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Intelligent Notification System: Identifying

Opportune Moments For Mobile Phone Alerts

Kul Gaurav, Master of Science in Computer Science

University of Dublin, Trinity College, 2020

Supervisor: Dr. Gavin Doherty

With the advent of modern smartphones and easily accessible internet, push notifica-
tions flood our devices daily. We interact with a large number of notifications each day
on our mobile devices, coming from various sources like social media, instant messag-
ing, news, games, and other applications installed. These notifications are not always
relevant to our current state and also often received untimely. In this research, we col-
lected data from mobile devices of volunteers and analyzed to learn about opportune
moments for a notification. The development and deployment of the android applica-
tion for data collection were according to our university’s ethical research guidelines.
The Covid-19 created a unique situation and usage pattern for mobile devices. We saw
the contrast from similar previous studies because of the new normal of staying inside
and working from home. Exploratory Data Analysis and Statistical Methods performed
for identifying features and patterns in the collected data. Supervised machine learn-
ing was applied to test the hypotheses around classifying a moment as opportune to
deliver a notification. The XGBoost classifier gave the best results for the classification
of a moment as opportune or not. Exact time prediction to deliver a notification was
inefficient, suggesting the requirement of additional context and content features for a
better model.
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Chapter 1

Introduction

1.1 Background

Our day starts and ends with the interaction with mobile phones hence making it

an integral part of our daily lives. We interact with various contents throughout the

day. According to a report by Deloitte [1], Irish people check their phones around 50

times a day, most of which to engage with the alert notification. Figure 1.1 shows

the usage distribution. From social media updates to application reminding to drink

water, we get numerous push notifications each day, which often confound us. Often

the notifications we receive, create disturbances in our routine task or add no value to

our daily lives [2, 3]. We try to ignore these notifications and open them in our free

time.

Nevertheless, these unwanted notifications already disturbed and diverted our at-

tention from our work by generating irrelevant thoughts and mind-wandering. Many

companies deliver push-based notifications for marketing and advertisement purposes,

but untimely delivery does not add any value to their goal as not serving the purpose

of people’s engagement. Delivery of notification at an appropriate time can help not

just the phone user by increasing productivity but also the companies generating push

notifications by making the audience interact with the notification.

Notifications on a mobile device create an additional display, usually an icon on top

of the screen, and alerts the user by a sound. The device may also create vibrations

depending on the settings by the user. The notification drawer registers each alert in
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the list with the icon of the application. The icon, when tapped, expands to display the

details about the notification. An application can receive either a unicast notification

which is unique to the user or a broadcast notification that every user of that application

receives. In the backend server, a WebSocket or another Back-end-as-a-Service (BaaS)

[4] provider triggers the notification that a mobile client device receives and displays.

Figure 1.1: Phone Usage Distribution in Ireland [1]

Multiple factors determine if a mobile phone user will open a notification in the

desired time range. Data Analytics and machine learning can help understand user

behavior and build models that may help develop intelligence in the delivery system

of notification. Such a system can benefit mobile phone users as well as marketing

companies.

This study’s core objective is to model the conventional notification system of mo-

bile phones and identify the opportune moment for the delivery of a notification. The

goal is to reduce the diversion created by notifications by identifying whether current

factors may lead to the right moment for interacting with the notification quickly and

hence increasing the engagement rate.

For developing such a system, we face constraints of open dataset availability. In

this study, we explore various features that play a vital role in interacting with a

notification at a given time. We also propose a framework for collecting user data with

security and privacy considerations to develop and deploy the data collection system

in real-time.

2



1.2 Challenges

Designing and developing a smart notification system is onerous, as it involves many

modular tasks. The process starts with data collection from various sensors of the

mobile device and saving the data for future use. Analysis of context and content

of notification to building the intelligent notification system is another principal task.

These tasks carefully need monitoring and best practices for security and privacy con-

cerns. Another challenge is in following iterative model design as there is no data to

build a machine learning model initially. This issue is known as the bootstrap problem

[5].

Geolocations are an essential feature to predict the opportune moment for a noti-

fication. However, an unprecedented situation like Covid-19 can break the model by

making the geolocations irrelevant in a lockdown situation and creating high multi-

collinearity between features.

1.3 Motivation

Since the mobile phone users receive a large number of notifications each day, they may

miss crucial alerts in torrent. From a business point of view, if the notifications arrive

at an inappropriate time, the end-user may not engage as expected or even unregister

from the subscription out of annoyance. The notification system with intelligence can

help reduce the disturbance in the ongoing task of end-user. Though content and sensor

data together give a good model for the system, machine learning algorithms in the

domain using limited contexts and features are still under research.

Broadly the intelligent notification system can have elements as in figure 1.2. Af-

ter the alerts reach the mobile gateway, a classifier can accept the notification if it is

relevant to the user; further, the system looks for an opportune moment to post the

notification. In this study, we do not consider the notification’s relevance as that in-

volves content analysis of the notification. Our work focuses on the opportune moment

classifiers and regressors.
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Figure 1.2: Overview of Intelligent Notification System

1.4 Research Question

The research question that this thesis is seeking to answer is:

“ Can we predict the opportune moment for a notification arriving at a mobile de-

vice by using limited context features without reading the notification content? ”

Prediction of the opportune moment is of the following three types:

1. Classifying current moment as opportune or non-opportune.

2. Multi class classification of next opportune moment for a notification from one

of the following class:

(a) Instantly ( ≤ 30 seconds)
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(b) Early ( ≤ 5 minutes)

(c) Delayed ( ≤ 30 minutes)

(d) Very Late (anything after 30 minutes)

3. Time difference prediction to obtain the next opportune moment from current

time.
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Chapter 2

Related Works

Digital reforms around the world have captivated the researchers to study the impacts

and consequences of growing mobile phone usage. The industry, as well as academia,

is diving deep to understand mobile devices’ usage and help enhance the output and

productivity of end-user. In the current section, we will discuss some of the past work

and recent research output in notification management.

2.1 Effects of Notification Alerts

People mostly check their phones in response to notifications alert [1]. [6] defines a

notification as ”a visual cue, auditory signal, or haptic alert generated by an application

or service that relays information to a user outside her current focus of attention”.

