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Effective Solutions of Cosmic Microwave Background

Problem

JiaJin Zhao , Master of Science in Computer Science

University of Dublin, Trinity College, 2020

Supervisor: Simon Wilson

Cosmic Microwave Background (CMB) can reveal information about the early stages of
the universe. The aim of the research paper is to provide efficient CMB source separation
algorithms with high accuracy.

This research paper explores two algorithms for the CMB source separation problem,
the conjugate gradient algorithm and the Sylvester equation algorithm. Experiments
based on Planck data have been carried out to test the performance of these algorithms.
The conjugate gradient has good performance and high accuracy, the Sylvester equation
algorithm has the best performance but lower accuracy.
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Chapter 1

Introduction

1.1 Background

The Study Cosmic Microwave Background (CMB) can reveal information about the early
stages of the universe, and the source separation algorithm is a classic problem in the
study of CMB Observations (1). The CMB is mixture of galactic foregrounds and point
sources (2), and the CMB source separation is a process to reconstruct the CMB signal
by separating it from other sources such as synchrotron, galactic dust and free-free emis-
sion (3). More data is available recently for research due to space missions like COBE,
WMAP, and Planck, which provide data of the sky at many frequency channels. How-
ever, it remains a problem that how to perform CMB source separation effectively under
limited resources because of the large dimension of these data.

1.2 Research Question

In the context of source separation algorithms(3) for CMB, We must solve for x the
following linear system: (3)

(Q + BTCB)x = BTCy with (Q + BTCB) ∈ RnN×nN (1.1)

where n ∈ {4, 5} and represents the number of sources, and N = 12×N2
side where Nside is

the Nside value of fits data. And the value of Nside is 512 and 1024 for WMAP and Planck
data respectively. So, N = O(106) for WMAP, and N = O(107) for Planck.

The matrix Q ∈ RnN×nN is a block diagonal matrix with each block being of the form
qiD

TD = qiD
2 and can be written as the Kronecker product Q = P ⊗ D2 where P =
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diag{p1, p2, ... , pn} and D ∈ RN×N . P is a diagonal matrix and D is a symmetric adjacency
matrix that encodes a nearest neighbor coupling of nodes from the discretization of the
sky, we can define Dij as

Dij =


1 if i 6= j and i , j are neighbors

0 if i 6= j and i , j are not neighbors

−
∑N

ρ=1
ρ 6=j

Djρ if i = j

(1.2)

The matrix B ∈ RmN×nN with m = 9 can be written as the Kronecker product B = A⊗ IN

where A ∈ Rm×n and IN is an N×N identify matrix, the value of m represents the number
of frequency channels. The matrix C ∈ RmN×mN is a diagonal matrix with all positive
entries and can be written as the Kronecker product of two diagonal matrices.

C = diag{τ1, τ2, ... , τm} ⊗ {n1, n2, ... , nN} = T ⊗ N (1.3)

The vector y in constructed from Planck or WAP full sky maps, and the vector x is the
unknown vector.

In this paper, we proposed two different approaches for CMB source separation. The first
approach is an iterative solution based on the conjugate gradient; it has two different
variants and can achieve decent accuracy. The second approach is based on the Sylvester
equation, it is faster but has a lower accuracy than the conjugate gradient solution. Each
will be analyzed in terms of resource usage, performance, and accuracy.

1.3 Dissertation Structure

This dissertation is organized as follows:

• Chapter 1 is the Introduction which gives an introduction to the application prob-
lem. It gives a brief background and then describes the research question.

• Chapter 2 is the State of the Art which briefly introduces the existing approaches
related to the research question.

• Chapter 3 is the Methodology which describes the approaches to solve the research
question. Two different approaches will be discussed.

• Chapter 4 is the Implementation which presents the implementations of these two
different approaches, and the performance and resource usage of these approaches
will be discussed.
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• Chapter 5 is the Results which compares the outcomes of these two approaches.
Planck full sky maps are used to construct the input of these two implementations,
and their results will be compared in terms of accuracy of resource usage.

• Chapter 6 is the Conclusion and Future Work which summarizes the project and
discusses challenges and future works.
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Chapter 2

Literature Review

In this chapter, we present and discuss related work in CMB source separation. In section
2.1, several existing source separation approaches will be presented. In section 2.2, we
explore some useful mathematical background.

2.1 CMB Source Separation

Cosmic Microwave Background, discovered in 1965 by Penzias and Wilson, is a relic ra-
diation emitted some 13 billion years ago, when the universe was about 370 000 years
old (4). Source separation is a process of isolating the emission from all the other com-
ponents present in the data (1). This technique is used in the cosmology community
for the separation of cosmic microwave background. The challenge is how to separate a
high-precision CMB map featuring low noise and low foreground contamination.

Several approaches have been proposed. Guillaume et al. present and discuss the applica-
tion of blind source separation to astrophysical data obtained with the WMAP satellite,
Blind source separation permits to identify and isolate a component compatible with the
Cosmic Microwave Background, and to measure both its spatial power spectrum and its
emission law (5). Wagner-Carena et al. present a hierarchical generalized morphological
component analysis, they carry out their experiments on Nside = 256 simulated sky maps
and find equivalent or improved performance when compared to state-of-the-art internal
linear combination type algorithms (6).

Wilson et al. developed a fully Bayesian source separation technique that assumes a very
flexible model for the sources, namely the Gaussian mixture model with an unknown
number of factors, and utilize Markov chain Monte Carlo techniques for model parameter
estimation (7). The algorithm incorporates a rich variety of prior information available
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in this problem in contrast to most of the previous work which assumes completely blind
separation of the sources, it performs well on simulated Planck data. Then, they also
introduces a functional approximation to implement Bayesian source separation analy-
sis and it is applied to separation of the Cosmic Microwave Background using WMAP
data (3). Bobin et al. introduced a sparsity-based component separation method coined
local-generalized morphological component analysis. Their expirments show the high ef-
ficiency of the proposed component separation methods for estimating a clean CMB map
with a very low foreground contamination (2).

2.2 Mathematical Background

In this section, we discuss some useful mathematical background in this paper.

The equation 1.1 has the form Ax = b. And there are several approaches to solve a linear
system, one of them is conjugate gradient. Conjugate gradient is an iterative method to
solve a linear system. An estimated solution is generated at each iteration, which is an
improvement over the one in the preceding iteration, it gives the solution in n steps if no
round-off error occurs, n is the number of equations in the linear system (8).

However, the matrix A in the equation 1.1 has large dimension, and it should never be
explicitly built in our implementation. Luckily, we can use Kronecker product properties
in equation 1.1 to generate an effective way to for fast linear transforms (9). Besides, we
can also use Kronecker product properties here to transform equation 1.1 to a Sylvester
equation, and there are several approaches to solve a Sylvester equation (10).

5



Chapter 3

Methodology

Because of the large scale of this problem and its sparse, Kronecker structure properties.
Equation 1.1 should not be solved directly by a matrix decomposition method. Instead
we propose treating this problem using iterative methods built on efficient implementa-
tions of matrix-vector products (matvecs) for the matrices from this problem or as the
approximation to the solution of a Sylvester matrix equation. Furthermore, most of the
system matrix should never be explicitly constructed. Rather, it should only be rep-
resented as a stored procedure implementing matrix-vector product. The only matrice
explicitly represented should be A, T, and P.

