
Estimation of Clusters based on

Decision Latency in High Frequency

Trading

Tanmay Bagla

Supervised by Professor Khurshid Ahmad

September 2020

A Dissertation report

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Data Science)

School of Computer Science & Statistics

Trinity College Dublin, Ireland



Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this or

any other university and it is entirely my own work.

Tanmay Bagla

September 11, 2020

I



Permission to Lend or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon

request.

Tanmay Bagla

September 11, 2020

II



Acknowledgments

Firstly, I would like to articulate my sincerest gratitude to Professor Khurshid Ahmad,

whose constant encouragement was essential in making this thesis a reality. His in-depth

knowledge and vast experience in the field of computer science and statistics helped me

solidifying my concepts and overcome difficulties faced in this research. Without his

contribution results would not look as promising as they are now.

Secondly, I am grateful to Professor Simon Wilson for his time and valuable suggestions

on the improvement of this research. A big credit goes to the Department of Computer

Science and Statistics, Trinity College Dublin, for providing me with adequate cloud

infrastructure to work on my thesis.

Lastly, I am grateful to my family for supporting me during my MSc program at Trinity

College Dublin and special thanks to my colleague Mr Vishal Kumar for helping me with

all the technicalities of Latex.

Tanmay Bagla

III



Abstract

One of the critical factors to evaluate a system or network performance is latency. La-

tency is how fast a system responds to the input requests. Within the financial market low

decision latency means high-profit margins. Decision latency means that in a streaming

data environment where people have to make decisions within a unit interval of time (by

the second, minute, hour, and so on), the decision relates to the delivery of a result well

before the next data arrives.The other challenge financial institutions face is scalability.

With changing size of the incoming data, it is not easy for people to make real-time,

accurate decisions. Scalability is the ability of the computing system to handle change in

the size of the data while solving complex problems.

This dissertation aims to provide a big data architecture that focuses on providing so-

lutions to both problems of scalability and latency. Based on the decision latency and

the volume of the data, this research will provide estimations of the computing clusters.

The key results states that the average reduction in decision latency on switching the

computation from modeling time dependent volatility to descriptive statistics is a whop-

ping 105.97%. This means that the time it takes to compute time dependent volatility

is almost double the time it takes to compute historical volatility through descriptive

statistics. In both cases, it is common to see that the speed at which the performance in

execution is improved is decreasing with an increase in the size of the input dataset.This

is worth noting that the solution to the problem of scalability is the solution to the prob-

lem of latency itself. As scaling the size of computing machines or clusters will handle

latency issues for both storage and processing of big data.

Keywords: Decision Latency, High Frequency Trading, Big Data, AWS, Spark, Time

Series, Parallel Computing, volatility, ARCH, GARCH

Word Count: 21130
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Chapter 1

Introduction

1.1 Overview

In today’s fast-moving, data-driven economic environment, it is highly significant to make

responsible and accurate decisions within a quick interval of time. In High Frequency

Trading (HFT), the frequency of the data is so high that it is difficult for a human trader

to make decisions in seconds or even in milliseconds. High Frequency Trading is a type

of algorithmic trading that relies on cutting-edge technology infrastructure to strive in

terms of fast turnover rates that exploit large volumes of financial information. (Aldridge,

2013). Speed is critical for traders because of the fundamental intrinsic uncertainty of the

securities called volatility, and (De Luca, 2006) volatility plays a crucial role in decision

making for risk management, asset allocation, and asset pricing. A millisecond decline in

a decision latency may support an HFT firm’s revenue by around 100 million each year,

furthermore encourages a firm to increase incredible rivalry advantage (Shamgar, 2014).

To compete for speed, which creates more and more profit, HFT firms locate computers

close to the trading exchanges with a motive to reduce the latency of order submissions.

Moreover, the high frequency time series allows us to learn how prices react to dynamic

information.

The concept of decision latency alludes to the way that in a real-time streaming data

environment, we need to settle on accurate financial decisions within a unit time period
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Chapter 1

(constantly, moment, hour, etc.) before the data arrives in the next interval. Decision

latency intends to measure the response time engaged with a decision to trade in response

to a market event that is very informative to the HFT firms (Baron et al., 2018). Typi-

cally, the decisions are based on the rapid fluctuation of data streams such as the price of

stocks or commodities, temperature in a plant, brain waves, and so on. This fluctuation

is an indication of risk, which can result in a huge loss of investment. In work presented

here, volatility is modelled to forecast risk in a minute interval HFT environment.

Oxford dictionary defines volatility (France, 1792) as flightiness or a lack of steadiness.

In the financial market, volatility is the statistical measure of price variability over a

definite period of time. It can be related to a stochastic number of intraday price revisions.

(Stephen J Taylor, 2007). The asset returns are one of the most important characteristics

to measure market risk (Ladokhin, 2009). The asset returns are considered to be random

variables. These returns fluctuate unevenly with a spread termed as volatility, which

is used extensively in many financial applications such as pricing financial derivatives

and portfolio risk management. With HFT more observations enable us to and forecast

volatility, which benefits both the derivatives trader and portfolio managers. Quantitative

models are used to forecast valuable market trends and are used widely in financial

institutions. The enthusiasm for high frequency information was, to a great extent,

provided by (Andersen and Bollerslev, 1998), who utilized the concept of realized variance

to show that standard volatility models can be used perfectly to deliver accurate forecasts.

There are immense opportunities in HFT, but in order to utilize those opportunities,

intraday volatility patterns need to be modelled accurately.

Modelling intraday volatility requires storing and analyzing huge volume of data gen-

erated over minutes, seconds, or milliseconds interval. This is the reason we need big

data processing systems that allow quick retrieval of real-time data, secured storage, and

high-speed computation. Today with the advent of unstructured data such as news in

the form of audio, video, social media posts, and articles, there is a dire need of creating

a big data pipeline, which can be fed into algorithms to make accurate decisions.

Though the concept of big data is relatively new, the origin of larger datasets goes back to

the 1960s and 1970s with the development of data centers and relational databases. The

need to analyze big unstructured data rose in 2005 when more and more users started
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Figure 1.1: Minute Intraday Returns of S&P 500 Mini Futures from the

year 2010 to the year 2019. Total number of data points in this 1 minute

dataset is nearly 3.4 million. Normally at points where returns are more than

4% or 5% above or below zero (mean) accounts for high intraday volatility.

onboarding to social media platforms such as Facebook, YouTube, Twitter, etc(Big Data,

Oracle Ireland 2020). At the same time span, the big data parallel computing framework

called Hadoop was developed and attracted huge popularity amongst big tech companies.

Hadoop made storing and processing of big data a lot easier. Apache Hadoop is an open-

source big-data framework providing a platform for handling large data sets through

distributed storage and processing (Peng, 2019).

(Gartner, 2012) Big Data is high-volume, high-velocity, or high-variety information as-

sets that demand cost-effective, innovative forms of information processing that enable

enhanced insight, decision-making, and process automation.

Other than in HFT, big data also accounts for tracking illegal market activity such as

money laundering, financial frauds, illegal trading, etc. The five V’s of big data are

Volume, Velocity, Value, Variety, and Veracity, as shown in Figure 1.2.

• Velocity – How quickly is the information changing, or data is flowing?

• Veracity answers the question if the data is clean and accurate? What is the source

of the data?
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• Volume is the base of big data, which is nothing but a huge chunk of data coming

from various sources.

• Variety is the information flowing from different sources of data in various formats,

such as structured and unstructured.

• Value is the ability to transform big data into business decisions.

Figure 1.2: Five V’s of Big Data.

Today with more and more data getting generated from IOT devices or social media

platforms, migration from a local file storage system or legacy systems to cloud based

data systems has become the need of the hour.

Oxford dictionary defines Cloud Computing (Guardian, 2008) as the use of networked

facilities for the storage and processing of data rather than a user’s local computer. Cloud

computing has been very useful in solving big data problems by providing offsite shared

servers hosted on the internet for storage, computing, networking, and analysis. These

resources provide a scalable and cost-efficient solution. IBM defined cloud computing as

the delivery of on-demand computing resources (Huttunen et al., 2019). This paper deals
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with using cloud Infrastructure as a Service (IaaS) to solve latency and scalability issues

in HFT. IaaS is where Cloud Computing providers invest huge capital in developing High

Performance Computing (HPC) infrastructure that is then made accessible to their clients

on a “pay for what you need” basis (O’Driscoll, Daugelaite, and Sleator, 2013). Amazon

Web Services (AWS) capture 70% of the total IaaS market and provide highly scalable

infrastructure to its customers. Major services used in this research are S3 bucket for

storage, EMR clusters for cluster computing integrated with Apache Spark for parallel

processing, and real-time structured streaming using Kinesis (Varia and Mathew, 2014).

1.2 Research Objective

In order for an algorithm to take a trading decision in an HFT environment with infor-

mation streaming at such a fast speed from different sources in different formats, there

should be a standard secured cloud-based infrastructure. Here I am building an archi-

tecture that solves two key problems of big data, i.e., scalability and latency in HFT

environment. This infrastructure is then used to compute historical as well as time de-

pendent volatility before estimating clusters based on their execution time. The time it

takes to calculate a volatility adds to the latency or delay in producing the results. The

system will have less than 1 minute to compute, provide results and take trading decision

before the next data arrives.

This research aims to reduce the latency by using a highly advanced open-source dis-

tributed general-purpose cluster-computing framework called Apache Spark. The impli-

cations of this research can be beneficial to researchers, econometricians, financial analysts

or traders facing issues of latency and scalability in a HFT environment.

There are two key points worth noting before moving ahead in this research. Firstly,

the whole focus is on calculating decision latency and not on network latency. Network

latency 1 is the time it takes for data to go from the source, such as stock exchange or

data providers, to the destination, such as the end-users. Decision latency is the time

it takes by a computing machine to execute a certain program. Secondly, the big data
1https://en.wikipedia.org/wiki/Latency_(engineering)
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architecture is deployed in the research field of finance, which can just be considered an

illustrative research application for measuring latency. The research application is chosen

as finance because of the two key problems financial analysts, traders, or researchers

face, i.e., latency and scalability, which can both be answered by the designed big data

architecture.

1.3 Research Challenges

Challenges faced while implementing the big data solutions in HFT are:

1. Finding literature that covers issues of decision latency in High Frequency Trad-

ing or which incorporates big data cloud-based solutions to perform real-time risk

analysis using time-dependent volatility models.

2. Searching stable 1-minute high frequency big dataset.

3. Finding powerful computing resources due to the unavailability of university com-

puting resources because of the Covid19 pandemic.

4. Choosing real-time streaming platform best suited for low latency architecture.

5. Fitting GARCH models that best fit the High Frequency data for modelling volatil-

ity.

6. Evaluating the accuracy of the volatility models due to limited knowledge in the

research application, i.e., high frequency trading.

1.4 Contributions

Summarizing the key contributions as below:

1. Researched existing implications of Big Data in HFT, such as latency and scaling.

2. Studied existing big data cloud-based architectures in the area of HFT.
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3. Collection of exemplar time series futures data representing stable market.

4. Set up a cloud-based architecture to perform real-time analysis, including risk com-

putation of a high frequency time series in a unit time interval.

5. Estimation of parallel computing clusters based on decision latencies observed on

risk computation on a different scale of data inputs and different sizes of clusters.

1.5 Research Progression

This research started last year in September 2019 when under the guidance of professor

Khurshid Ahmad, I started generating synthetic data using the Monte Carlo simulation

technique, fulfilling the need for Big Data to analyze historical volatility in 5-minute

high frequency returns of SPY ETF through standard deviation. Standard deviation is

considered a most efficient measure of volatility when returns are under five standard

deviations around the mean. But when the data is used for making decisions in HFT

at a minute by minute interval, model certainty needs to be accurate, and the certainty

of the results cannot be dependent on the sampled data. Also, in a real-time trading

environment, when the standard deviation keeps changing, it is not a good idea to use

standard deviation as a measure of volatility. Instead, time series econometric volatility

models need to be taken into account for more accurate risk predictions. The idea started

with the need to research the availability of real-time high frequency 1-minute data, which

then got extracted through API from a trusted web source called IEX cloud.

With a couple of weeks lost in March due to travel emergencies, there was a halt in

research progression. In April, when I started with the analysis of real-time data, my

laptop couldn’t handle the processing of 3 million datasets. As the machines at the

university were unavailable due to Covid19, Professor John Dingliana, the course director

at the School of Computer Science and Statistics, helped me in providing with AWS

credits. Finally, with big data in hand and the availability of trusted cloud resources

allowed me to pursue this research under the guidance of Professor Khurshid Ahmad.

Summarizing the study aims to estimate the number of clusters based on the decision
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latency received while computing light and heavy volatility models and data availability

in a High Frequency Trading system.

1.6 Thesis Structure

This section introduces the challenges faced by traders in making real-time decisions and

how big data tools can provide a solution to these challenges. It introduces the problem to

the readers. It discusses the key research objectives, contributions made, and challenges

faced. Also, the research progression provides a brief idea of the journey of this study

from start to end. The next of the chapters are organized as below:

Chapter 2 – This chapter divides the literature into three sections, High Frequency

Trading and its challenges, need for big data solutions, and risk estimation techniques.

It presents the readers with the key tension areas in this research application, along with

the available resolutions. It also discusses the key methods and substantial results of

existing literature in the area of big data in finance.

Chapter 3 – The design of the system architecture is presented and explained in brief

in this chapter, which summarizes the key methods in the area of distributed computing

frameworks such as Hadoop and Spark, cloud computing resources by AWS (Amazon Web

Services), and time series volatility models. Other methods involved in the architecture,

such as real-time streaming, risk estimation techniques, stylized facts for financial returns,

are also discussed here. It also presents Python packages used while computing these

methods.

Chapter 4 – This chapter dives deep into the implementation of the methods described

in Chapter 2, followed in a way as given in the architecture. Some of the main methods

implemented in this section are a collection of exemplar time series from IEXCloud, both

historical and real-time, big data storage, parallel computing framework Apache Spark,

security configuration, and decision latency. Lastly, a screenshot of the interface where

the program is running is shown.

Chapter 5 – This chapter evaluates the architecture and provides results on the relation
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between decision latency with different sizes of clusters on a different scale of data inputs.

It starts with proving the three stylized facts for financial returns on intraday futures

data.Then results of each experiment are discussed along with the detailed analysis of

the computation time, i.e., decision latency on a different scale of data and sizes of

clusters.

Chapter 6 – The chapter discusses the conclusion and contributions of this study. A

discussion of the limitations of the work is presented along with the potential future

works.

1.7 Conclusion

This research focuses on providing computational solutions to big data problems that

traders, analysts, or researchers face in making decisions in High Frequency Trading.

The vast literature on HFT suggests that traders are not concerned with real-time deci-

sion making. They may be concerned about network latency, but decision latency has

never been a topic of discussion. This may be due to the unavailable distributed com-

puting architecture. To fill this gap between computing and finance, this study focuses

only on decision latency. With decision latency observed in different scenarios, the num-

ber of computing clusters is estimated. Two experiments, one with descriptive statistics

and another one with heavy time-dependent volatility models, are taken as methods for

calculating risk. High Frequency 1-minute returns of S&P 500 Mini Futures 2 are taken

for this research. Results are showing that with an increase in the size of the data, the

improvement in decision latency reduces. This is observed on each different size of clus-

ters, i.e., 2,4 and 8. More observations are presented in Chapter 5.

2https://www.investopedia.com/terms/s/sp_500_mini.asp
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Motivation and Literature Review

2.1 Introduction

Previous discussions in Chapter 1 were mainly focused on introducing fundamental con-

cepts of High Frequency Trading, decision latency, volatility, and big data. It highlighted

how big data had solved significant challenges in HFT in terms of scaling and latency.

It also explained the need for using cloud technology solutions for distributed comput-

ing. The motive of the chapter was to summarize the need for an infrastructure that

improves the existing HFT trading pipeline.The research question, objectives, along with

the challenges were discussed.

