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Repeated-measure analysis of the temporal nitrous

oxide emissions from the multi-species mixtures

Bharathkumar Shripad Hegde, Master of Science in Computer Science

University of Dublin, Trinity College, 2021

Supervisor: Associate Prof. Caroline Brophy

Repeated measures analysis was applied to analyse the nitrous oxide (N2O) emission
observed from an experiment that consisted of controlled agricultural plots with evenly
distributed mixtures of species from three different functional groups: two grasses (L.
perenne and P. pratense), two legumes(T. repens and T. pratense) and two herbs (C.
intybus and P. lanceolata). Observations were preprocessed to create repeated measures
data, based on seasons and the time of fertiliser application. The concepts of mixed-
models and diversity-interaction (DI) models were combined to develop statistical models
to predict the seasonal variations in the diversity effects in the multi-species mixtures.
The combined statistical models were extended to include the effect of multiple levels of
fertiliser application as well. Effect of reduced fertiliser application is found to be a domi-
nant factor for seasonal variations in the N2O emission. Model which considered diversity
effects and the effect of reduced fertiliser application was able account for 86.2% variation
in the seasonal N2O emission. Multiple DI models were fit on on the N2O emissions ob-
served immediately after fertiliser application. Comparison of multiple DI models shows
that significant identity effects were observed consistently after each fertiliser application,
whereas a significant diversity interaction effect was observed only once between legumes
and herbs.
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Chapter 1

Introduction

1.1 Background

Agriculture, forestry, and other land use (AFOLU) contributes to 21% of the total green-

house gas (GHG) emissions and nitrous oxide (N2O) is one of them. Around 75% of the

N2O emissions are from the agricultural activities. Manure applications (22%) and syn-

thetic fertilisers (18%) to grasslands are the main sources of N2O emissions (Velthof and

Rietra (2018)). According to the IPCC (2019) report, unprecedented rates of increase of

the concentration of the major greenhouse gases (carbon dioxide, methane, and nitrous

oxide) have been observed, compared to at least the last 800,000 years. N2O emission

is one of the major concerns in the agricultural industry, with 256 times higher global

warming potent, compared to CO2. Therefore, factors responsible for the N2O emissions

should be critically analysed to make necessary changes required in current agricultural

practices to curtail further N2O emissions.

Emission of N2O from an agricultural land is affected by a wide variety of biological

and environmental factors, controlling many of those factors would be a tedious task.

However, some of the major factors that influence the N2O emission can be controlled.

Synthetic nitrogen (N) based fertiliser application directly affects the amount of N2O

emission (Harty et al. (2016)) from a grassland. Hence, one of the ways to reduce N2O

emission from agricultural land would be the efficient use of the N fertiliser. Just reducing

the amount of fertiliser application may not be ideal, as it would compromise the yield.

Mixture of multiple species based on the ability of nitrogen-fixing ability can reduce N2O

emissions as well. The N use efficiency (NUE) can be improved with mixtures of grasses,

legumes, and herbs (Suter et al. (2015)). Moreover, the mixtures also provide other

benefits like increased yield, greater yield, stability, weed suspension, and improved animal

performance (Cummins et al. (2021)). Therefore, mixture of the right compositions of
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species could be the answer for the sustainable intensification of agriculture with reduced

emission of N2O.

Amount of fertiliser application and composition of species in a grassland can be

controlled with the possibility of minimising the N2O emission. However, details about

the appropriate amount of fertiliser to be applied or the right proportion of species that can

minimises N2O emission under various climatic and biological conditions is still unknown.

To answer these questions, it is necessary to understand the quantitative dynamics of

various factors like the effect of of fertiliser application, species diversity effects, seasonal

effects, and other factors which could describe the the observed N2O flux. Recent findings

by Cummins et al. (2021) shows that annual N2O emission can be effectively reduced up

to 63%, from the plots with multi-species mixtures compared to the monoculture plots,

with the same amount of dry matter yield. It reports the analysis from the the annual

N2O flux, and this analysis can be extended to consider the dynamic changes in the effects

over the time of the experiment. Temporal analysis of the factors, which affect the N2O

emissions could be useful to explore further options, like identifying the right time to

apply fertiliser, or other treatments to achieving the reductions in N2O emissions.

1.2 Motivation

The motivation behind the analysis of N2O emission lies under the fact that N2O is

expected to be the dominant ozone depleting agent and urgent actions need to be taken to

limit its emission. Mixed species compositions can provide a variety advantages in terms of

improved yield, improved stability, and reduced N2O emissions. In-depth understanding of

the factors which affect N cycle in the mixed species environment is necessary to decide the

urgent actions that can reduce N2O emission without affecting the yield. This dissertation

extends the analysis reported in Cummins et al. (2021), to analyse the temporal effects on

N2O emissions. The thesis is an exploratory analysis that reports the predicted strength

of the various effects that causes variations N2O emissions with time. The goals of the

thesis are listed as follows,

1. Analyse variations in the identity effects of different functional groups on N2O emis-

sion over multiple applications of fertiliser.

2. Analyse variations in the interactions between functional groups on N2O emission

over multiple applications of the fertiliser.

3. Analyse seasonal variations in the identity effects of different functional groups, on

N2O emission.
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4. Analyse seasonal variations in the interactions between functional groups on N2O

emission.

1.3 Overview

The thesis structure is explained in this section. To start with, Chapter 1 starts with a

brief background about the work. The motivation and goals of the thesis are presented

after explaining the background. Finally, overview of the the thesis is presented. Next, in

Chapter 2, recent research works in the related field of study and their contributions are

reviewed. This chapter is structured to cover the research works related to the mixture

problem, analysis of N2O emission, species interactions, repeated-measures analysis and

concluded with the summary of the literature reviewed. Chapter 3 provides technical

details about the experimental design principles, modelling approaches, and evaluation

methods used in various stages of the thesis. Implementations of the models are provided

in Chapter 4. Which covers the data preprocessing steps for different types of models

used in the thesis, and details about the implementation in R. Results from the models

implemented sin Chapter 4 are summarised in Chapter 5. Evaluations of the models and

the coefficients estimated from them were reported and analysed. Finally, the conclusions

from this thesis are presented in Chapter 6, it also covers details about possible directions

for the future works based on this thesis.
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Chapter 2

Literature Review

Current productions from grassland-based agriculture are mainly based on pure grass

monoculture. Pure grass monoculture produces a high yield but require a large amount of

synthetic nitrogen(N) based fertilisers, like calcium ammonium nitrate (CAN). Extensive

usage of N based fertiliser results in a substantial amount of N loss in the form of nitrous

oxide (N2O) (Harty et al. (2016)), which is a dominant greenhouse gas (GHG) responsible

for ozone layer depletion in 21st century(Ravishankara et al. (2009)). Therefore, in recent

times, research works on studying the N2O emission and analysing the dependent factors

have gained traction. These research works are trying to explore the various options to

minimise the N2O emission from the grasslands.

This chapter explores some of the recent research works that employed statistical

methods to analyse the emission of N2O and its effect on the environment. To start

with mixture problem and relevant methods to solve it are being discussed. The next

section emphasises recent findings on the N2O emissions. Various ways of analysing the

species interactions are being explored in the later section. The final section focuses on

the methodologies involved in the repeated-measure analysis.

2.1 Mixture Problem

The problems related to creating mixtures with various combinations of proportions of

pure components on the response of the system are known as mixture problems. Mix-

tures are created to facilitate the analysis of the effect of each individual component or

combination of components. In the experiments which involve the analysis of mixtures,

the response variable depends on the proportion of the components in a mixture and not

on the total amount of the components. For example, the study of the properties of an

alloy, like the tensile strength and wear resistance, depends on the proportion of different
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metals in the alloy. Various methods were proposed to create combinations of points in

the factor space to design a mixture of components (Cornell (1973)). Two methods to

solve the mixture problem, which is relevant to this experiment are being reviewed in this

section.

Scheffé (1958) was the first research work to provide a strategic design to solve the

mixture problem and simplex-lattice design was introduced in it. In this design, a

{q,m}lattice will be created, which containsm+1 equally spaced values from 0, 1/m, 2/m, ..., 1

and all combinations of these proportions for each of the q components. Image 2.1 shows

the visualisation of simplex-lattice created for different values of q and m.

Figure 2.1: Examples of simplex-lattice in different factor spaces as
illustrated in Scheffé (1958)

Simplex-lattice design is a simple solution for solving the mixture problem, however,

the proportions of the components are not equal in all mixtures, especially when there

are more than 3 components. This asymmetry makes it difficult to interpret the strength

of the interaction between more than two components.