Phone users do not engage with all of the notifications received, and the content and

sender play a vital role in receptivity [7, 8]. Dismissal of notifications is usually for

game invites, predictive suggestions, and promotional emails [9]. Nowadays, most of the

applications provide the option to mute notifications generated by them. But people

prefer to uninstall the app when they receive irrelevant and unwanted notifications [10].

[11], in their research study, establishes that social pressure and expectations in per-

sonal communication are the principal ground for interacting with notifications within

minutes. Further, an increased number of alerts from email and social networks cor-

relates with negative emotions and stress, while personal communication and instant

messaging applications create elevated feelings of being connected. Since few collected
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features are non-normal distributed, the study uses non-parametric methods of Fried-

man test, Wilcoxon rank-sum test, and Spearman’s Rho from inferential statistics.

The authors analyzed data collected for seven days, which was insufficient to build any

model for solving the problem.

2.2 Understanding Features for Prediction

In [12], researchers set up an SMS server and RSS feed to generate pseudo content and

capture response. Properties of the notifications’ content seem to be more stable for

predicting a suitable delivery time for alerts. Recent advancements in natural language

processing can further enhance the feature extraction from the content. In the future,

if mobile devices have more resources to run sophisticated machine learning models,

then the content can add a lot of value in notification management. But reading and

analyzing the content of notification over a cloud server is not ideal concerning security

and privacy.

Hyungik in [13] presents a framework to notify about missed or rejected calls on

time at a recognizable moment. The study utilizes current user activity to build an

incremental Näıve Bayes model. There is additional rule-based filtering that enhances

the model. Depending on the intensity of time suitability on the scale of 0 to 4, the

framework creates a notification to alert. The study shows that users’ physical activity

can be a vital factor in identifying opportune moments. Authors have considered a

limited number of features for the research, but the framework can accommodate new

features.

For recording the engagement in recommended contents, [14] asks the volunteers to

answer a questionnaire based on their mood. A pseudo content notification follows the

questionnaire that can be ignored or attempted. Authors discover that communication

is one of the most important features for identifying an opportune moment. Unfortu-

nately, Apple does not provide any API to read call logs in iOS; only Android OS can

use the communication logs to build a model. The authors measure the performance of

the model by considering all the data at once, and no individual comparison is present.

In [15], the researchers establish the relationship between the end of an episode

and an opportune moment where a voice call or reading SMS constitutes an episode.

These naturally occurring breakpoints provide contexts to determine the moment of
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interruption. As ANOVA would require an equal number of repeated measurements,

authors use linear mixed models (LMM) to perform data analysis. LMM helped to

understand the participant’s unique differences, and if it impacts on the result. The

study finds that the time just after finishing a task is the best context as an opportune

moment.

2.3 Model Building Approaches

[16] presents a smartphone library that can work over applications to provide intelli-

gence to notifications by classifying a time as convenient for delivery or not. The study

also involves understanding the sentiment and engagement features for a user. Authors

use WEKA and MOA toolkits to build the interruptibility model. Performing the com-

putations on the local device itself is beneficial for data usage, energy consumption,

and privacy concerns. While these toolkits are good to test a hypothesis, they may

not be beneficial in production and deployments. Libraries like scikit-learn [17] can

provide more model choices and better memory management.

Rule-based learning is incorporated by [9] to create filters on notifications. The

researchers also provide an option for end-users to attach custom filters based on the

words in the notification message, time of receptivity, or generating application. The

model gives extremely high accuracy because of the user’s custom filtering. The pro-

posed solution relies on content analysis of notifications to predict the usefulness, which

can be a privacy concern.

[18] addresses the problem of identifying the right device to deliver a notification

in a multi-device environment. The features for the model are similar to any other

notification management system. The authors use Pearson’s Chi-squared test and

the Gini Index to understand the significance between dependent and independent

variables. Ensemble learning models perform the best to classify the suitable device.

People nowadays often use more than two devices to separate their profession and

personal work. In that case, the model may get more complicated, but the methodology

can be helpful for feature engineering and statistical analysis.

8



2.4 Applications

Businesses spend a massive amount of their budget on digital advertisements. Users

often disable the notifications or uninstall the applications that generate alerts at an

irrelevant time. [19] focuses on identifying ad scheduling, ad targeting, ad delivery and

posting. But end-users are also concerned about the resources consumption by apps

running in the background to generate behavioral targeting notifications [16, 10].

Smart delivery of notifications can find applications in various fields ranging from

a business point of view to personal well-being. [20] assesses the feasibility of a mobile

phone application to record recurrent self-reports for identifying antenatal mood and

depression. The notification to log the users’ record was prompted on random but

in a fixed time interval. Identification of good delivery time can enhance the engage-

ment with applications for mental health screening. [21] thoroughly investigates mobile

phones’ significance and challenges in the Ecological Momentary Assessment (EMA).

Notifications can capture the users’ attention for the EMA engagement, which estab-

lishes a higher longitudinal and ecological validity. Suitable delivery time for these

notifications can enhance the engagement and capture of appropriate sampling data.
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Chapter 3

Methodology

3.1 Data Collection

Around 86% of mobile phones in the world run on Android [22]. The Linux kernel-

based Android OS gives more access to resources and sensor data than iOS, which is

the second-largest OS in use after Android. To conduct the study, we collected the

data by deploying an android application on the volunteers’ phone. The development

and distribution of the app followed the university’s guidelines for security and privacy

measures.

We developed an android application with the target API level 29 (Android 10) and

minimum support API level 21 (Android 5). The purpose of the app was to passively

collect different features when a user interacts with a notification, and save it to the

cloud server.

After the development, we advertised on social media, asking people to volunteer

for the study by installing the application. The app was available to download from the

android play store and GitHub repository. Volunteers installed the app after accepting

the consent form conditions.

We collected the dataset for the study between March 31st, 2020, and April 30th,

2020. The data collection framework setup followed the ethical guidelines and got the

approval from the Research Ethics Committee (REC) of the university.
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3.1.1 Ethics Guidelines

We asked android phone users of age greater than 18 years to help us collect data points

from their phone usage. The app asked to accept the terms on the consent form before

the installation. Volunteers were free to withdraw at any point of time by emailing us,

and we securely removed their data as per the request. The location of the server stack

for our study was in Europe to follow data sovereignty. The study provided debriefing

arrangements for the volunteers on our application installed on their phone or via an

email request.