This chapter provides detailed knowledge of all the concepts described in the introduction.

A literature review of the critical developments and innovation in the field is discussed

and critiqued. Lastly, the motivation of the research highlighting the importance and

implications is presented.

This chapter is divided into three sections. The first section will provide in-depth knowl-

edge of the evolution, background, existing computational challenges in High Frequency

Trading. The second section will cover the need for big data solutions in financial ana-

lytics, along with a brief understanding of the existing financial business cloud for high

frequency trading. Lastly, the third section will cover risk estimation techniques. Differ-

ent interpretations of volatility are studied along with non-linear volatility models such

as ARCH and GARCH.
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2.2 High Frequency Trading

2.2.1 Evolution of high frequency trading

Before the era of computing, traders used career pigeons to arbitrage prices of the same

security by relaying information ahead of their competitors. Telegraph cables then follow

this strategy for exchanging information. In the 19th century Julius Reuter, the founder

of Thomson Reuters, combined the use of telegraph cables and a fleet of carrier pigeons to

run a state-of-the-art news delivery system. This was the innovation that revolutionized

the speed at which news got delivered to the public. In 1980, the use of computers allowed

traders to access data at a rate never seen before. With an investment of $30 million

from Merill Lynch, Bloomberg designed the first computer that can perform real-time

market operations quoting stock prices and can relay information. By the late 90s, the

SEC gave permission to create electronic stock exchanges. This laid the foundation for a

new type of trading: High Frequency trading or HFT (Kirilenko et al., 2011).

In 1983 NASDAQ presented a complete electronic trading system, which allowed the

computers to start High Frequency Trading, which later developed gradually into its

advanced stage. In the early 2000s, HFT accounted for less than 10% of equity orders,

but this has proliferated (Goldstein, Kumar, and Graves, 2014). By the year 2001, HFT

had an execution time of seconds, which kept reducing. As per NYSE, between 2005

to 2009, HFT volume increased by 164%. By 2010, the execution time had shrunk to

milliseconds and later in the year, went to microseconds.

2.2.2 The role of speed in HFT

The faster the response of the event, more is the return. This is the reason event arbitrage

strategies work profitably with HFT (Aldridge, 2013). The phrase ‘time is money’ neatly

captures the business model of figh frequency traders” (Ladley, 2020). With the advent of

new technologies, the speed of trading is increasing. This increase in speed in microsecond

and millisecond is generating enormous profits for the investment firms. As a result, the

exchanges are competing with each other over speed, i.e., faster trade execution time or
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lower latency. (Goldstein, Kumar, and Graves, 2014).

(Hasbrouck and Saar, 2013) note that “exchanges have been investing heavily in upgrad-

ing their systems to reduce the time it takes to send information to customers.” In June

2007 London stock exchange built a millisecond trading system called TradElect, which

can confirm a limit order within 10 ms latency after it is placed and in parallel processing

3000 orders per second (MacDonald, 2007). As every pro has its cons, a HFT broker

working in Chicago will not be able to act on quotes as fast as the one in New York

because quotes will take time to reach Chicago. (Brogaard, Hendershott, et al., 2014).

The limiting factor is speed. As described by (Laughlin, Aguirre, and Grundfest, 2014)

and (Angel, 2014), locating the data centers or servers close to the trading exchange can

benefit brokers in New York as compared to ones in Chicago. This practice is called the

adoption of the ‘co-location’ strategy.

The given literature shows that the firms only focus on network latency and there has not

been any mention on computational decision latency. This motivated my idea to work

further on decision latency in HFT.

2.2.3 How does latency Impact Performance

(Baron et al., 2018) stated that there are two ways in which a trader can make money

by being fast: short-lived information and risk management. (FOUCAULT, HOMBERT,

and ROŞU, 2016) studied the benefits of low latency for trading under the roof of short-

lived information. They explored the trading opportunity by considering a speculator

trader trading ahead of incoming news. They discovered that fast speculator was in-

volved in high volume transactions, and the trades were correlated with the short-lived

price changes. Also, the speculator trader was responsible for adding liquidity, which

shows similar behavior of a high frequency trader. (Biais, Foucault, and Moinas, 2015)

showed that the traders doing HFT takes high benefit through cross-market arbitrage

opportunities. The authors summarize by concluding that the evolution of computers im-

proved the informativeness of quotes by quickly resetting the trades upon news arrivals.

(CHABOUD et al., 2014) provided empirical evidence that latency in high frequency

trading results in improving informational efficiency or price discovery, thereby increas-
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ing market liquidity. Benefits were clear of fast traders participating in cross-market

arbitrage.

Latency helps fast traders reduce risk by making them revising placed stale quotes on

the grounds of quick arrival of news information (Hoffmann, 2014). Fast trading helps to

remove excessive storage of quotes in the bag, thereby reducing the inventory (Aït-Sahalia

and Brunetti, 2020). Reducing the inventory to downsize the risk appetite is confirmed by

(Brogaard and Roshak, 2015) through empirical evidences. Operational risk is a worry,

mainly due to software errors, corrupt trades, or poorly executed algorithms. These can

be explained through the crashes such as Knight Capital in August 2012 and the Flash

Crash of May 2010, which was a $4 billion sell order sent without a price limit. (Baron

et al., 2018).

2.2.4 High Frequency Returns and its Stylized Facts

Detailed study of this chapter is done from the book Asset Price Dynamics, Volatility,

and Prediction. (Stephen J Taylor, 2007)

Asset prices and its Frequency

Empirical research of how asset prices behave requires price data ordered with time. This

research is called a time series analysis. High frequency datasets include prices and time

at which they are recorded, often accurate to the nearest second.

Asset prices are dynamic; they change slowly when market conditions are calm and

fluctuate more when there are more news, uncertainty, and trading. Performing statistical

analysis of market closing prices is difficult than performing the analysis on price change.

This is due to the fact that stock prices are highly correlated; however, there is a very

weak correlation between change in prices. The price changes are represented by returns.

(Stephen J Taylor, 2007) defines returns as “changes in the logarithm of prices, with

appropriate adjustments for any dividend payments” , as shown in equation 2.1. Returns

are used everywhere in trading stocks, futures contracts, exchange rates and stock in-
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dices. (Engle, 2000) used the term ultra high frequency data for complete observations

which inherently arrive at random times. However most researchers use regularly spaced

sampled data with frequency of 5 minutes. The major benefits of using high frequency

data is that it help us to seek how prices respond to information. With more and more

observations it is easy to model volatility and hedge against investment risk.

rt = log (pt /pt−1) = log (pt )− log (pt−1) (2.1)

This benefits portfolio managers, risk managers, and derivative traders. On the other side,

microstructure effects such as the spread between ask and bid become more important,

which makes it necessary to model intraday behavior. It is not easy to get high frequency

data, and even if it gets available, the volume of it so high that analysing it using big

data computational tools is itself a huge area for research. The need for big data in HFT

is studied in depth later in this chapter. As per (Dacorogna et al., 2001), the number

of tick-by-tick data in single data is equal to the number of daily observations for 30

years. The study of market microstructure has largely depended on the availability of

high frequency data and the use of computing technology to handle big data. (Goodhar

and O’Hara, 1997). This research was further empirically taken further by (Gourieroux

and Jasiak, 2001).

The frequency of the observations depends upon the data availability and the research

question. The current research focuses on high frequency data of 1-minute frequency.

Due to the high volume of transactions traded within each minute interval, it is suitable

for modelling volatility. Although high frequency prices provide more information, the

spread between the bid and ask gives birth to high microstructure noise studied in detail

by (Andersen, Bollerslev, Diebold, et al., 2000) and (Andersen, Bollerslev, Diebold, et

al., 2003) presented their analysis on 30-minute-high frequency data while others mainly

(BANDI and RUSSELL, 2008) found that 5-minute frequency is optimal for capturing

the true microstructure of the market information.
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Stylized Facts for Financial Return

The general properties of returns that are true for all different classes of assets are called

as stylized facts. These are the fundamental building block for different exchanges. For

intraday data, generally, the frequency at which observations arrive is random. Due to

this, the duration at which the data arrives is not constant (W. Sun, Svetlozar Rachev,

and Fabozzi, 2007). For a high frequency time series, if the duration between intervals

at which observation arrive is constant, it is considered as an equally spaced time series

called a homogeneous time series. On the other hand, if the time series is unequally

spaced in terms of duration, it is called inhomogeneous time series (Dacorogna et al.,

2001). In this research, equally spaced time series is considered for modelling volatility.

The three major stylized facts are:

1. The distribution of returns is not normal.

2. There is minimal or no correlation between returns for different periods.

3. The correlation between absolute or squared returns for nearby days is positive and

statistically significant.

Distributional Properties of Returns

The first important stylized fact is that intraday returns are not normally distributed.

Instead it can be said that the returns distribution:

1. Is approximately symmetric.

2. Has fat tails.

3. Has high peak.

(Bollerslev, Chou, and Kroner, 1992) noticed that intraday data show fatter tails in the

unconditional return distributions, and (Dacorogna et al., 2001) affirmed the display of

heavy tails in intra-daily return data. Therefore, the assumption of returns as normally
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distributed is highly questionable. Some of the other works to understand the distribution

of returns are presented here.

Heavy tailedness in the intraday data was first modeled by (Marinelli, S.T. Rachev, and

Roll, 2001). (Mittnik, Paolella, and S. T. Rachev, 2002) also presented some other lep-

tokurtic distributions such as Weibull, Student’s t, and hyperbolic to study the tailedness

of the distribution of returns and confirmed that these distributions lack central limit the-

orem properties. The findings of (Marinelli, S.T. Rachev, and Roll, 2001) were confirmed

by the (M. Sun, 2007). Empirical evidence to support that stock returns are not inde-

pendently and identically distributed (i.i.d) is given by (WOOD, McINISH, and ORD,

1985). Their conclusion was that the distribution of returns during the first 30 minutes

of the trading day is different from the distribution of returns in the remaining day before

the closing time.

In (Stephen J Taylor, 2007) presented a table showing the percentages of standardized

intradaily returns, (rt −r )/s. The table is summarized on the basis of average frequencies

for standardized daily returns as in shown in Table 2.1:

Table 2.1: Average Frequencies for standardized returns.

The first three rows of the Table 2.1 explains that the number of returns observed within

one standard deviation from the mean are more than the number of returns in a normal

distribution, corresponding to a high peak in an empirical distribution. It can also be

noticed that there are more observations found above 3 standard deviation from the mean

than in the case of normal distribution. This corresponds to two fat tails in the returns
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distribution. The high values of kurtosis are caused by outliers in the tails.

ρ̂τ,r =
n−τ∑
t=1

(rt − r )(rt+τ− r )
/ n∑

t=1
(rt − r )2, τ> 0 (2.2)

The second critical stylized fact is:

Intraday returns from traded assets are almost uncorrelated, with any important

dependence usually restricted to a negative correlation between consecutive returns.

There are numerous empirical evidences for the mentioned stylized facts. Some of the

estimates for the first-order negative autocorrelation for foreign exchange returns are

around:

1. -0.18 for a few days of one-minute returns (Goodhart and Figliuoli, 1991).

2. -0.040 for one year of five-minute DM/$ returns (Andersen and Bollerslev, 1997),

with -0.070, -0.082, and -0.043 for 10, 20, and 30-minute returns.

3. -0.108 for one year of five-minute yen/$ returns (Martens, Chang, and Stephen J.

Taylor, 2001), with -0.093, -0.066, and -0.018 for 10, 30 and 60-minute returns.

The first lag autocorrelation for returns from an equity index future is near to zero. The

first lag autocorrelation value of around:

1. 0.009 is calculated by (Andersen and Bollerslev, 1997) for four-year returns sampled

at 5-minute interval which increased to 0.039 when sampled at hourly interval.

2. 0.001 is noted by (Areal and Stephen J. Taylor, 2002) for eight years of five-minute

FTSE 100 returns.

The third important stylized fact for intraday return is

There is substantial positive dependence among intraday absolute returns, which

occurs at many low lags and also among returns separated by an integer number

of days.
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(Andersen and Bollerslev, 1997), found out that the the first 400 lags for 5-minute in-

traday returns for S&P 500 futures were positively correlated with lag 1 correlation as

0.29 which reduced to 0.07 at lag 40, rising again to 0.14 at lag 80 forming a U-shaped

pattern that repeats once a day.

Figure 2.1: Autocorrelations for intraday absolute S&P 500 returns.

The general pattern can be seen in Figure 2.1, which shows the autocorrelations (as a

solid line) for five-minute returns on the spot S&P 100 index (from July to October 1999)

up to lag 154 (two days).

2.3 Need for big data Solutions

Two main big data problems that most financial institutions face while trading are latency

and scalability (Tian et al., 2015). The trading firms need historical data of many years

along with real-time data to predict trends in the movement of prices, estimate risks so

that they can make some profit margin. It seems difficult to provide a perfect answer

to the question, how to store and process a massive amount of data generating at an

ultra-high frequency rate. Now with the advent of the Hadoop distributed file system

(HDFS) deployed on hundreds or thousands of computers, with effective fault tolerance

and data balance algorithm, it is easy to store such volume of data securely. Also, big

data parallel processing framework such as Hadoop MapReduce has made systems solves
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complex problems within a very less interval of time. The rapidly growing data requires

the storage architecture to provide good scalability to support scaling out when the data

size increases up to the storage boundary. A cloud-based big data architecture can provide

a solution to both the problems.

(Khurshid, 2019) noted that Varian, one of the pioneers of the economics of information

technology (Varian, Farrell, and Shapiro, 2004) and then of the economics of network

technologies (Shapiro and Varian, 2013), have argued about the importance of big data

tools as part of modern economic and financial analytics, mainly for two reasons: avail-

ability of huge data and model uncertainty (Shapiro and Varian, 2013) and (Varian,

Farrell, and Shapiro, 2004). Normally researchers or financial analysts use a small vol-

ume of data such as monthly or daily observations as it is easy to obtain. The use of

small data can lead to model uncertainty and can account for hollow predictions. Big

data tools will eliminate the fear of sampling uncertainty and will help financial analysts

to use years of historical data in making accurate future predictions by allowing end-users

to run many linear and non-linear models concurrently on networks of high-performance

machines.

(Tian et al., 2015) explained that MapReduce mostly works well for long-running batch

processing jobs. However, in a real-time decision-making environment where low la-

tency is the key prerequisite, using a distributed computing framework such as Apache

MapReduce will not be a good idea as it does not support low latency. To overcome this

problem, the AMPLab of Berkeley university developed Apache Spark, which is a low

latency distributed data management system (Zaharia et al., 2012). It provides fast data

sharing across parallel jobs by caching data that need to be reused. The programming

abstraction of Spark is called resilient distributed datasets (RDD), which is a distributed

memory abstraction that lets programmers perform in-memory computations on large

clusters in a fault-tolerant manner.

(Zaharia et al., 2012) also evaluated the processing power of Spark by running machine

learning experiments by using two models Logistic Regression and K-Means clustering.

The same experiments were performed on Hadoop. The comparison resulted in some

interesting insights:
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• Spark was 20 times faster than Hadoop in iterative machine learning and graph

applications. The speedup comes from avoiding I/O and deserialization costs by

storing data in memory as Java objects.

• Generating analytics reports in Spark was 40 times faster than in the Hadoop

framework.

• Spark can provide a decision latency of up to 5-7 seconds in querying a 1TB dataset.

(Bluhm, 2018) provided a detailed analysis of setting up Spark both on a standalone

machine and on cloud-based EMR clusters. More specifically, he explained how to use

Spark to (i) explore big data sets that exceed retail grade computers memory size and

(ii) run typical econometric tasks, including time-series regression models, which are

prohibitively expensive to evaluate on standalone machines. (Bluhm, 2018) concluded

that using an Elastic Map Reduce (EMR) setup, he was able to pre-process a 150 GB

dataset in just under five minutes, whereas the standalone approach on our local machine

crashes. Most importantly, his research concluded that for the time series analysis case,

the distribution scheme reduces total runtime performance by about 95% relative to a

single machine. There are many other works of literature on comparison of Hadoop

MapReduce and Apache Spark with implementation on different application, both of

them (Verma, Mansuri, and Jain, 2016) and (Chebbi et al., 2018) proves that Spark is

way faster in terms of decision latency than MapReduce.

