
Music Instrument Localization in Virtual Reality

Environments using audio-visual cues

Siddhartha Bhattacharyya B.Tech

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Data Science)

Supervisor: Aljosa Smolic and Cagri Ozcinar

September 2020

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Siddhartha Bhattacharyya

September 6, 2020

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Siddhartha Bhattacharyya

September 6, 2020

Acknowledgments

I would like to thank my supervisors Professors Aljosa Smolic and Cagri Ozcinar for

their dedicated support, understanding and leadership. My heartfelt gratitude goes

out to my peers and the batch of 2019-2020 for their support and friendship. I would

also like to thank the Trinity VR community for their help. I would like to extend my

sincerest gratitude to the admins at SCSS labs who gave endless support in ensuring

the availability of remote servers. During this time of crisis and remote work, this

dissertation would not have been possible without their support. Last but not the

least, I would like to thank my family for their trust and belief in me.

Siddhartha Bhattacharyya

University of Dublin, Trinity College

September 2020

iii

Music Instrument Localization in Virtual Reality

Environments using audio-visual cues

Siddhartha Bhattacharyya, Master of Science in Computer Science

University of Dublin, Trinity College, 2020

Supervisor: Aljosa Smolic and Cagri Ozcinar

This research work aims to develop and assess the capabilities of convolution neu-
ral networks to identify and localize musical instruments in 360 videos. Using audio
and visual cues from 360 video frames along with object detection technologies, sound
source separation technologies and sound classification technologies, the research aims
to provide a single demonstrable unit that highlights the location of the musical in-
struments in a video segment, along with their corresponding annotations in the form
of bounding boxes. The research is extended to 360 video frames as they are an essen-
tial format of a typical virtual reality experience. An input 360 video is split into its
constituent audio-visual components, the former being .wav files used as inputs to the
sound classifier model, and the latter being the visual image frames being used as input
to the object detection framework that outputs the annotation and localization infor-
mation. An all-inclusive demonstrable unit showcases both the models’ functionality
and can be used on two-dimensional video frames as well.

Summary

The research introduces the motivation behind the experiment and the objectives it

aims to achieve, followed by a technical insight into the technologies and state-of-the-art

tools used to develop the models. Some related and similar work along with state-of-

the-art models are discussed to establish a benchmark for our research at hand. After

which the proposed method is discussed in detail including the implementation strat-

egy that highlights how the state-of-the-art tools and technologies have been modified

and extended to achieve the objectives of our research. The data set collection process,

sources and statistics are also described, following which the details of the experi-

ments conducted are discussed. The results of the experiments conducted with various

parameters are described and the various demonstrable units along with their imple-

mentations are discussed. Finally, the research concludes by acknowledging the scopes

for future work and improvements that can be made in the proposed architecture.

v

Contents

Acknowledgments iii

Abstract iv

Summary v

List of Tables viii

List of Figures ix

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 2

1.3 Structure . 3

Chapter 2 Fundamentals 4

2.1 Virtual vs Augmented Reality . 4

2.1.1 360 Videos . 5

2.1.2 Capturing 360 Videos . 5

2.2 Convolution Neural Networks . 6

2.3 Object Detection . 11

2.3.1 Methodologies . 12

2.3.2 Evaluation Metrics . 12

2.3.3 Types of Object Detectors . 18

2.3.4 Feature Extractors . 21

2.3.5 Applications . 23

vi

2.4 Tensorflow Object Detection API . 24

2.5 Sound Source Separation . 26

2.6 Audio Classification . 28

2.6.1 Evaluation Metrics . 29

2.6.2 Applications . 31

Chapter 3 Related Work and State-of-the-art 32

Chapter 4 Design and Implementation 35

4.1 Proposed Method . 35

4.2 Data Acquisition . 36

4.2.1 Images Data Set . 36

4.2.2 Audio Data Set . 38

4.2.3 Ground Truth Set Up . 38

4.3 Experiments . 42

4.3.1 Object Detection Model . 43

4.3.2 Audio Source Separation . 45

4.3.3 Audio Classification Model . 46

Chapter 5 Experimental Results 48

Chapter 6 Applications and Demonstrable Units 53

Chapter 7 Conclusion 55

7.1 Limitations . 56

7.2 Future Work . 57

Bibliography 59

Appendices 68

vii

List of Tables

2.1 Activation Functions . 9

2.2 Precision and Recall formulae . 13

5.1 Results on base object detection model 48

5.2 Results on fine tuned object detection model 50

5.3 Results on audio classification . 52

viii

List of Figures

2.1 McCulloh-Pitts single Perceptron for boolean operations 7

2.2 Biological neuron perceiving an image. 7

2.3 Convolutions . 8

2.4 Pooling with 2x2 filter . 10

2.5 A simplistic representation of a convolution neural network. 11

2.6 Mean Average Precision Calculation . 16

2.7 The Tensorflow Object Detection API. 26

2.8 Spectrogram representations of musical instrument sounds. 29

2.9 Categorical accuracy calculations. 30

4.1 High-level proposed method architecture. 36

4.2 Images data set information . 37

4.3 Images pre-processing . 39

4.4 Ground truth statistics . 41

4.5 High-level proposed method architecture. 43

4.6 Deep Audio Prior Network . 45

4.7 Keras MobileNet architecture. 46

5.1 Object Detection accuracy and loss plots against iterations 50

5.2 Audio classification loss and accuracy plots 52

6.1 Google Colab Notebook UI/UX application 54

1 Visual Object Tagging Tool . 69

2 360 image object detection with 1 instrument 70

3 360 image object detection with 2 instruments 70

ix

Chapter 1

Introduction

This section introduces the motivation behind the research at hand and sets up the

grounds on which the research was conducted.

1.1 Motivation

The advent of Virtual Reality , abbreviated as VR has opened up a myriad of

possibilities with respect to computer vision problems. It is essentially an extension of

the two-dimensional environment, however, in addition to the traditional features of two

dimensional entertainment, it takes into consideration the viewers inputs and actions.

The most prominent of such VR experiences are the ones which are had through the

use of Head Mounted Devices, abbreviated as HMDs such as Samsung Gear

VR [1] or the Google Cardboard [2]. These devices enable viewers to experience

and interact with VR environments with ease. VR has found its applications in a

number of fields such as those of 360 or omnidirectional videos [3] which we use

in our research, fully immersive gaming consoles such the Playstation VR [4], 3D

animations etc. The background and technical details of omnidirectional videos that

we use in our research is explained in Chapter 2.

Our research is also motivated from the aspect of Music Information Retrieval

abbreviated as MIR [5, 6] which can be defined as extracting characteristic features

from pieces or segments of music that can be in video format or audio format or both.

The characteristic features of any musical piece can include the information regarding

1

its sound tracks, the notes being played, the class of instruments being used. Such

information can be retrieved and manipulated for various other applications. MIR

finds its application across a number of fields such as signal processing, instrument

identification and categorization [7] where each piece of music instrument is identified

based on its sound, music notes recognition [8] which includes the identification of

musical notes being played for educational purposes or transcription, source or track

separation [9, 10] which involves the segregation of instruments and their respective

tracks, and even music generation [11]. We have developed our work on instrument

identification and localization using cues from the video frames which form the visual

component, as well as using the audio streams which forms the audio component.

A combination of the aforementioned concepts forms the basis of this dissertation.

We have used music videos in VR environments as our target data to identify and local-

ize the instruments. It can be considered analogous to the X-Ray feature of Amazon

Prime Video [12], which displays the details of the actors on screen, their related

work, what roles they play in the current show etc. It is an application to extend user

knowledge, and is being performed in real time. The research at hand is somewhat

similar, wherein we aim to identify musical instruments active in a particular video

frame of a 360 enabled video file.

1.2 Objective

The aim of this research is to experiment on and assess the capabilities of convolution

neural network models capable of identifying and localizing musical instruments using

video frame images as well as audio segments from a 360 video. A part of this ob-

jective also includes curating applications and demonstrable units that can showcase

the achieved results. The research aims to delve into the various approaches through

which this can be achieved and also conduct a thorough investigation of the accuracies

achieved by the studied approaches. Any music video definitely contains visual and

audio features. The research aims to study these two features individually as separate

inputs to 2 distinct neural network architectures. The first architecture works on video

frames while the latter on audio segments.

To detect any activity in an image a common approach used is object detection,

wherein a neural network is trained to detect and learn regions of interests. The neural

2

network learns to identify only those objects which are predicated as important during

the training process. This process of object detection is utilized to help our developed

model detect a collection of selected musical instruments in image frames and is then

extended to identify musical instruments in video frames stitched together. The object

detection framework delivers the instrument annotations and positional data in the

form of bounding boxes. We also make use of the audio embedded within the video

file. The video may contain multiple instruments playing at the same time. Source

separation techniques are studied in an attempt to segregate the various instrument

sounds. Once the sounds have been separated the individual audio segments are used

as an input to the second neural network which classifies the instrument.

Combining object detection, source separation and audio classification techniques,

we are able to develop a single demonstrable unit that generates a new video file with

annotated and localized musical instruments from the input video file. The research

also demonstrates the capabilities of the object detection model to be exported as an

android application to be used for live object detection.

1.3 Structure

The dissertation is divided further into 7 chapters described as follows:

• Chapter 2 introduces the fundamental concepts and tools used in the dissertation.

• Chapter 3 explores related work and describes state-of-the-art methodologies im-

plemented in similar fields of research.

• Chapter 4 delves into the implementation of our proposed methods, the network

architectures and various models trained.

• Chapter 5 discusses the results of the conducted experiments.

• Chapter 6 gives an overview of some of the demonstrable units curated to test

our developed models.

• Chapter 7 concludes the research and provides details about the research limita-

tions and scope for future work .

3

Chapter 2

Fundamentals

This section delves into the basic technical fundamentals behind the research con-

ducted. It explains background information on the technologies and tools used, accu-

racy metrics used and their calculation.

2.1 Virtual vs Augmented Reality

Since our research includes omni-directional videos which are a form of VR, it is es-

sential to know what VR actually means. VR can be defined as an extension of the

traditional two-dimensional audio visual experience [13]. In the traditional sense the

viewer has no way to interact with the audio-visual interface except to play, pause,

control the volume levels and other basic functions. However, VR enables the user to

be a part of the simulated environment. This gives the user a fully immersive experi-

ence wherein they can directly interact with the simulated environment and see what

they choose to see. In order to achieve this fully immersive experience a dedicated

device that enables the user to interact with the simulated world is required. This is

achieved using Head mounted devices abbreviated as HMDs which are essentially

audio-visual headsets that serve as the gateway to the VR world. Some of the ma-

jor HMDs available today are Samsung Gear VR [1], Google Cardboard [2], the

Oculus Rift Series [14] and gaming VR consoles such as the Playstation VR [4].

Therefore, VR’s main diversion from traditional two dimensional formats is in the way

the environment is viewed. The user is not restricted to view a flat screen but can now

4

be a part of the simulated environment and actively interact with it.

Augmented reality is slightly different from VR wherein the environment as we see

it is manipulated or augmented in a certain way with the help of computer technology.

It involves rendering of three-dimensional objects on our own reality plane as if it were

actually present. For example, the IKEA Place [15] app uses augmented reality to

help viewers simulate how particular furniture would look in their apartment.

An essential format of a VR experience are 360 or omni-directional videos ,

which we have used for our research. The following section describes them in further

detail.

2.1.1 360 Videos

360 videos or omni-diretional videos are the most common format of a VR experi-

ence. The audio visual format constitutes capturing an entire surrounding environment

as opposed to the traditional format of two-dimensional videos wherein the frames cap-

tured only include a particular perception range. In 360 videos the viewer cannot view

his entire surroundings at once which is the case in two-dimensional videos. In this way

360 videos mimic the real environment and brings it to the viewer in the form of VR.

It is also not compulsory to use an HMD to view 360 videos. Any video player with

360 video compatibility can aid in viewing 360 videos and have controls on the player

that help them navigate the entire surrounding using an input device. YouTube [16]

also supports this functionality. However, this negates the most characteristic feature

of 360 videos, which is the fully immersive VR experience that can only be fully expe-

rienced using an HMD or some other VR simulator. For this very reason of being able

to view 360 videos in traditional 2-dimensional format, we have chosen 360 videos as

our test subject so as to not be totally dependent on HMDs and VR simulators for our

experiments.

2.1.2 Capturing 360 Videos

Capturing a 360 video requires that the recording devices capture all of its surroundings

instead of just what is in front of it or in a rectangular perception range, which is

the case with traditional cameras. Specialized 360 cameras help capture the entire

surrounding environment and format them into a fully spherical view. Placement of the

5

camera defines its surroundings and the content that is captured. Most such cameras

nowadays contain dual lenses and there is no additional post-record processing such as

stitching required to get the final spherical omni-directional videos. Such cameras for

example are the Rylo [17] and GoPro [18] Max. However, certain cameras like the

Yi 360 [19] require post processing before the fully spherical form of the 360 video

can be obtained.

2.2 Convolution Neural Networks

The concept of biological learning based on the capabilities of the human brain traces

its way back to the 1940s when two researchers Warren McCulloh and Walter

Pitts put forward the idea of extending the phenomenon of activation of neurons

inside a human brain to the world of artificial supervised and unsupervised learning.