The data anonymization followed the General Data Protection Regulation (GDPR)

guidelines. Hashed ids replaced all the user email ids that we collected to identify each

user uniquely and provide authentication. We did not receive any other Personally

Identifiable Information (PII) from the volunteers.

Figure 3.1: Location Permission Toggle Screen

The location and current user activity data was optional for the volunteer to share.

One could toggle the location permissions at any time from the app, as shown in

figure 3.1. The current activity collection was available in one of the two versions

of the application, and the user could install either. Our study did not involve any

analysis on the location coordinates and was collected only to build features based on

the relative distance between two points.

11



3.1.2 Application System Design

The app always runs in the background after installation and restart itself if killed

during clearing system resources or reboot. When a notification is received or removed

on the mobile phone, it collects the snapshot of various sensors and status data at that

moment. The local memory of the phone [23] maintains the collected data until the

app connects to the Google cloud platform to save the data on the cloud.

A time-based job scheduler (the cron job) ran every day on our cloud server for

around four weeks until users had the application installed. The figure 3.2 shows the

data flow diagram for the data capture process. This scheduled command anonymized

the data by replacing the email id with custom user id and downloaded it to our local

server.

Figure 3.2: Data Collection Flow Chart
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Once the data collection was complete, volunteers received a broadcast message

notification asking to uninstall the application. Following it, we closed the cloud server

access from any client device and removed the app from the Google play store. We

used Firebase as the backend-as-a-service for authentication, cloud server connection,

and analytics. The user gets an option on the app interface to download data saved

from their device besides getting every instance displayed on the app screen, as shown

in the figure 3.3.

Figure 3.3: User Interface of the Data Collection Application

13



Our app collects the following data on posting or removal of a notification:

Field Data Type Description Access API

Timestamp Long The UNIX epoch times-

tamp

Notification Broad-

cast Receiver

Post or Removal String If the current notification is

posted or removed

Notification Broad-

cast Receiver

Notification Key String A unique key generated by

Android OS for each noti-

fication, this field also con-

tains the name of package

receiving the notification

Notification Broad-

cast Receiver

Notification ID Integer ID assigned to notification

by OS

Notification Broad-

cast Receiver

Detected Activ-

ity

String Current activity of the user.

This can be one of the fol-

lowing value:

1. Still

2. On Foot

3. On Bicycle

4. In-Vehicle

5. Running

6. Tilting

7. Walking

8. Unknown

Google Activity

Recognition [24]
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Maximum Con-

fidence

Integer A value between 0 to 100.

Represents the confidence

of current detected activity

prediction

Google Activity

Recognition

Ringer Mode Boolean If the phone can create

sound alerts

Media Audio Manager

Battery Percent-

age

Integer A value between 0 to 100.

The current battery level

OS Battery Manager

Network Con-

nectivity

Boolean If the phone is connected to

the internet

Connectivity Manager

WiFi Connectiv-

ity

Boolean If the phone is accessing a

WiFi

Connectivity Manager

Mobile Data

Connectivity

Boolean If mobile data is active Telephony Manager

Screen Locked Boolean If the phone is locked and

the screen light is off

OS Keyguard Man-

ager

Latitude Double Geolocation latitude of the

user

Android GSM Loca-

tion

Longitude Double Geolocation longitude of

the user

Android GSM Loca-

tion

Table 3.1: Fields of Collected Data

3.2 Classification Algorithms

3.2.1 Logistic Regression

This supervised learning classification algorithm runs on the logistic function. A type of

sigmoid function, the logistic function is the S-shaped curve (figure 3.4) of the following

equation.

f(x) =
l

1 + e−k(x− x0)
(3.1)
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where,

x0 = the middle value of the function

l = the maximum value of curve

k = the logistic growth rate

Figure 3.4: Sigmoid Function

The binary logistic regression has the following assumptions:

1. The dependent variables for each observation are always one of the two classes

of the output variable.

2. There are no outliers and possibly no misclassification in the training data.

3. There is very little or no multicollinearity among the independent variables. [25]

proposes that a correlation coefficient of less than 0.9 meets the condition.

4. The minimal sample size for training should be ten times the number of indepen-

dent variables.
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The algorithm may give vague results or even fail to converge when the above con-

ditions break.

Classification algorithms try to create a decision boundary between two classes to sep-

arate each other. For logistic regression, this boundary is calculated using conditional

probability. The method calculates the likelihood for each instance belonging to either

class of the target variables. The value obtained can lie in the range from negative

infinity to positive infinity. Hence, we need the sigmoid function to normalize on the

lower scale of zero and one as probabilities.

Loss function (also known as the cost function) is the measure for the performance

of a predictive model by quantifying the difference between predicted and expected

value. One of the standard loss functions is Mean Squared Error (MSE), but the

sigmoid function leads to a non-convex curve when applied for logistic regression that

makes the identification of the global minimum difficult.

Hence logistic regression uses logistic loss as the loss function. It can extend for

multi-class classification by one-vs-rest (OvR) technique or changing the loss function

to cross-entropy loss.

3.2.2 Random Forest Classifier

The ensemble methods blend multiple models to form a possibly better model by

involving a tradeoff between extra computation and poor learning by individual models.

Random forests are one such method consisting of many different decision trees. The

ground truth for the performance is that trees protect each other from their individual

errors, and hence the uncorrelated models add positively to the combined model.

Random forest uses the bagging technique with feature randomness while building

each tree. Bagging (Bootstrap aggregating) helps reduce the variance and hence lower

the chances of overfitting [26]. Voting from each model combines to get the final result

where each model has equal weight, as shown in the figure 3.5.

Each tree follows the following rules for construction:

• Given N as the number of instances in the training set, each tree’s training set

holds the random N samples with replacement.

• For a value k, constant for the whole forest and I as the number of input variables,
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k variables are selected randomly from I to find the best split. The constant k

is adjusted such that k << I.

• The tree does not prune and is grown to the broadest possible size.

Forest can minimize the error by following two procedures:

1. Decreasing the correlation between each tree.

2. Decreasing the error rate of each tree. The lower the error rate for a tree, the

stronger it is as a classifier.
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F4 F2
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F6 F8
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Decision Tree 1
Output: Class A

Decision Tree 2
Output: Class B

Decision Tree 3
Output: Class A

Majority Voting

Final Output

Figure 3.5: Generation of Random Forest

18



3.2.3 Support Vector Classifier

Support Vector Classifier (SVC) finds the hyperplane (decision surface) that can sep-

arate different classes of dependent variables. In general, for a given set of instances,

there can be an infinite number of such planes. The SVC finds the optimal one to

maximize the margin between the closest samples (forming support vectors) from two

different classes.

