of play for 3 children who are standing around
a table full of toys. To do this, each child’s head pose is estimated. Using this estimation,
an attempt is made to understand where each child’s attention is directed, e.g. what toys
they are looking at. This information allows the interactions to be categorised.

For this project, the idea of attention, and where attention is being directed, will be a
valuable metric, as there are few features in thermal images to categorise interactions
with.

2.5 Summary

This chapter outlined many methods that could be applied in this project. For person
detection, a cascade classifier appears to be a strong method, having been applied to both
face detection and body detection. On the other hand, Statistical Pattern Recognition could
detect both close up people and distant people using one method, rather than creating
several classifiers. Template matching may have too many downsides to be used in either
detection or pose estimation, but should still be explored.
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A Detector Array appears the best option for pose estimation, especially when limiting the
number of possible poses that need to be detected. The detector array should be extendable
to consider body pose also, as most of the current body pose methods require limb
detection that will not be possible.

To measure interactions, time and attention are the two metrics that have been used
elsewhere. How exactly attention can be represented using the thermal images in this
project will need to be explored in the design section.
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3 Design

This chapter will consider the design of a full system, from data collection to analysis. It will
discuss what methods can be used and compare and contrast the chosen methods with
other options found during the Literature Review. Lastly, this section will examine the
chosen hardware and technologies for this project, and their positives and negatives.

3.1 Hardware

This system would require one or more thermal sensors. These days, a huge variety of
thermal sensors exist. They range from large handled and extremely expensive thermal
cameras, to sensors that attach to a phone, to small modular sensor arrays that can be
connected to a PC or Raspberry Pi. The smaller the sensor that can be used, the less
obtrusive the system will be, leading to a focus on modular cameras for this system.
Although they will suffer in terms of quality as the images will be very small, there will be
benefits in terms of energy usage, privacy and mobility. Ultimately, this project will operate
with only one camera.

3.2 Centralised Processing

All data will be sent encrypted over the Local Area Network (LAN) to a central machine
that will handle the processing of the raw data. Not requiring the nodes themselves to do
any processing will enable them to be physically smaller and have less of an energy
footprint.

A central server would need to handle all incoming data, create images and then analyse
them. The server would need to be robust enough to handle live data flow from multiple
sources. However, as no processing is done at the nodes themselves, the server would not
need to send any information back to the nodes, other than necessary messages to exchange
data.

Alternatively, a distributed system could be deployed. This would require each node to read
and analyse data independently, before sharing that information with neighbouring nodes.

14



This kind of system has some drawbacks. Requiring nodes to analyse the data means that
they will need more processing power than if they were only sending the data to another
point. Also sending results between neighbouring nodes would increase the load on the
network. Ultimately centralised processing is the stronger option.

3.3 Analysing Interactions

Once the data has been parsed from the nodes in the system, it must be analysed to
determine if there are people in the image and whether an interaction is taking place. To
determine this the following steps will be taken:

1. Creating Thermal Images

2. Detecting Objects

3. Estimating Pose

4. Categorising Interactions

3.3.1 Creating Thermal Images

As thermal cameras return an array of thermal readings, rather than pixel data, it will be
important to be able to take this data and map it to pixel values at a speed that would allow
it to be done live. It will also be important to enable this step to be constrained in a way
that can help objects stand out, particularly in the case of distant objects that may blend
into the background. The system will take values from a CSV and create RBG images.

An alternative would be to take the thermal values and map them straight to a grayscale
image. That would cut out several processing steps. However, the advantage of creating
RGB images and then processing them is the removal of some of the noise that is generated
by thermal images. The way heat radiated creates additional noise around a person detected
and creating grayscale images directly from the thermal values will include this noise. This
can affect the object detection stage as an image may appear larger or of a different shape
because of the noise.

3.3.2 Detecting Objects

Before any object can be detected a number of preprocessing steps will need to take place
for each image. Each image must be:

• Isolated to the Red Channel

• Converted to a Grayscale Image
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• Converted to a Binary Image

• Converted to a Edge Image

The first three of these are standard Computer Vision methods that will be discussed in
further detail during the implementation chapter. Ultimately, these three methods will create
a binary image; a 2-D array of white and black pixels.

Extracting edges is a more complex operation. Using the binary image as our edge data,
boundary chain codes [11] (BCC) can be created for each edge in the image. An edge is
what the system will perceive to be the outline of an object. The BCC gives a visualisation
of what the edge looks like, and that can be used to calculate various features about the
object.

From here, Statistical Pattern Recognition [20] will be used. This method of classification
utilises probability to classify objects discovered in an image.For a set of objects, it defines a
set of features that can be obtained through measures of the edge. In this project, there are
two features Area and Circularity.

A set of bands are created for each feature with maximum and minimum expected values for
an object. Any found object in the image that meets all of the criteria for a particular class
will then fall into that class in the system.

The system will have two classes: a Head and a Body. These will be differentiated by the
expected area and circularity of their edges.

With a person detected, the system will first draw a bounding rectangle around them. The
system will need to track any person found for the duration they are on screen. The tracking
will not be overly complex and will serve to avoid duplicate detection while a person moves
around the frame. With that in mind, the tracker will use the center point of the bounding
rectangle found earlier and store it in memory. In future frames, a new bounding rectangle
will be created with a new midpoint. If that new midpoint is within a certain threshold
distance of the old midpoint, the system will surmise it to be the same person. Once a
person leaves the frame, they will be forgotten, as tracking people between sessions is not
part of this project. In addition, these thermal images make recognition highly difficult.