(Agopyan, Şener, and Beklen, 2010) provides a business cloud architecture for high fre-

quency trading. This architecture (See Figure 2.2 ) is studied and used as a base reference

in this research. CM is directly connected to electronic execution platforms and data

providers. All routing, data and protocol transformations, mediations, and messaging

between modules and CM are done via ESB.
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Figure 2.2: Reference component architecture of Financial Business Cloud.

Cloud Manager is the only source connected to the stock exchange and data

providers. ESB (Enterprise Service Bus) is like a cluster manager in the

Hadoop framework responsible for managing resources, distributing tasks,

etc. It provides intelligent routing to perform tasks such as real-time ana-

lytics, run time risk management, or trade execution.
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2.4 Risk Estimation

Volatility is considered as the quantified measure of market risk. Risk, in financial terms,

is defined as the chance that actual investment returns do not meet the expected invest-

ment return. It can be defined as the loss; a person can incur on his/her investment.

Risk is normally quantified by studying assets, historical behavior, and outcomes. Stan-

dard deviation is generally used as a common metric associated with risk. Volatility is

considered a measure of risk estimated by calculating the standard deviation of asset

returns. The unique idea of using high frequency data goes back to 1980 when (Merton,

1980) noted that the variance of returns could be a more precise measurement in the

computation of volatility than the expected returns. Volatility is exactly not the same as

risk, although the two are quite related. Risk is a kind of negative volatility, or one can

say that is the negative return on investment. On the other hand, volatility can be both

positive and negative, as it measures the spread of the outcomes. (Ladokhin, 2009).

Volatility measures the asset price varying over some period of time. In other terms,

volatility is the standard deviation of the change in the logarithm of prices over a certain

period of time (Stephen J Taylor, 2007).

2.4.1 Different Interpretations to Volatility

As described in (Stephen J Taylor, 2007), there are five ways in which volatility can be

phrased or interpreted. Out of those two significant methods used in this research are

defined here:

I The volatility of tomorrow’s price is 1%, given our observations of recent prices.

Realized Volatility (Historical Volatility) - It is the standard deviation of a set

of previous historical returns. Realized volatility is the assessment of variation in

returns for an investment product by analysing its historical returns within a defined

time period. If � is the daily standard deviation or daily volatility, then the annual

volatility can be measured by σ
p

N .

N - Number of trading days (If annualized then N = 252 days in a trading year).
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Annual Realized Volatility = σ
p

N

σ=
√∑n

i=1(ri −m)2

n −1
(2.3)

n = Number of observations

m = Mean

σ = Standard Deviation

ri = Returns

Volatility can me more precisely calculated as the frequency of returns increases i.e.

in case of intraday returns where returns are uncorrelated. We suppose the periods

are trading days with daily returns rt that is the sum of N intraday returns rt , j ,N

rt =
n∑

j=1
rt , j ,N (2.4)

For N = 1, 2, 3, . . . we define the realized variance for day t as (Andersen et al.,

2001)

σ̂2
t ,N =

n∑
j=1

r 2
t , j ,N (2.5)

II The volatility of tomorrow’s price is 1%, given our observations of recent prices.

Conditional Volatility – It is the standard deviation of a future return that is

conditional on known information. Previous or known information can be anything

such as history of previous returns.

Unlike realized volatility, the expectation for the next period is calculated using a

time-series model. Convenient and accurate equations for volatility expectations

are provided by ARCH (Auto regressive conditional heteroskedastic) models. In

statistics, when the variance of a term is affected by the variance of one or more

other variables, it is ”conditional.” Variance is not just uniform, but is affected by

variances preceding it.
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As per Oxford dictionary (Oxford Dictionary 1928):

Heteroskedasticity – “Statistics of unequal scatter or variation; having different

variances.”

Homoskedasticity – “Statistics of equal scatter or variation; having equal vari-

ances” Equation:

Third statement can be made if the parameters (µ,α,β, and ω) from time series

ARCH model are estimated using daily returns suppose until 23 November 2005

(day t-1) and had then found ht = (0.01)2 for the return from the 23r d to the 24th

(day t).

2.4.2 Time Series Volatility Modelling

Considering historical data, which is often the subject for unconditional volatility. His-

torical volatility is a process of measuring the dispersion in the price of the underlying

assets; however, since that measurement is just historical and the volatility is varying

over time, it might not be the right way of measure future volatility. To capture the

dynamic properties of returns sampled at high frequency intervals, it is necessary to use

linear or non-linear models to estimate the changing mean and standard deviation. The

time it takes to calculate a volatility measure adds to the latency or delay in producing

the measure.

The ARCH or Autoregressive Conditional Heteroskedasticity method introduced

by (Engle, 1982) provides a way to explicitly model the change in variance or change

in past squared observations in a time series, such as increasing or decreasing volatility.

These models use variance instead of standard deviation as a measure of volatility. How-

ever, there is a direct relation between the two. An extension of ARCH model named

GARCH or Generalized Autoregressive Conditional Heteroskedasticity incor-

porates a moving average component together with the autoregressive component. The

introduction of a moving average component allows to model both the conditional change

in variance over time as well as changes in the time-dependent variance. The detailed

explanation of the models is explained in the section 3.6.3 of Chapter 3.
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Volatility Forecast Evaluation

The paper by (Andersen and Bollerslev, 1998) was an answer to an evaluation of GARCH

models. Numerous papers had noted that GARCH models were incapable of describing

much of the changeability in squared returns when evaluated on out-of-sample data,

despite the fact that GARCH models had a good in-sample fit, see, e.g. (JORION, 1995)

and (Figlewski, 1997). The incorrect implication that resulted from this observation was

that GARCH models were of little practical importance. By using the realized variance,

which is a more accurate measure of volatility than squared returns, (Andersen and

Bollerslev, 1998) showed that standard volatility models perform rather well. So, the

apparent ‘poor’ performance can be attributed to the fact that the squared return is a

very noisy proxy of the conditional variance.

2.5 Motivation

Current quantitative analysis involves the use of single model small datasets which pose

sampling uncertainties, which can eventually lead to biased results (Hoffmann, 2014). It

is crucial to embrace more massive datasets, thereby reducing sampling uncertainty. One

proposal is that we should use a large number of explanatory models to deal with mod-

elling uncertainty. The two uncertainties are exemplar fundamental research problems

related to the scalability and responsiveness of analytics capabilities of systems dealing

with complex markets – especially about data mining of large High Frequency structured

data sets – time series of prices and traded volumes in complex markets.

It is difficult to see literature on the concerns of decision latency in real-time high fre-

quency trading environment. High frequency traders are not focused on taking real-time

decision which incorporates dependency on large historical data to estimate future risk

through the computation of heavy volatility models such as GARCH. This research is to

fill the gap in the field of finance and computing through the use of big data tools.
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Design and Methods

3.1 Introduction

In the coming chapters, the design of the architecture is discussed briefly. Each stage

in the design adds some latency to the model. Adaption of tools such as AWS Kinesis

for real-time streaming, AWS S3 bucket for Big Data storage, and Apache Spark for

distributed computing are discussed with their benefits in terms of latency and scalability.

Significant differences between Hadoop MapReduce and Apache Spark, local storage,

and cloud-based storage solutions are also discussed. Important risk estimation volatility

models and stylized facts for financial returns are also discussed in the upcoming chapters.

It is worth noting that Spark can also be configured on a standalone machine; however,

as this research is focused on reducing decision latency, hardware latency cannot be

tolerated.

3.2 System Architecture

Two forms of data are collected, one of which is historical data, and the other one is

streaming data. Historical data is first collected by calling a web API provided by data

source provider IEXCloud. Historical data is stored in a secured AWS S3 bucket. Real-

time streaming data from the IEX cloud is collected put into the shards by Kineses
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Producers. On the other side, data is collected by Kinesis Consumer from the shards.

Before the real-time data is distributed over EMR clusters sitting on the Apache Spark

framework, it gets merged with the historical data stored in the S3 bucket. After data

is aggregated, risk estimation techniques are used to calculate future volatility. Based

on the estimated volatility, a decision is taken to buy, sell, or hold security, and most

importantly, execution time is noted. This whole process is followed only to observe

decision latency of the machines in the end. Whole processing and visualization are

performed on Apache Zeppelin notebook. Output data is stored again in the S3 bucket

and used for next minute processing. In the following chapters, each tool and technology

used are discussed with the methods implemented in estimating the risk of high frequency

financial returns.

Figure 3.1: System Architecture Overview. Three major steps involved

are data collection and aggregation, risk estimation using unconditional and

conditional volatility models, analysis of decision latency.
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3.3 Parallel Computing

In most simple language, the use of more than one computer resource together to solve a

computational problem is called parallel computing. In different ways, parallel computing

can be explained in simple steps:

• Breaking the problem in simple independent problems that can be solved concur-

rently.

• Each independent problem is further broken in small series of instructions.

• Instructions from each part execute simultaneously on different processors.

• An overall control/coordination mechanism is employed.

Parallel computing breaks a problem into small independent problems and takes the

help of the cluster manager to distribute these problems in the form of tasks to different

clusters or computing machines. The solution to each problem is combined at the end

of the overall algorithm. The objective of parallel computing is to increase computation

power for faster application processing and problem-solving. Until a few years ago, there

was a possibility to process a huge volume of data using Vertical Scaling 1 techniques. But

now, as the volume of data managed by our conventional storage systems has surpassed

its processing ability, companies have started adopting cloud-based Horizontal Scaling

techniques to resolve the need for scalability.

Storing and processing Big Data is a daunting task, and there are well-developed frame-

works for such tasks. Apache Hadoop is one such framework.

3.3.1 Apache Hadoop

Apache Hadoop is an open-source big-data framework providing a platform for han-

dling large data sets through distributed storage and processing. It is an open-source

implementation of the MapReduce programming model developed by Google to process
1https://www.geeksforgeeks.org/horizontal-and-vertical-scaling-in-databases/
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and analyze massive datasets. The Hadoop ecosystem has two core components HDFS

(Hadoop Distributed File System) and MapReduce. HDFS handles the data storage be-

tween all the machines on which clusters are running. MapReduce, on the other hand,

handles the processing of the task by breaking it into Map and Reduce actions.

Figure 3.2: Hadoop Core Components

Hadoop MapReduce

MapReduce is a programming model in which each task is divided into map and reduce

functions. It provides a solution by first distributing data over clusters and processing

tasks on each cluster parallelly in an efficient time interval. MapReduce model splits

the data instead of splitting the processing tasks. Multiples nodes are responsible for

processing a small dataset each rather than processing all the data on one single node.

Figure 3.3: The MapReduce programming model. K elements represent

the keys in pairs.
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As shown in Figure 3.3, MapReduce can be described with three basic rules:

• The map function reads the data and transforms it into a key, value pair called a

tuple. Any sequence of operations can be applied as a transformation to the tuples

before they are grouped by key.

• Tuples with the same key are grouped, and the data is sent over the network to the

reduce function.

• Finally, the reducer function performs operation or sequence of operations on mul-

tiple values for each key and results in one value for each pair. This action reduces

the total amount of data sent across the network.

HDFS (Hadoop Distributed File System)

HDFS is the main module of the Hadoop framework. It is a fault-tolerant storage system.

It is also a scalable distributed file system used to store the volume of data that cannot

be stored in a single machine. HDFS stores all files in blocks. The default block size is

64Mb. All files on the HDFS have many copies, which help in parallel processing. HDFS

clusters have two types of nodes, name nodes, and data nodes.

• Name node: It is a master node that handles the directory of tasks distributed over

name nodes for processing. It tracks on which cluster data file is stored; it also

informs cluster manager if a data file gets corrupted in any of the data nodes. It

manages the metadata of the whole file system. It does not store actual data.

• Data nodes: They are slave nodes that store actual data as blocks. It sends all the

information of file it contains, the health status of the file system, and responds to

the actions requested by name node.

3.3.2 Apache Spark

Just like MapReduce, Apache Spark is a distributed cluster computing framework used

to store and process large volumes of data at lightning speed due to its in memory-

intensive scheme. Unlike Hadoop MapReduce, which uses disk-based operators, Spark
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uses memory-based operators to handle the processing of the tasks, which makes it fast

and prone to multiple input/output (I/O) operations.

Spark Core is the base of the platform. It handles many important tasks such as managing

the memory of the system by interacting with system storage, helping in the recovery of

the systems during failure, distributing and monitor tasks on clusters, etc. Spark core uses

Python, Java, or Scala-based application programming interfaces (API) to hide complex

operations of parallel computing behind simple high-level operators. Spark is based on a

master/worker architecture where the Spark driver communicates with the YARN cluster

resource manager as a single coordinator, which is responsible for managing the Spark

workers in which executors run.

Figure 3.4: Spark Framework - Spark Core as the foundation for the plat-

form, Spark SQL for interactive queries, Spark streaming for real-time ana-

lytics, Spark MLlib for machine learning and GarphX for graph processing.

Apache Spark Architecture

Spark framework is built on three main components:

Driver – A spark context object drives the process by converting user code into parallel

tasks distributed across worker nodes.

Executors – Spark uses executors to process tasks on each worker node. It is also tasked

with storing data on the application. A manager is required to connect drivers and ex-
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ecutors where the cluster manager comes into existence.

Cluster Manager – It works as a mediator between a driver and multiple executors.

Spark context can connect to the cluster manager to allocate resources or tasks across

the worker nodes. There are several types of cluster managers that deal with on-demand

task allocation. These are Hadoop YARN, Spark Standalone, Mesos.

Figure 3.5: Spark runtime. The user’s driver program launches multiple

workers, which read data blocks from a distributed file system and can persist

computed RDD partitions in memory.

Spark RDD (Resilient Distributed Datasets)

RDD the fundamental data structure of Spark and is considered as the heart of its

framework. It is an immutable distributed assembly of objects. The term resilient means

that an RDD can be transformed into a new RDD without altering the original. The

distributed means RDD divides the dataset into multiple logical partitions and distributes

them over nodes for processing. One way to create an RDD is to parallelize data objects

stored in external file systems such as Hadoop Distributed File System (HDFS) or S3 or

any other file system. Another way to parallelize the already existing collection of objects

in the driver program.

Page 32 of 114



Chapter 3

DAG (Directed Acyclic Graph)

Apache Spark builds the user’s data processing commands into a Directed Acyclic Graph,

or DAG. The DAG is Apache Spark’s scheduling layer; it determines what tasks are

executed on what nodes and in what sequence. The vertexes in a DAG are like parallel

tasks distributed across a tree, and edges are used to exchange information between a

driver and a worker. As shown in Figure 3.6, vertexes can have multiple connections

between inputs and outputs, which imply that the same task can be run in different data

and the same data in other partitions.

Figure 3.6: Direct Acyclic Graph Architecture. Each square is a task, inside

which nodes are present for processing information. Arrows connecting nodes

represent the data flow between nodes and the vertexes in the graph, dashed

lines represent the dependencies between data blocks (cylinders) .

3.3.3 Limitations of Hadoop MapReduce

There are two significant advantages dues to which Spark is the preferred framework

over MapReduce paradigm for storing and processing Big Data. Two of the significant

benefits of using Spark over MapReduce are speed and inbuilt Spark components such as
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Spark SQL, Spark Streaming, MLlib (machine learning), and GarphX (graph processing).

Other major differences are given in Table 3.1.

Table 3.1: Difference between Hadoop MapReduce and Spark.