Figure 3.6: Feature Transformation in Support Vector Classifier

A line can separate the classes when we have two dimensions, but we need hyper-

planes for higher dimensions. Here the number of dimensions is equal to the number

of independent features. The algorithm transforms the data to a higher dimension

if there is no linearly separating plane, as shown in figure 3.6. The optimization of

maximizing the width between support vectors on a hyperplane is the core objective of

SVC. The objective function reduces to a quadratic optimization problem constrained

with inequalities with a single global minimum that can be solved using the Lagrange

multiplier method.

The algorithm uses a technique known as the kernel trick to increase the dimension

space and enhance the performance of the model. Common kernels are:
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• Linear Kernel

K(f , f ′) =
∑

(f ∗ f ′) (3.2)

• Polynomial Kernel

K(f , f ′) =
(
f>f ′ + c

)d
(3.3)

• Radial Basis Function Kernel

K (f , f ′) = exp

(
−‖f − f ′‖2

2c2

)
(3.4)

In the above equations, f and f’ are vectors of features, c is a free parameter, and

d is the degree of polynomials. Figure 3.7 shows the working of a Gaussian kernel.

Figure 3.7: Transformation Using Kernel Function
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Figure 3.8: Effect of Increasing Degree of the Polynomial Kernel

The variables of the kernel are available as hyperparameters that can be tuned

to achieve better performance. Most of the SVC parameters do the trade-off between

margin maximization between support vectors and error in the classification. Similarly,

kernel parameters like the degree of the polynomial affect the decision boundary. A

large value for the degree maps to the complicated relationship between features and

helps separate using high dimensional hyperplanes. Figure 3.8 shows one such effect.

3.3 Regression Models

3.3.1 Linear Regression

One of the most extensive approaches to model the correlation between dependent

variables and the independent variable is linear regression. A regression line fits the

change in predictors in an attempt to identify a linear relationship. Following are the

major assumptions for the model:

1. Existence of a linear relationship between dependent and independent variables.

2. Normal distribution of the data.

3. Very little or no multicollinearity between independent features.
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4. No auto-correlation between independent features.

5. Equal variance across the residuals on either side of the regression line.

The model has the following hypothesis function:

hθ(x) = θ0 + θ1x (3.5)

where,

θ0 and θ1 are parameters for the regression line.

The cost function which we minimize over the parameters is:

J (θ0, θ1) =
1

2m

m∑
i=1

(
hθ
(
x(i)
)
− y(i)

)2
(3.6)

The bias and the variance are two fundamental properties of estimators for any

model. The assumptions made by the model to improve the learning time constitute

the bias while the amount by which the target function change when the training data

change is variance. A low value of variance and bias is desirable to accept a regression

line. Figure 3.9 shows the three cases of fitting approaches around the original data.

Figure 3.9: Fitting of Regression Lines
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For the minimization, linear regression generally uses a gradient descent algorithm

that runs till we obtain an acceptable convergence. This iterative approach to find a

local minima moves steps that are proportionate to the negative of the slope of the

function at the current point. The learning rate determines the step size. Figure 3.10

shows the convergence using gradient descent.

Figure 3.10: Gradient Descent Convergence

3.3.2 Lasso Regression

Linear regression fails to give good results when the features show a substantial cor-

relation between each other. LASSO stands for Least Absolute Selection Shrinkage

Operator, and the method minimizes the effect of few predictors by turning their cor-

responding coefficients smaller or even zero [27]. Making the coefficients exactly zero

is one technique of feature selection, and lasso provides it out of the box. The cost

function to minimize changes as follows:

J (θ0, θ1) =
1

2m

m∑
i=1

(
hθ
(
x(i)
)
− y(i)

)2
+ λ

p∑
j=1

|βj| (3.7)
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where,

λ is the tuning parameter and β is the constraint for each coefficients.

Figure 3.11: Variance Bias Trade-off Visualization

The tuning parameter controls the strength of the penalty on coefficients. With the

increase in the tuning parameter, the model’s bias increases, whereas a decrease leads

to an increase in the variance. It is not possible to ignore the relationship between

bias and variance as decreasing one will increase the other. 3.11 shows the association

between them. Hence, a suitable value of the tuning parameter helps to improve the

model with a trade-off.

The algorithm works well when we have a small number of significant features. In

figure 3.12, we evaluate the regression for our data set by iterating the model training

for various lambda values. We can also identify the best tuning parameter by analyzing

the regression coefficients and performing cross-validation. The figure 3.13 shows the

elbow effect for choosing a good lambda with cross-validation.
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Figure 3.12: Lasso Regression Evaluation With Varying Lambda
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Figure 3.13: Five Fold Cross Validation With Varying Lambda

3.3.3 Ridge Regression

This method is similar to lasso as both try to improve the model by reducing the

coefficients’ variance. In the case of correlated independent features, lasso regression
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may select any of those features at random and remove others. But unlike lasso, ridge

regression does not mitigate any coefficient to precisely zero. It provides a mechanism

to deal with overfitting where all the features are present, and the model has reduced

complexity. The tuning parameter for the technique penalizes the sum of squared

coefficients, and hence it belongs to the L2 class of regularization [28]. The cost function

to minimize is:

J (θ0, θ1) =
1

2m

m∑
i=1

(
hθ
(
x(i)
)
− y(i)

)2
+ λ

p∑
j=1

β2
j (3.8)

Here symbols have the same meaning as defined for linear and lasso regression.Ridge

regression estimates a similar value for coefficients of correlating features and achieves

suitable results even when a large number of such elements are present in the dataset.

The technique works well with ill-conditioned data containing noise and outliers.

Data in a standardized format is one of the requirements for the ridge regression.

The difference between the feature value and mean is divided by the standard deviation

to get the standardized form. The various implementations of the algorithm support

the function internally, and the calculations take place on a standardized scale.

3.4 XGBoost

XGBoost is a scalable, portable, and distributed gradient boosting framework designed

for speed and performance. The objective function for the algorithm is a function of

functions and cannot be optimized in Euclidean space using conventional optimization

techniques [29]. It is hard to explore various base functions and calculate the value of

loss function for them because of computation limitations.

