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Abstract

This dissertation explores the capabilities of 3-dimensional interactions in a video-based
augmented reality application using currently available, state-of-the-art technologies.
A collaborative AR board game is designed and implemented as well as multi-modal
interaction methods. The game and interactions are implemented using familiar state-
of-the-art technologies for smartphone AR applications including Unity, ARFoundation
and ManoMotion.

Firstly, background research in the areas of AR, Collaborative AR, Interactions used in
AR as well as interaction usability are presented. The game design and implementation
is documented followed by the results recorded from this application. Results of this
investigation show that the applications frame rate is significantly impacted due to
hand tracking and gesture recognition with frame rates dropping on average by 79%
from 53.5 to 11.1 frames per second. The environment that the application is used in
presents issues in the performance of both the gesture recognition as well as the hand
tracking, with a white texture-less backdrop producing the least number of errors.
Further work on this topic include performance optimisation of the application as well
as a user study to determine whether the satisfaction and engagement of this interaction
is improved when played in a co-located, face-to-face setting.
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1 Introduction

While augmented reality (AR) isn’t a newly proposed medium or technology, the
availability and affordability of augmented reality capable devices have meant that it
has previously remained a topic of research rather than a mass-market medium. As
computers became smaller and more powerful, the computations needed for
augmented reality are now capable on smartphones as well as purpose-built
augmented reality headsets. Augmented reality gives designers and creators a new
medium for games, visualisations and experiences to be consumed. With this new
medium, which some consider as the next mass-medium [5], comes a novel
opportunity for creators to change how we interact with games and experiences.

Multiplayer video games have existed for over 60 years, with one of the first-ever
multiplayer games created in 1958 [42] and have grown to become a multi-billion
dollar market in recent years. As video games became more popular on smartphone
devices, the interaction method for these devices have largely remain unchanged.
With many smartphone devices now possessing the hardware requirements to satisfy
a video-based AR experience, new interaction paradigms have become actualised by
using the devices camera.

Implementations of vision-based gesture interactions in AR have seen both marker
based approaches to detect finger tips as well as marker-less detection of the hand,
fingers and gestures. Investigations of marker-based solutions performing tasks such
as direct manipulation have proven to be satisfying and engaging for users. I will be
investigating the impact the marker-less solution has on the experience for performing
tasks such as object selection, direct manipulation and de-selection for a video-based
mobile smartphone experience. I will be interested in how this implementation affects
the performance of the application as well as the errors incurred from using this
application in different environments.

The paper is laid out as follows: firstly background research of the topics are
presented for the topics of: AR, games, interaction and usability. Secondly, the design
of the game and the application is detailed. The implementation of this design is then
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documented followed by the results and evaluation of the experiments. Finally, I
present the conclusion of this research as well as further work that could be
conducted to improve parts of the system.
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2 Background Research

2.1 Augmented Reality

Augmented reality refers to the visual medium that overlays virtual objects into the
real world. The pioneer of this topic of research was Sutherland, who both
conceptualised[57] and built the first augmented reality headset[58]. Since then,
Augmented reality has been studied in several domains such as educational tasks[32]
[55] [27], tourism[24], medicine[9], and entertainment [50].

The appeal of AR as a medium to consume digital content is that the overlaid visual
objects are not only augmenting the user’s vision of the world, the objects themselves
are registered in 3 dimensions. This is how we naturally perceive information about
the world using our sense of sight.

To define AR more formally in the context of this dissertation, I will be using the
definition proposed by Ronald Azuma. He formally requires AR to have all three of:
"combines real and virtual, interactive in real-time and registered in 3-D".. Also, a
distinction is made with respect to Virtual Environments, requiring AR to "..allows
the user to see the real world, with virtual objects superimposed upon or composited
with the real world" [7]. Thus, AR must allow for the real world to be visible.

AR allows simulation of real-world objects in 3-dimensional space without actually
needing them. This allows someone developing a game, for example, to make the
game board virtual while only requiring a table to play upon. Shared experiences of
augmented reality immerse more than one user into this hybrid real-virtual
environment.
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2.2 Shared Experiences in Augmented Reality

Involving more than one user into an augmented reality experience allows multiple
users to share an augmented space. The same overlaid digital content can be seen
registered in the same space. Collaboration in these environments can benefit from
the user’s capabilities to see each other as well as sharing this space. The
Studierstube[59] was one of the first collaborative AR applications. The goal of the
application was to maintain natural human interaction between participants while
simultaneously immersing the participants in an augmented space. Here participants
can see and interact with 3-dimensional visualisations. Their normal habits of
communication remain unhindered, body gestures are seen through the see-through
display and they can also speak and hear one another. The Studierstube allowed
collaboration in real space with rich 3-dimensional visualisations, 3-dimensional
interactions were superior to its 2-dimensional screen and mouse counterpart as full
freedom to navigate around the model was possible with communications between
participants unhindered. Interaction with the visualisations was enabled through a
pen-like 3-dimensional interaction device.

Other collaborative tasks such as design also can utilise the hybrid nature of AR,
Kiyokawa et al.[40] conducted experiments comparing shared virtual environments
(SVE) and shared augmented environments (SAE). An experiment replicated in both
AR and VR is conducted where one participant needs to direct the attention of the
other by pointing at a virtual cube. The task is completed when the other participant
has clicked on the correct cube. The shared augmented environment saw task
completion times were lower than the virtual environment where the participants
relied on a virtual dummy that moved in accordance with the other user’s
movements. Also found was that satisfaction within the augmented environment was
higher. Participants noted it to be more relieving to be able to see one another rather
than a virtual representation of each other. This study has shown that tasks that
require collaboration are more efficient when those we are collaborating with are
visible and when non-verbal communication, such as pointing and gestures, are also
visible. With accurate enough registration, AR allows collaboration in digital
workspaces such as modelling to have sure communication and interaction with zero
incurred latency, seeing another participant point, shrug or shake one’s head can be
seen immediately through the transparent lenses.

Augmented teleconferencing is another topic investigated and improved by
Billinghurst et al.[12] that also presents the benefits of greater perception of natural
communication. Using markers to register in place, live video and sound of a
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colleague saw the improved understanding of non-verbal cues. A tangible user
interface allowed users to move markers around freely, allowing full control over where
one can see the other users in the call. This study has shown that marker-based AR
enables real objects to have rich interactions in AR settings with both the interaction
and the consequence being visible in the same augmented space.

A Table-top game in AR was developed [13] and was found to be not only be possible
in AR but a fun way to play these games. Difficulties in imprecision were overcome
with a geometrical snapping of faces and planes of objects such as the board-pieces or
cards. The players were able to play the game in a precise way with an imprecise
input mechanism. This type of collaborative experience, however, had each
independent viewer view their own instance of the game. Therefore the co-locality of
the players wasn’t necessary, and the virtual content didn’t occupy the same world
space.

Daniel Wagner et al.[66] investigated whether multi-user mobile augmented reality
could be achieved using PDA devices with cameras and a wooden miniature track
board. The goal was to improve upon existing mobile augmented reality by providing
an unconstrained way to use mobile augmented reality. Previous solutions saw users
wearing backpacks with pieces of hardware such as laptops and sensors attached to
them [24] [37]. A PDA device was used as a balance between portability as well as
computational ability. A distributed game was developed that used place markers to
determine the PDA’s position and rotation in the world with respect to the game
board. The game was trialed with many users and confirmed to them that using this
unconstrained augmented reality has the easiest accessibility. Users were able to
freely exchange the device between them and had no hindrance other than holding
the device. This was a feat far less possible using a wearable device of hardware.

A more recent, prevalent use of augmented reality for shared experiences was the
mobile augmented reality game Pokemon GO, which has amassed over 800 million
downloads to date [31]. This game became a global phenomenon, even leading to
mass gatherings in public parks and other locations that had virtual functions inside
the game. Pokemon GO was an indicator that people are interested in playing games
and consuming media through a new medium, the medium of AR. The game consists
of visiting real life locations in order to have a chance of capturing new "pokemon"
characters which is an objective of the game. These "pokemon" are superimposed
into the real world using the GPS data of the mobile device to determine the player’s
position relative to the virtual character. While not all elements of the game are
shared and multiplayer, there was a collective experience of attempting to catch them
all and train them. This was enough to capture the attention of hundreds of millions
of people.
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Multiplayer games have existed for thousands of years with some of the earliest board
games dating back to 3000 B.C.[11] However games of any kind such as those not
requiring any material thing are played by animals as well as children, and the
existence of games are tied with the existence of play itself, which Huzinga describes
as "a function of the living, but is not susceptible of exact definition either logically,
biologically, or aesthetically" [36]. The existence of gaming is therefore inevitable and
is a necessary part of our lives. It satisfies a need to play and cannot be logically
justified.