In this chapter, two different method to solve x will be discussed.

3.1 Efficient matvecs

We describe first how to perform the matrix-vector product for each part of the full system
matrix and then we finish by combining them, yielding a routine for x → (Q + BTCB)x .
This will be necessary for using an appropriate iterative method whose core operation is
this matvec routine.

3.1.1 Matvec routine for v → Dv

Algorithm 1: Matvec procedure v → Dv

input : vector v ∈ RN .
output: Dv

1 for i ← 1 to N do
2 v(j)← v(jleft) + v(jright) + v(jabove) + v(jbelow )− (

∑N
ρ=1
ρ 6=j

Djρ)v(j)

3 end
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Observe that since D is a sparse matrix encoding the nearest-neighbor coupling for each
node, the routine v → Dv involves updating entry j of v (associated to node j of grid)
using its four nearest neighbors and the value at the node itself. Thus a sequential
matrix-free routine can be easily formulated. For Algorithm 1, we note that since the
matrix D does not change, we can pre-compute and store the rowsums

∑N
ρ=1
ρ 6=j

Djρ. Also, it

should be noted that Algorithm 1 is parallelizable, as the grid can be divided up and sent
to different processes or threads, and communication between processors or threads only
needs to occur for neighboring nodes which are on different processors. The computational
cost of a serial version of Algorithm 1 is O(N), since we do 4 floating point operations
per entry of v .

3.1.2 Matvec routine for u → Qu

As already discussed, Q is a block diagonal matrix with blocks qiD
2. Thus, it can be

represented as a Kronecker product, namely

Q =


q1

q2

. . .

qn

⊗ D2 = P ⊗ D2 (3.1)

Thus, for u = w ⊗ v with w ∈ Rn , we can build a simple matvec algorithm on top of
Algorithm 1 to calculate u → Qu, which shown as Algorithm 2. Note that we simply
store w and v . There is no reason to compute the Kronecker product explicitly. The
computational cost of Algorithm 2 is alsoO(N) since the dominant cost is two applications
of Algorithm 1.

Algorithm 2: Matvec procedure u → Qu Kronecker style
input : vector u = w ⊗ v ∈ RnN with w ∈ Rn and v ∈ RN

output: Qu

1 w ← Pw

2 v ← Dv ; v ← Dv

Observe that we made an assumption that we have a Kronecker representation of u =

w ⊗ v , which we may not know nor wish to compute. However, if we do not know this
representation, we can perform this matrix-vector product by reshaping u.

Definition 3.1.1. Let u ∈ RnN . We use the Matlab-style notation reshape(u, N , n) ∈
RN×n to denote the matrix obtained from u by arranging every N entries of u as a column

7



of the resulting matrix; i.e.,

if u =


u1

u2

...
un

 then reshape(u, N , n) =
[

u1 u2 . . . un

]

Let U = reshape(u, N , n) for ease of notation. Then the matvec Qu can also be represented
by reshaping u and computing D2UP . The result can then be vectorized, which is simply
the inverse of the reshaping operation; i.e., u = vectorize(U). We present this matvec
procedure as Algorithm 3.

Algorithm 3: Matvec procedure u → Qu using reshaping
input : vector u ∈ RnN , matrix P ∈ Rn×n and D ∈ RN×N

output: Qu

1 Set U = reshape(u, N , n)

2 U ← D2UP

3 u ← vectorize(U)

If P or D were full matrices, this would not be efficient to carry out, but since P is
diagonal and D is sparse, it is worth considering.Furthermore, we will return this idea
when presenting our second method of solving the linear system in section 3.3.

3.1.3 Matvec routine for x → BTCBx

we can take advantage of the Kronecker structures of B and C. We can write

BTCBx = (AT ⊗ IN)(T ⊗ N)(A⊗ IN)x (3.2)

If x has the known Kronecker structure x = wx ⊗ vx , with wx ∈ Rn and vx ∈ RN , then
we compute equation 3.2 using Algorithm 4

Algorithm 4: Matvec procedure x → BTCBx Kronecker style
input : vector x = wx ⊗ vx ∈ RnN with wx ∈ Rn, vx ∈ RN

output: BTCBx

1 wx ← Awx

2 wx ← Twx ; vx ← Nvx

3 wx ← ATwx

4 x ← wx ⊗ vx

8



If we set X = reshape(x, N, n), then we can use the same trick as before. Then Algorithm
5 can be used to efficiently compute the matvec.

Algorithm 5: Matvec procedure x → BTCBx using reshaping
input : vector x ∈ RnN , matrix A ∈ Rm×n, N ∈ RN×N and T ∈ Rm×m

output: BTCBx

1 Set X = reshape(x , N , n)

2 X ← XAT

3 X ← NXT

4 X ← XA

5 x ← vectorize(X )

3.2 Conjugate Gradient Method

The first strategy we propose entails considering the linear system 1.1 as it is presented
with the coefficient matrix being built from and applied using the Kronecker product for-
mulation. We propose to use a so-called “matrix-free” method which only requires a stored
procedure to perform x → (Q + BTCB)x , meaning we need no explicit representation of
the coefficient matrix. We describe with brevity how such a method works.

Given a general linear system

Gx = b with G ∈ RM×M and b ∈ RM (3.3)

where M � 0 is large and G is sparse, a general strategy of discretization can be used to
exchange the solution of this large problem for the solution of a much smaller, easier-to-
handle linear system. Given a basis of vectors {v1, v2, ... , vj} spanning a subspace V , we

approximate x ≈ xj =
j∑

i=1

zjvj ∈ V , and we determine xj by enforcing that it satisfy

vT
i Gxj = vT

i b for all 1 ≤ i ≤ j

If we let H ∈ Rj×j be the matrix whose (i , k)th is viGvk , zj ∈ Rj be the vector whose
entries are the unknown coefficients zi , and s ∈ Rj be the vector whose entries are vT

i b,
then solving for zj is equivalent to solving the small j × j linear system

Hz = s

Thus, we have exchanged solving a large M×M problem for solving a small j× j problem,
and we must never explicitly store G in memory (we simply need to apply it to every
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basis vector vi ). One of the most common and effective choices for V is the Krylov
subspace, whereby the construction of the basis entails one matvec per iteration which
also means that H is generated automatically during basis construction. We briefly review
standard Krylov subspace methods and introduce some terminology. For a more detailed
description, see, e.g.(11, 12) and the references therein. Consider solving

G (x0 + t) = b (3.4)

where G ∈ Cn×n, x0 ∈ Cn×n is an initial approximation, and t is the unknown correction.
Let r0 = b−Gx0 be the initial residual. In iteration j , a Krylov method selects a correction
tj from the jth Krylov subspace generated by G and r0,

tj ∈ Kj(G , r0) = span{r0, Gr0, G 2r0, ... , G j−1r0} (3.5)

i.e., from the space of polynomials of degree less than j in G acting on r0 . The constraint
space defines the Krylov subspace method up to implementation choices and must also
be compatible with the correction space such that the method being implicitly defined
can be efficiently implemented.