Their works included the implementation of basic logical operations such as and, not

and or in the form of artificial neural connections, which led them to believe that if

such basic operations can be fulfilled with artificial neural networks, then any other

operation conceivable to mankind can be replicated with combinations and activation

of these artificial neurons [20]. The single layer Perceptron with its operations are

shown graphically in Figure 2.1

Neural networks are biologically inspired artificial learning networks that imitate

a mammal’s visual capabilities of perceiving its environment and processing that in-

formation as a potential pattern recognition system using a layered architecture of

neurons in the brain. In biological terms a neuron accepts information in the form of

electrical signals from its input nodes called synapses. These synapses have the capa-

bility of amplifying or reducing the strength of the input signal. Once all inputs have

reached the neuron, the neuron cell decides the output based on a threshold and sends

the output to its neighbouring neuron using an axon which is a connection between

the two neurons. This architecture repeats itself in the form of a mesh to create an

intricate perceptory network. This very basic function of information processing and

transfer to retrieve a final output, as depicted in Figure 2.2 is replicated in artificial

neural networks also called a Perceptron

A Convolution Neural Network is essentially an artificial learning network

that performs an operation called convolution . Abbreviated as CNNs they usually

6

(a) Perceptron (b) NOT operation

(c) AND operation (d) OR operation

Figure 2.1: McCulloh-Pitts single Perceptron for boolean operations

Figure 2.2: Biological neuron perceiving an image.

contain multiple layers, wherein the output of one layer is propagated to the input of

its neighbouring layer after processing the information into a more complex format,

until a final generalized form of the information is retrieved. A CNN is comprised of

the following building blocks:

• The Convolution Block: This block serves the purpose of feature extraction

or identifying the salient feature that we need our model to detect. It has a

convolution layer and the pooling layer. The convolution layer uses a kernel or

filter to extract or identify important features within the input information. The

filter or kernel is the feature that the layer tries to detect in the input information

through the operation of convolution. For example Figure 2.3a shows a kernel

7

(a) Sample Kernel and its matrix representation

(b) Convolution Operation (c) Matching features

Figure 2.3: Convolutions

in image format and also in the form of its corresponding 2D matrix as seen by

the layer. The convolution operation is shown in Figure 2.3b. The first matrix

is the input feature with a single row and column of padding. Padding cells are

added to the actual image information in order to give equal importance to the

boundary cells of the actual image. The padding cells are always valued at 0

so they do not effect the actual convolution weightage. The kernel or filter is

moved along the input matrix with a particular stride. The stride value can be

increased to 2 or 3 to make the filter shift across the input at 2 or 3 columns and

rows at a time. This helps reduce the size of the output and also the number of

operations thus reducing computational complexity. All CNNs have this stride

input as a hyperparamter which decides the accuracy of the model. As seen from

Figure 2.3b the kernel is shifted across the input matrix with a stride of 1 in this

case to get the dot products of the input matrix and the kernel which gives the

final Convolved Feature .

From Figure 2.3c we try to extract the feature represented in the kernel from

8

a larger image represented as a matrix. We see that the convolution results for

the first feature in the yellow box yields a lower score, which shows that the

representation is not present in that frame. The second feature we get a higher

convolution score which suggests a larger probability of finding the feature in that

particular frame. Some of the activation functions used in convolution layers are

defined in Table 2.1. ReLU or Rectified Linear Unit is the most commonly

used activation function. The function ignores all negative activations while the

positive ones are left as is. While ReLU is a linear function and the Sigmoid

function also known as the logistic function is a non-linear function and restricts

the output between 0 and 1. This function is generally used when networks need

to predict the probability of a class. The Softmax function is similar to the

Sigmoid function, however it converts prediction scores into probabilities that

sum to one. This function is also widely used for multi-class classification tasks

as it outputs probabilities.

Function Equation Graph

ReLU max(0, x)

Sigmoid
1

1 + exp(−x)

Softmax S(yi) =
exp yi∑
j exp yj

tanh tanh(x)

Leaky ReLU max(0.1x, x)

ELU f(x) =

{
x for x >= 0

α(exp(x)− 1) for x < 0

Table 2.1: Activation Functions

The Pooling Layer serves the task of reducing the model size, number of pa-

rameters so as to reduce the computational overhead of the network by only

9

extracting the relevant information from the outputs of the convolution layers,

and ignoring other unwanted predictions. In other words, a convolution layer

outputs a set of convolved values as seen above, while the pooling layer extracts

either an average of them, known as Average Pooling as seen in Figure 2.4b or

takes the maximum value from them, known as Maximum Pooling as seen in

Figure 2.4a. The images show a 2x2 filter pooling from a 4x4 feature map. The

task performed by the Pooling Layer is also known as Downsampling . Every

convolution layer is followed by a pooling layer to extract only the important or

averaged information from the output of a pooling layer.

(a) Max Pooling (b) Average Pooling

Figure 2.4: Pooling with 2x2 filter

• The Fully Connected Block: The final blocks of a CNN is the fully con-

nected layer which is usually used for simple classification tasks, and categorizing

the output based on a collection of classes provided to the network. The fully

connected block comprises the classical neural network structure wherein each

neuron or node is connected with every other node, which is different from the

convolution layer as discussed above. The convolution layer is not fully connected,

wherein it only works on features that would be essential for the prediction task

at hand. The activity of a fully connected layer in a CNN is also called Flatten-

ing . The features that prioritize the target label most accurately are decided by

the neurons in the fully connected block.

The main reason to use a convolution neural network is to optimize large scale

problems such as image classification and object detection, where the input is in the

form of pixel information. A single coloured megapixel image that is sized as 1000 *

1000 pixels essentially has 3 * 1000 * 1000 = 3000000 input features to be handled,

as the 3 colors RGB also forms a part of the input feature. Even with a neural network

with 1 hidden layer (1000 neurons) and 1 output layer with 10 neurons there would be

10

(3000000 * 1000) + (1000 * 10) there would be approximately 3 billion weights and

parameters to be learned, which would considerably increase computational overhead.

To manage such large volume and scale of input, CNNs and Deep Learning strate-

gies are established where all neurons are not fully connected in the convolution layer

and incorporate convolution and down-sampling operations as demonstrated above. A

simplified version of a convolution neural network is shown in Figure 2.5.

Figure 2.5: A simplistic representation of a convolution neural network.

2.3 Object Detection

Object detection is a computer vision technology and can be defined as the process of

identifying, localizing or annotating objects of importance within a particular region

of interest. Object detection is usually performed with a known set of classes, that

is, the object detector should know prior to the training or detection what it is trying

to detect. Object detection can be performed on static images, video files and even

live stream data. There are numerous object detection applications which range from

fields of research such as scene analysis, image segmentation to real world applications

such as facial recognition, autonomous driving, surveillance and security. The learning

based object detectors use CNN backbone architectures to extract salient features

from the data set and also to generate the resulting classification and localization

information [21]. Object detection methodologies including feature extractors and

accuracy matrices are discussed as follows.

11

2.3.1 Methodologies

Object detection methodologies are typically based on pattern-matching or based on

learning methods. Early studies in object detection involve pattern matching that

go back as early as the 1970s, such as the works of Fishchler and Elschlager [22]

which was based on defining a set of patterns or primitives to detect whether a certain

input stream of data (any visual object) was actually a photograph or not. However,

recent works on template and pattern matching have also shown improvement in this

particular methodology. For example the works of Nguyen, Li et al. [23], which involve

weights and distance transformation information to detect a collective class of objects

in images.

Learning based approaches include techniques like CNNs, Deep Learning, Adaboost,

SVM etc. These learning based approaches create a trainable network that learns

on a pre-defined ground truth data set until a particular loss function is minimized

[24]. Learning based classification paved the way for similar research as it proved to

be more robust and efficient. Some of the modern problems that have been solved

using object detection mechanisms usually involve human-object interaction. Object

detection provides a way to segregate the two and helps to identify the object or the

actions that are deemed important for a particular application [25, 26].

Most object detectors use the ’sliding window’ technique to identify important

objects in a visual frame. The dimensions and depth of the sliding window are set as

hyper-parameters and affect the accuracy of the detection. This window slides over

the entire image frame based on the stride factors and matches areas of interest. The

sliding window scheme is common application and forms the basis of all deep learning

strategies [27].

2.3.2 Evaluation Metrics

Information retrieval and object detection projects have a specific mechanism for mea-

suring their respective model accuracy. One such metric is the mean average pre-

cision abbreviated as mAP . The mAP is considered as a culmination of the accu-

mulated precision and recall scores of the model developed at several stages of the

training. To understand mAP we define certain key terms that would be crucial in its

calculation. With reference to Table 2.2 they are as follows:

12

• Ground Truth: For any machine learning model the trainable data set is con-

sidered as the ground truth, based on which the model learns the various char-

acteristic features. This is a fixed and immutable collection of data.

• True Positives: When the actual class and the predicted class is positive the

prediction is considered True Positive.

• False Positives: When the actual class is negative however it is predicted as

positive by the model, the prediction is considered as a False Positive.

• False Negative: When the actual class is positive however it is predicted as

negative by the model, the prediction is considered as a False Negative.

• True Negative: When the actual class and the predicted class is negative, the

prediction is considered to be True Negative.

• Precision: Precision is defined as the percentage of predictions that are correct.

Mathematically it is defined as the ratio of the True Positives and the total

predicted positives.

• Recall: Recall is defined as the measure of how good the positives found are.

It is also known as True Positive Rate or Sensitivity . Mathematically it is

defined as the ratio of the True Positives and the total ground truth positives.

Actual Formulae

Positive Negative Precision Recall

Predicted
Positive TP FP TP

TP + FN

TP

TP + FPNegative FN TN

Table 2.2: Precision and Recall formulae

From the definition of precision and recall we can say that precision is essentially

the number of selected items that are relevant, while the recall is how many of the

relevant items are selected. Therefore, for object detection models, there is always

a trade-off between precision and recall. We would always want the number of True

Positives to be high to get a good precision score and decrease the number of False

13

Positives, this would in turn decrease the recall score. Alternatively, if we reduce the

number of False Negatives, the recall score would increase but would in turn decrease

the precision score.

A generalized calculation of mAP can be defined considering the following variables:

• A defined ground truth labelled data set D with N items such that

D = (d1, d2,, dN)

• A test item T that is to be queried against the ground truth data set D

• A confidence scoring function CF (Ti, Tj) that compares the similarity between

the 2 items Ti and Tj and returns a confidence score.

• An ordered data set Dsorted that contains the data items of D in order of their

confidence scores as retrieved from the above function.

• P the number of ground truth positives in the data set D for the test image T.

After comparing the test item with each of the data items in D and retrieving their

confidence scores, the ordered data set Dsorted is created and the average precision for

each of the items in Dsorted is calculated. Let the average precision at kth item in Dsorted

be defined as APk. Thus, we can define the Average Precision for an item k in Dsorted

as:

APk =
True Positives Seen Till k

k
(2.1)

The overall mean average precision can be defined as:

mAP =
1

P

N∑
i=1

APi (2.2)

An example can be seen from Figure 2.6b we see that the test image T of a guitar is

compared with 7 images from the ground truth data set D containing 3 Ground Truth

Positive items, specifically d3, d4 and d6. The model’s confidence function returns the

ordered data set Dsorted where the 4 items, d2, d5, d1 and d7 have been found to be

False Positives and 3 items, d6, d3 and d4 have been found as true positives ordered

according to their decreasing confidence levels. Using the formulae above we see that

14

the mAP for the first ordered data set is 0.91. For a perfect mAP of 1 all the true

positives should be in the beginning of the data set as seen from the last ordered data

set which gets a mAP of 1.0.

The calculation of mAP for object detection utilizes a hyperparameter called In-

tersection of Union abbreviated as IoU whose value determines whether a predicted

annotation should be considered a True Positive or a False Positive. It is defined as

the ratio of area of overlap and the area of union between the bounding boxes of the

ground truth data and the predicted data. For example, from the Figure 2.6a the

ground truth annotation is shown as the green bounding box while the predicted an-

notation is shown as a red bounding box. As is clear from both the bounding boxes

the two boxes are not fully aligned with each other, that is, there is some error in the

prediction annotation. IoU helps decide if this error is large enough to consider the

annotation as a false positive. Ideally the IoU is set as 0.5 and/or 0.75, that is if IoU is

greater than 0.5 or 0.75 then the image is annotated correctly and is therefore a True

Positive, else it is a False Positive. IoU can be considered as the localization error in

object detection models. The prediction would be considered a False Negative, if the

annotation is misclassified or there is no detection at all.

Since the true positive, false positive and false negative cases have been defined for

object detection scenarios, we can now define the precision and recall scores for the

predictions across the test data set by ranking the predictions based on the confidence

level produced by the model. Analogous to the use case presented earlier with the 7

image test data set, the predictions are sorted by the confidence levels of the bounding

boxes. However, the overall mAP is calculated slightly differently than the previous

example. Object detection use cases make use of Interpolated Precision to derive

the final mAP score of the model. With reference to Figure 2.6c if we sketch the preci-

sion recall curve for any object detection model it will be clear that the recall gradually

increases as we go down the sorted predictions. This is because, from the definition,

recall is the measure of how many positives have been predicted from among all the

ground truth positives. Therefore, since we know the total number of ground truth

positives, as we go down the sorted predictions, the number of true positives gradu-

ally increase and so does the recall ratio value. However, the precision score follows a

squiggly zig-zag pattern, that is, increasing at times and decreasing at times. This is

because, as seen from the previous use case, the first 2 predictions are true positives

15

(a) Intersection over Union (b) Calculation of mAP

(c) Interpolated precision

Figure 2.6: Mean Average Precision Calculation

which increases the precision value, however, the third is a false positive which lowers

the precision value, thus giving the curve a zig-zag pattern. An example of a precision

recall curve with sample data is shown in Figure 2.6c. 4 out of 9 images are the correct

images while the remaining are false. Which brings our total Ground Truth Positives

= 4. The table shows the predictions sorted in descending order of the confidence score

as retrieved by the model. We see that the recall scores stay the same with each pre-

diction or increase, this is because the total ground truth positives is known. However,

with every false positive found the precision decreases while with every true positive

found it increases, thus leading to the aforementioned zig-zag pattern as demonstrated

in the graph alongside. To diminish the impact of these zig-zag patterns which are

caused due to imperfect ranking of the predictions and maintain the monotonicity of

the precision, we use interpolated precision. The interpolated precision is the altered

precision value at each recall point, which is calculated by taking the next highest

precision value at that recall point. Mathematically it can be defined as:

InterpolatedPrecisionPinterp(r) = max{Pi : Ri >= R} (2.3)

16

Graphically, it can be defined as at each recall score r, we find the max precision

at a recall score to the right of the r. The precision recall curve from Figure 2.6c can

be seen to have the zig-zag patterns because the 2 True Positive predictions are at a

lower confidence level and thus at the lower end of the sorted data set. In order to

remove these anomalies the precision value at fourth recall level i.e. at points (0.5,0.5)

is updated to the maximum precision value to the right which is (0.5,0.6). Similarly the

precision value at seventh recall level i.e at points (0.75,0.42) is updated to (0.75,0.5).

Finally, the interpolated precision recall curve is shown in green.

Now that we have our precision values interpolated at the various recall levels,

we can calculate the average precision. This is done by calculating the area under

the precision-recall curve. The area under the precision recall curve is calculated by

taking the average of the precision value at equal intervals of the total recall scale.