Augmented reality opens up a new way to both see and interact with games. First
and foremost, true AR has 6 degrees of freedom for the user immersed in the
experience. This means players have the freedom to change their geometrical position
in world space as well as where they are facing. A real AR experience would allow its
user to navigate freely, changing their world position (latitude, longitude, altitude) as
they wish and for the digital objects to remain registered or anchored in place. The
second three degrees of freedom is allowing the user full control to change the
rotation of their viewport. This can be thought of as the angle and direction of the
head in the case of a head-mounted display. For a mobile device, the angle and
direction of the camera, smartphone or PDA device. These combined give the user
full immersion inside the augmented space, where they can view augmented objects
from any point in that space.

2.3 Registration

Registering digital objects in 3-dimensions is achieved generally in two distinct
manners: marker-based registration and marker-less registration. Both approaches
rely on imagery from a camera device which uses computer vision algorithms to
detect features in the scene.

2.3.1 Marker-Based

Marker-based registration begins with selecting an image or fudicial that is known to
the developer. This is usually in the form of a printed QR code or a shape with
distinct geometry. The first fully self-contained backpack-less augmented reality
mobile application developed for a PDA device used ARToolkit to determine the pose
of the camera relative to markers placed among walls. The ARToolkit library was
ported to the PocketPC platform.The system architecture was a hybrid architecture
that allowed the device to offload the camera images to a server to handle the vision
aspect if necessary[67]. This was a great stride toward handheld mobile AR that
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requires no extra hardware or sensors. It relies purely on vision algorithms to solve
the registration problem, and it does this without carrying any other computational
device such as a laptop that was seen by the first fully mobile AR
application[37].

2.3.2 Marker-less

Marker-less AR, as its name implies, doesn’t require the use of a pre-determined
image to solve the registration problem. Instead, it can use other sensors such as GPS
and a sensor for orientation[37]. Out of the box marker-less solutions offered by
high-level scripting API’s such as ARCore, ARKit and ARFoundation use a
combination of sensors to allow detection of planar surfaces visible by you. They use
feature tracking for each frame produced by the camera. This, combined with
accelerometer data, is used to determine the change of the position of the device. As
the device moves and captures the scene from different perspectives, a feature
matching algorithm can detect the same feature from various aspects. This allows
feature registration between frames and subsequently position and depth estimation
to be determined relative to the camera. Features that are consistent with a plane-like
structure can then be used to solve the 3-dimensional registration issue[6].

Figure 2.1: Feature Point Detection

Figure 2.2: Feature Point Matching
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Figure 2.3: Feature Point Matching 2

2.4 Interaction in Virtual Environments

Virtual and Augmented environments have presented themselves as impressive
candidates for 3-dimensional visualisation, modelling and gaming, however, the 6
degrees of freedom experienced by the user may suffer if they are stuck using a
2-dimensional input device. Direct manipulation and interaction with objects
becomes desktop-like and inherits issues from the occlusion of one virtual object by
another. A metaphor used by Zimmerman [69] is that a 2-Dimensional input device
pointing at a transparent bowl of cherries is not inherently able to determine whether
you intend on interacting with the bowl or the cherries inside the bowl. It mandates
the un-occluded line of sight between the user and the target. 3-dimensional input,
however, will allow one to "pick up the desired item, without ambiguity".

2.5 Gesture Interaction

Gesture interactions allow the motion of the user’s body to interact with a computer
system. This interaction type falls into the category of a natural user interface, an
interface that seeks to emulate how humans interact with the real world and each
other rather than how we interact with technology. When we want to direct attention
to an object in the real world, we use our hand and fingers to point in the direction of
it. When we want to grab an object, we place our hand on it and use our fingers to
grip it. Using our hands to interact in a virtual environment has the same appeal and
naturalness as using them outside the environment.

Natural user interfaces have proven to be accessible and usable by the population. In
the correct context, they can replace the graphical user interface (GUI) of specific
applications that don’t require them. Voice assistants, for example, have become
increasingly popular in homes as well as on smartphone devices. Accurate translation
of voice data to words and sentences can save user’s time retrieving a device and
typing on them, they are hugely more efficient.
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2.5.1 Personal Interaction Panel

The Personal Interaction Panel [60] is a 2-handed, 3-dimensional input device that
represents a familiar pen and paper interface. The pad is used for GUI elements in
which the pen can interact with. Also, the pen can be used in free space, to interact
with digital objects. Although two hands are required for this interaction type, no
fatigue was reported by the users. The pad element of this interface could also be
removed, leading to just a single 6DOF, single-handed pen interface for interacting.
The overhead incurred from magnetically/optically tracking the input device, similar
to [69] mean that the use of this interaction is confined to a single room.
Configuration of optical/magnetic trackers restrict where this device can be used.
Only the pen part of this device would be suitable for a mobile video-based
experience as one hand will be occupied by the mobile device. Further, the setup
times of this solution may outweigh any benefits it brings.

2.5.2 Glove-Based Interaction

Glove-based interactions were the first to track the position of the hands and fingers
accurately. A significant application for gesture recognition has been in sign language
recognition[3] [23]. The DataGlove created by Zimmerman [69] had the goal of
creating natural interaction for 3-dimensional environments such as an AR
environment by adding depth to interaction, something which a mouse cannot
achieve. Flex sensors on the fingers of the glove that measure the angle between the
individual parts of the finger were used to achieve this goal. Flexing/bending of the
finger is measured through these flex sensors allowing determination of which part(s)
of the finger(s) has moved. Determination of the location of the hand itself relies on
two ultrasonic transducers as well as three receivers which approximate its location
using triangulation approximations. This device was used as a gesture-based
controller for presentations by Thomas Baudel et al. [10]

Among the findings were that having a glove-based implementation for gesture
recognition mandates specific characteristics about the user’s hand, the most
detrimental being the size of the hand. A mismatch of glove size and a users hand
resulted in 2 test subjects only achieving a 50% recognition rate of their gestures.
After a short demonstration of the gestures, the rest of the subjects landed between
72-84%, and users who had become familiar with it achieved between 90-98%. The
glove relied on wired sensors that are ultimately connected to the device running the
application; this brings limitations in the freedom of movement the user has. It was
also deemed an uncomfortable device.
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Glove-based gesture recognition has proven to be effective for users who have suitable
sized gloves as well as some practice with the interaction. This excludes the device
from being a viable interaction for those without a fitting glove. Tethering the glove
to the machine running the application also has an impact on satisfaction. The
illusion of natural interaction using common gestures such as swiping pages is now
marred by wielding a glove on a wire that feels unnatural.

A comparison of glove-based and vision-based gesture recognition for both static and
continuous gestures by Oinam et al. [15] found glove-based interactions less accurate.
This study used a flex sensor glove similar to the one aforementioned and was
compared to a vision-based technique for reading gestures defined by the number of
fingers not being clamped to the palm. In this context, a vision technique using
feature extraction and canny edge detection is used to count the number of fingers in
the image. This study showed that vision techniques can achieve an extremely high
level of accuracy, in this particular study 100%. However, the vision based techniques
were performed against a white backdrop with a directional light to provide a high
level of clarity for the images, which lead to the conclusion that this technique "can
give an accurate result only and only if good lighting condition is provided with a
stationary white background". Glove-less interactions are, therefore, only suitable in
contexts where both high contrast and high brightness are satisfied.

2.5.3 Vision-Based Interaction

Glove-less techniques require the subject of the interaction, in this instance, the hand,
to be in sight of a camera device. Different methods for extracting the correct
information from the hand have been proposed, some with different requirements
than others. The most apparent benefits presented by vision-based gesture
interaction is its portability. Requiring no external hardware, it presents itself as the
best candidate for 3-dimensional interactions for mobile AR environments. The
drawbacks of a vision-based gesture interaction are primarily related to the visibility
of the hand. A low lighting environment, for example, would make distinguishing
features of the hand difficult and possibly inaccurate. Self-occlusion of the hand from
the perspective of the camera can also lead to less useful information extracted.