The simplex-centroid design was introduced in Scheffe (1963), to fix the problem of

asymmetry in the simplex-lattice design. In this design, for q components, q pure compo-
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nents are created with proportions (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1),
(
q
2

)
permutations

of (1/2, 1/2, ..., 0) and so on, and a point (1/q, 1/q, ..., 1/q). Symmetric mixture composi-

tions are provided by simplex-centroid design to analyse all possible orders of interaction

that could affect the response of the mixtures. More detailed discussion about modelling

the strength of interactions in the mixtures created by simplex-centroid method can be

found in 3.1.1.

However, the simplex-centroid method has some limitations. The estimates of the re-

sponse variable vary greatly over the simplex when higher order polynomials are included.

The simplex-centroid design allows creating mixtures with process variables, for example,

considering factors like breed or age of a cattle for creating mixtures of cattle feed. The

design assumes that the variation in the response is homogeneous. However, there is a

possibility of error at two levels when the process variables are considered along with the

compositions of mixture components. One at the subject level and another at the process

variable level, for example, considering the cattle feed mixture analysis example, there

could be one error level for each cattle and another for the subgroups based on age or

breed of the cattle.

A wide range of research works, which aims to study the effect of species mixtures in

a grassland used simplex-centroid(simplex) design. The research by Kirwan et al. (2007)

analyses the possible effect of species mixtures and other factors like evenness and richness

in the community, on the yield. As part of the experiment, mixtures of 4 species, two

grass and two legumes were created for 28 sites spread across 17 countries. Total 30 plots

were created with various proportions of each species using the simplex method. The

research work by Suter et al. (2015) demonstrates the application of simplex design to

analyse the amount of N2O emission from the grassland mixture of grass and legume. It

aims to compare the emissions from monoculture plots and grass-legume mixtures with

different proportions of 4 species in the experiment. The next section reviews some of the

recent research works related to N2O emission from agricultural plots.

2.2 N2O emission

Ozone depletion potential (ODP) is a measure that quantifies the relative contribution of

various ozone-depleting substances (ODSs). Comparing the ODP-weighted anthropogenic

emission of N2O with other ODSs shows that, N2O is currently the largest ozone-depleting

emission. Further analysis to predict the future emission of N2O and its long term effect

on ozone concentrations, confirms the necessity to limit the N2O emissions in the near

future (Ravishankara et al. (2009)).

Emission of N2O is not regulated in the AFOLU economic sector, hence, it is a com-
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mon practice to use excessive fertiliser to obtain high yields of crops. The excessive usage

of N based fertiliser results in higher amounts of N2O emission. Fertiliser application is

not the only factor responsible for the emission of N2O, various factors, like weather con-

ditions, soil texture, soil minerals with N, etc also influence the emission. However, with

appropriate changes in conventional practices in agriculture, there is a good possibility

to reduce N2O emission from AFOLU economic sector. For example, changing from the

synthetic N based fertiliser to urea-based fertilisers (Harty et al. (2016)), or managing

fertiliser application in the presence of grazing animals (Maire et al. (2020)), or using

grass-legume mixtures to support N fixing in soil (Suter et al. (2015)), shows some of the

possible options.

A two-year experiment was conducted over six permanent pasture sites in Ireland to

show the possibility of limiting N2O emission on average by 80% by using urea based

fertilizer formulation instead of the synthetic N based fertiliser like CAN (Harty et al.

(2016)). Minimum N2O emission was observed in the sites where urea-based fertiliser was

applied along with nitrification inhibitors (NIs), like Dicyandiamide (DCD) and urease

inhibitors (UIs), like N-(n-butyl) thiophosphoric triamide (NBPT). this experiment em-

ployed a novel approach of using statistical methods like mixed models, discussed in detail

in section 2.4, to analyse N2O emissions from different groups of fertiliser and inhibitor

applications.

A well-designed experiment was conducted for 3 years in sites across different parts of

Europe, by Suter et al. (2015), to statistically analyse the effect of the interaction between

grass and legume species on the amount of N2O emission. This novel approach which

aims to achieve the sustainable intensification of agriculture, which involves improving

the productivity from the land but at the same time minimising its environmental effects.

This experiment confirms the possibility to reduce N2O emissions from soil, using the

symbiotic N2 fixing property of some of the legume species like Trifolium pratense L. and

Trifolium repense L. Legumes are capable of fixing naturally available in N2 into the soil

in the form in N based minerals, ranging from 100 to 380 kg ha-1 yr-1. These minerals are

available to be used by grasses in the grass-legume mixture, hence reducing the fertiliser

requirement and in turn substantially reducing N2O emission. Statistical methods were

used in the experiment to model the effect of species interactions. More details about the

statistical approaches for species interactions are discussed in the section 2.3.

2.3 Interactions in species mixture

In a given biological environment, different species interact at different levels and in com-

plex ways. Especially in a system with more than two species, it is difficult to understand
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the pattern of interactions among these species. Hence, many research works apply ad-

vanced statistical techniques to model the patterns of interactions between species in a

given biological system. To get accurate results from statistical analysis, experiments

need to be carefully designed to minimize the variations in the outcomes based on factors

that can not be controlled and strategic models are also necessary to correctly interpret

the effect of species interactions.

The simplex design can be used to decide the proportions of the species in various

agricultural fields to analyse the effect of species and their interactions on N2O emissions.

The DI modelling framework can be applied effectively to model the ecosystem function

using the data collected from the experiment which involves species mixtures designed

using the simplex method. Various effects, like identity effect, species interaction effect,

functional group interaction effects, and etc, on the outcome of ecosystem functions, like

yield or N2O emissions (Kirwan et al. (2009)), can be modelled using the DI modelling

framework.

In a species-rich ecosystem, two species may interact and affect the outcome of the

ecosystem positively, negatively, or neutrally. Modelling the species interactions gets com-

plex as the number of species in the ecosystem increases. Brophy et al. (2017a) proposes

methods to minimize the complexities associated with understating the contribution of

species interaction to the ecosystem outcome. It extends the DI modelling framework

(Kirwan et al. (2009)) by including fixed effects and random effects to understand the

effects of diversity on the outcome of the ecosystem.

The application of the DI modelling framework was demonstrated in an experiment

(Brophy et al. (2017b)) that was conducted in 31 sites across Europe and Canada for 3

years to identify the persistence of yield benefit across years, sites, and mixture commu-

nities. It also aims to identify the contribution of functional trait levels to the diversity

effect. Four different species representing two functional traits, nitrogen fixing and tem-

poral development, were used in this experimental design to increase complementarity

in resource usage. The yield benefit across mixture communities was modelled using DI

modelling framework to interpret the identity effects and species interaction effects.

Recent research by Karakoç et al. (2020) demonstrated the analysis of the time-varying

species interaction effect. This research work demonstrates the use of empirical dynamic

modelling (EDM) methods (Sugihara et al. (2020)) to quantify the time-varying strength

of species interactions. EDM is a non-parametric framework that uses the mathematical

theory of reconstructing attractor manifolds using time series data. Non linear dynamic

systems can be effectively analysed using EDM, however, it is not designed specifically

for analysing species interactions and the results from EDM have a considerable number

of limitations. DI modelling is a framework specifically designed for understanding the
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various effects of species mixtures on the outcome of the ecosystem. However, it does

not provide a way to analyse temporal changes in the strengths of species interactions

and the changes in the ecosystem along the time. Therefore, developing temporal di-

versity interaction models, which combine the concepts of the DI modelling framework

and repeated measure analysis, could be helpful in understanding the temporal dynamic

effects of species mixtures on the functional response. Various approaches to analyse the

temporal data using repeated measure analysis are reviewed in the next section.

2.4 Repeated-measures analysis

To analyse the temporal effect of species mixtures on the outcome of the ecosystem,

one of the possible options is to consider the temporal outcome of the ecosystem as

repeated measure data recorded from the individual plot(subject). In repeated measure

data, multiple readings are taken for the response from the same subject. For example,

N2O emissions readings taken from each season from the same plot. Since the repeated

measures are not independent responses, as they are taken from the same subject, analysis

approaches should account for the covariance across multiple measurements. Methods of

analysing repeated measure data can be applied effectively to the data which contains

multiple readings of different subjects over time. A variety of methods are available to

analyse repeated measure data and each method has different assumptions associated

with it. Therefore, to choose the right modelling methods suitable for the experiment,

it is important to critically review the suitable methods before using them. This section

reviews some of the commonly used repeated measure analysis methods (Maurissen and

Vidmar (2017)).

