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Estimating the chances of experiencing life threatening health outcomes over a specific time 

interval is an important tool in medical field to take adequate action much before the patient 

would encounter it and avoid the risk of happening. Moreover, if the tool predicts it based on 

few patients’ medical history record, it becomes a highly significant. Since these health records 

are derived from administrative and clinical database, some records will not have information 

for entire time frame. Few patients might have disenrolled from the system and hence loss to 

follow up. This scenario is very common in any health system, still the requirement of such 

tool is very essential. In statistical terms, the event time is considered right censored when the 

observations do not have complete follow up and if they experienced the event or not is 

unknown to us. This dissertation is addressing the problem of such censored survival data of 

heart transplant by exploring the weight assignment technique for censored observation. We 

used Inverse Probability Censoring Weight (IPCW) approach of weight allocation and 

incorporated it with Bayesian network model to show the causal dependency between the 

features and find out the probability of feature to be present or not based on event status.  

Also, we applied learning algorithms for structure and parameter learning of Bayesian 

Network. We have further evaluated the model based on different evaluation metrics and 

reported the result. We have developed the model on heart transplant data where Age, prior 

Surgery and transplant indicator had come out as key factor to affect the risk outcome. Further, 

we can use this model as general purpose and also can compare it with other machine learning 

classifiers to predict the outcome. 
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Chapter 1 

Introduction       
 

1.1 Introduction  

The probability of risk predictions of a patient with different health condition and unfavourable 

events like death are very crucial in healthcare practice. The information on risk probability and 

proper classification will help medical field practitioners to device specific strategies, better 

allocation of resources to mitigate the high-risk chances of adverse events and also could provide 

a plan to patients to stick with such strategy. Survival analysis is one such mechanism with various 

analysis procedures where the dependent variable of “interest “is the time till an event occurs. In 

the field of medical and healthcare, these events are death, reoccurrence of disease, sign of new 

disease or reaction of a treatment. We have multiple machine learning techniques and statistical 

methods to infer survival models from the data which can predict the forward graph of the patient 

based on the known variables. Even though machine learning models can handle nonlinear and 

complex data structures still, the conventional ML models are not suitable for survival analysis 

because of inability to predict time to event occurrences and most of the time observation time gets 

ignored [1]. 

Bayesian Networks [2] are excellent model to handle such scenarios and it is best for knowledge 

representation. They can express causal dependencies in covariates and represent them 

probabilistically. Also, they can learn the parameters and structure from the data which corresponds 

to causality and human reasoning. In this thesis, we will explore how to use Bayesian networks for 

censored survival data with conditional probability within covariates. Furthermore, we will also 

check the classification along with causal dependency.  

 

 

1.2 Research Question 

This research lies on two foundations: Survival Analysis of a clinical dataset where the length of 

time is highly variable among each subject. Due to that, most of the observations doesn’t have 

sufficient information in terms of follow up time to predict if they have experienced the event of 

interest (death, in this case) within a given time period. Such data also termed as right censored. 

The data which we are dealing with is incomplete follow up and censoring. 

Secondly, to represent the information in a proper probabilistic graphical network to analyse the 

risk predictions and causal dependency of the event with multiple covariates. 

This thesis argues that Bayesian network integrated with “Inverse probability censoring weights” 

could handle the censored data and provide the realistic risk predictions for the patients and answer 

the relationship between the variables. 
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1.3 Motivation 

The principal challenge which we need to discover here is the pattern in the data for the length or 

the duration of time when the event will occur. For that, we have survival analysis which looks for 

the data distribution that measures the duration of time till the occurrence of an event. 

Consequently, the basic objective of these longitudinal studies is to find out the probability of a 

certain event to happen in a specific future time. Still, it could not answer “how to predict If a 

patient/subject will face a certain event by the end of observation period/study time having 

information of occurrence of event at the early stage of the data.  

This problem manifests two major challenges:  

1) Incomplete information about the occurrence of events or also called as censored data.  

2) Information with few subjects have experienced the events at initial period of study. 

Let us discuss below real-world applications which lead us to this thesis [3]: 

a. In the healthcare domain, when we would like to study the effect of a new treatment option on a 

certain group of patients in order to understand the efficacy of the treatment. The patients have 

been monitored for particular period of time and in this case, event refers to patients needed to be 

hospitalized. So, the effectiveness of treatment must be estimated as early as possible. 

b. Prediction of newly launched product’s reliability is very common scenario in industry where 

event corresponds to time taken for a device to fail. If such models can be learned using information 

from a very few device failures, the early alerts of failure can be given about the failures in near 

future.  

c. In credit score modelling, it is important to estimate whether a customer will default and when 

this is going to happen. If a model can be developed based on few default cases only the better 

precaution measures can be taken against those who are more likely to default in the future. 

All the above scenarios need such models which can predict beyond time and with very few 

trainings set. Therefore, this dissertation aims to build a method which uses very limited and 

incomplete information while learning but predict the events to occur beyond time accurately. 

For a better understanding of the complexities and concerns related to this problem, let us consider 

an example of a time dependent study on below 6 subjects and the information for event occurrence 

until time tc is recorded. Subjects 2 and 5 had only experienced the event till tc. Our thesis aim to 

estimate the event occurrence by time tf with the given information. 
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[3] Fig 1.1: Sample to show the event forecasting at time tf having information till tc  

The above example quite emphasises to develop algorithms that can predicts the occurrence of the 

events with the data at time tc where only few events had occurred. This is the case of longitudinal 

studies because the only way to have complete and trustworthy data is to wait for that period till 

we get the information about all the event’s occurrences. 