Histograms of Orient Gradients was also considered for this task. However, the method
breaks down when working with such small images. The use of a facial classifier as described
in [22] was considered but these images do not display enough facial features to allow this
form of tracker to operate.
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3.3.3 Estimating Pose

Many of the previously discussed pose classifiers were created to work on either RGB images
or high-resolution thermal images. The decision to use small thermal sensors in this project
created a challenge in choosing the right method for both head pose and body pose
estimation. In order to simplify the problem, a decision was made to constrain the possible
set of directions the pose classifiers can find. This meant defining a strict set of poses to be
recognised rather than a spectrum of angles. For this project, three poses will be recognised
with respect to direction towards the sensor, facing forward, facing left or facing right.

The specific method to detect pose is a Detector Array [25]. A detector array creates a
number of different detectors, one for each classifiable direction, and then chains them
together.

In this case, the detector array will follow the method proposed by Viola & Jones [1]. A
cascade classifier will be built for each direction. Given the performance of these classifiers
on a set of test data, they will be assigned an order. This will decide in what order each
classifier’s result is taken on a live image. One big motivator for choosing cascades was the
speed. As previously discussed, the cascade classifiers are consistently faster than other
detection methods [12]. Unlike Viola and Jones, however, this system will not deploy Haar
features. In this case, Haar features are too simple to identify significant differences between
pose in low-resolution images. Instead, LBP features are used [16, 26].

Another method that could have been deployed here is template matching [19]. Template
matching would also be similarly fast in this system given the size of the images. The
featureless nature of how people appear in thermal images also lends itself to the creation of
a normalised template. This means that one template could potentially handle a variety of
people and distances.However, the increased noise that exists in thermal images hinders the
already subpar effectiveness of Template Matching.

Another alternative, in this case, is an Adaptive Boosted Decision Tree. Instead of looking
at images’ data, the Decision Tree would instead build a model using the raw thermal data.
The model would be trained on thermal values found in a Region of Interest (ROI). The ROI
would be found during the object detection stage. A line of raw thermal data could be
reshaped into the image dimensions, and then the thermal data ROI could be extracted.
The ROIs would then be manually labelled, and the model could then build a classifier with
multiple possible results. Although this could work in theory, in practice, it would have very
limited operating ranges. While a thermal image can be constrained to make a person’s face
look the same thermal intensity from .5 metres from the camera and 2 metres from the
camera, the raw data would not reflect that, and the classifier would rapidly break
down.
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3.3.4 Categorising Interactions

A key part in the design process is to identify exactly what features can be analysed in these
images, so that the system can state whether an interaction is occurring and also monitor
aspects of the interaction.

Identifying Interactions

The limitations of using thermal images alone in this project mean the system is restricted
to using the pose classifiers to determine when an interaction is taking place. Therefore, an
interaction will be deemed to be taking place if at least two people are identified and two
people are seen to be facing each other. From the first frame where two people face each
other, the interaction begins to take place. An interaction will end if the two people both
face forward or one person leaves the frame.

Analysing Interactions

What happens during an interaction must also be considered. In the study into children’s
behaviour patterns while playing together [29], particular time was dedicated to classifying
the type of play; whether a child was playing alone or in a group. To do this, head pose was
combined with arm tracking to determine where a child was overall directing their attention.
This project can similarly use an understanding of attention to determine the intensity of an
interaction.
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3.4 Hardware & Technologies

In this project two different pieces of hardware were chosen a Raspberry Pi with AMG8833
Thermal sensor [9] and a MLX90640 Development Kit [30]

The aim when choosing hardware was to find small cameras that required a low amount of
power that could be applicable in an IoT environment. Prior research in thermal imagery
focused mainly on costly, high-resolution cameras. From the perspective of this project,
these large cameras have several drawbacks. Firstly, they require a significant amount of
power to operate, meaning they could not be deployed in a standalone or modular fashion.
Secondly, the high resolution also poses a challenge to privacy, as these cameras are far more
likely to enable the user to discern the facial features of anyone seen by the camera.
Additionally, the higher resolution would lead to more data being generated and more of a
load being placed on the network.

The hardware chosen for this project is the exact opposite of the cameras described above:
small, low resolution, and relatively cheap modular sensors. These sensors will enable this
project to test the extremes of low-resolution thermal imagery and examine what the
absolute minimum in specifications will allow for in pose classification while maintaining the
anonymity of the people being recorded. This section will briefly detail both sets of hardware,
the configuration they will be used in and, where applicable, their proprietary software.

3.4.1 Raspberry Pi with AMG8833 Thermal sensor

Figure 3.1: AMG8833 with Raspberry Pi

The AMG8833 thermal sensor is a small 8x8 thermal array that can detect temperatures in
the range of -40◦C and 80◦C. It has an acute viewing angle of 60 degrees. Adafruit created
a simple python library for use with the AMG8833 that would allow for communication
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between the camera and the Raspberry Pi over i2c. This allows for sets of 8x8 thermal
readings to be saved in a log or sent over http elsewhere. The AMG8833 integration with a
Pi would allow it to be a standalone node. The Pi itself is a standard model 3 with a clean
raspbian install.

3.4.2 MLX90640

Figure 3.2: The MLX90640 Development Board

The Melexis development board enables quick plug and play functionality between a thermal
sensor and machine. The MLX90640 IR array itself has 32x24 pixels, meaning much larger
images than the AMG8833. It has a programmable refresh rate between 0.5Hz and 64Hz. It
can detect temperatures between -40◦C and 80◦C. This project will focus on a small
temperature range between 14◦C and 32◦C.

The development board comes with proprietary software that circumvents some of the
potential roadblocks that exist within the freeware driver, such as the driver requiring
additional libraries that may be unavailable. The software allows a user to control a number
of camera features via a UI: The temperature range can be limited to specific higher and
lower values, or change dynamically, the frame rate the sensor records at, the interpolation
of software’s displayed image and the status of the log file.