2.4.1 Multiple Comparisons

In experiments that involve the analysis of relationships among multiple levels of indepen-

dent variables, like analysing the outcome of the ecosystem based on multiple applications

of the fertiliser, multiple comparison tests can be the simplest option. Various tests and

contrasts are available to compare multiple measurements like the least significant differ-

ence test, honestly significant difference test, Newman-Keuls test, Duncan test, Scheffé’s

method. However, each test has specific use cases, assumptions, and requirements asso-

ciated with it (Zar (2009)).

Although there are multiple tests to compare multiple measurements, these methods

have limitations associated with them. Overall, the Type I error rate across multiple

comparisons increases with the increase in the number of comparisons, which is technically
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called a multiplicity problem. Inflation in the error rate can be minimised using some

mathematical methods. However, it is important to consider the possibility of multiplicity

problems during the design of the experiment and variable selection for the analysis.

2.4.2 RM-ANOVA

Repeated measure analysis of variance (RM-ANOVA) can be used to analyse a finite num-

ber of repeated measurements and it considers the correlation within the subject(Hayat

and Hedlin (2012)). This is an old method to analyse repeated measures, but it can be

a powerful method to identify an effect if it exists when the underlying assumptions are

satisfied. The requirement of satisfying the assumptions poses a number of limitations for

using RM-ANOVA.

One of the limitations in RM-ANOVA is the requirement of a balanced design. Bal-

anced design means repeated measures should be collected at the same time or conditions

for each subject, which belongs to a finite number of categories being observed. If a sub-

ject has one or more missing measurements, that subject will be entirely dropped from

the analysis. This could lead to biased results as there could be a possibility of a signif-

icant effect among the subjects for which the observations are missing. Which in turn

results in misinterpretation of the observations with very less or no real world impact.

Another limitation of RM-ANOVA is that the results are not easily interpretable as they

do not provide parameter estimates like the results from linear regression. Mixed-models

overcome these limitations and it would be a better option over RM-ANOVA to model

repeated measure data.

2.4.3 Mixed-models

Mixed-models (also known as multilevel models, hierarchical models) are one of the useful

modelling frameworks for data that contains multiple subgroups. For example, analysing

the response to treatment from patients of different age groups. This modelling technique

provides a way to model the variations within the group and variations across the groups.

Technically, mixed-models are a generalisation of linear regression with varying slope

and intercepts by group (Gelman and Hill (2006)). Population mean is inferred using

hypothesis testing or confidence intervals. The covariance structure of the data needs to

be accounted for the right interpretation of the model.

One of the main advantages of using mixed-models is that it provides a robust and

flexible way to analyse the repeated measured data with limited assumptions to be satis-

fied. Missing data does not affect the overall analysis using Mixed-models as it will use

all available data. However, missing data itself may have a potentially important pattern,

10



which may cause bias in the result. Therefore, the details about the missing data need to

be reported while applying the mixed-models.

2.5 Summary

Current agricultural practices are directly impacting the rise in N2O emissions in recent

times. Various factors, like fertiliser application, species interactions, weather conditions,

mineral levels in soil, microbial activities, etc, affect the N2O emission from agricultural

land. Temporal analysis of the N2O emission based on the effect of the above-mentioned

factors can be achieved by using the repeated measures analysis techniques. Analysing a

repeated measure data can be a challenging task, as there are various methods available

and each method has its own limitations and assumptions to be satisfied. Various aspects

of the analysis methods should be carefully analysed to identify the best suitable analysis

method for the data and the hypothesis being analysed.
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Chapter 3

Design and Methodologies

Statistical analysis and modelling involves applying a wide variety of techniques and

methodologies at various stages. This section provides a detailed explanation about the

methodologies involved in each stage of the analysis. First, the methods used for design-

ing the experimental are discussed. Experiment design emphasises on creating mixtures

of species using the simplex method. Details about the process involved in the calculation

of the response variable, N2O flux, is covered as part of the experimental design section.

Second, DI modelling framework is explained, which creates the main foundation for the

models analysed in the implementation (add reference) chapter. Mixed-models and mul-

tiple comparison techniques are also discussed as part of the modelling methods section.

At last, the statistical tests employed for the evaluation of goodness of fit and hypothesis

testing are discussed.

3.1 Experimental Design

The experiment was designed to capture N2O emission from the mixtures of six species

belonging to three different functional groups: two grasses (L. perenne and P. pratense),

two legumes(T. repens and T. pratense) and two herbs (C. intybus and P. lanceolata).

Input and output of the experiment are the two major factors, which need to designed

carefully to produce data which can be used for statistical analysis. The measurement

of input variables of the experiment should be carefully designed to satisfy the assump-

tions of the statistical models, which will be used for analysis and to avoid biases in the

measured data. The output or response variable of the experiment is N2O flux. N2O

flux was calculated by analysing concentration N2O emitted from each plot using the gas

chromatography technique. Detailed discussion about the N2O flux calculation is dis-

cussed later in this section. Upcoming subsections first explain about the simplex design,
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which was used to design the plots with different proportions of species, next describe the

experiment setup , and later methods involved in the measurement of N2O emission was

discussed.

3.1.1 Simplex design

Simplex design is used to design the mixture experiments to get a uniformly spread distri-

bution of the proportions of all components involved in the experiment (Scheffe (1963)).

For q components, this design would generate permutations of q pure components, (q/2)

binary mixtures, (q/3) tertiary mixtures and so on with equal proportions. Simplex

method provides a way to combine process variables also while designing a mixture, for

example, in a mixture design based on analysing the proportions of cattle feed, it is

possible to introduce variation based on the age and breed of the cattle (Cornell (1973)).

Mixtures created with the simplex method can be used effectively to model polynomial

regression models to analyse the strength of variation in the response based on the mixture

effects of components. For example, consider a mixture created with q components, which

produce points x1, x2, ..., xq in a simplex. A polynomial regression model can be fit for

these points (representing the proportions of each component) as follows,

Y =
∑

1<=i<=q

βixi +
∑

1<=i<j<=q

βijxixj +
∑

1<=i<j<k<=q

βijkxixjxk + .... (3.1)

In above equation 3.1, βi can be interpreted as the strength of an individual component,

βij can be interpreted as the strength of interactions among the components i and j, and so

on. One of the main goals of this experiment is to model the effects of individual species

and the interactions between different species in the mixture. Therefore, the simplex

method can be applied to design plots, such that the strength of the various effects in the

mixture can be analysed with a regression model.

3.1.2 The Experiment

Using the simplex design method, 20 communities of species mixtures were created with

symmetrically varied proportions of functional groups. Distribution of the three func-

tional groups: grass, legume, and herb, in the communities created for the experiment is

shown in the figure 3.1. Total 43 plots were created for the field experiment with 1-4 rep-

etitions of each community. The field experiment was conducted for a year, March-2018

to March-2019, in Teagasc, Johnstown Castle, Co. Wexford, Ireland 52◦18′27 . Tabulated

summary of the proportions of species in each community and their repetitions is provided

in (Appendix A).
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Figure 3.1: Distribution of the proportions of the functional groups,
grass, legume, and herb, created using simplex design

Fertiliser was applied 5 times with varying time intervals, to the plots in the first six

months of the experiment, March-2018 to September-2018. First 19 communities (1-19)

are the experimental sites, which were applied with reduced amount of fertiliser at the

rate of 150 kg N ha-1 year-1. Community 20 is the control site, which simulated the

regular agricultural practice of fertiliser application on grass monocultures. Fertiliser was

applied at the rate of 300 kg N ha-1 year-1. Specific details of the fertiliser application is

summarised in table (Appendix B).

Emissions of N2O was measured with varying intervals throughout the time of the

experiment from March-2018 to March-2019. To capture the N2O emissions induced

by fertiliser application, air samples were collected more frequently, four days a week

for two weeks, immediately after the fertiliser application. Air samples were collected
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less frequently, two days a week for the next two weeks and one day a week, until the

next fertiliser application. High resolution sampling strategy was used for the first six

months of the experiment (March-2018 to September-2018). In the last six months of the

experiment, low N2O emissions were expected because of low soil temperature and no N

based fertiliser application. Therefore, a less intensive sampling approach was employed

and emission was measured at a frequency of once per month.

3.1.3 Nitrous oxide flux measurement

Static chamber methodology was used to measure nitrous oxide emission with each plot

consisting of one chamber. While sampling, 10 ml air was collected using a syringe and

preevacuated glass vials, with necessary precautions to avoid contamination of the col-

lected air. Measurements which reflect the average hourly flux of the day were calculated

using the collected gas samples. Nitrous oxide concentration was measured using a gas

chromatograph(GC, Varian CP 3800 GC, Varian, USA) (Cummins et al. (2021)). N2O

flux (response variable) was calculated using linear regression of the increasing concen-

tration of nitrous oxide over multiple samples collected over a short time (3 samples with

a 20 minute gap), for each of the gas samples collected from the chambers in each plot.