There are various ML (Machine Learning) techniques like classification, semi-supervised learning, 

transfer learning, imbalance learning etc are not sufficient and fit enough to handle such scenarios 

because the training dataset is incomplete and is only available till tc. Moreover, there are some 

advanced statistical methods like survival analysis which can be able to find the probability of the 

survival, but they couldn’t predict the event for a time later that study time / observation time. It is 

also because survival model is only valid for the given observation time and not beyond that. It is 

very important to understand here that this scenario is not “time series forecasting “because in this 

problem we need to find the probability of event occurrence for each observation /object for future 

time beyond the observation time whereas in time series analysis models it predicts the next time 

step value. Additionally, these survival data are censored and has incomplete information of events 

even in the observation time which makes it further complex and difficult for any conventional 

machine learning algorithms to model such data. Moreover, these censored data cannot be ignored 

as it will create a substandard and insignificant model and if censoring time would be considered 

as event time it again leads to compromised model with actual performance. 

 

1.4 Thesis Contribution & Overview  

An extended technique to analyse longitudinal survival study and a general-purpose method for 

mining right-censored time-to-event data. Specifically, introducing a pre-processing step to modify 

the data by assigning weights to each observation using inverse probability of censoring weights 

(IPCW). This weighted data would be analysed considering the weightage of each subject and 

modelled with any machine learning algorithms which can integrate these observation weights. In 

the process, zero weights are assigned to the subjects where event status is unknown and the 

subjects with a known event status are given weights to shadow those subjects who were censored 

early and would have had the same event time. There are some subjects having larger event times 

are given higher weights because there is high probability for them to be censored prior to facing 
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the event. This paper is discussing the mathematical proofs and relevant functions to support the 

above concept in later section. 

There are some research on the clinical censored data analysis which used IPCW in different 

machine learning methods. We are using this approach and integrating it to learn Bayesian 

Network with various methods and analysing the conditional probability between the different 

factors affecting the event. Bandyopadhyay et al. [4] , IvanŠtajduhara et al [5] discusses the similar 

approaches and generalizes the IPCW technique to handle censored survival data.  

IPCW is one of the efficient methods to calculate weights and assign for censoring and later 

integrated with various machine learning techniques like in classifiers, class probability estimation, 

sampling, or generation of similar kind of censored data. 

PROPOSED BAYESIAN APPROACH 

As discussed in research question, predicting events in censored survival data is a complex to 

analyse. It can be categorised as the conventional machine learning problem like classification and 

standard regression problems or a time series forecasting problem as labels for the data is provided 

in these cases. Also, statistical methods like survival analysis are there but it has its own limitation 

with ability to analyse the problem within observation time and could not predict beyond the 

observation time. Thus, for these longitudinal studies training data must be obtained only by 

waiting for the occurrence of sufficient number of events. 

Therefore, in this paper, we are discussing a framework which predicts the event to occur in future 

for the subject even with partial information on the event for few subjects. We will discuss all the 

methods and its results in details in the later section. Before that, the similar work in the area of 

censored survival data and its analysis, and mechanism to handle it will be presented in next 

section. 

The rest of the paper is organised as follows. In Section 2, we describe the data , its characteristics 

and find the key insights of it. Next section 3 discusses in detail about survival analysis and the 

key parameters of it. Also introduces survival analysis of censored data. Section 4 and 5 explains 

about modelling aspects and the designing and learning of Bayesian Network. In section 6, we will 

give the details of implementation and methodology. how IPCW has been implemented and 

integrated with BN. Also, we will evaluate our model using various performance metrics and 

discuss about the outcome of conditional probability table. Section 7 concludes our thesis and 

future scope of it. 

 

 

1.5 RELATED LITERATURE 

There have been wide range of methods and techniques put forward to handle right censored, time-

to-event data [7]. Such data are also called censored data as the dependent variable is subject to 

censoring like failure, death, admission to hospital, emergence of disease etc. [8]. There are prior 

work done on similar approach where it has been proposed how to tackle such event status which 

are right censored with no information about the event status. Few have proposed some steps to 

impute the missing data or exclude from the study. In some research, they assert to adapt some 

specific machine learning techniques to censored data[adaptive]. OLS (Ordinary Least Squares) 

method has always been used to solve regression problem with the fact of minimizing sum of 

https://www.sciencedirect.com/science/article/pii/S0933365709001328#!
https://www.sciencedirect.com/science/article/pii/S0933365709001328#sec2
https://www.sciencedirect.com/science/article/pii/S0933365709001328#sec13
https://www.sciencedirect.com/science/article/pii/S0933365709001328#sec25
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square error, but it does not work in case of censored data because when data records are censored 

it is almost impossible to find the error between actual response and predicted response which is 

coming from regression model [9]. Even so, the likelihood method which estimates the probability 

can be useful in solving the censored regression problem when we don’t have information about 

the censored observation [10]. 

