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Neural Style Transfer for Light Fields

Dónal Egan, Master of Science in Computer Science

University of Dublin, Trinity College, 2020

Supervisors: Dr. Martin Alain and Prof. Aljosa Smolic

Style transfer involves combining the style of one image with the content of an-
other to form a new image. Unlike traditional two-dimensional images which only
capture the spatial intensity of light rays, four-dimensional light fields also cap-
ture the angular direction of the light rays. Stylizing a light field requires us to
not only render convincing style transfer for each sub-aperture image, but also to
preserve the angular structure of the light field. The näıve approach to stylizing
a light field is to simply stylize each sub-aperture image independently. Unsur-
prisingly, doing so will destroy the light field’s angular structure. We present our
new method for light field style transfer which significantly outperforms this näıve
approach. It uses our new initialisation method and angular loss function for the
image-optimisation process to preserve the angular structure of the light field. We
also present an architecture for a depth-aware approach to light field style transfer
which uses a depth loss function to preserve the angular structure of the light field
during the stylization process.
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3.1 The näıve approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Video style transfer for light fields . . . . . . . . . . . . . . . . . . . 28

3.3 A better approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Depth-aware style transfer for light fields . . . . . . . . . . . . . . . 34

Chapter 4 Results and Evaluation 38

4.1 Evaluation of light field style transfer using our new initialisation

method and angular loss . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Subjective/aesthetic evaluation . . . . . . . . . . . . . . . . 40

4.1.2 Evaluation using epipolar plane images . . . . . . . . . . . . 42

4.1.3 Evaluation using depth estimation . . . . . . . . . . . . . . . 45

4.2 Evaluation of depth-aware light field style transfer . . . . . . . . . . 46

Chapter 5 Conclusions and Future Work 49

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Limitations and future work . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography 52

vi



List of Figures

2.1 Two-plane light field parameterisation . . . . . . . . . . . . . . . . 6

2.2 Light fields as two-dimensional arrays of two-dimensional images . . 7

2.3 Epipolar plane images . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 EPINET architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 What is style transfer? . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Using a CNN to extract the content and style from an image. . . . 13

2.7 The image-optimisation process. . . . . . . . . . . . . . . . . . . . . 16

2.8 Style transfer using an image-transformation network. . . . . . . . . 17

2.9 Depth-aware style transfer. . . . . . . . . . . . . . . . . . . . . . . . 19

2.10 The impact of the depth loss function in style transfer . . . . . . . . 20

2.11 Video style transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Description of notation . . . . . . . . . . . . . . . . . . . . . . . . . 25
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Chapter 1

Introduction

The goal of this project was to apply style transfer to four-dimensional light fields.

In this dissertation we present our new approach to light field style transfer which

significantly outperforms näıve baseline methods.

1.1 Overview of project

Style transfer involves combining the content of one image (for example, a photo-

graph) with the style of another (for example, a painting) to form a new image.

Doing so requires us to be able to define, separate and extract the content and

style of an image. Neural style transfer uses the outputs from the hidden layers of

deep convolutional neural networks pre-trained for object recognition to construct

content and style representations of an image. These content and style representa-

tions are used to define content and style loss functions. Using these loss functions,

a new image can be synthesised to match the content of one image and the style

of another. This is done via an image-optimisation process. The new image is
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initialised to be white noise. It is then iteratively updated using gradient descent

so as to simultaneously minimise the content loss between it and the content image

and the style loss between it and the style image. Impressive results using neural

style transfer have already been achieved, for example, in [9, 18, 21].

The goal of this project is to apply neural style transfer to light fields. Unlike

traditional two-dimensional images which capture the spatial intensity of light rays,

light fields are four-dimensional and also capture the angular direction of the light

rays. A light field can be visualised as a two-dimensional array of two-dimensional

images. Each image of the array, called a sub-aperture image, captures the scene

from a different view point. Applying style transfer to a light field not only requires

us to render aesthetically pleasing style transfer for each sub-aperture image of the

image array, but also to preserve the angular consistency of the light field. In other

words, the stylization should be consistent across all of the sub-aperture images.

Inconsistencies in the angular structure following the stylization process cause a

flickering effect when the stylized light field is displayed.

Unsurprisingly, näıvely stylizing each sub-aperture image independently does

not preserve the angular structure of the light field. This results from the image-

optimisation process converging to different local minima for each sub-aperture

image. In this project we present our new method for light field style transfer

which significantly outperforms the näıve approach. Our new method preserves the

angular consistency of the light field through the introduction of a new initialisation

method for the image-optimisation process and a new angular loss function. The

basic idea is to propagate the style outwards from the central view point of the light

field while always ensuring that angular consistency with previously stylized view

points is preserved. The new initialisation method ensures that points common to
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multiple light field view points are initialised with the desired appearance. This

is achieved by warping previously stylized view points according to the optical

flow between them and the next view points to be stylized. The angular loss

function, also constructed using the optical flow between view points, penalises

inconsistencies between stylized view points.

We evaluate our new light field style transfer method according to three criteria.

First, we subjectively evaluate the aesthetic quality of the stylized light fields.

Second, we use epipolar plane images to examine the angular consistency of the

stylized light fields. Third, we use light field depth estimation to examine the

depth structure of the stylized light fields. We show that for all three criteria our

method significantly outperforms the näıve approach of stylizing each sub-aperture

image independently.

We also present an architecture for a depth-aware approach to light field style

transfer. This approach differs from the above method in that the entire light field

is processed in one go by a transformation network. This transformation network

is a fully-convolutional neural network. It takes a light field as input and outputs

the stylized light field. The angular structure of the light field is preserved during

the stylization process through the introduction of a depth loss function. This

depth loss function is used to preserve the depth structure of the original light

field during the stylization process. It is defined using a pre-trained light field

depth estimation network which is used estimate the depth maps of the original

and stylized light fields. While we have not yet achieved results with this depth-

aware method to match the quality of the results from our previously described

method, the preliminary results achieved indicate the potential of our depth-aware

approach to achieve high quality light field style transfer.
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1.2 Structure of dissertation

The rest of this work is structured as follows: Chapter 2 provides a summary

of the background research carried out for the project. It provides a summary

of light field imaging and a summary of existing style transfer techniques for two-

dimensional images and for videos. Chapter 3 describes the different light field style

transfer methods that we developed and tested, i.e. it describes our contribution

to the field. We also provide implementation details for our methods. Chapter 4

provides results and an evaluation of the methods described in chapter 3. Finally,

in chapter 5 we conclude the project. We provide a summary of our contribution,

discuss the limitations of our work and provide suggestions for future work in the

field of light field style transfer.
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Chapter 2

Background Research

The goal of this project is to apply style transfer to light fields. This chapter

provides a summary of the background research carried out as part of the project.