For coefficient matrices G that are symmetric positive definite (such as that in 1.1), the
celebrated, efficient, and stable method of Conjugate Gradients is the Krylov subspace
method of choice. Implicitly, at iteration j , the method has generated the subspace
Kj(G , r0) and computes tj ∈ Kj(G , r0) such that the approximation xj = x0 + tj mini-
mizes

‖b − Gxj‖G = (b − Gxj)
TG (b − Gxj) (3.6)

The actual derivation of the method can be found in, e.g., (11). We present it for the
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case G = (Q + BTCB) and right-hand side b = BTCy as Algorithm 6.

Algorithm 6: Method of Conjugate Gradients
input : vector y , matrix B ,C , and Q defined as above , and x0 as the initial

value of the solution; ε > 0 a convergence tolerance.
output: An approximation solution of vector x .

1 x = x0; r = BTCy − (Q + BTCB)x ; p = r0

2 while ‖r‖ > ε‖r0‖ do
3 rold ← r

4 q ← (Q + BTCB)p

5 α← rT r
pTq

6 x ← x + αp

7 r ← r − αq

8 β ← rT r
rTold rold

9 p ← r + βp

10 end

3.2.1 Advantages of Conjugate Gradients method

• Coefficient matrix of equation 1.1 does not need to be constructed (and there is no
expensive decomposition).

• Convergence speed of Conjugate Gradients is determined by the eigenvalues of the
coefficient matrix.

• If convergence speed is too slow, preconditioning techniques can be used to implicitly
produce a system with better eigenvalue distribution to accelerate convergence.

• Amenable to parallelization by distributing sky domain grid onto different proces-
sors and parallelizing matvec procedures.

3.2.2 Disadvantages of Conjugate Gradients method

• We still must deal with vectors of size nN .

• We cannot take advantage of any structure or compressibility which may be present
in y or rather in reshape(y , N , n).

• Applying an iterative method directly to the tensor-structured problem means the
performance of the method will be hampered by the large condition number of the
full-size problem.

11



3.3 Sylvester Equation Method

Using the reshape(·, ·, ·) operation, we can reinterpret equation 1.1 as a Sylvester matrix
equation, which will allow us to take advantage of additional structure in y that may be
available. Reshaping the solution (M = reshape(x , N , n)) and (Y = reshape(y , N , m)).
With these reshapings, we can rewrite equation 1.1 as the generalize Sylvester equa-
tion

D2MP + NMATTA = NYTA

As N and P are diagonal and invertible, we can easily multiply on the left by N−1 and
on the right by P−1, yielding the Sylvester equation

N−1D2M + MATTAP−1 = YTAP−1 (3.7)

A survey by Simoncini covering a variety of solution techniques was recently published
(13). Since ATYAP−1 ∈ Rn×n, this falls into a category of Sylvester equations with
one large coefficient matrix (N−1D2) and one small one (ATYAP−1). Such problems
are amenable to solution by generating a block Krylov subspace associated to the large
coefficient matrix, i.e., N−1D2. This space at iteration j has the form

Kj(N−1D2, YTAP−1) :=Kj(N−1D2, YTAe1)

+Kj(N−1D2, YTAe2) + ...

+Kj(N−1D2, YTAem)

where ei is the ith Cartesian basis vector. The Sylvester equation is projected onto this
space (through a process of discretization, as before), and a smaller Sylvester problem is
solved at each iteration. The matrix N−1D2 is no longer symmetric positive definite in
the standard inner product, but it is in a different inner product.

Any symmetric positive-definite matrix can be used to define a new inner product. The
standard inner product (x , y) = yTx can be thought of as being induced by the identity
matrix; i.e., yTx = yT Ix . Any other symmetric, positive-definite matrix can take the place
of the identity matrix to create a new inner product. The matrix N is a diagonal matrix
with only positive entries on its diagonal; therefore, it is a positive-definite matrix and
can be used to induce the inner product (x , y)N = yTNx . Formally, symmetry of a matrix
is defined with respect to an inner product. We have that a matrix G satisfies GT = G if
and only if (Gx , y) = (x , Gy). In other words yTGx = xTGy for all x , y ∈ Rn . Similarly,
a matrix G is symmetric with respect to (·, ·)N if for all x , y ∈ Rn (Gx , y)N = (x , Gy)N ;
i.e., yTNGx = yTGTNx .

12



What is important here is that we exploit that

Lemma 3.3.1. The coefficient matrix N−1D2 is symmetric with respect to (·, ·)N .

Proof. This is straightforward to show by direct computation. For all x , y ∈ Rn, we have

(N−1D2x .y)N = yTNN−1D2x = yTD2x = yTD2N−1Nx = (x , N−1D2y)N

Thus the symmetry with respect to (·, ·)N is proven.

Iterative methods designed for symmetric matrices can be converted to methods for ma-
trices symmetric with respect to any inner product simply by using that inner product in
the algorithm. We can implement a Conjugate Gradient-like iteration which uses a fixed
amount of memory, is amenable to parallelization, and can be implemented to have good
data movement characteristics.

3.3.1 The Lanczos process

We mentioned in Section 3.2 that CG is a Krylov subspace method. However, we avoided
describing any of the details about how this subspace is used to derive CG for brevity.
We elaborate here on some components of Krylov subspaces for symmetric coefficient
matrices to derive an iterative method for Sylvester equations whose larger coefficient
matrix (here N−1D2) is symmetric with respect to an inner product.

Let us denote Ŷ = YTAP−1 and Ŝ = ATTAP−1. The symmetric Lanczos process is an
iterative procedure to generate an orthonormal basis for Kj(N−1D2, Ŷ ) block-by-block.
At step 1, we get a basis for K2(N−1D2, Ŷ ). At step 2, we add a new vector to get
K3(N−1D2, Ŷ ), and in general at step i, we add to the previous basis to get a basis
for Ki+1(N−1D2, Ŷ ). What has been shown is that if the matrix is symmetric with
respect to the inner product used for orthogonalization, at step i , the (i + 1)st block
of vectors generated at that step are already orthogonal with respect to all but blocks
i and i − 1, meaning the orthogonalization procedure requires we only store the two
most recently generated blocks. At step i , we have generated the orthonormal basis
{V1, V2, ... , Vi} with Vρ ∈ RN×n , V T

ρ Vk = 0 for ρ 6= k , and V T
ρ Vρ = In, the n× n identity

matrix. To obtain the next basis vector, we compute Wi+1 = (N−1D2)Vi . Normally, we
would then need to orthogonalize these vectors against all previous, but since N−1D2 is
symmetric with respect to (·, ·)N , it has been proven that V T

` NWi+1 = 0for` < i − 1.
The orthogonalization coefficients are stored in the matrix T j ∈ R(j+1)n,jn whose first jn
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rows are the symmetric matrix Tm ∈ Rjn×jn. These have the structure