The recall values can only lie between 0 and 1. Therefore, the precision values at 11

intervals are averaged, which return us the average precision. The recall intervals are

: 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1. Mathematically:

AP =
1

11

∑
rε{0,0.1,0.2...1}

Pinterp(r) =
1

11
(1+1+1+1+1+0.6+0.6+0.6+0.5+0.5+0.49) = 0.75

(2.4)

For object detection cases the mAP is calculated as the precision for all the predicted

classes of the object detection model. Our object detection model uses the COCO

detection metrics [28] which calculates the average precision over an IoU of 0.5 which

is the standardised method of AP calculation and also over and IoU of 0.75. This

is done so as to achieve a comparative study of the model at various settings of the

IoU hyperparameter as certain objects detected can be comparatively smaller in size

than the others. The COCO detection metrics scheme calculates the average precision

over a range of IoUs and scales and also calculates the average recall over a range

of detections per image and scales. In addition to calculating the Average precision

at IoU=0.5 and IoU=0.75, the precision is also calculated by taking the average of

precision values from 0.5 to 0.95 with a step size of 0.05. This is called the primary

challenge metric and is denoted as AP@IoU [0.5 : 0.05 : 0.95]. Scales indicate the size

of detection which are categorized into small detections (area less than 322), medium

17

detections (area between 322 and 962) and large detections (area greater than 962).

The recall is averaged over 1,10 and 100 detections per image and also similarly over

the small, medium and large scales.

2.3.3 Types of Object Detectors

The task of object detection is broadly categorized into two sub-tasks which are feature

extraction or classification task that takes in an input image frame and provides the

feature maps of the classification. This task is performed by several backbone support-

ing networks discussed further. The second and main task is of generating Regions of

Interest (RoIs) or pooling these regions into feature vectors. This is the task of the

object detection module [21]. Object detectors are categorized by the number of stages

they have in their framework. There are two such categories described as follows.

Two Stage Object Detectors

The two stage object detector is named so because it essentially contains two distinct

stages in its object detection framework. The first being the Region Proposal stage,

wherein candidate objects are proposed as potential detectable entities with bound-

ing boxes. This is called the pooling layer. The second stage includes extraction of

features from these proposed regions of interest. Two stage detectors have higher accu-

racy, localization and classification scores than one stage detectors, however, they can

be computationally slower and have low inference speeds. Some critical two stage de-

tectors are the Region based CNN abbreviated as R-CNN , proposed by Girshick

et al. [29], which was one of the first works to show the capability of a convolution

neural network performing an object detection task. The R-CNN object detector is

comprised of four modules, the first being the region proposal layer, the second layer

extracts fixed length feature vectors from the proposed regions, the third layer is an

SVM (Support Vector Machine) based classifier that classifies the defined classes while

the last module is a regressor which predicts the bounding boxes. The R-CNN model

suffers a drawback of forward passing each region proposed to the feature extractor

which slows down the SVM classifier. An improved version of the R-CNN model

named Fast R-CNN , was developed by Girshick and Ross [30] wherein the features

are extracted at once from all the regions proposed and sent to the classification layer

18

for categorization. This improved the performance of the performance of the R-CNN

model by 0.9% on the PASCAL VOC data set [31]. Further improvements to this

model lead to the development of Faster R-CNN [32] which uses a dedicated neu-

ral network architecture for the region proposal network, thus further improving the

inference speed. Furthermore, improvements to the R-CNN model were achieved by

using masking layers for image segmentation purposes as in Mask-RCNN [33]. To

improve processing and inference speeds further, pyramid networks [34] of feature

extractions are used and the traditional RoI pooling layer is replaced with RoI align-

ment layer that extracts only a small portion of the candidate regions to be sent to the

classification layer.

One Stage Object Detectors

The One stage object detector does away with the region proposal stage and predicts

the output bounding boxes directly from input frames. Thus it contains only a single

stage and is faster as compared to its two stage predecessor. One stage detectors are

often used in live object detection scenarios such as monitoring traffic flow or pedes-

trians and other surveillance tasks, wherein the input feed is a continuous stream of

data. One of the major developments in one stage detectors is the YOLO (You Only

Look Once) object detector developed by Redmon, Joseph et al. [35]. The YOLO

architecture divides the input image into smaller equally sized grid cells. Each of these

grid cells are responsible for making a single class prediction based on the fact if the

center of the object being detected lies within that grid cell. A single grid cell can

predict multiple bounding boxes, however, only one will be considered. The proposed

or predicted bounding boxes are called anchors. Each grid cell’s predictions have a box

confidence score and a conditional class probability which corresponds to the likeness or

probability of the correct class predicted. The overall confidence score of the prediction

can be defined as: Confidence score = Confidence Score∗Conditional class probability.

YOLO also does away with errors such as duplicate bounding boxes of the same ob-

ject by using Non-Maximal Suppression . Non-maximal suppression orders the

multiple bounding box predictions in descending order by their confidence scores and

removes those predictions that have the same class as their previous predictions and

an IoU score of greater than 0.5. Single stage detectors are faster however give lesser

19

accuracy in predictions. Testing on the PASCAL VOC data set YOLO gives an mAP

of 63.4% at a speed of 45 fps, while Fast R-CNN achieves an mAP of 70% at 0.5 fps.

Further improvements to the YOLO pipeline came in the form of YOLOv2 [36]

which introduces batch normalization layers that helps improve the mAP by almost

2%. Batch normalization involves computing of the mean and variance of a input

batches of pre-configured size and then normalize the resultant activations of these

batches to have a mean of 0 and a variance of 1. YOLOv2 also uses a high resolution

classifier, wherein the classifier is trained with image frames of 224 x 224 size, while

the object detection task is performed with images sizes of 448 x 448. This improves

mAP by almost 4%.

Improvements were made furthermore by the introduction of YOLOv3 [37] which

replaced the single label classification using Softmax activation to multi label clas-

sification with logistic regression. It also makes three predictions per location and

allocates an ’objectness ’ score to them which is similar to the Feature Pyramid Net-

work feature extractor [34]. YOLOv3 boasts 3 times faster inference speeds and is

efficient in detecting smaller objects, however, it has a higher localization error and an

AP@IoU=0.75 is significantly lesser.

More recent advancements in the current year include YOLOv4 [38] which shows

astounding improvements from their predecessors. YOLOv4 incorporates a Bag of

Specials (BoS) features such as non maximal suppression, FPNs, skip connections,

attention modules such as Spatial Attention Modules (SAM) and feature inte-

gration such as Path Aggregation Networks (PAN) which improves the detection

and localization accuracy, and also incorporates a Bag of Freebies (BoF) features

that do not advance the accuracy in any major way. Such features are data augmenta-

tion, label smoothing and regularization. An unofficial release of YOLOv5 [39] also

shows huge improvements in real time object detection accuracy with COCO Average

Precision at IoU=0.5 score as 67.4%.

Another important contribution in the field of Single Stage Object Detectors is

the Single Shot Detector abbreviated as SSD developed by Liu, Anguelov et al.

[40] The single shot detector comprises of a single deep neural network architecture

that predicts the classification scores and bounding box offsets for a pre-defined set

of bounding boxes or anchors. The predictions are made on multiple feature maps

extracted by the supporting backbone network of varying aspect ratios and scales. The

20

methodology requires a defined ground truth setup comprising of annotated images in

the form of bounding boxes. During training the aforementioned proposed bounding

boxes are matched with the ground truth boxes and the ones that are matched are

considered positive. For the final detection SSD incorporates non-maximal suppression.

The SSD pipeline adds several feature layers or fully connected layers beyond the

feature extractor to make predictions of the bounding box offsets. The SSD512 version

of the Single Shot Detector essentially takes in 300 x 300 sized input image frames and

outperforms the YOLO pipeline in both accuracy (by 11%) and inference speed (by 14

fps).

This research also uses the Single shot object with a variety of base model feature

extractors and compares the mAP accuracy of each architecture by fine tuning certain

hyper-parameters. Some of the feature extractors are discussed in the following sec-

tions. The SSD incidentally gives best results compared to other object detectors for

our research with input frames on 360 videos frames.

2.3.4 Feature Extractors

Feature extractors are used in all deep learning problems. The main aim of feature

extraction is to extract only the necessary characteristic properties for the network

architecture to work on, instead of the entire image frame. This considerably reduces

the dimensionality of the network as it now has to work on a reduced set of input

parameters rather than the entire input frame. These extracted salient features are

often representative of the classes to be predicted. Using these extracted features the

final predictions of the problem are made. For object detection tasks most feature

extractors are generally pre-trained image classification models that serve as the back-

bone network for the classification task in object detection. The image classifiers that

paved the way for modern feature extractors are the AlexNet [41], SqueezeNet [42],

Quantized Convolution Neural Networks [43] among many others. Some of the

backbone networks used in this research are discussed as follows.

The MobileNet classifier [44] developed by researchers at Google is one of the

multi-task image processing neural networks that is generally used for image classifi-

cation, facial recognition, landmark recognition and object detection tasks for small

scale mobile-device-based applications. The MobileNet architecture introduces fac-

21

torization of the convolution layers with depthwise convolution and point wise

convolution . The depthwise convolution separates each input channel and applies

the convolution filter separately on each. The output from the depthwise convolution

filters is then passed on to a 1 x 1 pointwise convolution that combines the results into

a new output. Therefore, the filtering and combination tasks which are traditionally

performed by a single convolution are now separated tasks in MobileNet. This sepa-

ration considerably reduces the computation overhead and reduces the model size. A

3 x 3 dephtwise convolution is used by MobileNet which reduces the computational

overhead by at least 8-9 times. The MobileNet network architecture consists of a total

of 28 layers, a full convolution layer followed by 3 x 3 depthwise separable convolution

layers. Each layer is followed by a batch normalization layer and a ReLU activation

layer, except the final layer which is connected to a softmax classifier. The MobileNet

architecture also introduces two new parameters for scalability. The first parameter is

the Width Multiplier αε(0, 1]. This parameter reduces the width of each network

layer equally thus reducing the computational overhead and number of parameters. If

the number of input channels are M and the number of output channels are M using

the width multiplier they become αM and αN respectively. The second parameter

is called the Resolution Multiplier ρε(0, 1] which is applied to each input image.

These two parameters combined are known as the Model Shrinking Hyperparam-

eters and help to generate a small sized model with acceptable accuracy and reduced

latency. Object Detection results on the COCO data set with MobileNet feature ex-

traction and SSD gives an AP@IoU=[0.5:0.05:0.95] of 19%, while with Faster-RCNN

gives an AP@IoU=[0.5:0.05:0.95] of 16.4%.

Improved versions of MobilNet include MobileNetv2 [45] that removes the ReLU

activation after each layer as in its predecessor. MobileNetv2 architecture is comprised

of a residual block and a downsizing block. Each block as 3 layers individually, a

1 x 1 layer with ReLU activation, a depthwise convolution layer and non-linear 1

x 1 convolution final layer. Experiments show that MobileNetv2 wish SSD object

detector has an AP@IoU=[0.5:0.05:0.95] of 22.1%. MobileNetv3 [46] further improved

on this architecture by including Neural Architecture Search [47] that aims at creating

a recurrent neural network that outputs a collection of models. The Neural architecture

search then searches all possible combinations of these models to chose a collection that

gives the best accuracy.

22

Another experiment on image classifier is the InceptionNet or GoogleNet [48]

finds the sweet spot between very deep networks which are computationally expensive

and prone to overfitting and overly wide networks to create a pipeline that uses multiple

sized convolution filter making the network essentially a bit wider rather than deeper. It

uses a 1x1 convolution layer before a stacked 3x3 and 5x5 convolution layer followed by a

3x3 max pooling layer to reduce the dimensions of the pipeline. This is a single module.

The entire architecture of GoogleNet or InceptionNetv1 is made of 9 such modules,

giving a total of 27 layers. InceptionNetv2 [49] made use of factorization methods

to divide the 5x5 convolution layer into two 3x3 convolution layers. This reduced the

computational complexity as a 5x5 convolution is 2.78 time more expensive than a 3x3

convolution layer. In addition to the adjustments made in Inceptionv2, Inceptionv3

[49] included RMSProp or Root Mean Square Propagation Optimization ,

factorized 7x7 convolution layers, batch normalization and label smoothing methods.

These methods all together made the model less prone to overfitting and improved

accuracy measures.

2.3.5 Applications

As stated earlier the applications of object detection methodologies ranges from research-

based fields to real world scenarios. Deep learning methods has made these application

easily achievable. Some of the applications developed are discussed as follows.

Sai and Sasikala [50] have developed an application that is able to identify po-

tentially harmful objects such as knives, guns etc. using the Tensorflow Object

Detection API [51]. In addition to detection and localizing these harmful objects,

they have also counted the number of specific potentially harmful items in a particular

image. Another similar application using the tensorflow object detection API is the

work done by Hsieh, Lin et al. [52], where they have used the tool to detect vehicles

and the distances between two vehicles in an attempt to warn the drivers if they were

heading towards an accident. The result of the procedure would give an indicative

warning if the driver was safe or in danger.

Facial recognition software is one of the key applications of object detection. It

also extends to the field of security and surveillance. Some works done in this field

are those of Sosorbaram, Batchimeg et al. [53], wherein they utilize unmanned aerial

23

drones as real time object detectors, in this case, identifying human faces. Facial recog-

nition technologies have deviated from the traditional object detection methodologies

towards biometric technologies. Some of the formidable front-runners in the race of

facial recognition are Google and Facebook with applications like DeepFace (by Face-

book) [54] which determines whether 2 images containing human faces are of the same

person or not, FaceNet (by Google) [55] which uses deep learning methods to identify

faces and link it to individuals with an accuracy of 99.63%. Amazon’s cloud-based fa-

cial recognition software named Rekognition [56] boasts the capability of identifying

multiple faces in a single image frame and matches them against public data sets to

identify individuals.

Apart from these object detection also finds its uses in applications like active

speaker detection as in the works of Roth, Chaudhuri et al. [57], food detection, object

tracking and facial recognition as in the works of Qiu, Lo et al. [58], optical music

recognition application such as muscial notes identification and transcription as seen

in the works of Pacha, Hajič et al. [59]

2.4 Tensorflow Object Detection API

Researchers at Google, Huang, Rathod et al. [51], have developed a one stop shop for all

things related to image classification and object detection. The Tensorflow Object

Detection API makes for a ready to use, user friendly functional API which allows

researchers to pick and choose the key elements that are required for any object detec-

tion task. This API provides a single point of entry into the process of object detection

in the form of a configuration file defined with .config extension. This configuration file

contains all the relevant information pertaining to the training and evaluation process

that a particular object detection task entails, this includes, the training data set in-

formation, the validation data set information, the class labels files containing the list

of classes the object detection is supposed to predict, the feature extractor details and

lastly the object detector details. While the meta data features such as the training

and validation files are fed into the configuration file as their respective absolute paths,

the feature extractor and object detection details including their hyperparameters are

fine tuned using Googles’ Protocol Buffers [60].