3.2 Modelling methods

Statistical modelling provides a wide variety of methods to data consisting of various

structures and to analyse different kinds of hypotheses. The data collected in the ex-

periment, explained in the previous section 3.1, is a temporal observation of N2O flux

from the agricultural plots with different mixtures of species. Concepts from multiple

approaches, like DI modeling, multiple comparisons, and mixed models, were combined

to build models to analyse the changes in the dynamics of various effects in mixtures with

multiple observations of response. This section explains the methods and their adoption

in this analysis.

3.2.1 Diversity-interaction modeling

DI modeling (Kirwan et al. (2009)) framework provides a flexible way to evaluate various

kinds of hypotheses related to communities consisting of multiple species. Response of the

community y is modelled as a function of the proportion of individual species Pi, identity

effect(ID) and their combinations PiPj, diversity effects(DE) in the DI model. Equation

3.2 formulates the general form of the DI model and equation 3.3 segregates the terms
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representing the identity effects and interaction effects.

y =
∑

1≤i≤s

βiPi +
∑

1≤i<j≤s

δijPiPj + ε (3.2)

ID =
∑

1≤i≤s

βiPi

DE =
∑

1≤i<j≤s

δijPiPj
(3.3)

Where s is the number of species in the community, βi indicates the strength of the effect

of individual species i on the response of the mixture community, and δij is the strength

of the interaction between species i and j. Error term in the model is represented by

ε ∼ N (0, σ2).

Structural details like blocks, densities, or treatments can also be modelled using

the DI modelling framework. It also provides a way to model various patterns of in-

teractions, like even interactions, additive interactions, pairwise interactions between all

species, and functional group interactions. The species which are functionally redundant

can be grouped together to analyse the identity effects and interaction effects between

different functional groups. This analysis will be focusing on the functional group effects

as the interaction model would become complex with 22 coefficients, if all six species are

considered.

Observe that the DI model presented above can be used, when only one set of values

of the response was collected from each of the plots. Data generated from the above

explained experiment 3.1 has multiple observations for each plot. The changes in the

strengths of various effects in the mixture across multiple measurements can be analysed

in two possible ways. First, by comparing the coefficients of DI model fit for different sets

of observations. Second, by fitting DI models in the mixed-model structure by considering

various effects in the mixture as random and fixed effects.

3.2.2 Mixed-models

A simple linear regression model for the response variable Y and the predictor variable

X is represented as follows,

Y = α0 + β0 ∗X + ε (3.4)

where, α0 is the intercept of the model, β0 is the coefficient of the model, and ε ∼ N (0, σ2)

is the error term in the model. Linear regression is ideal for fitting data which consists

of predictor variables which are correlated with the response variable. However, linear

regression will not be able to fit the data correctly when it contains groups (or levels,
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categories, hierarchies, repeated measures, etc). Groups in the data may exist based

on the specific properties of the subjects of the experiment, like patients belonging to

different age groups would respond differently to the same treatment, or it could be based

on the design of the experiment, like multiple measurements of the patients response

to the same treatment. In such cases, the observed responses could be dependent on

the grouping factor, which violates the assumption of independent response variables for

applying linear regression.

Mixed-models are the extension of the linear regression to accommodate the group

level variations in the data. Coefficients of the linear regression are maintained in the

mixed-models as a fixed effect, which models the covariance of parameters X, across all

groups. Error term ε in linear regression is expanded to model the group level covariance

of parameters Z within each group. Thus, the simple mixed-model with j = 1, ..., J

groups can be expressed as,

Y = α0 + β0X +
∑

1≤j≤J

(αj + δjZ) + η (3.5)

Where αj represents the variation in group j (group level estimate of intercept) around

fixed effect intercept α0. Random effect coefficients of the group level variable Z, are

represented by δj, which captures the random variations in the response in each group.

The error term in the model η is expected to be normally distributed with mean 0,

η ∼ N (0, σ2). The parameter X is considered only as a fixed effect in equation 3.5, if it

needs to be considered as a random effect as well, then additional term βjX can be added

to the above equation 3.5. Where βj represents the variations, around β0, in the response

caused by parameter X, in each group.

Repeated measure data can be seen as a data containing a group of subjects for each

measurement level. Therefore, repeated measures can be modelled using mixed-model.

The experiment explained in the previous section 3.1 produces a repeated measure data.

By combining the concepts of DI models and mixed-models, identity and interaction

effects can be considered as random or fixed effects to fit various models for the repeated

measure data. For example, consider a mixed-model with identity effects of the species,

which are modelled as fixed and random effects with no intercept. By combining equation

3.2 and equation 3.6
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Yt = IDfix + IDran + η , for t = 1, ..., T

IDfix =
∑

1≤i≤s

βi0Pi

IDran =
∑

1≤i≤s

βitPi

(3.6)

Where Yt represents a response for tth measurement (among T measurements). The

fixed effect in the model is represented by
∑

1≤i≤s βi0Pi, with βi0 representing the strength

of fixed identity effect (IDfix) of each species i. The Random effect in the model is encoded

in
∑

1≤i≤s βitPi, with βit representing the strength of random identity effect (IDran) for

species i and measurement t.

Different implementations of mixed models and DI models were analysed in this

project. Implementation details of various models with different combinations of mix-

ture effects and mixed model effects, which were analysed in this project can be found

in chapter 4. On top of the effects presented in the equation 3.6, random diversity ef-

fect (DEran) and the random fertiliser application level effect (FLran). Random diversity

interaction effect includes all pairwise interactions between species from different func-

tional groups. In the mixed model DEran is encoded as shown in the equation 3.7 below,

notice that the parameter δijt is the coefficient representing the strength of the diversity

interaction effect between the species i and species j in the for tth measurement.

DEran =
∑

1≤i<j≤s

δijtPiPj (3.7)

Random fertiliser level effect, FLran, is the effect of using reduced fertiliser level on the

seasonal observation of the response. This effect is encoded in a single variable, therefore

only one coefficient is enough to estimate this strength of this effect. The effect, FLran

is encoded in the mixed model as shown in the equation 3.8, where, Flevel is a variable

indicating if a plot was applied with reduced fertiliser or not. And ωt is the estimate of

the effect of reduced fertiliser level for the tth measurement.

FLran = ωtFlevel (3.8)

3.3 Evaluation Methods

Using statistical methods, a hypothesis about the data can be tested using a wide variety

of methods based on the context of the analysis. In this section, two relevant methods of
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hypothesis testing are discussed. The first one is using the statistical significance of the

parameters involved in the model. Statistical significance evaluation uses p-value, which

indicates the probability of occurrence of an effect, assumed by the hypothesis, given the

null hypothesis. More detailed discussion about statistical significance is presented in

Appendix C. Second way to test the hypothesis is by evaluating the ”goodness of fit” of

the statistical model, which was fit based on the assumptions of the hypothesis. Goodness

of fit of the model can be evaluated using residual analysis of the model using tests like

deviance test, AIC and BIC test, pseudo R2 test, etc.

Mixed-models were compared based on a goodness of fit test to identify the factors

that provide a best fitted model. Implementation chapter 4 explains the six mixed-

model, model that encodes the majority of variation in the response variable was chosen

based on the results of the goodness of fit test like AIC, BIC, deviance and pseudo R2.

The coefficients of multiple DI models, which were fitted based on the time of fertiliser

applications, were check checked for statistical significance to identify if any significant

diversity effects were observed in the experiment.

3.3.1 AIC and BIC

Akaike information criteria (AIC) and Bayesian information criteria (BIC) provide relative

measures for model selection, based on the estimation of error in prediction. Likelihood

of the model can be increased by adding more predictor variables, which would result in

over fitting of the model. To overcome this problem, both AIC and BIC add a penalty

term based on the number of predictor variables.

AIC rewards the goodness of fit based on the likelihood function, which discourages

under fit, and penalises for the larger number of parameters, which ensures a higher

penalty for over fitting. Mathematically, AIC can be expressed as shown in the equation

3.9

AIC = 2k − 2 ln L̂ (3.9)

where k is the number of predictor variables and L̂ is the maximum value provided by

the likelihood function for the model.

Equation for BIC 3.10 is very similar to AIC, except the penalty for the number of

predictor variables log(n), which is relative to n, the number of samples, instead of a fixed

value of 2 in AIC.

BIC = k ln(n)− 2 ln L̂ (3.10)

19



where k is the number of predictor variables, n is the total number of samples, and L̂ is

the maximum value provided by the likelihood function for the model.