T j =



H1 B2

B2 H2 B3

B3
. . . . . .
. . . Hj−1 Bj

Bj Hj

Bj+1


and Tj =



H1 B2

B2 H2 B3

B3
. . . . . .
. . . Hj−1 Bj

Bj Hj


,

where each block represents an n×n matrix. The diagonal and super-diagonal blocks rep-
resent coefficients are related to orthogonalization and the subdiagonal blocks represent
blocks related to normalization. The symmetry tells us that the normalization block Bi+1

, generated when normalizing Vi+1 , can be reused as an orthogonalization coefficient at
step i + 1, where it can be shown that

Vi+1Bi+1 = N−1D2Vi − ViHi − Vi−1Bi (3.8)

In terms of the matirx Tj , we can use 3.8 to derive the Lanczos relation, relating N−1D2

, Vj , and T j ,
N−1D2Vj = Vj+1T j (3.9)

The construction of T j is shown as a part of Algorithm 7. If we take these block basis
vectors and put them as columns of a matrix Vj = [V 1, V 2, ... , Vj ] ∈ RN×jn, then we have
the symmetric Lanczos relation N−1D2Vj = Vj+1T j . Furthermore, since the columns of
Vj form an N orthonormal basis for Kj(N−1D2, Ŷ ), we have that VT

j NVj+1 = [Ij0], and
one can then show that,

N−1D2Vj = Vj+1T j

VT
j NN−1D2Vj = VT

j NVj+1T j

VT
j D2Vj =

[
Ij 0

]
T j

VT
j D2Vj = Tj

(3.10)
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which means that Tj is symmetric.

Algorithm 7: Symmetric Lanczos process for iteratively generating a basis for
Kj+1(N−1D2, Ŷ )

input : starting block of vectors Ŷ ∈ RN×n

output: (·, ·)N-orthonormal basis {V1, V2, ... , Vj+1}
1 Orthogonalize starting block in (·, ·)N producing QR-factorization:

Ŷ = V1︸︷︷︸
∈ RN×n

B0︸︷︷︸
∈ Rn×n

with V T
1 NV1 = Im

2 for i = 1, 2, ... , j do
3 W ← N−1D2Vi

4 if i > 1 then
5 W ← W − Vi−1Bi

6 end
7 Hi = V T

i NW

8 W ← W − ViHi

9 Orthogonalize W in (·, ·)N producing QR-factorization: W = Vi+1Bi+1

10 end

Building the basis in blocks with the computational kernal being a matrix-times-matrix
product and also block orthogonalization produces an algorithm with computationally
attractive properties in terms of computational intensity (i.e., the amount of calculations
done per unit of data moved into and out of cache).

3.3.2 Projection methods for Sylvesters equations

We now adapt the work in (10), Section 5.2 to develop a practical method for treating
equation 3.7. Similar to methods for solving linear systems, we can discretize the Sylvester
equations by taking approximations from a subspace and solving a constrainted set of
equations to determine the specific approximation. In this case, the unknown from 3.7 is
M ∈ RN×n . At step j , we make an approximation of the form

M ≈ Mj = VjZj =

j∑
i=1

ViGi where Gi ∈ Rn×n and Zj =


G1

G2

...
Gj

 ∈ Rjn×n (3.11)

Substituting into 3.7 yields
N−1D2VjZj + VjZj Ŝ ≈ Ŷ
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We determine Zj to be the solution satisfying the equation

VT
j (N−1D2VjZj + VjZj Ŝ) = VT

j Ŷ (3.12)

Let E1 ∈ Rjn×n be the matrix with the identity matrix in the first n × n block and zeros
elsewhere. Observing that Ŷ = V1B0 = VjE1B0 and using 3.10, we can simplify 3.12
as

TjZj + Zj Ŝ = E1B0 (3.13)

The task has now become to solve a small, fairly dense set of Sylvester equations. We
can use standard methods to treat this problem.

We approach 3.13 by decomposing the matrices Tj and Ŝ . The matrix Tj is symmetric,
tridiagonal. Thus, we can efficiently compute the eigendecomposition Tj = QjΦjQ

T
j

where QT
j Qj = Ij and Φj = diag{φ1,φ2, ... ,φj} is the diagonal matrix of eigenvalues of Tj .

The matrix Ŝ is not symmetric with respect to the standard Euclidean inner product.
However, we see that

Lemma 3.3.2. The matrix Ŝ = ATTAP−1 is symmetric with respect to the inner product
induced by P−1.

Proof. The matrix P is a diagonal matrix with positive entries on the diagonal. Thus it
and its inverse are symmetric positive-definite, and P−1 induces the inner product (·, ·)P−1

, with (x , y)P−1 = yTP−1x . We can show by direct calculation that Ŝ is symmetric with
respect to (·, ·)P−1 ,

(ATTAP−1x , y)P−1 = yTP−1ATTAP−1x = (x , ATTAP−1y)p−1

Since Ŝ is symmetric with respect to (·, ·)P−1 , it is diagonalizable and its eigenvectors
form an orthonormal basis with respect to (·, ·)P−1 . Thus, we can write Ŝ = URUT with
R = diag{ρ1, ρ2, ... , ρn} being a diagonal matrix of eigenvalues, and UTP−1U = In . This
decomposition can be computed once at the beginning of execution.

In [(10), Section 5.2], it is shown that one can directly compute the solution

Zj = −QjFjU where (Fj)ij =
eT
i QT

j E1B0Uej

φi + ρj

If n were quite large, we could explore doing a data compression by finding a low-rank
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approximation of Fj ; however, as n is quite small, this is not needed for this problem.

Remark. Although Tj contains Tj−1 as its upper-left (j − 1)n × (j − 1)n sub-matrix, the
eigendecomposition changes completely and must be recomputed at every iteration.

Computing the solution and checking the residual error at each iteration would be costly.
Fortunately, we can compute the residual norm at each iteration without constructing the
solution. Thus, we can run the Lanczos iteration to build Tj , use this and other quantities
to check the residual norm. Once the convergence criteria has been satisfied, we stop,
construct Zj , and rerun the Lanczos process to get the vectors again for constructing
the solution. In [(10), Section 5.2], it is shown how to calculate an expresson for the
residual norm without forming the solution explicitely. This done via accumulation,
and in [(10), Algorithm 5], we see that this in principle, one needs to calculate the
eigendecomposition of Ti at each iteration i . However, the authors discuss in [(10), Section
3.2] how one can calculate only the needed entries of the eigenvectors to calculate the
residual norm. In this version of the algorithm, we ignore this trick and simply compute
the full eigendecomposition. We incorporate this calculation into our description of the
procedure, Algorithm 8.

