
An Investigation Into

Graph Neural Networks

Vishal Kumar

Supervised by: Professor Rozenn Dahyot

September 2020

A Dissertation report

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Intelligent Systems)

School of Computer Science & Statistics

Trinity College Dublin, Ireland

https://www.scss.tcd.ie/Rozenn.Dahyot/

Declaration

I hereby declare that the following dissertation work, except where otherwise stated, is

entirely my work; it has not ever been submitted before as an exercise for a degree, either

in Trinity College Dublin or in any other universities.

I have carefully read and understood the plagiarism provisions in the General Regulations

of the University Calendar for the current year, found at http://www.tcd.ie/calendar.

I have also completed the Online Tutorial on avoiding plagiarism, ‘Ready Steady Write’,

located at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

I give my consent to deposit this thesis in the University’s open access institutional

repository or allow the library to do so on my behalf, subject to Irish Copyright Legislation

and Trinity College Library conditions of use and acknowledgement.

Vishal Kumar

September 7, 2020

I

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Professor Rozenn Dahyot,

who proposed this work and has not only provided immense support, guidance, and

feedback through each phase of this dissertation but has also been a constant inspiration

as a researcher.

I am grateful to Trinity College Dublin and the School of Computer Science and Statistics

for helping me build a solid foundation of computer science principles as well as research

methods and providing me with a platform to excel.

Also, I would like to thank course director Dr.John Dingliana who made things easy going

with the course during the pandemic of COVID-19.

Lastly, I would like to thanks my family and friends, the moral support and motivation

extended to me by them have been indispensable factors in the successful completion

of this dissertation, which also kept me up while low times, and for that, I am truly

thankful.

Any omission of acknowledgement does not reflect the lack of regard or appreciation.

II

Abstract

Graphs are a powerful representation of data that is ubiquitous and can be flexible in

nature. There are many real-time applications where graphs are being used, such as rec-

ommending medication, protein interface prediction, handling traffic networks. However,

these application areas make use of non-Euclidean graphical data, which involves highly

relational or mostly dependent elements. They cannot be processed well by traditional

machine learning approaches or deep learning models (e.g., CNN, LSTM, RNN). Most

unsupervised learning methods (e.g., network embedding) cannot utilize the inherent

logic contained in graph nodes. Inspired from deep learning architectures, graph neural

networks (GNNs) are capable of conflating feature information from nodes and graphical

structures to learn graph representation via feature propagation and aggregation. In this

work, a concise introduction to basic graph concepts, GNN models, and their applications

are provided. It starts with the introduction to the basic GNN models. Then several

general graph frameworks and some widely used variants of GNN models are explained,

such as graph convolutional networks, graph attention networks, graph recurrent net-

works. Application of GNNs is categorized based on structured and non-structured data,

and then GCN models are designed using different graph libraries and trained on some

datasets for solving classification tasks. With the analysis of intermediate and final re-

sults, it is observed GCN models can successfully process graph data and also outperforms

traditional fully connected networks by 4% of classification accuracy. So it has proven

that due to high interpretability, new architectures and libraries, and performance, there

is a dramatic increase in applications and research of GNNs as a graphical analysis tool.

Keywords: DNN, GNN, CNN, graph, Graph Data, Deep Learning, Graph Neural Net-

work, Graph Convolutional Network

Word Count: 14876

III

Contents

List of Figures VI

List of Tables VIII

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 3

1.3 Dissertation Structure . 6

2 State of the Art 8

2.1 Neurons and Neural Networks . 8

2.2 Geometric Deep Learning . 10

2.2.1 Deep Learning Models for Manifolds 11

2.2.2 Deep Learning Models for Graphs 11

2.3 Graph Neural Network Variants . 12

2.3.1 Basic Models . 13

2.3.2 Graph Types . 15

2.3.3 Propagation Steps . 19

2.4 Training Methods in Graph . 22

2.5 General Graph Frameworks . 23

2.6 Graph Applications . 25

3 Model Designs and Libraries 27

3.1 Original Graph Neural Network . 27

3.1.1 Model . 28

3.1.2 Limitations . 31

IV

3.2 Graph Convolutional Network . 31

3.3 Graph Libraries and Frameworks . 36

3.3.1 Deep Graph Library (DGL) . 36

3.3.2 Spektral . 38

3.3.3 PyTorch Geometric (PyG) . 38

3.3.4 StellarGraph . 39

3.3.5 Graph Net Library . 39

3.4 Overall Workflow . 40

4 Implementation 41

4.1 Overview . 42

4.2 Technical Setup . 42

4.2.1 Programming Environment . 42

4.2.2 Hardware Requirement . 42

4.3 Dataset . 43

4.3.1 Zachary’s Karate Club . 43

4.3.2 Cora Citation Network . 44

4.3.3 MNIST . 45

4.4 Node Classification in Zachary’s Karate Club and Cora Dataset 46

4.5 Graph Classification in MNIST Dataset . 50

5 Results and Analysis 52

5.1 Overview . 52

5.2 Analysis of Classification Methods and Results 52

5.3 Limitation . 66

6 Conclusion 68

6.1 Work Contribution and Challenges . 69

6.2 Future Work . 70

References 71

Appendix A 82

V

List of Figures

1.1 Image and Graph structure in non-Euclidean space 5

1.2 Dissertation Timeline . 7

2.1 Black box view of the neural network . 9

2.2 Multi-layered FNN (Sazli, 2006) . 9

2.3 Model architecture for Alexnet network . 10

2.4 Attention given to neighbor nodes . 15

2.5 Example of a spatial-temporal graph. 17

2.6 Example of multi-graph having a graph and dimensional expansion. . . . 19

3.1 Example of the graph used in the vanilla GNN (Scarselli et al., 2009) . . 29

3.2 Representation of graph information as a combination of the adjacency

matrix and feature vectors . 33

3.3 Embedding of nodes from a graph to lower dimensional space 34

3.4 Computational graph for a target node . 35

3.5 Deep Graph Library stack . 37

3.6 Deep Graph Library stack in AWS Sagemaker 38

3.7 High-level architecture for implementation design 40

4.1 Graphical representation of Zachary’s karate club dataset 44

4.2 high-level representation of Cora citation network dataset 45

4.3 MNIST sample images and matrix-based internal representation 46

5.1 Initial Graph structure of Zachary’s karate club network dataset 53

5.2 Feature tensor assigned to each node in karate club network 53

5.3 GCN network model summary for Zachary’s karate club dataset 54

VI

5.4 Intermediate states of the graph in the karate club network while training

GCN model . 55

5.5 GCN network model design Cora citation network dataset 57

5.6 Intermediate accuracy and loss vs. epochs plot with test metric results of

the GCN model for Cora citation network dataset 59

5.7 Node embedding visualization for each publication of Cora citation net-

work dataset . 60

5.8 2-D plot for adjacency matrix for MNIST dataset 61

5.9 Full grid graph generated for MNIST dataset 62

5.10 Neighbours in Full grid graph generated for MNIST dataset 62

5.11 Overall topological structure of a graph data for MNIST dataset 63

5.12 Evaluation results of the fully connected model for MNIST dataset 64

5.13 Evaluation results of GCN model for MNIST dataset 65

5.14 Intermediate output of GCN layers for MNIST dataset 66

VII

List of Tables

4.1 A summary of dataset statistics . 43

5.1 Document classes in Cora citation network dataset 56

5.2 Document classes and count in training set for Cora citation network dataset 57

5.3 GCN network model summary for Cora citation network dataset 58

5.4 GCN network model predictions for Cora citation network dataset 59

5.5 Summary of the fully connected dense model for MNIST dataset 63

5.6 Summary of GCN model for MNIST dataset 64

5.7 Comparision of models performance on MNIST dataset 65

VIII

Chapter 1

Introduction

1.1 Overview

Over the year, promising progress has been made by deep learning methods in several

fields such as recommender systems, computer vision, traffic networks, physical systems,

knowledge graphs, and natural language processing. In these fields, data are usually rep-

resented in the Euclidean domain. However, there exist several learning tasks that need

to deal with non-Euclidean graphical data, which includes highly cohesive information

elements, e.g., physical systems modeling, analyzing molecular fingerprints, protein inter-

face prediction, etc. Graph neural networks GNNs are primarily inspired by deep learning

architectures operating on graph structures. Many of GNN architectures are similar or

comparable to popularly used deep neural net counterparts. Due to irrefutable perfor-

mance and easy understanding, GNNs have become widely applied graphical analysis

method.

A Graph data structure(sometimes called a network) highlights the relationships between

different components in the data models. It consists of a set of nodes as objects, and their

relationships called edges, which act as the connection between nodes. Such data models

are beneficial to use when dealing with objects that have multiple links. Graphs are age-

old data structures being used for centuries and widely used in applications related to

current real-life scenarios including, LinkedIn, Instagram, and Facebook social networks,

Page 1 of 85

Chapter 1

and route navigation applications such as Google maps using the road and street networks.

In recent years, there are many pieces of research made in the analysis of graphs using

machine learning methods. Because of the natural way of information representation and

a high expressive power every day, this data model is getting more and more attention.

For instance, beyond immediate denotation, the Graphs exhibit a connotative ability to

represent a large number of systems in several areas such as prediction of the missing

piece of data in knowledge graph (Hamaguchi et al., 2018), design and discovery of drugs

from protein interaction graph network (Fout et al., 2017), node embedding generation

for unseen part of social network data represented as large graphs (William L Hamilton,

J. Zhang, et al., 2017), interacting and understanding physical world structure based on

graph networks (Sanchez-Gonzalez et al., 2018), convolution-based semi-supervised learn-

ing on graphical data (Kipf and Welling, 2016), modeling object interaction in complex

physical systems (Battaglia, Pascanu, et al., 2016), reinforcement learning for NP-hard

algorithms in combination with graph embedding (Dai et al., 2017). In essence, it can be

construed that being a unique type of non-Euclidean form of data structure utilized in

machine learning models, the understanding graph becomes necessary for analysis that

focuses mainly on the classification of nodes, clustering data points, and relationship

prediction among nodes.

Inspired by deep learning methods, Graph neural networks (GNNs) have been in existence

for around 20 years. Still, in the last five years, attention towards this neural network has

dramatically increased due to computational support by high-end hardware and GPUs.

In this time frame, plenty of new architectures have emerged, novel areas of application

found, new platforms to support computational needs have been implemented, and many

dynamic libraries, especially to handle graph data, have entered into the scene. These

include neural networks from vanilla graph neural network to advanced architectures

such as graph convolution-based network(GCN), Graph Encoders and Decoders, Recur-

rent neural network architecture(RNN) based Graph Long short-term memory(LSTM).

Libraries like Pytorch Geometric, Graph Nets, Deep Graph provide an efficient environ-

ment to model a graph neural network at ease. Highly scalable and robust GNN models

help in modeling dependency and relationship among nodes in large graph networks,

which enabled the significant breakthrough in research work related to graphical analysis

Page 2 of 85

Chapter 1

of applications.

1.2 Motivation

In most cases, deep neural networks usually perform better than traditional machine

learning methods. But when tabular data is considered; clearly gradient boosting-based

machine learning models outperform fully connected neural networks(FCNN). Also, in

the case of non-linear transformation that is considered as a unique characteristic of deep

neural networks, deep neural networks(DNNs) can’t be ranked above traditional Machine

learning models. Many ML models can efficiently handle non-linearity in data structures,

too, such as decision trees and SVM. It is rare to find a plain fully connected neural net-

work has achieved state-of-the-art performance from the perspective of any particular

benchmark. Based on applications, some specific neural network layers are responsible

for setting DNNs apart from the result reached by traditional ML models. In a DNN

model, these particular neuron layers allow parameter-sharing, such as the convolutional

layer for space and recurrent layer for time. DNN advances well in extracting features

automatically by utilizing these specialized neuron layers and effectively replaces the

hand-engineered method of feature selection. By exploiting invariance in spatial transla-

tional of data, the convolutional layer in models such as Conv1D, Conv2D, and Conv3D

works excellent for text, images, and 3D-images respectively. In contrast, DNN models

such as GRU and LSTM having recurrent layers utilize temporal dependence in data and

are suitable for speech and text processing.

Data types such as Social, Biological, and Knowledge have underlying graph structures

(Z. Wang, 2020). E.g:

Social: citation network as well as social media networks such as LinkedIn,

Facebook and Twitter, etc.

Biological: based on physical or regulatory interactions, organization of

genes, and protein as graphs such as gene regulatory networks and protein-

protein interaction networks, respectively.

Page 3 of 85

Chapter 1

Knowledge: organization of knowledge into graphs such as connection graph

structures for Wikipedia articles and Google’s knowledge graph for better in-

formation retrieval.

As the initial motivation, CNNs have the unique capability to extract and compose

scalable spatial features with high representational power. This capability resulted in a

revolution in deep learning methods and breakthroughs in most of the traditional machine

learning models. Upon depth analysis of CNNs with graphs, critical features of CNNs

are found as localized connection, weight sharing, and multi-layer usage (LeCun, Yoshua

Bengio, and G. Hinton, 2015). These features enabled to solve many problems in graph

domain because of:

• localized connection in graphs structure

• when compared to traditional spectral graph methods, sharing of weights dramat-

ically reduces computational cost (Chung, 1996).

• multi-layer structure helps to handle hierarchical patterns enabling to capture mul-

tiple sizes of features.

However, CNNs applications area involves only regular Euclidean information such as

texts(1D sequence) and images(2D grids), and interestingly these application areas can

also be identified as instances of graphical structure data. As depicted in Figure 1.1, the

transformation of CNN architecture from Euclidean to non-Euclidean application areas is

hindered by the inability to present localized convolutional filters with pooling operators.

Graph embedding is a method to represent graph entities such as nodes, edges, or sub-

graphs in reduced dimensional vectors (Goyal and Ferrara, 2018; William L. Hamilton,

Ying, and Leskovec, 2018; D. Zhang et al., 2018) acts as another motivation for this the-

sis. For graph analysis, traditional machine learning methods are dependent on manual

feature engineering, and their performance is restricted by higher cost and inflexibility.

Inspired by the success of word embedding (Mikolov, Chen, et al., 2013), Deepwalk (Per-

ozzi, Al-Rfou, and Skiena, 2014) is a learning method for latent representation vertices

in a graphical network and is considered as first graph embedding method which utilizes

Page 4 of 85

Chapter 1

Figure 1.1: Image and Graph structure in non-Euclidean space

representational learning with SkipGram model (Mikolov, Chen, et al., 2013) on created

random walks. Some other algorithms, such as node2vec(Grover and Leskovec, 2016) ,

LINE(Tang et al., 2015), and TADW(Yang et al., 2015), also achieved benchmark results.

Irrespective of breakthroughs, these models have two significant drawbacks (William L.