Freeman et al. [26] proposed a vision based method to be used as a controller to play
video games. The hand and body were both tracked. A simple algorithm had to be
used as the algorithmic cost of a more sophisticated algorithm would incur too much
latency. They achieved a response to a user’s movements within 10ms. These methods
for interacting with games have also been seen on commercial home console systems
such as the EyeToy for the Playstation 2 or the Kinect for Xbox 360. Vision-based
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approaches at detecting hand gestures can be categorised into static and continuous
gestures. A review of vision-based hand gestures [46] distinguishes gesture recognition
into two distinct steps. Firstly, feature recognition is performed on the image to
extract the relevant features such as the edges of the hand and fingers. Classification
seeks to classify the features or model of the hand to a specific gesture.

• Feature Recognition

1. Kinematic Model Approaches

2. View-Based Approaches

3. Low Level Features Based Approaches

• Classification

1. Rule-based approach

2. Machine Learning

The kinematic model [56] approach uses a model of a hand which is used to search for
the kinematic parameters that matches a 2D projection of this model with the
features of the hand extracted from the image. The challenges with this method
generally lie with how texture less the skin is requiring high contrast and
homogeneous backgrounds in order for this extraction method to achieve high
recognition.

Low level features based approaches solve the feature extraction issue using a simpler
method than trying to recreate a model of the hand. Extracting a binary image of the
hand against the background is used by [15] where a white uniform backdrop is used
simplifying the feature extraction, while [47] used a process of setting a saturation
threshold to the image to extract the hand from the background. The latter study
extracted images on a non-homogeneous backdrop with background items present.
The resulting binary image can be used to extract the position of the centroid of the
hand as well as determining the number of fingers protruded to infer gestures.

Rule-based approaches for classifying the gesture from extracted images usually relies
on conditions being met for a set number of frames. This is seen in [18] where
continuous gestures such as waving and clapping must satisfy rules for typically N =
10 frames. Rule-based systems relies on the ability of humans to define an adequate
set of rules for recognising gestures.

Machine learning methods for classifying gestures have been effective for continuous
gestures [68]. Hidden Markov Models using both temporal and spatial data to
classifying the gesture benefits from where the rule-based approach falls short, human
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encoded rules aren’t required.

2.6 Gesture Interaction in Mobile Applications

The use of hand gestures for interacting with smartphone AR applications has been
investigated for many reasons. A form of body language, hand gestures are a natural
communication mechanism used in everyday human life. Secondly, AR smartphone
applications typically implement multi-touch displays for user interaction, and as a
result, this can be prone to errors if the user accidentally moves the device such that
the touch interaction misses the target object within the virtual environment. As the
virtual objects are registered in the real world, and as the images from the camera
move according to the user, so will the virtual objects.

Therefore, any premature movements by the user during this process will not result
in a successful interaction, as the image will not be in a relatively stable position on
the multi-touch interface. By contrast, the implementation of hand tracking in
conjunction with registration of gestures abstracts the need for both hands to
maintain stability and accuracy to one hand. With perfect hand tracking, the hand
pre-occupied with holding and stabilising the device doesn’t interfere with the
interaction unless the other hand is no longer visible. Regardless of unintended
movements of the smartphone device by the user, a hand maintains the same position
within the virtual environment using vision-based gesture interaction.

Gesture interactions in smartphone AR has been achieved previously through
marker-based solutions by Hurst et al [38] as well as Loubna et al [4], in order to
demonstrate marker-based gesture interaction for various task such as selection and
manipulation of virtual objects.

Hurst et al’s user studies concluded that the gesture method proved more difficult
than touch screen counterparts but participants found it more engaging and fun.
They noted that this interaction method wouldn’t be suitable for accurate or time
critical tasks but could be used as a suitable interaction method for gaming where
effectiveness and efficiency mightn’t have the largest weight in determining usability
of the interaction, noting that some games are purposefully tricky to interact with
making mastering the game challenging and engaging.

User studies by Loubna et al. [4] also concluded that it was a fun and engaging
interaction and it was also not physically fatiguing, although this experiment was
translating objects resting on a table. Billinghurst et al. [8] proposed interaction
methods in AR that overcome a user’s inability to maintain a perfectly steady hand
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while interacting. An implementation of freezing the frame temporarily as well as a
fingertip tracking gesture interaction were implemented, the fingertip detection
method scored highest in fun and engagement but was considered the most physically
stressful and had the least performance.

Methods for capturing the whole hand to be used as an interaction method have been
proposed by Park et al. [16][54] using pose estimation of the palm allowing gesture
interactions from opening and closing ones hand.

AR has also been used to augment tabletop games using tangible interfaces to
compliment real world game pieces with virtual graphics. Molla et al. [45] used a
webcam to compliment a monopoly board by overlaying 3D graphics to compliment
the view of the game. Ta et al. [61] took this a step further and used a tangible
interface of tokens and grid cells to play a collaborative AR game.

2.7 Interaction Evaluation

Interaction design is the process of designing interfaces between computer systems
and the end-user. Interfaces of a computer system are the key to allowing humans to
instruct systems to perform a task. For personal computers, the windows, icons,
menu, pointer (WIMP) model of computer interaction has become the standard
model since the Xerox Star in 1981 [14]. For mobile devices and PDA devices, a
similar interaction is also the case, with the pointer of a mouse replaced by touch
interaction. With multi-touch displays, more interaction paradigms were actualized,
such as pinching gestures to change the scale of images and documents[64]. The
biggest and most central concern for designing interfaces as well as the interactions
used with these interfaces is their usability[53].

Usability seeks to measure how usable the device is to the user, for without the
ability for a computer device to be used, its performance, capabilities and functions
quickly become useless. The International Organization of Standards defines usability
as "the extent to which a system, product or service can be used by specified users to
achieve specified goals with effectiveness, efficiency and satisfaction in a specified
context of use" [1].

Researchers in the field have more specific characteristics of usability. Nielsen defines
usability as requiring five quality components: Learnability, Efficiency, Memorability,
Errors (rate) and Satisfaction[29]. Quesenbery proposes using the 5Es of usability:
Effective, Efficient, Engaging, Error Tolerant and Easy to learn,[52] while Preece,
Rogers and Sharp define usability in terms of goals: Efficient to use, Effective to use,
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Safe to use, Good utility, Easy to learn and Easy to remember[53].

Effectiveness is described as "whether the software is useful and helps users achieve
their goals accurately" [52], "how good a product is at doing what it’s supposed to"
[53], "accuracy and completeness with which users achieve specified goals" [1]. Nielsen
doesn’t include effectiveness; however, he defines utility as"whether it provides the
features you need." [29].

Efficiency is described as "Once users have learned the design, how quickly can they
perform tasks?" [29], "the way a product supports users in carrying out their task" [53],
"the speed with which work can be done" [52], "resources used in relation to the results
achieved" [1].

Errors are raised explicitly by [29] and [52], while [53] uses the metaphor of safety to
describe a system designed to incur the least amount of errors. A safe system is
described as one that has been designed such that there is the least amount of risk
posed to physical safety due to human error, for example, in aviation or energy
production. But this also applies to the ability of a system to tolerate and recover
from human error where physical health isn’t necessarily at risk but files on a
file-system may be at risk of corruption/deletion which incurs an expense of resources
such as time, money and labour. A safe system is one that is designed such that users
make the least amount of errors while interacting with it and those errors made don’t
incur a high cost of resources to return to the same point.

Learnability and memorability are included by [53] and [29], while Quesenbery [52]
only mentions learnability. Learnability is the measure of the time it takes for a
novice user to become proficient at using the system from the beginning of their first
interaction with the system. In contrast, memorability measures the time to
proficiency of the same system after a period of time, without having interacted with
the system. A memorability time the same as the learnability time is not memorable
at all.