Section 2.1 provides a summary of light field imaging, while section 2.2 provides

a summary of existing style transfer techniques for traditional two-dimensional

images and videos.

2.1 Light fields

Light field imaging was introduced to computer graphics in the papers Light Field

Rendering by Levoy and Hanrahan [20] and The Lumigraph by Gortler et al. [10].

Unlike traditional two-dimensional images which only capture the spatial intensity

of light rays, four-dimensional light fields also capture the angular direction of the

light rays.

Light fields are based on the five-dimensional plenoptic function L(x, y, z, φ, θ)

which captures all possible light rays at every point in space (the x, y and z di-
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mensions) and in every direction (the φ and θ dimensions) [2]. However, by only

considering a region of space free of occluders (the free space assumption) one of

the five dimensions becomes redundant. This follows from the fact that the radi-

ance of a light ray remains constant along a straight line. Hence, we are left with

a simplified four-dimensional plenoptic function which we call a light field.

2.1.1 Light field representations

Two-plane parameterisation

A common way to represent the four-dimensional light field is using the two-

plane parameterisation. Here, a ray of light L(s, t, u, v) is parameterised by its

intersection with two parallel planes, namely the st-plane and the uv -plane (figure

2.1). We refer to s and t as the angular dimensions and u and v as the spatial

dimensions.

Figure 2.1: Two-plane light field parameterisation. The ray of light L(s, t, u, v)
first intersects the uv-plane and then the st-plane. The distance between the two
planes is f .
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Using this parameterisation, we can consider the st-plane as a set of cam-

eras with their focal plane on the uv-plane. It follows that we can visualise the

four-dimensional light field as a two-dimensional array of two-dimensional images.

There are two possibilities for this: an st-array of uv-images or a uv-array of

st-images (figure 2.2).

(a) (b)

Figure 2.2: (a) An st-array of uv-images: Each sub-aperture image captures the
scene from a different view point. (b) A uv-array of st-images: Each sub-image
of the array shows a point (u∗, v∗) as seen from the different view points (green,
yellow and blue boxes are examples).

When viewing the light field as an st-array of uv-images (figure 2.2a), each

two-dimensional image of the array captures the scene from a different view point.

Each image is called a sub-aperture image and is obtained by fixing the angular

coordinates s and t for some values s∗ and t∗. The resolution of the st-plane,

called the angular resolution, determines the number of sub-aperture images in

the captured light field, while the resolution of the uv-plane, called the spatial

resolution, determines the quality of each sub-aperture image. In general, the

angular resolution of the light field will be significantly lower than the spatial

resolution. For example, the light field shown in figure 2.2 has an angular resolution

of 9× 9 and a spatial resolution of 1024× 1024.

Alternatively, we can view the light field as a uv-array of st-images (figure

7



2.2b). Here, a sub-image in the array is obtained by fixing the spatial coordinates

u and v for some values u∗ and v∗. The sub-image then shows the point (u∗, v∗)

as seen from the different light field view points.

We adopt the two-plane parameterisation and visualise a light field as an st-

array of uv-images (figure 2.2a) for the rest of this project.

Epipolar plane images

Another useful way to visualise light fields is using epipolar plane images (EPIs).

An epipolar plane image is a two-dimensional slice of a light field obtained by fixing

one angular dimension and one spatial dimension. The horizontal EPI Et∗v∗(s, u)

is obtained by fixing the angular dimension t and the spatial dimension v for some

values t∗ and v∗, respectively. The vertical EPI Es∗u∗(t, v) is obtained in a similar

fashion.

An epipolar plane image appears as a series of lines of varying slopes. This

is illustrated in figure 2.3. The slopes of the lines reflect the depth of the scene

captured by the light field. This follows from the result that depth is inversely

proportional to disparity. For example, consider the horizontal EPI Et∗v∗(s, u) and

a point in the captured light field with depth Z. As the angular coordinate s is

varied, the spatial coordinate u varies according to the equation

∆u =
f

Z
∆s (2.1)

where f is the distance between the st and uv planes.
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Figure 2.3: Two examples of epipolar plane images (EPIs). The horizontal EPI
Et∗v∗(s, u) is obtained by fixing t and v, while the vertical EPI Es∗u∗(t, v) is ob-
tained by fixed s and u

Epipolar plane images are a useful tool for visualising the angular structure of

a light field. Later on, we will them to visualize the angular structure of stylized

light fields and to evaluate how well different style transfer methods preserve the

angular consistency of the original light field.

2.1.2 Light field depth estimation

Depth estimation is an important light field application. A light field image implic-

itly captures information about the depth structure of the scene. By rearranging

equation 2.1, the depth Z can be obtained by estimating the disparity ∆u.

Traditional stereo-matching methods can be used to estimate the disparity ∆u
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from two light field sub-aperture images. However, such methods do not take full

advantage of the light field structure. Multi-view stereo matching approaches use

all of the sub-aperture images to estimate disparity (for example, see [16]).

Other light field depth estimation techniques use epipolar plane images. For

example, in [27] the authors estimate depth by estimating the slopes of the lines

in the epipolar plane images.

Deep learning approaches have also been proposed for light field depth estima-

tion [11, 12, 24]. Later on we will use EPINET [24]. It is a fully-convolutional

neural network that uses the light field epipolar geometry for depth estimation.

The network architecture consists of two parts - a multi-stream input network and

a merging network (figure 2.4). The multi-stream network independently processes

four stacks of sub-aperture images with different angular directions, encoding the

epipolar geometry of each. The merging network processes the combined outputs

from the four streams to produce the estimated depth map.

