
Property Properly: A Decentralized Application for
Property Transaction Management

by

Ashlynn Kitatake-Meyers

A Dissertation

Presented to the University of Dublin, Trinity College

in fulfilment of the requirements for the Degree of

Master of Science in Computer Science (Data Science)

University of Dublin, Trinity College

Supervisor: Donal O’Mahony

August 2021

Declaration

I, the undersigned, declare that this work has not previously been submitted as an exercise for

a degree at this, or any other University, and that unless otherwise stated, is my own work.

Ashlynn Kitatake-Meyers

September 14, 2021

2

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon

request.

Ashlynn Kitatake-Meyers

September 14, 2021

3

Property Properly: A Decentralized Application for Property
Transaction Management

Ashlynn Kitatake-Meyers, Master of Science in Computer Science

University of Dublin, Trinity College, 2021

Supervisor: Donal O’Mahony

The Ethereum blockchain is a platform where programmers can create their own

decentralized applications (DApps) using smart contracts. One popular area for modern

blockchain development is in exploring applications to the real estate market. Several start-up

companies have created DApps specific to property transactions. There are two key

advantages of the blockchain that make it uniquely applicable to creating a property

transaction management DApp. First, the immutability of transactions once they are recorded

on the blockchain makes it the perfect technology for property and tenant registries. Second,

the automated nature of smart contracts creates a trustless environment for various property

payments.

In this dissertation, we combine the functionalities of a property registry, tenant registry, and

payment system into one DApp. This is done by creating interconnected smart contracts for a

property registry, tenant registry, and properties that allow users to initiate transactions and

send and receive payments. This project seeks to demonstrate the effectiveness and potential

of blockchain development in the real estate market. Future work could seek to deepen the

complexity and breadth of the property transactions handled.

4

Acknowledgements

I would like to sincerely thank my dissertation supervisor Professor Donal O’Mahony for his

expertise and guidance throughout this project. His questions and advice were incredibly

thoughtful and helped to steer my project focus.

I would also like to thank my mother and my partner for their continued support and

encouragement through this degree and research.

ASHLYNN KITATAKE-MEYERS

University of Dublin, Trinity College
August 2021

5

List of Figures

Figure 1: Block Structure of the Blockchain ………………………………………………… 5

Figure 2: Merkle Tree Hashing ……………………………………………………………… 6

Figure 3: Smart Contract Lifecycle ………………………………………………………… 14

Figure 4: Gas Use From Transactions ……………………………………………………… 18

Figure 5: Basic Structure of the DApp Diagram …………………………………………… 33

Figure 6: DApp Back End Diagram …………………………………………………...…… 37

Figure 7: DApp User Interface ……………………………………………………………... 55

6

Contents

Abstract iii

Acknowledgements iv

List of Figures v

Chapter 1 Introduction 1
1.1 Research Question ……………………………………………………………… 1
1.2 Dissertation Layout …………………………………………………………….. 2

Chapter 2 State of the Art 3
2.1 Blockchain ……………………………………………………………………… 3

2.1.1 Basic Structure ……………………………………………………….. 3
2.1.2 History ………………………………………………………………....8
2.1.3 Cryptocurrency ……………………………………………………….10
2.1.4 Smart Contracts ……………………………………………………....12
2.1.5 Decentralized Applications (DApps) ………………………………...16
2.1.6 Ethereum ……………………………………………………………..17
2.1.7 ERC-20 Tokens ………………………………………………………19
2.1.8 Non-fungible Tokens (NFTs) ………………………………………...21

2.2 Real Estate ……………………………………………………………………..24
2.2.1 Basic Structure in the USA …………………………………………..24
2.2.2 Industry Participants …………………………………………………27
2.2.3 Areas Open to Blockchain …………………………………………....29
2.2.4 Current Companies …………………………………………………...30

Chapter 3 Design 33
3.1 Summary of the Approach ……………………………………………………..33

Chapter 4 Implementation 37
4.1 Overview of the DApp ………………………………………………………....37
4.2 Smart Contracts ………………………………………………………………...37

4.2.1 Property Registry ……………………………………………………..38
4.2.2 Property ………………………………………………………………41
4.2.3 Tenant Registry ……………………………………………………….44

4.3 User Interface …………………………………………………………………..48

Chapter 5 Evaluation 57
5.1 Security Considerations ………………………………………………………...57
5.2 Solidity Testing ………………………………………………………………....58

7

5.3 Strengths ………………………………………………………………………..59
5.4 Limitations ……………………………………………………………………..60

Chapter 6 Conclusions & Future Work 62
6.1 Conclusion ……………………………………………………………………...62
6.2 Future Work …………………………………………………………………….63

Bibliography 65

8

Chapter 1

Introduction

At its core, the decentralized, immutable, trustless nature of blockchain technology

has enormous potential. One such blockchain network, Ethereum, was made specifically to

foster customized development and automation of tasks on the blockchain (Buterin 2013).

The focus of this dissertation is on developing an application on the Ethereum blockchain to

tackle the problem of outdated property ledger and transaction management systems. The key

advantages of blockchain make it uniquely applicable to this task. This introductory chapter

is split into two sections. The first section will lay out the research question and the second

section will give an overview of the structure of this document.

1.1 Research Question

The central problem that this project seeks to solve is that most property registries are

unreliable and inaccessible -- blockchain has the potential to solve this. In order to explore

and generate a solution to this problem, we have created the following research question:

How do we create an automated property ledger and transaction management system

on the blockchain?

This larger question also involves many sub-questions:

1. Which blockchain is best for developing this specific application?

2. Which data should we store in the blockchain and which should be stored locally?

3. How do we allow owners to make payments on their properties to other parties? How

do we allow tenants to make rent payments to property owners?

4. Which components of the system should have their own smart contracts and how

should they be structured?

5. How should we store metadata and other information about the properties?

6. Have we effectively taken advantage of the unique features of the blockchain to

accomplish our goal?

1

1.2 Dissertation Layout

Chapter 1 of this dissertation provides a general introduction of the topic and the

specific research question of the project.

Chapter 2 is the state of the art which contains background information on the topic,

technologies being used, and current research or developments in the area.

Chapter 3 gives an overview of the design of the project.

Chapter 4 describes the implementation of the project in detail including the

functionality of each component. This chapter also contains information on the challenges

faced throughout the project implementation and how they were overcome.

Chapter 5 explains the testing that was used as well as the strengths and limitations of

the project.

Chapter 6 states the conclusions of the dissertation and potential areas for future work.

2

Chapter 2

State of the Art

This chapter is split into two sections. The first section will focus on the structure and

history of blockchain. It will also go into more detail on the methods by which blockchain

development is done, including topics such as the Ethereum blockchain, smart contracts, and

decentralized applications. The second section will provide some background on the inner

workings of the real estate market and potential areas open to blockchain technology. We will

also discuss current companies that are developing systems to fill these unique niches.

2.1 Blockchain

2.1.1 Basic Structure

At its core, blockchain is a digital distributed ledger of transactions (Zheng et al.

2017). A regular ledger is a registry of transactions between participants that are typically

recorded by a third party. These registries can range from public to completely private. For

example, a patient’s health care data might be stored on a private ledger by a hospital.

However, marriage licenses or records of death are stored on public ledgers by the

government. Another important use of ledgers is in recording property transactions to be able

to know who owns a property, who were the previous owners, when was it last sold and

more.

Today, most companies and organizations keep digital ledgers. These differ from a

physical ledger in that they are recorded digitally. This could be on a private computer, in a

company data center, or on the blockchain. However, the blockchain is not only a digital

ledger, but also a distributed ledger (Zheng et al. 2018).

Being a distributed ledger means that all transaction records are shared across a

network of different computers. Every computer on the network has a complete copy of the

3

ledger and receives all new entries to keep the ledger up to date. In order for a change to be

added to the ledger, it needs to be verified by the majority of the computers on the network.

This means that every member of the network is able to see exactly what transactions are

being added. These transactions are recorded in chronological order and once a transaction is

added to the blockchain, it cannot be removed. The security of this is verified by

cryptographic signatures and the distributed nature of the blockchain (Zheng et al. 2018). To

clarify, if a malicious actor were to fraudulently manipulate the transactions in their copy of

the blockchain, it would never be accepted by the other members of the network. This

transparency and immutability of the blockchain is a major strength (Zheng et al. 2017).

The method by which this entry verification happens is by a cryptographic algorithm

and hash function, which we will discuss below. The key takeaway is that the blockchain is a

very secure and efficient implementation of a digital distributed ledger. Every computer in the

network is connected via the internet and uses this to verify and add new transactions. There

is no owner of the ledger and due to its distributed structure, it is called decentralized (Zheng

et al. 2018).

For those who have seen the 2018 musical film Mary Poppins Returns, the value of a

decentralized ledger is abundantly clear. In the film, the father character does indeed own

enough bank shares to save the family’s home from foreclosure, but this is only recorded in

the bank’s private ledger. The centralized nature of this ledger forces our protagonist to be

woefully dependent upon the goodwill of the bank president to honor the private ledger, and

is unable to independently verify his ownership of the bank’s shares. As shown in the film,

this opens the door for a malicious actor, such as the bank president whose motivations are

skewed, to refuse to verify the ownership of the shares without any repercussions (Marshall).

If the bank ledger had been recorded on the blockchain, the ownership of those bank shares

would be public and verified knowledge and the crisis would have been avoided.

It is important to remember that the ledger is not limited to financial transactions (e.g.,

selling Bitcoin). Theoretically, any transaction could be recorded on the blockchain. Many

non-financial transactions have been recorded with varying levels of success thus far. Some

examples include votes, medical data, securities, and various cryptocurrencies (Marr)

(Domingo). All of these examples are of digital or intangible data, but many have also

4

attempted to use the blockchain to record transactions of physical assets. The two most

prominent examples of this are art pieces and properties. The blockchain can be used to

record who owns the assets, a transfer of ownership, etc (Karayaneva) (Suum Cuique Labs

GmbH) (Smith).

All of these transactions will be available to every member computer (or node) on the

network as they all contain a full copy of the blockchain. However, it is also possible for

anyone to view transactions without being part of the network - they simply can’t add to it.

With the Ethereum blockchain, anyone with internet connections can search for transactions

on the Ethereum blockchain using etherscan.io (Etherscan).

In addition, the way in which these transactions are carried out guarantees what is

called a trustless environment. Smart contracts make it so that the transfer of digital assets

between parties is done automatically when previously agreed to conditions are met by both

parties. Smart contracts will be discussed in more detail below. The key takeaway is that

neither party needs to trust the other, they simply must trust the code of the smart contract

(Zheng et al. 2019).

With all of this background understood, we will move on to how the blockchain is in

fact a chain of blocks. The structure of a blockchain varies slightly between implementations,

but all follow the same general structure.

Figure 1: Block Structure of the Blockchain (Zheng et al. 2018)

The blockchain begins with a genesis block which is the origin block of the entire

chain - it has no predecessor. Every block is connected only to its parent block via a

cryptographic algorithm in which the input is the parent block and the output is the child

block. The one way nature of this is part of what makes the blockchain so secure in that

5

knowing the output does not allow you to know the input. The blocks are added in

chronological order, and every block may contain one or more transactions (Zheng et al.

2018).

Each block contains a transaction counter (the number of transactions that block can

record) and the content of the transactions themselves. In addition, the block contains a

version number which specifies how the block should be validated. Next, the block contains a

256-bit hash value that is it’s connection to the parent block. The block also contains the

transaction root hash which will be discussed in more detail below. Then there is a timestamp

and a nonce value, which represents the proof of work done. This concept will also be

explained below (Zheng et al. 2018).

The transaction root hash is created using a Merkle Tree where the root is the root

hash specified. The ends of the merkle tree are the hashes of the individual transactions.

These transactions are then paired up and hashed together. This process is repeated until there

is one final hash - the root hash. This is what creates the tree structure. This structure also

allows the transaction data to be carried across the blockchain efficiently and with little

storage requirements (Zheng et al. 2018). This is shown in the figure below (Gupta).

Figure 2: Merkle Tree Hashing (Gupta)

6

The logical next question is who connects the blocks? The answer is network

members known as miners. When a block is added to the blockchain, it is called mining.

Miners are integral to the blockchain system because they review transactions, make sure

they are valid, and actually construct the blocks that make up the chain. During the first

implementations, miners could be individuals or small groups of people with relatively

limited computing power, but it is generally not this way anymore (Wang).

Every block on a blockchain is created by a miner and contains transactions for that

chain. Before that block is added, it is confirmed that none of the transactions conflict with

transactions already on the chain (Zheng et al. 2018). This is done to ensure that the

transactions stay valid so that the same house is not sold twice or the same cryptocurrency is

not sent to two different recipients. Unlike a physical dollar bill for example, a

cryptocurrency coin could theoretically be in two places at once without these checks.

As opposed to certain transactions being assigned to certain miners, miners compete

to create blocks with transactions that may overlap the blocks that other miners are

attempting to create at the same time. However, only one of the blocks will be added to the

blockchain and this is the block that has the highest proof of work (Zheng et al. 2017). Once

the block is added, any other blocks in construction by other miners with overlapping

transactions are rendered useless. It is an all or nothing race.