The software can display the current readings in the log. Alternatively, it allows you to see
the current measurement in the form of an image. Although this image cannot be seen
outside of the software, so it is not very useful, it was used as a benchmark when creating
images later.
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Figure 3.3: The Development Board software

3.4.3 Technologies

For image manipulation, OpenCV [31] was the library of choice given its extensive history
and large variety of both prebuilt functions and helpers to create custom classifiers. OpenCV
has implementation on both CPP and Python. For this project, the Python implementation
was used due to its ease of install across multiple platforms. More specifically, in this case,
Windows and Raspbian. Various Python utilities were accessed throughout the project.

3.5 Privacy & Security Considerations

The system proposed in this design section comes with inherent privacy and security
concerns that will be outlined here, along with the mitigation techniques and the decisions
taken to reduce these risks.

3.5.1 Security

This system will require a disparate group of nodes sending data simultaneously over the
LAN to a central point. This kind of system is vulnerable to a variety of potential attacks,
including both active and passive attacks [32].

Passive Attacks

Passive attacks involve an attacker reading packets off the network, without attempting any
modification. In this project, thermal data is being sent from nodes such as raspberry pis
with modular thermal sensors or small standalone sensors to a central point over the
network. If an attacker was to passively monitor the network, they would be able to see the
frequent transfer of packets from the these nodes and through additional header data in the
messages would eventually conclude this was thermal data.
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From there, an attacker could build images and attempt to recognise people. This would
enable them to break the confidentiality of the messages and also potentially the
confidentiality of the people. This could reveal some simple but significant information
about the number of people who share an office or attend a particular meeting at a certain
date and time.

Active Attacks

Once an attacker has passively monitored the network for enough time to understand the
contents of the packets that are being sent from a node to the central machine, there are a
number of potential avenues of attack. Active attacks involve writing packets onto the
network. Without IPsec, it is simple to spoof the source address needed to send a packet to
the desired destination.

There are multiple methods of attack that can all lead to the same thing, forcing a
particular system state that is not the real expected state.

Message Insertion An attacker creates a new message with a specific set of thermal
values that will represent a scenario they wish to display, this message would be
disguised to appear as if it originates at a source node.

Message Modification An attacker takes a message from the wire, modifies it and sends
it back into the system, this could allow an attacker to edit the thermal readings to
add or remove a person or object from an image and affect the system state.

Man-In-The-Middle Uses a mixture of methods to simultaneously pose as the message
sender to the receiver and the receiver to the sender at the same time. This would
allow an attacker to still receive the live feed of data from the node while controlling
what the central machine sees too.

Ultimately, these methods of attack all surmount to some form of tricking the system to be
in another state than reality. This could, depending on the other systems using this status to
choose actions, cause tangible damage.

In order to mitigate the risk of an active attack, all the packets across the LAN could be
encrypted to help protect against passive attacks. The attacker would then need to brute
force the key over time or attempt to socially engineer their way into the system to get
access to the messages.

3.5.2 Privacy

Similar systems of this type use colour images [4, 29]. Colour images are easier to process,
and to build head or body pose classifiers for, however the use of RGB images makes the
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recognition of a person’s identity far easier. This means that an attacker with access to such
a system using RGB images would be able to track the behavioural patterns of a person
throughout multiple sessions whether the system itself had intended that to be done or
not.

The choice of low-resolution thermal images in this project seeks to protect the anonymity
[33] of those people founds by the system. Facial features are completely unrecognisable in
the images created from the MLX90640 data. This means they are protected from facial
recognition. However, other methods can be used to identify a person. For example, a
person’s gait can be unique enough to identify them with sufficient training data. An
attacker with access to the system for a prolonged period could build up a model of a
person’s gait over time and still attempt to identify them. However, to accurately assess a
person’s gait, high frame rate video is preferable. Therefore, limiting the frame rate of the
thermal sensors where possible helps to mitigate this as a potential threat.

Thermal imagery similarly makes the tracking of people more difficult across sessions. In one
particular session, a person in a thermal image can be tracked like any object in an image.
To avoid any possibility of the person being tracked in a later session, no memory of the
objects previously tracked should be retained.
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4 Implementation

This chapter delves into the detail of implementing the ’Categorising Interactions’ section of
the design chapter. The implementation will discuss how the stages outlined there were built
to work in a live environment with a single the MLX90640 Thermal sensor.

As listed previously, the four stages in categorising interactions are:

1. Creating Thermal Images

2. Detecting Objects

3. Estimating Pose

4. Categorising Interactions

4.1 Create Images

The MLX90640 thermal sensor returns an array of thermal values. The MLX90640
Development board writes thermal values to a local CSV file at a specified location. Each
frame of readings from the sensor is represented by a 1-D line of 768 values written into the
CSV file. The sensor also writes additional information into the file. The first processing step
is to remove the additional data and leave the file with just the 768 values per line.

Using the Python Color library, a bank of colour is constructed with 1024 colours between
red and blue. Algorithm 1 outlines how an image is created from a line from the CSV.

The ability to constrain the maximum and minimum values is an important. With a fixed
maximum and minimum, distant objects are likely to get lost in the noise as the difference in
temperature between an object and the background drops significantly with distance.
Similarly, when dealing with close up images, the increased temperature creates a lot of
noise in the surrounding area. A flexible maximum and minimum enables the greatest
amount of information to be retrieved from any one image. It should be noted that all
thermal images shown throughout this section and in later sections have been scaled up 8
times from their original size.
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Specify minimum and maximum temperatures, either the highest and lowest value read
by the sensor or custom values;
Create an Empty Array of dimensions (imageX, imageY, 3) where imageX and imageY
are the camera’s resolution and 3 represents a value for each colour in an RGB image;
for Each Row do

Reshape the row to match the camera dimensions ;
for value in row do

Map the value to a specific colour using the max and min temperatures as the
upper and lower bounds for the bank of colours;
Set the corresponding pixel in the empty image array to the new colour value

end
end

Figure 4.1: Algorithm 1: Create Images

Figure 4.2: Initial image created from thermal readings

4.2 Detecting Objects

To detect objects in the thermal images that have been created, Statistical Pattern
Recognition [20] is implemented using features calculated from the edges found in the
images. Before the edges can be found, the following pre-processing of the images must be
completed.