Figure 2.4: EPINET is a fully-convolutional newural network used for light field
depth estimation. Figure taken from [24].
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2.1.3 Light field datasets

For this project we use light fields from two different sources, namely the HCI

4D Light Field Dataset [13] and the (New) Stanford Light Field Archive [1]. The

HCI 4D Light Field Dataset is a synthetic dataset containing twenty-four synthetic

light fields along with their ground truth depth maps. The (New) Stanford Light

Field Archive contains real light fields captured using using either a camera array

or a gantry.
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2.2 Style transfer

Originally developed for traditional two-dimensional images, style transfer involves

combining the content of one image (for example, a photograph) with the style of

another (for example, a painting) to form a new image (figure 2.5). If the content

and the style of an image are represented by the functions c() and s(), respectively,

then the problem of style transfer is as follows:

Given a content image p and a style image a, construct a new image x such that

c(x) = c(p) and s(x) = s(a).

Figure 2.5: Style transfer - the new image x has the content of p and the style of
a.

To achieve this we need to be able to define, separate and extract the content and

style of an image. Defining the style of an image is an arbitrary task. Moreover,

it is arguable whether or not the content and style of an image are separable at

all. It follows that style transfer is not a well-defined problem with a single correct

solution. This makes evaluating style transfer a difficult task.
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Style transfer methods divide into two categories - those which do not use deep

learning and those which do use deep learning. Methods in the latter category

are collectively referred to as neural style transfer. Neural style transfer uses

convolutional neural networks pre-trained for object recognition to extract the

content and style of an input image. While non-deep learning approaches can

produce impressive results (see [7, 15], for example), the focus of this project is

on neural style transfer. The following sections summarise some of the major

breakthroughs in neural style transfer.

2.2.1 Image-optimisation approach

Neural style transfer was introduced by Gatys et al. in their paper Image Style

Transfer Using Convolutional Neural Networks [9]. They showed that the outputs

from the hidden layers of a convolutional neural network pre-trained for object

recognition could be used to construct content and style representations of an

input image.

Figure 2.6: At each layer of the CNN, an input image x is encoded as a set of
feature maps. These feature maps can be used to construct content and style
representations of the image.
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As an input image passes through the network, it is encoded at each layer as

a set of feature maps (figure 2.6). If layer l of the network has Nl filters, then an

input image x will be encoded at layer l as a set of Nl distinct feature maps, each

of size Ml, say. Thus, the feature response of the network at layer l to an input

image x can be represented by a matrix F l ∈ RNl×Ml where F l
i,j is the activation

of the ith filter at position j in layer l.

Content representation

Earlier network layers extract features which are more concerned with the specific

pixel values. In contrast, the features extracted by the deeper network layers

capture the high-level content of the input image in terms of the objects present

and their arrangement in the image. Gatys et al. use the feature responses from

one of these deeper layers to represent the content of an image. Thus, the content

of an image is represented by a matrix F l ∈ RNl×Ml for some layer l of the network.

Style representation

The outputs from several network layers are used to construct a style representation

for an input image. This style representation uses correlations between feature

responses. The correlations are given by the Gram matrices Gl ∈ RNl×Nl where

Gl
i,j is the inner product of the feature maps i and j for layer l of the network,

that is

Gl
i,j =

∑
k

F l
i,kF

l
j,k. (2.2)

Thus, the style of an image is represented by a set {Gl ∈ RNl×Nl : l ∈ L} of Gram

matrices for some set L of network layers.
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Loss functions

These content and style representations are used to define content and style loss

functions. Both losses are squared error losses. Let p be the content image, a be

the style image and x be the new image that we wish to generate. Let P l and

F l be the content representations of p and x, i.e. their feature representations in

some layer l of the network. The content loss is defined as

Lcontent(p,x) =
1

2

∑
i,j

(F l
i,j − P l

i,j)
2. (2.3)

Let {Al : l ∈ L} and {Gl : l ∈ L} be the style representations of a and x. The

style loss is defined as

Lstyle(a,x) =
∑
l∈L

wlEl (2.4)

where

El =
1

N2
l M

2
l

∑
i,j

(Gl
ij − Al

ij)
2. (2.5)

and where the weights wl regulate the contribution of each layer to the total style

loss (typical values are wl = 1
|L|). The content and style losses are combined to

form the total loss function

Ltotal(p, a,x) = αLcontent(p,x) + βLstyle(a,x). (2.6)

where the weights α and β regulate how much emphasis is placed on reconstructing

the content or the style during the stylization process.
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Image optimisation

To transfer the style of an image a (for example, an artwork) onto the content of

another image p (for example, a photograph), a new image x that simultaneously

matches the content representation of p and the style representation of a is syn-

thesised. This is achieved by iteratively updating the new image x, initialised to

be white noise, so as to minimise the total loss Ltotal(p, a,x) (equation 2.6). The

image x is updated via gradient descent using the partial derivatives ∂Ltotal
∂x

which

are calculated using back-propagation.

It is important to note that no neural network is being trained as part of this

process. Rather, a pre-trained network is being used and the image x is being

iteratively updated so that it produces the same feature responses as the content

image p at a certain layer of the network and the same feature correlations as the

style image a at certain layers of the network (figure 2.7).

Figure 2.7: Initialised to be white noise, the new image x is iteratively updated
using gradient descent until it simultaneously matches the content of p and the
style of a.

Gatys et al.’s approach produces aesthetically pleasing results (figure 2.5). The

main advantage of their method is its flexibility - there are no restrictions on the

content and style images used as inputs. The main disadvantage is that it is very

slow. Many forward and backward passes through the network are required to

16



stylize a single image.

2.2.2 Model-optimisation approach

As mentioned, the main disadvantage of the image-optimisation approach to style

transfer is the large computational cost. In [18], Johnson et al. address this

problem by training a feed-forward image-transformation network to approximate

the solution to the image-optimization problem. A content image is then stylised

by a single forward-pass through the image-transformation network.

Figure 2.8: The system consists of two networks. The image transformation fW
network stylizes a content image p with a single forward pass. The loss network is
a CNN pre-trained for object recognition and is used to calculate the content and
style losses during the training of fW .