There are various statistical methods are also there which can handle survival data but doesn’t 

work well when required to predict on the future time points. Since, there must be few subjects 

who will survive by the end of the observation period or study and do not experience the event or 

failure.It means some subjects have certainly survived beyond the time t, observation time in the 

study. Therefore, we can say in that study of survival, two-time classifications are involved. One, 

the subject experiences the event /failure during the observation time and has the death or failure 

within time t. Second, the subject survives till the time point t before the end of the study and then 

lost to further follow up or left the study group or the observation period/study is completed before 

the subject fails. So, this complex and incomplete observation of the event or failure time t is 

considered as “censored observation”. 

To handle such censored scenarios and overcome the problem of such data, various techniques 

have been proposed which mainly focuses on Maximum Likelihood Estimation (MLE) [11, 12]. 

Mostly, different machine learning methods are suggested to adapt survival data [13]. However, 

as described above such longitudinal study is not possible to be modelled only by conventional 

regression or classification approaches as it has mixture of information about the event status for 

each observation. Also, there is no specific pattern of missing information. For a particular period 

of study time few subjects have the event status and rest have no information. It might look like 

that the censored observations in survival data are similar as unlabelled data in classification of 

unsupervised learning or unknown data point in regression assuming event status is not known for 

some subjects. However, it is not correct analogy as time frame and observation period is not 

available in these cases. For accurate predictions of such censored data, it is required to have a 

proper machine learning technique which can handles this complexity properly. Moreover, in 

survival analysis for censored data the information is present up to a certain time point before 

censoring happens. To achieve better results from the model this partial information should also 

be passed to the model. Therefore, the conventional semi-supervised ML techniques [14, 15] are 

not applicable in this scenario.  

[16] discussed the complexity of such analysis in their work. [17] These analyses are complex in 

nature because of uncooperative behaviour of the subjects under study who leaves the study group 

and refuses to remain in the study either till the end of the observation period or till when they 

experience the event. Also, they might have experienced the event/death, but we do not know about 

it as we have lost the connection with them in midway of the study. Important point is we do not 

want to ignore such observations because they have some or limited information about the survival 

too which is an important factor. Although , [18] for these subjects we have partial information, 

we know that the if event did not occur , it will occur sometime after the date of last follow-up. 

Even though, we assume they definitely survived beyond a certain time point but we cannot say 

exactly the date of the event. There is one more scenario which makes the study difficult is that we 

have few subjects that enters into the study after a significant time has elapsed. Hence, we will 

have a shorter observation period for such subjects, and they may or may not experience the 

death/event in that period of stipulated time. Still, we cannot exclude these subjects from the study 

because in real world scenario chances of such cases will be large and avoiding these observations 

will make our sample size too small to come to any conclusion. One such method to handle such 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059453/#ref2


6 
 

impartial information is The Kaplan-Meier estimate. It provides a computation method for survival 

over time with the challenges in the censored data. 

The Kaplan-Meier provides us a survival curve that defines the probability of surviving in a 

specific period of observation while considering time as small intervals of period [17]. It uses three 

assumptions while doing calculations. First as, at any time point, subjects who are censored would 

have the same survival likelihood compared to those who are continuing in the observation period. 

Second, the probability of surviving is same for patients joined early or late in the study. Third, 

events will happen at the specific time [19]. 

Inverse Probability Censoring Weights 

The techniques in Survival analysis have been grown and extended to incorporate different kind 

of data which can be analysed. Even though, various methods have been developed to analyse data 

in case of informative censoring, still for censoring having causal dependency or   dependent 

censoring, the Inverse Probability of Censoring Weighted (IPCW ) estimator has only been 

developed.(Robins and Finkelstein 2000[65] ) found out that Kaplan – Meier estimator though 

effective in censored survival data analysis but in case where covariates are associated with both 

lifetime and censoring mechanism gives biased results. They have explored the applicability of 

inverse probability censoring weights and explained how it is effective in removing the bias. 

[Rotnitzky and Robins2004][66] used AIPW, Inverse probability weighted augmented in survival 

analysis and handled the analytical challenge created by such high dimensional data in this domain. 

They generalized and made IPCW more efficient. Bang and Tsiatis 2000[68] have introduced a 

class of weighted estimators for censored data and found that this weight estimators are consistent 

and asymptotically normal with nominal variances. They studied the efficiency of the method for 

estimation of medical cost which is a challenge where follow up data is mostly incomplete. Their 

results shows that even estimation of mean medical cost is plausible with weight estimator 

technique. 

There are some prior works where they have used inverse probability of censoring weighting 

(IPCW) in machine learning techniques. Authors like [4] have used IPCW with Bayesian network 

modelling to handle right censored survival data whereas [6] used it as more general-purpose 

technique and proposed to use it with multiple machine learning methods. This technique checks 

the dependent censoring in censored data especially in right censored data by assigning additional 

weight to subjects for whom we have event information and are not censored. Using IPCW weights 

the survival function can be estimated even in the absence of censoring. IPCW can be applied in 

survey analysis, when a survey sample is representing the entire population and only few 

individuals with rare characteristics will be included. It creates a problem when only few rare cases 

are included in the study. It can be resolved by sampling probability for these individuals which 

may include few more in the sample. However, the survey sample is no longer representative of 

the entire population. Therefore, in such cases to estimate the parameters for entire population, the 

sample subjects need to be weighted based on their inverse sampling probability.  