Hamilton, Ying, and Leskovec, 2018). First, the capability of generalization is not avail-

able in direct embedding methods, i.e., can’t handle dynamic graphs and can’t generalize

to new graphs. Second, the encoder present in these models does not share parameters

between nodes leading to inefficient computations, i.e., the linear relation between the

number of nodes and the number of parameters.

Primarily, Graph neural networks are inspired by convolutional neural networks(CNNs)

(Lecun et al., 1998). GNNs are a relationship-based model that captures graphs depen-

dence via a method called ‘message passing’ between graph nodes, i.e., GNNs are an

extension to the deep neural network to handle graphical representations of information.

Given the ubiquity of graphs in real-life applications and ongoing research work to ana-

lyze the effectiveness of Graph structure-based deep learning methods, this dissertation

attempts to investigate state-of-the-art for deep learning methods on graphs and their

variation based on the type of graph data. Also, some research questions are addressed,

such as:

• How to handle data structures that do not have temporal or spatial structures

instead have a graph structure?

Page 5 of 85

Chapter 1

• What kind of information is required to process a graph structure?

• What are the available library and frameworks to design a Graph neural network

and how to implement those?

• How to process non-structured graph data using graph-based deep learning meth-

ods?

• How much efficient a GNN model is as compared to traditional machine learning

models?

1.3 Dissertation Structure

This dissertation is organized as follows:

• The first chapter highlights the overview of the research work, introduces the

research questions, problems addressed, motivations for exploring this research area.

• The second chapter details the underlying concepts that are used throughout

this study, as well as state-of-the-art solutions for the problem identified and their

comprehensive literature review.

• The third chapter presents the design of selected architectures, introduces the

metrics for performance evaluation, frameworks, libraries used, and overall design

workflow.

• The fourth chapter incorporates implementation methodologies, software and

hardware setups, with a discussion on data and methods.

• The fifth chapter contains analysis and discussion of results obtained for different

configurations and selected deep learning methods.

• The sixth chapter concludes the overall work, discusses the usefulness of achieved

results, challenges encountered, highlights limitations of work and methods, and

suggests improvements with possible future actions of the study.

Figure 1.2 shows the Gantt chart for dissertation timeline:

Page 6 of 85

Chapter 1

Figure 1.2: Dissertation Timeline

Page 7 of 85

Chapter 2

State of the Art

2.1 Neurons and Neural Networks

In traditional machine learning models, the neural network holds a position that is com-

pared to most of the benchmark algorithms. A simple neural network contains several

connected neurons. Logically, these neurons bear a high resemblance to natural biologi-

cal neural networks. A black box architecture is shown in Figure 2.1. While training, a

typical neural network in the machine learning domain tries to learn from given inputs.

It starts with random values (called weights); these weights are updated continuously

by connections between neurons using the most commonly used algorithm (Wikipedia

Contributors, 2019) called “back-propagation’’, which is based on the optimization of

parameters using the gradient descent method. The back-propagation algorithm consists

of two steps: “Forward calculation’’ to compute the value of weight for each neuron in

forwarding order and “Backward propagation’’ to evaluate error for each variable and

update the internal state of parameters in backward order using partial derivatives. This

process of updating the internal state is repeated until precise performance is achieved

in output, and learned weight values are stored for connections between neurons.

In recent years, many new architectures have emerged in the field of deep learning to

represent a variety of neural network models. To improve performance and achieve gen-

eralization, most of the researches are focused on different learning algorithms and model

Page 8 of 85

Chapter 2

architectures. These architectures are grouped into four categories as:

Figure 2.1: Black box view of the neural network

• Feed-forward neural network: In artificial neural networks, FNN, as shown in

Figure 2.2, is the first and simplest architecture. FNN architectures comprise an

input layer, some hidden layers, and final output layers (Sazli, 2006). There are

multiple neurons in a layer, and each layer is connected to only neighbour layers.

Based on the number of hidden layers, it can be called as single-layered or multi-

layered FNN.

Figure 2.2: Multi-layered FNN (Sazli, 2006)

• Convolutional neural network: CNN is a particular type of Feed-forward neu-

ral network. Unlike FNNs, local connectivity is preserved in convolutional neural

networks. Similar to multi-layered FNN, a typical CNN structure has convolu-

tional layers, pooling layers, and many fully connected layers. It is one of the most

Page 9 of 85

Chapter 2

researched deep learning models and used widely in applications related to Com-

puter vision. CNNs have many classical architectures such as AlexNet (Krizhevsky,

Sutskever, and G. E. Hinton, 2012) (Figure 2.3), VGG (Simonyan and Zisserman,

2014), and GoogLeNet (Szegedy et al., 2015).

Figure 2.3: Model architecture for Alexnet network

• Recurrent neural network: RNN is developed to handle sequential or series

of data. Similar to FNNs, Recurrent neural architecture receives input from other

neurons, but a unique memory mechanism allows it to maintain a piece of historical

information about processed input data. This memory mechanism enables RNN to

handle continuous series data efficiently. A problem called “long-term dependency’’

(Y. Bengio, Simard, and Frasconi, 1994; Hochreiter et al., 2001) can occur in basic

RNN models, so some variants of models are researched which introduce the gate

mechanism called GRU (Cho, Merriënboer, et al., 2014). Since RNNs are useful to

process series data, so they are mostly used for text and audio analysis.

• Graph neural network: GNNs are specifically designed to handle graphical data

or non-Euclidean data structures. Detailed researches with variants of models and

Applications are discussed in Section 2.3 and 2.4, respectively.

2.2 Geometric Deep Learning

Some research fields like social science, communications, genetics, and computer graphics

analyze data with non-Euclidean in nature, such as social network, sensor network, regu-

latory network, and mesh-shaped surface, respectively. Geometric deep learning (GDL)

is a specific type of deep learning method which has recently become one of the foremost

Page 10 of 85

Chapter 2

researched topics in machine learning. GDL is termed as a group of emerging tech-

niques to generalize deep learning models of structured or Euclidean domains to graphs

or manifolds in non-Euclidean domains (Bronstein et al., 2017).

2.2.1 Deep Learning Models for Manifolds

By definition, Manifolds are spaces which are locally euclidean in nature. The most

accessible and straightforward example is modelling the spherical surface of planet Earth,

which can be considered flat in a local region. As per(Wilson, 2012) “a differentiable

n-dimensional manifold X is a topological space named M where each point x has a

neighbourhood, i.e. x ∈ M is homeomorphic to n-dimensional euclidean space or Rn, also

called tangent space’’. In the research community of computer graphics, several efforts are

made to generalize deep learning models to manifolds; mainly, 3D surfaced models where

these three-dimensional objects are commonly referred to as “Riemannian manifolds’’.

(Masci et al., 2015) utilizes geodesic polar coordinates to apply local patch filters and

introduces an intrinsic type of CNN for manifolds that can achieve state-of-the-art perfor-

mance for applications as description and retrieval of shapes. In the similar application

area, (Boscaini et al., 2016) employed anisotropic heat kernels (Andreux et al., 2014)

as the alternative to retrieve integral patches in manifolds. (Sinha, Bai, and Ramani,

2016) proposes the method to obtain the Euclidean model of 3D surfaces using geometric

image representation and shows the application of standard CNN on such 3D shapes.

These spatial techniques can be generalized among different domains. Still, the construc-

tion of spatial models such as heat kernels uses a unique geometrical representation for

manifolds, which cannot be generalized for graphs.

2.2.2 Deep Learning Models for Graphs

Graphs are a simplified model of data construction for networks, similarities, interaction,

and dependencies between different objects. Initial work to generalize neural networks

for graph domains is found in (Gori, Monfardini, and Scarselli, 2005; Scarselli et al.,

2009), which is inspired from recurrent neural networks and includes most of the types of

Page 11 of 85

Chapter 2

graphs as directed, undirected, cyclic and labeled. Due to computation complexity, these

works remain unnoticed until, (Yujia Li et al., 2015) introduced optimized feature learning

techniques for graph-structured data with gated recurrent blocks. Similar to CNN (Bruna

et al., 2013; Henaff, Bruna, and LeCun, 2015) proposed deep neural architecture for the

graph in the spectral domain, using inference among classical Fourier transforms and

projections on eigenbasis for graph Laplacian operator. This work created a surge in

interest and research works for in-depth analysis of the non-Euclidean models, especially

in domains like computer vision and traditional machine learning models. Following

this model,(Defferrard, Bresson, and Vandergheynst, 2016) introduce a fast and localized

filtering technique independent of computing eigenvectors explicitly and uses “recurrent

Chebyshev polynomials’’. This approach is simplified in (Kipf and Welling, 2016) by using

simple filters that 1-hop neighbourhood techniques on graphs nodes. In the network

analysis domain, (Mikolov, Sutskever, et al., 2013) proposes the Word2vec technique,

which inspired many types of research as (Tang et al., 2015) to generate graph embedding

methods.

Since Fourier basis or Laplacian eigenbasis is dependent on the domain of applications,

and convolution in the spectral-domain is dependent on Fourier basis, which implies that

CNN model with spectral approaches such as (Bruna et al., 2013; Defferrard, Bresson,

and Vandergheynst, 2016; Henaff, Bruna, and LeCun, 2015) can learn on one graph, but,

this learning cannot be generalized to another graph with separate Laplacian eigenbasis.

2.3 Graph Neural Network Variants

The initial graph neural network proposed by (Scarselli et al., 2009) is considered as

the original GNN, which had labeled nodes for information, undirected edges. It works

on the most straightforward graph format. Many forms of graphs neural networks have

emerged based on input graph types, which enhance the representational ability of the

original model, modifications in propagation steps (such as convolution, gate, or attention

mechanism) for learning graph representation with better quality, and improving training

efficiency.

Page 12 of 85

Chapter 2

This section highlights the researches available for GNN models in categories, i.e., Sec

2.3.2 lists models operating on individual graph types, Sec 2.3.3 focuses on modified

GNN models based on propagation steps, and Sec 2.4 explains models utilizing advanced

training methods.

2.3.1 Basic Models

Deep learning methods have reached breakthroughs in many applications areas, most

notably in computer vision, speech and text recognition, and natural language process-

ing. 1D, 2D, or 3D Euclidean-structured data such as audio signals, video streams,

or images were in focus for most of the traditional deep learning architectures. In re-

cent years, several attempts are made to generalize deep learning architectures for non-

Euclidean structured data such as graphs and manifolds. Researchers have investigated

to extend CNNs from grid-structured data to generic Non-Euclidean structured data.

Non-Euclidean structured data have a variety of applications from domains of computer

graphics, modeling physical systems, or network analysis. Start:

(Boscaini et al., 2016) proposes Anisotropic Convolutional Neural Network to generalize

classical CNNs to non-Euclidean. ACNN replaces the traditional convolution process by

projections over a group of anisotropic diffusion kernels. ACNN can learn the complex cor-

respondence between irregular shapes, which is the fundamental problem in applications

requiring graph processing; however, this framework lacks to learn graphical structured

non-Euclidean data.

Based on local geodesic charting procedures in polar coordinates to extract patches,

(Masci et al., 2015) introduces a generalized CNN framework for two-dimensional non-

Euclidean manifolds as Geodesic Convolutional Neural Networks (GCNN) to learn task-

specific features in applications as shape retrieval. Then, these patches are processed

through layers of filters and linear or non-linear operations. Filter coefficient and weights

of linear combinations that act as optimization factors are learned to reduce the cost for

specific tasks. Since GCNN uses built-in spectral features as input to the network, it

can’t be defined on generalized functions defined on manifolds.

Page 13 of 85

Chapter 2

(Bronstein et al., 2017) Geometric deep learning architectures can be considered as an

umbrella term for emerging architectures to generalize structured deep learning methods

to non-Euclidean domains. This work provides a detailed overview of geometric deep

learning problems and their solutions, areas of applications and difficulties, and direction

for future work. It suggests generating spectral convolution may help to design CNNs for

a specific graph, but the same model can’t be applied to another graph. It is found that

generalization of the model across domains is also necessary for generalization of deep

learning methods to geometric data, only designing non-Euclidean counterparts for basic

building blocks(convolutional and pooling layers) are not sufficient. Besides, the dynamic

nature and direction of the relationship in graph data should also be kept in focus.

While many pieces of research focus on generalizing convolutions for graphs and mani-

folds, this thesis work is only focussed on methods defined on graphs with the investigation

of other variants and applications of GNNs. In deep learning models, (Xiaolong Wang

et al., 2017) introduces convolutional and recurrent operations which act as building

blocks to work on local neighborhood one-by-one. The non-local means (Morel, Coll, and

Buades, 2005) is a filtering algorithm based on non-locally weighted averaging of every

pixel in an image. It allows all pixels at a long-range to participate in filtering response

for a local neighborhood based on the similarity of the patch used.

(Boaz Lee et al., 2019) produces a continuous and focused work on graph mining that

has demonstrated several useful insights from structured graphical data. In real-world

applications, a graph can be both large in size and noise in nature; these noises can

act as the obstacle for practical graph mining. Similar to the attention model in deep

learning methods for Euclidean data, an efficient way to deal with noise in the graph is to

incorporate the “attention’’ mechanism into learning models. In graph setting, attention

mechanisms can help a method to focus on a task-relevant part and generate better

predictions. Attention can be used to find the importance of features from neighbors and

assign them to target nodes. In Fig: 3, the size of the edge defines weight in the attention

given to neighbor nodes. E.g., by focusing on target nodes classmates, the activity type

of target node can be predicted.

(Boaz Lee et al., 2019) categorizes existing work for graph attention models into three

groups, which are based on the method of problem settings(the type of input and output),

Page 14 of 85

Chapter 2

Figure 2.4: Attention given to neighbor nodes

attention type(similarity or weight-based) and type of task(node/edge or graph level)

Intensive surveys for neural graph networks are done in (Y. Zhang et al., 2018) and (Wu

et al., 2020), which are focused on discussing a variety of GNN models. (Y. Zhang et al.,

2018) explore advances in the graph analysis method and reviews different variants of

deep learning methods on graphs. (Wu et al., 2020) discuses an overview of GNN in the

machine learning domain and data mining. It also proposes taxonomies to categorize

state-of-the-art graph neural networks.