Protocol Buffers developed by Google are an XML-like message representation sys-

24

tem that is simple, platform and language independent and is made for ’serializing

structured data’. Protocol buffer serves as a service bus between the object detection

model and its corresponding feature extractor and object detector counterparts, en-

abling the setting and un-setting of hyperparameters. Protocol buffers are stored with

the .proto extension. The Tensorflow object detection package comes with a collection

of .proto files for all available feature extractors. These .proto files are compiled into

corresponding .protoc files using the google protocol executable binary. The command

is given in Appendix B. This compilation is required so that the feature extractor de-

tails can be exchanged with the object detection model. The message structure along

with their corresponding values are defined in these compiled proto files. Each proto

file has its own message structure defined with its corresponding attributes. For exam-

ple from Figure 2.7 the faster rcnn.proto file consists of three optional parameters

number of stages, num class and image resizer. If one wants to update the im-

age resizer parameters in the configuration file, the protocol buffer needs to look up

the corresponding image resizer.proto file and the find the corresponding depen-

dencies which can be seen as min dimension and max dimension. This channel of

communication is maintained during the training or validation process by the Tensor-

flow Object detection API which acts as a buffer and simultaneously performs read

and write operations to and from the compiled proto files and the configuration files

to fine tune the object detection model.

Other relevant files required while using the Tensorflow object detection API are

the class labels file saved with a .pbtxt extension which contains the relevant class

labels to be detected along with their corresponding id numbers as seen in Figure 2.7.

General information regarding the training procedure such as fine tune checkpoints,

transfer learning models, epochs, validation epochs etc. are placed within the master

configuration file along with other feature extractor and object detector details and

hyper-parameters. The API trains and saves the trained model as checkpoint files

which are converted to frozen inference graphs, again using the configuration file used

for training. It is important to note that the object detection package is a part of a

larger python directory structure. The repository of the object detection framework is

contained within the models/research directory. To use the object detection frame-

work, the current python executable path should include the packages within the object

detection folder. This export command is shown in Appendix B. To begin training,

25

Figure 2.7: The Tensorflow Object Detection API.

firstly the model configuration file should be edited to include all required paths to

training and validation records, other relevant hyper-parameters such as number of

epochs, model checkpoint locations etc. Using the model main.py script the train-

ing can be launched. A sample is shown in Appendix B. The pipeline config path

parameter holds the path to the model configuration file.

2.5 Sound Source Separation

Sound source separation is a task that has been highly experimented upon, and its

origins traces back to classic problems such as the Cocktail Party Effect coined

by Collin Cherry in 1953. Cherry studied the capability of the human brain to

isolate and focus on targeted sound sources in an environment with a variety of sounds

originating from a range of sources, similar to a cocktail party environment, hence the

name [61]. This research paved the way for attention models and filter models [62, 63] in

an attempt to actively locate sound sources and separate them. The main task of audio

source separation is to replicate the human brain’s capacity to detect individual sound

26

sources in a multi-sound-source environment to an automated artificial architecture

capable of imitating this natural ability.

An audio file constitutes of a mixture signal made up of several sounds originat-

ing from different sources. These sources may include human sources such as speech

sounds [64], musical instrument sources including musical notes and singing voices [65]

or sounds from other inanimate objects such as automobiles, animals, speakers etc.

categorized as natural sounds [66]. Each classified sound source has its own unique

characteristics which differentiates it from the other categories. The task is to cleanly

and efficiently extract the different sound sources and their sounds in order for fur-

ther processing and applications such as music transcription, classification etc. One

of the most commonly used techniques to achieve source separation is called Blind

Audio Source Separation abbreviated as BASS [67]. BASS involves processing

of signals from microphone arrays [68] which capture the sound signals and masking

them. BASS method involves localizing different sound sources spatially and apply

masking methods in order to enhance the targeted sound source while dissolving the

other sound sources. This method is repeated for all other individual sound sources.

BASS methods are used to separate synthetic sound mixtures where the individual

sound sources originate from point sources. BASS can be represented mathematically

as defined by Vincent, Jafari et al. [67].

xi(t) =
J∑
j=1

+∞∑
τ=−∞

aij(t− τ, τ)sj(t− τ) (2.5)

From (2.5), xi(t) are the channels for the mixture signal while sj(t) are the single

channel source signals, aij(t) are the mixing functions which may include information

about spatial positions and transfers. The problem statement of BASS is to identify

or estimate the single sound sources sj(t) given the full mixture signal channel xij(t).

The two major sub problems that BASS needs to solve is estimating the number of

sound sources or localizing them, and the second is to filter these sound sources to

obtain their individual signals. Beamforming is one of the most common forms of

filtering [69, 70]. It is also considered as a sound localization technique. Beamforming

uses fixed stationary filters on the mixture signals and sums up the weighted results

to estimate the sound sources. To separate the sound sources in this research we have

used self-supervised blind audio source separation technique as developed by Tian, xu

27

and Li [71] which is discussed in Chapter 4.

Musical instrument sound source separation has been experimented upon quite ex-

tensively. Li and Wang [72] have proposed Time-Frequency masking techniques and

use the fact that similar instruments have similar spectral features to their advantage

in order to isolate sound sources in the time-frequency domain. Kim and Choi [73] at-

tempt music source separation from polyphonic audio by incorporating non-negativity

and shift-invariance. Other novel approaches to localizing and separating musical in-

strument sound sources are those of Zhao, Gan et al [74], where they have attempted

to identify the audio waveform from individual pixels of a video frame. They incorpo-

rate the join usage of audio and visual features to localize and separate sound sources

without any manual intervention.

2.6 Audio Classification

Sound classification can be defined as the task of automatically identifying and la-

belling a sound source based on only the audio information. The human brain has

the capability to connect an audio source to a semantic entity, for example, the sound

being produced by an animal can be mapped to which animal is making that sound.

Similarly, for our research, we are interested in identifying which particular instrument

is producing a particular sound. Sound classification is similar to image classification,

however, rather than depending on visual features, the model has to work on audio

features, or the spectral representation of these features. Sound classification is differ-

ent from automatic speech recognition or ASR, as the number of identifiable classes

are larger. Specific benchmark data sets are also available for sound classification tasks

such as for environmental sounds there are UrbanSound8K [75] and ECS (En-

vironmental Sound Classification) [76] data sets. Additionally there are also musical

instrument data sets which we have used in our thesis for instrument classification such

as the Philharmonia data set [77] and the IRMAS or Instrument Recognition

in Music Audio Signals data set [78].

Most classification tasks are achieved by CNNs and deep learning approaches.

Sound classification tasks are no different. Several state of the art back-bone net-

works used for feature extraction and image classification have been used to classify

sounds on the ECS data sets [79]. For example Boddapati, Petef et al. [80] have used

28

the AlexNet [41] and GoogleNet [44] CNNs to classify the environmental sounds data

set and achieved an accuracy of 86% and 92% on the ESC and UrbanSound8K data

sets respectively. One of the major approaches to classify sounds is to convert the

audio signals to their image counterparts. These images are usually spectrogram im-

ages. Spectrogram represent the sound waveform in 2 dimensional graphs and provide

the loudness or signal strength of the waveform at different time points of the audio.

Therefore, a spectrogram representation of an audio waveform depicts the character-

istic features or intensities of the sound at different points in time. A third dimension

which is color is also added to spectrograms to depict this intensity. Spectrogram

representations of musical instrument are shown in Figure 2.8

Therefore, essentially audio classification task can also be converted to the classical

image classification task. Since, there are several backbone networks trained on a large

array of image data sets, the problem scope is shortened. In our research, the separated

sound sources are converted to spectrogram images of a specific dimension and fed into

an image classifier network to learn certain characteristic features for different musical

instrument sounds. This is discussed further in detail in Chapter 4.

Figure 2.8: Spectrogram representations of musical instrument sounds.

2.6.1 Evaluation Metrics

A classification problem requires its accuracy measured in the form of the how correct

the probabilities of each class predicted by the network are. The accuracy of a model

is defined as the number of predicted values that match with the actual ground truth

values. A number of accuracy measures have been defined for its classification prob-

29

lems. As a list of classes are defined for the classification model to predict from, the

model makes its predictions in the form of probability or confidence scores for each

of the classes. We have used the Keras MobileNet [81] application for our clas-

sification model which contains several pre-defined accuracy metrics functions. One

such accuracy metric that measures probabilities of predictable classes is the sparse

categorical accuracy metric. Sparse categorical accuracy takes the index of the

maximum probabilities of each individual class and matches it with the ground truth

index. The percentage of match is considered the sparse categorical accuracy. As an

example from Figure 2.9 the we compare the column-wise indices of the max values

from the ground truth data as well as the predicted data. We see that two indices

match while the rest do not. Therefore, the sparse categorical accuracy is 50%.

Figure 2.9: Categorical accuracy calculations.

Another metric used is the sparse top-K categorical accuracy , where k is a

hyperparameter. It only considers the top k predictions based on their probability

scores. The predictions made are ranked on their indices according to their probability

scores in descending order and compared with the indices of the ground truth. The

number of predictions in the correct positions less than equal to k are considered correct

predictions. As an example from Figure 2.9 the predictions made from each class are

given a rank, in this case from 1 to 4. Then, those ranks are taken from the true value

positions in the ground truth data, highlighted as yellow. This gives us the ranks 2,1,1

30

and 1. Based on the value of k we get our overall top-k categorical accuracy. If k=1, all

predictions less than rank 1 are only 3 out 4, therefore the top-k categorical accuracy is

75%. If k=2 then all predicted ranks are less than 2, which makes the top-k categorical

accuracy is 100%.

2.6.2 Applications

Audio classification models finds its applications in several fields of research. One of

the most common application is Automatic Speech Recognition , abbreviated as

ASR [82]. ASR is the technology where a machine is able to understand human speech

and represent them coherently either in textual or audio format. ASR includes sound

classification as its basis, as the network model needs to differentiate and identify

various phonetic syllables and phrases and represent them correctly. A variant of

ASR is Natural Language Processing , abbreviated as NLP . NLP is an artificial

intelligence technology wherein the machine imitates a human’s capability to process

phrases and words, and also provide an appropriate response to achieve a desired

function. Common examples of such AIs are virtual assistant technologies such as

Apple’s Siri [83], or Amazon’s Alexa [84], which have the capability to understand

human voice commands and carry out necessary actions based on those commands.

Several other interesting applications of sound classification in the field of music

include musical note recognition [8]. This application can be further extended to au-

tomated music transcription applications [11]. And subsequently, identifying musical

instruments itself using their characteristic sound features which we have implemented

in our research.

31

Chapter 3

Related Work and State-of-the-art

This section delves into some of the related work that have employed the technologies

and tools used by this research to achieve similar objectives. Roth, Chaudhuri et al. [57]

have proposed a data set as well as an audio-visual trained model for active speaker

detection in video frames. The research has lead to the creation of a fully annotated

data set wherein humans are labeled as either speaking or not and also whether their

speech is audible or not. The lack of a fully annotated data set to measure state-of-the-

art accuracy of neural network architectures for problems in similar fields such as speech

recognition, speech transcription, video re-targeting etc was met by the creation of this

data set. Videos from this data set [85] comprising of scenes from different movies of

varying lengths were used to create the annotated data set highlighting active speakers

and audio only. The end to end multi-modal model learns mappings from a sequence

of faces and their corresponding audio signal to the probability of that face actually

speaking and achieves a mean F1 score of 92.8%.

Morgado, Vasconcelos et al. [86] have proposed an architecture wherein they lo-

calize sound sources in a 360 spherical environment using heat maps. Most 360 video

cameras do not incorporate spatial audio within them and restrict themselves to record-

ing the audio in the traditional two-dimensional or mono format. Spatial audio is

an essential part of virtual reality experience. The model proposed by this research

localizes the sound sources by first separating them and then generating the exact or

close to exact spatial sound for the entire video frame. The data set used contains of

publicly available 360 videos which include general activities as well as people playing

32

musical instruments. The mono tracks form the input to the network and the output

retrieved is spatial and localized audio within the 360 spherical view.

Owens and Efros [87] have worked on a multisensory separation application with

several applications using self-supervised learning mechanisms. Using a multi-modal

fused audio-visual convolution network and residual connections between the layers

they have developed multiple models that support on-screen and off-screen audio sepa-

ration, blind source separation from audio-visual cues and signals, separation of audio

sources from a single video frame and also localization of audio source in the form

of heat maps. The model developed can be fine tuned with custom data sets and

parameters to fit other requirements.

Delforouzi, Tabatabaei et al. [88] in their work aim to track objects such as humans,

vehicles, animals etc. in polar representation of 360 images which are essentially the

outputs of a 360 degree camera. The deviation from object tracking in rectangular

frames to object tracking in polar image frames is the challenge that they have targeted

in their work. The distorted nature of polar images from 360 image frames poses a

challenge for traditional object detection methods. However, they have proposed a

novel RoI mapping technique in which the proposed regions are essentially denoted

by small sectors of two concentric circles, thus establishing a polar or circular RoI

detection mechanism. These RoIs are then forwarded to the object detection module

for tracking and prediction.

Tian, Shi et al. [89] have proposed an architecture for cross-modality event local-

ization in videos. They have developed a fusion network wherein the audio events are

learnt from visual cues and vice versa. This is known as cross-modality localiza-

tion . The models are then fused with the help of residual networks into one single

model that can localize events based on actions in the audio mode as well as the video

mode. The ground truth is extracted from the Audio-Visual Event data set or

AVE data set [89]. The cross modality localization is performed using and audio-

visual distance learning network that can measure the deviation in a particular event

between the audio and visual cues.

The work done by Tepljakov, Astapov et al. [90] is involved in the acoustic local-

ization of sound sources by representing sound in the form of visual attributes such

as colors and shapes. The sizes of the shapes for instance are representative of the

loudness of the sound. Therefore, creating a synesthetic experience of visualizing the

33

audio mode in visual format. The experiments are performed using Distance of Ar-

rival or DoA techniques and Mel-freqeuency cepstral coefficient calculations,

and finally experienced in a virutal reality environment using head mounted devices.

The amplitude and spectral forms of audio waves are represented as spherical shapes

of corresponding sizes.

Shreevathsa, Harshith et al. [91] have worked on identifying musical instrument

sounds using CNNs as essentially an image classification task. Several classes of in-

struments are targeted to be classified by a simple neural network that learns the audio

wave representation in the form of Mel-frequency spectrogram images.

Aytar, Vondrick et al. [92] propose a large scale convolution neural network trained

on a considerably large unlabelled video data set to recognizing sound entities by

making use of the synchronization of audio and video cues in video files. The large

unlabeled video data set comprises of publicly available videos from YouTube [16] and

Flickr [93]. The unlabeled video is dissected into its corresponding visual frames that

are fed into image recognition pre-trained CNNs such as ImageNet . In addition to this

the raw waveform of the unlabeled video’s audio content is an 8-layer neural network

named SoundNet that synchronizes with the outputs from the visual frame network.