The algorithm uses the Taylor series approximation to transform the objective

function and get it in the Euclidean domain. The definition of the series at x = 0 is:

f(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · · =

∞∑
k=0

f (k)(0)

k!
xk (3.9)

This method also reduces the computation of calculating the exact loss for various

base functions. The algorithm considers the expansion of the series until the second-
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order derivative, assuming that the higher derivatives will not add any significant value.

Hence objective function reduces to quadratic function in one variable, and traditional

convex optimization techniques can solve it.

To solve the issue of a large number of base functions, XGBoost selects the heuris-

tic strategy and builds a tree with the greedy approach by choosing the split giving

maximum loss reduction. The algorithm decides from a bunch of split strategies based

on a rule-based selection. Several features of XGBoost are listed in the figure 3.14.

XGBoost

Tree Pruning
and

Sparsity Aware
Split

Finding

Distributed
Processing

 with 
Paralleziation
and Caching

Hyper
Parameters

Tuning

Built-in
Cross

Validation

Feature
Importance

Analysis

Extensible to
Classification

and
Regression

Figure 3.14: Features of XGBoost

Grading boosting algorithms are capable of providing feature importance without

additional computation. It is possible because the algorithms construct boosted trees
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based on relative importance scores. Every feature receives the score on each decision

tree that helps in comparison. Further, the final importances are the average across

all the decision trees constructed by the algorithm. The figure 3.15 shows the feature

importance for one of our models from the study.
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Figure 3.15: Top Five Features Using XGBoost

Building a classifier using XGBoost is simple, but tuning it for the performance is

a little complex as it provides many hyperparameters to tune. The algorithm offers

the following three types of parameters [30]:

• General Parameters: Help to select the booster models and overall functioning.

• Booster Parameters: Help to tune the booster we choose in general parameters.

• Learning Task Parameters: Help to optimize performance by setting learning

scenarios.
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Figure 3.16: Effect of Number of Estimators

We plot the decision boundaries and tweak with three of the most important param-

eters to understand their effects. Figure 3.16 shows the algorithm’s behavior on three

different datasets when the n estimator increases. This parameter sets the number of

sequential trees we construct to correct the prior trees.
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Figure 3.17: Effect of Maximum Depth

We can also set the maximum depth of trees the algorithm constructs to achieve

the output. A very large value may lead to overfitting and requires a set number of leaf

nodes or minimum child weight to attenuate. Figure 3.17 shows the change in decision

boundaries when we increase the depth from one to ten folds.
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Figure 3.18: Effect of Learning Rates

The learning rate controls the step size for the gradient boosting and helps prevent

overfitting. Like other parameters, the value for this also depends on the complexity

and size of the dataset. A small amount may take a longer time to train, while a larger

may overfit the model. Figure 3.18 shows the classification of two classes on varying

the learning rate from 0.001 to 0.5.

It is clear that continuously increasing the value of any parameter does not guaran-

tee an enhanced model but follows the law of diminishing returns. After a certain point,

the increment lowers the performance, and suitable conjunction between parameters

can give the desired result.
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3.5 Evaluation Metrics

While using machine learning algorithms, it is vital to measure the quality of the

models. The choice of metric depends on the type of the model, implementation, and

hypothesis in the test. A model performing better predictions yield a better metric

score and can help tune in the right direction. As our study has classifications as well

as regression models, we discuss evaluation metrics for both in the section below.

3.5.1 Classification

Figure 3.19: Confusion Matrix Components

Confusion Matrix

A Confusion matrix is a square matrix of size N, where N is the number of classes

in the dependent variable. It helps us to identify the expected and predicted values

count for each category very conveniently. Each cell in the matrix is one of the follow-

ing value:
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True positive (TP): Count increases for the cell when the expected and predicted both

holds true.

True negative (TN): Count increases for the cell when the expected and predicted both

holds false.

False positive (FP): Count increases for the cell when the expected was false but the

predicted value holds true.

False negative (FN): Count increases for the cell when the expected was true but the

predicted value holds false.

Figure 3.19 shows the confusion matrix for binary class with the distribution of cells

as above.

Precision or Positive Prediction Value (PPV)

It measures the ratio of positive class instances that our model correctly predicts and

the total number of predictions. It is useful to use when we have high costs for false

positives and low for false negatives. The mathematical formula for the precision is in

the equation 4.10.

Precision =
True Positives (TP))

True Positives (TP)) + False Positives (FP))
(3.10)

Recall or Sensitivity

The recall is the proportion of actual positive cases which our model correctly pre-

dicts. It is useful to use when we have high costs for false negatives, and we want to

identify as many positives as possible correctly. Recall alone can not give good metrics

of evaluation for a model as it will be the maximum value of 1 if we predict 1 for all

instances. The recall fraction is:

Recall =
True Positives (TP))

True Positives (TP)) + False Negatives (FN))
(3.11)

F1 Score

To establish a trade-off and get the fittest of recall and precision, we use their har-
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monic mean, known as F1-score. We consider the harmonic mean over arithmetic

mean as the former penalizes the extreme values more. The equation for F1-score is as

follows:

F1 =

(
Recall −1 + Precision −1

2

)−1
= 2 · Precision · Recall

Precision + Recall
(3.12)

Area Under the Receiver Operating Characteristic Curve (AUC-ROC)

The plot between sensitivity and (1 - specificity) is known as the Receiver Operat-

ing Characteristic Curve (ROC). Specificity is the ratio of actual negative cases that

our model correctly identifies. Area Under the Curve (AUC) is the quantity that brings

the ROC to a comparable single number. The value for AUC lies between 0.5 and 1,

where 0.5 signifying the failure of the model, while 1 may represent an overfitting

model.

3.5.2 Regression

Root Mean Squared Error (RMSE)

RMSE is the most extensively used evaluation metric for regression models. It highly

penalizes the significant deviation from the original value and hence can quantify the

large errors. A value closer to 0 is considered an excellent RMSE value. The equation

below gives the formula to calculate the RMSE for N number of instances.