4.2.1 Isolate Red Channel

RGB Images are represented in code by 2-D Arrays where each element in the array contains
three values, one for each of the primary colours that mix to create the colour that is
displayed. Given that heat radiates, a thermal image will always contain a large amount of
noise. As a person will always be the hottest object that is seen in these low-resolution
images, isolating the red channel removes a large amount of the noise around the edges of a
detected person. Isolating the red channel also removes all the background pixels as well as
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the shoulders in the case of close range facial images.

To get the red channel for each pixel, the first two channels that represent the green and
blue values are set to zero.

Figure 4.3: Red Channel of a thermal image

4.2.2 Grayscale

The images must then be grayscaled. Grayscaling is a process that collapses the 3 channels
of an RGB image into one. This is done using a weighted formula so that each channel is
accurately represented.

RGB[A] to Gray: Y ← 0.299 · R + 0.587 · G + 0.114 · B

Figure 4.4: Grayscale formula

Many useful Computer Vision applications have been designed to work with grayscaled
images due to the increased speed and simplicity of having only one channel of data. This
includes the Cascade Classifier that will be implemented later.
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4.2.3 Create Binary Image

The last step in preprocessing is to create a binary image. A binary image further simplifies
the grayscale image into an array of binary values, either 1 or 0. This is represented in an
image by either white pixels or black pixels. A grayscale image is converted to a binary
image with a short threshold algorithm:

for Each Pixel do
if Pixel.value > Threshold then

Binary.Pixel = 1
else

Binary.Pixel = 0
end

end

Figure 4.5: Algorithm 2: Thresholding

Figure 4.6: A Binary Image

4.2.4 Edge Detection

The newly created binary image acts as our edge data. Edge data is used by boundary chain
codes (BCC) [11] to visualise edges in an image. Each edge begins with a specific (row,
column) starting pixel in the image. Each subsequent pixel in the chain is represented by a
value between 0 and 7, signifying one of the eight possible neighbouring pixels. Drawing
each of these edges on a blank image creates an edge image.
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4.3 Statistical Pattern Recognition

In Statistical Pattern Recognition [20], a group of N classes is defined based on a set of
d-features. In this system, there are two classes: Faces and Bodies. The features that define
the classes are Area and Circularity. The area of an object can be calculated by counting all
the pixels that encompass the object. Circularity is the measurement of how close to a
perfect circle an object is, with 1 being a perfect circle. Circularity requires the area as
calculated before and requires the length of the perimeter. Circularity is calculated by the
formula:

circularity = (4 ∗ pi ∗ area)/d2, d = perimeterlengthoftheobject

As the images created are small, these two features are sufficient to classify the objects
discovered. This means that an object in the images can either be a face, a body or nothing
of interest. To do this, upper and lower bands are specified for the expected area and
circularity of each class.

Area Circularity

Class Min Max Min Max
Head 135 285 0.6 0.8
Body 35 115 0.13 0.85

With these features, the objects in the thermal images can be classified. Once an object is
classified, a bounding rectangle is created and stored. The bounding rectangle will help with
both the tracking of an object throughout its time on screen and with the creation of
samples for the cascade classifier later.
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4.4 Object Tracking

Once an object is identified and classified with Statistical Pattern Recognition, it needs to
be tracked for the duration it is on screen. This is to avoid duplicate detection in later
frames and potential duplicate discovery in the cascade classifiers.

Figure 4.7: A Head Image

To do this two different Python classes are created, a Person class and a Tracker class.
These classes have several attributes and functions which will be outlined below.

4.4.1 Person Class

The person class has the following attributes with corresponding getter and setter
classes.

Midpoint This is the midpoint of the object found after Statistical Pattern recognition is
carried out on the edge data from the binary image.

Position This is the generalised location of the person on screen, if row value of the
midpoint is less than half the total image width a person would be considered to be on
the left, other wise they are on the right.

Status A persons status is their current pose, can be either forwards, left or right.

Rect A tuple that represents the top left and bottom right points of the bounding
rectangle, is used to draw the rectangle on the displayed image.

Label A generic name for this person, which is a number depending on what order the
person appeared on screen.
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for person in tracker.people do
for mid in newMidpoints do

if distance(person.midpoint, mid) < Threshold then
Update person with newest midpoint, position and bounding rectangle ;
Set mid to 0 ;
break;

end
end
if person.midpoint != updated then

remove person
end

end
for mid in newMidpoints do

if mid != 0 then
Create a new Person Object;
Add tracker.people;

end
end

Figure 4.8: Algorithm 3: Update People

4.4.2 Tracker Class

When the tracker is initialised it contains an empty list of People. And has the following
functions:

addPerson Creates a new Person object with the attributes as specified above and adds
this object to the trackers list of People

findPosition Finds the location of a given point with respect to the center of the image, if
the points row value is less than the half the total length of the image it returns Left,
otherwise returns Right

distance Given two points returns the distance between them

updatePeople Given a new list of midpoints and bounding rectangle points, updates the
trackers list of people using the following algorithm:
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4.5 Cascade Classifier

To act as the pose estimator in this project, a series of cascade classifiers are created, one
for each possible direction this system classifies: Forward, left and right. These cascades are
then strung together to form a cascade of cascades. The cascades are created in the style of
Viola & Jones [1], however these cascades will use Local Binary Pattern (LBP) features [16]
as these proved to be more robust than the simpler Haar features. Both the face and body
pose classifiers were created with the same methodology. This section will explain the
creation of the body pose classifier in detail.

4.5.1 Data Creation

Each cascade requires a large amount of positive samples and negative images. To create a
bank of data to be used, thousands of readings were taken with the sensor and the pose in
the created image was manually labelled. This allowed for easy division of the data into
positive and negative images for training.