2.3.2 Graph Types

There are many varieties of graphs that model the unique forms and need specific GNN

architectures. Some graph neural networks modeled for particular types of graphs are

highlighted here:

Directed Graph:

The directed graph is the first of many kinds of graphs. Logically a graph with undi-

rected edges can be treated as a graph with a two-directional edge showing the flow of

information in both ways from each end node. But, practically directed graph represen-

Page 15 of 85

Chapter 2

tation more dense information as compared to undirected graphs. E.g., in the domain

of knowledge graphs, directed edges contain a head node and tail node for edges, which

are known as parent class and child class, respectively. While propagation of informa-

tion, parent and child classes are processed separately. When graph size becomes more

significant, distribution of information from distant nodes can suffer from the problem of

information dilution (Bruna et al., 2013) introduces a Dense Graph propagation to avoid

this problem by designing direct communication links for distant nodes. DGP utilizes

the hierarchically structured property of knowledge graphs with the direct link for nodes

based on the type of relationship with other nodes such as ancestor or descendent. DGP

also uses a weighting method where the two-weight matrix is defined as one for the parent

and other for the child node; these weights contribute depending on nodes distance.

Heterogeneous graphs:

It is another essential type of graph where many different types of nodes are present.

Usually, heterogeneous graphs are handled by modifying actual node features, i.e., ap-

pending the original feature node with a one-hot feature vector that is extracted from

the specific feature of the same node. For information propagation (Y. Zhang et al.,

2018) suggests “ GraphInception ‘’- a classification process based on a deep convolutional

network approach, which is aimed to learn node relationships in Heterogeneous Informa-

tion Networks (HINs). GraphInception employs the meta path concept, where a group of

neighbor nodes is created based on distance and node type. Each group is considered as a

sub-graph (as presented in a homogeneous graph), information propagation is performed,

results are appended for sub-graph propagation for combined node representation.

Similarly, heterogeneous graphs can also be processed based on hierarchical attention

models, like (Xiao Wang et al., 2019) proposed a heterogeneous graph neural network

(HGNN) that focuses on node and semantic level attentions in the graph. The node-

level attention is meant for learning relation among nodes, and meta path generated

using their neighbor nodes, whereas learning importance between individual meta path

comes under the semantic level attention mechanism. After considering the importance

of both semantic and node-level attention, HGNN forms node embedding by hierarchical

Page 16 of 85

Chapter 2

aggregation of meta path-based neighbor nodes.

Dynamic graphs:

Data forecasting based on spatial-temporal information is essential and commonly ap-

plied in domains such as climate prediction and traffic detail forecasting. Many of such

application areas involve prediction task by modeling on another variant of graph called a

dynamic graph, that has static graphical data and dynamically changing signals as input

data. Usually, in such scenarios, historical graph state is given, and future graph state

is supposed to be predicted. In Figure 2.5 example of a spatial-temporal graph is shown

where individual Gt represents a frame of current graph state at some time t.

Figure 2.5: Example of a spatial-temporal graph.

Traffic forecasting involves challenges like spatial dependency and non-linear temporal

characteristics of the road networks. These challenges are addressed in (Yaguang Li et al.,

2017), as it represents the traffic flow as a diffusion method applied on a dynamic graph

and proposes Diffusion Convolutional Recurrent Neural Network (DCRNN) architecture,

which considers both spatial and temporal information. Spatial and temporal data are

collected using GNNs, and the result is sent as input to sequence models such as CNNs.

In contrast, (Jain et al., 2015) discusses an approach to utilize the strength of high level

spatial and temporal information and sequential learning of recurrent neural networks

(RNNs) all together at the same time. This method can be generalized for transformations

of any spatial-temporal graph by performing some set of operations.

Page 17 of 85

Chapter 2

Graphs with edge information:

In graph models, edges can also contain useful information as weight or type of relation-

ship between nodes. These kinds of graphs can be processed in two ways: first, modify

the given graph to a bipartite graph where actual edges are represented as new nodes,

and second, edge with information is split into two new edges. (Beck, Haffari, and Cohn,

2018) uses a new model to encode complete graphical structured details and allows nodes

and edges to exhibit implicit feature representation. Using a similar type of graph with

edge information (Schlichtkrull et al., 2017) introduces Relational Graph Convolutional

Networks (R-GCNs). It employs it to tasks of Link prediction and classification of nodes.

Link prediction involves tasks such as prediction of relationship or triples, i.e., subject-

predicate-object. In contrast, the classification of nodes includes the prediction of node

attributes. R-GCNs are specially designed to handle a high level of multi-relational data.

Multi-dimensional graphs:

Unlike all kinds of graphs (with binary edges) discussed earlier, graphs used in the real

world applications involve multi-relationships among nodes that are known as the “multi-

dimensional graph or multi-graph’’. Figure 2.6 shows an example of a multi-graph having

a graph and dimensional expansion. For example, in web-based application Instagram,

content sharing and user interaction can be either “comment’’, “like’’ and “share’’. In

such cases applying a one-dimensional graph model may give an incorrect prediction be-

cause the relation type between nodes is not independent naturally. (Y. Ma et al., 2018)

analyses this problem and introduces a multi-dimensional convolutional neural network

model (mGCN) to handle a large set of data in learning collective node representation

for multi-graph.

Recently, some unique kinds of multi-graph are designed such as (Khan and Blumenstock,

2019) develops graph-based convolution architecture to perform learning on a multi-view

network. It uses two certain operations to convert multigraph into a single-dimensional

graph, which starts from combining multi-view using sub-space analysis and then opti-

mization of the graph by learning manifolds. Similarly,(Sun et al., 2018) constructs an

algorithm called “multi-view network embedding (MVNE)” to reduce multi-view network

Page 18 of 85

Chapter 2

Figure 2.6: Example of multi-graph having a graph and dimensional ex-

pansion.

to lower-dimensional node embedding.

2.3.3 Propagation Steps

Designing propagation methods and output steps are an essential part of modelling a

graph, as it helps to extract the implicit state of nodes or edges. Several pieces of

research have emerged to enhance the propagation method, while for the output step,

a simple feed-forward neural network is used. These researches use a unique aggregator

to collect data from neighbours of nodes and different updater modules to modify the

implicit state of nodes. This variety in propagation steps results in a variety of GNNs:

Convolution:

Many pieces of research in graph domains are focused on generalizing the convolution

method to non-Euclidean domains. These works are grouped on approaches taken for

kinds of graph representation as spectral and non-spectral.

Page 19 of 85

Chapter 2

“Graph Convolutional Neural Networks’’ are popularly used for graphical data represen-

tation and applied to learn semi-supervised applications. Unlike previous graph CNNs

that do not apply to semi-supervised tasks and use fixed graphs, Graph Learning Convo-

lutional Network(GLCN) is introduced in (Kipf and Welling, 2016) for representing graph

data and semi-supervised learning tasks. GLCN unifies both graph learning methods and

convolution in graphs. It also efficiently incorporates given and estimated labels to gener-

ate supervised data and utilizes them to construct the graph with convolution operation

for estimation of the unknown tag. Being scalable in nature, GLCN outperforms tra-

ditional state-of-the-art fixed graph-structured CNNs; however, its memory requirement

increases linearly with the size of the graph and does not handle the weight and edge

direction between nodes.

In Non-spectral approaches, convolutions are generalized directly on the graph structure,

and they work on neighbours that are spatially near. In this approach, designing con-

volution for random sized neighbours becomes a challenging task. Through diffusion-

convolutional neural networks (DCNNs), (Atwood and Towsley, 2016) proposes the

diffusion-based representations to learn graph-structured data and uses it as an efficient

node classification method. DCNN exhibits qualities like isomorphic invariant graphical

data representation, learning, and prediction for time-based polynomials. These qualities

make DCNN perform better than probabilistic relational models (Koller and Friedman,

2012) and kernel-on-graph methods (Fouss et al., 2012), but DCNN lacks in scalability

as it can’t be applied to more massive graphs with millions of nodes; also, it does not

possess the capability to encode spatial dependencies in the broader scope of nodes

(Monti et al., 2017) introduces a coordinated framework called Mixture model networks

(MoNet), which follows the idea of spatial domain methods. MoNet framework allows

generalizing CNN based deep learning architectures to handle non-Euclidean structured

data such as graphs (Kipf and Welling, 2016) and few models on manifolds (Atwood and

Towsley, 2016) by learning local, integrative task-specific, and stable features. MoNet

outperforms traditional approaches on standard tasks, i.e., analyses of images, graphs,

and 3D shapes.

Page 20 of 85

Chapter 2

Gate

Many new methods utilize gated mechanisms such as GRU (Cho, Merrienboer, et al.,

2014) or LSTM (Sepp Hochreiter and Schmidhuber, 1997) for enhancing the propagation

of data availability duration across the graph with diminished restrictions as compared

to the original GNN model. (Zhuang and Q. Ma, 2018) presents a simple but scalable

dual graph convolutional neural network (GGNN), which is designed to handle local and

global consistencies for a graphical network. This model utilizes two convolutional net-

works and learning methods to collect both types of consistencies.

Attention

In the traditional machine learning domain, the attention mechanism is widely used for

sequential task models such as machine reading (Cheng, Dong, and Lapata, 2016) and

translation (Bahdanau, Cho, and Yoshua Bengio, 2015). Unlike the original GNN, which

considers all neighbours equal in contribution, the attention models treat neighbours dif-

ferently and assign separate attention score values to each neighbour. This assignment

results in categorizing important and essential neighbours. Usually, these attention mech-

anisms are included in the propagation steps. (Veličković et al., 2017) introduces a “graph

attention network’’ (GAT) that includes the attention mechanism while performing the

propagation step. This model utilizes a self-attention method to collect implicit state

information of a node by traversing neighbours. Self-attention method is implemented

by employing a single attention layer.

Skip Connection

Some applications try to use more GNN layer together as stacking to get a better output,

using the basic concept as more layers can help nodes to collect extra neighbourhood

information. But, in reality, many applications can perform worse in the case of deeper

models (Kipf and Welling, 2016), because expanded neighbours can cause noisy data,

which can also be propagated through the increased number of layers. To handle this

Page 21 of 85

Chapter 2

problem, (He et al., 2015) proposes a residual learning framework in the computer vision

domain. This framework helps to train the deeper layer model by formulating layers as

a residual function of learning.

2.4 Training Methods in Graph

Some advanced training methods are researched as original GNN has few drawbacks in

training and step optimization. In particular, the GCN model calculates the complete

graph Laplacian, which involves an expensive computational process in case of large

graphs. Also, computing node embedding at layer L is a recursive process, and based in

neighbours in layer ‘L-1’. So if the number of layers (L) is increased, then the size of the

receptive field of a node increases exponentially.

Sampling

For better effectiveness and scalability in GNN models, sampling techniques are added.

(William L Hamilton, Ying, and Leskovec, 2017) suggests the GraphSAGE model, which

tries to replace full graph Laplacian with the learning process in the aggregation method

and can be generalized to unprocessed to nodes also. Initially, it aggregates the em-

bedding of neighbourhood nodes, appends to node embedding of the target node, and

concatenated information is propagated to the next layer in the model. GraphSAGE

uses this learned aggregation and generates node embedding of unseen nodes too, i.e.,

instead of calculating embedding of individual nodes, an aggregation function is learned

to generalize embedding by sampling features from neighbourhood nodes.

Hierarchical Pooling

In the deep learning model for computer vision applications, a pooling layer is required

following a convolutional layer to capture generic features. Usually, large-scale complex

graphs involve plenty of hierarchical information for node or graph level classification.

Page 22 of 85

Chapter 2

So many researches are done for designing layers for hierarchical pooling in graphs. (Si-

monovsky and Komodakis, 2017) tries to explore such implicit hierarchical features and

introduces the Edge-Conditioned Convolution (ECC) design, where pooling layers are

created by using the recursive downsampling method. The downsampling method splits

the original graph into two-part using the sign of eigenvector with maximum size in

Laplacian information.

2.5 General Graph Frameworks

Many graph frameworks are available to integrate different graph neural networks models

into one framework, such as (Gilmer et al., 2017) suggests message passing neural network

(MPNN) , which utilizes the basic building blocks structure of deep learning methods

such as batching and normalization. MPNN framework is targeted to generalize GNN

and GCN methods. (Xiaolong Wang et al., 2017) proposes another framework called

as non-local neural network (NLNN) to aim computer vision tasks by generalizing ‘self-

attention’ methods on graphs. Unifying both MPNN and NLNN, (Sanchez-Gonzalez

et al., 2018) introduces the graph network (GN) framework, which also includes several

other interaction and relational networks.

Message Passing Neural Networks

In the domain of chemistry (drug discovery and medicine science), several efficient and

neural network models are present, which are invariant to symmetry in molecules. These

models generate a function of the entire input graph by learning a message-passing al-

gorithm with the aggregation process. In (Gilmer et al., 2017) a specific variant to this

generic method is found and applied to chemical prediction to achieve benchmark re-

sults. A new generalized framework called Message Passing Neural Networks (MPNNs)

is created by reformulating existing models. MPNNs is targeted to predict the quantum

properties of organic molecules by modeling a computationally expensive calculation.

MPNNs allows long-ranged interaction between nodes. Since it uses spatial information

while training, it is challenging to generalize MPNNs to larger molecule size.

Page 23 of 85

Chapter 2

Non-Local Neural Networks

NLNN aims at capturing long distances relationships in deep neural networks by gen-

eralizing classical non-local mean operation used in computer vision applications. It

calculates response at any position as the weighted sum of all neighbourhood position

features. These neighbourhood position features can be in the domain of space, time or

space and time both. The generated building block can be used in applications based on

computer vision architectures.

Graph Networks

(Battaglia, Hamrick, et al., 2018) presents a framework called Graph Network (GN) to

generalize and extend various approaches in neural networks used for the graph. GN is

inspired by a flexible learning approach and utilizes high relational inductive biases to

draw advantage from explicitly defined representation and computations. Graph networks

use customizable graphs as building blocks to handle complex architectures, and their

relational inductive biases, i.e., specific assumptions in design structures, promote better

sample efficiency than traditional machine learning methods. However, graph networks

exhibit a higher level of abstraction, and the classification of the application area is

roughly defined.

GNN benchmarking framework

(Dwivedi et al., 2020) suggests a framework to benchmark GNNs, which identifies whether

architecture types, initial principles, or methodologies incorporated can be generalized

or upscaled when a larger and complex dataset is encountered. It has evaluated GNNs

performance on medium-scale datasets, showcases the usefulness of graph networks, which

are theoretically expressive and based on the basic message passing method.

Page 24 of 85

Chapter 2

2.6 Graph Applications

GNNs have been applied and tested on a wide range of application domains, such as

learning based on supervised, unsupervised, and semi-supervised methods. Here, these

applications are structured into two scenarios, structural and non-structural. And, some

representative applications are summarized under both categories.

Structural Scenarios

It represents applications where the information contains an explicit relational structure

such as modeling real-world physical systems, prediction of chemical properties based on

molecular structures.