Model with lower AIC or BIC is considered as the best model based on requirements

of the analysis. Some researchers argue that BIC should be considered instead of AIC

for the selection of ”true model” which indicates the process which generated the data.

However, other researchers argue that AIC may have negligible differences compared to

BIC, depending on the ratio of sample size n and the number of parameters k in the

model.

3.3.2 Residual deviance

Analysis of the goodness of fit of the linear model, fitted with the ordinary least squares

(OLS) method, uses the sum of squares of residuals (RSS). Generalisation of RSS for

models, which fits the linear mixed-model using the maximum likelihood function, is

called the residual deviance. Residual Deviance is a function of the log-likelihood of the

fitted model and can be expressed as shown in the equation below,

D = −2 ∗ LL(Fitted Model) (3.11)

where D is the residual deviance, LL is the log- likelihood function for the fitted model.

Multiple models, based on different hypotheses, can be compared by changing the

model parameters and keeping the response variable same. The Hypothesis corresponding

to the lowest residual deviance can be considered as the best explanation of the data

compared to other hypotheses, as the model corresponding to that hypothesis fits the

data better than other models.

3.3.3 Pseudo R-squared

Comparison of the baseline model (which predicts the mean response) with the fitted

model can be evaluated using R-squared statistic. For example, if a fitted model produces

R2 = 0.9, the input parameters included in the model account for 90% of the variation

in the response variable. This method is very useful for hypothesis testing as it provides

an easy way to compare and interpret the goodness of fit of the fitted model. Recent

article Chicco et al. (2021) claims that R-squared value (coefficient of determination) can

be more truthful than other evaluation methods, like MSE, RMSE, MAPE, and SMAPE,

which are usually used for regression analysis.

Depending on the context of the compared models, R-squared values are defined sep-

arately. To get an intuition of the R-squared statistic, first consider the linear regression
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model fitted based on OLS. Following equation 3.12 shows the calculation of R-squared

value for models fitted with OLS.

R2 = 1− SSres
SStot

= 1−
∑

i(yi − fi)2∑
i(yi − ȳ)2

(3.12)

Where yi is the observed response, fi indicated predicted response from the fitted model,

and ȳ represents the mean of observed responses. Therefore, SSres is nothing but the

squared sum of residuals, or variance in the data from a model and SStot is the variance

in the observed response variable.

For fitting the mixed-models, maximum likelihood estimation (MLE) is used and it

consists of fixed effects and random effects. Thus, R-squared statistic for the predictions

from mixed-models is derived as shown in equation 3.13. This is also referred as the

pseudo R-squared statistic.

R2 =
σ2
f + σ2

α

σ2
f + σ2

α + σ2
ε

(3.13)

Where σ2
f is the variance of the fixed effect components, σ2

α is the variance of the

random effect components, and σ2
ε is the variance of the observation.
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Chapter 4

Implementation

Methodologies discussed in the previous chapters were employed to implement multiple

mixed-model and DI models to understand the relationship between mixture composition,

fertiliser, seasonal changes on the N2O emission from the grassland. The models were

implemented in R, version 4.1.0 (2021-05-18) in Windows 10 operating system. The

mixed-models were implemented using an R package lme4 (Bates et al. (2014)), and the

models were evaluated with R package lmerTest (Kuznetsova et al. (2017)). For repeated

measure analysis of N2O emission on the application of fertiliser, DIModels R package,

based on Kirwan et al. (2009), was used.

To start with, the data preprocessing steps are explained. Data preprocessing covers

details about specific preprocessing steps applied to the raw data, which was collected

from the experiment explained in section3.1. Next, mixed-model implementations and

the hypotheses being tested are being explained. Later, the implementation of DI models

is discussed. Finally, details about all models, which were implemented as part of this

thesis, are summarised. The analysis of the results from the models discussed in this

section is presented in the next section 5.

4.1 Data preprocessing

The raw data contains three tables. The first table has information about the different

communities with various proportions of species in each of the 43 plots (Appendix A).

Data from 42 plots were used for the analysis as the observations from one of the plots

were missing. The second table contains the observations of N2O flux at different intervals

in each experimental plot, over a year from March 2018 to March 2019. The third table

provides information about the application of nitrogen based fertiliser. Calcium ammo-

nium nitrate (CAN) fertiliser was applied 5 times during the period of the experiment at
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varying intervals(Appendix B) in two different levels. These three tables were merged to

produce a single data set, using R in Tidy data format. An additional column was added

to the combined data set, which differentiates the two levels of fertiliser application. One

of the goals of this work is to analyse the effect of reduction in the amount of fertiliser

application, hence communities with a reduced amount of fertiliser application, 150 N,

are encoded as 1 and the communities with a regular amount of fertiliser application, 300

N, are encoded as 0.

The data contains total 73 observations of N2O flux at different intervals from each

plot. Mixed models and DI models are complex in structure and having 73 repeated

measures would make the model very complex and difficult to interpret. Therefore, to

simplify the model, data is aggregated based on the time of the observation. There are

multiple possibilities in which time segments can be considered for aggregation. Two

aspects are considered in this analysis for aggregation of temporal N2O flux observations.

One is based on seasons and the other is based on fertiliser application. Seasonally

aggregated data was used for mixed-model analysis and data aggregated based on fertiliser

application was used for comparing the changes in the strengths of various effects in the

species mixture using multiple DI models.

4.2 Mixed-model implementations

Mix-models were fit using lmer function defined in R package lme4. For fitting the coef-

ficients, the maximum likelihood (ML) method was used instead of the default restricted

maximum likelihood (REML). Options of the goodness of fit test for the model fit us-

ing ML are more compared to the goodness of fit test available for the model fit using

REML. For fitting mixed-models response variable, N2O flux, was scaled between 0-1, for

achieving better convergence of the model.

4.2.1 Data aggregation based on seasons

The experiment was conducted in Teagasc, Johnstown Castle, Co. Wexford, Ireland there-

fore, observations are aggregated based on the seasonal patterns in Ireland. According

to Met-Éireann (2021), Ireland has four seasons, Winter: from December to February,

Spring: from March to May, Summer: from June to August and Autumn: from Septem-

ber to November. The observations of N2O flux is aggregated by calculating total N2O

flux in each season for each plot. Total seasonal N2O flux will be used as a dependent

or response variable for the mixed-models defined in the next section. After aggregation,

the data contains four repeated observations of aggregated N2O flux for each plot. A
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visualisation of seasonal aggregated data of the plots separated based on the levels of

fertiliser application is shown in image 4.1.

Figure 4.1: Total N2O flux observed from each agricultural plot in differ-
ent seasons. Observations are segregated based on fertiliser application
level on the agricultural plot. Fertiliser application level 0 refers to plots
from the regular amount of fertiliser application, 300 N, and 1 refers to
plots with reduced fertiliser application of 150 N.

4.2.2 The models

Using the mixed-models approach, six models were fit, with the same fixed effects but

different random effects, to analyse various hypotheses regarding the data collected from

the field experiment. The identity effect of each functional group is encoded as a fixed

effect in all mixed-models. The models implemented as part of this work can be categorised

into two sets. The first four models focus on analysing the strengths of various seasonal

effects in the mixture, like the identity effects, diversity effects between the functional

groups and their combinations. The fertiliser application levels are not considered in the

first four models. The second set of models consider the fertiliser application levels and all

communities of mixtures involved in the experiment. Fertiliser level is used as a random

effect in these models to analyse the effect of the reduction in the fertiliser level on the

N2O emission. Refer to the methodology section 3.2.2 for the definitions of mathematical

notations used to describe the various effects in the implementation details below.

Functional group effects

Identity effects and diversity effects between species from three different functional groups:

grass (G), legume (L), and herb (H), in each seasonal observation of N2O flux (flux) are
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analysed in the models presented below. First, the null model M0 is defined with the

only intercept as the random effect. Then the next models (M1, M2, and M3) consider

seasonal identity effects and diversity effects as random effects instead of the intercept.

The models M0-M3 use the response collected from the plots which were applied with a

reduced amount of fertilisers, communities 1-19 with 150 N fertiliser application per year,

for fitting.

M0: Null model Null model corresponds to a null hypothesis in this experiment. This

model was built based on the assumption that the N2O emission is affected by the

fixed identity effect (IDfix) only. And identity effect and the diversity interaction

effects are assumed to not cause any significant variations in the seasonal emission

of the N2O. This model is used as a base model used for comparison with other

models. M0 was implemented in R using lme4 package, as follows,

m0<-lmer(flux~G+L+H+(1| season), data , REML=FALSE)

Listing 4.1: M0: Null model

Where flux will be modelled as a function of the proportion of individual functional

groups across all seasons, fixed identity effect (IDfix), and an intercept for each

season. Mathematical representation of M0 is shown in equation 4.1,

Yt = IDfix + αt + η, for t = 1, ..., 4 (4.1)

where, IDfix represent a fixed identity effect as explained in equation 3.5 and αt

represent the the average deviation estimated around the fixed identity effect, IDfix,

for each seasonal measure t. t varies from 1, ..., 4 corresponding to each of the

seasons: spring, summer, winter, and autumn. The parameters estimated in this

model are the coefficients in the Dfix and αt.