To create positive samples, the object detection process as outlined in section 3.2 is used.
Rather than drawing the bounding rectangle around the object in a display image, a
sub-image of the object is created. It is then grayscaled and saved to a folder.
Simultaneously, a file is created that lists the name of every positive sample file, the number
of samples found in the image (always 1 in this case), the starting location of its bounding
rectangle and the rectangle’s width and height. However, as the sub-images only contain the
object and have no pixels to be cut by a rectangle, the file specifies the origin as (0,0) and
the width and height as the dimensions of the image. Each line in the file would appear in
the form:

filename.jpg , 1, 0, 0, 14, 20

Similarly all negative samples are grayscaled and saved in full to a folder, while a file is
created with all the filenames.

4.5.2 Cascade Creation

OpenCV has built-in utilities that can create custom cascade classifiers using the data
created in the previous section. The ’Create Samples’ utility takes the positives samples and
creates a vector file that represents each positive sample in a binary format, which will be
needed to train the cascade.

Each cascade classifier is a chain of weak classifiers. In each stage, one feature is used to
test an image. If the image fails to meet the requirements of the feature, the image fails the
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entire cascade. The OpenCV utility "Train Cascade" takes the newly created positive sample
vector file, the negative samples and the type of feature that should be used. In this case,
LBP. The utility then chooses the best possible feature for each stage to get the highest
accuracy. Given the size of these images, the majority of the classifiers had 5 stages.

This process is repeated for all three classifications and the classifiers are chained together
based on their accuracy to form a strong cascade of cascades. The cascades can then be
stored somewhere in the file system and can be loaded by OpenCV as a custom
cascade.

4.6 Interaction

The interaction class is to represent a discovered interaction. To do this, the interaction
class measures the length of the conversation and the attention score of both participants in
the conversation.

The interaction has three possible statuses, (1) Not started - the people in the interaction
have not been classified as facing each other. (2) In progress - an interaction has started,
and the system is actively tracking the time of the interaction and the attention scores of
both participants. (3) Interaction Over - Both participants have faced forward again or one
of them has left the frame, indicating the end of an interaction. With this status, the system
starts looking for the start of another interaction.

The start time of the interaction is saved as a time stamp once the interaction begins.
When it finishes, the end time is noted, and the total duration of the interaction is
calculated by subtracting the start time from the end time. For each frame of the
interaction, the pose of each person is taken. If one person is looking directly at the other
person in the interaction, the first person’s interaction score goes up by 1. This is measured
for each frame until the interaction is over.

4.7 System in Action

This section will summarise how all of the components and functions described in this
chapter operate together. As the implementation for this project focuses on the interaction
categorisation described in the design section, some steps were taken to do pose
classification in a live environment by mocking incoming data from an external sensor. The
MLX90640 development board used for this project wrote thermal sensor readings to a CSV
file on the local machine. To mock the arrival of new data, the CSV was read once a second
and checked for new data. The number of lines read on the previous pass would be
remembered and for each new pass the difference in total lines against the previously
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counted total was calculated and these new lines were read.

For each new line, which represents one frame, an image is created and the preprocessing is
carried out as described above, ending with a binary image. That image is used as edge data
to create an edge image of all the objects found in the image.

Statistical Pattern Recognition is then used to decide whether each object found in the
image is a head, a body or nothing of interest. Following that, the tracker either adds new
people, updates existing people or removes anyone who has left the frame.

Next, the image is passed to the pose classifier and each person’s pose is classified. Those
results are then given to the Interaction class which sets the status of the interaction. If the
interaction has already started, the system appraises whether they are facing each other. If
the interaction is in progress, then the system checks for the end of an interaction, and then
updates the attention scores. If the interaction is over, the system looks for the start of a
new interaction.
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5 Evaluation

This chapter provides an overview of the metrics that are used to measure the accuracy of
the pose classifiers and the metrics used to categorise interactions. This chapter also briefly
outlines the mocked scenarios that are used to test the system.

5.1 Evaluation Issues

Given the restrictions on movement and work that have been in place for much of the
duration of this project due to the outbreak of COVID-19 [34], it should be noted that
testing was limited to only the author as a participant. In order to emulate social interaction
in the coming results section, short videos were spliced together to create mocked
interactions. These were then played back to the system in real time to act like newly
arrived live data.

5.2 Evaluation Metrics

There are two sets of evaluation metrics that will be covered in this section. Firstly, the
cascades that make up the pose classifiers need to be evaluated for accuracy. This will allow
them to be chained together in the most effective way that will give the most accurate pose
estimations.

Secondly, the metrics that are used to categorise an interaction are discussed. These metrics
will be used to measure the effectiveness of the system in monitoring an interaction as it
takes place.

5.2.1 Cascade Evaluation

Initially, for each pose classifier, the component cascades that evaluate each of the three
pose directions must be tested for accuracy. This is to ensure that the overall classifier
works as effectively as possible. To evaluate them, each cascade will be tested with a set of
labelled test images. From that testing, the following metrics will be calculated:
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1. True Positive Rate

2. False Positive Rate

3. True Negative Rate

4. False Negative Rate

5. Accuracy

5.2.2 Interaction Evaluation

As mentioned previously, an interaction will be seen by a system if two people face each
other. The interaction will end once both people face forward or if one person leaves the
frame. Within that period of interaction, two metrics can be calculated: (1) Length of
Interaction - The time in seconds of the interaction, from the first frame two people face
one another until the first frame where they both face forward or one person leaves. (2)
Attention Score of each participant - The interaction score is the number of frames from the
start of the interaction to the end where a participant is directly facing the person they are
interacting with.

To test this system, six scenarios will be mocked: three focusing on the head pose classifier
and three focusing on the body pose classifier. In each scenario, the time of interaction and
the attention scores will be compared against the expected values that have been recorded
by manually annotating the video.