Johnson et al.’s system consists of two networks - an image transformation

network and a loss network (figure 2.8). As with the the image-optimisation ap-

proach, the loss network is a convolutional neural network pre-trained for object

recognition. It is used to calculate the content and style losses when training the

image transformation network.

The image transformation network fW is a fully convolutional neural network.

It transforms an input image p into an output input image x = fW (p). It is param-

17



eterised by weightsW . Training is carried out on the image transformation network

using gradient descent so as to minimise the expected loss Ltotal (p, a, fW (P)) for

an arbitrary input image p and the chosen style image a, i.e. to find network

weights W ∗ such that

W ∗ = arg min
W

Ep [Ltotal(p, a, fW (p))] (2.7)

where the loss function Ltotal is as defined in equation 2.6. Thus, during train-

ing, a content image p is passed through the image-transformation network. The

output fW (p) is then passed through the loss network and its content and style

representations are extracted. The content loss Lcontent(p, fW (p)) (equation 2.3)

and the style loss Lstyle(a, fW (p)) (equation 2.4) are calculated. Using these losses,

the weights W are updated accordingly using gradient descent. Once training is

complete, an arbitrary content image can by stylized with a single pass through

the image-transformation network.

This model-optimisation approach produces results of a similar quality to the

image-optimisation approach. The main advantage is the significantly improved

speed with only a single forward pass through the image transformation network

required to stylize an image. The disadvantage of the model-optimisation ap-

proach is the reduced flexibility arising from the requirement to train an image-

transformation network for each style.

2.2.3 Depth-aware style transfer

Depth-aware style transfer is an extension of the model-optimization approach

described above and was introduced by Lui and Lai in [21]. It aims to preserve the
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depth structure of the input content image in the stylized output image through

the introduction of a depth loss function. The authors claim that this produces

more desirable style transfer.

Figure 2.9: A pre-trained depth estimation network is added to the architecture
and used to define a depth loss function.

Figure 2.9 illustrates the system architecture. It is the same as that described

in the previous section except for the addition of a pre-trained depth estimation

network φ. This depth estimation network takes an image x as input and outputs

an estimate φ(x) of its depth map. It is used to define the depth loss function

which is the pixel-wise mean squared error between the estimated depth maps of

the original content image p and the stylized image fW (p), i.e.

Ldepth(p, fW (p)) =
1

HW

∑
i,j

(φ(p)ij − φ(fW (p))ij)
2 (2.8)

where the summation is pixel-wise. Thus, the total loss function to be minimised
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when training the image transformation network is now

Ltotal(p, a, fW (p)) = αLcontent(p, fW (p)) + βLstyle(a, fW (p))

+ γLdepth (p, fW (p))

(2.9)

for some weights α, β and γ.

Figure 2.10 illustrates example style transfer outputs without the depth loss

(i.e. the approach of section 2.2.2) and with the depth loss (i.e. the approach of

this section). Using the depth loss clearly results in the spatial structure of the

content image being better preserved during the stylization process. Arguably,

this results in more aesthetically pleasing style transfer.

Figure 2.10: Comparing the impact of the depth loss. The spatial structure of the
content image is better preserved by the stylization process when the depth loss
function is used.

2.2.4 Style transfer for videos

Ruder et al. look at style transfer for videos in [22, 23]. Video style transfer

involves transferring the style from a single style image (for example, a painting)

to an entire video sequence. If the stylized video is to be aesthetically pleasing, the

style transfer must be smooth and consistent between consecutive video frames.

Stylizing each video frame independently using the image-optimisation ap-

proach of section 2.2.1 leads to flickering and inconsistencies between the stylized
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video frames (see middle row of figure 2.11). Even two video frames which appear

very similar are stylized very differently. This occurs as the optimisation process

converges to very different local minima.

Figure 2.11: Video style transfer: Top row: original video frames and style image.
Middle row: Independent stylization of video frames. Bottom row: Stylized frames
using solution of Ruder et al. (Image taken from [23])

Ruder et al. solve this problem by building on the image-optimisation approach

of section 2.2.1 through the introduction of a new initialisation method for the

optimisation process and a new temporal loss function. Their method significantly

improves on the näıve approach of stylizing each video frame independently (see

bottom row of figure 2.11).

A new initialisation

Let p0,p1, . . . ,pn be the original video frames, a be the style image and x0,x1, . . . ,xn

be the stylized video frames that are to be generated. For the first frame, x0 is

still initialised to be white noise. For any subsequent frame, xi is initialised to

be ωi
i−1(xi−1) where ωi

i−1 is the function that warps a given image according to
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the optical flow between the original video frames pi−1 and pi. This means that

any points common to both frames i − 1 and i are initialised with the desired

appearance in xi.

A temporal loss function

A temporal consistency loss function penalises deviations between two consecutive

stylized video frames. For frame i, where i > 0, the temporal consistency loss is

defined to be the pixel-wise sum:

Ltemporal(xi,xi−1) =
∑

ci
i−1 ·

(
xi − ωi

i−1(xi−1)
)2

(2.10)

where ci
i−1 are per-pixel weights defined to be 0 for disoccluded regions and motion

boundaries between the original video frames pi−1 and pi and 1 elsewhere. The use

of the per-pixel weights ci
i−1 means that disoccluded regions and motion boundaries

are excluded from the penalty and can be rebuilt during the optimization process,

while the appearance of the rest of the frame is preserved.

Video frames are stylized in sequential order. The total loss function being min-

imised during the image-optimisation process for frame i is

Ltotal(pi, a,xi) = αLcontent(pi,xi) + βLstyle(a,xi)

+ γLtemporal(xi,xi−1).

(2.11)

for some weights α, β and γ and where Lcontent and Lstyle are as defined in equations

2.3 and 2.4, respectively.

It is worth noting that Ruder et al.’s contributions (a new initialisation method
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and a temporal loss function) can also be incorporated into the model-optimisation

approach to style-transfer discussed in section 2.2.2.
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Chapter 3

Style transfer for light fields

The aim of this project is to apply style transfer to light fields and to evaluate the

results. Applying style transfer to a light field requires us to render aesthetically

pleasing style transfer for each of the light field’s sub-aperture images while also

preserving the light field’s angular structure. We already know that the methods

described in section 2.2 can be used to render satisfactory style transfer for a single

sub-aperture image. Thus, the main challenge for us is to preserve the angular

consistency of the light field during the stylization process.