M1: Seasonal identity effect model In this model, random identity effects are con-

sidered at seasonal levels. This model assumes that the identity effects of the func-

tional groups are the significant causes for the variations in seasonal measurements

of N2O flux. Observe that the intercept is not included in the random effects of

this model. Percentage of the functional groups are considered in this experiment,

therefore, all coefficients in IDran for each season should sum up to the average

seasonal change modelled in M0(alphat). Here is the implementation of the model

in R, where the identity effects in the mixtures are considered as both fixed and

random effects.
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m1<-lmer(flux~G+L+H+((0+G+L+H)| season),

data , REML=FALSE)

Listing 4.2: M1: Seasonal identity effect model

In addition to M0, M1 will estimate the coefficients in the IDran instead of alphat.

The mathematical form of M1 can be shown as follows,

Yt = IDfix + IDran + η, for t = 1, ..., 4 (4.2)

M2: Seasonal pairwise interaction model Seasonal diversity interaction effects (DEran)

will be estimated in this model. The pairwise interaction effects encoded in DEran

are assumed to be the major reason for seasonal variations in the response variable.

M2 is implemented in R as follows

m2<-lmer(flux~G+L+H+((0+G:L+G:H+L:H)| season),

data , REML=FALSE)

Listing 4.3: M2: Seasonal pairwise interaction model

where, terms G:L, G:H, and L:H represent the interaction terms, equivalent to GxL,

GxH, and LxH. M2 will be estimating the coefficients of pairwise interaction

terms in DEran along with the estimations of coefficients in IDfix. Mathematical

interpretation of M2 is shown in the equation below,

Yt = IDfix + DEran + η, for t = 1, ..., 4 (4.3)

M3: Seasonal full effects model Final model, M3, is a combined version of M2 and

M3. It captures both the random identity effects (IDran) and random interaction

effects (DEran) in each seasonal observation set of N2O emission. M3 is implemented

in R as follows,

m3<-lmer(flux~G+L+H+((0+G*L+G*H+L*H)| season),

data , REML=FALSE)

Listing 4.4: M3: Seasonal full effects model

where, terms G*L, G*H, and L*H represent the pairwise interaction terms along with

the identity terms. For example, (G*L+G*H+L*H) will be expanded as (G+L+H+G:L+G:H+L:H).

The model M3 will be estimating the coefficient in IDran and DEran, along with the
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coefficients in IDran, which is common in all models. Mathematically, M3 can be

written as follows

Yt = IDfix + IDran + DEran + η, for t = 1, ..., 4 (4.4)

Functional group effects with fertiliser application levels

The amount of fertilisation application (fertiliser level) plays an important role in the

variations of N2O emission. Hence, the models presented in this section are designed to

estimate the strength of the reduced fertiliser application levels(FL) on the N2O emission.

Results from the previous set of models M0-M1, discussed in chapter 5, shows that signif-

icant seasonal identity effects were observed in the experiment. Therefore, the model was

implemented with seasonal identity effects and the seasonal effect of fertiliser application.

Models M4 and M5 use the observations from all 20 communities for the analysis.

M4: Seasonal fertiliser level model The effect of reduced fertiliser application (FLran)

on the seasonal emission of N2O is modelled in M4. The fixed effects are same as

the previous models, IDfix. The random effects include an intercept and the coeffi-

cient for reduced fertiliser effect encoded as 1 for communities with reduced fertiliser

application and 0 for communities with regular fertiliser application. The Intercept

is included in the random effects to capture the possibility of other factors which

would influence the N2O emission. M4 assumes that the seasonal variations in N2O

emission is affected by the level of fertiliser application and an average effect of other

unknown factors. Mixed-model implementation of M4 in R is shown below,

m4<-lmer(flux~G+L+H+(1+FL|season),

data , REML=FALSE)

Listing 4.5: M4: Seasonal fertiliser level model

The mathematical representation of the model M4 is shown in the equation 4.5,

which clearly shows the random effects and fixed effects considered in the model.

Yt = IDfix + αt + FLran + η, for t = 1, ..., 4 (4.5)

M5: Seasonal fertiliser level and identity effects model In the previous model, M4,

the intercept was included as a random effect. The average effect of unknown factors

is split into identity effects of the functional groups. Hence, the random identity

effect (IDran) is considered instead of the intercept. In this model coefficient in FLran
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estimates the effect of reduced fertiliser application and the coefficients in IDran es-

timate the strength of individual functional group identity effect for each seasonal

observation set. The assumption of this M5 is that the seasonal variations in N2O

emission are affected by the fertiliser application level as well as the identity effects

of individual functional groups. R implementation of M5 is shown below,

m5<-lmer(flux~G+L+H+((0+ FL+G+L+H)| season),

data , REML=FALSE)

Listing 4.6: M5: Seasonal fertiliser level and identity effects model

Mathematical formulation of M5 with fixed identity effects (IDfix), random fertiliser

level effects (FLran), and random identity effects (IDran) is shown in 4.6

Yt = IDfix + FLran + IDran + η, for t = 1, ..., 4 (4.6)

M6: Seasonal fertiliser level and full effects model In this model, random diver-

sity interaction effects are included along with the random effects considered in M5.

This model estimates coefficients in FLran, when represents the effect of reduced

fertiliser application on the response variable. The coefficients of IDran and DEran

estimate the identity effect and diversity interaction effect on the N2O emission.

The assumption of M6 is that seasonal variations in the N2O emission are affected

by fertiliser application, identity effects, and diversity interaction effects between

multiple functional groups. R implementation of the model is shown as follows,

m6<-lmer(flux~G+L+H+((0+ FL+G*L+G*H+L*H)| season),

data , REML=FALSE)

Listing 4.7: M6: Seasonal fertiliser level and full effects model

Mathematical formulation of M6 with fixed identity effects (IDfix), random fertiliser

level effects (FLran), random identity effects (IDran), and random interaction effects

(DEran) is shown in 4.7

Yt = IDfix + FLran + IDran + DEran + η, for t = 1, ..., 4 (4.7)

4.3 Diversity-Interactions model implementations

In the data collected from the experiment, spikes are observed in the emission of N2O, in

multiple types of mixture communities around the time of application of the fertiliser. The
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spikes indicate the possibility of significant changes in the dynamics of mixture interactions

during the time of the fertiliser application. DI modelling framework was used to fit the

data aggregated based on the time of fertiliser application.

4.3.1 Aggregation based on the time of fertiliser application

To study the changes in the dynamics of various effects in the mixture of species, N2O flux

observed immediately after the fertiliser application can be aggregated and analysed as

repeated measure data. The fertiliser was applied five times throughout the experiment

with varying intervals as indicated in (Appendix B). Therefore, five sets of observations

of N2O flux need to be aggregated, which results in five repeated measures of aggregated

N2O flux for each plot. As explained in the previous section 3.1, N2O flux was collected

at a higher frequency of four times a week for two weeks immediately after the fertiliser

application. Hence, total N2O flux observed over 2 weeks after the fertiliser application

was used for the repeated measure analysis. DI modelling method was used to model the

interactions in the mixture. After the aggregation of eight observations immediately after

a fertiliser treatment, the data which will be used for fitting DI models can be visualised

as shown in the image 4.2. Note that the fertiliser application time (T1, T2,..., T5)

is different from the fertiliser application level, which refers to the amount of fertiliser

applied.

Figure 4.2: Total N2O flux observed in eight observations after the
the fertiliser application. T1, T2, T3, T4 and T5 indicates the five
applications of fertiliser. Only plots with reduced fertiliser application
of 150 N is aggregated.

The visualisation of the data image 4.2, aggregated based on fertiliser application has

29



noticeable outliers. Hence, RM-ANOVA can not be applied for this data, as the response

variable, aggregated N2O flux, is not normality distributed. To analyse the changes in the

various effects involved in the mixtures, multiple DI models were fit for each aggregation

set T1, T2,..., T5 and their coefficients were compared along with their significance using

the p-value.