The six scenarios will be briefly outlined below, and they will be explained in more detail in
the results section.

Scenario 1 - Fixed Poses Two people will be staring at each other, from the entire
duration of the interaction.

Scenario 2 - One Fixed, One Changeable One person will stare intensely at another
person whose pose keeps changing.

Scenario 3 - Both Changeable - Both peoples poses change throughout the scenario
and they briefly interact.

Scenario 4 - Bus Stop Interaction Two people arrive at a bus stop and after initially
not seeing each other turn to interact, before ending the interaction by both facing
forward again

Scenario 5 - Repeatedly Leaving Frame Two people are interacting until one of them
leaves frame, ending the interaction, then they (or someone else, the system does not
care) return and leave twice more throughout the scenario.
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Scenario 6 - Social Distancing This scenario demonstrate how a system like this could
be used to monitor whether people in public spaces are social distancing by measure
the distance between them.
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6 Results

This chapter will outline the results of the cascade classifiers and the results of the systems
performance on 6 test scenarios.

6.1 Cascade Results

This section will cover the specific results of each classifier based on the metrics as outlined
in the evaluation section.

6.1.1 Head Pose Cascades

Each of the cascades were tested on the same test data, that began in the form of thermal
readings in a CSV file with the last column representing the expected classification
result.

Below each cascade is scored on each metric as outlined above and the results are illustrated
in a tabular format, with the totals for each metric also displayed in a graph. Each set of
results will be briefly discussed.

Forward Cascade
Metric Score

True Positive Rate 4%
False Positive Rate 6%
True Negative Rate 99%
False Negative Rate 95%

Accuracy 64%

Table 6.1: Head Pose Forward Cascade Results

The front pose cascade has the lowest accuracy of the 3 head pose cascades at 64%, see
Table 6.1. Therefore, it’s classification will be the last considered in the classifier, although
it’s very low false negative rate means that it should avoid misclassifying right and left
facing heads.
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Figure 6.1: Totals for each metric in the forward head pose cascade

Left Cascade
Metric Score

True Positive Rate 84%
False Positive Rate 24%
True Negative Rate 88%
False Negative Rate 16%

Accuracy 87%

Table 6.2: Head Pose Left Cascade Results

The left head pose cascade is far stronger in comparison with the forward facing cascade
(see Table 6.2). With a high accuracy, low false positive and false negative rates, it is likely
to return the correct classification and will have first priority in the classifier.

Figure 6.2: Totals for each metric in the left head pose cascade
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Right Cascade
Metric Score

True Positive Rate 40%
False Positive Rate 1%
True Negative Rate 99%
False Negative Rate 60%

Accuracy 80%

Table 6.3: Head Pose Right Cascade Results

Figure 6.3: Totals for each metric in the right head pose cascade

Similarly the right cascade performs well with a high accuracy (see Table 6.3), however the
false negatives mean that it is likely to reject many positive images and if they fall through
to the forward cascade are likely to be falsely classified as forward facing.
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6.1.2 Body Cascade

Forward Cascade
Metric Score

True Positive Rate 89%
False Positive Rate 42%
True Negative Rate 67%
False Negative Rate 11%

Accuracy 74%

Table 6.4: Body Pose Front Cascade Results

The front facing body pose cascade has the opposite issue to it’s head pose counterpart, a
large amount of false positives (see Table 6.4) mean it is likely to misclassify right or left
facing people as front facing. To combat this, the left and right facing cascades are given a
higher priority.

Figure 6.4: Totals for each metric in the front body pose cascade

Left Cascade
Metric Score

True Positive Rate 74%
False Positive Rate 49%
True Negative Rate 64%
False Negative Rate 26%

Accuracy 67%

Table 6.5: Body Pose Left Cascade Results

The left pose performs better than the front facing, but is likely to return false positives (see
Table 6.5), meaning that any incorrectly classified front facing images will fall through and
be misclassified as left facing.
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Figure 6.5: Totals for each metric in the left body pose cascade

Right Cascade
Metric Score

True Positive Rate 12%
False Positive Rate 29%
True Negative Rate 98%
False Negative Rate 88%

Accuracy 69%

Table 6.6: Body Pose Right Cascade Results

Figure 6.6: Totals for each metric in the right body pose cascade

The right body pose cascade performs the best of the three and first cascade that will be
used in the classifier (see Table 6.6).
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6.2 Interaction Experiment Results

In this section a series of mocked interaction will be described and the expected results in
both time of interaction and the attention score of the participants will be compared with
the final result. The description will be accompanied by a series of frames from the test
videos that will help to illustrate the scenarios.

6.2.1 Scenario 1 - Fixed Poses

The first scenario is a basic test of the head pose classifier and the attention scores. Two
people begin the interaction in intense eye contact and remain this way for the duration of
the scenario.

Figure 6.7: Scenario 1 Stage 1 - Interaction started

In the first stage the interaction is immediately detected by the system following the correct
pose estimation of both people in the image. The system begins to tally the attention scores
for both participants.

Figure 6.8: Scenario 1 Stage 2 - Attention Score tallies
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In this scenario the attention scores should be the same for both participants throughout the
scenario as both are facing the same direction for the duration. However as the pose
classifier begins to incorrectly classify the attention scores begin to separate. Lastly the
system categorises the interaction as over, just before the end of the scenario due to two
misclassifications marking both participants as facing forward.

Figure 6.9: Scenario 1 Stage 3 - Interaction ended

Metric Expected Recorded
Time Of Interaction 56 seconds 46 seconds

Left Person Attention Score 112 31
Right Person Attention Score 112 57

Table 6.7: Scenario 2 Results
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6.2.2 Scenario 2 - One Fixed, One Changeable

Scenario 2 builds on scenario 1, one person will remain facing the same direction for the
entire session while the other person moves there to different poses every few seconds. In the
first stage the two people are not interacting so the system only estimates their pose.