This chapter describes the new light field style transfer methods that we de-

veloped. The following notation is used throughout the chapter:

1. We denote the original light field that we wish to stylize by lf = {vpi : i =

1, . . . , n} where n is the total number of light field view points and vpi is

the ith view point. These view points are our content images.

2. We denote the style image by a.

3. We denote the stylized light field that we wish to generate by lf ′ = {vp′i :
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i = 1, . . . , n} where vp′i is the ith view point of this stylized light field.

4. We denote by ωj
i the function that warps a given image according to the

optical flow between the original light field view points vpi and vpj.

5. We denote by cj
i the per-pixel weights defined between the original light field

view points vpi and vpj and defined to be 0 for disoccluded regions between

the two view points and 1 elsewhere.

6. The content, style and temporal loss functions, denoted by Lcontent, Lstyle

and Ltemporal are as defined in equations 2.3, 2.4 and 2.10, respectively.

Figure 3.1: Important notation used throughout this chapter.
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3.1 The näıve approach

The first light field style transfer approach tried was to stylize each light field view

point independently using the image-optimization approach described in section

2.2.1. This method acts as a baseline for the rest of our work. The following

algorithm is used to stylize the light field lf .

For i = 1, 2, 3, . . . , n:

1. Initialize vp′i to be white noise;

2. Iteratively update vp′i using gradient descent so as to minimise the loss

function

Ltotal(vpi, a,vp′i) = αLcontent(vpi,vp′i) + βLstyle(a,vp′i). (3.1)

Immediately, we can spot some short-comings with the loss function in equation

3.1. It only incorporates the current view point being stylized and it completely

ignores the angular structure of the light field. Unsurprisingly, this approach does

not preserve the light field’s angular structure. This is illustrated in figure 3.2

which displays two neighbouring view points of the stylized light field. Both view

points exhibit aesthetically pleasing style transfer when considered as independent

images. However, despite the original view points being very similar, the stylized

view points are very different. This occurs as the optimization process converges to

different local minima. It leads to flickering and inconsistencies when the stylized

light field is displayed.
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Figure 3.2: Two neighbouring view points are stylized very differently. This occurs
as the optimization process converges to different local minima. The coloured
boxes highlight some of the inconsistencies

Thus, this näıve approach to light field style transfer does not produce very

good results. Despite rendering aesthetically pleasing style transfer for each view

point, the angular structure of the light field is completely lost.
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3.2 Video style transfer for light fields

The next approach tried was to apply the video style transfer method described

in section 2.2.4 to light fields. A pseudo-video can be constructed from the light

field view points by scanning them in, for example, a snake-like pattern or a spiral

pattern (figure 3.3). Video style transfer can then be applied to this pseudo-video.

Figure 3.3: A pseudo-video can be constructed from the light field by scanning the
view points in, for example, a snake-like pattern or a spiral pattern. Video style
transfer can then be applied to this pseudo-video.

The following algorithm is used to stylize the light field lf using video style

transfer.

Step 1: Create a pseudo-video from the light field view points.

Step 2: Stylize the first frame of the pseudo-video. That is, initialise vp′1

to be white noise and iteratively update it using gradient descent so as to

minimise the loss

Ltotal(vp1, a,vp′1) = αLcontent(vp1,vp′1) + βLstyle(a,vp′1).

Step 3: Stylize the remaining frames of the pseudo-video in sequential order.

That is, for i = 2, 3, . . . , n:
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1. Initialize vp′i to be ωi
i−1(vp′i−1).

2. Iteratively update vp′i using gradient descent so as to minimise the loss

Ltotal(vpi, a,vp′i) = αLcontent(vpi,vp′i) + βLstyle(a,vp′i)

+ γLtemporal

(
vp′i,vp′i−1

)
.

We tried scanning the light field view points in both a snake-like pattern and

a spiral pattern to generate the pseudo-video. Both led to improved results when

compared with the näıve approach (section 3.1), with the snake-like pattern ar-

guably performing better than the spiral pattern.

However, there are still notable problems with this method. While the initiali-

sation and temporal loss ensure that the stylization of two consecutively processed

view points is consistent, the long term consistency of the stylization wears off as

the process moves further along the pseudo-video. For example, when using either

the snake-like or spiral patterns illustrated in figure 3.3, there are inconsistencies

between the stylization of the first view point on the second row and the first view

point on the first row. This is despite them being neighbouring view points in the

light field array.

These issues were partially alleviated using a multi-pass approach. Here, the

stylization process passes over the light field several times with the view point

scanning pattern alternating each pass, for example, between a snake-like pattern

starting in the top-left corner and traversing the view points row-wise and a snake-

like pattern starting in the bottom-right corner and traversing the view points

column-wise. Following the first pass, each view point is initialised to be blend

of its stylized output from the previous pass and non-disoccluded parts of the
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previous view point on the current pass warped according to the optical flow

(i.e. ci
i−1 · ωi

i−1(vp′i−1)) as in [22]. While this multi-pass approach did improve

performance, it led to significant increases in computational time.

3.3 A better approach

The previous two light field style transfer approaches (sections 3.1 and 3.2) were

just style transfer methods designed for other purposes (i.e. images and videos)

adapted for light field application. In this section we present our novel style transfer

approach which is tailored specifically for light fields. The basic idea is to propagate

the style outwards from the central view point while always ensuring that angular

consistency is preserved (figure 3.4). We achieve this through the introduction of

a new initialisation method for the image-optimisation process and a new angular

loss function.

Figure 3.4: Starting with the central view point, the style transfer is propagated
outwards while always ensuring that angular consistency with previously stylized
view points is preserved.
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In general terms, the basic algorithm is as follows:

Step 1: Stylize the central view point;

Step 2: Stylize the view points surrounding the central view point while

preserving angular consistency with the central view point;

Step n: Stylize the next outer most view points while preserving angular

consistency with neighbouring view points stylized at step n− 1.

Step 1 is straight-forward - we stylize the central view point using the image-

optimisation approach of section 2.2.1. For all other view points we extend this

image-optimisation approach to incorporate our new initialisation method and

angular loss function.