Satisfaction is mentioned by [1] and [29], while [52] uses engaging to describe "how
pleasant, satisfying or interesting an interface is to use." [53] doesn’t explicitly
mention satisfaction and perhaps for a good reason. It is unlikely that a system with
poor efficiency, effectiveness and learnability is going to be highly engaging and
satisfying for the user, although not impossible. Satisfaction is also a subjective
quality which [53] does note. A system that is highly inefficient requiring extraneous
effort to interact with such as requiring typing "yes" or "no" to questions rather than
selecting one of the two options, which provides minimal effectiveness at completing
your task and also has no tolerance to errors, requiring a full walkthrough from the
beginning when an error is made, which is likely to frustrate the user and waste their
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time leading to poor satisfaction.

Usability is therefore multi-faceted, with some interactions more usable than others
for different reasons. Some may be more efficient at performing a task, while others
may produce a higher level of satisfaction or effectiveness. The context of the
application must also be considered when evaluating usability. Gaming may not pose
a specific task to be completed by the intended user other than to play and enjoy
oneself. Engagement and satisfaction would be of the utmost importance for
designing interactions for games. Some games have interactions that are tough to
learn and difficult to master, yet are still enjoyable to play contrasting to traditional
systems not in the domain of gaming.

Evaluating the interfaces that we have designed and implemented is key to finding
issues with the usability of the system. After gathering requirements, designing and
implementing an interface, an evaluation will present any issues not accounted for in
the previous stages of the interaction design process. Usability evaluation methods
have been categorised into Inspection methods and test methods. Inspection methods
differ from test methods as they don’t require involvement of end users in the process.

2.7.1 Heuristic Evaluation

Heuristic Evaluation is an inspection method that has become widely used in usability
testing. First proposed and later refined by Nielsen[48], it follows multiple evaluators
inspecting the interface in isolation of each other and documenting any usability
issues they encounter during the lifecycle of their interaction with the system. Nielsen
proposes 10 usability heuristics [48] but category-specific heuristics can also be
applied for applications that provide a similar goal or service. This inspection method
seeks to consolidate found usability issues at any stage of implementation of the
interface. Evaluators should document their opinion about what part of the interface
is violating a heuristic. The compiled list of apparent violations are used as a
guideline for what to avoid for the next iteration - they do not always present a
definitive solution, rather advise what should be avoided on the next iteration.

Nielsen also examined the cost-benefit of the number of evaluators involved in the
process, where experiments found that a single evaluator would find on average 35%
of usability issues with the optimal number of evaluators ranging from 3 to 5 and any
additional evaluators yielding diminishing results. Extensions of these heuristics have
been proposed in the gaming software domain.
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2.7.2 Cognitive Walkthrough

The cognitive walkthrough method is an informal inspection method similar to a
heuristic evaluation that follows an evaluators step-by-step set of actions while using
the system to complete a given task [34]. It is used to simulate a first-time user’s
experience of using the system and it’s goals are to improve the learnability of the
system. The advantage of performing a cognitive walkthrough is that designers can
take on the role of an end-user and identify possible issues. The disadvantages of a
cognitive walkthrough is that improper tasks may be selected and lead to a biased
walkthrough, thus not receiving valid feedback on what issues are present with the
learnability of the system for a novice user. Its also difficult to predict how exactly a
user is going to interact with the system.

2.7.3 User Studies

Involving users in the evaluation of the usability of the interface is a formal method
for gaining feedback on the interface as well as the application it is designed for[29].
Using representative users for the application, users should be asked to perform a
task with the system and an observer should observe their interactions. A similar
method should be used for video games, although some note that performing a task
analysis on games isn’t very suitable as there isn’t an inherent task other than to
play[51]. This does apply to certain exploratory games, but for multiplayer
competitive simulation games, there is often a repetitive task to complete to defeat
the other player. As a user study was unable to be completed for this dissertation,
the further work section proposes an appropriate user study.

2.7.4 Usability in Video Games

Heuristic Evaluation for Playability (HEP) for video games are an extension of
Nielsen’s HE and have been proposed [19] and extended [20] by Desurvire et al. who
conducted both a Playability heuristic evaluation as well as traditional user testing.
By using an extensive list of heuristics in the categories of game play, game story,
mechanics and usability, they found that evaluation using these heuristics allowed
them to detect more usability issues than their user experiments. There was also a
large amount of overlap between the issues found from both these methods,
suggesting that a lot of these issues could be solved before involving users in user
tests. They conclude that user tests are not replaceable as human behaviour can be
unpredictable.

Pinelle at al. [51] compiled 10 heuristics focusing solely on evaluating the usability of
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games where Desurvire [19] provides heuristics that encompasses other parts of game
design such as the narrative: "Player understands the story line as a single consistent
vision". They used Dykstra’s [22] method of creating domain specific heuristics by
evaluating existing products. 108 reviews were analysed from a popular game critic
website and 12 categories of usability issues were formed. 10 heuristics were
formalised from these categories and were used in a game evaluation. Comments from
the evaluators included "nearly everything that is frustrating about the usability of the
game tested was easily identified with a heuristic". These heuristics were confined to
PC and similar console games, they note that for input devices such as the one used
with the Wii where motion is used, new heuristics may need to be considered.

2.7.5 Usability in Augmented Reality

Dunser et al. [21] apply HCI principals to the medium of AR. Mentioned are
usability principles seen previously: learnability, error tolerance and learnability, as
well as principles that have specific relevance for AR systems and interfaces. Low
physical effort indicates that a user can complete an action with the minimum
amount of fatigue occurring from the interaction. Flexibility in use should be adhered
to in order to allow the user different methods of interaction, this accommodates for
the user’s specific preferences. Multi-modal interactions should therefore be
implemented. Error tolerance is of high concern for AR applications as they are quite
prone to instability. Usability heuristics have also been adapted for the medium of
augmented reality by [41].

The virtual environment of AR applications have afforded their users new methods of
interacting with the environment, vision-based gesture interactions provide
hardware-less natural interactions that have produced higher satisfaction and
engagement with users while sacrificing completion times for tasks. As AR is
currently presenting itself as a new medium for creators to create games and
simulations in virtual environments, natural interaction methods involving the users
hands have been actualised, this dissertation investigates the capabilities of
3-dimensional interactions in a video-based augmented reality environment. A
collaborative AR board game is designed and implemented with vision-based
3-dimensional interactions. The game design requires either a marker or flat-surface
to play on with no additional hardware for interaction or objects used as a tangible
user interface.
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3 Design

This section covers the design of an AR application suitable for a smartphone device.
This design supports the goal investigating how marker-less gesture interactions
impact the games performance, this is achieved by designing multi-modal interactions
that the user can switch between. The design of the game is also detailed in relation
to selecting, manipulating, transforming and de-selecting objects within the virtual
environment. To summarise the design of this game, it closely resembles the
Connect4 tabletop game as it is played in real life while also permitting a real-time
augmentation of the game to replace the turn-based nature.

3.1 Game Overview

A multiplayer, real-time augmented reality game was designed heavily inspired by the
classic tabletop game Connect 4. This game is played by two users each having their
own set of game pieces, red and yellow, competing with each other to be the first
player to have four consecutive pieces in the game grid in either the horizontal,
vertical or diagonal positions. This game is traditionally a turn-based game, but a
design decision to implement the game directly as it is played normally without any
restrictions regarding turn allows the game to adopt new characteristics that rewards
speed and precision as well as the usual strategy of the tabletop classic. Therefore,
the design has replaced the turn-based aspect of the game with real-time freedom for
either player.

This augmentation allows this game to transcend from a multiplayer turn-based game
to a multiplayer real-time competitive game. The objective of the game remains the
same, except the players now must watch their opponents actions at all times to
detect their intended interactions. A player must now consider both the state of the
game board as well as their opponents intended action at any given time. This
differentiation means that the state of the game can be changed at all times by either
player.
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The game will conclude when one player has beat the other player to connect four
pieces or will end in a draw if neither player has managed to satisfy this winning
condition. The game is designed to be consumed on a modern smartphone with a
camera, enabling a video-based experience.

3.2 Game Design

3.2.1 The Game Board

The game board used in a Connect 4-like game is a grid-like structure consisting of
six rows and seven columns. The grid is in an upright, vertical position and is held
rigid by supporting stands on either side attached to a flat surface at the bottom of
the board used for resting the game on a tabletop. Each column of the grid is hollow
to allow for pieces to move freely in the vertical direction and each column is
separated from each other such that a piece cannot move in a horizontal direction, i.e.
change its row.