To create a block, a miner groups together a number of transactions that are released

by users of the blockchain. The miner then works to turn this group of transactions into a

block by first checking that each of the transactions is valid and non-conflicting with the

current blockchain. Next, the miner must solve what is essentially an extremely difficult

mathematical puzzle. They try to find a nonce, this is often a 64-bit number, that solves the

root hash and satisfies the proof of work required. If they are lucky, they will find a nonce

that works and the block is then solved (Zheng et al. 2018). Once this happens, the completed

block is shared with the other miners. The miner with the most proof of work is chosen and

their block is officially added to the blockchain (Wang).

Now, miners do not do this work without reward for successfully adding blocks. Once

a miner has successfully completed a block that is added to the blockchain, they are typically

7

given a monetary reward in the form of cryptocurrency (Zheng et al. 2018). For the Bitcoin

network, the reward is in BTC and for the Ethereum network the reward is in ETH. The size

of this reward typically decreases over the age of the network to encourage miners to

participate at the genesis of the blockchain (Wang).

It was previously noted that modern day miners are no longer individuals or small

groups and this is due to the extremely high mining difficulty of the current blockchain

systems. The point of mining difficulty is to be able to control the number of blocks being

added to the blockchain over a period of time. Since a high mining difficulty means that a

nonce is very difficult to compute, most miners that can do this are massive data centers

devoted to mining (Wang). It would be virtually impossible for an individual miner to solve a

nonce and establish a block before it was done by a data center with thousands of times the

computing power.

Bitcoin mining, for example, has become so difficult that there are special ASIC

computing chips made specifically for Bitcoin mining. Without this special equipment and

large numbers of computers, trying to mine Bitcoin would cost more in electricity than it

would earn in Bitcoin (Taylor). One way in which individuals can mine is to join a “mining

pool” where they join with an incredibly large and often global group of people to pool their

computing power (Lewenberg). The downside here is that there are so many members in

these mining pools that the BTC reward per person for a successful block is relatively small.

The reward is directly proportional to the share of computing power they provide.

2.1.2 History

The publication of the Bitcoin whitepaper is generally regarded as the start of

blockchain, though it is important to note that there were several predecessors built on much

of the same technology. Bit gold, created by Nick Szabo, was a precursor cryptocurrency to

Bitcoin that also used a proof of work mechanism (Szabo). While Bit gold was created in

2005, Bitcoin was not released until 2009. Bitcoin: A Peer to Peer Electronic Cash System,

written by the mysterious Satoshi Nakamoto, described a trustless platform to send electronic

money back and forth (Nakamoto). The electronic money was called Bitcoin (abbreviated

8

BTC) and the system it was built upon was called blockchain. At the time Bitcoin was

released, most people did not understand the difference between BTC and blockchain, or that

the underlying technology of blockchain could be used for assets other than BTC

(Nakamoto).

For the next five years, Bitcoin grew rapidly in popularity. Just a year after its release,

a previously unknown vulnerability was taken advantage of to create billions of unauthorized

Bitcoins. In just a few hours, the vulnerability was fixed and a fork was created for the new

protocol. The blocks on the new fork are verified and added using the new protocol. One of

the earliest Bitcoin transactions was 10,000 BTC for two pizzas (McCall). As of today,

March 3rd of 2021, this amount would be worth $509,998,000. By 2012, Bitcoin was widely

discussed and even the topic of several network television show episodes.

The following year, 2013 marked the beginning of serious legal troubles for many

Bitcoin exchanges. The volume of bitcoin transactions had reached a large enough volume at

this point to attract the attention of government financial regulators (Marr). In May of 2013,

U.S. government officials confiscated many of the accounts of infamous exchange Mt. Gox

for failing to properly register as a money handler (Chohan). While the Bitcoin system itself

is completely separate from any fiat currencies like the U.S. dollar, the ability to buy BTC

using USD made exchanges the target of financial law regulations. It was in the same year

that a Federal Judge ruled that Bitcoins would be considered as a “currency” by U.S. law and

as such, were under the jurisdiction of the U.S. court (Tricchinelli). Many believed that this

idea was the antithesis of the decentralized and open nature of the blockchain.

Perhaps the most famous of the legal disputes involving Bitcoin, the website Silk

Road was shut down by the FBI in October of 2013 (Christin). The owner of the website,

Ross Ulbricht, was arrested and sentenced to a double life sentence in prison. The severity of

this sentence was due to the transactions facilitated on Silk Road. It was a black market on

the dark web that could be accessed through the Tor browser. Most of the products offered

were illegal drugs such as cocaine and psychedelics. However, it should also be noted that

child pornography and even assassinations were available on Silk Road (Christin).

9

In 2015, the first in-person Bitcoin exchange was legally opened in New York City.

Individuals could come here to buy Bitcoins (Kirby). At its opening, the exchange was

incredibly popular. However, the exchange quickly lost popularity and money until it was

shut down (Kirby). Even in 2021, Bitcoin exchanges are frequently shut down for lack of

popularity or legal troubles (Kirby).

One of the initial programmers of Bitcoin, Vitalik Buterin, wanted a more flexible

blockchain for his new ideas (Ethereum). The Bitcoin community was unwilling to consider

his ideas he proposed, so he decided to create a new Blockchain network called Ethereum. He

created Ethereum with the intention of being able to support non-currency transactions

(Buterin 2013). Buterin recognized the immense potential for blockchain to be used for other

assets like loans or securities. The Ethereum network uses smart contracts that initiate and

record transactions when criteria are met (Zheng et al. 2019). These smart contracts can be

programmed using the Ethereum language Solidity (“Solidity Programming Language”).

Today, many of the new blockchain applications are programmed using Solidity and tested on

Ethereum test nets.

2.1.3 Cryptocurrency

Cryptocurrency is essentially a digital form of money, or asset (Narayanan). This is

notably different from a fiat currency, which is government-issued money like the US-dollar.

Where fiat currencies are centralized, cryptocurrencies are created using blockchain

technology to be decentralized. Since there is no centralized authority to verify transactions,

the verification must be done within the blockchain network using cryptographic algorithms.

Most often this is a public key algorithm in which the receiver of the coins uses a private key

to unlock the public key of the person who sent the coins. The terms cryptocurrency and

token are often used interchangeably, but it is usually the case that a token refers to a digital

asset built on a blockchain whereas cryptocurrencies are the native currency for their own

blockchain (Narayanan).

In addition to anonymizing and verifying transactions, keys are also used to securely

store cryptocurrency. Generally, a user will store their cryptocurrency in a wallet of some

sort. When the wallet is made, the user creates a private key to secure the wallet so that

10

access can only be gained by them (Davis). While secure, this system comes with its

downsides. If a private key is lost, the user will never be able to access their cryptocurrency

again. Unlike a bank account, the password cannot be reset. In addition, due to the

anonymized nature of the blockchain, there is no other way to prove that a certain amount of

cryptocurrency belongs to you, let alone access it, without the correct private key

(Narayanan). In fact, there is a large amount of cryptocurrency that is most likely unreachable

forever due to users forgetting to record their keys.

Even within cryptocurrency wallets, all requiring private keys, there are differing

levels of security. Many users store their coins in software wallets on the internet for

convenience (Davis). This allows the user to activate the wallet directly on their browser to

buy or sell cryptocurrency or to develop on a blockchain. Unfortunately, this form of storage

is vulnerable to security breaches and theft.

It is also possible to store keys in a physical wallet - either on a USB or even on paper.

The advantage here is that the information is not stored online, so it is more secure. The

downside is that it becomes much easier to lose keys due to damage or accidents. However,

in almost all instances, using a wallet involves some level of trust in the creator of the wallet

not to share or steal a user’s private key.

When a user sends cryptocurrency to another user, there is a transaction on the

blockchain that states that the ownership of the coins has gone from the sender’s address to

the receiver’s address. There is no actual exchange in the traditional sense. Once all of the

keys have been verified and the transaction has been recorded, the wallet balances of the

parties involved are altered at the same time. This guarantees that the cryptocurrency is not

double-spent (Narayanan).

Today, some of the most popular cryptocurrencies include Bitcoin, Ethereum, and

Litecoin. Due to the Bitcoin explosion, it is even possible to use BTC to purchase real world

items such as products on Etsy marketplace or Overstock.com (“Bitcoin”).

So, how does one buy cryptocurrency? The most popular way to buy cryptocurrency

is using a cryptocurrency exchange. At an exchange, a user can trade fiat money or other

11

cryptocurrencies for the cryptocurrency they want. This is usually facilitated by a wallet that

is already on the user’s browser. For example, User A may go on a coin exchange, put in their

debit card information, and trade a set amount of fiat currency ($) for 1 ETH. User B, may

also go on the coin exchange, sync up their wallet, and trade a set amount of BTC for 1 ETH.

However, it must be noted that different countries and states have different regulations on

buying and selling cryptocurrency. In New York state for example, you cannot buy

cryptocurrency from an exchange that does not have a BitLicense (“Virtual Currency”).

Oftentimes these government licenses are time consuming and costly to get.

It is also possible to use an exchange to sell cryptocurrency for fiat currency. This is

partially due to the fact that exchanges, somewhat like banks, handle a large number of

transactions everyday and hold large amounts of crypto and fiat currencies. As was

mentioned previously, the Mt. Gox exchange went bankrupt because huge volumes of

cryptocurrency were stolen from the exchanged managed funds (Chohan). This is one major

reason for individuals to keep their cryptocurrency in person wallets as opposed to in an

exchange like Mt. Gox or Coinbase (“Coinbase”).

Due to the tighter and tighter restrictions put on exchanges by regulatory bodies, the

anonymity of cryptocurrency is becoming a thing of the past. After the Silk Road was shut

down, governments realized that the anonymity of virtual currency was a threat to national

security. To combat this, exchanges are now required to verify the buyer before any

cryptocurrency can be sold (“Coinbase”). The higher the volume of cryptocurrency, the more

verification is necessary.

Some countries have gone to the furthest extreme and made any transactions

involving cryptocurrencies completely illegal. These countries include Algeria, Bolivia,

Morocco, Nepal, Pakistan, and Vietnam. On the other end of the spectrum are countries that

have made an effort to keep their cryptocurrency regulation relaxed such as the Cayman

Islands, Spain, Belarus, and Luxemburg (Goitom). This is often done in an effort to bring the

profits of blockchain technology into their economies.

12

2.1.4 Smart Contracts

A smart contract is an automated agreement written in code and stored on the

blockchain to make it unchangeable and public. It is automated in that it is

machine-executable code that is triggered when the conditions of the contract are met

(”Introduction to Smart Contracts”). As was mentioned in Section 2.1.2, the ability for users

to create and execute their own smart contracts on the blockchain was one of Buterin’s main

motivations in creating Ethereum. Smart contracts on the Ethereum blockchain are written in

Solidity - a Turing complete programming language created for exactly this purpose

(“Solidity Programming Language”).

The clauses of a traditional contract can be encoded in a smart contract using if-else

style logic. These clauses are agreed upon by all parties and the smart contract is then created

(Zheng et al. 2019). Due to the automated nature of smart contracts, there is no need for an

external enforcer of the contract. To show the importance of this feature, imagine that

Veronica and Julian have a traditional book illustration contract. Julian is publishing a book,

but needs several illustrations for the inside. Veronica agrees to create the illustrations for $X

and this agreement is written out in the paper contract. They could use an escrow service, but

it is far too expensive and slow for their budget and timeline. As was agreed, Veronica creates

the illustrations that are put in the published book, but has not been paid by Julian. What are

Veronica’s choices?

Since she and Julian have a traditional contract, she would need to hire a lawyer and

possibly bring Julian to court to enforce the conditions of the contract. Not only is this too

expensive and time consuming for all parties, it is still possible that the court could side with

Julian. If Veronica and Julian had used a smart contract instead, Julian wouldn’t have been

able to avoid paying Veronica. Upon completion of the illustrations, the smart contract would

register this and automatically transfer the funds from Julian to Veronica.

13

Figure 3: Smart Contract Lifecycle (Zheng et al. 2019)

The stages of smart contract creation and implementation are illustrated in Figure 3

above. The smart contract is created to reflect the needs of all those involved and then coded

in Solidity. Once the contract is finalized, it is deployed to the blockchain and can no longer

be amended. At this stage, it is important to note that there is a cost. Everytime a contract is

deployed, the programmer must pay a certain amount, which is called “gas” (“Introduction to

Smart Contracts”). The cost of this is dependent upon the gas price and complexity of the

contract. While this cost has historically been small (equivalent to a few USD), at the time of

writing, the high price of ETH makes launching a contract much more expensive.

The good news is that contracts can - and should - first be launched on a test net such

as Rinkeby or Ropsten (“Introduction to Smart Contracts”). Deploying on these test nets is

free in that doing so only requires free test net coins. Once the contract is deployed, there is

also a small cost associated with any transaction that takes place through the contract. As a

rule of thumb, any process that requires work from the blockchain will have a proportionate

cost (“Introduction to Smart Contracts”).

The execution phase of the smart contract refers to the period in which the smart

contract is waiting for someone to invoke it. Once this happens, the correct functions within

the contract are triggered and transactions are executed. These transactions are then validated

and recorded. Finally, the completion stage involves updating states to reflect the current

post-transaction balances (Zheng et al. 2019).

14

The advantages of smart contracts are immense and span a wide variety of industries.