A better initialisation

White noise initialisation is still used for the central view point. For all other view

points j, we warp each previously stylised neighbouring view point vp′i according

to the optical flow between vpi and vpj. We then initialise vp′j to be a weighted

sum of these warped view points. More formally, we initialise vp′j according to

vp′j =
∑
i∈P

wiω
j
i (vp′i) (3.2)

where P be the set of neighbouring view points that have already been stylized.

When choosing the weights wi, greater weight is given to horizontal and vertical

neighbours than to diagonal neighbours. Figure 3.5 illustrates the initialisation

process.
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Figure 3.5: Initialisation of vp′j for the image-optimisation process: Each previ-
ously stlylized neighbouring view point vp′i is warped according to the optical flow
between vpi and vpj. Then vp′j is initialised to be a weighted sum of these warped
stylized view points.

An angular loss

We define the angular loss for the jth view point to be:

Langular(vp′j) =
∑
i∈P

(∑
pixels

cj
i ·
(
ωj
i (vp′i)− vp′j

)2)
(3.3)

where the inner summation is pixel-wise and again P is the set of neighbouring

view points that have already been stylized. This angular loss penalises deviations

between neighbouring stylized view points of the light field. The use of the per-

pixel weights cj
i means that disoccluded regions between the nieghbouring view

points are excluded from the penaliser. Figure 3.6 illustrates the construction of

the angular loss for a sample view point.
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Figure 3.6: Angular loss for vp′j: For each previously stylized neighbour vp′i, we

get the pixel-wise summed squared error between ωj
i (vp′i) and vp′j. This pixel-

wise sum is weighted by the per-pixel weights cj
i . This is repeated for each previ-

ously stylized neighbour and the results are summed to get the total angular loss
Langular(vp′j).

Thus, to stylize a view point j (where j is not the central view point), we first

initialise vp′j according to equation 3.2. We then use gradient descent to iteratively

update vp′j so as to minimise the total loss function

Ltotal(vpj, a,vp′j) = αLcontent(vpj,vp′j) + βLstyle(a,vp′j)

+ γLangular(vp′j)

(3.4)

for some weights α, β and γ.

Together, our new initialisation method and angular loss function help to pre-

serve the angular structure of the light field during the stylization process. We

will see later that our method produces significantly better results than the näıve

baseline method of section 3.1.
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Implementation details

Similar to Gatys et al. [9], we use the VGG19 network [25] to construct the content

and style representations of images. The VGG19 network is a deep convolutional

neural network pre-trained for object recognition. Also similar to Gatys et al.,

we use the output from layer conv4 2 to construct the content representation of

an input image and the output from layers conv1 1, conv2 1, conv3 1, conv4 1

and conv5 1 to construct the style representation of an input image.1 This is in

accordance with the definitions given in section 2.2.1 for the content and style

representations of an image.

As used by Ruder et al. [22, 23] for their video style transfer, we use Deep-

Matching [28] and DeepFlow [29] to calculate the optical flow ωj
i between the light

field view points vpi and vpj. DeepMatching is a matching algorithm for com-

puting dense correspondences between two images. DeepFlow uses DeepMatching

to calculate the optical flow between two images.

The weights cj
i are calculated using a consistency check of the forward optical

flow and the backward optical flow. Similar to Ruder et al. [22, 23], we use the

consistency check provided in [26]. The check is based on the fact that in non-

disoccluded regions the backward flow vector should point in the inverse direction

as to the forward flow vector

3.4 Depth-aware style transfer for light fields

This section presents an alternative depth-aware approach to light field style trans-

fer. It is inspired by the depth-aware style transfer for traditional two-dimensional

1convi j is the jth convolutional layer of the ith convolutional block of the network.
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images outlined in section 2.2.3. The angular consistency of the light field is pre-

served during the stylization process through the introduction of a depth loss func-

tion which preserves the depth structure of the original light field in the stylized

light field.

Unlike our previous light field style transfer method (section 3.3) which uses

the image-optimisation approach, our depth-aware light field style transfer method

uses the model-optimisation approach, i.e. a transformation network is trained to

approximate the solution to the image-optimisation problem. Also unlike our

previous method which processes the light field one view point at a time, this

depth-aware approach processes the entire light field in one go. It follows that we

now have loss functions defined for an entire light field rather than for single view

points.

Figure 3.7: Network architecture for depth-aware light field style transfer: The
system consists of 3 networks - a transformation network which reads in a light
field and outputs the stylized light field and two pre-trained loss networks used for
training the transformation network.

Figure 3.7 illustrates the system architecture. It consists of three networks

35



- a transformation network and two pre-trained loss networks. The transforma-

tion network fW takes a light field lf as input and outputs the stylized light field

fW (lf) = {fW (vpi)|i = 1, 2, . . . , n}. It is parameterised by weights W . Once

again, the content and style losses are calculated using a CNN pre-trained for ob-

ject recognition. The content and style losses for the entire light field are obtained

by summing the content and style losses of the individual view points. A depth

loss is defined using a pre-trained light field depth estimation network φ which

takes a light field lf as input and outputs an estimate φ(lf) of its depth map. The

depth loss is then the pixel-wise mean squared error between the estimated depth

maps of the original and stylized light fields, i.e.

Ldepth(lf, fW (lf)) =
1

HW

H,W∑
i,j=1

(φ(lf)i,j − φ(fW (lf))i,j)
2 (3.5)

The total loss function for a light field lf is therefore

Ltotal (lf, a, fW (lf)) = α
n∑

i=1

Lcontent(vpi, fW (vpi)) + β
n∑

i=1

Lstyle(a, fW (vpi))

+ γLdepth (lf, fW (lf))

(3.6)

for some weights α, β and γ. Training is carried out on the transformation network

fW to find weights W so as to minimise the expected loss Ltotal (lf, a, fW (lf)) for

an arbitrary input light field lf and the chosen style image a. Thus, during training

all of the light field view points are passed through the transformation network.

Only after all of the view points have been processed, and the style, content and

depth losses for the entire light field have been calculated, are the network weights
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W updated via gradient descent.