The grid is open at the top for each of these columns, usually having a width and
depth consistent with the pieces used by the players to be placed in the board. This
confines the piece to a narrow column that it is permitted to freefall within. This also
hinders its ability to rotate or tilt.

Each cell in the grid has dimensions consistent with the height and width of the
pieces. Two parallel holes smaller than the width of the piece at each side allows the
players to view the game state at all times. This details what cells are free and what
cells are occupied and by whom.

3.2.2 Physics

The game design must simulate the physics of the real world to allow for the
placement of pieces and the collision of pieces with each other. As this game will be
played in an augmented space, virtual objects should observe the same physical
phenomenon that real objects do at the macroscopic level. In the context of this
application, Newton’s formative three laws of motion[39] are sufficient to maintain
the illusion that the virtual content exists in real space.

These laws are needed to simulate the resting of the game board on a tabletop or flat
surface. The pieces need to undergo acceleration caused by the phenomenon of
gravity to fall to the last free cell in each column. If there is no other piece in the
column it was placed in, it will fall until it reaches the bottom slot of the column
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where it collides with the bottom of the grid. Subsequent pieces placed in this
column collide with the previous piece, causing it to rest in the cell above that piece
in that column.

Players should be allowed to grab, drop and place pieces as they choose and will be
able to see the opponents’ previous successful actions on the board as well as their
current action if they are currently manipulating a piece. As the pieces that are
within the game board are already placed and are only free to move vertically, these
pieces will need to be designed so that a force cannot be exerted on them.

Facilitating the accurate placement of game pieces into slots on the game board can
be achieved using a "snapping" mechanism. This can aid the player in placing pieces
into the top of the board. This has also been employed by [13] as well as a similar
alignment aid used in [40]. The design should accommodate for small inaccuracies of
interaction so that they don’t lead to frustration and dissatisfaction. The original
version of this game requires accuracy in the order of millimetres and may be too
difficult to achieve in a virtual environment.

The snapping mechanism will also temporarily take control away from the user for a
given region of space indicating to them that they are free to drop it here and their
action will be successful.

3.2.3 Multiplayer Aspect

Connect 4 is inherently a multiplayer game with two distinct opponents. Therefore,
the game is designed to allow for multiple players playing and interacting
simultaneously. Removing the turn-based aspect of the game that is developed,
therefore, implies that using a single instance of the game on a mobile device
wouldn’t be sufficient, therefore this design mandates a distributed multiplayer
architecture.

Separate instances of the application on separate smartphone devices is required,
with the screen of each device used as the medium to consume/view the game as well
as the controller for playing it. A networked approach for synchronising the state of
the game is required. Different architectures for distributed multiplayer online games
include peer-to-peer, client-server and mirrored-server architectures. As each game
will only have two players playing simultaneously, a client-server architecture presents
the best for consistency[35]. The concerns of poor robustness and scalability aren’t of
real interest in the context of this application as each managed game will only be
serving two clients. Also latency costs from this architecture that arise from a high
number of clients are not of concern as two clients will be the maximum permitted
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players for a given game.

The server’s responsibility within the architecture is for transmitting updates about
the state of the game board between the two clients as well as the position, rotation
and velocity of the game pieces in the environment. Each client (player) can move
their own set of pieces; these movements will be sent to the server and subsequently
to the opponent’s client.

3.2.4 Augmented Reality

The augmented reality aspect of this application is to register the game board and
pieces in the real world. The application is designed to support both a marker-based
and marker-less based registration. Marker-based registration allows two co-located
players to view a board anchored in the same position, giving the players a hybrid
view of the interaction that the other player is attempting on their device as well as
the consequence of that interaction through their smartphone. Body language and
other non-verbal communication are unhindered from this design. Once the game
board is in a satisfactory position, the user should be able to lock the board in that
position permanently, registering it at this point in space for the duration of the game
until the game has ended.

3.3 Interaction Design

To design a usable interaction for a game, one must consider who the target of the
application is, where it will be used and how they are going to be used[53]. The
interaction will be designed for anyone with the competency of a multi-touch display,
such as those commonly found on smartphones, they will also require unrestricted
movement of their arms, hand and fingers for the gesture interaction. Where the
application will be used is quite versatile. Being designed for a battery-powered
device and not requiring additional hardware or controllers, it can be used
geographically anywhere. How the user interacts with the game is the topic of my
investigation, and therefore, multiple interactions will be designed to move the pieces
including familiar interaction paradigms for multi-touch displays as well as a 3D
gesture-based interaction. For the specification of the game, the player will be using
direct manipulation to move pieces to the top of the board and drop them in their
desired slot. The requirements needed are a selection of the desired piece,
manipulating its position and de-selecting/dropping the piece. As mentioned in
Section 2.3, a mobile handheld augmented reality application will require at least one
hand for holding and directing the device. Therefore all interactions are possible with
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one hand. Interaction feedback is used to reduce the gulf of evaluation after selection
and dropping of a piece.

3.3.1 Raycast Interaction

The first interaction is a familiar direct manipulation interaction. Synonymous with
the drag and drop interaction of WIMP interfaces present on desktops, the target of
the interaction must be in sight of the camera and present on the screen.

When the screen receives a touch interaction on the pixels displaying a piece, the user
can freely manipulate the position of this piece using both the screen of the device as
well as motion of the device within the environment.

Changing the third co-ordinate of the location of the piece, the depth component, is
not achievable directly on the screen of the smartphone using single-touch interaction.
A locked or constant distance from the player must be used to determine this
component. Navigation of the user through the environment is required to add the
depth aspect of the interaction.

3.3.2 Pinching Interaction

To overcome the limitations of the first interaction, a second interaction is proposed
that takes advantage of the multi-touch display. It augments the first interaction and
allows a second finger to allow depth to be variable rather than constant. Multi-touch
interfaces were first presented to the world by Jeff Han [64] and have become an
integral interaction type between humans and computers on devices such as
smartphones, tablets, laptops and some desktops.

Users can optionally use their second finger to add or remove depth voluntarily,
allowing them to iteratively add/remove depth, check whether they are at a
satisfactory distance and repeat the interaction as desired.

3.3.3 Gesture Interaction

The gesture interaction is designed to emulate as close as possible how this game
would be played with real objects. Direct manipulation of objects by the hand is
achieved by applying force(s) between the fingers and the thumb, allowing us to bind
or hold an object in place relative to our hand.

Designing a natural interaction for manipulation of an object that can fit in our hand
in a virtual environment should intuitively follow our interaction in a real
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environment. A gesture of the fingers and thumb to grab a piece should instantiate
the interaction, the piece should now follow the location of the contact of the finger(s)
and thumb and should conclude when the contact between the thumb and finger has
stopped. The piece should follow the position of the hand in all 3-dimensions.
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4 Game Implementation

4.1 Game Board Model

The 3-dimensional model for the game board as described in Section 3.2 was built
using Blender, Blender is a free, open source 3D creation pipeline[25]. The
implementation consisted of first modeling a single cell of the game board. This was
achieved by utilising the pre-built 3-dimensional primitive objects in Blender. Firstly,
a cube object with a reduced scale in the Z-direction would give a near-flat square
piece. In order to hollow a circular shape out of the cube, I added a cylinder
positioned in the center of the cell and used a Boolean difference of the shapes to
achieve my goal. This cell was then duplicated into a 6x7 grid as per it’s design. A
cuboid shape was placed on both sides of each column as well as below the bottom
row.

Figure 4.1: Modelling The Cell
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Figure 4.2: Game Board

4.2 Graphics and Physics Engine

Unity3D and the Unity Engine both provide out of the box solutions for creating 3D
applications with rich graphics. It has a number of features for virtual environment
creation and development such as:

• Importing 3-D models in a variety of different formats/file types.

• A 3-dimensional sandbox for adding, removing, moving, rotating etc. game
objects within.

• Support for object hierarchies.

• Support for scene creation.

• Prefabs for various common game elements such as UI.

• High-Level scripting interface.

• Modular components for Animation, Physics, Colliders, Materials etc.