In general, they eliminate middlemen, create a trustless environment, reduce cost, increase

security, and at the same time guarantee transparency and immutability of transactions

(Lipton). In theory, it isn’t possible for one party to cheat another because the contract is

automatically executed when the conditions are met and that transaction is then permanently

recorded on the blockchain.

Having discussed the benefits of smart contracts, it is also important to understand

their existing weaknesses. Smart contracts struggle when it comes to coding ambiguity, real

world actions, and physical assets (Lipton). The wording of paper contracts is often such that

a level of ambiguity is present within the conditions. In the logical structure of smart

contracts there is no room for interpretation like this. In addition, it is often the case that

conditions of contracts are dependent upon real world actions and the verification of the

completion of these actions is tricky. This is most often done using Oracles - sources for

verified information (“Oracles”). Unfortunately, the validity of this information can vary. The

more “objective” the information, the better Oracles do. If a smart contract condition is

triggered by the S&P 500 reaching a certain valuation it is reasonably reliable to pull this

information from an Oracle. However, it would be difficult to use an Oracle to verify that an

action such as renovating a house had been completed (“Oracles”). In addition, smart

contracts can contain errors and lack a formal system of enforcement (such as the legal

system for traditional contracts). This leads us to the difficulty of representing real-world

assets (Lipton).

For example, imagine Brianna and Mark have used a smart contract for a car sale. The

most basic contract would state that Brianna gives the car to Mark and the funds are

automatically transferred. But how does the smart contract validate that the car is physically

in Mark’s custody? If Mark needs to validate this then he could say he never received the car

so that he didn’t have to pay. If Brianna needs to validate this then she could say she gave

Mark the car when she did not and charge him for it. The bottom line is that it is difficult to

maintain a trustless environment when handling physical assets.

15

2.1.5 Decentralized Applications (DApps)

A DApp is similar to what one would think of as a normal “app” in many respects. It

can have a user interface (UI) much like an app on a smartphone or computer. On the front

end, a DApp will often look the same as the apps we are familiar with. On the back end, a

DApp is built using smart contracts on a blockchain (i.e., decentralized platform). A DApp

can pull from new smart contracts that are created by the developer specifically for that

DApp, or from contracts already deployed on the Ethereum blockchain. The idea is that the

data in a DApp comes from the blockchain as opposed to servers (“Introduction to DApps”).

It is common for DApps to have their own coin that is used to interact with that

DApp. Consider Uniswap, one of the most popular DApps in the world (“Uniswap”). It is a

cryptocurrency exchange that uses what is called an “automated liquidity protocol” to

regulate the exchange rate between cryptocurrencies. As it is built on the Ethereum

blockchain, it is able to deal with ERC-20 tokens and Ethereum wallets. It has more than $3

billion in cryptocurrency assets within its liquidity pools (“Uniswap”).

Users are able to interact with Uniswap via the UI while smart contracts on the back

end execute cryptocurrency transactions. Users use UNI tokens, the Uniswap token, to

interact with the DApp in various ways (“Uniswap”). UNI tokens can be exchanged for other

cryptocurrency tokens, held on to because their value is proportional to the value of Uniswap,

or utilized to vote on Uniswap issues much like a shareholder. UNI tokens were distributed

with an Initial Coin Offering (ICO) in which tokens were given to Uniswap community

members on a certain schedule. Exactly 1 billion UNI tokens were created and distributed

over the course of four years (“Uniswap”).

This DApp structure has allowed Uniswap to grow at an unprecedented level, but

there are downsides. The primary consequence of running an application over the blockchain

is that transactions can be wildly expensive - monetarily and computationally. As congestion

on the Ethereum blockchain rises, so does the gas price of launching a contract or

implementing simple transactions. In addition, massive overhead makes scaling very

difficult. The official Ethereum website states that, “A back-of-the-envelope calculation puts

16

the overhead at something like 1,000,000x that of standard computation currently”

(“Introduction to DApps”).

Also, the need for constant code maintenance and the problem of deprecated

functionality present in regular apps carries over to DApps. The immutability of information

on the blockchain can make it difficult to amend or update code. If a developer wants to

change a smart contract, they will need to deploy an entirely new and updated contract to the

blockchain. This is inconvenient and expensive.

2.1.6 Ethereum

Ethereum was designed to utilize blockchain technology for more than just monetary

transactions (Buterin 2013). It was designed for developers to be able to create their own

applications using smart contracts. These include name registration, colored coins,

CryptoKitties, property transactions, and much more (Cryptokitties).

Ethereum runs on its own cryptocurrency - ETH. It is primarily used to pay gas fees

for launching smart contracts or carrying out transactions. Ethereum sets a maximum number

of steps that can be taken to carry out the transactions on the block - the gas limit. In addition

to this, there is the start gas, which is the amount of gas that a user sends for the transaction to

be processed. If the transaction ends up using less gas than anticipated, the difference is

refunded back to the user (Wackerow). This system is shown in figure 4 below.

17

Figure 4: Gas Use From Transactions (Wackerow)

Gas is related to ETH in that there is a gas price in ETH for each unit of gas.

Technically, the gas price is listed in Gwei which is equivalent to 10-9 ETH (Wackerow). The

purpose of gas fees is to regulate usage of the Ethereum blockchain. The limit makes sure

that there are no loops in the code that go on forever wasting space and resources. The cost

makes sure that developers don’t spam the blockchain with transactions. Not only would this

be computationally expensive and therefore harmful to the environment, it would also

overwhelm the blockchain to the extent that other developers couldn’t use it.

Another feature of Ethereum is that it was built with quick development and

deployment in mind. This is why Buterin built it as a blockchain with a Turing-complete

development language, Solidity (“Solidity Programming Language”). This allows anyone to

create their own DApps with specialized smart contracts for any kind of functionality they

want. Solidity was structured in such a way that developers could get a baseline level of

functionality with relatively few lines of code. In addition, of course, Solidity can simply and

easily interact with the blockchain to carry out transactions (“Solidity Programming

Language”). The philosophy behind Ethereum is “simplicity, universality, modularity, agility,

non-discrimination, and non-censorship” (Buterin 2013).

18

To interact with the Ethereum blockchain, you need an account. There are two types

of accounts: externally owned accounts (EOAs) and contract accounts (Mi). An EOA is what

is generally thought of when one references Ethereum accounts. An EOA is controlled by a

key pair such that a user with the correct keys can create transactions or send ETH from that

account. Metamask accounts, for example, are a common type of EOA (Davis). Contract

accounts are controlled by the code inside of the contract such that whenever the account is

interacted with, the code is activated. The contract is in control of the ETH in the account.

Contract accounts are essentially smart contracts that hold ETH within them. It is then

possible for this ETH to be transferred from the contract to an EOA (Mi).

2.1.7 ERC-20 Tokens

The ERC-20 is a token standard that aims to set certain requirements for fungible

tokens (Buterin 2015). This means that users who trade the token or developers who build

applications using the token can be assured that certain features will be present. It is also only

applicable to tokens of the Ethereum blockchain. A fungible token, in contrast to a

non-fungible token (Section 2.1.8), is a token type where any token can be swapped with

another. In other words, the tokens are not unique in value or any other feature. One simple

example of this is the token DAI - person A’s 1 DAI is equivalent in every way to person B’s

1 DAI (“An Unbiased Global Financial System”).

A token that implements the ERC-20 standard is a bit like a class inheriting from a

parent class in Java. The ERC-20 API is the parent class and the smart contract defining the

token is the child class. Any ERC-20 token contract is guaranteed to have certain functions

and events and may have other optional functions. The three optional functions present in the

ERC-20 are name(), symbol(), and decimals() (Buterin 2015). The name() function

returns the name of the token in string form. The symbol() function returns the symbol of

the token in string form. This is usually a three letter string such as “ETH” for the Ethereum

token. The decimals() function returns the number of decimal places used by the token

(Buterin 2015).

The two events that an ERC-20 token contains are Transfer(from_, to_,

value) and Approval(owner, spender, value). These events are triggered when the

19

transfer() or approve() functions are executed and notify the developer of this. They

return a boolean variable for the success or failure of the operation. While this seems small, it

is essential to have events listening for these actions to know what is going on with the token.

In addition, other logic in the smart contract can be triggered by these events (Buterin 2015).

In addition to events and optional functions, there are six required functions (Buerin).

The totalSupply() function returns the total number of tokens to be made. Calling this

function tells a developer how many tokens are out in the world. The

balanceOf(address) function returns the total token balance of the user with the address

specified. The approve(_spender, value) function checks whether a receiver is

allowed to receive the tokens and makes sure that there is no fraud or counterfeiting. This

function triggers an Approval(owner, spender, value) event. After this, there is the

transfer(_to, _value) function which sends the specified number of tokens from the

owner to the recipient. This function triggers a Transfer(from_, to_, value) event.

There is also a transferFrom(_from, _to, _value) function which essentially allows

the contract to automate sending tokens to someone for you. This function also triggers a

Transfer(from_, to_, value) event. Lastly, the allowance(_owner, _spender)

function checks how much the spender can take from the owner. Part of this requires

checking that the owner has enough tokens for a transaction (Buterin 2015).

The ERC-20 token standard has been widely adopted and promoted by the Ethereum

Foundation for several reasons. The common standard avoids blockchain chaos from

incompatibility. Any ERC-20 token will have those previously mentioned functions in

common with all other ERC-20 tokens. This means that a developer knows what to expect

and can create applications that rely on the functionality of the ERC-20. Also, the token

standard reduces the barrier to entry for novice developers to create tokens on the Ethereum

blockchain. To the Ethereum foundation, the more awareness and development on their

blockchain the better. Also, any token that is ERC-20 compliant can still contain as much

additional functionality as the developer likes (Yilmaz).

To some developers, this reduced barrier to entry is a consequence as opposed to a

reward. Since the ERC-20 token standard allows for streamlined creation of tokens, there are

thousands of tokens flooding the blockchain (Yilmaz). Many of these tokens are created by

20

novice developers and are not used or adopted by others. There are also a number of

disingenuous token developers that now have an even easier time creating tokens to scam

people (Yilmaz). In addition to this problem, there is a major flaw in the structure of the

ERC-20.

There is a bug in the way the transfer function is defined that has caused many people

to lose cryptocurrency in transfer. If an individual wants to transfer tokens to an account that

is managed by contract code (as opposed to a regular individual account), the owner of the

contract account won’t receive a notification about the transfer. Due to these weaknesses,

there are other fungible token standards such as ERC-223 that have met with varying levels

of adoption (Buterin 2015) (Yilmaz) (Dexaran).

2.1.8 Non-fungible Tokens (NFTs)

The ERC-20 token standard described above only applies to fungible tokens. These

are tokens that are interchangeable much like one dollar bills for example. There is no

difference in value between individual tokens. In addition, much like ERC-20, there are a few

main NFT token standards (Buterin 2015). NFTs are tokens where each individual token is

unique in value or attributes and therefore cannot be swapped interchangeably for another

token. Due to their structure, NFTs are well suited for tokenizing unique digital or physical

assets like in-game items, properties, or art.

The most widely used token standard for NFTs is ERC-721. This standard contains

functions and events similar to that of the ERC-20, except that they are specific to the

non-fungible structure of the coins being created (Entriken). For example, based on the

unique ID of the token, it is possible to generate an image specific to that token using the

ERC-721 Metadata JSON Schema. This is what allows users to see the unique visual

characteristics of what the token represents. The standard guarantees that the ownership of

every token is individually tracked and that every token can be differentiated from the others.

It also allows tracking and transferring of tokens.

If we consider the example of a piece of property, say a single family home, we could

create a smart contract based on the ERC-721 standard to represent it. The smart contract

21

would generate a unique token for that house and the metadata could include photos and

other important information such as the address, number of bedrooms, number of floors, year

built, etc. We could then track the ownership of the house token or transfer it to another user.

We could do the same for a piece of art or even a loan (Entriken).

However, there are some limitations to both the ERC-20 and ERC-721. One such

limitation is that they are designed for contracts that only specify one token type. With these

standards, it isn’t possible to have a smart contract that deploys both fungible and

non-fungible tokens. It’s also impossible to create semi-fungible tokens which can be thought

of as similar to a gift card or seat in a theater. They are fungible until used or redeemed, and

then become non-fungible (Yilmaz) (Entriken).

The ERC-1155 standard allows for the creation of multiple tokens within one contract

(Radomski). It can also be used to create semi-fungible tokens. Smart contracts implementing

ERC-1155 can also transfer tokens of different types all at once, allowing the user to save on

transaction costs. It also allows for the store of metadata unique to each token. While it is

more versatile, the adoption of ERC-1155 is not as widespread as its predecessors.

NFTs as a whole, however, have taken the blockchain world by storm. Some of the

most successful NFT applications to date have been digital art and in-game assets (“Gods

Unchained”). Part of the reason for their success is that these applications did not face the

hurdle of creating a system for tokens to represent real, physical assets. The assets are digital

and thus it is possible to completely capture them via a token.

One particularly unusual and noteable use of Ethereum blockchain is the creation of

CryptoKitties. These are collectable, virtual cats with different characteristics and rarities. In

2017, a first generation CryptoKittie was sold for around $120,000 (CryptoKitties).

Hashmasks are collectible pieces of digital art created using the ERC-721 standard. The

initial sale brought in approximately $16 million worth of ETH (Suum Cuique Labs GmbH).