RMSE =

√∑N
i=1 (Predictedi − Actuali)

2

N
(3.13)

R Squared

Also known as the coefficient of determination, R2̂ helps us compare our model with a

random baseline model. It gives the measure of the variability of a dependent variable

from its relationship with the independent variable. The value is in the range of 0 and

1 with the worst fit and best fit, respectively. Mathematically it is represented as the
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following:

R2 = 1− MSE( Model )

MSE( Baseline )
(3.14)

In the above equation, MSE(Baseline) gives the Mean Squared Error when all the

predictions are the dependent variables’ mean value against the actual values.
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Chapter 4

Data Preparation and Analysis

4.1 Statistics of Collected Data

Twenty-five people signed up to volunteer for the study and downloaded the notification

logger application to their mobile phone. Out of them, 13 people kept the app for 30

days on their phones for whom we present the statistical description.

Figure 4.1: Operating System on Volunteers’ Phones

The volunteers were from the regions of Europe, North America, and Asia. The
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mean age was 28.84, with the minimum age being 21 and a maximum of 56 (standard

deviation 10.9). There were nine males and four females and Android Version 9 as the

most popular OS on their device. Full OS distribution is in the figure 4.1.

We collected 2,750,387 notification alerts instances. The mean of the alerts over 13

people was 211,568, with a standard deviation of 299,655. The figure 4.2 shows the

users receiving the maximum number of notifications during the data collection period.

Figure 4.2: Top Five Users With Maximum Notification Alerts

4.2 Data Preparation

4.2.1 Notification Pairing Algorithm

In the preliminary data cleaning, we find that the Android OS generates a notification

ID that is not consistent and is recycled to use again. We drop this column from the

data. The notification key field looks like the following:

0—org.telegram.messenger—-1422345610—null—10186

We split the above key string and obtained the application package. Later in the
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study, this extraction helped classify the types of different applications and behaviors

of the user towards them. We accept a notification for further study if it classifies for

one of the following categories:

• Instant Messaging

• Social Media

• Games

• Mail

• Ecommerce

• Media Stream

Forty apps qualify for the study. The list of application packages in each category

is available in the appendix.

There are no duplicate observations in the data. A few users did not allow us to

capture user activity, and we replaced these null values with the letter ‘Q’. The collec-

tion of geolocation coordinates was also optional as per the consent form for the study.

Nine people opt to allow the geolocations access; we did not see any significant change

in their location because of the Covid-19 lockdowns across the globe. It is interesting

to note that we have two values for a notification: during arrival and removal. This

removal can either be because of one of the following:

1. the user taps on the notification icon and interacts with the next event.

2. the user swipes off and removes the notification without interaction.

After checking for data integrity, we developed an algorithm to identify a set of

observations and term it as a notification pair.

1 Input: initialObservations <- itemset containing observations of either

2 postal or removal type

3 Output: finalList <- itemset containing notifications paired with matching

4 postal and removal

5

38



6 begin:

7 tracker <- map with the key as application package id and value

8 as item of type initialObservation

9

10 validPackageMap <- map with the key as one of the selected app type

11 and value as package id

12 postedObservation <- object of type initialObservation

13 removedObservation <- object of type initialObservation

14

15 foreach item i <- initialObservations do:

16 if package id of i not in validPackageMap:

17 continue

18 if type of i is "Posted":

19 if package id of i in tracker:

20 continue

21 else:

22 put i in tracker

23 else:

24 if package id of i in tracker:

25 postedObservation <- item from tracker with

26 key as package id of i

27 remove package id of i from tracker

28

29 removedObservation <- i

30 finalObservation <- object generated merging

31 postedObservation and

32 removedObservation

33

34 if time difference between postedObservation

35 and removedObservation >= 1 second:

36 put finalObservation in finalList

37

38 return finalList

39

40 end

We do not consider the notifications which are available for less than 1 second in

the notification tray. These notifications are usually from services running in the back-

ground on the phone and go away without the user interaction. Some of those services

are email syncing, application updates, and checking for updates.
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The algorithm extracts the pair with the assumption that users are not deliberately

engaging with selected apps alerts and ignoring other notifications in the tray. Also,

we do not account for the cause of the removal of notifications, and it can be either

from the two cases described above. The algorithm concatenates the elements from

both the alerts forming the pair. The notification pair item gets the time difference

between notification posting and withdrawal as a new feature.

4.2.2 Timestamp Treatment

The time for the notification delivery and removal is in the local timezone of the users.

We use the time interval to determine whether the day was a weekday or weekend,

where Saturdays and Sundays constitute the weekend. The timestamp also helped us

identify the hour of the day and add another feature that was further encoded as a

numerical feature. These two features derived from the timestamp gave insights about

the usage pattern for users in various demographics.

4.2.3 Outliers Treatment

The distribution of the time difference shows the presence of outliers. These outliers are

treatment using the 1.5 Inter Quartile Range (IQR) rule, where we remove instances

above 1.5IQR of the third quartile and 1.5IQR below the first quartile. Figure 4.3

shows the distribution of time difference after the treatment.
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Figure 4.3: Time Difference Distribution After IQR Treatment

4.3 Analysis of Prepared Data

The tight conditions around practical assumptions in the algorithm help to lower the

noise and functional limitations. We get real-time notifications instances from the apps

into consideration that can help understand the behavior and use patterns. There are a

total of 31,059 notifications from the 13 volunteers with properties merged from postal

and removal moments. Top 3 users constitute more than 50% of the instances. We

plot a few graphs to understand the distribution better.
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Figure 4.4: Average Response Time for Application Categories

From figure 4.4, it is clear that users respond to instant messaging notifications in

the shortest time. Social media applications are the next to capture the attention of

the users. People take the maximum time to interact with notifications generated from

games as they are mostly promotional and reminders about the update. As shown

in figure 4.5, the number of notifications generated from different app types is in the

same order except for the stream and mail services. Instant messaging creates the

maximum number of notifications while the games are the least. Interestingly, the app

type distribution for various users varies; for instance, social media usage for user 1 is

significantly more than instant messaging.
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Figure 4.5: Number of Records in Various Application Categories

While analyzing the users’ activity when the notifications arrive at their phones,

we find a minimal movement. In figure 4.6, we plot the user activity for the users

who allowed us to capture their actions. The row with the title ”Unknown” resembles

when our app was unable to identify the user activity with significant confidence. The

impact of staying at home because of the pandemic is distinctly visible. More than

95% of the instances suggest that users were still during the time. Only users 10, 7,

and 12 had a little movement on foot, but no one was involved in any other activity.
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Figure 4.6: Users Current Activity Distribution

While analyzing the users’ activity when the notifications arrive at their phones,

we find a minimal movement. In figure 4.6, we plot the user activity for the users

who allowed us to capture their actions. The row with the title ”Unknown” resembles

when our app was unable to identify the user activity with significant confidence. The

impact of staying at home because of the pandemic is distinctly visible. More than

95% of the instances suggest that users were still during the time. Only users 10, 7,

and 12 had a little movement on foot, but no one was involved in any other activity.
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Figure 4.7: Response Time Distribution for Weekdays and Weekends

The response time for various application categories divided for weekend and week-

day is in the figure 4.7. Instant messages and social media get quick response irrespec-

tive of the day is a weekend or weekday, while users take a longer time to respond to

emails on weekends. This suggests that the application type and the weekday can be

a crucial feature for the study.
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Figure 4.8: Correlation Matrix of Features

The correlation matrix in figure 4.8 gives an interesting relationship between WiFi

connection on the user’s device and the confidence in predicting the user’s activity.