4.2.1 Scenes

I implemented the game in Unity using 3 distinct scenes. Scenes are logical
boundaries between separate virtual environments in an application that can be
navigated between. In game design, changing scene could be used to transition a
player from the end of one level to the start of the next one. When a scene transition
occurs, the game objects that exist in memory in the current scene are
destroyed/freed and the game objects in the chosen scene are instantiated. This
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abstracts away extraneous logic and allows development and testing of scenes in
isolation of each other.

The first scene in the application prompts the user to input an alias to use for this
instance of the game as well as presenting the option to create a game room or join
an already created game room. The multiplayer design of the game allows more than
one concurrent game to be played at a time. After creating or selecting a room, they
then transition to the loading scene as the gameplay scene begins loading and
subsequently brought to the gameplay scene when loading has complete.

The gameplay scene begins by prompting the player to decide between marker-based
anchoring or marker-less anchoring. The game board will be placed on the marker or
on a found plane decided by the user respectively. After two players are present in
the game and after placing the board to their desire, the user can then start the
game. This scene ends when the game ending condition is satisfied where they can
then return to the Room Selection scene to play again.

Figure 4.3: Game Room Selection

Figure 4.4: Gameplay Scene
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4.3 Scripting API

Unity Engine uses an implementation of Mono runtime for scripting: Mono runtime is
a cross-platform virtual machine that can be either embedded into applications or
used as a stand-alone application[2]. C# is used to extend applications running on
the Mono runtime resulting in C# being used as the default scripting language used
in the Unity Engine. Unity provides a MonoBehvaiour Class that can be inherited by
the user defined scripts to allow for implementing common game logic such as adding
logic to the "update loop" of the game, this function is called every frame of the game.
The fixedUpdate method can also be inherited from this class, this works similarly to
the update method, but should be specifically used for physics updates such as
collisions, moving game objects etc. Fixed updates are independent of frame rates
which is it’s primary difference to the update loop. This has the benefit of processing
the movements of game objects independent of the frame rate, without this a drop in
frame rate might make gravity seem weaker for example which is undesirable.

4.4 Augmented Reality

Augmented reality was implemented using the ARFoundation package published by
Unity Technologies. ARFoundation provides interfaces to different subsystems for
working in AR. Subsystems are a "platform-agnostic interface" [62] that allows for
cross-platform development for both ARCore (Android) and ARKit (iOS) enabled
devices. Both the image and plane detection subsystems were used for the
marker-based and marker-less options respectively. A reference image library was
created using the Unity Editor GUI, and a QR code image was used as the marker.
The tracked image manager script is subsequently enabled after the user has selected
this option. This script continuously checks the camera’s image for the images in the
image library and once found estimates it’s position in the environment, with the
position of the game board then updated to be at this position.

The plane detection subsystem is invoked when the user chooses the marker-less
option. This implementation similarly continuously polls the camera image, detects
feature points and subsequently estimates planes in the scene. These planes are
displayed to the user and a cursor in the center of the screen is used to place the
board on a detected plane. The user then places the board into the environment
through a place UI button which locks its position in place and now disables plane
detection.
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Figure 4.5: Marker Anchoring

Figure 4.6: Markerless Anchoring

4.5 Multiplayer Aspect

The software library that I am using for implementing the synchronisation of the
game state between players is Photon [28]. Photon provides a cloud hosted server for
hosting your multiplayer game as well as an API with many out-of-the-box solutions
for common game logic such as synchronising the position of game pieces, as well as
event-driven message passing. My requirements of this software are to be able to
synchronise all positions and rotation values of each players’ pieces as well as to
synchronise the state of the board. The "PhotonView" Class provides methods for
writing and reading data from a stream that is transmitted at the serialization rate
(50Hz), a piece’s relative position data as well as its’ velocity and rotation data
satisfy the requirements.

An event driven implementation was used for synchronising the state of the board
and is triggered when a new piece has been placed in the board, the co-ordinates of
the newly occupied cell in the grid is transmitted to the opposing player, both clients
then check whether the game ending condition has been met yet.
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4.6 Game Synchronisation

Each client instance of the application will have a different world-space. Contrasting
to a multi-user application in a completely virtual environment (VE), the player’s
position relative to the environment cannot be easily determined in AR. This is due
to the non-occlusive nature of AR, where it augments our vision of the real world
rather than immerses us in a virtual one. In a fully virtual environment, geographic
location of the user is discarded and the environment determines where they are. Two
users separated by a large geometric distance could be placed facing opposite of each
other in a virtual environment and the illusion would work as each others vision of
the world is occluded.

The positional co-ordinates of the pieces in this implementation are equal as they are
sharing the same world space and synchronisation can be achieved by sending the
new co-ordinates. From Figure 4.5, if one player moves the position of the object in
the scene by 1 unit in the Z-direction, the new co-ordinates for this game object
would be (0, 1, 0). This places the game object at a coherent position in the
environment for both clients.

Figure 4.7: Virtual Environment Topology

However, in a video-based AR experience, this same principle should not be used. As
the geometry of the real environment is not known by the application, simulating the
positions of multiple users relative to the environment has obstacles to be overcome
in AR compared to VEs. GPS data has been used previously [37] to determine the
position of a user in a hybrid virtual-real environment by recreating elements of the
real world into a virtual environment and determining the users position in the
virtual environment by receiving GPS updates. This solution for synchronising the
position of multiple users would not satisfy the requirements for my application and
many other applications as GPS on smartphone enabled devices is usually only
accurate within 5m of one’s true location at best (under open sky) and can be as
inaccurate as up to over 100m for urban environments[65].

A different approach is required in AR to give the illusion to the users that they exist
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within a common world space. Each client will exist within its own world space with
the user (smartphone) at the origin. They then proceed to search for the marker or a
plane. Once the user has placed the game board within their own world space, their
position vectors will be independent, let Pos(X ) = (x , y , z) be the positional
co-ordinates of game object x for a given client. Let Disp(Y ,Z ) be a function equal to
the displacement of two vectors such that:

Disp(Y ,Z ) = Pos(Y )− Pos(Z ) = ((xY − xZ ), (yY − yZ ), (zY − zZ ))

One such way to synchronise common game objects in an AR environment would be
to send the displacement of a game object relative to another object rather than its
positional co-ordinates. This allows you to programmatically create a virtual origin
to synchronise world spaces. The displacement of an object can then be used to
synchronise the correct relative place of an object in a scene. In my instance, the
positions of all pieces relative to the board will give the illusion that two players using
the marker-based implementation were sharing the exact same board and for the
marker-less implementation they will see the correct positions of all pieces relative to
the board. For two clients (1 and 2), the pieces can be synchronised as follows:

Client 1:
Pos(Board) = (2, 0, 3)

Pos(Piecex) = (1, 0, 3)

Disp(Piecex ,Board) = (1− 2, 0− 0, 3− 3) = (−1, 0, 1)

Client 2:
Pos(Board) = (1, 0, 4)

Pos(Piecex) = Pos(Board) + Disp(A,Board)(from Client1)

Pos(Piecex) = (1 + (−1), 0 + 0, 4 + 0) = (0, 0, 4)

Each player has ownership over their pieces and is only permitted to move their own
pieces. The positional and rotational data is serialized at a rate of 50 times a second,
which also coincides with the frequency of the "FixedUpdate" method provided by
UnityEngine API. This data is de-serialized on the opponent’s client, stored in a
Vector3 (Co-ordinates) and Quaternion (Rotation)[63] data type respectively and
applied to the game object during the FixedUpdate method call. Each client only
subscribes to updates from the opposing client.
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Figure 4.8: Augmented Reality Environment Topology

4.7 Distributed Architecture

The application is compiled to an Android Application Package (APK) which is then
subsequently installed onto the operating system of the Android device. Each player
requires a smartphone device with this package installed to participate in the game.
Photon Cloud is the server hosting service used for this application. It uses the TCP
protocol for sending and receiving packets at a user-defined rate. I used the default
serialization rate of 50Hz which also coincides with the frequency of the fixed update
loop for updating the game scene. Photon API allows for hosting as well as joining
game rooms. Game rooms are the individual instances of multiplayer sessions
between two players.