The relational structure of objects in real-world systems can be modeled as a graph using

GNN based reasoning, which can represent a simpler view of physics, objects as nodes

and relations as edges. (Battaglia, Pascanu, et al., 2016) introduces an interaction model

for such physical systems, where the interaction of objects can be predicted, and implicit

properties can be inferred. The major task of this model is to predict the new physical

state of the system by utilizing relational object data, the implicit reason behind the

interaction, and physical dynamics of objects.

The drug designing in chemistry with the aid of machine learning methods can also be

considered in this scenario, where molecular fingerprints are determined using features of

a particular molecule. Applying GNN to a molecular graph structure can result in better

molecular fingerprint prediction. (Duvenaud et al., 2015) suggests a standard neural

network model that can handle arbitrary graph information and generalizes extraction of

the substructure feature vector by employing a method based on circular fingerprints.

Non-Structural Scenarios

Applications based on multi-agent systems, text, source code programming, and im-

ages are non-structural scenarios. Usually, there are two methods to apply GNNs on

Page 25 of 85

Chapter 2

non-structural data- first, acquire structural properties from other domains to enhance

performance; second, assume the relational information in the scenario and supply these

inputs to the model designed for graphs.

The task of image classification in computer vision is a non-structural scenario where

zero-shot and few-shot learning (X. Wang, Ye, and Gupta, 2018) methods are getting

attention, and GNNs are used to incorporate structural information. The classification

based on zero-short recognition can also use knowledge graph information. (X. Wang, Ye,

and Gupta, 2018) builds a knowledge graph to predict the classifier on different categories

of objects/nodes and suffers from over smoothing as it uses six GCN layers that remove

important features too. (Kampffmeyer et al., 2019) tries to solve this problem by covering

a larger neighborhood with both one and multi-hops on objects/nodes in the graph and

only one GCN Layer.

Page 26 of 85

Chapter 3

Model Designs and Libraries

3.1 Original Graph Neural Network

In traditional machine learning algorithms, the data used are mostly Euclidean in nature.

As the initial step, Inputs are converted into numerical representation or features, and

in many scenarios, statistical data is represented in the cartesian coordinate system.

For deep learning approaches, and the embedding and flattening layers are employed to

present any textual data and image grid data, where any implicit relationship among data

is missed before the preprocessing layer only. In other words, sparse vector representations

hold no meaningful relationship among inputs or miss comparative information. As a

result, any similarity or distance between input feature vectors become the same. To

overcome this problem, “distributed vector representation’’ is considered. In this data

representation or feature creation method, generated features may or may not exhibit

any useful relationship with input data but posses a comparative value denoting similar

inputs that are encoded to the same features. For example, a vectorized representation of

a dog will have similarity (in the sense of distance) or close relationships to other animals

like cats, rather than any flower or non-living objects. But this similarity can’t be found

in “non-distributed vector representation’’.

The term Graph neural network is first coined in (Gori, Monfardini, and Scarselli, 2005)

as a neural network approach to process graphs. Later (Scarselli et al., 2009) proposes

Page 27 of 85

Chapter 3

a new neural network to process information in graph domains, which is considered as

Vanilla GNN. It utilizes a function τ(G ,n) ∈ I Rn to encode graph ‘G’ and each node from

a non-euclidean into n-dimensional Euclidean space. After this, a supervised learning

method is used in parameter estimation.

Graph-based applications can be grouped into two classes as graph and node focused

tasks. In graph focused tasks, nodes do not influence function T, and it uses a regressor

or classifier for graphical datasets such as modelling a chemical compound with atoms and

chemical bonds between atoms. Whereas. In node-based tasks, function T and regressor

or classifier also depend on each node. Tasks such as detection of objects in an image

with local position estimation are node focused applications. The vanilla GNN is useful

for both classes of graph applications.

3.1.1 Model

The vanilla GNN (Scarselli et al., 2009) can process graphs such as directed, undirected,

and cyclic based on application design. The basic idea is that objects or concepts can

be represented as nodes and their relationships as edges in a graph. And, each object is

represented using its input features and link among other objects.

A simple graph ‘G’ is denoted as pair (N, E), where N and E represents a set of nodes

and edges in the graph.

A node ‘n’ is naturally represented with its features and relationship to neighbour nodes

using edges.

The set of nodes connected to node ‘n’ and set of edges with node ‘n’ as one of the vertices

is denoted as ne[n] and co[n].

Each node and edges may have state or labels or input features denoted with real vectors;

labels for node ‘n’ and edge (n1,n2) can be shown as ln and l(n1,n2), where l is the vector

that includes all labels of graph ‘G’.

In Figure 3.1, the vanilla GNN model is applied for an undirected graph with ‘ln’ and

l(n1,n2) as input features or labels for node ‘n’ and edges with nodes n1 and n2.

The motive of vanilla GNN is learning the node or state embedding xn ∈ R s , which acts

as encoded information based on neighbour nodes of ‘n’. And, this state embedding xn

Page 28 of 85

Chapter 3

Figure 3.1: Example of the graph used in the vanilla GNN (Scarselli et al.,

2009)

is useful to find output on, like the prediction of node label distribution.

Two parametric functions - ‘local transition function’ and ‘local output function’ are rep-

resented as ‘f’ and ‘g’.

Parametric function ‘f’ is used to evaluate node state xn as per input features of neigh-

bourhood nodes. This function is used for each node in the graph. And function ‘g’ is

used to find the output of node ‘n’.

xn = f (ln , lco[n], xne[n], lne[n]) (3.1)

on = g (xn , ln)

Where ‘l’ is input feature vector, ‘x’ is hidden state, co[n] and ne[n] are set of edges and

neighbourhood nodes of node ‘n’. In other words,

ln is input features of node n,

lco[n] is features of edges,

xne[n] is node or state embedding neighbourhood nodes and

lne[n] is the input features of neighbourhood nodes

Page 29 of 85

Chapter 3

In the example In Figure 3.1 for node ‘n=1’, l1 is the input feature,

set co[1] includes l(1,2), l(3,1), l(1,4), l(6,1) as input features of edges connected to node ‘n=1’,

set xne[1] has x2, x3, x4, x6 hidden state for neighbour nodes to node ‘n=1’,

And set ne[1] contains l2, l3, l4, l6 as labels or features of neighbour nodes of node ‘n=1’.

For example, state for node ‘n=1’ can be written as:

x1 = f (l1, l(1,2), l(3,1), l(1,4), l(6,1), x2, x3, x4, x6, l2, l3, l4, l6)

Upon stacking all edge and node features, state embedding with distribution output,

matrices ‘X’, ‘O’, ‘L’, and ‘LN ’ are constructed as a compact representation.

X = F (X ,L) (3.2)

O =G(X ,LN)

Where ‘F’ and ‘G’ are called global transition and global output functions, respectively.

Here, ‘F’ and ‘G‘ can be identified as stacking of all local ‘f’ and ‘g’ functions together.

For computing the next state in iteration, “Banach’s fixed point theorem’’ (Khamsi and

Kirk, 2001) is used. GNN uses the simple iterative scheme as

X (t+1) = F (X t ,L)

Where X t represents t th iteration for X and for any initial state X(0), this equation has

exponential convergence for finding the solution.

When target information is available, for instance, tn denotes target for specific node ‘n’;

the loss can be calculated as

loss =
p∑

i=1
(ti −oi) (3.3)

Where ‘p’ represents the count for supervised nodes

For learning parameters of local transition(f) and output(g) functions, gradient descent

strategy is utilized as per steps:

Page 30 of 85

Chapter 3

1. Update node state x t
n iteratively for a particular time T, which results in approxi-

mately fixed-point value for X (T) ≈ X from the equation:3.1

2. Calculate the gradient of weights ‘w’ from loss in the equation:3.3

3. Update weights as per gradient found in the step 2.

After learning algorithm, the trained model can be used for supervised of semi-supervised

tasks with implicit or hidden node features.

3.1.2 Limitations

Even if the vanilla GNN is efficient architecture for modelling graphical data structures,

it also has some drawbacks that limit its performance.

1. The learning algorithm requires iteration for time T to update node states and

compute the fixed-point value, which is a computationally expensive process.

2. The vanilla GNN uses the same parameter for each iteration, but other neural net-

works employ different settings in iteration, which enables them to mine hierarchical

information from the neighbourhood.

3. It can’t handle efficiently model graph structures when edges contain different fea-

ture information such as in knowledge graph message propagation depends on the

kind of edges or relationship between nodes.

3.2 Graph Convolutional Network

The main aim of the graph convolutional network is to generalize the convolution process

to be used for graph-based applications. Since CNNs are quite famous and successful

in many applications of deep learning, so it is imperative to define convolution also for

operations related to graphs. Methods are usually grouped into two as- spatial and

spectral approaches.

Page 31 of 85

Chapter 3

Spectral methods are employed when the spectral representation of the graph is available.

Here, graph specific Laplacian eigenbasis based filters are learned, so the model generated

for a particular graph cannot be applied for other graph structures. In contrast, the

spatial method tries to define convolution on spatially local nodes and the different size

of neighborhood nodes.

As discussed in section 2.2, the geometric deep learning is the area that deals with

interactions of the graph and neural networks. To understand typical graph convolutional

networks, the first few basic graph theory should be known. Graphs are structured data

with nodes and edges, where nodes and edges can have weights or labels as numerical

or textual labels. Node features are a set of features that usually represent a node;

understanding of labels should not be mixed with features. For an analogy- if the node

represents a person, then the label can be a person’s name, and features are a person’s

characteristics.

Some matrices are utilized to convert the information of the graph into some numerical

format. These matrices are the Incidence matrix, Adjacency matrix (A), Degree matrix

(D), and Laplacian matrix (or graph Laplacian; L=D-A). Laplacian matrix, also called

Laplace Beltrami operator, measures smoothness, i.e., how quickly adjacency vertices

change or how smooth the graph is.

Even if convolution is the backbone of CNN, wherein a 2D image grid/pixel values and

neighborhood (8 pixels) are always fixed. But convolution fails on graphs because:

• Unlike images/grids, graphs do not have regular patterns for the neighborhood.

Also, neighbor nodes can change their position, i.e., the locality principle is not

valid.
• Graphs do not follow fixed node ordering, i.e., node number can be random at any

time.

It is clear that a fixed convolution filter cannot be used here. Initially, the graph can

be converted into adjacency matrix A and appended with feature vectors, as shown in

Figure 3.2. But this method has issues as the Adjacency matrix will change if node

ordering changes and the dimension of the matrix will change if graph size changes. So

Page 32 of 85

Chapter 3

this form of graph can’t be feed into neural networks as neural networks are designed for

fixed dimensions.

Figure 3.2: Representation of graph information as a combination of the

adjacency matrix and feature vectors

(Kipf and Welling, 2016) suggest Graph convolutional networks, where convolution is

for filter parameters that are shared for all nodes in the graph. This neural network is

similar to CNN and employs all three steps (locality, aggregation, and composition) of

basic CNN can be defined in the perspective of graphs, i.e.,

• Locality: how a node ‘1’ is connected to its neighbor nodes ‘2’, ‘3’, ‘4’.

• Aggregation: how neighbor nodes ‘2’, ‘3’, ‘4’ contribute to ‘1’ with there own

weight matrices, and how their weights are combined with corresponding nodes to

contribute to the final node.

• Stacking of layers: how to perform a composition of functions, i.e., passing the

result of aggregation to more complex layers.

In essence, most of the graph neural networks are similar in the overall architecture. The

aim is to learn an embedding function of features or signals for a graph G=(V, E) (where

V is vertices and E as edges) that accepts inputs as:

• xn is a feature description for each node ‘n’, represented by feature matrix ‘X’

with dimensions NxM (N is the number the nodes, and M is the number of input

features)

Page 33 of 85

Chapter 3

• ‘A’ is the adjacency matrix with size NxN, represents graph structure in a matrix

And, calculate result as a node-level output Z feature matrix with NxP dimension (P is the

number of node-level output features). Also, the graph-level output can be generated by

using some pooling operations. Here, the embedding function maps the nodes of graphs

to a lower-dimensional embedding structure in such a way that similar nodes in graphs

are embedded close to each other. This embedding function is also called encoder function

‘Y’ that projects graph to a lower-dimensional space, i.e., ‘Y’ operates on the actual graph

and map this actual graph to d-dimensional space (d is much less than graph dimension)

with retaining adjacent nodes in lower dimension feature space also. In Figure 3.3, in

graph network nodes, u and v have embedded as Zu and Zv in d-dimensional embedding

space, respectively. Here, similarity(dot product) between features of node u and v is

the same as Za and Zb. This embedding function ‘Y’ performs locality, aggregation, and

stacking of layers altogether.

Figure 3.3: Embedding of nodes from a graph to lower dimensional space

The locality of information is achieved by forming a computational graph. In Figure

3.4, central node A with X A feature is the target node, and its connections with the

neighborhood of neighbors are determined using a computational graph. In a similar

way, two layers computational graph of each node are generated.

Once computational graphs are available, the aggregation process starts to determine the

contribution of Neighbour nodes, i.e., aggregation is performed using weights of there

corresponding contribution. This is basically done by neural networks that are present

Page 34 of 85

Chapter 3

Figure 3.4: Computational graph for a target node

inside those blocks, as shown in Fig 3.4. For example, aggregation is done in blocks by

summing X A and XC to form B and finally summing all of them to form A as output called

ZA using a bigger neural network. This summation operation is permutation invariant,

i.e., it is irrelevant to node ordering. Thus neural networks have an important role in

forming computational graphs.

Here, the forward propagation rule means information as Xa and Xb feature vectors from

input side flows to output side Za with size Nx1, where N is much much less than M of

neural network. Input nodes have their own embedding in feature space, which can be

Mx1 for feature Xa.

For the mathematical formulation of propagation in GCN, every neural network can be

represented by a non-linear function:

H l+1 = f (H l , A) (3.4)

Where embedding at layer l=0 is H 0 = X as initialization to node feature, and H L = Z

(where Z is node or graph level output, L is the number of layers). Any particular GCN

model can be differentiated based on selection and parameterized form of function ‘f’.

Considering a simple layer-wise propagation rule which is quite powerful although its

simplicity is represented as:

f (H l , A) =σ(AH l W l) (3.5)

Page 35 of 85

Chapter 3

Where A is the adjacency matrix, W l is a weight matrix for the l th layer to be tuned in

computational graphs and sigma as activation function (typically nonlinear in nature such

as ReLU) that ensures final output belonging to each node is a vector of ‘probabilities’,

where all values are in the range of 0 and 1, and the class of a node can be predicted as

the element with maximum value.