Figure 6.10: Scenario 2 Stage 1 - No Interaction

Next the system detects the interaction starting, however it makes the decision a few frames
early, it correctly begins to count the head pose and the difference between the non moving
persons attention score compared to the moving head is accurately reflected.

Figure 6.11: Scenario 2 Stage 2 - Attention Score tallies

In this scenario the interaction does not end, a both participants remain in frame and never
both look forward at the same time.The system correctly does not stop measuring the
attention scores.

Metric Expected Recorded
Time Of Interaction No Ending No Ending

Left Person Attention Score 40 45
Right Person Attention Score 15 16

Table 6.8: Scenario 2 Results
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6.2.3 Scenario 3 - Both Changeable

In the final head pose scenario, both people are freely looking around. They quickly enter
into an interaction.

Figure 6.12: Scenario 3 Stage 1 - Interaction Started

However the interaction quickly ends as both people look forward again.

Figure 6.13: Scenario 3 Stage 2 - Interaction Ended

For the remainder of the scenario, both people continue to change head pose, however they
never look at each other again and the system correctly reflects that by not registering any
further interactions.

Figure 6.14: Scenario 3 Stage 3 - No further interactions
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Metric Expected Recorded
Time Of Interaction 9 seconds 9 seconds

Left Person Attention Score 6 4
Right Person Attention Score 12 11

Table 6.9: Scenario 3 Results
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6.2.4 Scenario 4 - Bus Stop Interaction

In this scenario two people arrive at a bus stop. Initially both people are facing forward as
they have not recognised each other. The system detects both people and tracks
them.

Figure 6.15: Scenario 4 stage 1 - No interaction

Next both people turn to face one another, they system detects both the pose of each
person and starts to measure the interaction in terms of time and attention score.

Figure 6.16: Scenario 4 stage 2 - Interaction Started

The two people continue to face each other for 37 seconds, during that time the attention
score is increased for a participant for every frame the system classifies them as facing the
other person. Once both people return to face forward, the interaction ends.

Figure 6.17: Scenario 4 stage 3 - Interaction Ended
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Metric Expected Recorded
Time Of Interaction 37 seconds 37 seconds

Left Person Attention Score 67 62
Right Person Attention Score 57 58

Table 6.10: Scenario 1 Results
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6.2.5 Scenario 5 - Repeatedly Leaving Frame

This scenario test the systems ability to recover to a default state once an interaction has
ended, and detect the following interactions. The scenario starts with two people who are
interacting almost immediately.

Figure 6.18: Scenario 5 stage 1 - First Interaction Started

This interaction ends quickly when one of the participants leaves frame. The system forgets
the person and ends the interaction.

Figure 6.19: Scenario 5 stage 2 - First Interaction Ended

Next the person (or a different person, the system doesn’t know) returns and is detected.
And an interaction starts again. The system catches the interaction near the end, before one
of the participants leaves again.

Figure 6.20: Scenario 5 stage 3 - Second Interaction Ends as one person leaves

Another person comes into frame and is detected, and a third interaction starts. Again the
interaction is caught right at the end, meaning most of the attention score is missed.
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Metric Expected Result
Interaction 1 Time Of Interaction 6 seconds 5 seconds

Left Person Attention Score 15 3
Right Person Attention Score 18 5

Interaction 2 Time Of Interaction 5 seconds 0.5 seconds
Left Person Attention Score 15 1
Right Person Attention Score 20 1

Interaction 3 Time Of Interaction 6 seconds 1 second
Left Person Attention Score 17 1
Right Person Attention Score 22 2

Table 6.11: Scenario 5 Results
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6.2.6 Scenario 6 - Social Distancing

At the time of writing, the COVID-19 [34] pandemic has put the subject of social distancing
[35] in the forefront of everyone’s mind. This scenario mocks what a system to monitor
social distancing could look like in simple terms. To do this, the system is configured slightly
different and an additional assumption is made. The assumption is that an interaction is
occurring from the time it is detected and the system will not attempt to find the end of the
interaction, instead the system will measure the distance between the participants at each
frame and state whether they are social distancing.

Figure 6.21: Scenario 6 stage 1 - Interaction starts, not social distancing

At stage one the interaction has started, and both people are standing just over 1 metre
from each other and not following social distancing guidelines, which is noted by the
system.

Figure 6.22: Scenario 6 stage 2 - Interaction continues, now participants are social distancing

After 30 seconds, each participant takes a step backwards, extending the distance between
them to over 2 metres and the systems notes that they are now social distancing.
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6.3 Discussion

These results show the best and worst of the system in action, with some scenarios being
broadly considered successful and others not. This section will divide the scenarios by their
success in the metrics discussed in the evaluation and see what aspects of the system work
well and what aspects leave more to be desired.

6.3.1 Unsuccessful Scenarios

Scenarios 1 can be considered an unsuccessful scenario. Despite it being the simplest
scenarios, it shows the shortcomings of the pose detectors clearly. The total interaction
scores for both users recorded is only 40% of the expected values. This scenario shows the
likelihood that the the pose classifier will misclassify, even on images with very minor pose
variations.

6.3.2 Partially Successful Scenarios

Scenario 5 is a partially successful scenario. It shows the trackers working as intended,
following people while they appear in frame and as they move around, but forgetting them
once they leave frame. It also shows the system returning to a default state once and
interaction ends, ready to detect another interaction. The system ultimately correctly
detects the 3 interactions that take place in the scenario.

What lets Scenario 5 down is the attention scores. Scenario 5 only records 12% of the total
expected attention score over all 3 interactions, which shows that despite all interactions
being successfully identified, nothing substantive could be taken from them.