To many in the art world, this came as a game-changing shock. Gods Unchained is a game

involving trading cards, where each card is represented by an NFT in the game (“Gods

Unchained”). The game is widely played and has received millions in funding. Given any

22

possible application of blockchain, there is undoubtedly a company or programmer that has

implemented a version of it.

23

2.2 The Real Estate Market

The real estate industry in the U.S. is worth trillions of dollars. In 2020 alone, U.S.

housing increased in value by $2.5 trillion (Richardson). This is a valuable market and it

continues to increase in value, despite a global pandemic. We spend most of our time in

buildings and those buildings are pieces of property with transaction records, owners, and

monetary worth. Every transaction that a building goes through is handled by a series of

players in the real estate market. We will begin by doing an overview of the basic structure of

the market in the U.S. From there, we’ll go over the roles of the major players and

intermediaries in any real estate transaction and then discuss the areas within the real estate

industry that are a potentially promising fit for blockchain technology. Lastly, we’ll look at

what current blockchain-based companies are doing in some of these areas and isolate

existing open opportunities for growth. These openings will be the basis for the DApp created

in this dissertation.

2.2.1 Basic Structure in the United States

The real estate market and related industries are responsible for approximately 30% of

the U.S. GDP - this is a major market (Glickman “Introduction”). To understand the market

and how it is open to blockchain technology, we will start with the basic structure in the U.S.

There are two main types of real estate: residential and commercial. Residential real

estate refers to family homes and apartments. This type generally refers to properties that

people live in. On the other hand, commercial real estate refers to almost everything else.

This type encompases company buildings, offices, shopping malls, hospitals, hotels, etc.

(Glickman 1-4)

The residential segment can be broken up into two main subsegments: single-family

homes and multi-family properties (Glickman 1-4). Single-family homes are generally under

three stories, often contain a garden space, and are usually occupied by the owner of the

home and/or the owner’s family. This is the property type that most people imagine when

they think of real-estate - a basic house. Multi-family properties are broken down by the

24

number of floors into low, mid, and high-rise buildings. These can be apartment buildings,

condominiums, or communal style living in which many families live in a connected building

and share a garden. The units within these buildings can be rented out (generally apartments)

or lived in by the owner (generally condominiums). Typically, the more urban the area, the

higher-rise the properties. In major cities, it is often the case that the residential real estate

market is mainly composed of units in these high rise apartment buildings (Glickman 1-4).

The commercial segment has a large number of subsegments - one of which is office

buildings, which can be further broken down by their quality rating and location (Glickman

1-4). Next, we have retail buildings such as shopping malls. These can have many different

indoor and outdoor layouts. There are also hotel properties, which make up a surprisingly

large number of commercial properties considering how niche the subsegment seems.

Another major subsegment of the commercial market is industrial properties. This includes

factories, warehouses, and general purpose industrial plants. These are often large plots of

land with specific location requirements, such as close proximity to highway entrances

(Glickman 1-4).

Given these definitions, it is important to understand the distinction between real

property and personal property. Personal property refers to things that are owned by an

individual that are movable by that person. This includes things like books, art, and clothing.

The majority of the NFT applications discussed in the above section are an attempt at

representing personal property in the blockchain. On the other hand, real property refers to

land and buildings that are owned by an individual. These are assets that cannot be moved by

that person. As will be addressed later, this form of property presents unique opportunities

and challenges for blockchain application. The real estate market, of course, primarily deals

with transactions of real property (Glickman 9).

The transactions in this market are not as simple as transfers of ownership. This is due

to the fact that there are many different forms of property ownership and use. Each one

comes with its own rights, responsibilities, and contracts. There are two main buckets: direct

ownership and indirect ownership (Glickman 9).

25

Direct ownership of a property is either Single Proprietor, Tenants in Common, or

Joint Tenants (Glickman 9-13). Single Proprietor properties are owned by an individual and

all rights and responsibilities fall on them. After they die, the property ownership is

transferred to heirs unless otherwise specified. This also means that the individual may decide

to sell, rent, finance, etc. the property as they wish. Tenants in Common properties are owned

by multiple people each with a percentage of the property. This means that decisions

regarding the property must be agreed upon by all owners or by a designated third party. Joint

Tenant (typically with rights of survivorship) properties are generally owned by married

couples. In this case, the property is completely owned by both parties such that if one party

passes away, the property is still owned by the other party without it passing into an estate

etc. These cases are fairly straightforward. However, it becomes a bit more complicated when

dealing with indirect ownership (Glickman 9-13).

Indirect ownership of a property is generally one of a few categories: Partnerships,

Corporations, LLCs, REITs, REMICs, SIVs, and SPEs (Glickman 15). Partnerships are

essentially a legally recognized group of owners of a property. This is often thought of as an

inbetween from direct ownership to indirect ownership as the legal entity of the partnership is

created for the purpose of property ownership by a group of people. Corporations are

companies that are owned by their shareholders (i.e., those that invest in the company, elect a

leading body, etc.). This means that the corporation has a legal responsibility to those

shareholders. When a corporation owns a property, this is indirect ownership by the

shareholders and those financially involved. LLCs are Limited Liability Companies are a

fusion of the previous two in that they have the tax advantages of a partnership while

protecting its members from company liability (“Limited Liability”). REITs are Real Estate

Investment Trusts are very similar to Corporations with the exception that their investments

are constrained to real estate ventures. They were created for the purpose of allowing the

average person to invest in real estate without massive amounts of capital. REMICs are Real

Estate Mortgage Investment Corporations. As the name suggests, these companies invest in

mortgages and mortgage securities. Similar to REMICs are SIVs (Special Investment

Vehicles), which essentially borrow money at low interest and invest it in mortgage-backed

securities with a higher return. Lastly, SPEs are Special-Purpose Entities which are generally

formed to legally separate a property from the other assets of the owner for a variety of

financial and liability purposes (Glickman 15).

26

Everything that has been laid out thus far is the general structure of the real estate

market and real estate finance. The next section will focus on the major players in real estate

development, sales, etc. Understanding the middlemen involved in all of these real estate

transactions is necessary to isolate where blockchain technology can be effectively applied.

2.2.2 Industry Participants

The real estate industry in the U.S. and abroad is known for its overwhelming

abundance of middlemen at the center of all transactions (Glickman 17). Before analyzing the

roles of everyone involved, we need to define the main processes they are involved in.

Property development involves choosing a space, obtaining government approval,

planning the project, and all logistics before the property is built. The construction stage is

when the property is actually built. Once a property is built, it needs to be managed. Property

management involves upkeep, repairs, property finances, and security. Assuming the property

will not be lived in by the creator, next comes property leasing or property brokerage.

Property leasing involves finding tenants to rent the property, while property brokerage

involves finding someone to purchase the property. A property may be leased out after it is

built or it may be sold and lived in or leased by the new owner - there are a number of

possibilities. There may also be asset management of the property. This process involves

analyzing the worth of the property relative to the neighborhood and market, analyzing

possibilities to increase value if applicable, and deciding the best time to put it on the market

(Glickman 18).

Within each of these processes, there are a variety of professionals involved, many of

whom add high expenses to the cost of a real estate transaction. Firstly, there are those

involved in the planning and building of the property. Before the build can begin, it needs to

be funded. Unless this is paid for out of pocket, funding may originate from bank loans.

Construction companies handle the building construction. This involves construction workers

as well as subcontractors for specific tasks. Architects design and plan the building.

Surveyors analyze the land of the property to determine measurements, risks, and areas to

27

build. Some of the more technically precise work of the build is done by engineers. Civil

engineers are often brought in to make sure the structural integrity, electric, and water

systems are sound. Environmental engineers provide recommendations to make the property

construction and design as environmentally responsible as possible. Mechanical and electrical

engineers handle a variety of specific implementations such as air systems, elevator

installation, and electric system set up (Glickman 18).

Once the property has been built, the owner may work with a brokerage to put the

property up for sale. They may also work with a leasing firm that hires brokers to find tenants

that match the owner’s criteria. The owner may also choose to have a property manager who

will handle almost everything to do with the property logistics and maintenance. This may

include collecting rent payments, paying workings on the property, etc. Along with the

property manager, there are a large number of specialized players involved in property

transactions and upkeep. Lawyers are needed to draw up sale and lease contracts along with

tax documents. Accountants are hired to keep track of the finances of all transactions

involving the property. In addition, a prospective buyer or investor may hire an appraiser to

assess the true value of the property. In addition to a regular broker, an insurance broker is

often hired to assess which insurance plans are best for the property and owner. This could

involve title insurance to protect the owner from outside claims to the property. It might also

involve natural disaster insurance, theft and property protection, etc. (Glickman 18).

When it comes to the purchasing of a property or investment in a property, banks are

heavily involved. Unless the prospective buyer can pay out of pocket, they will require a

bank provided mortgage. To obtain a mortgage, the individual’s financial record is assessed

by the bank. The bank then tells the individual the amount of money they are willing to

provide them to facilitate the purchase of the property. The prospective buyer then goes to the

real estate agent or broker with their offer and proof of mortgage approval. If the owner

accepts the offer, then the buyer will put down a certain amount of money out of pocket. The

property is then in escrow. In escrow, the funds are held by a third party for a period of time

to make sure everything is in order with the property, seller, and buyer. When the house

closes, the buyer is officially the owner and pays a predetermined monthly amount back to

the bank for the mortgage. This is an oversimplification of the process, but provides an easy

to understand outline (Glickman 16-17).

28

Another way in which a bank may introduce a claim on a property is in the case that a

mortgage is defaulted on. In this case, or in the case where the property was put up as

collateral to the bank for another loan, the bank may seize the property. This is another

property transaction that would need to be validated and recorded (Glickman 12).

Investing in a property does not usually involve normal family homes, but often

commercial real estate or housing developments. Organizations like REITs are built for

individuals to be able to invest in real estate. On the other hand, investment banks or

mortgage banks allow large scale investors and companies to invest in commercial property

or mortgage securities (Glickman 15).

From an initial survey, it is already clear that there are a huge number of participants

in the industry and an expensive chain of middlemen involved in any property transaction. In

addition to high costs for potential buyers, tenants, or investors, the system is set up

inefficiently. Even a straightforward home sale can take months to close due to the structure

explained above. These difficulties make the real estate market an ideal area to apply

blockchain technology solutions (Glickman 1-18).

2.2.3 Areas Open to Blockchain-based Technology

There are many areas within the real estate market where blockchain technology can

be applied, but for our purposes we will focus on four key applications: 1) tokenizing

properties, 2) tokenizing securities, 3) rental transactions, and 4) ownership and transaction

recording (Smith et al.). This is by no means an exhaustive list, but for the purposes of this

dissertation, they are the applications that we will focus on.

Tokenizing properties is similar to tokenizing securities in that they both involve

splitting an asset into tokens - each representing a fraction of that asset (Smith et al.). In the

case of properties, the asset is the property or some shell corporation representing the

property, while in the case of securities, the asset is usually debt or equity. That debt could be

a mortgage or even a student loan. However, for commercial properties like resorts, the

29

security can be equity in that business. For example, the Aspen Coin represents equity in the

St. Regis Aspen Resort in Colorado (Aspen Digital Inc.).

The rental market, especially short term and vacation rentals, provides an excellent

application for blockchain technology. For short term rentals, it is often a hassle to handle the

logistics of passing off the keys, coordinating times, and etc. By utilizing the blockchain, it is

possible to have a smart contract handle the logic of payment and property access (Smith et

al.). Once the renter pays the cost of the rental, the smart contract will register this and send

the door code to them. This is of course dependent upon the use of external locks. For longer

term rentals, a smart contract can also securely store a security deposit, which allows for a

trustless environment (Smith et al.).

Ownership and transaction recording is debatably the most important of all the

blockchain applications in real estate. Most property ownership records are still kept on paper

in local municipalities. This style of ledger is vulnerable to corruption, natural disaster, and

human error. By storing ownership records and all other important property transactions on

the blockchain, they are immune to the previous vulnerabilities (Smith et al.).

Due to limitations on time constraints and complexity, this dissertation project will

focus on the latter two areas: rental transactions and ownership & transaction recording.

However, tokenization in real estate would be an excellent area for future development in this

field.

2.2.4 Current Companies

There are currently far more companies in the blockchain real estate sector than one

might expect. Since this is a new area for development, it makes sense to highlight the work

of current companies as opposed to a very short history. Here we will highlight some industry

leaders in the above mentioned application areas.

Propy is a listing platform with data from the MLS where users can list their homes or

search for property to buy (Karyaneva). If they decide to make an offer, the paperwork is

filled out via the Propy DApp and recorded on the Ethereum blockchain. At the end, if

30

everything goes through, the buyer receives the property title with its own blockchain

address. Since the title is on the blockchain, the buyer can be guaranteed that their ownership

of the property is immutable. Propy is also compatible with existing real estate systems in

that it also recorded ownership with the official government registry - all bases are covered.

Since the transactions and paperwork are handled using smart contracts, the environment is

trustless, fast, and is much less expensive due to the lack of middlemen.

RealBlocks is a platform for investors to diversify their real estate investing portfolios

(Quarshie). They have tokenized properties on the blockchain and created a DApp

marketplace for users to buy tokens representing a share of that property. This way, an

investor can own property all over the world without crazy fees, in-person visits, or worrying

about being entirely financially responsible if something goes wrong with a property. The

RealBlocks DApp is also compatible with Metamask, which means that buying a property

token is as easy as clicking a button.