Experiments have also been conducted with a 5-layer version of this architecture. The

experimental setup was tested on acoustic scene classification challenge data sets such

as DCASE (Detection and classification of Acoustic Scenes and Events)

[94] and ESC50 [79]

Liu, Yang et al. [95] have worked on a weakly supervised multi modal separate

musical instrument detector considering the visual as well as audio aspects of musical

instrument detection. The research takes into consideration the connection between

’action ’ and position of the ’object ’. It leverages the fact that the location of any

action would be close to the location of the object being acted upon. Additionally, the

research also considers the relation between an action and the corresponding sound the

action produces. Keeping these in mind they have developed an 8 layer neural network

with a global pooling layer as the final fully connected layer that localizes action and

object pairs. The manually annotated ground truth for the experiment also consists of

image frames with action and object location points.

34

Chapter 4

Design and Implementation

This section describes the low-level details of our proposed method with which we aim

to answer our research question along with details of the data sets acquired and used

to train the models. It also includes a low-level design implementation of dual model

architecture including some of its applications and possible scope for improvement.

4.1 Proposed Method

In order to identify and annotate musical instruments, this research proposes a dual

model architecture. The models are built respectively on visual cues and audio cues.

The input for our detection architecture are 360 video files. Therefore, the two essential

components of any video file are the image frames which forms the input to our first

image based object detection model, and secondly the audio waveform, which forms

the input to our sound source separation framework, whose output is subsequently

fed into our sound classifier network. The image based object detection model out-

puts annotated and labeled image frames highlighting bounding boxes around localized

instruments. The audio leg of the network outputs the classification scores of the in-

strument classes. Although the localization and annotation task is accomplished using

only the visual cues, the audio classification task is added further to make use of both

the visual and audio components of the input 360 video. A list of identifiable instru-

ments or class labels is also maintained for both the networks, so that the models know

which instruments it needs to identify. A high-level design of the method is shown in

35

Figure 4.1: High-level proposed method architecture.

Figure 4.1

4.2 Data Acquisition

Our dual model design brings up the need to use two separate data sets based on

the model’s input requirements. Our image based object detection model uses images

to learn instrument specifications and features so that it can detect them in video

frames. While our audio classification model works on audio segments sampled at a

pre-defined wavelength level and channel. Both the data sets, their annotations and

collection along with the ground truth setup for our models has been described as

follows.

4.2.1 Images Data Set

The image collection used is a pre-collected data set gathered by Yao et al.[96]. This

data set is collected on the premise of human interaction with different inanimate

objects. Their research delves into automatically distinguishing whether people are

actually interacting with the objects or are just holding them. For example, they have

considered musical instruments in their research. A person can interact with a musical

36

(a) 2d images (b) 360 video image frames

Figure 4.2: Images data set information

instrument in two separate ways. One is to actually play them, while the other is to

stand by them or hold them without playing them. In this regard they have accu-

mulated several two dimensional images of humans interacting with different musical

instruments in a variety of environments. The different musical instruments collected

are Bassoon, Cello, Clarinet, Erhu, Flute, French Horn, Guitar, Harp,

Recorder, Saxophone, Trumpet and Violin . These 12 visually distinguishable

images are divided into two separate folder structures based on the depicted action

with humans. The two separate folders are labelled as ’Playing Instruments’ and

’With Instruments’ . The images are distributed amongst varying background en-

vironments such as orchestras, auditoriums, domestic environments, parks, streets etc.

Also the images have varying background colors and resolutions, so that the neural net-

work can differentiate the same instrument effectively. Although our detection model

does not consider the action of humans with the instruments, we have leveraged all

the images collected irrespective of their actions with humans. In addition to this we

have excluded ’Erhu’ instrument from consideration, because of its lesser known sta-

tus. Since our research delves mainly in the virtual reality domain and there are not

many videos with the Erhu , we have chosen to not consider it. Therefore, we have

essentially collected unlabelled images distributed among eleven different classes. A

total of 4209 images have been used. All images were then arranged respectively in

their class folders for manual annotation and tagging. This collection of instruments

will be referred to as PPMI data set or People Playing Music Instruments and

constitutes our larger two dimensional data set for object detection. Sample images

can be seen in Figure 4.2a.

37

Since our objective is to detect instruments in 360 videos, we would like to fine tune

our model to learn instruments on a 360 image frame, which is quite different from a 2

dimensional video frame. A 360 image frame is more spherical or polar in nature, given

it captures more of the environment than its traditional two dimensional counterpart.

In order to suffice this need, we have collected several 360 videos containing people

playing musical instruments. The videos have been collected from publicly available

sources on YouTube. A total of 276 videos were collected. 10 image frames were

extracted from each of the videos at a separation of five seconds, to create a 360 image

data set comprising of 2760 images. This forms our smaller 360 image data set that

would be used for fine tuning our object detection model. Sample 360 image frames

can be seen in Figure 4.2b

4.2.2 Audio Data Set

The audio data set is collected from publicly available pre-compiled data sets. Musical

instrument audio excerpts from the Instrument Recognition in Musical Audio

Signals or IRMAS [78] data set, and the Philharmonia [77] data set have been

used to compile the audio data set of musical instruments. To maintain consistency only

those instruments are selected from the audio data sets that are available in the image

data sets. From the IRMAS data set Cello, Clarinet, Flute, Guitar, Saxophone,

Trumpet and Violin were selected, while from the Philharmonia data set sounds of

Basoon and the French horn were selected. A total 8224 instruments distributed

among these 9 classes were used to create our audio data set. The IRMAS data set

comprised of acoustic guitar and electric guitar sounds as separate classes. In our

research both these sounds are considered to be generated from a single class ’guitar’,

because of which the wav files from these classes have been merged into a single class.

The distribution of audio excerpts can be seen in Figure 4.4

4.2.3 Ground Truth Set Up

Both the images and the audio data set were pre-processed in order to fit as inputs

to the object detection and classification models respectively. The PPMI images as

downloaded from its source is distributed into two separate folders, that is, ’Playing

Instruments’ and ’With Instruments’ . However, this is not how we want our

38

(a) Pre-processing of PPMI images (b) Active classes file

(c) Pascal VOC xml (d) Comma separated values for localization information

Figure 4.3: Images pre-processing

data set to be structured for the object detection task. The instrument images should

be segregated based on instrument labels. To accomplish this task we have created

several scripts available in our project repository (link available in Appendix C). An

overview of this pre-processing stage is shown in Figure 4.3a.

Firstly, the original folder structure is formatted to separate instrument folders.

Thus, now we have separate instrument folders that contain image folders with all

images of that particular instrument. The next step is to annotate these images to-

gether and save the annotation information in a separate ’annotations’ folder under

each instrument folder. The raw images were required to be labelled and annotated to

show instrument locations. Both the images data set were manually annotated using

Visual Object Tagging Tool (VoTT) [97]. The labelling and annotation software

39

allows users to load all images for a project at once and manually annotate regions

of interest and label them with corresponding class labels (Screen : Appendix A).

Once the export was complete, the saved project is exported as Pascal Visual Ob-

ject Classes files which are saved in xml format. Each image has its corresponding

annotation information stored in a corresponding Pascal VOC file. The annotation

information is stored as bounding box dimensions and location. This format is chosen

because if there is a correction to be made on any bounding box on a particular image,

the image’s corresponding xml file can be easily located and the data can be updated

as required. Additionally PASCAL VOC is the standard format for object detection

data representation, that can be used by Python modules for training. An example

exported xml file can be seen in Figure 4.3c.

Once all images have been annotated, they are split into training and validation data

sets. We have chosen an 80-20 split. Separate folders are created to contain the images

as well as their annotation xmls. Using the generate dataset.py . The script takes in

an active classes configuration file which allows the user to list a set of instruments to

be considered for the combined data set. This option is kept so that we can include or

exclude certain instruments in our combined data set for the purposes of training. A

sample configuration file is shown in Figure 4.3b. True means the instrument should be

considered while False means otherwise. The script also takes in a ’split’ parameter

which defines the training and validation splits of the combined data set. Running this

script gives us our final combined data set split into training and validation data sets

along with the raw images and localization information. A sample command is shown

in Appendix B. After the split, the training and validation data are converted to single

comma separated value files using the same script. These files hold the image file name,

the classes annotated in that file and their corresponding bounding box locations as seen

in Figure 4.3d. Using the raw image files along with the bounding box information in

the csv files, Tensorflow records are created with the help of Tensorflow python

package [98]. Using the generateTFRecords.py the csv files along with the raw

image information can be converted to Tensorflow Records Appendix B. The script

is available within the repository created for this research Appendix B. In this way

we obtain our training and validation records for our large two dimensional image

object detection data set. Furthermore, the generate data stats.py script generates

visualizations of the data set generated as seen in Figure 4.4. A sample command is

40

(a) 2d images annotation stats

(b) Audio data set statistics (c) 360 images stats

Figure 4.4: Ground truth statistics

shown in Appendix B.

On comparing the number of images and annotations it was found that although

the number of images under each class was almost same as can be seen from the pie

charts in Figure 4.4 , the distribution of instrument annotations were not as equitable.

We can see from the bar graphs that depict instrument annotations, that the Recorder

has a high number of annotations. This can be attributed to the fact that the recorder

appeared on multiple images, especially in orchestral setups. These distributions can

be seen in Figure 4.4a. A total of 9180 annotations were obtained from the PPMI

image data set. Also from Figure 4.4c, it can be seen that the annotations in 360

41

images are highly skewed to guitar. This is because most available 360 videos largely

contained the guitar than any other instrument. A total of 1451 annotations were

made among the 2760 images in the 360 images data set. A total of 3028 annotations

were made in the 360 image data set. Also, it is important to note that all 11 eleven

instruments as previously considered in the PPMI image data set are not present in the

360 image data set, rather only 9 instruments could be found. This reduces the scope

of the 360 image object detector model, which is one of the reasons for its improved

accuracy as is discussed in Chapter 5.

The audio wav files in the audio data set are pre-processed as well. The 16 bit

audio samples from the IRMAS data set are all 2 to 3 seconds in length with stereo

channel and sampled at 44.1 kHz . The audio samples extracted from the Philhar-

monia data set are also sampled with a similar configuration to maintain consistency.

This sampling and trimming of audio files is done using ffmpeg [99] library installed on

a linux powered machined. The command for this is mentioned in Appendix B. All wav

files were kept in their separate class folders and individual converted to 128 x 64 sized

spectrogram images using the libROSA python library [100]. Spectrogram images are

condensed cepstral representations of audio signals also known as Mel-Frequency

Cepstrum . The MFC of an audio signal is retrieved by taking the Fourier Transform

followed by a collection of mathematical functions to get a condensed excerpt of the

audio signal. MFC of an audio signal comprises of the mel-frequencey cepstrum

coefficients which are the essential features of the audio signal. These are the basic

features extracted from audio signals and have been used to benchmark the environ-

ment sound classification data sets [79] and also automatic speech recognition tasks

[82]. These spectrogram images are used for classification training going forward.

4.3 Experiments

The experimentation is divided into two separate legs. The first being object detection

training on the annotated two dimensional images data set followed by fine-tuning on

the annotated 360 images. The second being classification training on the audio data

set. An overall low-level design diagram is shown in Figure 4.5. The object detection

training on two dimensional PPMI images gives us our base object detection model

which is further fine tuned on the smaller 360 image set, while the audio classifier

42

Figure 4.5: High-level proposed method architecture.

model is trained on the sepctrogram images compiled during data pre-processing of

the audio data set. In this way we obtain both our audio and visual modal models.

The next step is to test the models. For testing we use 360 image frames from input

360 videos, run our object detection model on the frames and stitch them together

to obtain our annotated and localized video. The audio from 360 video is extracted

and passed onto the source separation which segregates the separate instrument sound

sources. Each of these separated audio wav files are converted to spectrogram having

the same dimensions as the spectrogram images during training and passed onto the

classification model to obtain class scores. Thus, the experimentation covers both the

audio and visual cues from any 360 video.

4.3.1 Object Detection Model

An effective way to speed up convergence of object detection model is to pre-train

on a large data set and then fine tune that model on a smaller target-oriented data

set [21]. The same concept is applied to our object detection model. The PPMI im-

age data set is a larger data set comprising of 4209 annotated images which is used

to train our base object detection model using the Tensorflow Object Detection API

43

[51]. As discussed earlier, the Tensorflow Object Detection API supports a collection

of backbone networks such as MobileNet, InceptionNet and ResNet, in addition to the

final object detection stage which includes two stage and single stage detectors. For

our experiments the single shot detector SSD [40] was used along with pre-trained fea-

ture extraction models such as MobileNet, ResNet and InceptionNet. The Tensorflow

training and validation records and all other relevant hyperparameters are set in the

model configuration file used for training the object detection model. The experiments

were conducted on varying batch sizes including 4,8,16 and 24 , keeping in mind

GPU memory restrictions. All object detection networks were trained for two hundred

thousand iterations on an 8GB, CUDA enabled NVIDIA GeForce RTX 208

Ti GPU . The backbone feature extractor models and their configuration files used

for training the music instrument object detector were pre-trained on the COCO data

set [28]. The hyperparameters of the configuration were kept unchanged except for the

number of classes as we have 11 classes for our object detection, learning-rate decay

parameters, epochs, batch sizes, training and validation record paths. The batch size

defines the number of images taken together by the model for a complete forward and

backward pass through the network. Increasing the batch size means more images will

be processed in a single run, which also means the training time would be reduced,

however, more memory would be used. Therefore, there is a trade-off between training

time, accuracy and memory management. Experiments have shown that higher batch

sizes provide better results [101]. Therefore, keeping in mind our GPU restriction the

batch sizes were increased till 24. Learning rate decay parameters were also used in

certain model configurations. This is because experiments have shown that starting

with a relatively large learning rate helps increases the training speed and helps avoid

unnecessary features, and then decaying the learning rate at certain intervals or epochs

helps stabilize the model, improves convergence speed and also lets the network learn

intricate features from the data set [102]. Different model configurations have different

learning rate decay parameters. The input images in the Tensorflow records were also

resized to the classic 300 x 300 dimensions before training. The model main.py

script available under the object detection package is used to launch the training.

The command is available in Appendix B.

The object detection model with the best mAP was used to fine tuned on the

360 image data set with the same configurations to retrieve our final visual object

44

detection model. The results are discussed in Chapter 5. To monitor the progress of

the training Tensorboard was used. Object detection training stores the checkpoint

weights after regular epoch intervals in the log directory mentioned during training.