4.3.2 The models

DI modelling framework, available in the R package DIModels, was used to fit the ag-

gregated observations collected immediately after each fertiliser application. Total five

models were fit for five times fertiliser application. ’Full effects’ model in DI modelling

captures both identity effects and pairwise interaction effects. Therefore, the ’Full effects’

approach is used in the following implementations. Observations from communities 1-19

with reduced fertiliser levels were used for fitting as this analysis focuses on analysing the

changes in the dynamics of mixture effects with repeated applications of fertiliser at the

same level.

Implementation of DI model in R is shown below,

full_di <- DI(y = "flux",

prop = c("G","L","H"),

FG = c("G","L","H"),

data = data ,

DImodel="FULL")

Listing 4.8: DIM: Diversity-interactions model implementation

Mathematical representation of the model is shown in the equation 4.8,

Y = ID + DE + α (4.8)

Where ID represents the identity effects and DE represents the diversity interaction effects

between functional groups in the mixture. and α ∼ N (0, σ2) represents the error term.

The coefficients involved in identity effects and diversity interaction effects are explained

in 3.2.1.
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Chapter 5

Evaluation

The models were designed and fitted based on various assumptions using a variety of

parameters. This section covers the evaluation of the data and the results from the models

fitted in the previous section. First, the explanatory analysis of the data is reported. It

covers a brief overview of the original data collected from the experiment and visualises

the aggregated data after the preprocessing steps explained in 4.1. Next, the seasonal

analysis of the diversity effects reports the results from mixed-models, which estimates

the seasonal variations in the diversity effects on the N2O emission. Later, the evaluations

of DI models were analysed to study the changes in diversity effects based on repeated

fertiliser applications. Finally, a summary of all different kinds of evaluations explained

in the section are presented.

5.1 Explanatory analysis of the data

A brief overview of the original data collected from the field experiment, is shown in the

figure 5.1. To provide a cleaner overview of data, average N2O flux observed over the time

of the experiment from different groups of communities were are plotted. Monocultures

are communities which contain species of only one kind of functional group. For example,

grass monocultures consist of either one or both grass species, L. perenne and P. pratense.

Mixed cultures contain species from at least two different functional groups. 300 N grass

monocultures are the set of control communities, which simulate the regular agricultural

practice. Fertiliser application date is marked with a black arrow at the top of the plot.

The figure reported in Cummins et al. (2021) plots the same data based on the groups

created with species monocultures and mixtures. Whereas, the figure 5.1 plots the data

based on the groups created with functional group monocultures and mixtures.

A quick glance at the plot 5.1 shows that a higher amount of N2O emissions were
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Figure 5.1: Average N2O Flux from different groups of plots. Plots are
grouped as Grass monoculture - containing only grass species, Legume
monoculture - containing only legume species, Herb monoculture - con-
taining only herb species, Mixed culture - containing at least two differ-
ent species, 300N Grass monoculture - Grass monoculture plots which
were applied with higher mount of fertiliser. Black arrows at the top of
the figure mark the time of fertiliser application date

observed from community 20, to which a higher amount of fertiliser (300 N) was applied.

Hence, there is a good possibility of significant change in N2O emissions based on the

amount of fertiliser applied to the monocultures. Spikes in the N2O emissions are ob-

served in almost all groups around the time of fertiliser application, and the height of the

spike changes differently for different monocultures and mixtures, with repeated fertiliser

application. This behaviour of the spikes N2O emissions suggests that the dynamics of the

diversity effects in the plots changes with multiple applications of the fertiliser. However,

fertiliser application may not be the only factor causing the changes in spike, it could be

based on the seasonal changes in the environment or other factors like soil minerals, micro-

bial activities as well. Data was collected more frequently at around the first six months

of the experiment then the last six months. However, low N2O emissions were expected

as the fertiliser was not applied in the autumn and winter seasons and the possibility of

emission is also less because of the low temperatures.

The original data was preprocessed in two different ways, based on the modelling

framework and the factors considered for the analysis. Data preprocessing is explained
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in the section 4.1. One of the preprocessing steps aggregated the observations based on

seasons: spring, summer, autumn, and winter. Seasonally aggregated data was used to fit

mixed-models to analyse a variety of effects, like seasonal effects, overall diversity effects,

and the fertiliser application levels. In another way of preprocessing, a set of observations

collected immediately after the fertiliser application were aggregated. Repeated measure

data created as a result of aggregation based on fertiliser applications, were used to fit

DI models to analyse the possible changes in the dynamics of the diversity effects in the

spikes generated around the time of fertiliser application.

5.2 Seasonal analysis of the effects

Mixed-models were used to analyse the seasonal effects that could be responsible for the

variations in the emission of N2O. Model implementation details, like hypothesis and

the mathematical representation, are discussed in section 4.2. As explained before, two

kinds of seasonal analysis were implemented. First analysis was focused on the various

combinations of diversity effects as random effects. And the second analysis was focused

on analysing the effect of reduced fertiliser application of 150 N, compared to the regular

fertiliser application on a grass monoculture. Fixed effects were the same in all models to

simplify the comparison of multiple mixed-models.

5.2.1 Diversity effects

Models M1-M3 were fitted to the observations from plots 1-19, which received a reduced

amount of fertiliser. Each model was evaluated using the evaluation method discussed

in methodology chapter 3.3 to compare the models against the baseline null model, M0.

For comparison, the null model was also fitted using the same data, which was used for

fitting M1-M4. Goodness-of-fit measures of the models are tabulated in table 5.1 below.

Model
Random
Effects

AIC BIC Deviance p-R2

M0 α -429.6 -414.5 -439.6 0.486
M1 G+L+H -456.1 -425.8 -476.1 0.625
M2 G:L+G:H+L:H -355.17 -324.94 -375.17 0.183

M3
G+L+H+

G:L+G:H+L:H
-435.71 -360.11 -485.71 0.681

Table 5.1: Comparison of the mixed-models to analyse seasonal diversity
effects

The model M3, which considers functional group identity effects and interaction effects
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as random effects, is the best fit for the data as pseudo R2 value 0.681, is the highest

compared to other models reported in 5.1, which indicates that the model accounts for the

parameters which causes 68.1% variations in the response variable, N2O flux. Moreover,

deviance (-485.71) of the model M3 is also the lowest. However, pseudo R2 value (0.625)

and the deviance (-476.1) of the model M1 are very close to the values of the model

M3, with better (lower) values of AIC (-456.1) and BIC(-425.8) compared to model M3.

Penalties are applied for the models with higher number of parameters in AIC and BIC

calculations. AIC (-435.71) and BIC (-360.11) values of model M3 are very close to the

values of model M1. Hence, considering the higher pseudo R2, model M3 can be considered

to be the best estimate the seasonal diversity effects on the N2O emission.

Figure 5.2: Coefficients of M3: Seasonal full effects model

The coefficients estimated for model M3, which considers both fixed and random

effects, are plotted in the image 5.2. In the plot, y-axis is the coefficient estimate, which

indicates the strength of the parameter on the estimation of the response variable. The

dynamics of changes in the strength of each parameter for different seasons can also be

observed in the plot. The diversity interaction between legumes and herbs is estimated

to affect negatively to N2O emission in summer and autumn. Mixture containing grass

has an estimated negative effect of interactions on the emission in the spring, however

they contribute positively in other seasons. Identity effect of grass species is estimated to

reduce throughout the year. Note that these estimations are from the communities with

reduced fertiliser application only. Adding the fertiliser application levels in the mixed
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model would possibly improve the estimations from the model.

5.2.2 Fertiliser application effects

The models M4-M6 were fitted using observations from all communities and different fer-

tiliser application level was considered in these as a random effect. Baseline model M0,

which accounts for only the fixed identity effect (IDfix) was used for the comparison to

evaluate the goodness-of-fit. The model M0 was refitted with observations from all com-

munities to correctly compare the fitness parameters with the models M4-M6. Evaluation

of the goodness-of-fit parameters as listed in table 5.2.

Model
Random
Effects

AIC BIC Deviance p-R2

M0 α -259.63 -244.01 -269.63 0.318
M4 1+FL -415.06 -393.19 -429.06 0.779
M5 G+L+H+FL -436.54 -392.81 -464.54 0.845

M6
G+L+H+

G:L+G:H+L:H+FL
-407.51 -307.54 -471.51 0.862

Table 5.2: Comparison of the mixed-models to analyse seasonal diversity
effects along with fertiliser application level.