The author from [5] have suggested a method for handling censored survival data by dividing it 

into three groups, primarily proposed by Zupan et.al[45]. One, as those instances for which event 

occurred at any time labelled positive, other where censoring happens after a certain critical point 

T are considered negative, or event free and third, observations censored before point T are split 

into both possible outcomes and hence get doubled. Then an estimated probability outcome will 

be assigned using Kaplan-Meier method. Each observation which are doubled gets a new weight 

based on its observation time. Sum of weights for both positive and negative part of the instance 
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will be 1. This method includes all the instances even if they were censored much before the 

observation time. After that, data pre-processing and weight assignment, the modified set of 

observation will be used to for learning Bayesian network structure. 

There are few authors other tha Zupan[45] and Bandyopadhyay et al. [4] , who applied the 

Bayesian network for censored survival data . One, Sierra and Larranaga [25] studied  the 

implementation of genetic algorithms to learning BNs from data. Marshall et al. [47], tried 

Dynamic Bayesian Network to handle time variable in censored survival data. Along with it , they 

used latent Markov Model and by combining these two the have handled both causal representation 

and survival events. Also, [1] properly describes the impact of censoring on learning parameters 

of Bayesian network and suggested the potential usefulness of the learnt Bayesian network for 

predicting the probability of the event. 

Critiques on Bayesian network Application 

Also , there are some section of researchers who considers neural networks to handle censored 

survival data with an assumption that the possible censoring and event times are few in number 

[21, 22]. Additionally, many of them several have pondered to adapt different machine learning 

technique like SVM(support vector machines) for the outcomes by changing the loss function to 

require  for censoring [23, 24]. These methods can work but reduces the generalizability of the 

approach to handle right censored survival data results. Many authors have adapted other technique 

using tree-based models like Decision Tree and Random Forrest to censored outcomes by 

modifying the splitting criterion to accommodate the changes. They choose the method of splitting 

which maximizes the log-rank statistics which compares the difference in the survival curves 

between two different groups in lieu of splitting the data to minimize the node impurity. However, 

the application of Bayesian Network is fundamentally different from the recursive partitioning 

approach of decision therefore, using splitting criteria to handle censoring does not apply to the 

other approaches. [Kraisangka, Jidapa, and Marek J Druzdzel [48] discusses on alternative 

approach for Bayesian Network for survival analysis and suggests a different mechanism 

altogether to handle censored survival data. This paper argues on Bayesian Network application 

alone is not sufficient and asserts building BN based purely on expert knowledge which can be 

time consuming and costly. It suggests Cox Proportional hazards (CPH) model is most used 

method in survival analysis and it explores the dependency between covariates and hazard in the 

same way as multiple linear regression. Also, CPH provides a parameter, hazard ratio to measure 

the impact of risk factor. It proposes Bayesian Network interpretation of CPH , (BN-Cox) to handle 

censored survival data.  

On the other hand, there are various other ad hoc techniques for handling censored observations 

where status of events is unknown. It includes 1) discarding those observations [25, 26], 2) treating 

them as non-events [27, 28], or 3) repeating those observations twice in the dataset, one as 

experiencing the event and one event-free. In all such cases of subject’s, each observation is 

allocated with a newly generated weights depending on the marginal probability of facing the event 

between the event time and censor time [5]. The above assumptions and simple techniques increase 

the chances of bias in the estimation of the risk. On discarding observations with unknown events 

or considering them as non-events will definitely overestimate or underestimate the risk [27, 28]. 

Though the third approach is more sophisticated, still these weights weaken the relationship 

between the features and the target and hence resulted in poor calibration of risk estimates. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893987/#R20
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Referring the discussion above, there have been multiple proposal and critiques on application of 

Bayesian network for censored data. Since, our thesis is dealing with censored data in biomedicine 

where Bayesian Network has been used extensively and efficiently. [Lucas et al. 2004][13].  

(Lucas et al. 2004)[13]. Zupan et al. (1999)[45] and Stajduhar and Dalbelo-Basic (2010)[5] have 

also worked on clinical data and proposed that the weight assignment technique where censored 

observations are repeated twice and weight allocation is based on marginal probability of 

experiencing an even between observation time and censoring time. This technique is actually 

intuitive but proven biased and inconsistent because the weight assignment depends on the 

marginal probability for each repeated observation and does not take covariates into the account 

[4].  In 2012 , [Stajduhar and Dalbelo-Basic 2012 ][49] have used the likelihood approach to impute 

event time , but again there is chances of inconsistencies and technique may perform poor if the 

parametric distribution of even time is incorrectly assumed. Other proposal of choosing other 

machine learning techniques like SVM or multiple adaptive regression splines (Therneau et al. 

1990; Kattan et al. 1998;Kattan 2003) [50][51][52]are required to mine the data permit a 

continuous outcome and not very compliant with the approach considered here.[4] have applied 

the IPCW with Bayesian network and explained the model averaging strategy to control the 

complexity of the model and risk predictions outcome for small groups of patients and found the 

result as an improved classification model.  