This model has two fundamental limitations as for every node, feature vectors of neigh-

borhood nodes are accumulated except that node itself, which can be fixed by adding a

self-loop by simply enforcing an identity matrix. Also, adjacency matrix A is not normal-

ized and multiplied with other vectors, which will, in turn, result in change dimensions of

feature vectors and can cause an explosion in gradients and optimizer sensitive to feature

scaling. This is fixed by normalizing Adjacency matrix A so that each row in A have some

as 1. ‘D’ a diagonal degree matrix as D−1A is added, which will result in averaging of

neighboring node features. Now combining both fixes, a new propagation rule is formed

as:

f (H l , A) =σ(D̂−1/2 ÂD̂−1/2H l W l) (3.6)

where Â is A + I, where I is the identity matrix, and D̂ is the diagonal node matrix from

Â. These generated embeddings are then supplied to a loss function, and a stochastic

gradient is applied to train the weight parameters.

3.3 Graph Libraries and Frameworks

Several deep learning frameworks and libraries are available to model deep learning on

graph and model graph neural networks. Apart from popular deep learning libraries such

as TensorFlow, Keras, and PyTorch; this section introduces some tools that are available

for implementing graph neural networks and are employed in this thesis work.

3.3.1 Deep Graph Library (DGL)

DGL is invented by distributed machine learning communities on GitHub; they are the

same crew that released the XGBoost algorithm. It is a python package dedicated for

Page 36 of 85

Chapter 3

implementing a family of graph neural networks. It supports seamless integration with

traditional deep learning frameworks, i.e., if an end-to-end application involves the graph

model component, then the rest of the logical ingredients can be written in any machine

learning frameworks. As shown in Figure 3.5 (docs.dgl.ai, 2020), It is built atop existing

layers of deep learning frameworks like, e.g., Pytorch, TensorFlow, or Apache MXNet,

etc. This library provides a simplified set of GNNs specific functions to implement graph

networks in a few lines of codes. DGL is actively maintained, supports cross-platform,

contains readable code with proper documentation. It also provides efficient scalability

for graphs with a large number of nodes or vertices.

Figure 3.5: Deep Graph Library stack

AWS Deep Graph Network

DGL is available in Amazon web services based SageMaker service through AWS ECR(Elastic

Container Registry) using a deep learning container where PyTorch and Apache MXNet

are available as backend support. In Figure 3.6 (Sagemaker, 2020), layer-wise represen-

tation is shown for different modules available under AWS based in-depth graph network

development.

Page 37 of 85

Chapter 3

Figure 3.6: Deep Graph Library stack in AWS Sagemaker

3.3.2 Spektral

It is a framework designed for relational representation learning, which is built for python.

This library also helps in modeling graph-based deep learning. It is based on TensorFlow

2 and Keras API. It provides a natural, fast, and flexible environment for implementing

and experimenting graph neural networks(GNNs) (Grattarola and Alippi, 2020) by per-

forming a broad set of functions. These functions allow loading of accessible datasets,

processing of graphs as well as basic operations for GNNs, i.e., message-passing and pool-

ing operations in convolution neural networks. It can be utilized to classify or clustering

vertices or nodes in a graph network, creating new graphs with GANs and predicting

edge or nodes properties. Being an open-source project on GitHub (Grattarola, 2020), it

is currently the most mature library for implementing GNNs in the TensorFlow environ-

ment.

3.3.3 PyTorch Geometric (PyG)

It is a python library for deep geometric learning on irregular data such as graphs and

manifolds. It is an extension to the PyTorch library in python. It has the latest types

Page 38 of 85

Chapter 3

of graph networks already built and ready to call in a single line function. Apart from

providing loader for several small and unique giant graphs, a variety of popular benchmark

datasets and methods to transform graphs are available; it also contains many methods

for relational representation learning and manifold data processing. In (Fey and Lenssen,

2019), the comparison is made with other deep graph libraries, and it is found that

PyG is faster, even working with sparse data. It employs sparse GPU acceleration and

dedicated CUDA kernels with efficiently handling input with different sizes to achieve a

higher standard of data throughput.

3.3.4 StellarGraph

It is another python library for machine learning models on graph-structured data. It

offers several state-of-the-art algorithms for machine learning models on graphs or net-

works. These algorithms can be used for a broad range of tasks such as node classification

and interpretation, link prediction, classification of the whole graph. StellarGraph (Stel-

larGraph, 2018) is based on TensorFlow2, high-level APIs of Keras, with NumPy and

Pandas library. Also, it is designed to be integrated into existing workflows. Models

implemented based on StellarGraph consists of a pair of items; such as, a data generator

that converts basic graph structure and features from node to a standard input format

which can be supplied to the Keras model for further processing, and the design of layers

such as graph convolutional layer, dropout layer, and some dense layer.

3.3.5 Graph Net Library

It is a machine learning framework published by Deepmind research. Graph net library

is built as a python library to allow the use of graphs networks (Battaglia, Hamrick,

et al., 2018) in TensorFlow and Sonnet. Graph network framework utilizes the con-

cept of the graph to graph modules where each graph contains characteristics as nodes,

Relations among nodes, and system-level properties called Global attributes. It has a

well-documented structure and has many google colab notebooks to showcase the usage

of graph network libraries such as find the shortest path, sort numbers, and predict a

Page 39 of 85

Chapter 3

physical system.

3.4 Overall Workflow

Figure 3.7: High-level architecture for implementation design

Page 40 of 85

Chapter 4

Implementation

Following the detailed design of graph neural network and mathematical formulation of

propagation steps in chapter 3, this chapter implements those designs based on supported

graph libraries for different application areas to conduct experiments aimed at research

questions. Initially, technical setup, including the programming environment and required

hardware, are covered, and details of three selected datasets used under this work are

provided.

GCN neural network model is implemented on three chosen datasets, where two are for

node classification, and one is for graph classification task. Jupiter notebooks are used

for all three implementations; these notebooks are structured mainly in three sections:

1. Data preparation using standard python libraries such as Pandas and scikit-learn,

which includes- generating graphical data from the dataset, performing some simple

introspection, retrieving training, validation, and test data.

2. Design model by utilizing GCN layers from supported graph libraries such as DGL,

StellarGraph, and Spektral.

3. Finally, the created model is trained, and the results are evaluated.

Page 41 of 85

Chapter 4

4.1 Overview

Since Graph convolutional networks are capable of solving a variety of problems, in this

work node centric and graph centric applications are implemented.

4.2 Technical Setup

4.2.1 Programming Environment

As a programming environment setup, all implementation of modules is done in python3

language in Jupiter notebook format. Deep learning frameworks such as Tensorflow 2,

Keras, NetworkX are used in combination with deep graph libraries such as DGL and

Spektral. Operating systems are selected as windows, for local machine computation of

Jupiter notebooks, Intellij Pycharm is used.

4.2.2 Hardware Requirement

For computation-intensive implementation, NVIDIA GTX GPU is used locally to sup-

port with Intellij Pycharm IDE, and for DGL library-based computation, cloud AWS

Sagemaker service is utilized, which provides- notebooks instances with high-end CPU

capabilities optimized for machine learning tasks, platform-independent execution, and

several Jupiter notebooks preloaded with kernels containing most of the deep learning

frameworks.

However, in this thesis work, some basic graph datasets are used, but for larger and more

complex graph structures, more powerful and customized hardware support is necessary.

Page 42 of 85

Chapter 4

4.3 Dataset

As Graph neural network with Convolution layer is studied in this work, for evaluation

and testing GCN model, three benchmark datasets are considered. In this section, char-

acteristics of datasets such as Zachary’s karate club (club, 2013), Cora-citation network

dataset (Sen et al., 2008), and MNIST are (LeCun and Cortes, 2010) are briefly described.

Dataset statistics are summarized in Table 4.1.

Table 4.1: A summary of dataset statistics

4.3.1 Zachary’s Karate Club

It is a well known and documented dataset that represents a social network that includes

34 members and individual relationships outside the university karate club (club, 2013).

It has a detailed depiction of community structure, which makes it quite popular. In

this network of nodes, a densely connected set of nodes can be classified into groups.

Specifically, the network can be organized into two communities, having centers as a

karate teacher (node 0) and a club president (node 33), where network structure helps

to predict how the karate club will be split into two. The club network is visualized in

Figure 4.1, and color represents the community. This dataset is a small network of nodes

and perfectly fits the scenario of structured data for graph application where data are

naturally available in the graph structure.

Page 43 of 85

Chapter 4

Figure 4.1: Graphical representation of Zachary’s karate club dataset

4.3.2 Cora Citation Network

Among three citation network datasets - Cora, Citeseer, or Pubmed (Sen et al., 2008);

the Cora dataset is selected as 2nd dataset in this work. This dataset is a collection of

academic papers that represent the nodes and citation relationships between papers rep-

resents links/edge in graph network. Each node/paper is manually classified into seven

classes/categories, such as Case-Based, Genetic Algorithms, Neural Networks, Probabilis-

tic Methods, Reinforcement Learning, Rule Learning, and Theory. The Cora Citation

network depicted in the dataset has 2708 nodes as scientific publications in the machine

learning domain, and 5429 edges/links; a high-level representation is shown in Figure

4.2 (Orbifold, 2020). The feature vector of each node is described by a 0/1 valued word

vector that describes the presence/absence of corresponding words from the vocabulary

that has a size of 1433, representing unique words regardless of frequency and order of

appearance. Every publication has text and at least one node in the neighborhood with

a moderate degree of citation as 2. This dataset is a large network of publications as

nodes, i.e., data is naturally in a graph structure, so it can be considered in structured

scenarios of graph application.

Page 44 of 85

Chapter 4

Figure 4.2: high-level representation of Cora citation network dataset

4.3.3 MNIST

It is one of the most popular and large datasets, which has the collection of handwritten

digits with ten digits as classes. The MNIST dataset is actually a subset of the larger

NIST dataset. The MNIST database (LeCun and Cortes, 2010) has training and test

set with 60,000 and 10,000 examples images, respectively. All handwritten digits are

normalized in size, stored within the fixed bounding box of image size (28x28 pixels),

and anti-aliased that introduced the grayscale format. Due to its simplicity, the MNIST

dataset is widely used for training and comparison of various machine learning techniques.

The objective of those machine learning techniques is classifying handwritten digit into

one of ten numeric characters.

Figure 4.3 shows a few sample images from the dataset and internal representations of

one of these images. For matrix representation of images, If a pixel is black, its value is set

as 1. Similarly, 0.1 and 0 value represents grey and white pixels, respectively. It can also

Page 45 of 85

Chapter 4

Figure 4.3: MNIST sample images and matrix-based internal representa-

tion

be converted into the vector by flattening row/column-wise, giving vector size as 784x1,

i.e., each image/data point is a column vector of shape 784x1. MNIST contains images

of fixed size, so it can be considered in non-structured scenarios for graph applications,

where data are not in graph structure naturally.

4.4 Node Classification in Zachary’s Karate Club and

Cora Dataset

Experiment 1: Zachary’s Karate Club Dataset

In the first experiment, graph convolutional network is used to predict the classification of

nodes/members in karate club into two by utilizing the network structure,i.e., predicting

the tendency of each member in the club to join a side (0 or 33) utilizing an available

social network of all members in the club. For a simple propagation, A and X represents

the adjacency matrix and feature vector for nodes, respectively. Different graph problems

discussed under DGL library (docs.dgl.ai, 2020) are referred for implementing this method

of node classification in a graph using GCN layers.

Page 46 of 85

Chapter 4

1. On the local machine, using Jupiterlab from Anaconda Navigator, a python three

Jupiter notebook is used to implement a graph convolutional model for the karate

club dataset.

2. Initially, the Karate club dataset can be imported from a python package called

NetworkX or created as two arrays as the source and destination endpoints. The

second method is used here to build a karate club graph.

3. Since the input feature vector is not available with the dataset for training, adding

features to nodes and edges are added using a learnable embedding vector from the

‘nn’ module of PyTorch package, making 34 nodes having embedding dimensions

of 10.

import torch

import torch.nn as nn

import torch.nn.functional as F

new_embed =nn.Embedding(34, 10) # adding 10 features to each of the 34

nodes

club_graph.ndata['feat'] =new_embed.weight

Input features of node 0, 17 and 33

print(club_graph.ndata['feat'][[0, 17, 33]])

4. Graph convolutional networks are defined as using the‘ GraphConv’ module from

the DGL.nn module. Information of each node with neighborhood features is en-

coded so that each node is represented as aggregate if neighborhood nodes. Also, a

self-loop is added (Â = A+I) for each node for including its own features, and degree

matrix ‘D’ is added to normalize ‘Â’ to make encoded function as f (X , A) = D1 AX .

5. GCN layers are stacked to form the output of dimensions 34x2. Here, Input features

with size ten are transformed by the first layer to a hidden size of 7, and the second

layer generates output features of size 2 representing two sub-clubs.

6. Labels for node 0 and node 33 are added because, in the dataset, instructor(node

0) and president(node 33) of the club are already decided.

7. Then, the created network model is trained similar to training a PyTorch model in

the loop (epochs), i.e., the model optimizer is created first, inputs feature supplied

Page 47 of 85

Chapter 4

to model, and then based on loss calculated model is automatically upgraded with

weights. After the loop, the optimized model is generated, and intermediate states

are visualized.

Experiment 2: Cora-Citation Network Dataset

In this experiment, the semi-supervised classification of publications/papers in the ci-

tation network is performed using a graph convolutional network. Here, a GCN model

is trained to predict the label or class of a node in the citation network among seven

available classes, which is a type of node classification in a graph network. Following the

transduction learning method, for training, all nodes and edges are observed with few la-

bels, and the target is to find missing labels. Also, the resulting model is used to represent

vector embedding for each text document. This implementation uses Graph Convolu-

tion Network (Kipf and Welling, 2016) method, StellarGraph GNN library is used, and

implementation is followed as per steps provided in (StellarGraph, 2018) documentation

and examples.

1. A Notebook instance is created on AWS Sagemaker for using Jupiter notebook,

where several deep learning kernels are available. Here, ‘conda_tensorflow_p36’

kernel is used that provides preloaded TensorFlow, Keras, and other libraries.

2. StellarGraph library is installed using the standard python package management

system.

3. After importing the required libraries, the Cora dataset is loaded from the Stel-

larGraph object using dataset loader ‘cora()’. Graph and ground-truth classes for

nodes are retrieved.

4. 4. Dataset is split into the two subsets of nodes, one for training and another for

the validation and testing purpose. Here, 300 nodes are used for training, 500 nodes

are used for the validation process, and the rest nodes are kept for testing purposes.

5. Categorical target data is converted to the numerical arrays using a one-hot encoder,

and it will be compared to the soft-max output of the model generated. The method

Page 48 of 85

Chapter 4

called ‘LabelBinarizer()’ from scikit-learn is employed to perform this conversion.