The reason for this lies in the implementation of activity recognition API in which the

phone uses the WiFi network to enhance the prediction result.
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Chapter 5

Model Implementation

The previous chapter described the process of preparing data for our further study. In

this chapter, we discuss the three types of models to answer our research question.The

dataset holds four categorical features: application type, the hour of the day slot,

weekday, and gender. We converted these variables to numerical features using the

one-hot encoding technique before building any of the models.

5.1 Binary Class Classification Model

We built a binary class classification model for identifying if a notification delivered

at a point of time falls in an opportune moment. The data labeling for a moment

to be opportune or not is based on the time difference between posting and removal

of a notification. The four algorithms implemented are Logistic Regression, Random

Forest Classifier, Support Vector Classifier (SVC), and XGBoost Classifier. We per-

formed ten-fold cross-validation (out-of-sample testing) with Grid Search to achieve

the most suitable parameters for each classifier. The kernel type for SVC we chose

was Radial Basis Function (RBF), with 0.025 as the regularization parameter for the

squared L2 penalty. The probability parameter was set to true to enable probability

estimates. Binary logistic was set as the XGBoost Classifier’s objective function, and

other parameters as the parameter tuning algorithm suggested.
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Figure 5.1: Learning Curves for the Binary Class Classification

Figure 5.1 shows the learning curve for the algorithms. A high misclassification

error in the test set depicts a bias problem. The direction of bias is obtained from

training error. A high training error represents high bias, while a low training error

represents little bias. The gap between the two error curves determines the variance,

with a broader gap being more variance. Logistic Regression and SVC suffer from

underfitting, while Random Forest and XGBoost show a better fit.
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5.2 Multi-Class Classification Model

There are four classes in the dependent variable, as described in the previous chap-

ter. We use the same classifiers as we did for the binary class classification but with

different parameters to suit the multi-class nature. The Logistic Regression uses the

Limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm as the solver

to optimize the model. Information gain is the criterion function for Random Forest

Classifier to measure the quality of a split. The SVC model built with RBF kernel

calculates the influence (gamma) and regularization (c) parameter using Grid Search

parameter tuning.

Core XGBoost library provides an inbuilt data structure known as Data Matrix

(DMatrix) for optimized performance and efficiency. Data frames containing training

and testing datasets are converted to DMatrix before building the model. The model

uses ”softprob” as the objective function, which gives the probability of each class

we are predicting. The parameter search provides the best value for the number of

estimators, maximum depth, and step size shrinkage. Figure 5.2 shows the feature

importance distribution using XGBoost after hyper parameters tuning.

0.00 0.02 0.04 0.06 0.08 0.10
Importance

screenLockedPosted
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Figure 5.2: Feature Importance for the Multi-Class Classification
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Figure 5.3: Learning Curves for the Multi-Class Classification

Figure 5.3 shows the learning curves for the multi-class classification. Logistic

Regression and Support Vector Classifiers fail to converge while ensemble models of

Random Forest and XGBoost performs a little better. Though the performance of

either model is not very good, adding certain features can enhance the performance.

The SVC training time stands out while using a non-linear kernel as the time depends

exponentially on the number of features.
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5.3 Regression Model

The time difference between postal and removal of the notifications as a feature does

not follow a normal distribution and is highly skewed. We apply log transformation to

the feature before constructing any regression models. After converting the categori-

cal features to numeric values, we divide the dataset into 75:25 for the training and

validation set.

Figure 5.4: Ordinary Least Squares Regression Residual Errors

Ordinary Least Squares regression (OLS) gives the distribution of the residual er-

rors, as shown in figure 5.4. L1 and L2 penalties are introduced in two different models

for the enhancement. Grid Search CV is used to find the best parameters for the

models. The pipeline is set for linear as well as polynomial fit to obtain the best hyper-

parameters. The models perform very ordinarily and cannot be considered satisfactory.

This is mainly due to limited independent variables. Further, XGBoost regressor also

provides similar evaluation results to predict the next opportune moments in minutes.
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Chapter 6

Results

The removal of the outliers enhanced the classification and regression models—the

number of notifications pairs instances to build the models after the cleaning counts

22,257. We use Dummy Classifier and Regressor from Sklearn as our baseline model

that gives predictions based on simple rules.

6.1 Current Moment as Opportune

The identification of the current moment as suitable for notification delivery or not is

a binary class classification problem. Logistic Regression and XGBoost Classifiers give

similar results for the binary classification. Figure 6.1 shows the confusion matrix for

each classifier.

The AUC for classifiers shows a very slight variation and stands at 0.75 as the best

obtained by XGBoost as shown in figure 6.2 and 6.3. The table 6.1 gives the metrics

comparison for the four classifiers. The baseline classifier uses the stratified strategy

and generates the prediction based on the training set’s class distribution. All the

models perform better than the baseline as seen from the table 6.1.
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Figure 6.1: Confusion Matrices for Binary Classification

Model Precision Recall F1-Score
Baseline Classifier 0.644 0.647 0.646
Logistic Regression 0.720 0.935 0.814
Random Forest Classifier 0.740 0.897 0.811
Support Vector Classifier 0.721 0.940 0.816
XGBoost Classifier 0.742 0.919 0.818

Table 6.1: Evaluation Metrics for Binary Classification
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Figure 6.2: ROC Curve for Logistic Regression and Random Forest Classifier

Figure 6.3: ROC Curve for Support Vector Classifier and XGBoost Classifier
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6.2 Next Opportune Moment Slot

Multi-class classification to identify the next opportune moment as a slot with various

time differences also performed better than the baseline classifier except for the Sup-

port Vector Classifier. Figure 6.4 and 6.5 show the confusion matrices distribution for

the classifiers. The ensemble models perform slightly better. The classifiers’ evaluation

metrics are compared based on three average strategies in the table from 6.2 to 6.6.