Ubitquity is focused on creating a blockchain ledger of ownership for a range of assets

(Wosnack). They create unique UIs on the DApp for each client and have been used to

modernize government ledgers and record property ownership in a way that is not vulnerable

to attacks or theft. Ubitquity primarily targets companies that want to have blockchain

capabilities and works with their existing system to do so. This is called

Blockchain-as-a-service (BAAS).

RealT is very similar to RealBlocks in that they allow users to buy tokens that

represent a fraction of a property (McCulloch). The difference however is that Realblocks is

targeted towards larger investors that want to diversify their portfolio, while RealT is more

friendly to the novice investor. On their website, RealT states “A single token for RealT

properties costs between $50 – $150 per token, which are the lowest investment minimums

the real estate industry is able to offer. Traditional pen and paper competitors to RealT have

$5,000-10,000 investment minimums.” (McCulloch) In addition, RealT pays the users’

interest in the form of stable coins. Stable coins are a cryptocurrency that act like the fiat

currencies we are familiar with - one stable coin (DAI for example) is ~$1. It is also worth

noting that in order to tokenize the properties, RealT creates an individual LLC for each

31

property and then tokenizes that LLC. This is done as a work around to government

restrictions on directly tokenizing property.

Securitize is a platform that allows users to trade digital securities on the blockchain

(Domingo). Securities are financial assets with some worth like equity or debt. The term

digital securities refers to securities that are tokenized and therefore tradeable on the

blockchain. For example, it would be possible to own and trade equity in a home. This is an

investment opportunity for users and a way for sellers to raise capital and create liquidity. Of

course, Securitize has their own marketplace to trade these digital securities.

The Beenest is a short-term rental platform powered by the Bee Token (Chou). This

startup is the main motivation for our DApp in that it uses the blockchain to automate the

short-term rental process. In other words, the Beenest is a bit like Airbnb on the blockchain.

Their comprehensive UI allows users to search for and book short term stays. The rental

agreement is automated through a smart contract so that both the user and the property owner

can be assured the process will run smoothly. Users are also able to make payments through

the system. In addition, one the user pays for the rental, the smart contract will automatically

release the keycode to the door. This is a feature that is also coded into our DApp along with

a full-scale tenant registry.

There are several companies working on revolutionary projects in the blockchain

real-estate space. A few of these companies serve as inspiration for our DApp, and many

shine a light on areas for future work. The idea for creating a comprehensive property ledger

was inspired by Ubitquity and the idea of automating rental transactions was inspired by The

Beenest. The main purpose of our DApp is to combine these ideas in a new and promising

way. Not only will we have a property ledger, but that property ledger will be integrated with

a tenancy ledger to allow us to track and change property records along with tracking the

tenancies specific to each property. In addition, we will set up a payment system such that an

owner can make a payment on a property and a tenant can make a rent payment. In addition,

once the first payment (this could also be considered the security deposit) is paid, the keycode

to the property is released to the tenant.

32

Chapter 3

Design

3.1 Summary of the Approach

To create our DApp, we need to design a back end and a front end. The back end

design includes planning an interconnected system of smart contracts. These smart contracts

will then be deployed on the blockchain this way, the data and transactions of those contracts

will be stored on the blockchain. Then, instead of pulling data from a server, the front end

will pull data from the blockchain and display it. It is also important that the design of the

front end will allow for users of the DApp to initiate certain transactions, such as adding a

property to the property registry, from the UI.

Figure 5: Basic Structure of the DApp Diagram

The figure above shows the basic structure of the DApp. In order to make the figure a

bit more concise, we have left out many of the variables and functions. The general structure

33

of the back end is that it will be made up of three unique solidity contracts. The main contract

is the Property Registry which maintains a variable for its linked Tenant Registry. The Tenant

Registry is also a deployed contract. The Property Registry also maintains a list of Properties

where each one is it’s own deployed contract. There are additional variables and functions

such as an IPFS hash for metadata and a payment system. Let’s explore a bit more about how

the back end will work.

To begin, as soon as the Property Registry contract is deployed to the blockchain, it

automatically deploys and links to itself a Tenant Registry contract. This way, every property

registry will have a corresponding tenant registry and as soon as a property is deployed from

the property registry, tenancies can be added to that property via the tenant registry. So how

will the properties be deployed and added to the property registry? To do this, the property

registry will have a function to add properties to the list of properties it keeps. This function

will take the input information and use it to deploy a property contract onto the blockchain.

This covers the basic information on the interconnectivity of the back end.

From here let’s look at the design of all three components in a bit more detail. The

property registry contract should store the address of the corresponding tenant registry, the

owner, the number of properties, and the list of properties. It should have functions to add a

property, add the tenant registry (this will be called in the constructor), and get the

information for a property.

The property contract should store an alias, geohash, list of owners, an IPFS metadata

hash, the property registry address, the tenant registry address, and the payment pool (i.e.,

how much money is being stored for who). It should have functions to get the balance of the

contract, update the IPFS hash, add an owner, remove an owner, send a payment, and receive

a payment.

Finally, the tenant registry contract should have a tenancy structure set up inside of it

and a list of those tenancies. The tenancy structure should store the tenant, property, unit

number, an IPFS hash for tenancy information (such as the lease agreement), a status, start

time, expiration time, an early termination fee, a keycode to the door, a price per interval

(e.g., the monthly rent), the number of price intervals (e.g., 12 months), and the current

34

balance for the current interval. The tenant registry contract itself will also have variables for

the owner, property registry address, and payment pool. Then there will be functions to add a

tenancy, get the number of tenancies, get the tenancy at an index, update the status of a

tenancy, change the expiration time of a tenancy, link tenancy information, get the contract

balance, get the balance of a tenancy, send a payment, and receive a payment.

Now, what is the front end design and how is it connected to the back end? The

general structure of the front end will mirror that of the back end. There will be a parent app

component which will have two child components: the property registry and the tenant

registry.

The property registry component will be displayed as a colored box on the main

screen of the app. At the top of the component, it will display the address of the owner of the

property registry and the number of properties in the registry. This information will be pulled

from the property registry contract. From here, the component will contain submission forms

for each relevant function in the property registry contract. This will include adding a

property, making a payment, etc. Once the user inputs the information to the boxes and clicks

submit, the inputs will be captured and forwarded to the relevant function in the deployed

contract to be carried out.

Within the property registry component, there will be a subcomponent for the list of

properties in the registry. Each property in the list will have its alias, location, and a boolean

corresponding to whether the user is the owner of said property displayed. It will also have

the image files displayed corresponding to the linked IPFS metadata hashes. From here, each

property will have submission forms corresponding to the functions in the property contract.

These include adding an owner, removing an owner, updating the metadata, checking your

balance, sending a payment to a third party, and receiving payments that have been sent to

you.

Below the property registry component will be the tenant registry component. The

structure of this component will mirror the structure of the property registry component. The

top of the component will display the owner of the tenant registry and the number of

tenancies. Below this will be a submission form to add a tenancy. Then there will be a list of

35

tenancies. Each element of the list will contain submission forms to update the status of a

tenancy, change the expiration time of a tenancy, link metadata, get your balance, get the

balance paid for a certain tenancy, send a payment to the owners of the property of a tenancy,

and receive a payment on a tenancy. These correspond to functions in the tenant registry

contract.

The initial structure of the property registry contract was inspired by an open-source

Consensys template for registry design on the blockchain (ConsenSysMesh). This helped to

form the structure of the property registry deploying property contracts and storing their

addresses. The key advantage here is that this allows each property to be its own entity on the

blockchain with its own transactions while still maintaining a link to the parent registry

contract. The decision to keep each tenancy as a struct within the tenancy registry as opposed

to launching them as tenancy contracts was that tenancies are not their own entities. There are

multiple tenancies that exist within a property. Keeping tenancies as an internal struct allowed

for a streamlining of that logic and for all of the payment pool and functions to be kept within

the tenant registry contract.

While this is the design plan, it is ambitious given the time constraints. As will be

discussed in the implementation section, we did adhere to the structure of this design, but

were unable to include all of the details we had hoped. In addition, some pieces of the front

end design plan were updated to reflect a more realistic set of goals. We did this to stay

consistent with the primary mission of the project having been blockchain development as

opposed to a decorated UI.

36

Chapter 4

Implementation

4.1 Overview of the DApp

This chapter will explain how the above design was carried out in development. This

will include the technologies used, challenges faced, and adaptations from the design. Section

4.2 will cover the back end of the project. Section 4.3 will detail the development and

difficulties of the user interface. It is important to note that the contracts took structure from

the NFT token standards, but we decided not to have the contracts extend any of them within

our DApp because it didn't make sense to structure the properties as tokens themselves. The

primary function of the app was in maintaining registries and managing transactions as

opposed to being able to buy or sell the properties themselves.

4.2 Smart Contracts

Figure 6: DApp Back End Diagram

37

The figure above shows the structures of the smart contracts and how they are

connected. At the beginning of my development, we followed a tutorial on how to make a

basic DApp (McCubbin, “The Ultimate Ethereum DApp Tutorial”). This involved creating a

truffle project where truffle is a library that allows developers to make DApps and write

smart contract code in Solidity. From here, we installed Ganache which runs a local

blockchain complete with accounts loaded with test-ETH. Then, we loaded in a default truffle

framework and deleted some of the things we didn't need.

Following this, we created PropertyRegistry.sol, Property.sol, and TenantRegistry.sol.

The development of these contracts will be detailed in Sections 4.2.1-4.2.3. We began by

developing inside of the truffle project, but quickly found that the debugging environment

was not ideal. We then switched our contract development to Remix - an online IDE for

coding and debugging smart contracts in Solidity (Remix). Once the contracts were

developed and tested, the files were saved to the truffle project. The last piece was to launch

the truffle project, which deployed the contracts onto the local blockchain. The UI then

accessed these deployed contracts.

4.2.1 Property Registry

As can be seen in figure 6, the property registry contract is the main (or parent)

contract for the project. Since the majority of the logic is placed in the child contracts, the

property registry contract is streamlined and succinct. Based on the design, there were a few

key pieces that were needed: property registry information, a connection to a tenant registry,

and a connection to a list of properties.

At the beginning of development, we weren’t sure of the best way to establish the

connection to the tenant registry. We tried launching a tenant registry contract on its own, but

found that there was not a straightforward way to connect the contracts if they were launched

separately. After some research, we found that it was possible for smart contracts to launch

other smart contracts. This provided an easy way to connect the two because any information

could be passed into the child contract from the parent contract upon creation.

38

The next step was to decide how we would create the tenant registry inside the

property registry component and how we would store the connection. We began by putting

the logic to launch the tenant registry contract directly into the constructor of the property

registry. Then, the address of the tenant registry that was created upon the creation of the

property registry would be saved as a variable to the property registry. While this worked, we

ultimately decided to create a separate function to create the tenant registry and then called

that function inside of the constructor. This made the code more clear and compartmentalized

the logic in a way that made more sense.

function addTenantRegistry()

private

returns (address _newTenantRegistry)

{

TenantRegistry newTenantRegistry = new

TenantRegistry(msg.sender);

tenantRegistry = newTenantRegistry;

emit TenantRegistryAdded(newTenantRegistry);

return (address(newTenantRegistry));

}

This function begins by launching the tenant registry with an input of msg.sender

which, in this case, corresponds to the address of the property registry. Then the tenant

registry is saved to the variable tenantRegistry. By separating the creation of the tenant

registry into its own function, we were also able to create an event for when that function was

called. An event is a way to broadcast that a certain action has taken place from a smart

contract. This event is triggered in the above function using the emit keyword. We could

then check the event log on Ganache to see that the tenant registry was in fact deployed when

the property registry was deployed. Lastly, the function returned the address of the tenant

registry.

From the trial and error of connecting and launching the tenant registry, we had a

much better idea of how to connect and launch the property contracts. We began by creating

two local variables that would store the properties’ information and the properties’ addresses.

39

The properties’ information was stored in a mapping called records which was encoded

like mapping(address => Unit) records; This was done as a mapping as opposed to

a dictionary because it is more efficient and array iteration should be avoided at all costs in a

smart contract. This is because array iteration can take an unspecified amount of computing

power that could use a massive amount of gas (Zheng et al. 2018). The properties’ addresses

are stored in an array named keys. It is fine for this to be an array because there is never any

need to index into it in the smart contract.

function addProperty(string _alias, string _geoHash, string

_ipfsmetadatahash)

public

returns (address _newProperty, uint _keyslength)

{

Property newProperty = new Property(msg.sender, _alias, _geoHash,

_ipfsmetadatahash, tenantRegistry);

keys.push(newProperty);

records[newProperty].alias = _alias;

records[newProperty].geoHash = _geoHash;

records[newProperty].creator = msg.sender;

records[newProperty].keysIndex = keys.length;

numSpUnits++;

emit PropertyAdded(newProperty, _alias, _geoHash);

return (address(newProperty), keys.length);

}

We then programmed an addProperty() function that took as inputs all of the

pieces of information needed (e.g.., alias, geohash, etc.) in addition to the address of the

property registry contract. This function deployed a property contract, saved the address to

keys and the information to records. It then emitted a property created event and output

the address of the property contract and the index of that property in keys. We then created a

function to get a property’s information from its address.