The Tensorboard application can be pointed to this directory for regular monitoring

of accuracy and loss. The command for launching Tensorboard is shown in Appendix

B. The Tensorboard application launches the monitoring UI on the localhost server on

an available port which can be viewed from any web browser. The logdir parameter

stores the path to the checkpoint directory. The evaluation of our model has been

discussed in Chapter 6.

4.3.2 Audio Source Separation

Figure 4.6: Deep Audio Prior Network

The audio extracted from the 360 video frame may contain multiple instruments.

Therefore in order to categorize them individually it is necessary to separate the sources

and create individual audio files for each instrument. For audio source separation we

have used the unsupervised source separation framework named Deep Audio Prior

abbreviated as DAP developed by Tian, Xu et al. [71]. This network is a blind source

separator that is independent of any external training data and uses the current audio

mixture to train itself into segregating the sound sources. The DAP architecture is

45

shown in Figure 4.6. It uses two sound generator networks S1 and S2 and M1 and

M2 are the masking networks which filter out the sound sources by suppressing one

source and maximizing the other. The DAP network assumes that the sound mixture

contains only 2 distinguishable sound sources and not more. This is a critical bottleneck

of the network which does not allow us to test it on sound mixture having more than

2 instruments. All networks follows the Wave-U-Net architecture for end-to-end

source separation [103]. For source separation from the audio extracted from our test

360 videos. The unformatted wav file is fed to the DAP network and DAP blind source

separation script is used to train the network for 5000 iterations. The repository for

Deep Audio Prior contains the scripts required for unsupervised training. We have used

the dap sep.py script to segregate sound sources, which is the blind source separator

script. The command is available in Appendix B. The input mix parameter stores

the input wav mixture signal that is to be separated, while the output parameter

is the directory that stores the separated wav files at different checkpoints. The 2

separated tracks are saved as wav files. The separate wav files are then sent to the

audio classification network for classification.

4.3.3 Audio Classification Model

Figure 4.7: Keras MobileNet architecture.

46

The audio classification model used was the MobileNet image classifier from the

Tensorflow Keras applications package [81]. This model was fine tuned on the

spectrogram images exported from the audio data set . The Keras MobileNet appli-

cation comprises of 13 depthwise convolution layers with batch normalization and

ReLU activation functions. It uses global average pooling and softmax acti-

vation as the final layer to predict the class scores. The model image can be seen

in Figure 4.7. The 9 class 128 x 64 spectrogram image data sets are used to fine

tune this pre-trained model with a batch size of 4,8 and 16 keeping in mind GPU

restrictions. The model was trained for a total of 1000 iterations. 2 experiments were

conducted with early stop monitoring on the training loss with a patience level of 300

epochs. This means that if the training loss did not improve even after 300 iterations

the training would be stopped early. Adam optimizer was used to minimize the

loss functions and the images were re-scaled to keep their RGB coefficients between 0

and 1 in order to maintain scalability. The model checkpoints were saved for testing

on unlabeled data. The loss functions used are sparse categorical accuracy and top

3 categorical accuracy discussed in Section 2.6.1. The training is launched using the

train sc.py script within the SoundClassifier directory of our repository. This

script contains functions to building the MobileNet model, along with the accuracy

metric functions. Both of which are available under the applications and metrics

package of the Keras python module. The command for launching the training is shown

in Appendix B. The width and height parameters store the spectrogram dimensions

which correspondingly create the model dimensions. The batch-size parameter stores

the batch size for training. The epochs parameter stores the number of training it-

erations. The dataset parameter stores the path to the spectrogram images data.

With the output-model-param parameter we can save out trained weights to a de-

sired directory, and finally the plot-save-path stores the training and validation loss

and accuracy plots for the particular training session. The results and evaluation are

discussed in Chapter 5.

47

Chapter 5

Experimental Results

The results of the experiments conducted are divided into three broad categories. The

first being the results of object detection on the two dimensional PPMI images data

set in Table 5.1, the second being the results of fine tuning the base model on the 360

image data set in Table 5.2 and finally the audio classification results in Table 5.3. Ad-

ditionally the accuracy plots, classification loss plot and localization loss plots against

each epoch for object detection training on 360 images data set can also bee seen in

Figure 5.1. The audio classification loss and accuracy plots can be seen in Figure 5.2

Num of
classes

Configuration Parameters
Batch
Size

Iterations
Learning
Rate Decay

map @0.5IoU
map
@0.75IoU

11
MobileNetv1 with
SSD

4.2M 4 200K False 54% 22.8%

11
MobileNetv1 with
SSD

4.2M 8 200K False 55% 30%

11
MobileNetv1 with
SSD

4.2M 16 200K False 55% 28.7%

11
MobileNetv1 with
SSD

4.2M 24 200K False 64.5% 37.3%

11
Inceptionv2 with
SSD

24M 4 200K False 64.5% 35.3%

11
MobileNetv1 with
SSD

4.2M 4 200K True 58% 29.15%

11
Resnet50v1 with
SSD

26M 4 92K False 32% 14.16%

11
MobileNetv1 with
SSD

4.2M 16 86K True 55% 30.3%

11
Inceptionv2 with
SSD

24M 8 200K False 68% 37%

11
MobileNetv3 large
with SSD

5.4M 16 200K False 34% 11.3%

11
Inceptionv2 with
SSD

24M 16 200K False 69% 40%

11
MobileNetv3 large
with SSD

5.4M 16 200K False 49% 17.7%

11
Inceptionv2 with
SSD

24M 24 200K False 66% 38.21%

11
MobileNetv3 large
with SSD

5.4M 24 200K False 53.16% 22.6%

Table 5.1: Results on base object detection model

48

The accuracy and loss results are obtained from monitoring the results of the final

iteration from the Tensorboard application for each model. From Table 5.1 it can

be seen that the most promising results were received from InceptionNet version

2 feature extractor with an mAP@0.5IoU of 69% and mAP@0.75IoU of 37%

with an experimental batch size of 16 . All InceptionNet feature extractors with

Single Shot Object Detector outperformed the other feature extractors such as

MobileNet and Resnet . With the InceptionNet version 2 feature extractor

the mean average precision increases on increasing the batch size till a batch size of

16 to 69% and drops down to 66% with a batch size of 24 . At batch size 16

the object detector reached its optimum generalized minima. Further increasing the

batch size would only result in reduction of the accuracy as the CNN would not be

able to generalize well. Additionally due to GPU memory restrictions, the batch size

was restricted to 24 . Furthermore, the success of InceptionNet when compared

to the other feature extractors can be attributed to the fact that it includes batch

normalization which reduces the input dimensions for subsequent layers by a large

factor. It is also important to point out that some of the images in the PPMI data set

have lower resolution or a lower receptive field. InceptionNet version 2 adopts a

unique procedure to handle such low resolution images. By reducing the stride factor

of first two layers in the network in case of lower resolution images, it ensures that each

image is examined with more care. This reduced stride feature is not implemented for

high resolution images. Furthermore, it factorizes large convolution block into multiple

smaller convolution blocks. Because of this, the entire training of two hundred thousand

epochs was completed for all batch sizes, which was not the case with the ResNet50

version feature extractor. Because of ResNet50’s large size (parameter count of 26

million) only 92000 iterations could be completed at a batch size of 4 on the GPU

available.

As for MobileNet version 1 feature extractor, the accuracy increased on in-

creasing the batch size. We would have gotten better results by increasing the batch

size beyond 24 because of its smaller parameter count and size, however, due to GPU

restrictions it could not be done. With MobileNet version 1 an accuracy of 64.5%

is attained on a batch size of 24 . Introducing learning rate decay did not help improve

the accuracy. The MobileNet architecture was constructed for mobile and embedded

applications where the image sizes are considerably smaller. Also the model size is

49

reduced and has fewer parameters. Although the training time was less, it did not

achieve the desired results because the PPMI data set contained images of different

sizes and resolutions. A similar case was observed with MobileNet version 3 . The

reduced number of parameters helped the model to train faster on larger batch sizes,

however, it compromised on accuracy. Perhaps, training the MobileNet model fur-

ther with larger batch sizes and changing the learning rates would give better results.

This remains an area for future work.

The fine tuned object detector model achieved an mAP@0.5IoU of 94% as can

be seen from Table 5.2.

Num of
classes

Configuration Parameters
Batch
Size

Iterations
Learning
Rate Decay

map @0.5IoU
map
@0.75IoU

11
Inceptionv2 with
SSD

24M 16 200K False 94% 67%

Table 5.2: Results on fine tuned object detection model

(a) mAP at IoU of 0.5 (b) mAP at IoU of 0.75

(c) Localization loss (d) Classification loss

Figure 5.1: Object Detection accuracy and loss plots against iterations

The same training configurations were kept as the highest accuracy model from

our base object detector, that is, the InceptionNet version 2 with SSD backed

50

with a batch size of 16 and training iterations of 200 thousand epochs. The fined

tuned object detection model is essentially manipulated to make predictions on 360

image frames, having learnt instrument patterns from normal two dimensional frames.

Therefore, the model can be said to have begun its learning with a pre-conceived notion

of the characteristic features of each individual instrument, which gave it an edge, in

identifying instruments on 360 image frames. However, the reduced size of the 360

images data set also helped it gain this accuracy. Perhaps increasing the size of the

360 image data set and training it again would be the actual test of accuracy measure of

this model. Additionally the sharp increase in accuracy from the base object detection

model (69%) to the 360 image object detection model (94%) can be attributed to

the fact that the 360 object detector only worked on 9 different instrument labels as

the 360 image data set contained only the most common instruments as can bee seen

from Figure 4.4c. Therefore, the 360 model had less class labels to differentiate from.

Moreover it can be seen from Figure 4.4c that the 360 image data set had a larger

number of Guitar annotations as it is the most commonly used instrument. This also

helped the 360 model to accurately detect instruments as most of them were Guitars.

Unavailability of 360 videos with a wide variety of instruments is the main reason for

such a skewed data set. Perhaps, adding some more instruments in 360 format would

help in getting a more generalized 360 object detector model. From Figure 5.1a and

Figure 5.1b it can be seen that there is an overall steady increase in the mAP score for

both IoU levels. From Figure 5.1c it can be seen that the models localization loss has

gradually decreased with each iteration, no spikes are observed. This indicates that our

model is able to localize instruments with more confidence. Finally from Figure 5.1d

it can bee seen the classification loss decreases gradually with the each epoch, however

there are certain spikes specifically around the hundred thousandth iteration and then

again towards the end. This is attributed to the fact that the inception net model uses

mini-batch gradient descent to minimize its loss function. Subsequently using

small batches on the overall batch size of 16 , there can be some images which get

classified wrongly which causes these spikes.

The audio classification results can be seen in Table 5.3. The evaluation was done

using the evaluate.py script from the SoundClassifier directory of our repository.

A sample command is shown in Appendix B. The evaluate.py script returns the

sparse categorical accuracy score and top k categorical accuracy with k = 3

51

Num of
classes

Spectrogram dimen-
sions

Parameters
Batch
Size

Iterations Early Stopping
Sparse categori-
cal accuracy

Top 3 accuracy

9 128 x 64 3.4M 4 1000
Train
Loss,patience=300

65.3% 85.6%

9 128 x 64 3.4M 8 1000
Train
Loss,patience=300

62.9% 83.7%

9 128 x 64 3.4M 4 1000 No 63.7% 84.8%
9 128 x 64 3.4M 8 1000 No 63.7% 84.5%
9 128 x 64 3.4M 16 1000 No 59.1% 80.8%

Table 5.3: Results on audio classification

Figure 5.2: Audio classification loss and accuracy plots

after evaluating the model mentioned in the model parameter on the validation data

set stored in the validation dir . The best results were retrieved with a batch size of

4 with an early stopping monitor on training loss having patience value of 300 epochs,

although, the training did not stop early and continued to the 1000th epoch. An overall

categorical accuracy of 65.4% and top-3 accuracy of 85.6% was achieved. The 9

class classifier model proved effective on small batch sizes. With a batch size of 16

the accuracy dropped. The learning rate was kept at 0.0004 . As significantly good

results were achieved with these hyper-parameter settings, further modification was

not required. The model tested well on unlabeled instrument sounds. From Figure 5.2

it can be seen that the training loss flattens out around 0, while the validation loss

oscillates greatly. The validation loss oscillation can be attributed to the fact that the

Adam optimizer uses mini-batch gradient descent on the 20% validation data set

which is already pretty small in size. Further experimentation on the learning rate

of the optimizer may lead to improved results. The top-1 validation accuracy swiftly

increases before flattening out at 62% while the top-3 validation accuracy swiftly

increases before flattening out at 85% .

52

Chapter 6

Applications and Demonstrable

Units

The object detection and sound classification models can be useful in a variety of ap-

plications that extend to real-world scenarios. The motivation to create these demon-

strable units is to put our models to test and verify their effectiveness on unlabeled

360 videos. Firstly, the checkpoint files saved during the object detection training need

to be exported to testable formats. The weights from the checkpoint files are saved as

frozen inference graphs . These graphs can be used in mobile applications for live

object detection. To convert the checkpoint weights to a frozen inference graph the

export inference graph.py script from the object detection model can be used. A

sample command is given in Appendix B. The pipline config path parameter stores

the model configuration file used during training, the trained checkpoint prefix con-

tains the model checkpoint file to be converted and the output directory contains

the path where the inference graph would be saved. For mobile applications, a Ten-

sorflow Lite version of the inference graph is required. This can be retrieved using

the export tflite ssd graph.py script in the object detection module . A sample

command is shown in Appendix B.

As a part of this dissertation we have curated 2 separate applications that can

be used for instrument recognition and localization. The first application is a Google

Colaboratory notebook UI/UX with the support of Google Colaboratory forms. Since

Google Colab offers free GPU support, it is an effective platform to test our models

53

(a) Forms for settings and inputs (b) Modelled results

Figure 6.1: Google Colab Notebook UI/UX application

effectiveness. A snapshot of the form and its working can be seen in Figure 6.1.

Figure 6.1a shows the form and its inputs. It contains input fields for the python

packages requirements files, trained model inputs that is the inference graph exported

as discussed above, label file, test video file path and output file path. Additionally

the test can also be performed on a particular segment of the video file rather than the

entire file. Running the consecutive cells of the notebook will result in the annotated

video and result from the sound classification model as shown in Figure 6.1b

Another application curated is the lite version of our object detection model imple-

mented using Tensorflow Lite . The base object detection model’s Tensorflow Lite

inference graph is converted to a Tensorflow lite mobile application model using the

Tensorflow lite package, tflite convert , in python which makes it compatible with

android devices. A sample command is given in Appendix B. The model is loaded

onto the Tensorflow lite app via Android Studio. A fully functioning android app

which uses the device’s camera feed to detect objects based on the model is developed.