3.3.4 Hadoop On-Premise vs. Hadoop on Cloud

There are two options for running Hadoop clusters, one is on local machines, and the

other is on the cloud platform. This chapter aims to discuss the limitations of storing

and processing Big Data on clusters running on local hardware machines, and why is

it important to adopt cloud-based solutions. On-premise systems face both challenges

of storage and processing. Its physical nature adds latency to the processing. As the

demand for data increases, more and more physical servers need to be installed to handle
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big data storage and processing challenges on local machines, making the whole process

inefficient, time-consuming, and costly. On the other side, the cloud platform offers full

scalability; with on-demand services, one can increase storage capacity, the number of

clusters for processing, or the number of cores within a cluster without spending too

much money. Any number of virtual servers can be spun up in the cloud within a few

minutes as per requests. The great advantage of using the cloud is one can scale the size

of clusters while running parallel jobs simultaneously. A few of the other benefits of using

the cloud are presented below:

1. Security

Hadoop on-premise infrastructure can be more secured than on the cloud. All the

sensitive data can sit behind the firewalls on local machines. However, for the

cloud, security is all dependent on the cloud service provider. The major leader in

providing cloud infrastructure as a service is AWS (Amazon Web Services). Amazon

Web Services does offer security features such as virtual private clouds, encryption,

security groups, and more, so Hadoop on the cloud can be secure if implemented

correctly.

2. Performance

Apache Hadoop runs slowly on virtual environments due to intensive I/O operations

is a common assumption. However, cloud-based setups have better performance

running Hadoop with real-world applications.

3. Availability

Data can be accessed and used for processing at any location in the world on the

cloud. A cloud service provider such as AWS has data centers all over the world.

This is one of the main benefits of using cloud infrastructure for Big Data storage

and processing.

4. Scalability

With data increasing day by day, it is not possible to store such a massive volume

on the on-premise infrastructure. Scalability is the flexibility of a company to

handle data increasing capabilities in between of an ongoing process. Big Data in

the cloud allows us to scale the CPU cores up or down with incredible ease and

without negative financial implications.
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3.4 AWS Cloud Solutions

AWS provides high performing easy to use services for storing and processing massive

volumes of data. This research makes use of AWS Kinesis for real-time streaming, AWS

S3 bucket for storing Big Data, and EMR (Elastic MapReduce) clusters for parallel

processing of Big Data through the Apache Spark framework. This chapter provides a

detailed understanding of all three services used with their architectures.

3.4.1 Real-Time Streaming

Real-time data streaming is a continuous flow of data generated from various sources

waiting to be processed and utilized for decision making. The streams of data are gen-

erated from all different kinds of sources in a structured or unstructured format. The

sources can range from various web sources such as server log files, IoT (Internet of

Things) devices, networking devices, website activity, banking transactions, and loca-

tion data, etc. The data from all these sources can be aggregated in real-time and be

mined and analyzed for business improvement decision-making process. Similarly, high

frequency data in the stock market is generated every time there is a change in price. It

can be in milliseconds or seconds. Real-time high frequency data can be streamed using

various streaming platforms such as Apache Flink, Apache Kafka, AWS Kinesis, etc. In

the architecture used in this research, AWS Kinesis is used.

AWS Kinesis

AWS Kinesis has four different capabilities. These four are Kinesis Data Streams, Kinesis

Data Firehose, Kinesis Video Streams, and Kinesis Data Analytics. This research focuses

on Kinesis Data Streams. Kinesis data streams enable you to process and analyze data as

it arrives and responds instantly instead of having to wait until all your data is collected

before the processing can begin. Amazon Kinesis data stream uses shards as its base

throughput unit. The capacity of 1 shard is 1 mb/sec as input and 2 mb/sec as output

rate. Also, in terms of records, in one second, a single shard can support 1000 PUT

records.
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Kinesis Streams Overview

• Streams are divided into shards/partitions.

Figure 3.7: Data distribution in shards.

• Data can be recovered if lost within 24 hours and can be extended to 7 days if

configured externally.

• Kinesis can reprocess or replay data.

• Multiple applications can consume the same streams.

• Provides real-time processing with a scale of throughput.

• Once data is inserted into streams, it can’t be deleted (immutability).

Kinesis Streams Shards

• One stream is made up of many different shards.

• Billing is per shard provisioned on-demand basis.

• Batching available or per-message calls.

• The scaling of shards can be done in parallel.

• Records are ordered per shard.

Kinesis Streams Records

• Data Blob is the data being sent, serialized as bytes. The maximum data which

can be sent is 1 MB/sec.

Page 37 of 114



Chapter 3

• A record key is sent alongside a record, which helps to group records in shards.

Same key = same shard.

• The sequence number is the unique identifier for each record put in shards. It is

added by Kinesis after ingestion.

Figure 3.8: Kinesis Stream Records Components.

Overview of Kinesis Producer Library (KPL)

The high-level architecture on Kinesis Data Streams:

• The producers put records (data ingestion) into shards. AWS Kinesis Producer

Library (KPL) is a simple Java program written to send data from source to kinesis

data streams with high throughput.

• Kinesis data stream a set of shards. Each shard has an arrangement of data records.

Data records are a collection of a partition key, sequence number, and a data blob

(up to 1 MB), which is an immutable sequence of bytes.

• The consumers get records from Kinesis Data Streams and process them. You can

build your applications using either Kinesis Data Analytics, Kinesis API, or Kinesis

Client Library (KCL). The KCL defaults follow the best practice of polling every 1

second. This default results in average propagation delays that are typically below

1 second.
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Figure 3.9: Kinesis Architecture

3.4.2 AWS EMR (Elastic MapReduce) Big Data Platform

Amazon EMR provides an easy to manage cluster platform on which a large volume of

data can be easily processed using different parallel computing frameworks such as Apache

Spark or Hadoop MapReduce. It helps Spark or Hadoop to quickly distribute large data

stored in AWS data stores such as S3 bucket or database such as AWS DynamoDB over

clusters for parallel processing.

Figure 3.10: AWS EMR (Elastic MapReduce) Architecture
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AWS EMR architecture has many layers, each of which provides certain functionalities.

Below are some tools used for each functionality used in this research:

Storage - AWS S3 Bucket

Amazon Simple Storage Service or (S3) bucket is considered as the storage for the In-

ternet. It is used by users all over the world to store data in virtual servers that can

be accessed anytime from anywhere in the world on the web. S3 allows people to store

objects (files) in buckets (directories). Buckets must have a globally unique name. These

buckets are defined at a regional level. It gives developers access to scalable, fast, low-cost,

and reliable data storage infrastructure that AWS uses to run its own global network of

web sites. Object or files have a key to access the path where data is stored. For Big Data

storage on cluster computing platform, there are many storage options available such as

HDFS (Hadoop Distributed File System), EMRFS (Elastic MapReduce File System), or

Local File System. This research deals with the EMRFS storage solution.

EMR File System (EMRFS)

AWS EMR allows Spark or Hadoop to access data directly from the S3 bucket considering

it as a distributed file system such as HDFS. Therefore one can use S3 as a file system to

store and process data over clusters. Mostly S3 is used to store input/output data, and

intermediate results are stored in HDFS.

Cluster Resource Management

By default, AWS EMR uses YARN (Yet Another Resource Negotiator) is a resource man-

ager to manage cluster resources for multiple data-processing frameworks. The function

of cluster managers is to decider which task has to be performed by which cluster. Yarn

uses the node manager to do task allocation. The other duties of the resource managers

are to monitor cluster memory and performance and handle task failure. The resource

manager has two components, scheduler and application manager. The scheduler allo-

cates resources to the various running applications and performs scheduling based on the
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resource requirements of the applications. The resource manager accepts job submissions,

and each job is allocated to the application manager.

AWS Clusters

AWS EMR (Elastic MapReduce) clusters are nothing but a collection of AWS EC2

Ubuntu virtual machines running in parallel. At the back, these EC2 (Elastic Com-

pute) instances support multithreading, which allows the threads to run concurrently

on a single CPU core. One can scale the number of cores up to a limit within a single

instance also. Each thread represents one virtual CPU (vCPU) on an instance. An ex-

ample of instance is a m5.xlarge, which comes with 2 CPU cores and 2 threads per core

by default. This makes a total of 4 vCPUs in total in a single instance.

As per business needs, one can either use default EC2 instances with given memory, and

a number of vCPUs or can change the number of CPU cores, threads per core as and

when required.

• Number of CPU cores: One can modify the count of CPU cores for an instance.

Reducing the number of cores is also an option if one needs more RAM for memory-

intensive workloads but fewer CPU cores.

• Threads per core: Multithreading can also be disabled by enabling a single thread

option for each CPU core.

Also, one can specify these CPU selections during the start of the instance as there is

no extra charge for specifying CPU options in advance. At the time of processing, if

one needs to improve the capacity of CPU cores, they can select the option from the

application and will be chared on-demand basis.

Data Processing Framework

The engine of the whole Spark framework is the data processing framework layer used

for processing and analysing the input data. The most common resource management
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package used in the Hadoop framework is YARN (Yet Another Resource Negotiator).

Spark also has the ability to use YARN. The two primary data processing frameworks

are Hadoop MapReduce and Apache Spark. YARN allows data stored in HDFS to

be processed in various forms, such as batch processing, stream processing, or graph

processing. Both of them are already discussed, along with their limitations. However,

this section mainly describes the service level architecture of AWS EMR with Spark.

Figure 3.11: Apache SPARK Framework used for processing Big Data

distributed over AWS EMR clusters. On launching a spark application, the

Spark Driver breaks the program into multiple tasks and distribute them

over spark executors. The Spark Driver has to request cluster manager

to start the jobs over executors. The Spark Executors perform the tasks

received from the Spark Driver. The Distributed Storage Layer is based

on the Hadoop API and holds the distributed dataset, which is partitioned

across hard drives of the Spark worker nodes
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A simple diagram of the Amazon EMR service architecture is illustrated in figure 3.11.

There are four layers, providing different capabilities and functionalities to the cluster.

The storage layer uses the EMR File System (EMRFS), which contains Amazon S3 as

a distributed, scalable file system, where input and output data is stored. In the Spark

application of this research, time-series data and output from model fitting and forecasting

will be stored in Amazon S3. The resource management layer uses YARN (Yet Another

Resource Negotiator) and Apache Spark as a data processing framework.

Finally, the EMR cluster contains a layer for applications and programs that interact

with Spark. For the experiments presented in this research, the Python library of Spark,

i.e., PySpark, is used.

3.5 High Frequency Methods

High Frequency Returns and its Stylized Facts

Different methods for estimating volatility are discussed in this chapter. But before mov-

ing to time series volatility modes, the chapter also throws light on understanding the

stylized facts for financial returns. Stylized facts are necessary to understand the statis-

tical properties of intraday returns. These properties are studied to understand return

distribution, autocorrelation, unconditional means, and variances. A detailed study of

the methods in the upcoming sections is done from the book Asset Price Dynamics,

Volatility, and Prediction (Stephen J Taylor, 2007).

Returns vs. Prices

Statistical analysis of market prices is more difficult than analysis of changes in prices.

Th.e reason for this is market prices are highly correlated. However, change in the

logarithm of prices produces little or no autocorrelation. Logarithm returns are calculated

by the below-given formula:

rt = log (pt /pt−1) = log (pt )log (pt−1)
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Autocorrelation of returns

One of the earliest studies done on intraday returns by (WOOD, McINISH, and ORD,

1985) shows that the intraday returns are not stationary and follow a low order autore-

gressive process. Autocorrelation is considered as a measure of the dependence of the

returns at period t with previous returns at period t +τ separated by interval τ. Au-

tocorrelation is the same as calculating the correlation between two-time series, except

autocorrelation uses the same time series in two forms, one in the original form and one

in the lagged form.

The correlation between returns � periods apart is estimated from observations by the

sample autocorrelation at lag τ, with r the sample mean of all n observations

ρ̂τ,r =
n−τ∑
t=1

(rt − r )(rt+τ− r )
/ n∑

t=1
(rt − r )2, τ> 0

The symbol ρ̂ indicates that the sample statistic estimates a correlation parameter ρ of

a stochastic process when the data come from a stationary process. The two subscripts

τ and r respectively state the lag and the series that provide the estimates. The range

of autocorrelation is from -1 to +1, where a correlation of positive 1 represents perfect

positive autocorrelation, and a correlation of negative 1 represents perfect negative auto-

correlation. Normally technical analysts use autocorrelation to find out how past prices

affect future stock prices.

Stylized Facts for Financial Returns

The general properties of returns that are true for all different classes of assets are called

as stylized facts. These are the fundamental building block for different exchanges. The

three major stylized facts are:

1. The distribution of returns is not normal. Instead, distribution is asymmetrical

with fat tails and a high peak.
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Figure 3.12: The shape of the S&P500 return distribution explains the fact

that the observed standardized returns are approximately symmetric has a

fat tail and high peak distribution, which is not the same as the normal

distribution.

2. There is minimal or no correlation between returns for different days. The sample

autocorrelation of returns is generally close to zero, regardless of the time lag.

3. The correlation between absolute or squared returns for nearby days is positive and

statistically significant. The function of returns can have substantial autocorrela-

tion even if the returns are not autocorrelated.

Summary Statistics

The distribution of returns can be statistically summarized by its mean, standard devia-

tion, skewness, and Kurtosis.

1. Mean

The mean is a statistical indicator that can be used to gauge the performance of a

company’s stock price over a period of days, months, or years, a company through

its earnings over a number of years.

r = 1

n

n∑
t−1

rt
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2. Standard Deviation

Standard deviation is a statistical measure that describes the dispersion of price

returns around its mean (Investopedia, 2019). Standard deviation is considered as

a measure of historical volatility. Greater the standard deviation of the securities,

the greater is the variance between each price and the means.

s2 = 1

n −1

n∑
t−1

(rt − r )2

3. Skewness

Skewness is the change in symmetry of a normal distribution bell curve. If the

distribution of the data is even slightly tilted towards the right or left of a perfect

symmetrical bell-shaped curve, then the data will be considered skewed. A normal

distribution has a skewness of zero. If the distribution is right-skewed or positively

skewed, it means the curve is bent toward the left, and a strong tail is observed on

the right side of the curve. Similarly ff the distribution is left-skewed or negatively

skewed, it means the curve is bent toward the right, and a strong tail is observed

on the left side of the curve.

b = 1

n −1

n∑
t−1

(rt − r )3

s3

4. Kurtosis

Kurtosis is another statistical measure used to describe the distribution of the

data. Skewness focuses on one tail of the distribution at a time, whereas Kurtosis

measures the combined weight of a distribution’s tails relative to the center of the

distribution. A standard normal distribution has a kurtosis value 3. Kurtosis value

higher than 3 tends to have heavier tails than a normal distribution, and a value

lower than three tend to have lighter tails than the normal distribution.

k = 1

n −1

n∑
t−1

(rt − r )4

s4

5. Z-Score

Z Score or a standard score tells how far a data point is away from the mean.

Standardized returns are calculated to understand how many standard deviations

away from the mean are returns distributed. This helps in understanding the

volatility of the market.

zi = xi −x

S
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Where

Zi – Z Score

Xi – Value of the price return

x - Mean of the price returns

S – Standard Deviation

3.6 Volatility

Volatility is a measure of price variability over some period of time (Stephen J Taylor,

2007). Standard deviation is the most common measure of volatility if the returns are

within five standard deviations around the mean. If the standard deviation is constant,

volatility is unconditional, whereas if it is time-dependent or changing, it is called con-

ditional volatility. The volatility in high frequency data was first discussed extensively

by (Andersen and Bollerslev, 1998), who used realize variance to prove that standard

volatility models do provide accurate forecasts. Daily volatility can be more accurately

calculated by calculating realized variance, which is nothing but aggregation on intraday

squared returns.