Figure 4.9: Distributed Architecture Marker-less
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4.8 Application Workflow

Figure 4.10: Application Workflow Diagram
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4.9 Application Architecture

Figure 4.11: Application Architecture
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4.10 Application Walkthrough

Home Scene

At the home scene, the user first enters an alias to use for the duration of the game.
After an alias has been entered, they are then presented with a list of existing rooms
available for them to join. Alternatively, they can begin their own game room and an
opponent can subsequently join them. Once they have created or joined a room, they
are presented with a loading screen followed, once it has loaded, by the gameplay
scene.

Gameplay Scene

At the beginning of the gameplay scene, the user is first presented with an option to
register the game board using a marker or without marker. If marker was selected the
application will begin searching the images produced by the camera for the
pre-determined marker and place the game board in the scene at the location of that
marker. For the marker-less choice, the user is presented with planes found by the
application, the board follows a cursor at the centre of the screen of the device and a
place button is now visible which allows the player to place the game board in the
environment. Once placed, the user can adjust it’s position. When in a satisfactory
position and 2 players are in the game room, each user can then select start game to
spawn their pieces in the environment. Once pieces are in the environment, the
players can compete to win the game.
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4.11 Application Activity Diagram

Figure 4.12: Game Activity Diagram
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5 Interaction Implementation

The screen-based interactions were implemented using Unity’s Input class and
Physics class from the Unity scripting API [63]. The device used for this interaction
is the multi-touch display of the smartphone, while the gesture interaction is
implemented using a Software Development Kit by ManoMotion [44]. This SDK
provides methods for using the camera of the device to detect gestures of a hand. As
mentioned previously, hand gestures can be broadly categorised as either continuous
or static gestures. Continuous gestures are recognised over many frames, while a
static gesture is just recognised from a single frame. The SDK provides classes that
can be used out-of-the-box for both of these gesture types, I will however only be
using static gestures to recognise both grabbing and dropping of the pieces.

5.1 Raycast Interaction

The raycast interaction is implemented by continuously polling for a touch on the
screen of the device during the fixed update loop of the game. If a touch is detected,
first the co-ordinates of the location of the touch on the screen is recorded through
the input class, then the physics class is used to raycast into the scene and, if the ray
collides with a piece, the piece is selected. A selected piece will have its colour
changed to green to indicate to the user that their action was successful as well as to
bridge the evaluation gulf. This change to green is for both players, irrespective of
the original colour of their pieces.

While a piece is selected and the user is touching the screen, the piece’s position will
be updated to be at a set distance along the ray until the user removes their finger
from the screen. The piece will return to its un-selected state and experience the
force caused by gravity. The piece will return to its original colour as well to indicate
the interaction has ended.
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Figure 5.1: Raycast Interaction Logic

5.2 Pinching/Zoom Interaction

The pinching/zoom interaction is implemented similarly to the raycast interaction. It
supplements this interaction by now allowing variable depth be added to the selected
piece rather than it being locked to a constant distance. This interaction inherits all
the functionality of the raycast interaction. The first instance a second touch is
registered during the fixed update loop, the screen distance between the two touch
positions is stored. During the next instance of the fixed update loop, if the distance
between the two touch positions has increased, the distance of the piece from the
camera is incremented proportional to the distance travelled. This new distance is
subsequently stored and used during the next instance of the fixed update loop. The
logic for moving/selecting the piece from Section 5.1 is subsequently inherited and
used.

37



Figure 5.2: Pinch Interaction Logic

5.3 Gesture Interaction

The gesture interaction is implemented by first categorising the detected static
gestures from the ManoMotion API into two categories: one for selecting a piece and
one for de-selecting or dropping the piece. The static gestures recognised by the API
are: click, grab, pick, drop and release. Click, grab and pick gestures were used for
selection with the remaining being used to de-select the piece.

The API is then used to determine the detected position of the contact between the
thumb and finger on the visible hand. A UI marker is displayed on the screen to
indicate to the user where the API has determined this point of interest is. This is
used to raycast into the scene similarly from the aforementioned 2-dimensional
interactions. Adding the third dimension to this interaction type is achieved by
estimating the depth of the hand from the camera. Depth information returned from
the API is of type float, ranging from 0 to 1. Playtesting of the depth estimation
value from the API saw that the value rarely dropped below 0.5, this was because as
the hand got closer to the camera below this value, focus issues arose that meant that
the hand could no longer be detected. An implementation decision made to overcome
this limitation was to square the depth estimation value: this results in a higher range
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of possible values for the variable depth, now allowing for a greater range of values to
be achieved. Figure 5.4 details the greater range of values for an exponential depth
estimate compared to a linearly increasing depth estimate in Figure 5.3

Using the detected point of interest on the screen of the device and the estimated
distance from the camera, a ray can be cast into the scene and a point along can then
be used as a 3-dimensional cursor. A sphere model was used to indicate the point of
interest between the index and thumb finger in the virtual environment. Intersecting
of this model and a piece would indicate using the same highlighting mentioned
previously that this piece is between your thumb and index and is able to be grabbed.
Ambiguity surrounding multiple pieces possibly intersecting with the 3D cursor is
overcome by allowing only one piece to be highlighted or selectable at a given time.
The cursor must stop intersecting with the first piece to highlight a different
piece.

Figure 5.3: Linearly Increasing Depth

Figure 5.4: Exponentially Increasing Depth
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Figure 5.5: Detected Picking Gesture

Figure 5.6: Detected Dropping Gesture
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6 Results

6.1 Application Performance

The application implemented was tested on two AR-capable smartphone devices. The
hardware specifications of each device can be found in table A.4 in the Appendix.
Measured on both devices was the performance metric of frames per second of the
application while using both the touchscreen interaction method and the
gesture-based interaction method. Frame rate measures the number of times per
second the graphics of the application are re-drawn. This can be calculated at each
frame as the inverse of the time taken to draw the last frame.

LetT (f ) = The UNIX time when frame f is drawn.

Frames/Second at frame f =
1

T (f )− T (f − 1)

Set of random sample of 100 frames, f100 = (fps1, fps2, ..., fps100)

Average frame rate =
∑

(fps1, fps2, ..., fps100)

100

The time taken to draw the last frame can be retrieved from the UnityEngine
scripting API [63]. The inverse of this number was logged to a text file for both
devices. The data for these text files were processed before being visualised. A
random sample of 100 frame logs were taken for both interaction methods. Graphs of
these samples can be found in figures A.5 - A.8. Table shows the average frames per
second for both interactions on both devices.
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Asus Zenfone AR ZS571KL Huawei P20 Pro

Screen Interaction 58.66 48.34
Gesture Interaction 11.94 10.31

Table 6.1: Frames per second achieved

Using the gesture interaction incurs a frame rate loss of 80% and 79% for the Asus
and Huawei devices respectively.
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6.2 Error Rates of the Gesture Interaction

A controlled experiment was conducted to measure the impact of using this
application in different environments. The controlled experiment gives results for
both the gesture classification and tracking accuracy of the application. This
experiment is conducted to measure the error rate of the interaction with different
backgrounds of the camera’s image. The experiment attempts fifty grabs/selections of
a piece, direct manipulation of the piece followed by dropping/de-selection of the
piece. The success rate of the pick gesture will be measured as a ratio of successes to
failures for the fifty attempted interactions.

Pick = (x1, x2, ..., x50), where xi = 1 (Success) or 0 (Fail)

Success(Pick) =
∑

(x1, x2, ..., x50)

Failure(Pick) = 50− Success(Pick)

While the success rate for the drop interaction will measure the same ratio of
successes to failure except only for the successful pick interactions.