This application makes it suitable for live object tracking and can be extended to real-

world environments. A demo video of the application in action is provided as a link in

Appendix C.

54

Chapter 7

Conclusion

As a part of this research we have developed a dual model architecture that incorpo-

rates object detection and audio classification methodologies based on deep learning to

identify and localize musical instruments in virtual reality environments, specifically in

360 videos. In doing so, a large annotated data set of people interacting with musical

instruments was created. The data set images were collected in a separate research.

However, this image collection was leveraged to create an annotated image data set of

people playing musical instruments in a variety of background environments covering

11 different musical instruments. The music instruments used in our research are Bas-

soon, Cello, Clarinet, Erhu, Flute, French Horn, Guitar, Harp, Recorder,

Saxophone, Trumpet and Violin . Although, the Erhu was excluded given that no

360 videos contain this instrument. A total of 4209 images were annotated. Addition-

ally, a collection of 360 videos of people playing musical instruments was also collected.

These videos are publicly available on YouTube. From these videos a 360 degree im-

age data set of people playing musical instrument was created by extracting 10 frames

from each of these 360 videos. A total of 2760 360 images are annotated. For the

audio classification training, the Philharmonia data set and the Instrument Recogni-

tion in Musical Audio Signals data set covering 9 different musical instruments. The

audio files in these data sets were normalized to similar wavelengths, channels and

lengths and converted to spectrogram images for audio classification training. A to-

tal of 8224 audio files and subsequently spectrogram images are generated. Several

backbone networks were used along with single shot object detector to train our base

55

object detection model. The best performing model from these was fine-tuned on the

smaller 360 image frame data set to get our final 360 video music instrument object

detector. A mean average precision of 94% was achieved from this model. The audio

classification model was trained on the spectrogram images and a top-3 accuracy

of 85% was achieved. Furthermore, an audio source separation architecture named

Deep Audio Prior [71] was used that separates a sound source mixture into two

distinct sound wav files using self-supervision.

For testing our proposed methods, visual cues from 360 image frames were fed to

our fine-tuned model and the resultant annotated image frames were stitched together

to construct an annotated video in Google Colaboratory. Furthermore, audio was ex-

tracted from the 360 video file and fed to the source separation network for sound source

separation. The separated wav files from this network were converted to spectrograms

and tested on our audio classification network.

We can conclude by stating that the research objective was achieved, however, there

remains scope for improvement. The main aim to detect musical instruments in 360

videos was achieved by using visual cues and object detection methodologies. This

research took a step further to use audio cues as well to detect and classify musical

instruments using audio features. Therefore, a dual-modal architecture was curated. In

conclusion, with the help of object detection, sound classification and source separation

frameworks it is possible to detect and annotate musical instruments in a virtual reality

environment. Some limitations and future work for our proposed method are listed as

follows.

7.1 Limitations

Although the research objective was achieved, there are several limitations of our pro-

posed methods. The discrepancy between the number of classes in the visual and audio

framework is one such drawback. While the visual framework works on 11 classes, the

audio framework works on 9 only. Although the classes in the audio framework are

contained in the visual framework, 2 instruments that is the harp and the recorder

are absent in the audio framework model. This is because the IRMAS and philharmo-

nia data set did not contain audio samples from these instruments. Therefore, although

the object detector would be able to locate these 2 instruments, the audio model would

56

not be able to classify them.

The audio source separation architecture suffers the limitation of considering all

sound signal mixtures of having only 2 separate sources. Therefore, if a sound mixture

containing more than two instruments are fed to this network, it would still produce 2

separate wav files, which is not accurate. Feeding these separate wav files to the audio

classifier might increase chances of misclassification. Furthermore, each time the audio

classifier needs to be run, the source separation needs to be trained on the input signal,

which is a time consuming process. This in turn subsequently increases the detection

time of the overall model.

The audio model developed only serves the purpose of classification. Localization

information cannot be retrieved from the audio model. This is because the audio is

extracted out from the input video and considered as a separate entity independent of

the video file. This entity is used completely on a different leg of the proposed method

that does not depend on the visual object detector model.

7.2 Future Work

There is a lot of room for improvement in the research conducted as is the case with

any research. Further research can be done in expanding the batch size of the training

network and the various hyper-parameters can be fine tuned and experimented with.

Also, 2-stage object detectors such as RCNN , Fast-RCNN and Faster-RCNN

can also be implemented to test their effectiveness on 360 image frames, as they are

considered to give better accuracy on benchmark data sets. Using a larger 360 image

data set would also help in generalizing the model further. The smaller size of the data

set guarantees fine-tuning to a certain extent, however, it still relies on the training

performed on the larger PPMI data set. Therefore, increasing the 360 image data set

size would help in generalizing the model well over only 360 videos. The 360 image data

set is also highly skewed to a particular instrument that is the Guitar , which makes it

easier for the model to distinguish between other instruments. The unavailability of a

varied collection of instruments in 360 videos makes it difficult to expand the number

of classes in 360 image data set. Therefore, it is necessary to collect more 360 videos

with a varied range of music instruments. Additionally, more recent object detection

frameworks such as YOLO (You Only Look Once), EfficientDet etc. can also

57

be looked into.

The audio classification data set can be expanded to include the 2 missing instru-

ments, which would normalize the 2 modal data sets to have the same class labels.

Further experiments by changing the spectrogram dimensions from 128 x 64 can also

be performed. The source separation technique suffers the most severe drawback of di-

viding the mixture signal to only 2 separate sound sources. Other experiments done on

source separation and localization such as the Wave U-Net architecture can be looked

into. Additionally, since our target data is 360 videos, more research can be conducted

on generation of ambisonics and localizing sound sources rather than classifying

them. Spatial audio plays a vital role in virtual reality environments and using such

ambient audio features would help us locate instruments using only audio cues. Thus

relieving us of using object detection methodologies.

Furthermore, our proposed method curates a dual-model structure, one using visual

cues and the other using audio cues. Residual networks that incorporate both audio

and visual features into a single model can be looked upon so as to scale the model

further. A single fused model that caters to both the audio as well as the visual cues

of a 360 video frame would largely reduce the framework size of the method, and also,

make it easier to test.

58

Bibliography

[1] “Samsung gear vr,” [Online] Available: https://en.wikipedia.org/wiki/

Samsung_Gear_VR [Accessed 06 September 2020].

[2] “Google cardboard,” [Online]. Available: https://arvr.google.com/

cardboard/ [Accessed 06 September 2020].

[3] “360 videos,” [Online] Available: https://en.wikipedia.org/wiki/

360-degree_video [Accessed 06 September 2020].

[4] “Playstation vr,” [Online] Available: https://www.playstation.com/en-us/

explore/playstation-vr/ [Accessed 06 September 2020].

[5] A. Tiwari, “Music information retrieval: An overview,” 08 2017.

[6] J. Burgoyne, I. Fujinaga, and J. Downie, “Music information retrieval,” pp. 213–

228, 11 2015.

[7] M. Ihara, S.-i. Maeda, and S. Ishii, “Instrument identification in monophonic

music using spectral information,” pp. 595 – 599, 01 2008.

[8] Y. Sazaki, R. Ayuni, and S. Kom, “Musical note recognition using minimum

spanning tree algorithm,” pp. 1–5, 10 2014.

[9] A. Defossez, N. Usunier, L. Bottou, and F. Bach, “Demucs: Deep extractor for

music sources with extra unlabeled data remixed,” 09 2019.

[10] R. Hennequin, A. Khlif, F. Voituret, and M. Moussallam, “Spleeter: a fast and

efficient music source separation tool with pre-trained models,” Journal of Open

Source Software, vol. 5, p. 2154, 06 2020.

59

https://en.wikipedia.org/wiki/Samsung_Gear_VR
https://en.wikipedia.org/wiki/Samsung_Gear_VR
https://arvr.google.com/cardboard/
https://arvr.google.com/cardboard/
https://en.wikipedia.org/wiki/360-degree_video
https://en.wikipedia.org/wiki/360-degree_video
https://www.playstation.com/en-us/explore/playstation-vr/
https://www.playstation.com/en-us/explore/playstation-vr/

[11] E. Benetos, S. Dixon, D. Giannoulis, H. Kirchhoff, and A. Klapuri, “Automatic

music transcription: Challenges and future directions,” Journal of Intelligent

Information Systems, vol. 41, 12 2013.

[12] “X-ray feature. amazon prime video.,” [Online] Available: https://www.

amazon.com/primeinsider/video/pv-xray-tips.html [Accessed 06 Septem-

ber 2020].

[13] K. Mathivanan, S. T, A. B, and S. R, “A study of virtual reality,” International

Journal of Trend in Research and Development, vol. 4, pp. 2394–9333, 06 2017.

[14] “Oculus rift.,” [Online] Available: https://www.oculus.com/ [Accessed 06

September 2020].

[15] “Ikea place app.,” [Online] Available: https://apps.apple.com/us/app/

ikea-place/id1279244498 [Accessed 06 September 2020].

[16] “Youtube.,” [Online] Available: https://www.youtube.com/ [Accessed 06

September 2020].

[17] “Rylo 360 camera.,” [Online] Available: https://www.rylo.com/ [Accessed 06

September 2020].

[18] “Gopro 360 camera.,” [Online] Available: https://gopro.com/en/us/shop/

cameras/max/CHDHZ-201-master.html [Accessed 06 September 2020].

[19] “Yi 360 camera.,” [Online] Available: https://uk.pcmag.com/

digital-camcorders/93317/yi-360-vr-camera [Accessed 06 September

2020].

[20] G. Piccinini, “The first computational theory of mind and brain: A close look at

mcculloch and pitts’s “logical calculus of ideas immanent in nervous activity”,”

Synthese, vol. 141, 08 2004.

[21] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu, “A survey of deep

learning-based object detection,” IEEE Access, vol. PP, pp. 1–1, 09 2019.

60

https://www.amazon.com/primeinsider/video/pv-xray-tips.html
https://www.amazon.com/primeinsider/video/pv-xray-tips.html
https://www.oculus.com/
https://apps.apple.com/us/app/ikea-place/id1279244498
https://apps.apple.com/us/app/ikea-place/id1279244498
https://www.youtube.com/
https://www.rylo.com/
https://gopro.com/en/us/shop/cameras/max/CHDHZ-201-master.html
https://gopro.com/en/us/shop/cameras/max/CHDHZ-201-master.html
https://uk.pcmag.com/digital-camcorders/93317/yi-360-vr-camera
https://uk.pcmag.com/digital-camcorders/93317/yi-360-vr-camera

[22] M. A. Fischler and R. A. Elschlager, “The representation and matching of picto-

rial structures,” IEEE Transactions on Computers, vol. C-22, no. 1, pp. 67–92,

1973.

[23] D. T. Nguyen, W. Li, and P. Ogunbona, “An improved template matching

method for object detection,” vol. 5996, pp. 193–202, 09 2009.

[24] H. Schneiderman and T. Kanade, “A statistical method for 3d object detection

applied to faces andcars,” Proceedings / CVPR, IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition. IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 746–751

vol.1, 02 2000.

[25] C. Papageorgiou and T. Poggio, “A trainable system for object detection,” In-

ternational Journal of Computer Vision, vol. 38, pp. 15–33, 06 2000.

[26] S. Paisitkriangkrai, C. Shen, and A. Hengel, “Pedestrian detection with spa-

tially pooled features and structured ensemble learning,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 38, 09 2014.

[27] J. Lee, J. Bang, and S.-I. Yang, “Object detection with sliding window in images

including multiple similar objects,” pp. 803–806, 10 2017.

[28] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,

and C. Zitnick, “Microsoft coco: Common objects in context,” 05 2014.

[29] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for

accurate object detection and semantic segmentation,” Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 11

2013.

[30] R. Girshick, “Fast r-cnn,” 04 2015.

[31] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman, “The

pascal visual object classes (voc) challenge,” International Journal of Computer

Vision, vol. 88, pp. 303–338, 06 2010.

61

[32] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time ob-

ject detection with region proposal networks,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 39, 06 2015.

[33] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” 03 2017.

[34] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature

pyramid networks for object detection,” 12 2016.

[35] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Uni-

fied, real-time object detection,” pp. 779–788, 06 2016.

[36] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” 12 2016.

[37] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” 04 2018.

[38] A. Bochkovskiy, C.-Y. Wang, and H.-y. Liao, “Yolov4: Optimal speed and accu-

racy of object detection,” 04 2020.

[39] G. Jocher, “Yolov5,” 6 2020.

[40] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg,

“Ssd: Single shot multibox detector,” vol. 9905, pp. 21–37, 10 2016.

[41] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep

convolutional neural networks,” Neural Information Processing Systems, vol. 25,

01 2012.

[42] F. Iandola, M. Moskewicz, K. Ashraf, S. Han, W. Dally, and K. Keutzer,

“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and textless1mb

model size,” 02 2016.

[43] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional neural

networks for mobile devices,” 12 2015.

[44] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for

mobile vision applications,” 04 2017.

62

[45] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:

Inverted residuals and linear bottlenecks,” pp. 4510–4520, 06 2018.

[46] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu,

R. Pang, V. Vasudevan, Q. Le, and H. Adam, “Searching for mobilenetv3,” 05

2019.

[47] B. Zoph and Q. Le, “Neural architecture search with reinforcement learning,” 11

2016.

[48] Z. Lu, J. Yang, and Q. Liu, “Face image retrieval based on shape and texture

feature fusion,” Computational Visual Media, vol. 3, pp. 1–10, 08 2017.

[49] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the

inception architecture for computer vision,” 06 2016.

[50] B. Sai and T. Sasikala, “Object detection and count of objects in image using

tensor flow object detection api,” pp. 542–546, 11 2019.

[51] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,

Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, “Speed/accuracy trade-offs

for modern convolutional object detectors,” pp. 3296–3297, 07 2017.

[52] C.-H. Hsieh, D.-C. Lin, C.-J. Wang, Z.-T. Chen, and J.-J. Liaw, “Real-time car

detection and driving safety alarm system with google tensorflow object detection

api,” 07 2019.

[53] B. Sosorbaram and S. Bold, “Implementation of autonomous unmanned aerial

vehicle with moving-object detection and face recognition,” 01 2016.

[54] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to

human-level performance in face verification,” Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 09 2014.

[55] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for

face recognition and clustering,” pp. 815–823, 06 2015.

[56] A. Mishra, “Amazon rekognition,” pp. 421–444, 08 2019.

63

[57] J. Roth, S. Chaudhuri, O. Klejch, R. Marvin, A. Gallagher, L. Kaver, S. Ra-

maswamy, A. Stopczynski, C. Schmid, Z. Xi, and C. Pantofaru, “Ava active

speaker: An audio-visual dataset for active speaker detection,” pp. 4492–4496,

05 2020.