Remark. We note that from 3.11, we can construct the approximation Mj block-for-
block meaning when we rerun the Lanczos iteration, we can use the blocks as they are
constructed and then discard them, retaining the memory efficiency of Algorithm 8.
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Algorithm 8: Symmetric Sparse Sylvester Solver
input : starting block of vectors Ŷ ∈ RN×n; coefficient matrix N−1D2 ∈ RN×N ; a

small coefficient matrix Ŝ ∈ Rn×n; ε > 0 a convergence tolerance
output: An approximation Mj ∈ RN×n to the solution of the Sylvester equations

3.7
1 Compute eigendecomposition Ŝ = URUT

2 Orthogonalize starting block in (·, ·)N producing QR-factorization: Ŷ = VB0

3 Vold = 0; i = 0
4 while

√
γ > ε‖B0‖F do

5 i ← i + 1
/* Lanczos step ****************************************** */

6 W ← N−1D2V
7 if i > 1 then
8 W ← W − VoldBi

9 end
10 Hi = V TNW
11 W ← W − VHi

12 Vold = V
13 Orthogonalize W in (·, ·)N producing QR-factorization: W = VBi+1

/* computing residual norm ******************************* */
14 γ ← 0
15 Compute eigendecomposition Ti = QiΦiQ

T
i

16 S ← (UTBT
0 )(ET

1 Qi)
17 J ← (QiEn)BT

i+1

18 for j = 1, 2, ... , n do
19 K ← ρj I + Φi

20 γ ← γ + ‖(eT
j S)K−1J‖22

21 end
22 end

/* constructing approximation coefficients entry-wise ****** */
23 F = 0 ∈ Rin×n

24 for k = 1, 2, ... , in do
25 for ` = 1, 2, ... , n do
26 Fk` =

eTk QT
` E1B0Ue`
φk+ρ`

27 end
28 end
29 Z = QiFUT

/* rerun Lanczos to assemble solution *********************** */
30 M = 0

31 V ← Ŷ B−10

32 Vold = 0
33 for j = 1, 2, ... , i do
34 M ← M + VGj

35 W ← N−1D2V
36 if j > 1 then
37 W ← W − VoldBj

38 end
39 W ← W − VHj

40 Vold ← V

41 V ← WB−1j+1

42 end
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Chapter 4

Implementation

This chapter describes the implementation of the conjugate gradient method and the
Sylvester equation method, and these methods were implemented using Golang since it
has easy-to-use support for concurrency programming. A standard method which builds
matrices Q + BTCB and BTCy explicitly was also implemented as the baseline of these
two methods. The implementations can be found in the appendix.

4.1 Preparation

4.1.1 Input Matrix Generation

To solve equation 1.1, several input parameters (m,n, and N) and matrices (A,T and y)
is needed.

The value of these parameters and matrices is determined by the input dataset. The
value of n represents the number of sources, and the value of m represents the number of
frequencies. The value of N is determined by the Nside value of fits file N = Nside×Nside ∗12

as there are 12 different patches in each fits file. In the case of Planck data, n is 4, and
m is 9, the Nside value of Planck full sky maps is 1024 or 2048. Input matrices A and T

can be found in the source code, the matrix y ∈ RnN is constructed using the following
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method,

Algorithm 9: Building the input vector y

input : Nside of fits file; 9 Planck full sky maps downloaded from here
output: y

1 y = 0

2 for frequency = 1, 2, ... , 9 do
3 curmap = frequencymaps[frequency ] for patch = 1, 2, ... , 12 do
4 tmpvector ← extract(curmap, patch)

5 y ← append(y , tmpvector)

6 end

7 end

Algorithm 9 shows the process of building the vector y . In the fourth step, we extract
each base from a Planck full sky map using cfitsio library. Planck All Sky Maps are in
HEALPix format with minimum Nside 1024, and each map contains 12 different patches,
and we can extract a vector of length 12,582,912 from each map. Then, these 9 vectors
were concatenated together to create vector y ∈ R113246208. So the maximum length of
vector y is 113,246,208.

In the implementations, we assume matrices N and P are identity matrix for simplic-
ity.

4.1.2 Adjacency Matrix D

The adjacency matrix D encodes a nearest neighbor coupling of nodes from the discretiza-
tion of the sky. When Nside is 1, D is an adjacency matrix of the following matrix

L =

0 3 6 9

1 4 7 10

2 5 8 11


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Matrix L has 3×Nside rows and 4×Nside columns, the values in L represents the indexes of
matrix D. So, we have the following adjacency D when Nside is 1 according to 1.2.

D =


0

0

0

0

0

0

0

0

1

0

1

−2

0

0

0

0

0

0

0

1

0

1

−3

1

0

0

0

0

0

0

1

0

0

−2

1

0

0

0

0

0

0

1

0

1

−3

0

0

1

0

0

0

0

1

0

1

−4

1

0

1

0

0

0

0

1

0

0

−3

1

0

1

0

0

0

0

1

0

1

−3

0

0

1

0

0

0

0

1

0

1

−4

1

0

1

0

0

0

0

1

0

0

−3

1

0

1

0

0

0

0

0

0

1

−2

0

0

1

0

0

0

0

0

0

1

−3

1

0

1

0

0

0

0

0

0

0

−2

1

0

1

0

0

0

0

0

0

0

0


with Nside = 1

Due to the size of adjacency matrix D ∈ RN×N , it would not be explicitly built in
Conjugate Gradient method and Sylvester Equation method. Instead, we implemented an
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API to retrieve any row from D easily, Algorithm 10 describes how this API works,

Algorithm 10: RowView of matrix D

input : rowIdx as the row index; Nside of fits file.
output: neighbours as a index list of all the neighbour nodes

1 row = 3× Nside

2 col = 4× Nside

3 neighbours ← set(rowIdx − row , rowIdx + row , rowIdx + 1, rowIdx − 1)

/* rowIdx is in the first row **************** */

4 if rowIdx mod row == 0 then
5 neighbours.remove(rowIdx − 1)

6 end
/* rowIdx is in the last row **************** */

7 if rowIdx mod row == row − 1 then
8 neighbours.remove(rowIdx + 1)

9 end
/* rowIdx is in the first column **************** */

10 if rowIdx < row then
11 neighbours.remove(rowIdx − row)

12 end
/* rowIdx is in the last column **************** */

13 if rowIdx > row × col − 1− row then
14 neighbours.remove(rowIdx + row)

15 end

Algorithm 10 returns a neighbour index list of all a given node, we can create a multi-
threading function to compute Dv by combining it with Algorithm 1. Algorithm 11 de-
scribes this function. It is worth noting that a little trick was used here to reduce the over-
head of reshape(·, ·, ·) operation. In Algorithm 3, we need to perform U = reshape(u, N , n),
this reshape operation is only performed implicitly, we create an API based on the vector
u, and the matrix multiplication is performed based on this API, and this can improve
performance and memory usage as no extra memory or reshape operation is needed in
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this way.

Algorithm 11: Parallel Function for Qv

input : Nside of fits file; vector v ∈ RnN ; ThreadNum for the number of threads
output: result of Dv

1 result = 0

2 for threadID = 0, 1, ... , ThreadNum do
3 do in parallel
4 for i ← threadID to N by ThreadNum do

/* Use 10 to find all the neighbor indexes */

5 neighborIDs = findNeighbors(i , Nside)

6 for j ← 0tonby1 do
7 val ← 0

8 for nid in neighborIDs do
9 curv ← v [N × j + i ]

10 val ← val + curv

11 end
12 result[N ∗ j + i ] = val

13 end

14 end

15 end

16 end

There are 4 loops in Algorithm 11, the first loop will create multiple threads (gor-
outine in Golang) to compute the result, the time complexity for the second loop is
O(N/ThreadNum), the time complexity for the third loop is O(n), and the time complex-
ity for the fourth loop is O(1) since there are at most four neighbors for each node. So,
the time complexity for Algorithm 11 is O(nN/ThreadNum).