6. 6. Now graph convolution layer is created as per StellarGraph architecture, i.e.,

create a data generator for converting graph structure into matrix format that can

be supplied as input to Keras model and design layers. ‘FullBatchNodeGenerator’

class with ‘gcn’ method from StellarGraph is used as a data generator. For layer

design, ‘GCN’ class is used for 2 hidden GCN layers, and activation is applied on

the result of each GCN layer. Here, the dropout rate as 0.5, and two hidden layers

with size 64 and 32 are used. Input and output tensors of the GCN model are

exposed to fit into the Keras model. An Additional dense layer is added as required

for Keras model functionality to support the output of a 32-dimensional vector.

generator =FullBatchNodeGenerator(G, method="gcn")

train_gen =generator.flow(train_subjects.index, train_targets)

gcn =GCN(

layer_sizes=[64, 32], activations=["relu", "relu"], generator=generator,

dropout=0.5)

x_inp, x_out =gcn.in_out_tensors()

7. The Keras training model is generated with the learning rate as 0.01, the input

and output tensors from the last step, where output tensor acts as the predictions

for the dense layer. Early Stopping functionality is also added to stop the training

process if improvement in validation accuracy does not happen anymore. Finally,

the model is trained after setting layers, training data, validation data, and some

training callbacks.

8. The accuracy metrics and the behavior loss function are visualized using the ‘plot_history()’

method of StellarGraph. The generated model is evaluated on the test data using

‘evaluate()’ function.

9. Prediction is done for all nodes using the trained model and observed for class value

for each node.

10. Finally, the embedding model is generated from the prediction model. Since the

output dimension of the last GCN layer is 32, so to plot this data dimension is

reduced to 2 using the dimensionality reduction method ‘TNSE’ from scikit-learn,

Page 49 of 85

Chapter 4

and vector embedding for every node/text document is visualized on 2-dimensional

space.

4.5 Graph Classification in MNIST Dataset

Experiment: MNIST Dataset

In this experiment, graph signal classification is performed on MNIST dataset. In (Def-

ferrard, Bresson, and Vandergheynst, 2016) generalizes CNNs from low-dimensional and

fixed grid structure to high-dimensional and irregular structures such as networks or

graphs by creating a grid graph of connected neighbors pixels. This 2-dimensional grid

graph can also be used in the GCN model to depict spatial information of each im-

age in the dataset. This implementation compares the baseline performance of GCN

architecture by (Kipf and Welling, 2016) with a fully connected model without graph

convolutional, where both methods are utilizing a 2-dimensional grid suggested in (Def-

ferrard, Bresson, and Vandergheynst, 2016). Here, the Spektral library is employed to

design the graph convolution network for classifying the input digits based on the inten-

sity values representing the nodes and the neighborhood relationships considered as the

edges.

1. Jupiter notebook is created on AWS Sagemaker, required libraries are imported,

and Spektral library is installed using the standard python package management

system.

2. From ‘spektral.dataset’ module, MNIST dataset is imported using ‘load_data()’

method and split into training, validation, and testing data with labels.

3. The adjacency matrix is retrieved from the dataset, and visualization is generated

as a 2-dimensional array. Also, the grid graph is generated as per (Defferrard,

Bresson, and Vandergheynst, 2016) and visualized using adjacency information.

4. A Meshgrid for a particular number is displayed to understand the topology and

actual graph structure with numbered nodes and edges between them.

Page 50 of 85

Chapter 4

5. In the model building, first, the densely connected Neural network is designed.

The Flattened input array of 784 nodes are supplied to a regular densely-connected

Neural layer, which is designed using ‘dense()’ method of ‘keras.layers’ module. The

output channel of the dense layer is set as 10, representing labels of the dataset.

6. Then, designed a fully connected neural network model is trained and evaluated on

test data.

7. Similarly, the second model is designed for Graph convolutional network for classifi-

cation with different feature graphs. Initially, the normalized Laplacian is computed

using the ‘preprocess()’ method from ‘spectral.GraphConv’ class, which represents

the graph convolution filter. Here, the input channel size is 784, and two graph con-

volutional layers with 32 output channels are added using ‘GraphConv’ class from

the Spektral library. Finally, the dense layer is added with 10 output channels as

digit classes.

X_in =Input(shape=(N, F))

A_in =Input(tensor=sp_matrix_to_sp_tensor(fltr))

graph_conv_1 =GraphConv(32, activation='elu',

kernel_regularizer=l2(l2_reg))([X_in, A_in])

graph_conv_2 =GraphConv(32, activation='elu',

kernel_regularizer=l2(l2_reg))([graph_conv_1, A_in])

flatten =Flatten()(graph_conv_2)

fc = Dense(512, activation='relu')(flatten)

output =Dense(n_out, activation='softmax')(fc)

Build model

model =Model(inputs=[X_in, A_in], outputs=output)

optimizer =Adam(lr=learning_rate)

model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy',

metrics=['acc'])

model.summary()

8. Then, the graph convolutional network is trained and evaluated. The test scores of

both models are captures and compared.

9. The trained weights and the intermediate output of the GCN model are visualized.

Page 51 of 85

Chapter 5

Results and Analysis

5.1 Overview

In this chapter, the intermediate outputs, final results, their analysis are presented as

part of experiments on all three datasets using graph-based deep learning methodology.

The classification of nodes and graphs using different graph libraries are evaluated based

on the performance metrics. It also includes critical analysis based on resultant classifica-

tion metrics and some comparison as applicable, which depicts insights about addressed

research questions in this work.

5.2 Analysis of Classification Methods and Results

5.2.1 Experiment on Zachary’s Karate Club Dataset using DGL

Library

The Zachary’s karate club network is a structured graph scenario. The initial graph

structure is represented using in Figure 5.1, where each node with the same colour depicts

individual members in the club, and these members are supposed to be joining any of

sub-club led by the instructor(node 0) and the president (node 33).

Page 52 of 85

Chapter 5

Figure 5.1: Initial Graph structure of Zachary’s karate club network

dataset

Figure 5.2 shows feature tensor for nodes as learnable embedding vectors, where nodes

are embedded with 10 features each. These features represent the several relationship

values of nodes/members with the instructor and the president in the club graph, and

based on these values, node classification is predicted.

Figure 5.2: Feature tensor assigned to each node in karate club network

The created GCN network model is presented here in Figure 5.3, where two graph con-

volutional layers are utilized to make the decision between two classes. Then, this model

is trained as per the Keras model using optimizer and for 100 epochs. With subsequent

epochs, computation loss gradually decreases and nodes are classified more prominently;

these epochs and loss value are added in Appendix A.

Page 53 of 85

Chapter 5

Figure 5.3: GCN network model summary for Zachary’s karate club dataset

The intermediate Keras logits are saved for visualization of graph state in each epoch. In

Figure 5.4, a few intermediate states are displayed from Epoch 0 to 99. The GCN model

started with a few nodes which are classified into two groups in epoch 0 and colored

differently. Gradually, node 0 and node 33 is becoming two distant centers in the graph

structure. It can also be interpreted that members/nodes are classified, and their distance

is also changing to a certain limit with each epoch; these changes in distance represent

closeness in relationship to the instructor (node 0) and the president (node 33). This

shows GCN layers based on DGL are efficient in node classification for this small club

network.

Page 54 of 85

Chapter 5

Figure 5.4: Intermediate states of the graph in the karate club network

while training GCN model

Page 55 of 85

Chapter 5

5.2.2 Experiment on Cora Citation Network Dataset Using Stel-

larGraph Library

Cora citation network dataset is also a structured graph scenario and contains 7 classes of

academic publications. In this experiment, the performance of GCN layers supported by

the StellarGraph library is tested. Cora dataset is imported, graph information, and the

number of text documents under each category is shown using the StellarGraph library

in Table 5.1. Here, the graph is considered as undirected one, and the edge is referencing

a paper that is being cited.

Table 5.1: Document classes in Cora citation network dataset

The dataset is split into training, validation, and test group. The training set size is 500,

and Table 5.2 shows the count for documents in each class.

Page 56 of 85

Chapter 5

Table 5.2: Document classes and count in training set for Cora citation

network dataset

Training Model is designed based on the GCN layer provided in the StellarGraph library,

with two-layer as 64 and 32 output channels. The last dense layer is responsible for

generating the classification of documents in 7 classes. The designed GCN model and

summary are presented in Figure 5.5 and Table 5.3.

Figure 5.5: GCN network model design Cora citation network dataset

Page 57 of 85

Chapter 5

Table 5.3: GCN network model summary for Cora citation network dataset

After training the designed Keras model with selected training and validation set, the

performance metrics such as accuracy and loss are determined, and intermediate historical

values for accuracy and loss is plotted w.r.t number of epochs are shown in Figure 5.6.

From the ‘accuracy vs. epochs’ plot, it is clear that model accuracy reached around

maximum in the first 20 epochs, and further training does not improve this result by

a large difference. Also, from the ‘loss vs. epochs’ plot, it can be understood that

performance is comparable for both training and validation data for early 15 epochs, but

plots start departing consistently to a limit and stop increasing after that, this indicates

that training should be stopped earlier. This shows the importance of retrieving metrics

during the training of the model.

Page 58 of 85

Chapter 5

Figure 5.6: Intermediate accuracy and loss vs. epochs plot with test metric

results of the GCN model for Cora citation network dataset

This trained prediction model is then utilized to make predictions on remaining test data,

and the top 10 results are shown in Table 5.4.

Table 5.4: GCN network model predictions for Cora citation network

dataset

Page 59 of 85

Chapter 5

For generating node embedding of each node from the dataset, 32 output channels of

designed GCN layers are reduced to 2 to fit into 2-dimensional space, as shown in Figure

5.7. Here each color represents an academic publication class. It can be seen that few

classes are more clustered, and some are compactly classified into groups. With this clear

node classification, it is evident this GCN layers can also be utilized for such datasets

with implicit features.

Figure 5.7: Node embedding visualization for each publication of Cora

citation network dataset

5.2.3 Evaluation and Comparison of Experiment on MNIST Dataset

The MNIST dataset is a collection of images that can be considered as a non-structured

scenario because the dataset is not in graph form naturally. But, using graph library,

this dataset is processed to make predictions on images into 10 digit classes. Since

a GCN layer accepts input in the non-Euclidean domain, images data are supplied to

Page 60 of 85

Chapter 5

the model with adjacency information and grid graph structures. In this experiment,

the adaptability and performance of GCN layers supported by the Spektral library are

tested. Here, the aim is to classify the digits images using the intensity pixel values as

nodes and relationships with Neighbour nodes as edges.

The list of adjacency matrices returned by the ‘mnist.loaddata()’ method is visualized in

Figure 5.8.

Figure 5.8: 2-D plot for adjacency matrix for MNIST dataset

Using this adjacency list, the grid graph is generated with 784 nodes and 3198 edges. As

shown in Figure 5.9, it can be seen that in the four corners of the generated grid graph

has some artifacts.

Page 61 of 85

Chapter 5

Figure 5.9: Full grid graph generated for MNIST dataset

To understand the topology of the graph with details, some labeled nodes and connections

are presented in Figure 5.10, where the eight neighbors of node ‘X:10_Y_:00’ are shown.

An overall topological structure, as shown in Figure 5.11, which is created as a new graph

from retrieved adjacency matrics using Scipy sparse matrix.

Figure 5.10: Neighbours in Full grid graph generated for MNIST dataset

Page 62 of 85

Chapter 5

Figure 5.11: Overall topological structure of a graph data for MNIST

dataset

As the first part of the experiment, a fully connected dense model is created using 10 out-

put channels, and summary is shown in Table 5.5, where 10 output channel is responsible

for classifying input into 10 digits.

Table 5.5: Summary of the fully connected dense model for MNIST dataset

After the training model with the training and validation set, the model is tested on 10000

Page 63 of 85

Chapter 5

test data, and the result is shown in Figure 5.12; total loss and accuracy are measured.

Figure 5.12: Evaluation results of the fully connected model for MNIST

dataset

For the second part of the experiment, the Graph convolutional network for classification

with different feature graphs is designed, and the model summary is shown in Table

5.6. As compared to the previous fully connected dense model, this model uses extra

adjacency information as the convolution filter.

Table 5.6: Summary of GCN model for MNIST dataset

Then, this GCN model is trained with the same training and validation set. In Figure

5.13, the evaluation result of this model is shown with the same total loss and accuracy

metrics.

Page 64 of 85

Chapter 5

Figure 5.13: Evaluation results of GCN model for MNIST dataset

In other words, the images from the MNIST dataset are converted into the graph struc-

ture; an adjacency matrix is extracted using graph libraries. In the graph classification

scenario, such information is used by the GCN model to classify an image(represented as

graph data) into 10 digit classes. Hence, When full graph grid is used, the GCN model is

performing better than the fully connected dense model, as shown in Table 5.7, and are

able to process unstructured graph scenario successfully. Also, the current GCN model

is still comparable to the popular CNN model, which has 99% of accuracy (Brownlee,

2019); this shows GCN can also handle non-structural data efficiently and covers more

wide applications area.

Table 5.7: Comparision of models performance on MNIST dataset

Also, intermediate outputs of GCN layers can be visualized by using the method in the

spektral library. Some of these intermediate outputs are plotted in Figure 5.7; these

rearranged outputs also indicate learning of the GCN model is similar to standard Con-

volutional neural networks.

Page 65 of 85

Chapter 5

Figure 5.14: Intermediate output of GCN layers for MNIST dataset

5.3 Limitation

The approach taken to design the GCN models and for implementation in this work has

some limitations. This section provides details about such limitations of this work.

In the first experiment performed on Zachary’s karate club dataset, since the dataset does

not contain a pre-defined network relationship between members/nodes, the comparison

can’t be performed on the closeness or argument between the club members.

Similar to most of the graph neural networks, GCN models used herein experiments are

shallow in nature as compared to traditional deep neural networks that enhance expressive

power. Also, over-smoothing can occur if many GCN layers are stacked together,i.e., all

nodes can converge to similar values.

Graph datasets used in this work are static in nature and modeled accordingly. But the

Page 66 of 85

Chapter 5

GCN layer can’t accept dynamically changing graph structures. The GCN model used

here can’t adapt to the appearance or disappearance of edges and nodes.

Although in this work, experiments are also performed on non-structured scenarios where

datasets are not in graph format naturally, it can be construed that the methods utilized

are not optimal to generate a graph from low-dimensional raw grids. This method that

works on one type of dataset can’t be generalized to another.

Also, GCN models used here can suffer in the case of embedding nodes for large web-scale

scenarios such as a social network. In such scenarios, calculating graph Laplacian can

become computational expensive because of millions of nodes and edges.

Page 67 of 85

Chapter 6

Conclusion

The graph neural networks have become an efficient, widespread, and influential tool for

machine learning applications in the graph domain. Even if GNNs models are not able

to produce satisfactory results for many graph conditions, they achieved some remark-

able success in different domains. This attention and progress are owing to advances in

computational power, model design flexibility, and newly researched training methods.