A Bayesian Network demonstrates the underlying probability distribution in the domain. It 

explains this distribution with its two attributes, a directed acyclic graph (DAG) and a set of 

conditional probability tables (CPTs). A BN has a qualitative part, Network structure (DAG) 

because it shows the relationship between the covariate with directed arcs in a way of causal 

dependency or cause-and-effect-like manner and provides the indication about which covariates 

are dependent to each other [2]. On the other hand, Conditional Probability Tables (CPTs) depicts 

the quantitative part of Bayesian Network as it represents with what probabilities these covariates 

are dependent to each other which are connected. This structure and probability represent as a 

knowledge graph and causality can be interpreted using the directions of the arc. The inference of 

the BN is probabilistic in nature, and it gives the output as a class probability which is useful for 

classifications. Because each node in the network is independent of its non-descendants, it helps 

in fast computation. From these discussions and reason, it can be considered that Bayesian 

Networks are best mechanism to showcase information graphs and for the requirement in clinical 

trials, it is an excellent instrument for knowledge representation in medicine. They represent causal 

influences and dependencies in covariate and also demonstrates these interactions in terms of 

numerical probability. These representations correlates to human reasoning with respect to causal 

dependency and prediction probability[2]. Above it, they can be learnt from data. That is the reason 

for BNs usefulness in the field of biomedicine and health care [20] for diagnosis, treatment, 

prognosis, and discovery of functional interactions. Our thesis deals with heart transplant data 

where BN is considered as most useful tool [29]. There are many methods where BNs learn from 

the data have been emerged where it efficiently handles the learning of parameter and structure 

from the complete data [30], [31], [32] and censored data (where data has missing instances) [33]. 

While learning parameter and the structure of the network, we can get new information about the 

causal dependence in that domain [2]. The structure, which is obtained from easily computed 

quantities, can then be further used to predict those parameters which are difficult to compute or 

measure. 

Because of so many features which BN provides, it has become one of the best models in the 

predictive modelling literature and have been used predominantly for classification and 

successfully applied in other domains. As discussed in support, The authors Lucas et al. [20] and 

https://www.sciencedirect.com/science/article/pii/S0933365709001328#bib10
https://www.sciencedirect.com/science/article/pii/S0933365709001328#bib14
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Bandyopadhyay et al. [4] applied Bayesian network approach to model censored data where they 

allocated weight to censored instances in order to learn Bayesian networks from survival data using 

weight censoring technique. In this thesis, we will take this approach and try to handle the problem 

of censoring using Kaplan-Meier method [20] to estimate the probability of event and probability 

of censoring for each censored subject. Along with it, We will try to build Bayesian networks 

which accounts for right-censored event indicators using inverse probability of censoring weights 

(IPCW) [65][66] and the design we will follow is as suggested in [4]. 

 

Bayesian Network with EM algorithm  

Since we are going to use BN with IPCW technique, an important aspect of BN model to work 

efficiently is its learning parameters. In Bayesian Network field literature, many techniques have 

been proposed to learn the parameters especially when data are missing. Two important methods 

for learning algorithms are Gibb’s sampling [43] and Expectation Maximisation algorithm [41]. 

Gibbs sampling as per [55]is the basic method of simulation and can be used in any directed or 

undirected graphical model or even can be applied for both continuous and discreet variables.[44]. 

Though it’s a strong intuitive method which completes the samples from the available information 

however it suffers from the convergence problems. Also, it is not efficient when data are missing 

completely random. The EM algorithm which can be considered as a deterministic type of Gibbs 

sampling which is used to find Maximum Likelihood estimates for model parameters [44]. 

Although, when there is large number of missing values or presence of multiple hidden variables, 

EM algorithm gets trapped in local maximum. Other than that, EM algorithms experiences problem 

if the initial starting points are quite away from the optimal solution and learned parameters are 

unpredictable [42].  
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Chapter 2 

Data & Data Analysis 
 

2.1 Data  

The dataset which we selected for our thesis is “Stanford heart transplant study, published by Clark 

et al. in the Annals of Internal Medicine in 1971[53]”. It has information related to the survival of 

the patients who were enrolled into the transplant program. The Stanford University Heart 

Transplant Study was conducted to find the results if a heart transplant program has increased the 

lifespan of the patients. Each patient entering the program was considered ill and would be most 

likely to get benefitted from the heart transplant. 

A data consists of 103 observations with 8 variables. A snapshot of the data with 10 observations. 

The description of each variable are mentioned below. 

 

 
 
   Table 2.1 : 10 Records of Dataset used in thesis  
 
The data is available in the “survival” package in R with data set named “jasa” 

Survival of patients on the waiting list for the Stanford heart transplant program. 

 

Id  Patient id 

birth. dt: birth date 

accept. dt: acceptance into program 

tx. date: transplant date 

fu. date: end of follow up 

fustat:  dead or alive 

surgery: prior bypass surgery 

age:  age (in years) 

futime:  followup time 

wait. time: time before transplant 

transplant: transplant indicator 

mismatch: mismatch score 

hla.a2:  particular type of mismatch 

id birth.dt accept.dt tx.date fu.date fustat surgery age futime wait.time transplant mismatch hla.a2 mscore reject

1 10-01-1937 15-11-1967 NA 03-01-1968 1 0 30.84462697 49 NA 0 NA NA NA NA

2 02-03-1916 02-01-1968 NA 07-01-1968 1 0 51.83572895 5 NA 0 NA NA NA NA

3 19-09-1913 06-01-1968 06-01-1968 21-01-1968 1 0 54.29705681 15 0 1 2 0 1.11 0

4 23-12-1927 28-03-1968 02-05-1968 05-05-1968 1 0 40.26283368 38 35 1 3 0 1.66 0

5 28-07-1947 10-05-1968 NA 27-05-1968 1 0 20.78576318 17 NA 0 NA NA NA NA

6 08-11-1913 13-06-1968 NA 15-06-1968 1 0 54.59548255 2 NA 0 NA NA NA NA

7 29-08-1917 12-07-1968 31-08-1968 17-05-1970 1 0 50.86926762 674 50 1 4 0 1.32 1