4.2 Standard Method using built-in API

A standard method is created as a baseline. This method using the VecDense.solveVec

API in the mat library. This method is very low efficient in terms of memory and CPU
usage as it needs to build matrices with nN × nN dimension. For example, when Nside is
1024 and n is 4, each element is a 64-bit float number, a matrix of size nN × nN will take
2,359,296 GiB of memory.
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4.3 Conjugate Gradient Method

The Conjugate Gradient Method is an implementation of Algorithm 6 with minor changes.

4.3.1 Initialization

In the initialization step, parameters (m,n, and N) and matrices (A, T and y)were initial-
ized. The vector b = BTCy were computed using the Algorithm 12. The time complexity
for this step is O(Nmn + Nn2).

Algorithm 12: Matvec procedure b → BTCy using reshaping
input : vector y ∈ RmN ; matrix B = A⊗ IN with A ∈ Rm×n; matrix C = T ⊗ IN

with T ∈ Rm×m

output: Qu

1 Y = reshape(y , N , m)

2 Y ← YTA

3 b = vectorize(Y )

ATTA was also computed at the beginning, it will be used by Algorithm 5 during the
iteration step.
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4.3.2 Iteration

This section describes the detailed iteration steps in Algorithm 6, the time complexity
for each step will be discussed.

Algorithm 13: Conjugate Gradient Implementation
input : vector y ∈ RmN ; matrix B = A⊗ IN with A ∈ Rm×n; matrix C = T ⊗ IN

with T ∈ Rm×m

output: solution x to equation 1.1
1 x = 0

/* Qx is computed using multiple threads */

/* BTCBx is computed using reshaping */

2 r = b − Qx − BTCBx ← O(nN/ThreadNum + n2N + nN)

3 p = r

4 rNorm = rT r ← O(nN)

5 for i ← 1, 2, ... , MaxIterNum do
6 q ← Qp + BTCBp ← O(nN/ThreadNum + n2N + nN)

7 α← rNorm/pTq ← O(nN)

8 x ← x + αp ← O(nN)

/* re-computed residual ****** */

9 r = b − Qx − BTCBx ← O(nN/ThreadNum + n2N + nN)

10 newNorm← rT r ← O(nN)

11 β ← newNorm/rNorm ← O(1)

12 rNorm← newNorm

13 if newNorm < ε then
/* residual is small enough, return result vector x */

14 break

15 end
16 p ← r + βp ← O(nN)

17 end

In Algorithm 6, the residual is computed using r ← r − αq, and the time complexity is
O(nN). However, the residual becomes inaccurate due to the round-off error introduced
in each iteration. So, two different approaches are implemented. In the first approach,
the residual is computed using r ← r − αq. In the second approach, the residual is re-
computed using BTCy − (Q + BTCB)x at each iteration, it could help improve accuracy,
but it also increases time complexity for residual computation, Algorithm 13 describes
this approach. And the time complexity of residual computation for both approaches
is O(nN) and O(nN/ThreadNum + n2N + nN) respectively. A MaxIterNum variable also
used here to make sure that this method will stop if it fails to converge. We choose 10−5
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as the ε value in the implementation, a smaller ε value will increase accuracy, but it also
increases the number of iterations and the overall time cost.

The overall time complexity for our implementation of the conjugate gradient method
is O(in2N + mnN) where i is the number of iterations. For space complexity, the vector
y ∈ RmN is needed at the initialization step, several vectors of length nN is also stored
during the iteration, so the overall space complexity is O(nN + mN).

4.4 Sylvester Equation Method

The Sylvester Equation Method is an implementation of Algorithm 8.

In step 4 of Algorithm 8, a ε value is used as the stop condition of the while loop.
However, we took a different approach in the implementation. We save the γ value to
another variable γold before γ is recomputed at each loop, and the while loop will be
stopped if γold > γ.

Next, we discuss the most time-consuming steps in the algorithm.

In step 2 and 13 of Algorithm 8, we need to perform QR-factorization to a matrix of size
RN×n. A full QR-factorization A = QR with Q ∈ RN×N and R ∈ RN×n would increase
time and space complexity. Instead, a reduced QR factorization using the Gram-Schmidt
method is used here to reduce time and space complexity. We implemented a reduced
QR-factorization function here for reusability. This function take a matrix as a parameter
and returns a matrix Q ∈ RN×n and an upper triangular matrix R ∈ Rn×n. The time
complexity for this matrix is O(n2N), and space complexity is O(nN).

In step 6, matrix product operation N−1D2V needs to be performed in step 6 and step
35 of Algorithm 8, because we treat N as an identity matrix in the implementation, so
N−1D2V = D2V , and the function of 11 can be reused here, and we will take one column
from V each time and pass it to function 11, and V has n columns, so the time complexity
for step 6 and step 35 is O(nN/ThreadNum).

In some steps such as step 8, step 11, and step 34, matrix multiplication needs to be
performed, and the time complexity for these steps is O(n2N). So, the overall time
complexity for Algorithm 8 is O(n2N), and the space complexity is O(nN).
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Chapter 5

Results

In the results chapter, we run all three implementations using Planck full sky maps
(conjugate gradient solution has two variants), and results will be compared in terms of
time cost, memory usage, and accuracy.

The experiment is designed as follows. The standard solution, conjugate gradient solu-
tion, and Sylvester equation solution will be run multiple times with different Nside value.
Each time, these three methods receive the same input parameters:m = 9,n = 4,A =

1 24.31408176 0.1808804 13.15799486

1 8.81745815 0.3154685 5.80101879

1 2.58070139 0.6121030 2.15148219

1 1.00587794 1.0058779 1.00587794

1 0.39224839 1.6297015 0.47074157

1 0.13192930 2.7832105 0.19585548

1 0.03801049 4.9311851 0.07232168

1 0.01327148 7.7040185 0.03151240

1 0.00509560 11.3366157 0.01524107


, and T = diag{629881.6, 694444.4, 783146.7, 12755102.0, 30864197.5, 30864197.5, 30864197.5,
30864197.5, 30864197.5}. The input vector y ∈ RmN is generated for each Nside value
before the testing using the Planck full sky maps. 100 goroutines will be used when
concurrency programming is applicable.