Implementation details

Similar to Johnson et al. [18], we use the VGG16 network [25] to calculate the

content and style losses. Layer conv2 2 is used to construct the image content

representations, while layers conv1 1, conv2 2, conv3 3 and conv4 3 are used to

construct the style representations.2

For the depth loss network we use EPINET [24] which, as mentioned in section

2.1.2, is a fully-convolutional neural network for light field depth estimation.

For the transformation network we use the same architecture as used by John-

son et al. [18] for their image transformation network for stylizing single im-

ages (section 2.2.2). It follows that the stylized light field fW (lf) is given by

fW (lf) = {fW (vpi)|i = 1, 2, . . . , n}. A possible area for further research would

be to consider alternative architectures, possibly more suited to light field appli-

cations, for the transformation network.

2convi j is the jth convolutional layer of the ith convolutional block of the network
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Chapter 4

Results and Evaluation

In this chapter we evaluate the performance of our light field style transfer methods

as described in the previous chapter.1

As mentioned in section 2.2, style transfer is not a well-defined problem and

this makes evaluation difficult. When evaluating style transfer algorithms there

is a three way trade-off between quality, speed and flexibility. However, in this

project we only focused on the quality of the style transfer and so this is the focus

of our evaluation. While loss functions (for example, for style and content) can be

used as metrics to put a numerical value on style transfer quality, it is arguable

that the most important criteria when evaluating style transfer quality is that it

is aesthetically pleasing to look it. If this is so, then subjective evaluation makes

the most sense when evaluating style transfer quality.

As mentioned previously, the main challenge with light field style transfer is to

1All implementations were done in Python and use the PyTorch library. All of
our code is available in the GitHub repository associated with the project. See
https://github.com/doegan32/Light-Field-Style-Transfer. Videos illustrating some of our results
are also available in this GitHub repository. These videos are helpful for subjective evaluation
of our results.
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preserve the angular consistency of the light field. However, there are no readily

available metrics to evaluate the angular consistency of an edited light field and

so subjective evaluation is required here.

Given the difficulties in evaluating both style transfer and edited light fields,

it follows that evaluating light field style transfer is not a straight-forward task.

4.1 Evaluation of light field style transfer using

our new initialisation method and angular

loss

In this section we evaluate our light field style transfer approach from section 3.3,

i.e. propagating the style outwards from the central view point and using our new

initialisation method and angular loss function to preserve angular consistency.

We evaluate its performance against the näıve baseline approach from section

3.1, i.e. stylizing each view point independently. There are three parts to our

evaluation. First, we do a subjective evaluation of the aesthetic quality of the

style transfer (subsection 4.1.1). Then we use epipolar plane images to examine

our approach’s ability to preserve the angular structure of the original light field

(subsection 4.1.2). Finally, we look at how well our approach preserves the depth

structure of the original light field (subsection 4.1.3). We use three example light

fields for the evaluation, namely the herbs and table light fields from the HCI 4D

Light Field Dataset [13] and the lego knights light field from the (New) Stanford

Light Field Archive [1].
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4.1.1 Subjective/aesthetic evaluation

Figure 4.1 displays subsets of the outputs (five neighbouring view points from the

middle row of the light field array) from the baseline approach and our approach for

each of the three sample light fields. For each light field, the top row was stylized

using the baseline näıve approach, while the bottom row was stylized using our

approach.

When considering the light field view points as independent images, both ap-

proaches produce results of a similar quality. However, our approach clearly leads

to more consistent style transfer between the view points. The coloured boxes high-

light just some of the inconsistencies in the outputs from the baseline approach.

As mentioned in section 3.1, these inconsistencies arise as the image-optimisation

process converges to different local minima.

Although significantly better, there are still some minor issues with the outputs

from our approach. These mainly relate to inconsistencies in the stylization of finer

structures and occlusions such as the plant leaves in the herbs light field and the

arm of the lamp in the table light field.2

2Inconsistencies within each output and differences between outputs are more easily identified
in the videos on the project GitHub page.
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(a) Herbs light field from [13].

(b) Lego Knights light field from [1].

(c) Table light field from [13].

Figure 4.1: For each light field the top row has been stylized using the baseline
method, while the bottom row has been stylized using our method with our new
initialisation and angular loss. The coloured boxes highlight some of the inconsis-
tencies in the baseline method. Each row displays five neighbouring view points
from the middle row of the light field array.



4.1.2 Evaluation using epipolar plane images

As mentioned in subsection 2.1.1, epipolar plane images (EPIs) are a useful tool

for visualising the angular structure of a light field.

Figure 4.2 displays example epipolar plane images for each of the three sample

light fields. For each light field, the top row shows horizontal EPIs and the bottom

row shows vertical EPIs.3 The EPIs on the left correspond to the original light

field, the EPIs in the middle correspond to stylization using the baseline method

and the EPIs on the right correspond to stylization using our approach.

For each of the three light fields, we can see that the EPIs for the baseline

method are quite noisy. This noise corresponds to the inconsistencies or flickering

that we observe when we cycle through the stylized view points. In comparison,

the EPIs corresponding to our approach are quite similar in structure to those of

the original light fields. This illustrates the fact that our approach is much better

at preserving the angular structure of the original light field.

However, there are still some slight issues with our approach. As mentioned in

the previous section, these mainly correspond to finer structures and occlusions in

the light field scene. For example, in the vertical EPIs for the original herbs light

field (bottom left of figure 4.2a) we can see an almost horizontal green line crossing

over the other zig-zagged green lines. This structure corresponds to the leaves of

the plant and it is almost completely lost in the vertical EPIs for our approach

(bottom right of figure 4.2a). Similarly, in the vertical EPIs for the original table

light field (bottom left of figure 4.2c) the black zig-zag pattern corresponds to the

3While the formal definition of horizontal (vertical) EPIs is to take rows (columns) from view
points in a single row (column) of the light field array, here we stack together the EPIs for all
rows (colomns) of the light field array as if they were scanned in a snake-like order.
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arm of the lamp. This structure is almost completely lost in the vertical EPIs for

our approach (bottom right of figure 4.2c). Our approach was unable to properly

preserve these fine occlusions.
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(a) Herbs light field from [13].

(b) Lego Knights light field from [1].