3.6.1 Realized Volatility (Historical Volatility)

The historical or realized volatility is the observed volatility during specific intervals of

time; the historical is usually computed from daily data while the realized volatility is

computed from more high frequency data (such as 1,5,10 or 15-minute data). Realized

volatility was introduced as a measure of estimating daily volatility by adding high fre-

quency intraday returns. Volatility can be more precisely calculated if the returns are

sampled at high frequency and are uncorrelated. Realized volatility is measured by the

sum of squared intraday returns.

Real i zed V ar i ance =
N∑

i=1
r 2

t

Historical volatility is a method of measuring the variation in the price of the underlying

assets, but since that measurement is just historical and the volatility is varying over

time, it might not be a good way of measure future volatility.
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3.6.2 Conditional Volatility

The conditional variance is the most widely estimated measure of volatility. The vari-

ance of the daily log-returns is assessed by an ARCH (Autoregressive Conditional Het-

eroscedasticity) framework conditional on the information set that is available on the

previous day. The model-based approach to volatility forecasting is constructed from a

model for returns, such as a GARCH type model that specifies the entire distribution of

returns.

3.6.3 Time Series Volatility Models

ARCH (Autoregressive Conditional Heteroskedasticity)

Traditional econometric models consider constant mean and variance; however, ARCH

introduced by (Engle, 1982) allows the conditional variance to change over time as a func-

tion of past errors leaving the unconditional variance constant. He defined a stochastic

process whose variables have conditional mean zero and conditional variance given by a

linear function of previous squared variables.

As the variance of the residuals or the error terms are not constant and are affected by the

preceding variances, it is referred to as autoregression. The objective of the ARCH model

is to measure volatility that can be used in financial decision making. The conventional

notation for the ARCH model is ARCH(q) model where

q: The number of lag squared residual errors to include in the ARCH model.

The distribution of the return for period t, conditional on all previous returns are normal

with constant mean µ and time-varying conditional variance ht defined by

rt |rt−1,rt−2, .... ∼ N (µ, ht )

and

ht = ω+α(rt−1 −µ)2

The volatility parameters are ω > 0 and α>=0. The volatility of the return in period t
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then depends solely on the previous return.

The residual at time t is

et = rt −µ

The model becomes more complicated if long term lags are needed to be included in

the estimation. To allow for better volatility estimation dependent on long term lags,

(Bollerslev, 1986) suggested an extension to the ARCH model, i.e., GARCH(p,q) model

that incorporates a more flexible lag structure. GARCH (Generalized Autoregressive

Conditional Heteroskedasticity) model introduces a new parameter “p” that describes

the number of lag variance terms:

p: The number of lag variances to include in the GARCH model.

q: The number of residual lag errors to include in the GARCH model.

GARCH (1,1)

The GARCH (1,1) is the extension of the ARCH (1) model, which includes a lagged

variance term in the conditional variance equation. The GARCH (1,1) is one of the most

popular ARCH specifications for modelling daily volatility. There are three reasons to

support this hypothesis. First, the model uses four parameters (µ, α, β, and ω) which are

easy to estimate. Secondly, it supports stylized facts for daily financial returns. Third,

the forecast accuracy of the model is similar to the accuracy of the more complex volatility

models.

The distribution of the return for period t , conditional on all previous returns, is defined

by

rt |rt−1,rt−2, .... ∼ N (µ, ht )

With

ht = ω+α(rt−1 −µ)2 +βht−1

There are four parameters, namely (µ, α, β, and ω). The model is styled GARCH(1,1)

because one previous squared residual and one prior value of the conditional variance is

used to define the conditional variance for period t.

Page 49 of 114



Chapter 3

Computation behind ARCH Model

Building the ARCH model takes multiple iterations before it converges and finds opti-

mal coefficients, namely α, β, and ω. This is due to the fitting of two equations at the

same time, one of mean and another of variance. It works by fitting the model with

certain coefficients, then check how well it has performed. Afterward, it adjusts the coef-

ficients before moving to the next iteration. The program stops when the Log-Likelihood

decreases and reached to a minimum point.

3.7 Important Classes of Spark SQL and DataFrames

Table 3.2: PySpark classes used in the research.

Language Class Description

PySpark pyspark.sql.SparkSession Main entry point for DataFrame and SQL functionality.

pyspark.sql.Column A column expression in a DataFrame

pyspark.sql.Row A row of data in a DataFrame

pyspark.sql.DataFrameNaFunctions Methods for handling missing data (null values)

pyspark.sql.functions List of built-in functions available for DataFrame

pyspark.sql.types List of data types available

pyspark.sql.Window For working with window functions

pyspark.sql.GroupedData Aggregation methods, returned by DataFrame.groupBy()

Conclusion

Here the methods studied and implemented in the research are discussed with their

limitations. The methods revolve around Big Data storage and processing framework

along with cloud computing services offered by Amazon Web Services. The detailed

analysis of the methods used in performing time series analysis of high frequency returns

is performed. The two experiments implementing all the methods discussed here are

presented in the next chapter.
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Implementation

This chapter focuses on implementing all the methods described in Chapter 3. Two

experiments are studied and implemented here. The first experiment deals with estimat-

ing risk on historical data by considering volatility as constant. The second experiment

takes into consideration real-time streaming data aggregated with historical data while

assessing risk. In this case, volatility at time t is dependent on previous time periods;

therefore, it needs to be modeled and forecasted. For both experiments, data is scaled in

a binary fashion along with different cluster sizes. Then for the given data and cluster

size as input, decision latency is calculated. Finally, after decision latency is observed

and noted for each case, a model is built to estimate cluster requirements for analysing

high-frequency time series. The whole architecture is built on the AWS Cloud platform.

Access to the AWS resources has been possible only due to the help received by the School

of Computer Science and Statistics, Trinity College Dublin.

4.1 Experiment 1

This experiment deals with estimating risk on historical 1-minute tick data from the year

2010 - 2019 in High-Frequency Trading market. This experiment aims to calculate the

execution time for computing summarized statistics and estimating historical volatility.

Here the mean and standard deviation of the 1-minute tick data is constant. Surely the
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hypothesis here is that the time taken to compute descriptive statistics will be less than

the time taken to compute heavy volatility time-dependent models. The flowchart in

Figure 4.1 represents the end to end process starting from data extraction to decision

making.

Figure 4.1: Flowchart Representation of experiment 1 – To observe decision

latency in computing Descriptive Statistics and measure historical volatility

by calculating standard deviation.

The process starts by collecting historical 1-minute tick data of E-Mini S&P 500 Futures

data from the year 2010 – 2019. The source of the data is IEXCloud, which is a renowned

data service provider for the stock market. Data received has approximately 3.4 million

datapoints and is portioned into different ranges in a binary format. Each data file is

stored in a secured AWS S3 bucket. Before creating clusters, pricing analysis is done,

keeping in mind the AWS credits in hand. An EC2 key pair is created to authenticate the

clusters before sign in. Also, two ports are opened, one to SSH into the master cluster

and another one to open Apache Zeppelin Notebook. After the security configuration is

completed, AWS EMR clusters are created. Before running the program for risk estima-

tion, python packages are installed into the clusters. In the Zeppelin notebook, code is

written to perform the operations on high frequency data. After performing implemen-

tation for both experiments on a different range of data input and varying cluster sizes,

total execution time is observed and noted. In the end, when the execution time for each

case is noted, analysis is done to estimate the cluster size based on data requirement
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and decision latency. A detailed explanation of each method implementation is given in

upcoming sections.

4.2 Experiment 2

There are two differences between the two experiments. In experiment one, data is his-

torical, and the standard deviation is constant. Also, in experiment, descriptive statistics

are performed on different inputs of data. In this experiment, the standard deviation is

not constant or volatility at time t is dependent on time period t-1. The assumption is

that the execution time for each scenario in this experiment is more than the execution

time of each respective scenario in experiment 1. The models used for estimating and

forecasting volatility are ARCH and GARCH, discussed in Chapter 3. The representation

of the movement of data can be seen in the flow diagram in Figure 4.2.

Figure 4.2: Flowchart Representation of experiment 2. To observe decision

latency in computing time series volatility models namely ARCH (1) and

GARCH (1,1)

The process starts with real-time data extraction of 1-minute tick data of E Mini S&P 500

Futures data from IEXCloud API. AWS Kinesis is used for real-time extraction. With

the integration of AWS Kinesis and spark streaming, data is distributed over clusters.

After the real-time information is consumed, it gets aggregated with historical data before

computing risk models. Finally, programs for volatility models, i.e., ARCH and GARCH,

are developed, and execution time is noted. Detailed implementation of the methods is

provided in the upcoming sections.
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Summary of the steps performing in experiment 2 is given below:

a. Create an Amazon Kinesis stream.

b. Spin up an EMR cluster with Hadoop, Spark, and Zeppelin applications from advanced

options.

c. Use a Simple Java producer to push 1-minute tick data from IEXCloud into the Ama-

zon Kinesis stream.

d. Connect to the Zeppelin notebook.

e. Import the Zeppelin notebook, which contains a program for computing risk.

f. Analyze and visualize the streaming data.

4.3 Data Discovery and Acquisition

To study the volatility pattern in High-Frequency Trading market, it is necessary to

consider an exemplar time series. An exemplar dataset covers all the properties of a

problem that had been observed before or will be observed in the future. As discussed

in the initial chapter of research progression, I started generating synthetic data using

Inverse CDF transformation and Monte Carlo simulation to fulfill the need for Big Data.

After studying various literature on Big Data implications in the financial market, I

concluded that the accuracy of data is highly essential for accurate risk estimation.

Initially, the time series considered was of SPY ETF1 (Exchange Traded Fund) 5-minute.

An ETF tracks typically the Standard & Poor’s 500 Index, comprising of 500 large and

mid-cap U.S. stocks. Due to its limited availability and also low volatile nature (refer

(Wermers and Xue, 2015), I progressed towards searching for a more volatile time series.

Unlike regular stock, futures contracts derive their value from an underlying asset, which

can be a traditional stock, index, or a bond. The reason futures contracts are volatile is

because unlike spot prices, they cannot be bought or sold immediately at a fixed price

when Ask price meets Bid price. Futures are just like a bit in the future without knowing
1https://www.investopedia.com/articles/investing/122215/spy-spdr-sp-500-trust-etf.asp
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the underlying risk. This makes Futures highly volatile. There are several literature

explaining the high volatile nature of Futures (Refer (Andersen, Bondarenko, et al.,

2018), (Kurov and Lasser, 2004) and (Jiang et al., 2018)).

The major differences between the futures contracts and spot prices are given in Table

4.1

Table 4.1: Spot vs. Futures Prices

Factors Spot Market Futures Market

Exchange Financial Assets Financial Instruments (Contracts)

Examples Stocks, Cryptocurrencies, Foreign Exchange Currencies Futures, Forwards, Options, Swaps

Time Horizon Executed Immediately Executed at a specific future date

Complexity Straightforward Highly Complex

Volatility Low, Medium High

Finally, the data decided to be analyzed for risk estimation is S&P 500 mini, called the

S&P 500 E-mini, which is a futures contract worth 1/5 the value of a standard S&P

500 futures contract. It is made up of 500 individual stocks representing the market

capitalizations of large companies; the S&P 500 Index is a leading indicator of large-cap

U.S. equities.

4.3.1 Historical Data Acquisition

S&P 500 mini futures data of 1-minute frequency is collected from the year 2010 – 2020.

Some simple steps are followed to acquire the data:

a. Register on IEXCloud by paying monthly subscription charges for an individual ac-

count.

b. Receive your API key after completing full registration.

c. Request JSON data using code listing 4.1. Convert the JSON data into CSV format.

Note - Last one-year data is available for free on IEXCloud and can directly be requested

using the same API key. The detailed documentation on IEXCloud API is provided on

its official website2.
2https://iexcloud.io/
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Code Listing 4.1: Code for Futures contracts data extraction through

IEXCloud Web API from the year 2019-2020. Similarly, more data is ex-

tracted from the year 2010 – 2019

### Year 2019 - 2020

string1 = "https://sandbox.iexapis.com/stable/stock/ES/chart/date/"

string2 = "?token=Tpk_fdadb6f399f8496b895b4888c84701b5"

def getDataIEX(string1,string2):

empty_item_list = []

df2 = pd.DataFrame(columns = ["date", "minute", "close","volume"])

for i in range(20190101,20200101):

response = requests.get(string1 + str(i) + string2)

test = response.json()

if test == []:

empty_item_list.append(i)

else:

df = pd.DataFrame(test)

df2 = pd.concat([df2,df[['date','minute','close']]], axis = 0)

return df2
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Table 4.2: S&P 500 Mini Futures (ES) 1-minute intraday prices from the

year 2010-2019

Figure 4.3: S&P 500 Mini Futures (ES) 1-minute intraday prices from the

year 2010-2019
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4.3.2 Data Partitioning and File Storage Format

Imported data is divided into eight parts in powers of two, which are often used to

measure computer memory. Each experiment is implemented on the below-given number

of datapoints and on the given clusters. Also, the processing for a given number of data

points is done on 2, 4, and 8 clusters, and finally, the decision latency is noted in each

case.

Table 4.3: Data Scaling

Format Value

2^16 65536

2^17 131072

2^18 262144

2^19 524288

2^20 1048576

2^21 2097152

Till Last 3478488

Table 4.4: Cluster Scaling

Datapoints Clusters

65536 2 4 8

131072 2 4 8

262144 2 4 8

524288 2 4 8

1048576 2 4 8

2097152 2 4 8

3478488 2 4 8
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Data Storage

Data is divided as given in the previous section and stored in AWS S3 (Simple Stor-

age Service) bucket, which is a public cloud storage resource available in Amazon Web

Services (AWS). The main advantage of using S3 object storage service is that it offers

its customers leading solutions in terms of scalability, data availability, security, and

performance.

a. Data Access and Availability

Data in S3 can be provided to any user in the world from a single location with read

or write permissions.

Figure 4.4: AWS Data Permissions

b. Data Encryption

AWS S3 offers data encryption capabilities. Server-side encryption for data stored in

the S3 bucket can either be done using Amazon S3-managed keys (SSE-S3) or customer

master keys (CMKs) stored in AWS Key Management Service (AWS KMS).

Figure 4.5: AWS S3 Object Storage Data Encryption

4.3.3 Real-time Data Extraction from Amazon Kinesis Streams

Using Zeppelin and Spark Streaming

This section shows how we can use Amazon Kinesis streams for real-time data extraction.

The actual implementation of AWS Kinesis data streams on High Frequency data has
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not been possible in this research due to the limited AWS student credits. However,

a theoretical structure is ready to be implemented in the future. The detailed end to

end flow of to analyze Realtime Data from Amazon Kinesis Streams Using Zeppelin and

Spark Streaming can be found on AWS official documentation3

As discussed in section 3.4.1, the Kinesis Producer Library (KPL) is an application that

puts user data records into a Kinesis data stream (also called data ingestion). Here KPL

extracts data from IEXCloud at every 1 minute, put the records into shards, then KCL

(Kinesis Client Library) collects these data streams and sends it to Spark through Spark

EMR clusters through Spark streaming where real-time streams get aggregated with the

historical data in the S3 bucket. This flow can be visualized from the flow diagram shown

in Figure 4.6. Also, detailed steps for writing and receiving data to and from AWS Kinesis

data streams can be found on official AWS documentation4.

Figure 4.6: Real-Time Data Extraction and Analysis using AWS Kinesis

Framework

KPL uses Java library to build a small application that extracts data from web sources

such as IEXCloud, processes it, and distribute it to the shards. KPL and KCL applica-
3https://aws.amazon.com/blogs/big-data/analyze-realtime-data-from-amazon-kinesis%2Dstreams%

2Dusing%2Dzeppelin-and-spark-streaming
4https://docs.aws.amazon.com/streams/latest/dev/working-with-streams.html
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tions can be written in Python; however, Java needs to be installed in the system as its

library will be running in the background to support development in Python. Detailed

documentation on developing kinesis. The installation of Java libraries is given in the

official documentation of AWS5.

The following python code is needed to write a minimal working producer.