In this work, the graph neural networks are introduced in details with some geometric deep

learning models. The state-of-the-art GNN models are provided, and some GNN model

variants are also presented based on applicable graph type and propagation steps used.

Furthermore, GNNs are also categorized on training methodology and employed graph

frameworks. With the perspective of application taxonomy, GNNs can be applied to both

structural and non-structural scenarios. The design and limitations of the vanilla graph

neural networks are explained, followed by a detailed discussion on specific GNN model

for node and graph classification, called Graph Convolutional networks. Several graph

libraries are presented that support to implement the GCN layers. For demonstrating

the implementation of GCN layers, three datasets that are chosen under structural and

non-structural scenarios are summarized, and the technical requirement for environment

setup is provided. Complete implementation description for all three experiments with

intermediate outputs and final result analysis are presented. Also, some limitations of

the utilized GCN layer are addressed.

Page 68 of 85

Chapter 6

Finally, it can be construed that the graph neural networks are still a new research

area getting lots of attention and advancing quite faster in recent years. The GNNs

are targeted to analyze graphical data, but the application domain is not only limited to

problems in graphs as GNN models can be generalized to any studies that can be modeled

as graphs. Unlike the traditional “black box” machine learning algorithms that are trained

only on features of training data and lack meaningful logic to perform, models based on

the graph neural networks can also process the inherent logic and analyze a problem with

more natural thinking.

6.1 Work Contribution and Challenges

This work can be used as the initial step to understanding the requirement of GNNs

and a structured way to try into GNNs experiments. This work attempts to explore the

recent researches in the domain of graph-based deep learning algorithms with supported

graph libraries to design the GNN model and train them on selected datasets. Here, some

basic mathematical formulation of nodes embedding is also discussed that can help to

understand the background idea of a basic graph convolutional networks.

The following are some challenges are mentioned which are faced while working on the

thesis:

1. Understanding the actual need of the graph neural network, that differs on appli-

cation scenarios.

2. Difficulty in finding the basis for categorizing the graph neural network variants.

3. Selecting a graph library to be used for a particular experiment.

4. Designing the Spektral library-based GCN model on AWS Sagemaker notebook

instances.

Page 69 of 85

Chapter 6

6.2 Future Work

In contrast to the number of limitations outlined in the previous section 5.3, there are

some tasks that can be looked upon as further tasks.

• The selected GCN model can be tested and evaluated on some complex and more

extensive datasets, which can help to determine the scalability of algorithms and

whether it can be applied to practical scenarios.

• Since implemented models are shallow in nature, so designing a deep graph neural

network can be significantly challenging work and will help in a better understand-

ing of GNNs.

• For a more stable and adaptive GNN model, it should be able to handle the dynamic

form of data, which will be a milestone in GNN related research works.

• Some more datasets can be supported by existing graph libraries, or more flexibility

can be added into the GNN model designing method so that they can be easily

customized to a broader range of applications.

Page 70 of 85

References

Andreux, Mathieu, Emanuele Rodolà, Mathieu Aubry, and Daniel Cremers (Sept. 2014).

“Anisotropic laplace-beltrami operators for shape analysis”. doi: 10.1007/978-3-319-

16220-1_21 (cit. on p. 11).

Atwood, James and Don Towsley (2016). “Diffusion-convolutional neural networks”. Cur-

ran Associates Inc., pp. 2001–2009 (cit. on p. 20).

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). Neural Machine Trans-

lation by Jointly Learning to Align and Translate. url: https://arxiv.org/pdf/1409.

0473.pdf (cit. on p. 21).

Battaglia, Peter W, Jessica B Hamrick, et al. (2018). Relational inductive biases, deep

learning, and graph networks (cit. on pp. 24, 39).

Battaglia, Peter W, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray Kavukcuoglu

(2016). Interaction Networks for Learning about Objects, Relations and Physics. arXiv.org.

url: https://arxiv.org/abs/1612.00222 (cit. on pp. 2, 25).

Beck, Daniel, Gholamreza Haffari, and Trevor Cohn (2018). Graph-to-sequence learning

using gated graph neural networks (cit. on p. 18).

Bengio, Y., P. Simard, and P. Frasconi (1994). “Learning long-term dependencies with

gradient descent is difficult”. IEEE Transactions on Neural Networks 5.2, pp. 157–166

(cit. on p. 10).

Page 71 of 85

https://doi.org/10.1007/978-3-319-16220-1_21
https://doi.org/10.1007/978-3-319-16220-1_21
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/abs/1612.00222

Boaz Lee, John, Ryan A Rossi, Sungchul Kim, Nesreen K Ahmed, and Eunyee Koh (Nov.

2019). “Attention models in graphs”. ACM Trans. Knowl. Discov. Data 13.6. doi:

10.1145/3363574. url: https://doi.org/10.1145/3363574 (cit. on p. 14).

Boscaini, Davide, Jonathan Masci, Emanuele Rodolà, and Michael M Bronstein (2016).

Learning shape correspondence with anisotropic convolutional neural networks (cit. on

pp. 11, 13).

Bronstein, Michael M, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst

(2017). “Geometric deep learning: Going beyond euclidean data”. IEEE Signal Process-

ing Magazine 34.4, pp. 18–42. doi: 10.1109/msp.2017.2693418. url: http://dx.doi.

org/10.1109/MSP.2017.2693418 (cit. on pp. 11, 14).

Brownlee, Jason (May 2019). How to Develop a CNN for MNIST Handwritten Digit

Classification. Machine Learning Mastery. url: https://machinelearningmastery.com/

how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-

digit-classification/ (cit. on p. 65).

Bruna, Joan, Wojciech Zaremba, Arthur Szlam, and Yann LeCun (2013). Spectral net-

works and locally connected networks on graphs (cit. on pp. 12, 16).

Cheng, Jianpeng, Li Dong, and Mirella Lapata (Nov. 2016). “Long short-term memory-

networks for machine reading”. Association for Computational Linguistics, pp. 551–

561. doi: 10.18653/v1/D16-1053. url: https://www.aclweb.org/anthology/D16-1053

(cit. on p. 21).

Cho, Kyunghyun, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio (2014). Learning phrase representations

using RNN encoder-decoder for statistical machine translation (cit. on p. 21).

Cho, Kyunghyun, van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,

Holger Schwenk, and Yoshua Bengio (Oct. 2014). “Learning phrase representations us-

Page 72 of 85

https://doi.org/10.1145/3363574
https://doi.org/10.1145/3363574
https://doi.org/10.1109/msp.2017.2693418
http://dx.doi.org/10.1109/MSP.2017.2693418
http://dx.doi.org/10.1109/MSP.2017.2693418
https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/
https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/
https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/
https://doi.org/10.18653/v1/D16-1053
https://www.aclweb.org/anthology/D16-1053

ing RNN encoder–decoder for statistical machine translation”. Association for Compu-

tational Linguistics, pp. 1724–1734. doi: 10.3115/v1/D14-1179. url: https://www.

aclweb.org/anthology/D14-1179 (cit. on p. 10).

Chung, Fan (Dec. 1996). Spectral Graph Theory. Vol. 92. American Mathematical Society.

url: http://www.ams.org/books/cbms/092/ (cit. on p. 4).

club, Zachary karate (2013). Zachary karate club. Konect.cc. url: http://konect.cc/

networks/ucidata-zachary/ (cit. on p. 43).

Dai, Hanjun, Elias B Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song (2017). “Learning

combinatorial optimization algorithms over graphs”. Curran Associates Inc., pp. 6351–

6361 (cit. on p. 2).

Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst (2016). “Convolutional

neural networks on graphs with fast localized spectral filtering”. Proceedings of the 30th

International Conference on Neural Information Processing Systems. Curran Associates

Inc., pp. 3844–3852 (cit. on pp. 12, 50).

docs.dgl.ai (2020). Overview of DGL — DGL 0.4.3post2 documentation. docs.dgl.ai. url:

https://docs.dgl.ai/index.html (cit. on pp. 37, 46).

Duvenaud, David, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli,

Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams (2015). Convolutional net-

works on graphs for learning molecular fingerprints (cit. on p. 25).

Dwivedi, Vijay Prakash, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier

Bresson (2020). Benchmarking Graph Neural Networks. arXiv.org. url: https://arxiv.

org/abs/2003.00982 (cit. on p. 24).

Fey, Matthias and Jan Eric Lenssen (2019). Fast graph representation learning with Py-

Torch geometric (cit. on p. 39).

Page 73 of 85

https://doi.org/10.3115/v1/D14-1179
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
http://www.ams.org/books/cbms/092/
http://konect.cc/networks/ucidata-zachary/
http://konect.cc/networks/ucidata-zachary/
https://docs.dgl.ai/index.html
https://arxiv.org/abs/2003.00982
https://arxiv.org/abs/2003.00982

Fouss, François, Kevin Francoisse, Luh Yen, Alain Pirotte, and Marco Saerens (July

2012). “An experimental investigation of kernels on graphs for collaborative recom-

mendation and semisupervised classification”. Neural Networks 31, pp. 53–72. doi:

10.1016/j.neunet.2012.03.001 (cit. on p. 20).

Fout, Alex, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur (2017). “Protein interface

prediction using graph convolutional networks”. Curran Associates Inc., pp. 6533–6542

(cit. on p. 2).

Gilmer, Justin, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl

(2017). “Neural message passing for quantum chemistry”. JMLR.org, pp. 1263–1272

(cit. on p. 23).

Gori, M., G. Monfardini, and F. Scarselli (July 2005). A new model for learning in graph

domains. IEEE Xplore. doi: 10.1109/IJCNN.2005.1555942. url: https://ieeexplore.

ieee.org/document/1555942 (cit. on pp. 11, 27).

Goyal, Palash and Emilio Ferrara (2018). “Graph embedding techniques, applications,

and performance: A survey”. Knowledge-Based Systems 151, pp. 78–94. doi: https :

//doi.org/10.1016/j.knosys.2018.03.022. url: http://www.sciencedirect.com/science/

article/pii/S0950705118301540 (cit. on p. 4).

Grattarola, Daniele (2020). spektral: A Python framework for relational representation

learning. PyPI. url: https://pypi.org/project/spektral/0.0.11/ (cit. on p. 38).

Grattarola, Daniele and Cesare Alippi (2020). Graph neural networks in TensorFlow and

keras with spektral (cit. on p. 38).

Grover, Aditya and Jure Leskovec (2016). “Node2vec: Scalable feature learning for net-

works”. Association for Computing Machinery, pp. 855–864. doi: 10.1145/2939672.

2939754. url: https://doi.org/10.1145/2939672.2939754 (cit. on p. 5).

Page 74 of 85

https://doi.org/10.1016/j.neunet.2012.03.001
https://doi.org/10.1109/IJCNN.2005.1555942
https://ieeexplore.ieee.org/document/1555942
https://ieeexplore.ieee.org/document/1555942
https://doi.org/https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/https://doi.org/10.1016/j.knosys.2018.03.022
http://www.sciencedirect.com/science/article/pii/S0950705118301540
http://www.sciencedirect.com/science/article/pii/S0950705118301540
https://pypi.org/project/spektral/0.0.11/
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754

Hamaguchi, Takuo, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto (2018). “Knowl-

edge Base Completion with Out-of-Knowledge-Base Entities: A Graph Neural Network

Approach”. Transactions of the Japanese Society for Artificial Intelligence 33, F-H721

10. doi: 10.1527/tjsai.f-h72 (cit. on p. 2).

Hamilton, William L., Rex Ying, and Jure Leskovec (Apr. 2018). “Representation Learn-

ing on Graphs: Methods and Applications”. arXiv:1709.05584 [cs]. url: https://arxiv.

org/abs/1709.05584 (cit. on pp. 4, 5).

– (2017). “Inductive representation learning on large graphs”. Curran Associates Inc.,

pp. 1025–1035 (cit. on p. 22).

Hamilton, William L, Justine Zhang, Cristian Danescu-Niculescu-Mizil, Dan Jurafsky,

and Jure Leskovec (2017). Loyalty in online communities (cit. on p. 2).

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). Deep residual learning

for image recognition (cit. on p. 22).

Henaff, Mikael, Joan Bruna, and Yann LeCun (2015). Deep convolutional networks on

graph-structured data (cit. on p. 12).

Hochreiter, S, Y Bengio, P Frasconi, and J Schmidhuber (2001). “Gradient flow in recur-

rent nets: the difficulty of learning long-term dependencies”. Ed. by Kremer S C and

Kolen J F. IEEE Press (cit. on p. 10).

Hochreiter, Sepp and Jürgen Schmidhuber (Dec. 1997). “Long short-term memory”. Neu-

ral computation 9, pp. 1735–80. doi: 10.1162/neco.1997.9.8.1735 (cit. on p. 21).

Jain, Ashesh, Amir R Zamir, Silvio Savarese, and Ashutosh Saxena (2015). Structural-

rnn: Deep learning on spatio-temporal graphs (cit. on p. 17).

Page 75 of 85

https://doi.org/10.1527/tjsai.f-h72
https://arxiv.org/abs/1709.05584
https://arxiv.org/abs/1709.05584
https://doi.org/10.1162/neco.1997.9.8.1735

Kampffmeyer, M., Y. Chen, X. Liang, H. Wang, Y. Zhang, and E P Xing (2019). “Re-

thinking knowledge graph propagation for zero-shot learning”, pp. 11479–11488 (cit. on

p. 26).

Khamsi, Mohamed A. and William A. Kirk (Mar. 2001). An Introduction to Metric Spaces

and Fixed Point Theory. John Wiley & Sons, Inc. doi: 10.1002/9781118033074 (cit. on

p. 30).

Khan, Muhammad Raza and Joshua E. Blumenstock (July 2019). “Multi-GCN: Graph

Convolutional Networks for Multi-View Networks, with Applications to Global Poverty”.

Proceedings of the AAAI Conference on Artificial Intelligence 33, pp. 606–613. doi:

10.1609/aaai.v33i01.3301606 (cit. on p. 18).

Kipf, Thomas and Max Welling (2016). Semi-Supervised Classification with Graph Con-

volutional Networks (cit. on pp. 2, 12, 20, 21, 33, 48, 50).

Koller, Daphne and Nir Friedman (2012). Probabilistic graphical models principles and

techniques. Cambridge, Mass. Mit Press [Ca (cit. on p. 20).

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). ImageNet Classification

with Deep Convolutional Neural Networks. url: https://papers.nips.cc/paper/4824-

imagenet-classification-with-deep-convolutional-neural-networks.pdf (cit. on p. 10).

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). “Gradient-based learning applied

to document recognition”. Proceedings of the IEEE 86, pp. 2278–2324. doi: 10.1109/5.