5.1 Environment Setup

An EC2 instance in AWS(Amazon Web Services) is created for experiments. Table 5.1
describes the details for the EC2 instance.
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Table 5.1: AWS EC2 instance details

Instance Type t2.2xlarge
ECUs Variable
vCPUs 8
Architecture x86_64
Threads per core 1
Sustained clock speed (GHz) 2.3
Memory (MiB) 32768
Instance Storage (GB) EBS only
Volume Type gp2(General Purpose SSD)
IOPS 100 / 3000
Operating System Ubuntu 18.04.4 LTS
Kernel Version 5.3.0-1032-aws

5.2 Time Cost
Table 5.2: Time Cost (milliseconds) of Three Solutions.

Nside Standard Conjugate Gradient Conjugate Gradient
With Auto-Correction Sylvester Equation

2 7 2 4 3
4 91 3 7 4
8 3108 7 19 13
16 176817 20 54 22
32 - 73 195 35
64 - 269 707 287
128 - 1157 3299 721
256 - 6333 17256 2949
512 - 27255 79194 14082
1024 - 117757 310429 77564
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Figure 5.1: Time Cost with different Nside

Table 5.2 and figure 5.1 describe the time cost for three implementations with different
Nside values. The time cost for the standard method is not available when Nside is bigger
than 16 because of out-of-memory error. And Conjugate Gradient With Auto-Correction
represents the conjugate gradient method where the residual being recomputed using
r ← b − Ax at every iteration.

As shown in table 5.2 and figure 5.1 , the standard method has better performance only
when Nside is 2, then, it encounters out-of-memory after Nside is 16 because it needs to build
matrices of size RnN×nN in memory. The Sylvester Equation solution provides the best
performance for all Nside values. The Conjugate Gradient implementations are faster than
the standard solution but slower than the Sylvester Equation solution. The conjugate
gradient implementation is faster than the conjugate gradient with auto-correction as it
does not need to recomputed the residual at each iteration.

5.3 Accuracy

Table 5.3 and figure 5.2 describe the residual of different solutions. The residual is
computed using the following method,

1. Computing b = BTCy using Algorithm 12.

2. Computing Qx using Algorithm 3 and Algorithm 11.
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3. Computing BTCBx using Algorithm 5.

4. Computing r = b − Qx − BTCBx .

5. residual = rT r .

The time cost for computing residual is not included in table 5.2 and figure 5.1.

Table 5.3: Residual of Three Solutions.

Nside Standard Conjugate Gradient Conjugate Gradient
With Auto-Correction Sylvester Equation

2 1.159225e-07 4.626469e-07 4.602519e-06 2.349828e-03
4 2.461592e-07 5.766567e-07 6.915607e-06 3.277893e-03
8 5.614913e-07 1.588664e-06 7.934169e-06 4.892446e-04
16 1.032700e-06 3.176654e-06 1.008632e-06 2.319466e-04
32 - 4.304763e-06 1.374675e-06 5.817023e-03
64 - 5.535777e-06 1.743090e-06 2.186816e-04
128 - 6.702022e-06 2.154607e-06 2.051122e-04
256 - 7.604039e-06 2.353452e-06 1.624415e-04
512 - 8.252590e-06 2.557356e-06 6.294534e-05
1024 - 2.119601e-05 8.388576e-06 3.567721e-02
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Figure 5.2: Residual with different Nside

As shown in table 5.3, the standard solution gives the best accuracy, and it encounters out-
of-memory error when Nside is 32. The conjugate Gradient solution with auto-correction is

30



the next best solution in terms of accuracy, it is worth noting that the stop loop condition
is residual < 10−5, the residual may decrease if we change the stop condition, but the time
cost could also increase because more iterations are needed to achieve better accuracy.
The conjugate gradient solution provides decent accuracy, but it is not as accurate as the
conjugate gradient with auto-correction, and we could see how the round-off error affects
the accuracy from figure 5.2. Finally, the Sylvester Equation implementation has lower
accuracy, and it is not plotted in figure 5.2.

Table 5.4: Residual of Sylvester Equation Solution.

Nside Iteration Residual Final Residual

2 2.457549e+08 2.349828e-03
4 1.721217e+08 3.277893e-03
8 4.918023e+07 4.892446e-04
16 2.346382e+07 2.319466e-04
32 1.441014e+08 5.817023e-03
64 6.251446e+07 2.186816e-04
128 6.008143e+07 2.051122e-04
256 1.711665e+08 1.624415e-04
512 1.365440e+08 6.294534e-05
1024 3.638237e+09 3.567721e-02

Table 5.4 describes the residual during iteration and the final residual. According to
Algorithm 8, the residual that Sylvester Equation solution computes within iteration is
not the actual residual, a different residual representation is used because it is easier
to compute. After the solution x is found, the residual is computed using the method
5.3.

Table 5.5: The Error between the Standard solution and other solutions

Nside Conjugate Gradient Conjugate Gradient
With Auto-Correction Sylvester Equation

2 3.0180889776024903e-21 4.2905896490884486e-21 1.4985910770697552e-15
4 8.859910588909837e-21 1.0834453453914871e-20 2.09007356359636e-15
8 2.17794839011864e-20 1.8716053445427665e-20 3.090258469421773e-16
16 4.212746208331008e-20 3.757696375911772e-20 1.4569865476906593e-16

Table 5.5, 5.6, 5.7, and 5.8 describe differences of different solutions, the error is measured
using ‖x1−x2‖22. The results in these tables are consistent with the results in table 5.3. The
standard solution, the conjugate gradient solution, and the conjugate gradient solution
with auto-correction are in the same level of accuracy, they have similar residuals and
errors. As shown in table 5.5, 5.6, and 5.7, results of the Standard method, the Conjugate
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Table 5.6: The Error between the Conjugate Gradient solution and other solutions

Nside Standard Conjugate Gradient
With Auto-Correction Sylvester Equation

2 3.0180889776024903e-21 3.7667853516894236e-21 1.498364533232887e-15
4 8.859910588909837e-21 7.963321715133915e-21 2.0915953240318653e-15
8 2.17794839011864e-20 9.65210028520249e-21 3.106570590280657e-16
16 4.212746208331008e-20 1.679910211233754e-20 1.4589451358002164e-16
32 - 2.845103856694158e-20 3.702287849388512e-15
64 - 4.1124088585501615e-20 1.2496524250543757e-16
128 - 4.944374950088266e-20 1.2229585296470213e-16
256 - 5.477400230053128e-20 9.919744223655086e-17
512 - 6.183014084279126e-20 3.535262581317476e-17
1024 - 1.4478246538147941e-19 2.2707199637015396e-14

Table 5.7: The Error between the Conjugate Gradient With Auto-Correction solution
and other solutions

Nside Standard Conjugate Gradient Sylvester Equation

2 4.2905896490884486e-21 3.7667853516894236e-21 1.4985629938289051e-15
4 1.0834453453914871e-20 7.963321715133915e-21 2.0908257938289905e-15
8 1.8716053445427665e-20 9.65210028520249e-21 3.1048538801260387e-16
16 3.757696375911772e-20 1.679910211233754e-20 1.4600360044051388e-16
32 - 2.845103856694158e-20 3.703337743689728e-15
64 - 4.1124088585501615e-20 1.251820078717131e-16
128 - 4.944374950088266e-20 1.220658131349531e-16
256 - 5.477400230053128e-20 9.923869835052757e-17
512 - 6.183014084279126e-20 3.546528314450234e-17
1024 - 1.4478246538147941e-19 2.2709370743112487e-14

Gradient method, and the Conjugate Gradient With Auto-Correction method are very
close. As shown in table 5.3 and 5.8, the Sylvester solution has the worst accuracy, it
has the biggest residuals and error. However, as shown in table 5.8, these errors are
much smaller than the residuals, it is possible that errors between different solutions are
actually small but they are stretched and amplified by matrices when they are mapped
into the residual space.