Code Listing 4.2: KPL application written in Python to send records to

shards aggregated up to 100KB, with every 60 seconds and joined with ‘\n’

from kinesis_producer import KinesisProducer

config = dict(

aws_region='us-east-1',

buffer_size_limit=100000,

buffer_time_limit=0.2,

kinesis_concurrency=1,

kinesis_max_retries=10,

record_delimiter='\n',

stream_name='KINESIS_STREAM_NAME',

)

k = KinesisProducer(config=config)

for record in records:

k.send(record)

k.close()

k.join()

5https://aws.amazon.com/premiumsupport/knowledge-center/kinesis-data-stream-kpl/
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Data Aggregation

After data is received by Kinesis Client Library (KCL) application at every minute, it

gets aggregated with the historical data. This can be more clearly visualized from Figure

4.7

Figure 4.7: Data Aggregation (Historical and Real Time) at every 1-

minute.

4.4 Environment Setup

The whole process of setting up the cloud computing machines involves four main steps,

the fourth being explained within each experiment. First, it is important to note that

with the AWS educated students account, it is only possible to perform computation on

a maximum of 8 clusters; however, there is no limitation on the storage of the big data.

Also, the use of real-time streaming platform, i.e., AWS Kinesis, has not been possible due

to the cost limitations on the student account. Before creating clusters for computing,

security settings need to be configured to access the master clusters. As discussed in

Chapter 3, each master controls multiple slave clusters. All these clusters are nothing

but EC2 Ubuntu machines combined together to form an EMR cluster. Access to the
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master machine is done by Secure Shell (SSH) protocol. After access is granted, necessary

packages are installed.

4.4.1 Security Configuration

There are two steps to configure the security setting for EMR clusters:

a. Create an EC2 Key Pair, which consists of a public key and a private key. It allows

users to download the private key, which is required to login to the master ubuntu

machine using SSH. Detailed steps of creating an EC2 key pair are given in the AWS

official documentation6.

b. Configure security settings for the clusters to be created. This step is performed while

the cluster is in the creation stage and is waiting to move to the active stage. Steps

are given on the official AWS EMR page7.

In addition to the steps given on the page, one more rule is added to open the port for

Apache Zeppelin notebook:

• Click Add rule and enter the following details:

• Type – Custom IP

• Port Range – 8890

• Destination – Anywhere

6Creating an EC2 Key Pair https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/

ec2-key-pairs.html#having-ec2-create-your-key-pair
7Allow SSH to EMR Clusters: https://docs.aws.amazon.com/emr/latest/ManagementGuide/

emr-gs-ssh.html
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Figure 4.8: AWS Security Settings. SSH lets user login to EC2 master

Ubuntu machine using Putty. Custom TCP port 8890 is the default port to

open Zeppelin Notebook running on distributed platform.

4.4.2 Setting up a Spark cluster on AWS EMR

The whole setup of Spark on AWS EMR is referred from (Bluhm, 2018) and official AWS

documentation8.

This section explains the necessary steps taken to create EMR clusters involving specific

type EC2 instances. If one does not have an AWS account yet, he/she needs to sign

up for one. Once the account is set up, one has to create an S3 bucket and an Elastic

Compute Cloud (EC2). In this section, I have only emphasized the steps specific to the

use case, which are not described in the official documentation.

As the Python program is developed under Spark version 2.2.0, the first step is to select a

corresponding EMR release when launching the cluster. Under advanced options, select

emr-5.10.0 in the software configuration panel and make sure to check the box with Spark

2.2.0, Zeppelin 0.7.3 Notebook, Hadoop 2.7.3. Hive is only optional and depends on the

use case.

8Detailed Guide to AWS EMR cluster: https://docs.aws.amazon.com/emr/latest/

ManagementGuide/emr-gs-prerequisites.html
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Figure 4.9: Selection of the EMR type clusters. Necessary packages such

as Spark, Hadoop, Zeppelin or optional Hive are installed on EC2 machines.

Note EMR cluster is just collection of EC2 machines running concurrently.

Next, you have to configure the hardware of your cluster, including the instance type

and the number of instances. While the hardware configuration strongly depends on

the resource requirements (and budget considerations) of the specific use, the forecasting

example in this paper is based on a general-purpose instance type, providing a balanced

ratio of the number of CPUs relative to the amount of RAM.

Instance Details

Details of the Instance used are given in Table 4.5. Whole list of available pricing is on

official AWS documentation 9

Table 4.5: Details of Instance used in the research along with its pricing.

Name Type
Default

vCPUs

Memory

(GiB)

Network

Performance

Maximum

bandwidth

(Mbps)

Maximum

throughput

(MB/s,

128 KiB I/O)

Maximum

IOPS

(16 KiB I/O)

Price

m4.4xlarge M4 16 64 High 2000 250 16,000
$0.24 per

Hour

9A list of available instance types and prices can be found at https://aws.amazon.com/de/ec2/pricing/

on-demand/
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Figure 4.10: Screenshot of AWS interface showing selection of clusters

mentioned in Table 4.5

The two types of nodes used in this research are Master and Core. The master node

handles the distribution of the task to core nodes, while the core node handles all the

processing.

Once you have selected your preferred hardware configuration, go to the next section,

which asks you to specify some general cluster settings. A bootstrap action panel is

present at the bottom of the page where custom actions can be specified to install addi-

tional Software or to customize the configuration of cluster instances. In essence, boot-

strap actions are scripts that run on all nodes after the cluster is launched. We will use

the bootstrap action to install a few python libraries required for the parallel forecast-

ing exercise. For this purpose, a shell script called install python libraries.sh with the

following content must be uploaded to a folder in the S3 bucket:

Code Listing 4.3: Install python libraries.sh

#! / bin .bash -xe

sudo yum install python36 python36-pip

python3 -m pip install arch

python3 -m pip install matplotlib

python3 -m pip install seaborn

python3 -m pip install sklearn

python3 -m pip install scipy
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Next, add the bootstrap action by selecting custom action and, under the configure and

add button, browse the S3 path to the shell script (no optional arguments needed). After

adding the custom bootstrap action, move on to the last step security settings, which are

explained in the previous section of security configuration. Finally, the cluster can be

created.

Figure 4.11: EMR clusters (2 Cores or 4 Instances) running with installed

Spark framework.

To deploy the Spark application with our parallel forecasting algorithm to the master

node, we have to establish an SSH connection between our local machine and the master

node and create an open port for Apache Zeppelin notebook, detailed steps are given in

section Section Configuration (See 4.4.1).

4.5 Risk Estimation

4.5.1 Summarized Statistics

Few lines of code are written in PySpark, which is a Python API for Spark for estimating

the statistical moments of returns. This program runs for different scales of data input

on each of the given cluster sizes (2,4 and 8). Statistical moments of returns for one

of the use cases on 400,000 datapoints are calculated as displayed in Figure 4.12. The

image is of the Zeppelin notebook, which is in the master machine handling spark jobs

on the slave machines. Standard deviation, which is considered as a standard measure

of volatility, is calculated along with the other measure of variability such as skewness
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and kurtosis. However, before calculating the descriptive statistics, some steps such as

cleaning data, calculating returns from prices, and observing stylized facts for returns are

performed.

Figure 4.12: Output Window for one of the use case in experiment 1 -

Descriptive Statistics (Measuring Historical Volatility)

4.5.2 Volatility Model

Usually, the standard deviation is assumed to be a constant of the series, but in some

situations, there are fluctuations in its values. Volatility is sometimes computed using

historical time series, and we have to estimate the means and standard deviations us-

ing linear and non-linear models. But in the case of streaming data where the standard

deviation is not constant and keeps changes. Volatility needs to be modeled in order to un-

derstand the fluctuation pattern before making quick decisions. Here time-series volatility

models such as ARCH and GARCH (1,1) are implemented for forecasting volatility. The

total time to train, test, and predict volatility using ARCH and GARCH volatility mod-

els is high as compared to just calculating historical volatility using standard deviation.

Volatility modelling through GARCH(1,1) for one of the use cases on 400,000 datapoints

is done using the Python library for, as shown in Figure 4.13.
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Figure 4.13: Output Window for one of the use case in experiment 2.

Modelling volatility using 400k datapoints

4.6 Decision Latency

Decision latency or the system execution time is noted in each case. Each scenario is

executed five times, and then the average of the execution time is considered. This is

to cover the different range of execution time observed while computing volatility. The

method to calculate decision latency is to just take the system time at the start of the

run and the system time at the end of the run. The difference between the two execution

times is decision latency.
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4.7 Conclusion

This chapter dives deep into the implementation of the methods described in Chapter 3

followed in a way as given in the architecture. Some of the main methods implemented in

this section are a collection of exemplar time series from IEXCloud, both historical and

real-time, big data storage, parallel computing framework Apache Spark, security config-

uration, and decision latency. Lastly, a screenshot of the interface where the program is

running is displayed.
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Results

5.1 Introduction

Two main challenges which big data analysts face are latency and scalable computing.

Low latency, which means systems respond quickly to actions, can help traders take

rapid decisions without depending on computation power. Capturing market trends at

every interval, storing the massive volume of structured data, and analysing the data at

a regular frequency to reveal high-profit margins is not possible without achieving low

latency. It is easy to observe low latency with less volume of data; however, if data is

scaled, it is difficult to make trading decisions within a defined interval due to limitations

of computing power.

The standardized intraday future returns1 for S&P 500 Mini2 are plotted, as shown in

Figure 5.1. At many points, returns are deviating by more than 5 standard deviation from

the mean which accounts for high volatility. The objective of this chapter is to analyze

decision latency observed in calculating intraday volatility either by measuring standard

deviation or by modelling it through time series models. To model intraday volatility,

GARCH (1,1) model is used in experiment 2. In experiment 1, historical volatility is

computed with other statistical moments of returns.
1https://www.investopedia.com/terms/z/zscore.asp
2https://www.investopedia.com/terms/s/sp_500_mini.asp
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This chapter starts with proving the three stylized facts for financial returns on intraday

futures data. Then results of each experiment are discussed along with the detailed

analysis of the computation time, i.e. decision latency on a different scale of data and

sizes of clusters.

Figure 5.1: Intraday Future Standardized Returns of S&P 500 Mini from

2019-01-01 to 2019-03-11. At many points, returns are deviating by more

than 5 standard deviation from the mean which accounts for high volatility.

5.2 Stylized Facts for Financial Returns

There are three significant stylized facts of financial returns are common to all different

types of assets as mentioned in Chapter 3.5. Although for both experiments, I have

taken different scales of datasets, estimated volatility, and noted the decision latency.

For calculating stylized facts, I have considered Futures S&P 500 Mini 1-minute tick data

with a volume of 65536 data points. The detailed analysis of stylized facts is presented

in the next three sections.
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5.2.1 First stylized fact

The first stylized fact is that the distribution of returns is not normal. It is approximately

symmetric, has fat tails. Summary of the statistical moments of returns is provided in

Table 5.1, and standardized distribution can be seen from Figure 5.2.

The distribution of returns is approximately symmetric. The distribution has a very long

tail and normalized returns reach to maximum 15 standard deviations from the mean

(see Figure 5.2). The high peak describes the maximum returns are concentrated within

0.5 standard deviations (refer Table 5.2). Skewness statistics are used to represent the

symmetry of distributions, and kurtosis statistics are used to interpret as a measure of

similarity of the distribution to a normal distribution. The S&P 500 Mini Futures returns

from 2019-01-01 to 2019-03-11 has positive skewness equal to 0.0121 and high kurtosis

value of 15.25. Positive skewness indicates that the right tail is stronger and the mass of

the distribution is concentrated on the left-hand side of the figure. The Kurtosis of any

normal distribution is three and the kurtosis value of 15.25 in this case, indicates that it

has strong fatter tails than a normal distribution as shown in Table 5.2.

Table 5.1: Descriptive Statistics on log-returns of S&P 500 Mini Future

series for nearly three months dated 2019-01-01 to 2019-03-11. Note that

returns are not normally distributed, have fat tails and high peak. The

mean is near zero. Skewness is slightly greater than zero, unlike in normal

distribution where it is zero. High Kurtosis of 15.25 explains the heavy tails,

distinct peakedness near the mean. It is much higher than the Kurtosis of a

normal distribution which is 3.
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Figure 5.2: Return Distribution. The distribution has a very long tail and

normalised returns reach to maximum 15 standard deviations from the mean.

The high peak describes the maximum returns are concentrated within 0.5

standard deviations (see Table 5.2)

Table 5.2: Frequency for standardized returns of S&P 500 Mini Futures.

The frequency of observations lies below r−3s or above r+3s is approximately

six times as it of the normal distribution, corresponding to the high value of

Kurtosis

Range Observed Normal Observed minus normal

0 to 0.25 24.50% 19.70% 4.80%

0.25 to 0.5 36.80% 18.60% 18.20%

0.5 to 1 18.30% 30.00% -11.70%

1.0 to 1.5 10.50% 18.40% -7.90%

1.5 to 2 5.01% 8.80% -3.79%

2 to 3 2.90% 4.30% -1.40%

3+ 1.70% 0.30% 1.40%
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The percentages of standardized returns, (rt − r )/s, within various intervals are summa-

rized and compared with returns in a normal distribution as shown in Table 5.2.

The first two rows of Table 5.2 show 61.37% of total returns lie within 0.5 standard

deviations from the mean which when compared to a value of 38.30% in case of normal

distribution is exceptionally high. So, there are more observations in the range from r −
0.5s to r+0.5s than are expected from a normal distribution, corresponding to a high peak

in empirical distributions. The final row shows there are also more extreme observations,

either below r −3s or above r +3s, corresponding to two fat tails which we have already

discussed before. The high values of Kurtosis are caused by the outliers in the tails. As

the frequencies total 100%, there must be fewer observations elsewhere that occur beyond

r ±3s. Note that the high peak and fat tails effects are interdependent because extreme

returns contribute large squared returns to the variance of the distribution, which implies

there must be more observations near the centre of the distribution than are found for a

normal distribution having the same mean and variance.

5.2.2 Second stylized Fact

There is almost no autocorrelation between the returns of different periods.

5.2.3 Third stylized Fact

There is positive dependence between absolute returns on nearby days, and likewise for

squared returns.

A correlation of –1 indicates a perfect negative correlation, meaning that as one

variable goes up, the other goes down. A correlation of +1 indicates a perfect positive

correlation, meaning that both variables move in the same direction together. The

prices are highly autocorrelated, even till 40 lags. Returns which move around mean are

not correlated. However, the function of returns can have substantial autocorrelations

even though returns do not. The correlation coefficients are positive for transformed
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returns. It means returns are dependent on the returns on previous periods, but the form

of dependency is not linear. The evidence for such non-linear dependence is obtained

here by considering the autocorrelations of various powers of absolute returns, |rt | and

r 2
t . Squared returns are therefore used to measure realised intraday volatility.

Table 5.3: Autocorrelation in S&P 500 Mini Futures returns from 2019-

01-01 to 2019-03-11. Proving second and third stylized fact that prices are

highly autocorrelated, log returns are not autocorrelated or close to zero,

squared returns are positively autocorrelated, and lastly absolute returns

have high positive autocorrelation than squared returns. There is a very

high correlation between prices at time t and t+1. The correlation between

log return rt and rt+1 is negative and continues for a few lags after which

it becomes positive proving that return reverts to mean. There is a posi-

tive dependence between absolute returns on nearby days, and likewise for

squared returns.