6.3.3 Successful Scenarios

Scenarios 2, 3, 4 and 6 can be considered successful scenarios. Scenarios 2, 3, and 4 all
record total attention scores of within 20% of the total expected values, while also reporting
correct interaction times (or in the case of scenario 2 correctly not detecting an end to the
interaction. Scenario 4 is probably the scenario that best showcases the system. Two people
arrive in frame, are tracked until they start interacting, the system records 96% of the
expected attention score in total and records the correct interaction time of 37
seconds.

The parameters for success in scenario 6 were different to previous scenarios. The attention
score and interaction time were not accurately measured here as the system never checks for
the end of an interaction, instead, the system measures the distance between the
participants. This relies more on the consistency of the tracker to correctly monitor the
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position of both people as they move across the frame to a socially distant position.

The Statistical Pattern Recognition and the tracker work almost flawlessly in these
scenarios, which is due in part to the simplicity of the images and the stringent parameters
of the scenarios.

It is hard to say which of the two pose classifiers work best as each have good example
(Scenarios 2, 3 and 4) and bad examples (Scenarios 1 and 5). Despite the head pose
classifier having better accuracy for each individual cascade, it does appear to struggle more
in the scenarios than the body pose classifier, which suggests the way the cascades are
chained together may be the issue. One thing that can be said is both could do with
improvement to increase consistency.
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7 Conclusion

At the beginning of this project, three aims were outlined to ascertain whether social
interactions could be detected in low-resolution thermal images: detecting people in low
resolution images, building pose classifiers and identifying and tracking the
interactions.

Detecting objects was accomplished using standard Computer Vision methods such as
grayscaling, binary thresholding and visualising edges with boundary chain codes. Statistical
Pattern Recognition allowed the system to classify objects found in the images into two
types of classes: heads or bodies.

Two pose classifiers were built, each made of three-component cascades to represent three
possible poses: forward, left and right. The component cascades were then chained together
to form a classifier. These classifiers had mixed results. This was due, in part, to the
minimal amount of data available in small images. A flaw in cascades of this type also
contributed: when the search object takes up a significant portion of the image, the cascade
is more likely to misclassify.

Interactions were defined as two people facing one another. An interaction lasted until both
participants faced forward or one person left the frame. They were evaluated on a set of test
scenarios, where the time of interaction was recorded and compared to the expected time.
Additionally, during the interaction, each frame a participant spent looking at the other
person increased their attention score. This gives an overall sense of how intense the
conversation was and how invested each participant was during it. Although the overall
attention scores often failed to match the expected values, a general impression of which
participant was more active in the conversation comes across in the difference between each
person’s attention score.

Overall, this system stands as a proof of concept demonstrating that it is possible to identify
social interaction with low-resolution thermal imagery.
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7.1 Future Work

There is a plethora of future work that can be undertaken using the theory presented in this
project as discussed below. Some possibilities involve improving the existing system while
others discuss how the project can be extended.

7.1.1 Deploy Higher Resolution Cameras

This project explored the limits of what could be done with small modular hardware in the
form of the MLX90640 thermal sensor. An extension of this project would be to deploy a
higher resolution camera. This could provide more features of a person’s body or head to be
used in pose classification. However, a higher resolution camera could also jeopardise the
privacy of the people detected by the system, as having more features could increase the
ability to recognise them. This means there is also an upper limit to be discovered as to
what resolution of camera can lead to the most accurate pose classification without
compromising the anonymity of the people detected. The use of higher resolution is the
gateway to considering many other improvements and adaptions.

7.1.2 Adapt Deep Learning Methods

Many of the body pose methods proposed in research use body part detection combined
with deep learning models to suggest a person’s orientation. Using a higher resolution
camera may enable enough features to be extracted from a detected person to adapt a deep
learning model, perhaps simplifying it if needed, to improve the accuracy of the pose
classifier and the system as a whole.

7.1.3 Consider Multiple Interactions and Group dynamics

This project limited the scope of interactions to between two people. A minor increase in
camera resolution could allow the system to consider more than two people involved in
interactions. This would change the potential system states from a binary operation, where
an interaction is either occurring or not, to a more dynamic environment where multiple
interactions are occurring or a group of people are interacting with each other. This would
also increase the dimensions of the attention scores, so the attention paid to each member
of the group could be identified and some group dynamics could be inferred.

7.1.4 Increase Hardware Diversity

An alternative would be to deploy more sensors and sensors of different types. Deploying
more cameras could create a more 3-dimensional view of the space. It would improve pose
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estimation, as there would be multiple sources to draw a conclusion from. More cameras
would also improve the system’s ability to estimate a person’s location and the distance
between people.

An ultrasonic sensor could also be deployed. Modular ultrasonic sensors are now available in
very similar setups and price ranges as thermal sensors. Combining a thermal sensor with an
ultrasonic sensor on one raspberry pi, for example, would enable better object detection,
location and tracking without the need to deploy a second camera.

A motion detector could be deployed to improve the tracker. When the motion detector is
not active, then the trackers may not need to actively update, which would improve fringe
cases where the Statistical Pattern Recognition fails. Alternatively, the system could only
search for interactions involving people moving across frame.

7.1.5 Social Distancing

At the time of writing, the outbreak of COVID-19 [34] has placed an emphasis on social
distancing [35]. This is the concept whereby people need to stay at least 2 metres from each
other while outdoors and in social spaces. Although a simple version of how the system
could detect social distancing was implemented and test in Scenario 6, combined with the
ground truth of the space it is deployed in, or other sensors that would help to measure the
dimensions of the space, a more comprehensive social distancing system could be created.
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A1 Appendix

A1.1 Python Classes

A1.1.1 Person Class

Figure A1.1: Person Class
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A1.1.2 Tracker Class

Figure A1.2: Tracker Class

62



A1.1.3 Create Images

Figure A1.3: Create Images Part 1
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Figure A1.4: Create Images Part 2
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Figure A1.5: Create Images Part 3
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