The last step was simply to create variables to store the owner of the property registry

and the number of properties in the registry. The owner was saved as the address of whatever

user was deploying the property registry contract. The number of properties in the registry

began at zero and was incremented every time a property was added within the

40

addProperty() function. This completed the logic and functionality of the property

registry contract.

4.2.2 Property

The property contract has quite a bit more logic than the property registry and

contains a payment system. The first piece that we needed to program was support for

multiple owners. The original plan was to simply create a local variable that was an array of

owner addresses. However, some of the functions in the contract needed to be able to check

whether the current user was an owner and we could not do array iteration inside of a

contract. To solve this, we created a mapping called owners from a user address to a boolean

that represented whether that user was an owner of the property.

function addOwner(address _newOwner)

public

returns (bool)

{

require(owners[msg.sender] == true);

owners[_newOwner] = true;

return (owners[_newOwner]);

}

// Remove an owner from a property

function removeOwner(address _oldOwner)

public

returns (bool)

{

require(owners[msg.sender] == true && owners[_oldOwner] ==

true);

owners[_oldOwner] = false;

return (owners[_oldOwner]);

}

Next, we created functions for a current owner to be able to add or remove an owner.

They can even remove themselves as an owner. The code above makes sure that the current

user is an owner and then changes the boolean value of the input user address in the owners

41

mapping to be the correct boolean. From here, we created local variables to store the property

registry address, the alias, the geohash, the IPFS metadata hash, and the tenant registry

address.

The last major piece of the property contract was to set up the payment system. The

first thing we did was to create a local variable called receiver that could be assigned

whenever a user invoked a send payment function to keep track of who the payment was for.

Next, we created a payment pool using a mapping from user address to integer. This means

that the contract would be able to see how much money was allocated to an account so that

the money could then be transferred to that account.

There are four functions that make up the payment system: the fallback function, the

get balance function, the send payment function, and the receive payment function. We didn’t

initially have a fallback function, but after researching payments in smart contracts, we

realized it was very important. The fallback function serves to catch any funds that are sent to

the contract without a specified function or funds that are sent incorrectly (Solidity by

Example). If we didn’t have a fallback function, those funds would disappear.

function getBalance()

public

view

returns (uint)

{

return (address(this).balance);

}

The getBalance() function utilizes a built-in balance function. The

address(this) code gets the address of the current contract and the .balance then gets

the total amount of money that is currently sitting in that contract. Next comes the

sendPayment() function.

42

function sendPayment(address _receiver, uint _amount)

public

payable

{

require(owners[msg.sender] == true);

receiver = _receiver;

require(_amount <= msg.sender.balance);

paymentpool[receiver] += _amount;

}

The first thing to notice is the keyword payable in the function header. This

keyword means that this function can receive ETH when it is called. It may not seem like

ETH is being sent anywhere in the code, but the keyword payable means that the specified

amount is sent to the contract from the user’s account (Solidity by Example). First we check

that the user making a payment on the property is an owner of the property, then we set the

variable receiver to be the receiver specified in the input. Next we check that the user has

enough funds in their account to make the payment. Lastly, we register the payment deposit

in the payment pool indexed to the specified receiver. We designed this function to take any

receiver because this allows an owner to have the flexibility to make any kind of payment on

the house to anyone (bank, contractor, etc.). Lastly, we created a receivePayment()

function.

function receivePayment()

external

{

uint pmnt = paymentpool[msg.sender];

msg.sender.transfer(pmnt);

paymentpool[msg.sender] = 0;

}

This function uses the external keyword which means that the function should be

called outside of the contract. This is the generally expected structure of receive payment

functions so that any user with funds allocated to them in the contract can access them. First,

the function gets the value of the amount of ETH that was deposited for the user. It then

transfers that ETH to the users account and resets that users amount in the payment pool to 0.

43

This completed the development of the property contract. From here we moved on to what

would be the most complex of the contracts - the tenant registry.

4.2.3 Tenant Registry

The first step in creating the tenant registry contract was to create a tenancy structure.

struct Tenancy

{

address tenant;

address property;

string tenancyInfo;

uint status;

uint startTime;

uint expireTime;

uint earlyTerminationFee;

uint keyCode;

uint pricePerInterval;

uint numPriceIntervals;

uint currentBalanceForInterval;

}

The struct keyword tells Solidity allows the developer to essentially create their own

type that stores a custom set of information. In this case, the contract will know that anything

of type Tenancy contains a tenant address, property address, apartment number, info hash,

status, start time, expiration time, early termination fee, keycode, price per time interval,

number of time intervals, and current balance for the interval. Most of these pieces of data are

self explanatory, but the last few may not be. The keycode is the code to get in the door of the

unit that is being rented. The price per time interval is the rental charge per week, month, etc.

The number of time intervals is how many times in total the tenant needs to pay that price

(e.g., 12 for 12 months of rent). The current balance for the interval is how much the tenant

has already paid towards their rent.

Next we created a local variable tenancies that is an array of all the tenancies in the

contract. Then we created a mapping from the tenant address to their tenancy and a mapping

from the tenant address to the property that their tenancy is in. These mappings would prove

44

useful for functions in this contract and were necessary to avoid array iteration. We also

created local variables for the owner of the tenant registry contract and the address of the

property registry contract that this tenant registry was for. We also needed to create a function

to add a tenancy to the registry.

function addTenancy(address tenant, address property, uint

apartmentNumber, uint startTime, uint expireTime, uint

earlyTerminationFee, uint keyCode, uint pricePerInterval, uint

numPriceIntervals, uint currentBalanceForInterval)

public

returns (uint)

{

uint len = tenancies.length;

tenancies.length++;

tenancies[len].property = property;

tenancies[len].apartmentNumber = apartmentNumber;

tenancies[len].tenant = tenant;

tenancies[len].startTime = startTime;

tenancies[len].expireTime = expireTime;

tenancies[len].earlyTerminationFee = earlyTerminationFee;

tenancies[len].keyCode = keyCode;

tenancies[len].pricePerInterval = pricePerInterval;

tenancies[len].numPriceIntervals = numPriceIntervals;

tenancies[len].currentBalanceForInterval =

currentBalanceForInterval;

uint olen = tenanciesIndexedByTenant[tenant].length;

tenanciesIndexedByTenant[tenant].length++;

tenanciesIndexedByTenant[tenant][olen] = tenancies[len];

tenantToProperty[tenant] = property;

return len;

}

You may notice that there is no input for tenancy info. This was done on purpose

because we decided that this should not be required to create a tenancy. Instead, we created a

function later that could link tenancy info to a tenancy. The code of the function above adds

all of the tenancy information to the tenancies array. It then creates the correct entries in the

45

tenanciesIndexedByTenant and tenantToProperty mappings. Finally, it returns the

index in tenancies that corresponds to the tenancy that was just added.

Next, we created five functions to add, get, and remove tenancies’ information. The

getNumTenancies() function returns the number of tenancies in the registry by getting the

length of the tenancies array. The getTenancyAt() function takes in a tenancy index and

returns the most important pieces of information about the tenancy. The

updateStatusOfTenancy() function allows the user to change the status of a tenancy to 0

(active) or 1 (nonactive). The changeExpireTime() function contains some more complex

logic.

function changeExpireTime(uint tenancyIndex, uint newExpireTime)

public

{

address propAddr = tenancies[tenancyIndex].property;

address _tenant = tenancies[tenancyIndex].tenant;

uint _earlyTerminationFee =

tenancies[tenancyIndex].earlyTerminationFee;

Property prop = Property(propAddr);

require(msg.sender == _tenant || prop.owners(msg.sender) ==

true);

if (msg.sender == _tenant && newExpireTime <

tenancies[tenancyIndex].expireTime) {

paymentpool[tenancyIndex] += _earlyTerminationFee;

}

tenancies[tenancyIndex].expireTime = newExpireTime;

}

This function first gets the address of the property of the tenancy and the address of

the tenant. Then it gets the value of the early termination fee on that tenancy. It then connects

to the property contract using the address and requires that the current user is either the tenant

of the tenancy or an owner of the property. Then, if the user is the tenant and the new

expiration time is earlier than the old expiration time, it applies the early termination fee.

Lastly, it changes the value of the expiration time for that tenancy. The fifth function,

linkTenancyInfo() allows the user to update the info hash on a tenancy.

46

The last piece of the tenant registry contract was to create a payment system. We did

this in almost the same way as it was done in the property contract, except in this case the

user would need to specify the index of the tenancy they were making a payment on and

payments could only go to an owner of the property of that tenancy. It would be great to

support other kinds of payments, but due to scope constraints the main focus of this payment

system was on making rent payments. First, we created the basic payable fallback function

and getBalance() function. Then we created a function to get the balance of a specific

tenancy by providing the tenancy index as input. From here, we coded the sendPayment()

function.

function sendPayment(uint tenancyIndex, uint _amount)

public

payable

returns (uint)

{

require(_amount <= msg.sender.balance);

uint total = _amount +

tenancies[tenancyIndex].currentBalanceForInterval;

if (total >= tenancies[tenancyIndex].pricePerInterval) {

tenancies[tenancyIndex].numPriceIntervals -= 1;

tenancies[tenancyIndex].currentBalanceForInterval =

total - tenancies[tenancyIndex].pricePerInterval;

paymentpool[tenancyIndex] += _amount;

return tenancies[tenancyIndex].keyCode;

} else {

tenancies[tenancyIndex].currentBalanceForInterval +=

_amount;

paymentpool[tenancyIndex] += _amount;

}

}

This is a payable function that takes a tenancy index and an amount as input. It then

checks that the sender has enough funds in their account. Then, it calculates the current total

for the current interval by adding the input amount and the current balance for the interval. If

the total is greater than or equal to the price per interval, this means that the interval is paid

and the number of intervals left on the tenancy should be decremented. Then the current

balance for the new interval is set to be the difference between the total and the price per

47

interval in case the user overpaid. Then the amount is deposited into the payment pool and

the keycode is returned because this means that at least one interval has been paid off by the

tenant. If the total is not enough to pay off the interval, then the current balance for the

interval is incremented by the input amount and the input amount is deposited in the payment

pool. Lastly, we programmed the receivePayment() function.

function receivePayment(uint _tenancyIndex)

external

{

address _propAddr = tenancies[_tenancyIndex].property;

Property prop = Property(_propAddr);

bool isOwner = prop.owners(msg.sender);

require(isOwner == true);

uint pmnt = paymentpool[_tenancyIndex];

msg.sender.transfer(pmnt);

paymentpool[_tenancyIndex] = 0;

}

This external function takes in the tenancy index of the tenancy the user would like to

receive payments for. It then grabs the property address for that tenancy and connects to the

property contract. From here it makes sure that the user is an owner of the property that the

tenancy is in. Then it gets the amount of ETH for that tenancy in the payment pool and

transfers it to the user. It then resets the payment pool value for that tenancy. With this

contract done, we completed the back end development.

4.3 User Interface

After significant development work on the smart contracts in Ethereum and their

integration with the truffle project, we ran into a large challenge. The truffle project was set

up such that all of the UI work had to be done in HTML. While it is technically possible to do

almost any UI development in HTML, it is incredibly time consuming and long code. After

speaking to my supervisor, it was decided that it would be best to set up an additional react

project for the front end work. React is an optimized JavaScript library for building UIs

(“React”). It allows the developer to embed pieces of code in the JavaScript to make the

48

program more succinct and development much quicker. However, learning React is like

learning an entirely new programming language, it is no small feat.

To do this, we began by finding a Codecademy course on React (Codeacademy). The

course began by teaching the basic syntax of React. This involved nesting Javascript code,

multiline code, nesting HTML, and ReactDOM. After this introduction, the course went on to

cover building components, making the components interact, lifecycle methods, hooks,

component states, and advanced React syntax. Each chapter of this course involved coding

complex examples in React to ensure that the topics were being learned and took significant

time. However, this was a necessary skill set to build in order to be able to build out the UI of

our DApp.

From here, we looked for resources on how to build a DApp with React. Due to the

topic being on the cutting edge of current development and research, there was only one

detailed tutorial on how to get started (McCubbin, “How to Build Ethereum DApp with React

JS”). Following this tutorial, the goal was to create a React app that would directly interact

with the smart contracts we deployed on Ganache using a truffle project in the previous

section. Successfully creating this interaction would be a source of significant time with

essentially no resources on how to debug. However, the first piece of creating this React app

was to make sure that node was installed and up to date. From here, we navigated to the

correct directory and ran npm install create-react-app from the command line. This

installed the basic setup for creating an app.

Next, we needed to create our app by running create-react-app

eth-todo-list-react. As with any project, the next step was to install dependencies with

npm install. This took significant time to debug due to version problems and

incompatibilities within dependencies. Eventually, all of the correct dependencies were

added. To verify that the app was initialized correctly, the next step was to launch the app

using npm run start. This automatically opened up a chrome window with a blank UI

using localhost - everything was set up correctly. The last step before starting development

was just to delete the default style sheets.

49

Now, the real development work began. The parent component (or main component)

for the app is the App.js file. So we began by trying to establish a connection to the local

blockchain that was running with Ganache.

class App extends Component {

componentWillMount() {

this.loadBlockchainData()

}

async loadBlockchainData() {

const web3 = new Web3(Web3.givenProvider ||

"http://localhost:7545")

this.setState({web3})

const accounts = await web3.eth.getAccounts()

this.setState({ account: accounts[0] })

In this code, we established that the App is a component and that upon loading it, it

should call the loadBlockchainData() function. This function connects with the Ganache

blockchain running on local host 7545 and grabs the number of the account being used

currently. The localhost number was originally set incorrectly, so this was fixed before the

connection was successfully made.