Adding fertiliser level as a random effect in the model improves the pseudo R2 from

0.318 (in baseline model M0) to 0.779 in model M4. Hence, the fertiliser application level

itself accounts for the 77.9% of variation in the emissions of N2O. Best pseudo R2 value

of .862 is observed in model M6 along with the lowest deviance of -471.51. The model

M5 has pseudo R2 value of 0.845 and the deviance of -464.54, which are very close to the

same parameter values of M6. AIC and BIC values of model M6 (-407.51, -307.54) are

greater than model M5 (-436.54, -392.81), which can be explained based on the number of

parameters used for fitting. Compared to model M5, random diversity interaction effects

are included in model M6. Diversity interactions are one of the important effects in a

mixture environment and are not expected to cause overfitting when the experiment was

conducted in similar conditions as the same kind of interactions can be expected from any

two species in a given environmental condition. Thus, model M6, which estimates the

N2O emission based on fixed identity effect, random identity effect, random interaction

effects, and the effect of fertiliser application level, is considered to be the best model to

explain the seasonal dynamics of N2O emission.
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Figure 5.3: Coefficients of M6: Seasonal fertiliser level and full effects
model

Overall coefficients (fixed effects + random effects) estimated in model M6 are plotted

in 5.3. Strength of the effect of reduced fertiliser application is estimated to contribute

highly to the reduction in N2O emission. Hence, reducing the amount of fertiliser applica-

tion is necessary to minimise the N2O emissions. Identity effects were reduced along the

time but they contributed positively to the response variable. Strength of the pairwise

interaction varies in small interval throughout the season, hence the interaction effects

are estimated to contribute weakly to the reduction of N2O emissions.

5.3 Analysis of the diversity effects based on the fer-

tiliser application

DI models were fitted to the aggregated observations collected immediately after the

fertiliser application. Therefore, five full effects models, which considered the identity

effect and interaction effects, were fit to the observations collected from communities 1-

19, the experiment plots which were applied with reduced fertiliser levels. Five models

are named as DIM1, DIM2, DIM3, DIM4, and DIM5, where DIMn, the model fitted

to the aggregated observations collected after nth fertiliser application. The estimated

coefficients from the DI models, which were fit after each fertiliser application are shown

table 5.3. No significant interactions between species from different functional groups were
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observed, except one significant interaction observed between grasses and herbs after the

third application of the fertiliser. The significant interaction between grasses and herbs

has a very high impact (-403.688) on the reduction of N2O emissions. However, this

effect is not observed consistently, so the overall significant interaction effect between any

functional groups can not be established.

Model grass legume herb grass:legume grass:herb legume:herb
DIM1 75.139* 47.355* 49.937* -74.107 -6.079 12.625
DIM2 133.051* 35.899* 56.668* -64.796 -117.826 57.235
DIM3 48.220* 146.102* 60.750* 143.202 91.132 -403.688*
DIM4 10.461* 11.018* 10.273* -0.925 6.974 6.910
DIM5 24.299* 44.599* 17.769* -10.450 44.648 18.007

Table 5.3: Coefficients of the DI models fit to the aggregated observa-
tions collected after fertiliser application. Numbers presented in bold
are the estimates of the significant effect (p < 0.05)

5.4 Summary

By explanatory analysis of the data, seasonal changes in the diversity effects and fertiliser

application level (reduced: 150 N and regular: 300 N) were assumed to be the major

factors influencing the N2O emissions. The spikes in the N2O flux after the fertiliser ap-

plication was also an point of interest, as the variations in the response from the different

kind of communities in the experiment was not same in all spikes. The mixed-model

with random effects that include identity effects, diversity effects, and fertiliser level ef-

fects, were found to account for the 86.2% variations observed in the N2O flux. The

coefficient plot of the best mixed-model M6, shows that seasonal strengths of identity

effect are closely correlated. It also explains that, reduced fertiliser application amount is

strongest factor responsible the reduction in N2O emissions, and second strongest factor

is the interactions between legume and herbs, but only during summer and winter. Fit-

ting DI models on observations immediately after fertiliser application did not show any

significant diversity interactions among the functional groups in the mixture. Except for

the interactions between legume and herb after third fertiliser application, which is not

consistent for all fertiliser applications.
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Chapter 6

Future Work

Reduced amount fertiliser application was identified as one of the strongest effects that

influenced N2O emissions in this experiment. Reduction in fertiliser will affect the yield of

the plot. Hence, yield from the agricultural plot is considered for the analysis to identify

the ideal amount of fertiliser reduction required without compromising on the yield. Time

based analysis of N2O emission can be extended to analyse various other factors like, soil

minerals, microbial activities, livestock grazing, type of fertiliser usage, that would have

a major effect on the N2O emission. Research works already considered some of the

factors discussed here. However, variation in those factors along the time is not widely

considered. Hence, analysing the important factors that affect the N2O emission, with

the consideration of changes in those factors along the time, like seasonal or based on

an external treatment, would be helpful in understanding the dynamics of N. In turn, it

enables considering the changes required in the current agricultural practice specific to a

particular time or season to achieve further reductions in N2O emissions.

Multi species mixture analysed in this experiment was observed in a very controlled

environment. Hence, the results achieved from this analysis may not be a very robust

prediction. Actual emissions would vary in practical cases. Therefore, conducting multi-

species mixture experiments with the consideration of a wide variety of important factors

like different soil types, different geographical locations, and effects of livestock grazing,

etc would be necessary for a robust analysis.
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Appendix

Appendix A

Community Reps FGs Species FG(Grass) FG(legume) FG(deep) L.p P.p T.p T.r C.i P.l
1 3 1 1 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
2 3 1 1 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
3 3 1 1 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
4 3 1 1 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
5 3 1 1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00
6 3 1 1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00
7 2 1 2 1.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00
8 2 1 2 0.00 1.00 0.00 0.00 0.00 0.50 0.50 0.00 0.00
9 2 1 2 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.50 0.50
10 2 2 4 0.50 0.50 0.00 0.25 0.25 0.25 0.25 0.00 0.00
11 2 2 4 0.50 0.00 0.50 0.25 0.25 0.00 0.00 0.25 0.25
12 2 2 4 0.00 0.50 0.50 0.00 0.00 0.25 0.25 0.25 0.25
13 1 3 5 0.60 0.20 0.20 0.60 0.00 0.10 0.10 0.10 0.10
15 1 3 5 0.20 0.60 0.20 0.10 0.10 0.60 0.00 0.10 0.10
16 1 3 5 0.20 0.60 0.20 0.10 0.10 0.00 0.60 0.10 0.10
17 1 3 5 0.20 0.20 0.60 0.10 0.10 0.10 0.10 0.60 0.00
18 1 3 5 0.20 0.20 0.60 0.10 0.10 0.10 0.10 0.00 0.60
19 3 3 6 0.33 0.33 0.33 0.17 0.17 0.17 0.17 0.17 0.17
20 4 1 1 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

Table 1: Mixture design of the experimental sites with various combi-
nation of species proportions.

Appendix B

Fertiliser was applied 5 times in the experiment to the communities listed in 6. Plots

belonging to communities 1-19 were applied with reduced fertiliser amounts, and plots

of community 20 were applied with regular fertiliser amounts, which reflect the current

agricultural practice.
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Split Date
Fertiliser Application

Experiment sites
(Community 1-19)

Control sites
(Community 20)

1 12-Mar-2018 30 kg N ha-1 60 kg N ha-1

2 09-Apr-2018 30 kg N ha-1 60 kg N ha-1

3 09-May-2018 30 kg N ha-1 60 kg N ha-1

4 11-Jun-2018 20 kg N ha-1 40 kg N ha-1

5 20-Aug-2018 40 kg N ha-1 80 kg N ha-1

Table 2: Details of fertiliser application to the experimental site.

Appendix C: Statistical significance

Statistical significance was formally introduced by Fisher (1992), and it is one of the

most accepted evaluation parameters for hypothesis testing. The effects considered in the

hypothesis are considered as significant if the p-value is less than a very small value α,

called significance level. The hypothesis will be accepted over a null hypothesis if a model

that is fitted with assumptions based on a hypothesis has significant effects (p ≤ α),

otherwise it will be rejected. An illustration of p-value is shown in the following image 1.

Test-statistic like z-test, t-test, F-test, and chi-squared test and many more tests can be

used to calculate p-value based on the distribution of the variable (Wikipedia (2021)).For

a test statistic t from a distribution T , two-sided tail test can be calculated as shown in

equation 1 below,

p = 2 ∗min{Pr(T ≥ t|H0), P r(T ≤ |H0)} (1)

Where H0 indicates the given null hypothesis.

Significance level α should be chosen before the data collection depending on the

context of the study. However, a standard p-value of 0.05 is widely used. Fixed value of

0.05 is debated among the researchers as some of the experiments are hard to reproduce

and the misinterpretation of p-value with p ≤ α would lead to biased results with no

practical significance.
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Figure 1: Visual illustration describing the meaning of the p-value as
explained in Wikipedia (2021)
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