Type 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag

Close Price 0.998 0.997 0.993 0.990 0.988

Log Returns -0.047 -0.002 -0.011 0.013 -0.007

Squared Log Returns 0.18 0.14 0.15 0.12 0.12

Absolute Log Returns 0.30 0.277 0.272 0.26 0.25
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Figure 5.3: Autocorrelation summary of Table 5.3 but with up to 40 lags. A

plot of the autocorrelation of a time series by lag is called the Autocorrelation

Function, or the acronym ACF. This plot is sometimes called a correlogram

or an autocorrelation plot. Running the example creates a 2D plot showing

the lag value along the x-axis and the correlation on the y-axis between -1 and

1. The greater the distance in time, the more unlikely that autocorrelation

exists

5.2.4 Latency in Stylized Facts

The stylized facts are just computed to infer the behaviour of returns and to verify if

these are common to all different type of asset as stated in (Stephen J Taylor, 2007). To

keep in line with the objective of estimating latency, the time it took to compute these

stylized facts on 65536 datapoints on 2,4 and 8 clusters are 24.38 seconds, 19.47 seconds

and 15.34 seconds. As a common observation, the latency has reduced on increasing the

cluster size. Analyzing latency for all different scale of data sizes is not the focus of this
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section.

5.3 Experiment 1 Results

The time it takes to compute historical volatility by calculating standard deviation and

also the descriptive statistics is less than computing time-dependent volatility models such

as GARCH. Analysis of decision latency resulted from each execution and estimation of

clusters is done on each scale of data input, i.e. from approximately 65,000 datapoints to

3.4 million data points and on different sizes of clusters. However, evaluating the output

of summary statistics and volatility models in each case is not the focus of this research.

Therefore, the results of descriptive statistics and ARCH models are only discussed for

one of the data inputs i.e. with data of 1 million datapoints.

5.3.1 Experiment 1

As discussed in Chapter 4, in this experiment, the focus is to compute summary statistics

of historical financial returns with different sizes of data inputs. As the volume of data

increases, the computation time for calculating the four statistical moments of returns

increases, and it undoubtedly impacts the decision time resulting in low-profit margins

in High Frequency Trading. To avoid this bottleneck, three cluster sizes are taken into

consideration while executing each scenario to confirm that total decision time is less

than the computation time. In the upcoming two sections, I discuss the brief output

of summary statistics calculated on 1 Million data points and the detailed analysis of

decision latency.

Summary Statistics for High Frequency Returns Considering 1 Million data

points as input.

The statistical characteristics of the distribution of a set of returns can be summarised by

numbers such as their mean, standard deviation, skewness, and kurtosis. These summary

statistics are presented in Table 5.4 and Figure 5.4 for the S&P 500 future series of 1-

Page 78 of 114



Chapter 5

minute returns introduced in Section 4.5.1. The table also includes the minimum and

maximum returns with other statistical measures to summarise returns. The mean of

the 1-minute high-frequency return dated from the year 2010-01-03 to 2013-01-02 is near

zero with a standard deviation of 0.039%. The series has high Kurtosis of 99.009 and

negative skewness of -0.29. Negative skewness indicates that the left tail is stronger and

longer than the right tail. Also, the left tail is stronger, and the mass of the distribution

is more concentrated on the right side as compared to a normal distribution.

Table 5.4: Summary Statistics for Future Returns computed on 1 million

data points. r , s, b, and k are the mean, standard deviation, skewness, and

Kurtosis for the time series.

Series Date Range 104r 102s b k

S&P 500 Mini Futures 2010-01-03 -2013-01-02 0.0034 0.039 -0.29 99.009

Figure 5.4: Descriptive Statistics of 1 Minute Returns for S&P 500 Mini

Future Series. The mean of the 1-minute high-frequency return dated from

the year 2010-01-03 to 2013-01-02 is near zero with a standard deviation of

0.039%. The series has high Kurtosis of 99.009 and negative skewness of -

0.29. Negative skewness indicates that the left tail is stronger and longer than

the right tail. Also, the left tail is stronger, and the mass of the distribution

is more concentrated on the right side as compared to a normal distribution.
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5.3.2 Cluster Estimation based on Decision Latency

The first column of Table 5.5 represents the number of data points taken for computing

risk. It ranges from approximately 65,000 to 3.4 Million. The second column shows

the number of clusters used in an execution in a scale of 2,4 and 8. The third column

provides decision latency which is the execution time for computing summarised statistics

and the most crucial historical volatility. This execution time is the average time taken

in computing the same scenario for five times. The reason for this approach is the

changing response time at each execution. The fourth column explains the improvement

in execution time when cluster sizes are changed first from 2 to 4, then 4 to 8, and lastly

from 2 to 8. Information on change in cluster size can be seen in the fifth column.

Summarizing the first case in Table 5.5 where the number of datapoints taken for comput-

ing descriptive statistics are 65536. The execution time for computing summary statistics

on 2 clusters is 4.91 seconds, on 4 clusters is 3.06 seconds, and on 8 clusters is 2.68 sec-

onds. The improvement in execution time moving from 2 clusters to 4 clusters is 60.37%,

4 clusters to 8 clusters is 13.99%, and 2 clusters to 8 clusters is 82.81%. Similar results

are self-explanatory in Table 5.5.

Common Observations

From Table 5.5 it is evident that the execution time in computing summary statistics de-

creases with an increase in the size of clusters. The greatest improvement in performance

is observed on moving from 2 to 8 clusters where decision latency is reduced by more

than half. It is clear that decision latency increases with increase in size of the dataset.

In a 1-minute trading environment, if minimum of 30 seconds is needed as a buffer to

take trading decision, and the dataset has more than 2 million data points, it is almost

impossible to compute summary statistics on 8 or less than 8 clusters. In that case, more

than 8 clusters needs to be adapted by the trading firm.
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Table 5.5: Decision Latency for experiment 1 on different sizes of data and

clusters.

Descriptive Statistics

Data

Scaling

(Cases)

Number of

Data points

Number

of

Clusters

Execution Time

(Seconds)

Speed Improvement (%)

From Clusters

2-4, 4-8, 2-8

Respectively

2^16 65536

2 4.91 60.37%

4 3.06 13.99%

8 2.68 82.81%

2^17 131072

2 6.10 39.01%

4 4.39 12.60%

8 3.90 56.52%

2^18 262144

2 7.09 17.55%

4 6.04 2.71%

8 5.88 20.74%

2^19 524288

2 11.34 4.13%

4 10.89 50.00%

8 7.26 56.20%

2^20 1048576

2 32.19 58.38%

4 20.33 59.56%

8 12.74 152.70%

2^21 2097152

2 52.71 32.20%

4 39.87 71.71%

8 23.22 127.00%

Till End 3478488

2 89.19 6.70%

4 83.59 85.60%

8 45.04 98.03%
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Figure 5.5: Graphs (A-G) describing the relationship between execution

time and number of clusters. It is clearly observed that increasing the size

of cluster reduces decision latency, after which the logarithm curve leads

towards a saturation point post which there cannot be more improvement in

performance even with increase in size of cluster. There is a little scope in

improvement of decision latency when jumping from 8 clusters to 16 clusters.

As observed from Figure 5.5 there is less scope in improvement of decision latency when

less amount of data is used for computing descriptive statistics proved in each of the first

four graphs (A-D) of Figure 5.5, here the decision latency is not reduced by more than

3 seconds. However, in graphs (E,F,G) where more than 1 million data points are used
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for computation, the minimum reduction in decision latency is around 20 seconds. These

graphs shows that the improvement in decision latency is observed on scaling size of the

clusters. The curve leads towards a saturation point post which there cannot be more

improvement in performance.

5.3.3 Change in Decision Latency based on Data Points

The first column from Table 5.6 shows the different sizes of data points (as the power of

2) taken as input to compute summary statistics. The second, third, and fourth columns

provide the execution time on each of the 2,4 and 8 clusters. It is clear from Table 5.5

that with the increase in the size of the data, the computation time or latency increases.

This behaviour is the same with all different sizes of clusters. It is also observed that

as we reduce the size of the dataset, the improvement in execution time also decreases.

For instance, computation time on 3.4 million datapoints is 89.19 seconds on 2 clusters,

83.59 seconds on 4 clusters, and 45.04 seconds on 8 clusters. On moving to 2 million

data points, decision latency is reduced by approximately half. On the other hand, when

we move from 0.26 million data points to 0.13 million data points, the computation time

only decreases by a few seconds.

On an exponential graph of decision latency, even though the size of data is increasing

along with size of the clusters, a point is observed where the rate of decline starts to level

off when that exponential growth has stopped (see Figure 5.6)).
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Table 5.6: Decision latency on a different scale of data inputs. Every time

the data size is doubled execution time increases by some specific percentage

Decision Latency (Seconds)

Data Points 2 Clusters 4 Clusters 8 Clusters

2^16 65536 4.91 3.06 2.68

2^17 131072 6.10 4.39 3.90

2^18 262144 7.09 6.04 5.88

2^19 524288 11.34 10.89 7.26

2^20 1048576 32.19 20.33 12.74

2^21 2097152 52.17 39.87 23.23

Till Last 3478488 89.19 83.59 45.04

Figure 5.6: Graphs (A, B, and C) showing relation between decision latency

and data points on each given cluster. Latency is increased with an increase

in size of the data.
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5.4 Experiment 2 Results

The objective of this research is to compute heavy volatility models such as ARCH and

GARCH and to observe the decision latency on different size of data inputs. Critical

evaluation of the models is out of the scope of this research as the objective is to calculate

latencies based on which clusters are estimated.

5.4.1 Experiment 2

Volatility modelling on High Frequency Returns Considering 1 Million data

points as Input

Econometric models assume that the variance of the error terms or residuals will be uni-

form. This is known as Homoskedasticity. However, in some circumstances, this variance

is not uniform, as in the case of Heteroskedasticity where the variance of these error terms

is not just non-uniform but is affected by variances preceding it. It is crucial to note that

ARCH family models are used to predict future variance rather than future returns. This

is particularly true in time-series analysis of financial markets. For example, in securities

markets, periods of low volatility are often followed by periods of high volatility. So, the

variance of the error term describing these markets would vary depending on the variance

of previous periods.

In this experiment, simple conditional volatility models ARCH (1) and GARCH (1,1)

models are fitted on S&P 500 Mini futures 1-minute returns from the year 2010 to 2013.

The dataset has approximately 1 million data points. Some critical steps to the models

followed in this research are:

1. Define a model. Import relevant ARCH python packages.

2. Import and split the data into train and test datasets.

3. Train the model on the training dataset.

4. Evaluate the model on test data.
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5. Display and analyze output table of summarised statistics.

6. Perform variance forecasts using inbuilt libraries.

7. Note decision latency for further analysis.

ARCH models are commonly employed in modelling financial time series that exhibit

time-varying volatility and volatility clustering, i.e. periods of swings interspersed with

periods of relative calm.

ARCH (1)

The simplest model of the ARCH family is ARCH (1). The distribution of the returns

for period t, conditional on all previous returns, is normal with constant mean µ and

time-varying conditional variance ht defined by

rt |rt−1,rt−2, ... ∼ N (µ,ht )

and

ht =ω+α(rt−1 −µ)2 (5.1)

The volatility parameters are ω > 0 and α = 0. The volatility of the return in period t

then depends solely on the previous return. The residual at time t is:

et = rt −µ

The summary of the model output is shown in Table 5.7.
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Figure 5.7: ARCH Model Summary Statistics

The value of the mean model as constant signifies mean is constant rather than moving.

In other words, the mean value does not depend on its past values. Simple ARCH (1)

model is used here for modelling variance. The distribution of the residuals from the
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fitted model follows a normal distribution. The Maximum Likelihood method is used to

find model coefficients. If multiple models need to be compared, then log-likelihood and

information criteria values can be used. The value of Adj. R-squared is -0.000 means;

the absolute value is so very minute; it rounds it to 0. R-squared is a measurement of the

explanatory variation away from the mean. In the mean model, residuals are simply the

version of the original dataset, where every value is decreased by a constant, then there

will be no actual variance. Therefore, the r squared value is zero.

Log-Likelihood value is a measure of goodness of fit for any model. The higher the

value, the better is the model. For a better ARCH model, the log-likelihood value should

increase, and information criteria (AIC, BIC) values should decrease.

The coef column contains the numeric values of the model parameters such as α and ω in

equation 5.1. The values in column std err explains how far away, on average, the model

predictions are from the true values. Column t gives values for the test-statistic for model

significance. p values for both constants ω and one lag value α are zero, which means

both coefficients are significantly different from zero. The last two columns represent the

critical value for the 95% confidence interval, if these columns do not contain any zero

value, means again that coefficients are significant from zero. This means that volatility

at time t is dependent on previous lagged value. The value of Df Model as three just

signifies the number of numeric coefficients the model is trying to estimate. These are µ,

ω, α.

From the summary Table 5.7, mean is resulted in constant, which means mean is not

dependent on past lagged periods. However, in a case where it is time-dependent or

changing, mean can be modelled using AR (Autoregressive Equation) or ARMA (Au-

toregressive Moving Average) equation. Different probability distributions for residuals

can be checked by giving input parameter dist as students t , or log-normal etc.

p < 0.05 –> lags are significant different and can be used for prediction.

p > 0.05 —> Insignificant to predict using this lag.

Computation behind ARCH(1)

As can be seen from Table 5.7 the ARCH (1) model takes eight iterations before it
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converges. This is due to fitting two equations at the same time, one of mean and

another of variance. It works by fitting the model with certain coefficients, then check

how well it has performed. Afterwards, it adjusts the coefficients before moving to the

next iteration. The program stops when the log-likelihood decreases; however, in this case,

the log-likelihood values are negative; therefore, it has to increase till model converges

finding the best model coefficients. Due to the inbuilt feature of the ARCH module in

Python, the program itself stops till it finds optimal parameters of the model. For a more

complicated model, this program can take numerous attempts.

GARCH (1,1) – Generalised Autoregressive Conditional Heteroskedasticity

The ARCH model allowed the conditional variance to change over time as a function of

past errors leaving the unconditional variance constant. An extension of this approach

named GARCH or Generalized Autoregressive Conditional Heteroskedasticity incorpo-

rates a moving average component together with the autoregressive component. The

introduction of a moving average component allows analysts to both model the condi-

tional change in variance over time as well as changes in the time-dependent variance.

The extension of the ARCH process to the GARCH process bears much resemblance to

the extension of the standard time series AR process to the general ARMA process. The

GARCH (1, 1) model with conditional normal distributions is the most popular ARCH

specification in empirical research, mainly when modelling daily returns. Here variance

is considered as the measure of volatility. The GARCH (1,1) model is built on E-Mini

Future returns from the year 2010 to 2013.

The distribution of the return for period t, conditional on all previous returns, is defined

by:

rt |rt−1,rt−2, ... ∼ N (µ,ht )

and

ht =ω+α(rt−1 −µ)2 +βht−1 (5.2)

ht = V ar (yt |yt−1) = The variance at time period t is conditional on values of the variable

at time period t −1.
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ω = Constant term of the model.

α = Numeric coefficient for the squared residual for the past period.

ϵ2
t−1 = (rt−1 −µ)2 = Squared residual for the past period.

β = Numeric coefficient for the conditional variance from last period.

ht−1= Conditional variance from the last period.

GARCH (p, q) with p as one and q as one is GARCH (1,1). The p refers to ARCH

order (past ϵ2
t -Autoregressive), and q refers to GARCH order (past σ2

t – Moving Average

(MA)).
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Figure 5.8: GARCH (1,1) Model Output
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Evaluation of GARCH (1,1)

The figure 5.8 depicts that the model only six iterations to converge. Mean is considered

constant in this model. Variance residuals follow a normal distribution. Maximum-

Likelihood methods estimate model coefficients. Log-Likelihood value of -239110 is

greater than the Log-Likelihood value of ARCH 1 Model, which was -398710. Also,

information criteria value (AIC) for GARCH (1,1) is higher than the ARCH (1). The

value of Df Model as 4 represents the estimation of 4 coefficients, i.e. µ,ω,α and β. β is

the key to volatility in GARCH model. P value of less than 0.05 signifies the significance

of this model. These all parameters signifies that the GARCH (1,1) is a better model

than the ARCH (1).

Adding a single past variance in GARCH model gives more predictive power than squared

residuals of 1 lag ago in ARCH model. Hence including past values as a form of baseline

provides much greater accuracy. All the coefficients ω, α, β are significant with p values

less than 0.05. Hence GARCH (1,1) model is a front runner for measuring volatility.