Next came the connection to the deployed contracts. To do this, we first needed to go

into the config.js file and add the contract addresses and ABIs as variables. A smart contract’s

ABI is JSON code that describes the structure of the contract including its functions. The

DApp needed this to understand how it is supposed to communicate with the contract. These

pieces of information were saved as variables and exported to App.js. Now, the property

registry and tenant registry contracts were loaded into App.js.

50

const propertyRegistry = new web3.eth.Contract(PROPERTY_REGISTRY_ABI,

PROPERTY_REGISTRY_ADDRESS)

this.setState({ propertyRegistry })

const TENANT_REGISTRY_ADDRESS = await

propertyRegistry.methods.tenantRegistry().call()

const tenantRegistry = new web3.eth.Contract(TENANT_REGISTRY_ABI,

TENANT_REGISTRY_ADDRESS)

this.setState({ tenantRegistry })

One important piece to note is that we did add the property contract’s ABI, but we

didn’t yet have any property addresses because those are added later using a function inside

the property registry contract. We will return to how we handle this later. The code above

loaded in the property registry contract that we launched on the local Ganache blockchain

using the web3 connection to Ganache and the blockchain address of the contract. Since

deploying the property registry also automatically deployed a tenant registry, we also loaded

that contract in using its address. These were saved in the state of the component to be

accessed later. This was the initial setup of the DApps connection to the contracts. From here

we could start to pull information from them.

In order to pull information from the contract that does not require a transaction (i.e.,

no gas required), we simply loaded the variable value from the contract. This was done using

the call() function which was built to interact with contracts in a way that may or may not

involve gas. For example, we grabbed the owner value from the property registry contract

using const owner = await propertyRegistry.methods.owner().call() and

then set the state value using this.setState({ owner }). However, when trying to use

functions in the contract to get some information, a different syntax was required.

The first attempt at calling the getNumTenancies() function of the tenant registry

contract looked like const numTens = (await

tenantRegistry.methods.getNumTenancies().call(). This resulted in the

uninformative Error: VM Exception while processing transaction. As we

would find out in the process of developing this React App, this is a common and frustrating

error when trying to connect with smart contracts from the front end. In fact, this seemingly

small bug was one of the largest challenges faced during front end development.

51

The debugging began by going back to remix and testing out the

getNumTenancies() function in the contract. In remix, the function call worked perfectly.

We also knew that the front end was correctly connected to the contracts. This meant that the

error was in the creation of the function call, but there was no information as to how to fix it.

After extensively searching the web, nothing seemed to work and this bug halted

development for several days. Finally, in a Stack Overflow page, there was a call()

example that had inputs for from as well as gas (Stack Overflow). This was the answer - the

function call needed to include a gas limit and an account number from which the transaction

was being sent. The resulting call was const numTens = (await

tenantRegistry.methods.getNumTenancies().call({ gas: "1000000",

from: this.state.account })). This worked and pulled the information.

Now that we knew how to pull variables and call functions, we pulled in the owners

of the registries, the number of properties and the number of tenancies. We then used the

number of tenancies to pull the actual tenancies along with their information using a for loop.

const tenancies = []

for (var j=0; j < numTens; j++) {

const tenancyVals = await

tenantRegistry.methods.getTenancyAt(j).call({ gas: "2000000",

from: this.state.account })

tenancies.push(tenancyVals)

}

this.setState({tenancies})

Then, the constructor initialized the state values and all that was left in the App

component was the render function. This render function set the title of the page to be

Property Properly App. It then loaded the property registry component followed by the tenant

registry component. Based on what information from the App component was needed in

these components, props were passed in. This included the tenancies that were loaded in the

for loop, the number of tenancies, the number of properties, and etc. In the case of the

property registry specifically, we passed in the property contract ABI so that the property

registry component would be able to connect with properties that were created when the

addProperty() function in the property registry contract was triggered by the front end.

52

The property registry component went through a significant amount of trial and error.

Focusing on the render function, the first thing we did was to create the background box, a

title, print the owner, print the number of properties, and then create a submission form for

adding a property. This submission form had text boxes for the three inputs required for the

addProperty() function in the contract: alias, geohash, and IPFS hash. Each of these input

boxes had a corresponding on-change function in the component that recorded what was

typed in. From here, the submit button triggered a handleButtonClicked() function

which called the addProperty() function in the contract. Once the contract was deployed

to the blockchain, the address was saved inside the property registry component.

The last piece of the render function was a list of the properties. We went through

many structural iterations to do this and settled on creating a list of property components.

<p>Properties: </p>

<ul id="propertyList" className="list-unstyled">

{ this.props.keys.map((property) => {

return(

<div>

<Property key='{property}' addr={property}

web3={this.props.web3}

propertyABI={this.props.propertyABI}

account={this.props.account}/>

</div>

);

})}

This code iterated through the property addresses for any of the properties that have

been added. For each of these, it then rendered a property component and passed in a few

props to that component. From here, we created the property component which loaded in the

connection to the property contract using the address and the ABI. It then rendered the alias,

geohash, IPFS hash, and a boolean representing whether the user is an owner of that property.

These were the basic pieces of information that we wanted the UI to display, so due to time

and scope constraints we moved on to the tenant registry component. The goal was to add all

53

of the property registry contract’s functions to the UI, but this became infeasible to the scope

of the project. The focus of this DApp was really the complexity of the smart contracts, not

the UI.

The last piece of the UI was the tenant registry component. The structure of this was

very similar to that of the property registry component in that it rendered a title, the owner of

the registry, the number of tenancies, and a submission form for adding a tenancy. This

submission form required 3x the number of inputs as the addProperty() function. The

same onChange() and handleButtonClicked() structure was used and the

handleButtonClicked() function called the addTenancy() function in the deployed

tenant registry contract. The final thing to render was a list of tenancies. We chose not to

represent tenancies as their own components to remain synchronous with the back end

structure and because we were able to access a list of the tenancies (and all of their

information) from the tenant registry component. Therefore, we rendered the tenant address,

property contract address for that tenancy, status, start time, expiration time, and tenancy info

IPFS hash.

54

Figure 7: DApp User Interface

Deciding how all of these components should interact and which elements should be

their own components took a long series of edits. We initially wanted more functions to be

displayed, but we chose to prioritize the back end development instead. It was also

challenging to figure out the best structure for which components to load in which pieces of

55

data. We initially tried loading the property contracts within the property registry component,

but the properties themselves had far too much logic for this to work. So, the property

contract ABI and address were passed as props to a separate property component that handled

this logic. There were many structural decisions like this that made development quite

challenging.

56

Chapter 5

Evaluation

5.1 Security Considerations

The blockchain is a very secure and efficient implementation of a digital distributed

ledger. All transactions are available to every member computer (or node) on the network as

they all contain a full copy of the blockchain. However, it is also possible for anyone to view

transactions without being part of the network - they simply can’t add to it. With the

Ethereum blockchain, anyone with an internet connection can search for transactions using

etherscan.io (Etherscan). This is certainly a privacy concern for those whose identity is

connected to their cryptocurrency wallet because the details of the wallet are recorded in the

transaction. In addition, it is very difficult to anonymously purchase any cryptocurrency with

fiat currency (e.g.., dollars, euros, etc.) because most cryptocurrency exchanges are

governmentally mandated to record the purchaser’s identity (Peters).

This brought us to another key security concern of working with the blockchain - it

can and has been used to commit crimes and harm people. An online marketplace called the

Silk Road was created on the Bitcoin blockchain and was used to sell illegal drugs, weapons,

and even assassins for hire (Christin). Without proper care and regulation, a blockchain based

application could be used to cause harm. This is something that has been directly considered

when developing this DApp to avoid harm to users.

Since my DApp is on the Ethereum blockchain, we needed to consider the security

vulnerabilities of the Ethereum blockchain specifically. In the DAO attack of 2016, a hacker

took advantage of a reentrancy vulnerability to steal $60 million (Meier). Since Ethereum

handles the majority of blockchain traffic, it also has a large attack surface. One paper cited

40 different security vulnerabilities in the Ethereum blockchain - we can be sure there are

many more we don’t know about (Chen). While there isn’t space to discuss all 40

vulnerabilities, we will go into the details of a few major ones.

57

One of the largest vulnerabilities is due to the decentralized nature of the Ethereum

blockchain. If a hacker were able to control over 50% of the block verification work, they

could create their own main chain - effectively controlling the blockchain (Chen). Another

vulnerability involves a DoS (Denial of Service) attack in which a hacker provides such a

high reward for their transactions to be put on the chain that they can temporarily block other

transactions from being processed (Chen). This works because the order in which

transactions are added to the blockchain is determined by which transactions are chosen by

miners to be constructed into a block. A miner’s incentive is to pick the transactions with the

highest gas price (eg. reward).

Another very important vulnerability within the Ethereum blockchain is due to the

type system of the language in which Ethereum smart contracts are written - Solidity (Chen).

It is possible to call a different smart contract within a function of your smart contract and

Solidity is unable to prevent this. If the contract being called is malicious, this contract's code

can be run through a perfectly harmless looking mask contract (Chen). In addition to this,

Solidity is also known to have a buggy compiler that results in even more vulnerabilities. Our

DApp is also written in Solidity, therefore the security vulnerabilities of the language are

security vulnerabilities of my project.

5.2 Solidity Testing

We also created some basic tests inside of remix. These included unit testing and

assertions. This kind of testing is helpful in making sure that all functions are running as

expected. One basic test example was checking that the msg.sender account was equal to

the tester account we expected to be using and that the value of that account was what we

expected (Remix).

58

function checkSenderAndValue() public payable {

Assert.equal(msg.sender, TestsAccounts.getAccount(1),

"Invalid sender");

Assert.equal(msg.value, 100, "Invalid value");

}

(Remix)

5.3 Strengths

The Property Properly DApp has many strengths and there were pieces of the

development that went very well. The first piece to acknowledge is that this project required

learning and implementing code from scratch in two programming languages that we have no

previous experience with. The Solidity programming language, which is used for writing

smart contracts, is completely unique from other languages (“Solidity Programming

Language”). There are resources for learning this language, but the majority of the skill

building came from trial and error with our own contracts. We were able to learn Solidity

well enough to create and deploy interconnected smart contracts from scratch. We also

learned how to use React by doing a multi-day course on Codecademy (Codeacademy).

React, in particular, is not known to be an easy language to develop with. However, we were

able to learn React well enough to code a React project from scratch.

Although there were some limitations to the UI, we still developed a DApp with a

functional and straightforward UI in React. This UI successfully interacted with the contracts,

displayed information, and deployed contracts. This is much less straightforward to develop

than a regular app with a server or database on the back end. It should also be noted that our

particular combination of functionalities has never been done before in any open source

DApp.

Our DApp created a working property registry and tenant registry that could be used

for real properties. In addition, we supported practical functionalities like having multiple

owners on a property and being able to link external files in the form of IPFS hashes. Our

DApp also contained a functional payment system for both properties and tenancies to make

payments on properties to a third party and to make rent payments on tenancies to the

property owner. We can even support short-term rental tenancies because the owner selects

59

the number of payments and amount per payment upon completion of a tenancy. Then, when

the first payment is made in full, the DApp can release a door keycode to the user. We also

created the functionality for a user to move up the expiration time on their tenancy with the

early termination fee automatically applied. All of these details make the DApp uniquely

suited to real-world applications.

5.4 Limitations

Along with the strengths, there are also some limitations of our DApp due to scope

and time constraints. These limitations would be excellent areas to concentrate future work

on the project. While we were able to learn Solidity and React from scratch, the lack of

development experience in these languages means that there were certain limitations in

programming. For example, we are still learning and understanding how the system of

lifecycle functions work in React. This means that there may be pieces of code inside of a

certain lifecycle function that would be better suited to a different one.

In addition, given more time, it would be ideal to expand the scope of the UI to

encompass all of the functionality of the back end. There are a few functions within the

property contract and the tenant registry contract that could use submission forms in the UI

that trigger the functions in the back end and reflect that change. It would also be ideal to be

able to decode and render some of the hashes that contain image files or documents. We

attempted multiple strategies to render these to the front end without luck. This is certainly

something that we improve the presentation of the DApp.

It should also be noted that there is a significant expense in deploying the contract to

the blockchain. Luckily, this only needs to be done once. There is also an expense to every

transaction that occurs within the contracts. This is something to be mindful of as the

congestion of the network and therefore the gas price continues to increase.

60

Finally, one area for future work is in the complexity of the payment system. It would

be ideal to support non-rent payments on a tenancy and generally increase the complexity of

the payments that can be handled by the contracts.

61

Chapter 6

Conclusions & Future Work

6.1 Conclusion

We conclude that it is possible to utilize the unique features of the blockchain to

develop a property ledger and transaction management system. We find that the best

approach to accomplishing this task is to create a decentralized application on the Ethereum

blockchain. Within this application, we deployed contracts for a property registry, tenant

registry, and each unique property within our registry.

One limitation of using the Ethereum blockchain is that there is an expense involved

in every transaction. However, we determined that the expense involved was comparable to,

if not less than, the expenses that a bank would charge to transfer funds for example. In

addition, the cost of lawyers and other middlemen without our system can be far more than

Ethereum transaction costs (Law Guideline).