726791 (cit. on p. 5).

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (May 2015). “Deep learning”. Nature

521, pp. 436–444. doi: 10.1038/nature14539 (cit. on p. 4).

LeCun, Yann and Corinna Cortes (2010). MNIST handwritten digit database. url: http:

//yann.lecun.com/exdb/mnist/ (cit. on pp. 43, 45).

Page 76 of 85

https://doi.org/10.1002/9781118033074
https://doi.org/10.1609/aaai.v33i01.3301606
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/nature14539
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Li, Yaguang, Rose Yu, Cyrus Shahabi, and Yan Liu (2017). Diffusion convolutional re-

current neural network: Data-driven traffic forecasting (cit. on p. 17).

Li, Yujia, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel (2015). Gated graph

sequence neural networks (cit. on p. 12).

Ma, Yao, Suhang Wang, Charu C Aggarwal, Dawei Yin, and Jiliang Tang (2018). Multi-

dimensional graph convolutional networks (cit. on p. 18).

Masci, Jonathan, Davide Boscaini, Michael M Bronstein, and Pierre Vandergheynst

(2015). Geodesic convolutional neural networks on Riemannian manifolds (cit. on

pp. 11, 13).

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013). Efficient Estimation

of Word Representations in Vector Space. arXiv.org. url: https://arxiv.org/abs/1301.

3781 (cit. on pp. 4, 5).

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean (2013). Dis-

tributed representations of words and phrases and their compositionality (cit. on p. 12).

Monti, Federico, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, and

Michael Bronstein (July 2017). “Geometric deep learning on graphs and manifolds

using mixture model CNNs”, pp. 5425–5434. doi: 10.1109/CVPR.2017.576 (cit. on

p. 20).

Morel, J., B. Coll, and A. Buades (2005). “A non-local algorithm for image denoising”.

Vol. 3. IEEE Computer Society, pp. 60–65. doi: 10.1109/CVPR.2005.38. url: https:

//doi.ieeecomputersociety.org/10.1109/CVPR.2005.38 (cit. on p. 14).

Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena (2014). “DeepWalk: Online learning

of social representations”. Association for Computing Machinery, pp. 701–710. doi:

Page 77 of 85

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.1109/CVPR.2017.576
https://doi.org/10.1109/CVPR.2005.38
https://doi.ieeecomputersociety.org/10.1109/CVPR.2005.38
https://doi.ieeecomputersociety.org/10.1109/CVPR.2005.38

10.1145/2623330.2623732. url: https://doi.org/10.1145/2623330.2623732 (cit. on

p. 4).

Sagemaker, AWS (2020). Train a Deep Graph Network - Amazon SageMaker. docs.aws.amazon.com.

url: https://docs.aws.amazon.com/sagemaker/latest/dg/deep-graph- library.html

(cit. on p. 37).

Sanchez-Gonzalez, Alvaro, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin

Riedmiller, Raia Hadsell, and Peter Battaglia (2018). Graph networks as learnable

physics engines for inference and control (cit. on pp. 2, 23).

Sazli, Murat (Jan. 2006). “A brief review of feed-forward neural networks”. Communica-

tions, Faculty Of Science, University of Ankara 50, pp. 11–17. doi: 10.1501/0003168

(cit. on p. 9).

Scarselli, F., M. Gori, A C Tsoi, M. Hagenbuchner, and G. Monfardini (2009). “The graph

neural network model”. IEEE Transactions on Neural Networks 20.1, pp. 61–80 (cit. on

pp. 11, 12, 27, 28, 29).

Schlichtkrull, Michael, Thomas Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and

Max Welling (2017). Modeling Relational Data with Graph Convolutional Networks.

url: https://arxiv.org/pdf/1703.06103.pdf (cit. on p. 18).

Sen, Prithviraj, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina

Eliassi-Rad (Sept. 2008). “Collective Classification in Network Data”. AI Magazine 29,

p. 93. doi: 10.1609/aimag.v29i3.2157. url: https://www.aaai.org/ojs/index.php/

aimagazine/article/view/2157 (cit. on pp. 43, 44).

Simonovsky, Martin and Nikos Komodakis (July 2017). Dynamic Edge-Conditioned Fil-

ters in Convolutional Neural Networks on Graphs. IEEE Xplore. doi: 10.1109/CVPR.

2017.11. url: https://ieeexplore.ieee.org/document/8099494/ (cit. on p. 23).

Page 78 of 85

https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://docs.aws.amazon.com/sagemaker/latest/dg/deep-graph-library.html
https://doi.org/10.1501/0003168
https://arxiv.org/pdf/1703.06103.pdf
https://doi.org/10.1609/aimag.v29i3.2157
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2157
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2157
https://doi.org/10.1109/CVPR.2017.11
https://doi.org/10.1109/CVPR.2017.11
https://ieeexplore.ieee.org/document/8099494/

Simonyan, Karen and Andrew Zisserman (2014). Very deep convolutional networks for

large-scale image recognition (cit. on p. 10).

Sinha, Ayan, Jing Bai, and Karthik Ramani (2016). “Deep learning 3D shape surfaces

using geometry images”. Ed. by Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling.

Springer International Publishing, pp. 223–240 (cit. on p. 11).

StellarGraph (2018). Welcome to StellarGraph’s documentation! — StellarGraph 1.0.0rc1

documentation. Readthedocs.io. url: https://stellargraph.readthedocs.io/en/v1.0.

0rc1/index.html# (cit. on pp. 39, 48).

Sun, Yiwei, Ngot Bui, Tsung-Yu Hsieh, and Vasant Honavar (Nov. 2018). “Multi-view

Network Embedding via Graph Factorization Clustering and Co-regularized Multi-

view Agreement”. 2018 IEEE International Conference on Data Mining Workshops

(ICDMW). doi: 10.1109/icdmw.2018.00145 (cit. on p. 18).

Szegedy, C., Wei Liu, Yangqing Jia, P. Sermanet, S Reed, D. Anguelov, D. Erhan, V.

Vanhoucke, and A. Rabinovich (2015). “Going deeper with convolutions”. CVPR, pp. 1–

9 (cit. on p. 10).

Tang, Jian, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei (2015).

“LINE: Large-scale information network embedding”. International World Wide Web

Conferences Steering Committee, pp. 1067–1077. doi: 10.1145/2736277.2741093. url:

https://doi.org/10.1145/2736277.2741093 (cit. on pp. 5, 12).

Veličković, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and

Yoshua Bengio (2017). Graph attention networks (cit. on p. 21).

Wang, X., Y. Ye, and A. Gupta (2018). “Zero-shot recognition via semantic embeddings

and knowledge graphs”, pp. 6857–6866 (cit. on p. 26).

Page 79 of 85

https://stellargraph.readthedocs.io/en/v1.0.0rc1/index.html#
https://stellargraph.readthedocs.io/en/v1.0.0rc1/index.html#
https://doi.org/10.1109/icdmw.2018.00145
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2736277.2741093

Wang, Xiao, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu

(2019). “Heterogeneous graph attention network”. Association for Computing Machin-

ery, pp. 2022–2032. doi: 10.1145/3308558.3313562. url: https://doi.org/10.1145/

3308558.3313562 (cit. on p. 16).

Wang, Xiaolong, Ross Girshick, Abhinav Gupta, and Kaiming He (2017). Non-local neural

networks (cit. on pp. 14, 23).

Wang, Zichen (Mar. 2020). Deep Learning on graphs: convolution is all you need. Medium.

url: https://towardsdatascience.com/deep- learning-on-graphs-convolution- is-all-

you-need-3c1cf8f1e715 (cit. on p. 3).

Wikipedia Contributors, Backpropagation (Apr. 2019). Backpropagation. Wikipedia. url:

https://en.wikipedia.org/wiki/Backpropagation (cit. on p. 8).

Wilson, Jenny (2012). Manifolds The Definition of a Manifold and First Examples. url:

http://www.math.lsa.umich.edu/~jchw/WOMPtalk-Manifolds.pdf (cit. on p. 11).

Wu, Zonghan, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S

Yu (2020). “A comprehensive survey on graph neural networks”. IEEE Transactions

on Neural Networks and Learning Systems, pp. 1–21. doi: 10.1109/tnnls.2020.2978386.

url: http://dx.doi.org/10.1109/TNNLS.2020.2978386 (cit. on p. 15).

Yang, Cheng, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang (2015). “Net-

work representation learning with rich text information”. AAAI Press, pp. 2111–2117

(cit. on p. 5).

Zhang, Daokun, Jie Yin, Xingquan Zhu, and Chengqi Zhang (2018). “Network Rep-

resentation Learning: A Survey”. IEEE Transactions on Big Data 6, pp. 3–28. doi:

10.1109/tbdata.2018.2850013 (cit. on p. 4).

Page 80 of 85

https://doi.org/10.1145/3308558.3313562
https://doi.org/10.1145/3308558.3313562
https://doi.org/10.1145/3308558.3313562
https://towardsdatascience.com/deep-learning-on-graphs-convolution-is-all-you-need-3c1cf8f1e715
https://towardsdatascience.com/deep-learning-on-graphs-convolution-is-all-you-need-3c1cf8f1e715
https://en.wikipedia.org/wiki/Backpropagation
http://www.math.lsa.umich.edu/~jchw/WOMPtalk-Manifolds.pdf
https://doi.org/10.1109/tnnls.2020.2978386
http://dx.doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/tbdata.2018.2850013

Zhang, Yizhou, Yun Xiong, Xiangnan Kong, Shanshan Li, Jinhong Mi, and Yangyong

Zhu (2018). “Deep collective classification in heterogeneous information networks”.

International World Wide Web Conferences Steering Committee, pp. 399–408. doi:

10.1145/3178876.3186106. url: https://doi.org/10.1145/3178876.3186106 (cit. on

pp. 15, 16).

Zhuang, Chenyi and Qiang Ma (2018). “Dual graph convolutional networks for graph-

based semi-supervised classification”. International World Wide Web Conferences Steer-

ing Committee, pp. 499–508. doi: 10.1145/3178876.3186116. url: https://doi.org/10.

1145/3178876.3186116 (cit. on p. 21).

Page 81 of 85

https://doi.org/10.1145/3178876.3186106
https://doi.org/10.1145/3178876.3186106
https://doi.org/10.1145/3178876.3186116
https://doi.org/10.1145/3178876.3186116
https://doi.org/10.1145/3178876.3186116

Appendix A

• The Implemented codes under this work, along with all used papers links, interme-

diate, results and deployment instructions are available at the following link GitHub

repository:

https://github.com/vishalkumarmishra7/GNN_Investigation_TCD_Dissertation

A copy of presentation is also updated here for reference.

• Karate Epochs and loss value while training model:

Epoch 0 | Loss: 0.7272

Epoch 1 | Loss: 0.7049

Epoch 2 | Loss: 0.6840

Epoch 3 | Loss: 0.6638

Epoch 4 | Loss: 0.6441

Epoch 5 | Loss: 0.6255

Epoch 6 | Loss: 0.6072

Epoch 7 | Loss: 0.5893

Epoch 8 | Loss: 0.5701

Epoch 9 | Loss: 0.5494

Epoch 10 | Loss: 0.5282

Epoch 27 | Loss: 0.0738

Epoch 28 | Loss: 0.0598

Epoch 34 | Loss: 0.0162

Epoch 35 | Loss: 0.0131

Epoch 36 | Loss: 0.0107

Epoch 37 | Loss: 0.0087

Epoch 38 | Loss: 0.0072

Page 82 of 85

Epoch 54 | Loss: 0.0009

Epoch 55 | Loss: 0.0009

Epoch 56 | Loss: 0.0008

Epoch 60 | Loss: 0.0007

Epoch 61 | Loss: 0.0006

Epoch 62 | Loss: 0.0006

Epoch 63 | Loss: 0.0006

Epoch 64 | Loss: 0.0006

Epoch 87 | Loss: 0.0004

Epoch 94 | Loss: 0.0003

Epoch 95 | Loss: 0.0003

Epoch 96 | Loss: 0.0003

Epoch 97 | Loss: 0.0003

Epoch 98 | Loss: 0.0003

Epoch 99 | Loss: 0.0003

Page 83 of 85

Acronyms

ACNN Anisotropic Convolutional Neural Network. 13

CNN Convolutional Neural Network. III

DCNN diffusion-convolutional neural network. 20

DCRNN Diffusion Convolutional Recurrent Neural Network. 17

DNN Deep Neural Network. III

ECC Edge-Conditioned Convolution. 23

FCNN Convolutional Neural Network. 3

GAT Graph Attention Network. 21

GCN Graph Convolutional Netwrok. III

GCNN Geodesic Convolutional Neural Networks. 13

GDL Geometric deep learning. 11

GGNN Dual Graph Convolutional Neural Network. 21

GLCN Graph Learning Convolutional Network. 20

GN Graph Network. 23

GNN Graph Neural Network. III

GPUs Graphics Processing Units. 2

Page 84 of 85

GRU Gated Recurrent Unit. 3

LINE Convolutional Neural Network. 5

LSTM Long Short-Term Memory. III

MoNet Mixture model networks. 20

MPNN Message Passing Neural Network. 23

MVNE Multi-View Network Embedding. 18

NLNN Non-Local Neural Network. 23, 24

R-GCNs Relational Graph Convolutional Networks. 18

RNN Recurrent Neural Network. III

SVM Support Vector Machine. 3

TADW Text-Associated DeepWalk. 5

TNSE t-Distributed Stochastic Neighbor Embedding. 49

Page 85 of 85

	List of Figures
	List of Tables
	Introduction
	Overview
	Motivation
	Dissertation Structure

	State of the Art
	Neurons and Neural Networks
	Geometric Deep Learning
	Deep Learning Models for Manifolds
	Deep Learning Models for Graphs

	Graph Neural Network Variants
	Basic Models
	Graph Types
	Propagation Steps

	Training Methods in Graph
	General Graph Frameworks
	Graph Applications

	Model Designs and Libraries
	Original Graph Neural Network
	Model
	Limitations

	Graph Convolutional Network
	Graph Libraries and Frameworks
	Deep Graph Library (DGL)
	Spektral
	PyTorch Geometric (PyG)
	StellarGraph
	Graph Net Library

	Overall Workflow

	Implementation
	Overview
	Technical Setup
	Programming Environment
	Hardware Requirement

	Dataset
	Zachary’s Karate Club
	Cora Citation Network
	MNIST

	Node Classification in Zachary’s Karate Club and Cora Dataset
	Graph Classification in MNIST Dataset

	Results and Analysis
	Overview
	Analysis of Classification Methods and Results
	Limitation

	Conclusion
	Work Contribution and Challenges
	Future Work

	References
	Appendix