8 27-03-1923 01-08-1968 NA 09-09-1968 1 0 45.34976044 39 NA 0 NA NA NA NA

9 11-06-1921 09-08-1968 NA 01-11-1968 1 0 47.16221766 84 NA 0 NA NA NA NA

10 09-02-1926 11-08-1968 22-08-1968 07-10-1968 1 0 42.50239562 57 11 1 2 0 0.61 1
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mscore: another mismatch score 

reject:  rejection occurred 

 

 

2.2 Analysis of the Data 
 

2.2.1 Time dependent Covariates 

 
The variables or data sets used in survival analysis follows a special characteristic with some 

limitations and caveats. An important caveat is that the values of the covariates must be available 

at time t= 0, the time when the patient comes under the observation the study and remains there 

till the study completes. This problem comes with survival data because such data depends on time 

variable and evolve with time, and it would be improper to use the value a covariate to model 

survival information that is observed before the covariate’s value is known. For these “time 

dependent covariates” to analyse , a proper mechanism is required to obtain valid parameters. 

Below are some simple analysis of the data : 

 
Results from the Data Analysis – R script  
 
n= 103, number of events= 75  
 

  coef exp(coef) se(coef) z Pr(>|z|) 

transplant      -1.71711 0.17958 0.27853 -6.165 7.05e-10 *** 

age                 0.05889 1.06065 0.01505 3.913 9.12e-05 *** 

surgery          -0.41902 0.65769 0.37118 -1.129 0.259 

 
 

  Table 2.2 : Summary of coefficients for key features in dataset   

On initial analysis, we can infer that covariate “transplant” is one of the key variables and has value 

1 for those who received a heart transplant and 0 for those who did not. The coefficient value for 

transplant is 1.717 which gives the estimate of the transplant coefficient, and the p-value is very 

small. This result can be considered as an indicator which shows that transplants are extremely 

effective in increasing the lifespan of the recipients based on the coefficients value. The problem 

in understanding could be that the transplant is a time dependent covariate; patients who received 

a transplant had to live long enough to receive that transplant. Primarily, the above analysis only 

infers that the patients who live longer to receive a transplant have longer lives than patients who 

did not live as long. 

Another way to understand this by defining an indicator period/ time to split the patients into two 

groups. In this process, patients who receive the intervention prior to the indicator go into the one 

group and those who did not are placed in the comparison group. Key requirements of this 

approach are that  

(a) patients who survive up to the indicator time are only included in the study, and  

(b) all patients who are in the comparison group will keep in their original group irrespective to 

what happens in the future after the indicator time. 

Consider, we set the indicator at 35 days. We would select the number of patients who lived at 

least 35 days. It comes out as 76 out of 103 patients. Refer below R output. 
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 Again, out of these 76 patients, 32 had a transplant within 35 days, and 44 did not. Of these 44, 

30 subsequently had a heart transplant, but we will consider them in the “no transplant within 35 

days” group. 

 

 

Results from R : Data Analysis – R script ( Appendix C)  
 

 
 

 Table 2.3 : Summary result of survival fitted model using indicator time  

The coefficient for transplant35 comes out as 0:075 with the p-value as 0.79, which is not at all 

statistically significant. This indicator method has some new information which indicates that there 

is little or no difference in survival between those who got a transplant and those who did not. This 

above-mentioned method has mostly discarded more than 25% of the patients from the analysis. 

Also, there is no scientific approach towards keeping the indicator time as 35 days. We need to 

have a algorithm which models the “transplant” as time dependent variable. This can be achieved 

using Cox proportional hazards framework model. We can pick few patients with all features and 

model the data based on “transplant”. The output is : 

 

    Fig 2.1 : Sample records of patients showing days since start when censoring occurred  
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This is the sample of six patients from the Stanford heart transplant data set. In the plot, the 

timelines of patients who received a transplant from the days since start.  

2.2.2 Data Distributions 

The data distribution of Age covariate  

 
  Fig 2.2 Distribution of Variable  Age against follow-up time  
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   Fig 2.3 : Histogram plot of Age against no of patients 

 

Age is a continuous variable, and it shows from the above plot that the dataset contains patient who 

are mostly above 40 and peak is between 45-50. We will try to divide the age into groups of two 

suppose > 50 and >50 , It will clearly picturize the patients between these 2 groups. Patients below 

50 are more in numbers comparing to patients with age greater than 50. 
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Fig 2.4 : Distribution of transplant indicator over follow up time  

 

 

 
 

Fig 2.5 : Distribution of prior surgery indicator over follow up time 
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Correlation Plot 

 

 
 

 Fig 2.6 : Correlation plot between all covariates  

Correlation: This is an interesting plot to discuss. As visible from the above plots , fustat is highly 

correlated with that transplant , surgery and age. fustat is negative correlated with prior surgery, 

which means if there is any prior surgery of the patient chances of experiencing the event is more. 

Similarly with transplant its very intuitive. Percentage of patients alive are more when they received 

the transplant and can survive more. This information is very useful to create the structure of the 

Bayesian Network for the dependency. 