[58] J. Qiu, P. W. Lo, and B. Lo, “Assessing individual dietary intake in food sharing

scenarios with a 360 camera and deep learning,” pp. 1–4, 05 2019.

[59] A. Pacha, J. Hajič, jr, and J. Calvo-Zaragoza, “A baseline for general music

object detection with deep learning,” Applied Sciences, vol. 8, p. 1488, 08 2018.

[60] “Google protocl buffers.,” [Online] Available: https://developers.google.

com/protocol-buffers [Accessed 06 September 2020].

[61] A. Bronkhorst, “The cocktail-party problem revisited: early processing and se-

lection of multi-talker speech,” Attention, perception psychophysics, vol. 77, 04

2015.

[62] W. N. Cowan N, “Constraints on awareness, attention, processing, and mem-

ory: Some recent investigations with ignored speech.,” Conscious Cogn.,

pp. 6(2/3):182–203, 1997.

[63] P. FB., “The cognitive determinants of behavioral distraction by deviant auditory

stimuli: a review.,” Psychol Res., pp. 78(3):321–338, 2014.

[64] X. He and l. Deng, “Speech-centric information processing: An optimization-

oriented approach,” Proceedings of the IEEE, vol. 101, pp. 1116–1135, 05 2013.

[65] C. Brooks and D. Hall, “Musical acoustics, 3rd edition,” 2001.

[66] B. Gygi, G. Kidd, and C. Watson, “Spectral-temporal factors in the identification

of environmental sounds,” The Journal of the Acoustical Society of America,

vol. 115, pp. 1252–65, 03 2004.

[67] E. Vincent, M. Jafari, S. Abdallah, M. Plumbley, and M. Davies, “Blind audio

source separation,” 11 2005.

64

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers

[68] S. Nordholm, T. Abhayapala, D. Simon, S. Gannot, N. Patrick, and I. Tashev,

“Microphone array speech processing,” EURASIP Journal on Advances in Signal

Processing, 09 2010.

[69] N. Mitianoudis and M. Davies, “Using beamforming in the audio source separa-

tion problem,” pp. 89 – 92 vol.2, 08 2003.

[70] J.-M. Valin, F. Michaud, and J. Rouat, “Robust localization and tracking of

simultaneous moving sound sources using beamforming and particle filtering,”

Robotics and Autonomous Systems, vol. 55, pp. 216–228, 03 2007.

[71] Y. Tian, C. Xu, and D. Li, “Deep audio prior,” 12 2019.

[72] Y. Li and D. Wang, “Musical sound separation based on binary time-frequency

masking,” EURASIP J. Audio, Speech and Music Processing, vol. 2009, 01 2009.

[73] M. Kim and S. Choi, “Monaural music source separation: Nonnegativity, sparse-

ness, and shift-invariance,” pp. 617–624, 03 2006.

[74] H. Zhao, C. Gan, A. Rouditchenko, C. Vondrick, J. McDermott, and A. Torralba,

“The sound of pixels,” 04 2018.

[75] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for urban sound

research,” pp. 1041–1044, Nov. 2014.

[76] K. J. Piczak, “ESC: Dataset for Environmental Sound Classification,” in Proceed-

ings of the 23rd Annual ACM Conference on Multimedia, pp. 1015–1018, ACM

Press.

[77] “Philharmonia sound samples.,” [Online] Available: https://philharmonia.

co.uk/resources/sound-samples/ [Accessed 06 September 2020].

[78] J. J. F. F. . H. P. Bosch, J. J., “A comparison of sound segregation techniques

for predominant instrument recognition in musical audio signals,” pp. 559–564,

2012.

[79] K. Piczak, “Esc: Dataset for environmental sound classification,” pp. 1015–1018,

10 2015.

65

https://philharmonia.co.uk/resources/sound-samples/
https://philharmonia.co.uk/resources/sound-samples/

[80] V. Boddapati, A. Petef, J. Rasmusson, and L. Lundberg, “Classifying environ-

mental sounds using image recognition networks,” Procedia Computer Science,

vol. 112, pp. 2048–2056, 12 2017.

[81] “Keras mobilenet,” [Online] Available: https://keras.io/api/applications/

mobilenet/ [Accessed 06 September 2020].

[82] M. Sahidullah and G. Saha, “Design, analysis and experimental evaluation of

block based transformation in mfcc computation for speaker recognition,” Speech

Communication, vol. 54, pp. 543–565, 05 2012.

[83] M. Galeso, Apple Siri for Mac: An Easy Guide to the Best Features. North

Charleston, SC, USA: CreateSpace Independent Publishing Platform, 2017.

[84] “Alexa,” [Online] Available: https://www.alexa.com [Accessed 06 September

2020].

[85] A. Li, M. Thotakuri, D. Ross, J. Carreira, A. Vostrikov, and A. Zisserman, “The

ava-kinetics localized human actions video dataset,” 05 2020.

[86] P. Morgado, N. Vasconcelos, T. Langlois, and O. Wang, “Self-supervised gener-

ation of spatial audio for 360 video,” 09 2018.

[87] A. Owens and A. Efros, “Audio-visual scene analysis with self-supervised multi-

sensory features,” 04 2018.

[88] A. Delforouzi, S. Tabatabaei, K. Shirahama, and M. Grzegorzek, “Polar object

tracking in 360-degree camera images,” pp. 347–352, 12 2016.

[89] Y. Tian, J. Shi, B. Li, Z. Duan, and C. Xu, “Audio-visual event localization in

unconstrained videos: 15th european conference, munich, germany, september

8-14, 2018, proceedings, part ii,” pp. 252–268, 09 2018.

[90] A. Tepljakov, S. Astapov, E. Petlenkov, K. Vassiljeva, and D. Draheim, “Sound

localization and processing for inducing synesthetic experiences in virtual reality,”

pp. 159–162, 10 2016.

66

https://keras.io/api/applications/mobilenet/
https://keras.io/api/applications/mobilenet/
https://www.alexa.com

[91] P. Shreevathsa, M. Harshith, A. M, and Ashwini, “Music instrument recognition

using machine learning algorithms,” pp. 161–166, 01 2020.

[92] Y. Aytar, C. Vondrick, and A. Torralba, “Soundnet: Learning sound representa-

tions from unlabeled video,” 10 2016.

[93] “Flickr.,” [Online] Available: https://www.flickr.com/ [Accessed 06 Septem-

ber 2020].

[94] D. Giannoulis, E. Benetos, D. Stowell, M. Rossignol, M. Lagrange, and

M. Plumbley, “Detection and classification of acoustic scenes and events: An

ieee aasp challenge,” Proceedings of the 2013 IEEE Workshop on Applications of

Signal Processing to Audio and Acoustics (WASPAA 2013), pp. 1–4, 10 2013.

[95] J.-Y. Liu, y.-h. Yang, and S.-K. Jeng, “Weakly-supervised visual instrument-

playing action detection in videos,” 05 2018.

[96] B. Yao and F. F. Li, “Grouplet: A structured image representation for recognizing

human and object interactions,” pp. 9–16, 10 2010.

[97] “Visual object tagging tools,” [Online] Available: https://github.com/

microsoft/VoTT [Accessed 06 September 2020].

[98] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,

O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensor-

Flow: Large-scale machine learning on heterogeneous systems,” 2015. Software

available from tensorflow.org.

[99] “Ffmpeg developers. (2016). ffmpeg tool (version be1d324) [software].,” [Online]

Available: http://ffmpeg.org/ [Accessed 06 September 2020].

[100] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg, and

O. Nieto, “librosa: Audio and music signal analysis in python,” vol. 8, 2015.

67

https://www.flickr.com/
https://github.com/microsoft/VoTT
https://github.com/microsoft/VoTT
http://ffmpeg.org/

[101] I. Kandel and M. Castelli, “The effect of batch size on the generalizability of

the convolutional neural networks on a histopathology dataset,” ICT Express, 05

2020.

[102] K. You, M. Long, J. Wang, and M. I. Jordan, “How does learning rate decay

help modern neural networks?,” 2020.

[103] D. Stoller, S. Ewert, and S. Dixon, “Wave-u-net: A multi-scale neural network

for end-to-end audio source separation,” 06 2018.

68

Appendix A

Figure 1: Visual Object Tagging Tool

69

Figure 2: 360 image object detection with 1 instrument

Figure 3: 360 image object detection with 2 instruments

70

Appendix B

Important Linux Commands

• Generating agglomerated training and validation data sets:

$ python3 .Scripts/generate_dataset.py \

--instrument_images_path <Base image directory> \

--target_directory <Combined split data set> \

--active_classes_config <path for config file> \

• Generating data set statistics:

$ python3 .Scripts/generate_data_stats.py \

--data_dir <Combined Data set directory>

• Compiling Protocol Buffer files :

$ protoc object_detection/protos/*.proto --python_out=.

• Exporting object detection framework to python path :

$ cd /models/research

$ export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim

• Training object detection model :

$ python3 \

/models/research/object_detection/model_main.py \

--logtostderr \

--train_dir=/training \

71

--model_dir=/PreTrainedModels/360_inceptionv2_model1 \

--pipeline_config_path=/configurations/model.config

• Generating Tensorflow Records :

$ python3 \

generateTFRecords.py \

--image_dir=training/360/train/images \

--csv_input=training/360/train/train.csv \

--output_path=training/360/train/train.record

• Formatting and sampling audio files :

$ ffmpeg -i 'original_audio.wav' -acodec pcm_s16le \

-ac 2 -ar 44100 -ss 60 -t 5 -vn 'sampled_audio.wav'

• Deep audio prior blind source separation command :

$ python3 Deep-Audio-Prior/code/dap_sep.py \

--input_mix Deep-Audio-Prior/guitar_cello.wav \

--output guitarcellosep

• Launching sound classifier training :

$ python3 SoundClassifier/train_sc.py --width 128 --height 64 \

--batch-size 16 --epochs 1000

--dataset SoundClassifier/Dataset \

--output-model-name SoundClassifier/models/nineclass_12864161000 \

--plot-save-path SoundClassifier/plots/nineclass_12864161000.png

• Launching Tensorboard :

$ tensorboard --logdir='trained_model_path_checkpoints'

• Evaluate sound classifier :

$ python3 SoundClassifier/evaluate.py \ --width 128 \ --height 64 \

--batch-size 8 \

72

--validation_dir SoundClassifier/Dataset/validation \

--model SoundClassifier/models/nineclass_1286481000.h5

• Export to inference graph :

$ python3 object_detection/export_inference_graph.py \

--input_type=image_tensor \

--pipeline_config_path=training/model.config \

--trained_checkpoint_prefix=360_inceptionv2_model1/model.ckpt \

--output_directory=frozen/360_ssd_inceptionv2_16_200k

• Export Tensorflow Lite inference graph :

$ python3 object_detection/export_tflite_ssd_graph.py \

--input_type=image_tensor \

--pipeline_config_path=training/model.config \

--trained_checkpoint_prefix=360_inceptionv2_model1/model.ckpt \

--output_directory=frozen/360_ssd_inceptionv2_16_200k

• Export Tensorflow Lite mobile application model :

$ tflite_convert --input_shapes=1,300,300,3 \

--input_arrays=normalized_input_image_tensor \

--output_arrays=TFLite_Detection_PostProcess, \

TFLite_Detection_PostProcess:1, \

TFLite_Detection_PostProcess:2, \

TFLite_Detection_PostProcess:3 \

--allow_custom_ops \

--graph_def_file=/frozen_tflite/imageaiguitar.pb \

--output_file=TFLITE/detect.tflite

73

Appendix C

Important links

• Music Instrument Localization repository

https://tinyurl.com/MusicInstrumentLoc

• Music instrument localization demo from android app

https://www.youtube.com/watch?v=XyNMDB4iNjw

• Localization UI/UX Google Colab Notebook

https://tinyurl.com/UIUXColabLoc

• 2D images annotated data set

https://tinyurl.com/PPMIAnnotatedImages

• 360 images annotated data set

https://tinyurl.com/360annotatedimages

• Audio Data Set

https://tinyurl.com/AudioDataSet

74

https://tinyurl.com/MusicInstrumentLoc
https://www.youtube.com/watch?v=XyNMDB4iNjw
https://tinyurl.com/UIUXColabLoc
https://tinyurl.com/PPMIAnnotatedImages
https://tinyurl.com/360annotatedimages
https://tinyurl.com/AudioDataSet

Appendix D

Abbreviations

AP - Average Precision

ASR - Automatic Speech Recognition

BASS - Blind Audio Source Separa-

tion

BoF - Bag of Freebies

BoS - Bag of Specials

CNN - Convolution Neural Networks

COCO - Common Objects in Context

DAP - Deep Audio Prior

DCASE - Detection and classification

of Acoustic Scenes and Events

DoA - Distance of Arrival

FN - False Negative

FP - False Positive

FPN - Feature Pyramid Network

GPU - Graphics Processing Unit

HMD - Head Mounted Device

IRMAS - Instrument Recognition in

Music Audio Signals

IoU - Intersection over Union

mAP - mean average precision

MFC - Mel-Frequency Cepstrum

NLP - Natural Language Processing

PAN - Path Aggregation Network

PPMI - People Playing Music Instru-

ments

Pascal VOC - Visual Object Classes

RMSProp - Root Mean Square Prop-

agation

ReLU - Rectified Linear Unit

SAM - Spatial Attention Modules

SSD - Single Shot Detector

SVM - Support Vector Machine

TN - True Negative

TP - True Positive

VR - Virtual Reality

VoTT - Visual Object Tagging Tool

YOLO - You Only Look Once

75

	Acknowledgments
	Abstract
	Summary
	List of Tables
	List of Figures
	Chapter Introduction
	Motivation
	Objective
	Structure

	Chapter Fundamentals
	Virtual vs Augmented Reality
	360 Videos
	Capturing 360 Videos

	Convolution Neural Networks
	Object Detection
	Methodologies
	Evaluation Metrics
	Types of Object Detectors
	Feature Extractors
	Applications

	Tensorflow Object Detection API
	Sound Source Separation
	Audio Classification
	Evaluation Metrics
	Applications

	Chapter Related Work and State-of-the-art
	Chapter Design and Implementation
	Proposed Method
	Data Acquisition
	Images Data Set
	Audio Data Set
	Ground Truth Set Up

	Experiments
	Object Detection Model
	Audio Source Separation
	Audio Classification Model

	Chapter Experimental Results
	Chapter Applications and Demonstrable Units
	Chapter Conclusion
	Limitations
	Future Work

	Bibliography
	Appendices