(c) Table light field from [13].

Figure 4.2: Evaluating the angular structure of the stylized light fields. For each
light field, the top row shows example stacked horizontal EPIs, while the bottom
row shows example stacked vertical EPIs.



4.1.3 Evaluation using depth estimation

Figure 4.3 shows three estimated depth maps for each of the sample light fields.

On the left are the estimated depth maps for the original light fields, in the middle

are the estimated depth maps for the light fields stylized using the baseline method

and on the right are the estimated depth maps for the light fields stylized using

our approach. All depth maps were estimated using EPINET [24].

For each of the three sample light fields, the estimated depth map for the

baseline method is extremely poor with the light fields’ depth structure being

completely destroyed. In comparison, our approach is significantly better at pre-

serving the depth structure of the original light field. Given that EPINET uses the

epipolar geometry of the light fields to estimate the depth maps, this illustrates

that our approach is significantly better at preserving the epipolar geometry (and

thus the angular structure) of the light fields. However, once again, we can still

see some issues with our approach. For example, some detail is lost with fine oc-

clusions and structures such as the leaves on the plants in the herbs light field and

the arm of the lamp in the table light field.
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Figure 4.3: Light field depth map comparison. Top row: Herbs light field from
[13]. Middle row: Lego Knights light field from [1]. Bottom row: Table light field
from [13].

4.2 Evaluation of depth-aware light field style

transfer

As mentioned in section 3.4, our depth-aware light field style transfer method

requires us to train a transformation network which processes the entire light

field in one go. This has a high computational cost and due to limitations in the

hardware available to us we were unable to complete this. However, we did achieve

some preliminary results testing the process on a single light field with reduced

angular and spatial resolutions.

We reduced the angular resolution of the input light field to 5× 5. This is the

minimum angular resolution required by the EPINET network that we used to
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define the depth loss function.

We first reduced the spatial resolution to 128 × 128 by downsampling. This

signifcantly reduces the quality of the light field. Figure 4.4a shows a stylized

downsampled light field. We can see that the result is not very stylized. Possible

causes for this could be a bad choice of weights in the loss function, not enough

training, or perhaps the reduced quality of the input caused the style and content

loss network to fail. There are also inconsistencies in the stylization between the

view points.4 A possible cause for this could be a reduction in the quality of the

depth estimation network’s performance arising from the poor quality input.

We then tried reducing the spatial resolution to 128×128 by cropping the light

field. Figure 4.4a shows a stylized cropped light field. Once again, the result is not

very stylized. However, the stylization between the view points is more consistent

than for the downsampling approach.

4These inconsistencies are not very obvious in figure 4.4a. They are more easily identified
when dynamically cycling through the view points (see videos on the project GitHub page).
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(a) (b)

Figure 4.4: For both experiments, the angular resolution of the light field was
reduced to 5 × 5. For (a) the spatial resolution was reduced to 128 × 128 via
downsampling. For (b) the spatial resolution was reduced to 128×128 by cropping
the light field.

While we did not achieve results with our depth-aware light field style transfer

to match the quality of the results of our earlier approach from section 3.3 (i.e.

using the image-optimisation approach with our new initialisation and angular

loss), the preliminary results achieved here for the cropped light field illustrate

the potential for the depth-aware approach to light field style transfer. With

better hardware, more training could be carried out on better quality light fields.

This could produce significantly better results. Also, as mentioned in section 3.4,

an area of further research could be to look into different network architectures,

possibly more suited to light field applications, for the transformation network.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The goal of this project was to apply neural style transfer to light fields. We first

carried out a review of light field imaging and of existing style transfer methods for

traditional two-dimensional images and videos. We adapted these existing style

transfer methods to be able to apply them to light fields. After observing the

shortcomings of these methods when applied to light fields, i.e. their inability to

preserve the angular structure of the light field, we built upon them to develop

our new approach for light field style transfer. With this new approach, the centre

view point of the light field is stylized first. The style is then propagated outwards

while always ensuring that the angular consistency of the light field is preserved.

This is achieved through the introduction of a new initialisation method and an

angular loss function for the image-optimisation process.

We evaluated our method against the näıve baseline approach of stylizing each

light field view point independently. We saw that our method significantly outper-
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forms this baseline approach according to all criteria evaluated. Despite this, we

also observed that our method still has room for improvement when dealing with

the finer structures and occlusions of a light field scene.

We also presented an architecture for a depth-aware approach to light field style

transfer. With this approach the entire light field is processed in one go rather

than one view point at a time. A pre-trained light field depth-estimation network

is used to define a depth loss function. This depth loss function is used to preserve

the depth structure and hence the angular structure of the light field during the

stylization process. While we have not yet achieved results with our depth-aware

method to match the quality of the results from our first light field style transfer

method, the preliminary results achieved suggest that the depth-aware approach

has the potential to produce high quality light field style transfer.

5.2 Limitations and future work

The following list outlines some limitations of our work and some possible direc-

tions for future work.

1. Our work was focused solely on achieving high quality light field style trans-

fer. We did not focus on the efficiency of our method. It is computationally

very slow. Future work could look at ways to speed up the process.

2. All of our evaluation methods were subjective. We did not have any quanti-

tative evaluation. Numerical metrics for quantitatively evaluating light field

style transfer could be developed. For example, in [3, 6] the authors propose

metrics for evaluating the angular consistency of light fields. Such metrics
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could be incorporated into a quantitative evaluation of light field style trans-

fer methods.

3. The implementation of our depth-aware light field style transfer is incom-

plete. With better quality hardware more training could be carried out on

higher quality light fields. Also, as mentioned earlier, it would be worth

looking at alternative architectures, possibly more suited to light field appli-

cations, for the transformation network.

4. If the depth-aware approach produces high quality light field style transfer,

a subjective evaluation campaign could be organised to evaluate the results

against those from our first light field style transfer method.

5. The light field style transfer approaches looked at in this project all look to

stylize the sub-aperture images while simultaneously trying to preserve the

light field’s angular structure. An alternative approach, which may better

preserve the angular structure, could be to look at stylizing the epipolar

plane images instead. However, covolutional neural networks pre-trained for

object recognition could most likely no longer be used here. An alternative

would need to be found.
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