Average micro computes using total true positives, false negatives, and false positives

irrespective of the prediction’s label. Average macro evaluates for each label and does

not account for the label imbalance. In contrast, the weighted average considers the

proportion for each class type and reports the weighted average.

Figure 6.4: Confusion Matrices of Logistic Regression and Random Forest Classifier

for Multi-Class Classification
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Figure 6.5: Confusion Matrices of Support Vector Classifier and XGBoost Classifier

for Multi-Class Classification

Baseline Model

Average Type Precision Recall F1-Score

weighted 0.369 0.374 0.371

micro 0.374 0.374 0.374

macro 0.251 0.251 0.251

Table 6.2: Baseline Classifier Metrics for Multi-Class Classification

Logistic Regression

Average Type Precision Recall F1-Score

weighted 0.498 0.494 0.365

micro 0.494 0.494 0.494

macro 0.374 0.271 0.214

Table 6.3: Logistic Regression Metrics for Multi-Class Classification
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Random Forest Classifier

Average Type Precision Recall F1-Score

weighted 0.472 0.500 0.439

micro 0.500 0.500 0.500

macro 0.346 0.306 0.291

Table 6.4: Random Forest Classifier Metrics for Multi-Class Classification

Support Vector Classifier

Average Type Precision Recall F1-Score

weighted 0.232 0.482 0.313

micro 0.482 0.482 0.482

macro 0.120 0.250 0.163

Table 6.5: Support Vector Classifier Metrics for Multi-Class Classification

XGBoost Classifier

Average Type Precision Recall F1-Score

weighted 0.494 0.509 0.441

micro 0.509 0.509 0.509

macro 0.367 0.309 0.291

Table 6.6: XGBoost Classifier Metrics for Multi-Class Classification

6.3 Exact Opportune Minute Prediction

The regression models built for predicting the next opportune moment do not converge

well for our data. The baseline regressor we have used is from the Sklearn library, with

the predictions strategy being the mean of the training dataset. Removal of the outliers

and log transformation decreased the RMSE value by 4%, but none of the models could

perform significantly well when compared to the baseline model. Figure 6.6 shows

the normalized relative prediction pattern for 25 instances. Table 6.7 compares the

performance of the regressor models.
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Figure 6.6: Actual Versus Predicted Value Comparison for 25 Instances

Model RMSE R2
Baseline Regressor 445.6 0.249
Linear Regression 437.8 0.245
Lasso Regression 445.4 0.247
Ridge Regression 440.2 0.242
XGBoost Classifier 432.8 0.252

Table 6.7: Evaluation Metrics for Regression
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Chapter 7

Conclusion

This study developed a data collection framework for intelligent notification systems as

per the ethical guidelines. The data collection application ran for around four weeks on

thirteen volunteers’ devices to collect data points and recorded 2,750,387 notifications

instances. The data capture and anonymization followed the GDPR norms. The study

also presents an algorithm that reduces noise and overcomes practical limitations to

generate notifications pairs for building machine learning models.

Further, machine learning models were implemented to predict the opportune mo-

ments for a notification alert delivery on a mobile device. The binary classification gave

good results in predicting whether a moment is opportune or not by performing 26%

better than the baseline classifier. Prediction of the next opportune moment in multi-

class classification gave slightly better (4.5%) performance than the baseline multi-class

classifier. The exact time prediction in minutes for the next opportune moment could

not be obtained satisfactorily. The reason for the model’s average performance is the

limited feature range we were able to include in the study. Geo locations and cur-

rent user activity became irrelevant for the study because of the pandemic and global

lockdown.
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Chapter 8

Future Work

The models implemented may perform exceptionally well if geolocations and current

user activity are available. The developed data collection framework, as well as the

models, can be tested post-pandemic caused by COVID-19 to understand these fea-

tures’ importance without any modification.

The notifications can either be human-generated or system generated. For instance,

considering a social media application, users can get a notification alert when their

friend send a message, or even when a post is trending in their circle. A friend’s

notification is the case of a human-generated alert, while the latter is the case of

system generated notification from the same application. The identification between

users and system-generated notifications and their impact on the model’s performance

can be explored. The cause of removal of the notification (swipe off or opening the

app) can serve as a characteristic to compute additional complex variables like the

engagement rate. However, this would require a lot more volunteers to gather more

numerous data points.

Mobile phones have limited resources, and the operation of models for intelligent

notification systems can be challenging. Given the security and privacy concerns asso-

ciated with the model’s data points, the deployment over the cloud may not be the best

methodology. Further study can reveal a better mechanism toward the implementation

for practical use.
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Appendix

Additional Tables

Package Name Category

in.amazon.mShop.android.shopping Ecommerce

net.one97.paytm Ecommerce

com.flipkart.android Ecommerce

com.myntra.android Ecommerce

com.fungames.sniper3d Games

com.ludo.king Games

com.pieyel.scrabble Games

com.tencent.ig Games

com.quizup.core Games

us.zoom.videomeetings IM

org.telegram.messenger IM

com.facebook.orca IM

com.whatsapp IM

com.android.messaging IM

com.google.android.talk IM

com.google.android.gm Mail

com.google.android.gms Mail

com.instagram.android Social

com.tinder Social

com.facebook.katana Social
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com.twitter.android Social

com.pinterest Social

com.reddit.frontpage Social

com.linkedin.android Social

com.zhiliaoapp.musically Social

com.discord Social

com.jio.media.jiobeats Stream

com.ace.tv Stream

in.startv.hotstar Stream

com.google.android.youtube Stream

com.spotify.music Stream

com.netflix.mediaclient Stream

com.amazon.avod.thirdpartyclient Stream

com.google.android.music Stream

com.amazon.mp3 Stream

tv.accedo.airtel.wynk Stream

com.oppo.music Stream

com.phonepe.app Ecommerce

com.mobstac.thehindu News

tv.accedo.airtel.wynk Stream

Table 1: List of Applications Selected For Study
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