5.4 Convergence

The conjugate gradient and Sylvester equation solution are both iterative methods. In
this section, we discuss how many iterations it takes for each algorithm to reach conver-
gence and the residual for each iteration. For the following experiment results in this
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Table 5.8: The Error between the Sylvester Equation solution and other solutions

Nside Standard Conjugate Gradient Conjugate Gradient
With Auto-Correction

2 1.4985910770697552e-15 1.498364533232887e-15 1.4985629938289051e-15
4 2.09007356359636e-15 2.0915953240318653e-15 2.0908257938289905e-15
8 3.090258469421773e-16 3.106570590280657e-16 3.1048538801260387e-16
16 1.4569865476906593e-16 1.4589451358002164e-16 1.4600360044051388e-16
32 - 3.702287849388512e-15 3.703337743689728e-15
64 - 1.2496524250543757e-16 1.251820078717131e-16
128 - 1.2229585296470213e-16 1.220658131349531e-16
256 - 9.919744223655086e-17 9.923869835052757e-17
512 - 3.535262581317476e-17 3.546528314450234e-17
1024 - 2.2707199637015396e-14 2.2709370743112487e-14

section, the value of Nside is 1024.

Table 5.9: Residual vs Iteration.

Iteration Conjugate Gradient Conjugate Gradient
With Auto-Correction Sylvester Equation

0 9.609525807492873e+25 9.609525807492873e+25 9.80281888412712e+12
1 1.259418859319246e+23 1.259418859319246e+23 1.0719467776878633e+10
2 2.3870612202524674e+23 2.3870612202524644e+23 1.8455672681064317e+09
3 1.0574369640294e+21 1.0574369640294167e+21 3.798235797307401e+08
4 4.911828490873264e+20 4.911828244770185e+20
5 6.834080278989695e+12 6.83408034618299e+12
6 1.8299976007865277e+11 1.8299975970160046e+11
7 4.999243517546015e+09 4.999241243639853e+09
8 7.425974042107423e+09 7.425979093104691e+09
9 40220.07766953336 40259.65550802165
10 48.08397442770766 2605.246727349994
11 10.214055009836672 8.448136801219533
12 0.18223545970466598 0.27235044921784624
13 0.0009248160851663429 0.5508047514686585
14 0.001908637364531107 21.623935700077862
15 1.24791182380328e-09 22.033337865469395
16 0.008319263132760272
17 0.00015894137193445015
18 0.003924241135929268
19 0.00014430056657147418
20 9.559741174228862e-05
21 0.00010990319798219979
22 7.609952200856389e-06
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Table 5.9 describes the relationship between iteration and residual of each solution when
Nside value is 1024. The residual here is the residual during iteration, it might not be
the real residual for some solutions e.g. Conjugate Gradient and Sylvester equation. The
residual of iteration 0 means the starting residual for each solution.

For the conjugate gradient method, it takes 15 iterations to find a solution, the residual
here is computed using r ← r − αq, so it might be larger than the real residual. For the
conjugate gradient with auto-correction solution, the residual is re-corrected using b−Ax

at each iteration, so this method takes more iterations and longer time cost than the
conjugate gradient method. The Sylvester equation method only takes 4 iterations, which
is one of the reasons that it is the fastest solution. The residual here is a different quantity
from the real residual, and the iteration stops when the residual value increases.

5.5 Memory Usage

Table 5.10: Memory Usage (MB) of Three Solutions.

Nside Standard Conjugate Gradient Conjugate Gradient
With Auto-Correction Sylvester Equation

2 689 688 689 690
4 757 689 690 689
8 1748 688 691 691
16 17075 691 691 691
32 - 691 691 691
64 - 691 691 691
128 - 824 758 824
256 - 1289 1223 1157
512 - 3216 3348 3084
1024 - 9935 10331 10067
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Figure 5.3: Memory Usage with different Nside

Table 5.10 and figure 5.3 describe the memory usage of three solutions. The memory
usage is recorded using pmap. After the process is started, a shell script will be invoked,
and it will use pmap to record the memory usage of the process every 10 milliseconds.
We will take the maximum number during process runtime as the memory usage of this
experiment.

As shown in table 5.10 and figure 5.3, the conjugate gradient, the conjugate gradient with
auto-correction, and Sylvester equation solutions have similar memory usage, since they
all need to store vectors of size nN in memory. The memory usage of standard solution
increase dramatically until it is killed because of out-of-memory error when Nside is 32,
these results meet our expectations because it needs to save matrics of size nN × nN in
memory.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this paper, we proposed and discussed two approaches for the CMB source separation
problem, and experiments have been carried out with Planck data. These experiments
show that both algorithms have good performance, but the accuracy of these two algo-
rithms varies.

The conjugate gradient method can solve source separation with good accuracy in a
reasonable time for the data of the scale of Planck, it has linear time and space complexity.
Trade-offs can be made between accuracy and time cost by re-computing the residual or
altering the ε value in the stop condition. The residual can be re-computed at each
iteration to minimize the effect of round-off error introduced by iterations to increase
accuracy. Another approach to increase accuracy is by choosing a smaller ε value for
the stop condition, it increases the number of iterations, which increases the time cost.
In our experiment, the conjugate gradient solution find a solution to our CMB source
separation problem under 2 minutes when Nside is 1024 and N = O(107).

The Sylvester equation method works by re-writing the equation 1.1 as a Sylvester equa-
tion, and it also has linear space and time complexity. This solution is faster than the
conjugate gradient solution. In our experiment, this method can solve source separation
for Planck data in 77 seconds. However, this method also has lower accuracy.

6.2 Future Work

There are still many methods to improve the performance and accuracy of these two
algorithms. We leave these improvements for the future.
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One possible improvement is that parallel programming can be applied to more processes.
In our implementation, the only step that utilizes parallel programming is the production
of the adjacency matrix and a vector u ← Du, it is feasible to apply parallel programming
to more steps such as matrix production to reduce the time cost of both solutions even
further.

It might be helpful to do a systematic numerical analysis about how the round-off error
affects the convergence and accuracy. The Sylvester equation solution does not perform
very well in terms of accuracy, the research should be helpful to find a better convergence
point and a smaller residual. Also, we take some measures in the conjugate gradient
method to reduce the effect of the round-off error, but these measures also affect the
performance of this method, and it remains unclear how the round-off error affects the
Sylvester equation method. The numerical analysis research about round-off error might
help us to improve the performance and accuracy of these two algorithms.
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Appendix A

Source Code

Description:

The source code is uploaded to a GitHub repository, the readme file contains the instruc-
tions to run the program. The input files of vector y are uploaded to Google Drive, the
link is also included in the readme file.

Link:

https://github.com/ZhaoJiaJin/dissertation/tree/master/golang
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