Drop = (x1, x2, ..., xSuccess(Pick)), where xi = 1 (Success) or 0 (Fail)

Success(Drop) =
∑

(x1, x2, ..., xSuccess(Pick))

Failure(Drop) = Success(Pick)− Success(Drop)

Two distinct errors can occur from these interactions, either the gesture is
miss-classified and therefore the user cannot directly manipulate the piece or the
tracking location of the hand causes the 3D cursor to not intersect the desired piece
and therefore the subject of the interaction is missed and the user must repeat the
attempt. The experiment is conducted in three distinct environments to examine the
impact it has on the ability to use this interaction, it was conducted: outside on a
grassy surface, on a wooden table and on a white texture-less table.
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Figure 6.1: Experiment on Grass

Figure 6.2: Results of Interaction Attempts on Grass

The first scenario for the interaction was outside on a grassy environment on a clear,
sunny day. An image from the camera can be seen at Figure 6.1 and the results from
this scenario are presented in Figure 6.2. 28 out of the 50 (56%) attempted pick
gestures were successful, while 22 of the 28 (79%) of the attempted drop gestures
were successful. Of the 28 errors, 12 (42%) of them were due to miss-classifying the
interaction and 16 (58%) caused by errors tracking the hand.
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Figure 6.3: Experiment with white backdrop

Figure 6.4: Results of Interaction Attempts with White Background

The second scenario for the interaction was on a white, texture-less table. This was
conducted inside in a windowed, well-lit room during the afternoon. The adjacent
wall is also of a similar white colour. An example image from the camera can be seen
at Figure 6.3 and the results from this scenario are presented in Figure 6.4. 31 out of
50 (62%) pick interactions were successful, while 29 of 31 (94%) drop interactions
were successful. Of the 21 errors that occurred, 4 (19%) of these were due to
miss-classification of the gesture and 17 (81%) were due to incorrect tracking of the
hand.
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Figure 6.5: Experiment on Wooden Tabletop

Figure 6.6: Results of Interaction Attempts on Wooden Tabletop

The final scenario occurred on a wooden tabletop, in an indoor setting that was
well-lit with windows. An example image from the camera can be seen at Figure 6.5
and the results are visualised in Figure 6.6. This scenario resulted in the most
amount of errors with zero successful attempts at achieving all of selection,
manipulation and de-selection of a piece. Only 2 attempts of 50 (4%) were successful
for picking/selecting the piece, none of the attempts to subsequently drop it were
successful, and of the 50 total errors, 39 (78%) of attempts were classification errors
and 11 (22%) were tracking errors.
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7 Evaluation

The experiment itself gave a good variation of environments where the application
performs well, moderately and poorly. The experiment on the white background
proved to have the highest success rate. The lower amount of extraneous features
extracted from the image resulted in almost all gestures classified. Errors from
tracking the hand were the biggest offender in this scenario, these errors could be due
to both inaccuracy from the user or the detection.

An improvement of my implementation to reduce the occurrence of tracking errors of
interaction would be to set a "speed limit" of the 3-dimensional cursor. From
observation of the tests, some tracking errors were caused due to the motion of the
hand during a gesture. While the user receives feedback that they can interact with a
piece, this interaction still occasionally fails as their hand movements incur a change
to their tracked location. This causes the cursor to stop intersecting with the piece
before the interaction has finished. Implementing a constant speed of the cursor
would reduce the number of these incurred errors. The piece won’t have enough time
to stop intersecting the piece and their interaction will be successful. This wouldn’t
be suitable for applications where the cursor should be able to move as fast as a
user’s hand.

Another limitation observed throughout this study is the degree in which each trial of
an experiment can be exactly replicated. There is an inherent random variability for
independent trial of the interaction conducted in the experiment due to the
impossibility of identical replication between each trial of the interaction. The
experiment, therefore has an underlying assumption that all errors incurred were due
to the limitations of the system and therefore our results also reflect some amount of
human error.
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8 Conclusion

This dissertation has detailed the design, implementation and experiments conducted
to examine the capabilities of 3-dimensional interactions in video-based AR
smartphone applications. The application allows two users to compete with each
other at playing a real-time augmentation of a tabletop classic game. Multi-modal
interactions were implemented to benchmark the impact of the gesture
interaction.

The application behaves similarly on both devices with the frame rate taking a
significant hit with the vision-based gesture interaction enabled. This drop is easily
explained by the vision based gesture detection being called on each frame captured
by the camera. It doesn’t affect the game to the point where it cannot be played, but
certainly has a noticeable latency for detecting the interaction. Assuming an average
frame rate on all AR capable smartphone devices of 11 frames per second while using
the gesture interaction, this will incur a latency of 91ms between performing the
gesture and seeing the gesture occur on the smart phone screen.

UnityEngine executes all user defined scripts and behaviours in a single-thread. The
vision library functions provided by the ManoMotion SDK are notably causing this
bottleneck in the single-thread. This stage of execution is the application stage of the
graphics pipeline and as Akenine-Moller notes, the slowest stage of the graphics
pipeline will determine the frames per second the application achieves [30].

The dramatic difference in the errors incurred from the gesture interactions due to
different environments also poses limitations for the variety of locations where the
gesture mode of interaction can be used successfully. Wooden tabletops are feature
rich which benefits marker-less registration of virtual objects on detected planes at
the expense of almost entirely unusable gesture interactions. Meanwhile, featureless
surfaces such as a white plane have high levels of success for the gesture interaction
while marker-less registration of virtual objects with these images can prove
difficult.
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The experiment conducted with the wooden table resulted in a completely unplayable
experience with zero fully successful select and de-select interactions. The textured
features of the table resulted in the 3d cursor rarely ever tracking the users actual
hand position. See figure in the Appendix. Gestures were also rarely correctly
classified.

Finally, the experiment conducted on the grass surface resulted in a good experience
with a moderate amount of accuracy. Just under half (43%) of the errors were caused
by not classifying the gesture correctly.
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9 Further Work

9.1 User Study to Evaluate Interaction Methods

A user study could be conducted to determine if the game has a greater satisfaction
when played by two co-located competing players. Also this study could be used to
gain an insight into how much the frame rates affect the satisfaction of the game. A
similar study on a first person shooter game was conducted by Claypool et al.
[17]

The Hypotheses to test.

• The gesture interaction method becomes more satisfactory in a collaborative
environment where two players can see each others gestures.

• The low frame rates impacted the satisfaction of the gesture based interaction.

A quantitative study like this would require at least 20 people according to Nielsen
[49] and Holzinger [34] proposes using 30 people for gathering this type of data. A
time of 3 minutes was used by Billinghurst et al. [33] and 5 minutes was used by [43].
5 minutes would be appropriate for this user study.

A questionnaire with 4 statements using a Likert Scale of five responses ranging from
strongly disagree (1) to strongly agree (5) could be used to evaluate the participants
opinion on the usability of this

A Questionnaire for discovering usability issues for each interaction method.

• There was a noticeably low amount of frames rendered by the application which
reduced the satisfaction of playing.

• This interaction had greater satisfaction/engagement when playing with a visible
opponent.
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9.2 Optimising the Application Stage

The poor frames achieved by the application using the gesture interaction was largely
due to the vision library being added to the update loop in UnityEngine. As
mentioned previously, user defined scripting is performed on a single thread. Further
investigation into using a multi-threaded approach to parallelise the gesture
interactions from other scripts in the update loop could reduce the incurred latency.
Studies have shown frame rates affect both a users performance in video games as
well as their perception of the quality of the picture [17].
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A.1 Github Repo Link

https://github.com/caolanb10/Connect_4
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A.2 Raycast Miss
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A.3 Raycast Hit
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A.4 Smartphone Hardware Specifications

Hardware Specifications
Asus Zenfone AR ZS571KL Huawei P20 Pro

RAM 6GB LPDDR4 6GB LPDDR4
Processor Quad-Core @ 2.35Ghz Octa-Core(4x2.4Ghz,

4x1.8Ghz)
Camera
Rear

23MP Camera 40MP Camera

GPU Adreno 530 Mali-G72 MP12
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A.5 ASUS Smartphone Touchscreen In-

teraction

Figure 1: Frames Per Second ASUS Smartphone Touchscreen Interaction
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A.6 ASUS Smartphone Gesture Inter-

action

Figure 2: Frames Per Second ASUS Smartphone Gesture Interaction
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A.7 Huawei Smartphone Touchscreen

Interaction

Figure 3: Frames Per Second Huawei Smartphone Touchscreen Interaction
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A.8 Huawei Smartphone Gesture Inter-

action

Figure 4: Frames Per Second Huawei Smartphone Gesture Interaction
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A.9 Scenario: Wooden Table

Figure 5: Hand Position Tracking for Wooden Table
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A.10 Scenario: Outside Scenario

Figure 6: Hand Position Tracking for Outside Environment

66



A.11 Scenario: White Backdrop

Figure 7: Hand Position Tracking for White Backdrop
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