2.2.3 Censored Data Analysis 

As we have seen the “coxph” function able to model the time dependent variables. However, our 

thesis deals with censored data where some information is partially available. Let’s try to analyse 

it again by coxph but by first pre-process the data in the form of start-stop. The significance of this 

method will be based on partial likelihood theory [56]. Basically, this approach divides the time 

for patients as before transplant and after transplant. Consider any Patient #10 was a non-transplant 

patient from entry until day 11. Now , since  that patient received a transplant at that time, the future 

for that patient, had he or she not received a transplant, is not known. Hence, we censor that portion 

of the patient’s timeline at t = 11. Following the transplant, we start a new record for Patient #10. 

This second piece of the record is left-truncated at time t = 11, and a death is recorded at time t = 

57. It is left-truncated because that patient’s survival experience with the transplant starts at that 

point. For the first part of this patient’s experience, the “start” time is 0, and the “stop” time is 11, 

which is recorded as a censored observation. For the second piece of that patient’s experience, the 

start time is 11 and the stop time is 57. Thus, to put the data in start-stop format, the record of every 
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patient with no transplant is carried forward as is, whereas the record of each patient who received 

a transplant is split into pre-transplant and post-transplant records. 

This way we can analyse on small group of patients to check how coxph infers on censored data.  

id  tstart  tstop  death transpl 

2 0 5 1 0 

5 0 17 1 0 

10 0 11 0 0 

10 11 57 1 1 

12 0 7 1 0 

28 0 70 0 0 

28 70 71 1 1 

95 0 1 0 0 

95 1 15 1 1 

 Table 2.4 : time split to show start stop  

Coxph model on censored data created above 

 

 
 

Table 2.5 : Summary output after start stop splitting  

2.3 Challenges in the heart transplant dataset  

 
Missing Features: 

As observed the dataset we have is censored survival. Such data have common pattern of 

unmeasured attributes for certain observations/patients .  

One of the advantages of Bayesian networks is that we can still obtain predictions for subjects in 

the validation set with incomplete features; we can also use information on subjects in the 

training set to learn parameters in the Bayesian network without having to impute the missing 

covariate values[4]. 
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Chapter 3 

Survival Analysis 
 

3.1 Survival Analysis 

 
Survival analysis study the survival period and all the affecting variables.  It includes time when 

the object enters into a clinical trial till the death, from the time of development and the 

progression of the disease. In other words, from the time of beginning till its survival or death. In 

some cases, event can also be considered as time of entry till how the tumor responds in a clinical 

trial.  

The longitudinal survival studies involve the assessment of survival distributions, their 

comparison between different survival distributions and also analysis of the factors which may 

affect the survival times. 

 

3.2 Principle of Survival Analysis[54] 
 
Survival analysis algorithms is subjected to survival distribution, and most common ways to 

explain it are hazard and survival functions. The survival function defines the probability of 

surviving up to a point t. Mathematically it can be represented as , 

    S(t) = pr(T > t) , 0 < t < ∞ 

       

Survival function, S(t) takes the value 1, maximum at initial time point at t =0 and henceforth 

decreases or may remain constant over time but definitely never reduced to below 0. It is always 

right continuous.  

The survival function can also be defined in terms of hazard function which can be interpreted as 

rate of failure, or the force of mortality and it is the age specific failure rate or instantaneous death 

rate. Hazard function, h(t) gives the probability that a subject which has survived up to time t, the 

object fails in the next small interval of time, divided by the length of that interval. In 

mathematical equation form, it can be expressed as below: 

    ℎ(𝑡)  =  lim
ẟ→0

(
pr(t< T< t +  ẟ|  T >t )

ẟ
)            

 

    

and it tells the intensity function or failure rate. 

These two functions are the methods of specifying a survival distribution. Below Charts explains 

the relationship between these two functions. In first case, hazard is initially very high. These 

suggests the example of lifetime of objects which has high mortality in early stage of life. 
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[54]Fig 3.1 Hazard and Survival Functions Demonstration  

 
(a)displays the hazard and corresponding survival plot is shown by (b). In second case (c), where 

hazard is low initially and increases subsequently later in life, and corresponding survival in (d). 

 

 
 

 [54]Fig 3.2  Example of Hazard and Survival of US males & females in 2004: 
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3.3 Different Representations of Survival Distributions  
 
Other than survival and hazard functions, it can be expressed in terms of cumulative hazard 

functions: 

 

   𝐻(𝑡)  =  ∫ ℎ(𝑢)𝑑𝑢
𝑡

0
 

 

Mathematically, survival function can also be expressed in terms of hazard function as  

 

   𝑆(𝑡)  =  𝑒𝑥𝑝(− ∫ ℎ(𝑢)𝑑𝑢
𝑡

0
) 

      

This representation of the survival function shows that cumulative hazard function is key entity in 

survival analysis. Simply, we say: 

    

    = 𝑒𝑥𝑝(−𝐻(𝑡)) 

 

3.3.1 Parametric Survival Distributions 
There are other survival distributions also available to model the survival data, one of it is 

exponential distribution. It has a constant hazard, h(t) = ℷ. Using the above equations, we can derive 

the relationship with cumulative hazard function as : 

    

   𝐻(𝑡)  =  ∫ ℎ(𝑢)𝑑𝑢
𝑡

0
 = ∫ ℷ𝑑𝑢

𝑡

0
 = ℷt| 𝑡

0
 

We can clearly infer it as the cumulative hazard at time t is the area  ℷ.t of the shaded rectangle.  
 