It has already been proven that no higher-lag GARCH models outperform the GARCH

(1,1) when it comes to variance of market returns. As all the effects of the conditional

variance two or more periods ago will be contained in the conditional variance of 1 period

ago. So, there is no need to include more than 1 GARCH component.

Computation behind GARCH (1,1)

As can be seen from figure 5.8 the GARCH (1,1) model took six iterations before it

converges. This is due to fitting two equations at the same time, one mean and another

variance. It works by fitting the model with certain coefficients, then check how well it has

performed. Afterwards, it adjusts the coefficients before moving to the next iteration. The

program stops when the Log-Likelihood decreases; however, in this case, the log-likelihood

values are negative; therefore, it has to increase till model converges finding the best model

coefficients. Due to the inbuilt feature of GARCH module in Python, the program itself

stops till it finds optimal parameters of the model. For more complicated models, this

program can take numerous attempts. This is the reason ARCH type models take more

time in computing volatility than simple calculations such as historical volatility. There
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is a significant difference in decision latency observed in calculating summary statistics

in experiment 1 and building ARCH type models in experiment 2.

Forecasts through GARCH (1,1)

In order to test for the validity of the variance forecasts when using GARCH models, it

should be made sure that the model adequately captures the dynamics of the data. Now

though the focus of this research is not to dive into the evaluations of the GARCH models

forecasts, inbuilt residual variance forecast module in Python has helped me to take into

account the decision latency of the execution in forecasting next period volatility. This

GARCH (1,1) model trained previously produces one period ahead forecasts of variance.

One of the most exciting papers, co-authored by (Andersen and Bollerslev, 1998) himself,

attempts to combat the argument that, while GARCH models often seem to fit well in-

sample, they have poor forecasting performance at an intraday level. He argues that the

ex-post measure of variance commonly being used, the daily squared return, is a poor

estimate of the actual variance that one should measure performance against. Instead,

one should use a summation of squared intraday returns aggregated to the daily level,

termed realised variance, as a measure of that day’s variance. These are then compared

against the performance measures of realised variance. Aggregation methods are found

to be more accurate than 1-step ahead intraday forecasts.
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Figure 5.9: GARCH (1,1) Residual Variance Forecast of 1 minute ahead

For 1-minute sampling, the forecasting procedure is:

1) An initial GARCH (1,1) model is fit using the first 3,23,532 1-minute returns from

date 2011-01-01 to 2011-11-31. This ends the fit on 2011-11-31 06:30:00, the end of

that day.

2) The next 30 days worth of 1-minute variance forecasts are generated recursively.

3) Those 1-minute intraday forecasts are summed at a daily level to generate a prediction

of variance for that day.

4) Steps 2-3 are repeated to generate daily forecasts of variance for December in the

year 2011. More accurate forecast using GARCH model is a daily forecast aggregated

1-minute returns. These forecasts are compared against those generated from models

fit to daily data in Figure 5.10.
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Figure 5.10: Actual vs Predicted Daily Volatility. Summation of squared

intraday returns aggregated to the daily level, termed realised variance, as a

measure of that day’s variance is more accurate than 1-minute ahead intraday

forecasts

Figure 5.11: Actual vs Predicted 1-minute volatility forecast. 1 Minute

variance forecast results in noisy measurement. The reason for this is that the

GARCH takes squared returns into consideration while modelling volatility.

Rt =σt ·zt where zt denotes an independent mean zero and �t denotes latent

volatility. Squared returns cause noisy measurements due to the idiosyncratic

error term z2
t .

5.4.2 Cluster Estimation based on Decision Latency

Due to the iterations, the GARCH (1,1) model takes before it converges to find the

optimal model parameters, the high computation time is observed. The decision latency

here is more than the one observed in computing summary statistics in experiment 1.

Table 5.7 lists the execution time noticed while computing ARCH (1) and GARCH (1,1)

models. The computation is performed on a different range of data points as was in the

experiment 1.
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Table 5.7: Decision Latency table for experiment 2 on different scales of

data sizes and clusters.

ARCH and GARCH

Number of

Data points

(Binary)

Range -

(65k - 3.4 Million)

Number

of

Clusters

Execution

Time

Speed Improvement

(%)

From Clusters

2-4, 4-8, 2-8)

65536

2 6.43 4.05%

4 6.18 31.77%

8 4.69 37.10%

131072

2 9.25 4.30%

4 8.87 15.38%

8 7.69 20.34%

262144

2 15.16 5.67%

4 14.35 15.11%

8 12.47 21.63%

524288

2 35.846 28.60%

4 27.875 17.87%

8 23.648 51.58%

1048576

2 42.99 5.41%

4 40.79 21.87%

8 31.86 34.92%

2097152

2 110.3 4.25%

4 105.8 19.68%

8 84.98 29.80%

3478488

2 Out of Memory Error NA

4 Out of Memory Error NA

8 142.65 142.65

Page 96 of 114



Chapter 5

Summarizing the first case in Table 5.7 where the number of datapoints taken for com-

puting ARCH (1) and GARCH (1,1) are 65536. The execution time for computing on 2

clusters is 6.43 seconds, on 4 clusters is 6.18 seconds, and on 8 clusters is 4.69 seconds.

The improvement in execution time moving from 2 clusters to 4 clusters is 4.05%, 4 clus-

ters to 8 clusters is 31.77%, and 2 clusters to 8 clusters is 37.10%. Similar results are

self-explanatory in Table 5.7.

Common Observations

From Table 5.7 it is evident that the execution time in computing ARCH (1) and GARCH

(1,1) decreases with an increase in the size of clusters. The highest improvement in

performance is observed on moving from 2 to 8 clusters. It is clear that decision latency

increases with increase in size of the dataset. Also the execution time decreases with an

increase in the size of clusters.

In a 1-minute trading environment, if minimum of 30 seconds is needed as a buffer to take

trading decision, and the dataset has more than 1 million data points, it is impossible to

model volatility on 8 or less than 8 clusters. In that case, more than 8 clusters need to

be adapted by the trading firm. In the case when execution is shifted from 4 clusters to 8

clusters, It is observed that the speed at which the performance in execution is improved

is decreasing with increase in the size of the input data.

Note that the execution time for modelling volatility on 3.4 million datapoints resulted in

out of memory error on 2 and 4 clusters. The execution time here on 8 clusters is 142.65

seconds.
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Figure 5.12: Graphs(A-F) showing the relation between decision latency

and data points on each given size of a cluster. The logarithm fit curve shows

that a saturation point will be reached as the latency reduces further as it

cannot pass beyond a certain threshold level.

Also due to the movement of latency which follows the path of logarithm curve (see Figure

5.12), it is not necessary that with increase in cluster size from 8 to 16 the decision latency

will be reduced extensively. Logarithmic scale charts can help show the bigger picture.

On increasing the size of cluster will the curve will lead towards a saturation point post

which there cannot be more improvement in performance.

5.4.3 Change in Decision Latency based on Data Points

The first column from Table 5.8 shows the different sizes of data points (as the power of

2) taken as input to heavy time-series volatility models. The second, third, and fourth

columns provide the execution time on each of the 2,4 and 8 clusters. It is clear from Table
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5.8 and Figure 5.13 that with the increase in the size of the data, the computation time

increases. This behaviour is the same with all different sizes of clusters. The table helps

to decide how much historical data should be considered given the decision latency. For

example, if a trader wants to have 40 seconds buffer to decide a 1-minute high frequency

trading environment and has a dataset of even 500k data points, he/she has to use more

than 8 clusters for computation.

It is also observed that as we reduce the size of the dataset, the improvement in decision

latency decreases. For instance, computation time on 2 million datapoints is 110.30

seconds on 2 clusters, 105.80 seconds on 4 clusters, and 77.98 seconds on 8 clusters. On

moving to 1 million data points, decision latency is reduced by an average of 153.58%.

On the other hand, when we move from 1 million data points to nearly 500,000 data

points, the computation time only decreases by an average of 33.67%.

Table 5.8: Decision latency on a different scale of data inputs. Every time

the data size is doubled execution time increases by a definite percentage.

Execution Time (Seconds)

Data Points 2 Clusters 4 Clusters 8 Clusters

65536 6.429 6.183 4.900

131072 9.252 8.870 6.688

262144 15.164 14.351 13.467

524288 35.846 27.875 23.648

1048576 42.993 40.786 31.865

2097152 110.305 105.808 77.988

3478488 Out of Memory Error Out of Memory Error 142.6478362
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Figure 5.13: Graph(A-C) showing the relation between decision latency

and data points on each given cluster.On a logarithmic graph of decision

latency, even though the size of data is increasing along with size of the

clusters, a point is observed where the rate of growth starts to level off when

that exponential growth has stopped (see Figure 5.12).

5.5 Combined Evaluation of Experiment 1 and 2

First it is clear from the output of two experiments in Table 5.9 that in a 1-minute

trading environment, decision latency will be lower when calculating standard deviation

as a measure of volatility then modelling it through time series volatility models.

As can be observed from Table 5.9, if we compute both descriptive statistics and volatility

models, the total decision latency can be observed as the sum of each decision latency.

This total time can help traders measure both historical and conditional volatility making

the volatility prediction more accurate.
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Table 5.9: Combined evaluation of execution time for both experiment 1

and experiment 2 based on Decision Latency. Example includes that with

data size as 1 million or more it is not possible to compute both summary

statistics and ARCH models within 1-minute interval. This might be possible

on scaling cluster size from 8 to 16.

Number

of

Data Poitns

(Power of 2)

Number

of

Clusters

Descriptive

Statistics

Execution

Time

(Seconds)

ARCH (1)

and

GARCH (1,1)

Execution Time

(Seconds)

Combined Execution

Time

(Seconds)

65536

2 4.91 6.43 11.34

4 3.06 6.18 9.24

8 2.68 4.69 7.37

131072

2 6.1 9.25 15.35

4 4.39 8.87 13.26

8 3.9 7.69 11.59

262144

2 7.09 15.16 22.25

4 6.04 14.35 20.39

8 5.88 12.47 18.35

524288

2 9 26.95 35.95

4 8.86 19 27.86

8 6.34 17.06 23.40

1048576

2 32.19 42.99 75.18

4 20.33 40.79 61.12

8 12.74 31.86 44.60

2097152

2 52.71 110.3 163.01

4 39.87 105.8 145.67

8 23.22 84.98 108.20
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5.6 Status of Results

The objective of the research to estimate clusters based on decision latency in high fre-

quency trading is met. This is a purely computational based study. The results look

interesting as well as promising and can progress towards a publication under the super-

vision of Professor Khurshid Ahmed.

5.7 Conclusion

Adapting big data architecture in High Frequency Trading can help traders take into

account a large volume of historical data along with real-time data in taking quick deci-

sions, perhaps within 1 minute trading environment. This is only possible if there is a

base architecture to decide how many clusters are needed on how much volume of data

given the decision latency as a prerequisite.

The big data architecture provided in this research is a solution to real-time decision

making problem using parallel computing framework. With the given results, traders can

decide in real-time how many parallel computing machines or clusters they need or how

much data input they can take into account given two possible scenarios of estimating

volatility i.e. descriptive statistics and ARCH volatility models. As a prerequisite, they

should have decision time in hand before deciding on clusters.
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Conclusion and Future Work

The remainder of this chapter will discuss the conclusion and contributions of this study

(Chapter 6.1). A discussion of the limitations of the work is presented along with the

potential future works (Section 6.2).

6.1 Conclusion

In financial literature people work with usually daily data where volatility is aggregated

out. Small datasets are used so traders are not worried about latency. But they are

using a very important source of information i.e. high frequency data, which is very

relevant when we look at issues like volatility. In computer science literature people

perform computations on time series that are not large but the computations largely deal

with issues related to descriptive statistics. In one sense, we have looked at a complex

computation (volatility) with large data sets to show the problems of latency and one

solution suggested was using AWS Elastic MapRreduce (EMR) based scalability.

This paper introduced a step-by-step practical guide for setting up a minimum working

example of a distributed system for time series analysis and forecasting. The system is

built-in Apache Spark and the integrated with AWS EMR clusters to perform parallel

computations on large time-series datasets. A simple forecasting exercise illustrates that

the parallelization scheme reduces total runtime performance substantially relative to a
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single-machine setting. The presented approach requires minimal installation and con-

figuration effort, and it can be implemented with little background in computer science

and parallel programming.

In this research, the importance of latency in making a high-frequency trading decision

in real-time is studied. Here I have implemented the existing theoretical business cloud

architecture for high-frequency trading in addition to the usage of advanced Big Data

tools such as AWS Elastic MapReduce (EMR) with Apache Spark. The computation

involves estimating risk both using historical and real-time changing volatility.. The

whole data is taken from the year 2010 to 2019, divided into a binary format from 65000

to 3.4 Million data points. This futures data can be taken as a reference for all other

time series analysis because it has all the properties of a real problem a trader can face.

The literature on volatility nature of futures data is discussed in section 4.3. This makes

this series an exemplar time series.

Next, risk computation is performed on 2,4 and 8 clusters. Each scenario in experiment

1 and experiment 2 is executed five times to take into account changing execution time,

and in the end, an average of the decision latency is noted. Finally, the relationship

between decision latency and size of clusters based on a different range of datapoints is

evaluated along with the relation between decision latency and the size of the dataset.

Significant improvement in decision time is observed in moving the computation from 2

to 8 when compared from 2 to 4 or 4 to 8 clusters. High-frequency traders don’t often

think about decision latency in calculating volatility due to the small size of the dataset.

Even if the dataset is large, the is a computational gap which can be filled by secured big

data cloud-based architecture. With the architecture developed in this research, traders

can take real-time decisions based on their computing needs without depending a lot

on their intuition. The implications of this research will help readers from banking and

financial organization who aim to compute big data in financial markets, employees in

the investment banking sector who realized the need to move their legacy trading system

from on-premise to cloud, and most importantly, the HFT firms who wish to use parallel

computing framework for trading but are bounded by the unavailability of implemented

big data architecture. With further expansion, evaluation, and improvement of this big

data architecture, traders will be able to decide the distributed computing machines or
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clusters based on the data they have and the minimum execution time they require keep-

ing in mind the cost to value ratio.

Limitations

Due to the limited features of the AWS student account, execution on 16 and 32 clusters

could not be performed to observe the saturation point when the decision latency stops

reducing further. Also, real-time streaming using AWS Kinesis could not be performed

due to the access limitations on a student account. Till now, Spark does not provide

packages for time series analysis volatility models such as ARCH and GARCH. Python

library for Spark, i.e., PySpark or Scala, is way faster on distributed systems then original

Python. Due to the unavailability of the GARCH packages in PySpark, in this research,

some of the packages of Python are used for modelling volatility, which can add a few

seconds latencies to the execution.

6.2 Future Work

Data sampled at a different minute or second frequencies can be considered for future

research such as 5 minutes, 1 second etc. Evaluation of the volatility models can be

studied and improved by readers in finance industries or econometricians doing their

research in this domain. Execution time by implementing various other ARCH type

models can be evaluated and compared under the same architecture. Real-time streaming

through AWS Kinesis can be performed, which has not been possible in this research due

to limited AWS credits. As a few seconds latency in extracting real-time streams of tick

data can add to the overall decision latency, it is necessary to perform its implementation

and evaluation. The development of security and management approaches are also subject

to future work as different security, and access policies can be attached to the EMR

clusters. Another issue that remains to be researched in this field is understanding m

how to make good use of high-performance GPU on cloud-based servers to speed up

the whole computation process. The method of increasing computational power on a
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standalone machine by scaling the capacity of GPU and CPU core is called Vertical

Scaling. Similar architecture can be deployed on a single machine with high processing

power in order to note decision latencies. Then the decision latencies on cloud and local

machines can be compared and evaluated. The cost to value ratio is not evaluated in this

research and can be key research further in the area of big data analytics in finance.
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