Additionally, we find that the best way to store metadata is to put files and images

into the IPFS and generate unique IPFS hashes for them. We would then store those hashes as

a variable within each property or tenancy. Some interactions with our contracts were

designed not to incur any costs because they don’t involve creating a transaction on the

blockchain. This, for example, included getting the number of properties or getting the IPFS

hash for a property. Other interactions with the contracts necessitated a transaction on the

blockchain such as adding a property or adding an owner to a property.

We were also able to set up a payment system to allow owners to make payments on a

property to an outside party and tenants to make payments to the property owner. We were

even able to add a functionality that would automatically release the door keycode to a tenant

once they made their first payment. This worked by storing funds in the contract until they

were transferred to the specified party when requested. Since the contracts were deployed on

62

the blockchain, this means that all of these payments were permanently recorded on that

blockchain.

In this way, we were able to utilize the immutability and trustlessness of the

blockchain to create a more effective, reliable property ledger and transaction management

system.

6.2 Future Work

There are several directions that future work could take from this point. Firstly, the

DApp developed within this dissertation could be expanded to handle more complex

transactions and payments. Our project can handle mortgage payments on properties, but it

would be very useful to set up an automated way to handle escrow payments such that the

deed to the house is automatically signed and forwarded to the buyer once the seller accepts

the offer and payment is taken out of escrow. We know this can be done because our DApp

already sends the keycode of the door of a property to the tenant once the first rent payment is

made.

Secondly, a similar structure could be used to manage other property assets. It could

be useful to separate the land and the building(s) on that land into separate components to

allow for a separation of assets. For example, it is possible for the land and the building to be

owned by separate entities. It is also possible for an entity to have certain rights on the land

such as water or oil rights. It could be an interesting project to explore the creation of a rights

registry for pieces of land. The ownership of these rights could be tracked in the blockchain.

The rights could be licensed out for a fee or sold through smart contracts.

Thirdly, it would be interesting to explore blockchain applications to other areas of

real estate such as representing properties as securities and creating a marketplace to trade

them. In fact, this has already been successfully piloted by the St. Regis Resort in Aspen.

AspenCoin raised $18 million dollars upon initial investment (Aspen Digital Inc.). This

strategy of tokenizing property securities could be more widely used in commercial real

estate. One very interesting project could be to create an application that would allow

63

companies to tokenize large commercial properties in this way. This would create a lucrative,

alternative way for companies to raise capital. In addition, this could open up real estate

investing to the average person by allowing investment through cryptocurrency.

64

Bibliography

“An Unbiased Global Financial System.” MakerDAO, makerdao.com/en/.

Aspen Digital Inc. Aspen Coin, 2018, www.aspencoin.io/.

“Bitcoin.” Overstock, help.overstock.com/help/s/article/Bitcoin.

Buterin, Vitalik. “Eip-20: Token Standard.” Ethereum Improvement Proposals, 19 Nov. 2015,
eips.ethereum.org/EIPS/eip-20.

Buterin, Vitalik. “Ethereum Whitepaper.” Ethereum.org, 2013, ethereum.org/en/whitepaper/.

Chen, Huashan. “A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses.”
ACM Digital Library, 2021, dl.acm.org/doi/fullHtml/10.1145/3391195#sec-19.

Chohan, Usman W. “The Problems of Cryptocurrency Thefts and Exchange Shutdowns.” SSRN, 7
Mar. 2018, papers.ssrn.com/sol3/papers.cfm?abstract_id=3131702.

Chou, Jonathan. “The Bee Token: Decentralized Short-Term Housing Rentals.” The Bee Token |
Decentralized Short-Term Housing Rentals, 2017, www.thebeetoken.com/.

Christin, Nicolas. "Traveling the Silk Road: A measurement analysis of a large anonymous online
marketplace." Proceedings of the 22nd international conference on World Wide Web. 2013.

“Coinbase: Buy & Sell Bitcoin, Ethereum, and More with Trust.” Coinbase, www.coinbase.com/.

ConsenSysMesh. “Consensysmesh/Real-Estate-Standards.” GitHub, Consensys,
github.com/ConsenSysMesh/real-estate-standards.

CryptoKitties. “Collect and Breed Digital Cats!” CryptoKitties, www.cryptokitties.co/.

Davis, Aaron. MetaMask, metamask.io/.

Dexaran. “Erc223 Token Standard Reference Implementation.” GitHub,
github.com/Dexaran/ERC223-token-standard.

Domingo, Carlos. “Securitize.io.” Securitize, 2017, securitize.io/.

Entriken, William, et al. “Eip-721: Non-Fungible Token Standard.” Ethereum Improvement
Proposals, 24 Jan. 2018, eips.ethereum.org/EIPS/eip-721.

“Etherscan: The Ethereum Blockchain Explorer.” Etherscan, 2021, etherscan.io.

Glickman, Edward. Introduction to Real Estate Finance. Elsevier Academic Press, 2020.

“Gods Unchained .” Gods Unchained, 2021, godsunchained.com/.

Goitom, Hanibal. “Our New Reports on Regulation of Cryptocurrency around the World.” In Custodia
Legis: Law Librarians of Congress, 13 July 2018,

65

blogs.loc.gov/law/2018/07/our-new-reports-on-regulation-of-cryptocurrency-around-the-worl
d/.

Gupta, Sourav Sen. “Blockchain: The Foundation Behind Bitcoin.” Indian Statistical Institute, 2021,
www.isical.ac.in/~debrup/slides/Bitcoin.pdf.

“Introduction to Dapps.” Ethereum.org, 2 Sept. 2021, ethereum.org/en/developers/docs/dapps/.

“Introduction to Smart Contracts.” Ethereum.org, 6 Aug. 2021,
ethereum.org/en/developers/docs/smart-contracts/.

Karayaneva, Natalia. “Real Estate Transaction Automated.” Propy, 2021, propy.com/browse/.

Kirby, Carrie. “Person to Person Bitcoin Exchanges Spread across the Globe.” CoinDesk, 2013,
www.coindesk.com/markets/2013/10/10/in-person-bitcoin-exchanges-spread-across-the-globe
/.

Lewenberg, Yoad, et al. "Bitcoin mining pools: A cooperative game theoretic analysis." Proceedings
of the 2015 International Conference on Autonomous Agents and Multiagent Systems. 2015.

“Limited Liability.” Legal Information Institute, Legal Information Institute,
www.law.cornell.edu/wex/limited_liability.

Lipton, Alex, and Stuart Levi. “An Introduction to Smart Contracts and Their Potential and Inherent
Limitations.” The Harvard Law School Forum on Corporate Governance, 26 May 2018,
corpgov.law.harvard.edu/2018/05/26/an-introduction-to-smart-contracts-and-their-potential-an
d-inherent-limitations/.

Marr, Bernard. “A Very Brief History of Blockchain Technology Everyone Should Read.” Forbes,
Forbes Magazine, 20 Mar. 2018,
www.forbes.com/sites/bernardmarr/2018/02/16/a-very-brief-history-of-blockchain-technology
-everyone-should-read/?sh=1f1fe6b97bc4.

Marshall, Rob, director. Mary Poppins Returns. Walt Disney Pictures, 2018, www.disneyplus.com.

McCall, Matt. “A $200 Million Pizza! Here's How Bitcoin Made That Possible ...” Nasdaq,
www.nasdaq.com/articles/a-%24200-million-pizza-heres-how-bitcoin-made-that-possible-...-
2020-12-02.

McCubbin, Gregory. “How to Build Ethereum Dapp with REACT.JS · Complete Step-by-Step
Guide.” Dapp University, 2021,
www.dappuniversity.com/articles/ethereum-dapp-react-tutorial.

McCubbin, Gregory. “The Ultimate Ethereum Dapp TUTORIAL (How to Build a Full Stack
Decentralized Application Step-By-Step).” Dapp University, 3 Aug. 2021,
www.dappuniversity.com/articles/the-ultimate-ethereum-dapp-tutorial.

McCulloch, Samuel. RealT, 2021, blog.realt.co/.

66

Meier, Julia, and Benedikt Schuppli. "The DAO Hack and the Living Law of Blockchain."
Digitalisierung–Gesellschaft–Recht: Analysen und Perspektiven von Assistierenden des
Rechtswissenschaftlichen Instituts der Universität Zürich (2019): 27-43.

Mi, Remco. “Ethereum Accounts.” Ethereum.org, 5 Sept. 2021,
ethereum.org/en/developers/docs/accounts/.

Nakamoto, Satoshi. "Bitcoin: A peer-to-peer electronic cash system." Decentralized Business Review
(2008): 21260.

Narayanan, Arvind. “Bitcoin and Cryptocurrency Technologies : A Comprehensive Introduction.”
Princeton University, The Trustees of Princeton University,
press.princeton.edu/books/hardcover/9780691171692/bitcoin-and-cryptocurrency-technologie
s.

“Oracles.” Ethereum.org, 27 Aug. 2021, ethereum.org/en/developers/docs/oracles/.

Peters, Gareth, Efstathios Panayi, and Ariane Chapelle. "Trends in cryptocurrencies and blockchain
technologies: A monetary theory and regulation perspective." Journal of Financial
Perspectives 3.3 (2015).

Quarshie, Perrin. “Building a Better Alternative .” RealBlocks, 2021, www.realblocks.com/home.

Radomski, Witek, and Andrew Cooke. “Eip-1155: Multi Token Standard.” Ethereum Improvement
Proposals, 17 June 2018, eips.ethereum.org/EIPS/eip-1155.

“React – a JavaScript Library for Building User Interfaces.” – A JavaScript Library for Building User
Interfaces, reactjs.org/.

“ReactJS Tutorial Part I: LEARN Reactjs for Free.” Codecademy, Codecademy,
www.codecademy.com/learn/react-101.

“Remix Ethereum IDE.” Remix, remix.ethereum.org/.

Richardson, Brenda. “Housing Market Gains More Value in 2020 than in Any Year since 2005.”
Forbes, Forbes Magazine, 29 June 2021,
www.forbes.com/sites/brendarichardson/2021/01/26/housing-market-gains-more-value-in-202
0-than-in-any-year-since-2005/?sh=202fdb214fe0.

Smith, Julie, et al. “Tokenized Securities & Commercial Real Estate.” MIT Management Sloan
School, Digital Currency Initiative - MIT Medial Lab, 14 Mar. 2019,
mitcre.mit.edu/wp-content/uploads/2019/11/Tokenized-Security-Commercial-Real-Estate2.pd
f.

“Solidity by Example.” Solidity by Example | 0.8.3, solidity-by-example.org/.

“Solidity Programming Language.” Solidity Programming Language, soliditylang.org/.

Stack Overflow. “Calling Solidity Functions to Reactjs.” Stack Overflow, 2019,
stackoverflow.com/questions/55195303/calling-solidity-functions-to-reactjs.

Suum Cuique Labs GmbH. Hashmasks, 2021, www.thehashmasks.com/.

67

Szabo, Nick. “Bit Gold.” Bit Gold , 29 Dec. 2005, nakamotoinstitute.org/bit-gold/.

Taylor, Michael Bedford. "The evolution of bitcoin hardware." Computer 50.9 (2017): 58-66.

Tricchinelli, Rob. “Bitcoin Deemed 'Money' under D.c. Financial Services Law .” Bloomberg Law,
2020,
news.bloomberglaw.com/banking-law/bitcoin-deemed-money-under-d-c-financial-services-la
w.

“Uniswap.” Uniswap Blog RSS, uniswap.org/blog/uni/.

“Virtual Currency.” Department of Financial Services,
www.dfs.ny.gov/apps_and_licensing/virtual_currency_businesses/bitlicense_faqs.

Wackerow, Paul. “Gas and Fees.” Ethereum.org, ethereum.org/en/developers/docs/gas/.

Wang, Wenbo, et al. "A survey on consensus mechanisms and mining strategy management in
blockchain networks." IEEE Access 7 (2019): 22328-22370.

“What Is the Average Cost of a Real Estate Attorney.” Law Guideline, 5 Nov. 2019,
lawguideline.org/what-is-the-average-cost-of-a-real-estate-attorney/.

Wosnack, Nathan. “One Block at A Time®.” Ubitquity, 2021, www.ubitquity.io/.

Yilmaz, Ensar. “Erc-20 Token Standard.” Ethereum.org, 2021,
ethereum.org/en/developers/docs/standards/tokens/erc-20/.

Zheng, Zibin, et al. "An overview of blockchain technology: Architecture, consensus, and future
trends." 2017 IEEE international congress on big data (BigData congress). IEEE, 2017.

Zheng, Zibin, et al. "Blockchain challenges and opportunities: A survey." International Journal of Web
and Grid Services 14.4 (2018): 352-375. 2018.

Zheng, Zibin, et al. “An Overview on Smart Contracts: Challenges, Advances and Platforms.” Future
Generation Computer Systems, North-Holland, 17 Dec. 2019,
www.sciencedirect.com/science/article/abs/pii/S0167739X19316280?casa_token=JnAxV1Mv
wYUAAAAA%3ArpXO8LEeb7XPwvbhsX8aKQUTAsn7jRT3VTq3Ms-twu0sQUPhbEWW
fo7A1BfIQOls5JFaJi8.

68