 

 
 

[54]Fig 3.3 Hazard function distribution 

 

The exponential distribution is easy to work with, but the constant hazard assumption not practical 

for describing the lifetimes in real world. 

The Weibull distribution provides more flexibility as compared to exponential distribution in 

modelling survival data analysis. Its hazard function can be defined as  

 

    ℎ(𝑡)  = 𝛼ℷ(ℷ𝑡)𝛼 −1 = 𝛼ℷ𝛼𝑡𝛼−1  
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Similarly , Survival and cumulative hazard functions for the Weibull distribution are , respectively 

: 

𝐻(𝑡)  = (ℷ𝑡)𝛼  

And, 

𝑆(𝑡)  = 𝑒𝑥𝑝[−(ℷ𝑡)𝛼 ] 
 
 

3.3.2 Nonparametric Distribution of the Survival Function 
 
There are various types of parametric model available to handle survival data using hazard 

functions. However, when dealing with clinical trials or human survival scenarios it is very difficult 

to choose which parametric model will be used because they don’t provide enough flexibility or 

approximates accurately with actual shape of survival distribution. Hence, in such cases, we opt for 

non-parametric method. The most widely used of these is the product limit estimator, also known 

as the Kaplan-Meier estimator. 

 

3.4 Estimating the Survival Function : Calculation 
 
As discussed in above section, there are several different functions to project a survival curve. 

There are parametric methods like exponential, Weibull, Gompertz and log-normal distributions 

though differs in assumptions that are made about the distribution of survival times in the 

population. Among them, the most popular is the exponential distribution, which assumes that a 

participant's likelihood of suffering the event of interest is independent of how long that person has 

been event-free[3]. Other distributions make different assumptions about the probability of an 

individual developing an event i.e., it may increase, decrease or change over time. 

However , as we understood non parametric methods which doesn’t assume about how the 

probability that a person develops the event changes with time , are quite flexible and more useful 

while handling human clinical data. Using nonparametric methods, we estimate and plot the 

survival distribution or the survival curve. Mostly , the survival curves represented as step functions 

where X -axis is Time and survival probability on Y.[55] 
 

 

 
 

 [55]Fig 3.4 : Survival Probability with time period 
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Survival probability on Y axis doesn’t only shows the percentage of people who are surviving but 

sometime also represent the people who are free of another event / death / disease or can also shows 

who do not experienced a event. 

But the most complex part of survival analysis comes with censoring where we do not have 

observation of events for every subject. While performing our analysis, some may be still surviving. 

Example:  Let’s consider a small example to understand how the survival probability is going to be 

calculated. Suppose there is a small study designed to study the time to death. It involves 20 

participants who are 65 years of age or older and they are enrolled over a 5-year period and are 

followed for up to 24 years until they die, the study ends, or they drop out of the study (lost to 

follow-up.  

 

For simplicity, We have aggregated the data against the time intervals for easy computation. 

[estimation of survival ] 
 

Interval in 
Years 

Number 
Alive at 

Beginning 
of Interval 

Number of 
Deaths 
During 
Interval 

Number 
Censored 

0-4 20 2 1 

5 to 9 17 1 2 

10 to 14 14 1 4 

15 to 19 9 1 3 

20 to 24 5 1 4 

[55] Table 3.1 : Survival Probability estimation  

 

Below notations are used for computation: 

 

Nt = count of subjects who are event free and at potential risk during interval t  

Dt = count of subjects who experience the event during interval t 

Ct = count of subjects who are censored in interval t  

Nt* = the average count of subjects at risk during interval t 

Nt* = the average count of subjects at risk during interval t 

Nt* =Nt-Ct/2  , qt = proportion facing event during interval t, qt = Dt/Nt* 

pt = proportion who are surviving during interval t, pt = 1-qt 

St, cumulative survival probability and we can compute it as : 

First, the probability of surviving at t=0 is 1.in simple terms,  

the probability that a subject survives past interval 1 is S1 = p1 and past interval 2 means that 

they had to survive past interval 1 and through interval 2: S2 = P(survive past interval 2) = 

P(survive through interval 2)*P(survive past interval 1), or S2 = p2*S1. In general, St+1 = 

pt+1*St. 

 

Based on above formula, we will compute the estimation of surviving for each interval[55] 

Interval 0-4 : At time 0, there are 20 surviving or at risk. Two participants die in the interval and 1 

is censored. We apply the correction for the number of participants censored during that interval to 

produce Nt* =Nt-Ct/2 = 20-(1/2) = 19.5. Stepwise calculation is present in the below table. The 

probability that a participant survives past 4 years, or past the first interval (using the upper limit 

of the interval to define the time) is S4 = p4 = 0.897. 
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Similarly, for the interval, 5-9: The number of patients or subjects at risk is the number at risk in 

the previous interval (0-4 years) less those who die and are censored (i.e., Nt = Nt-1-Dt-1-Ct-1 = 

20-2-1 = 17). And same goes to other intervals. 
 

Interval 
in 

Years 

Number 
At Risk 
During 

Interval, 

Average 
Number 
At Risk 
During 

Interval, 
Nt* 

Number 
of 

Deaths 
During 

Interval, 
Dt 

Lost to 
Follow-

Up, 

Proportion 
Dying 

Among 
Those at 

Risk, 
Proportion 
Surviving 

Survival Probability 
St 

Nt Ct 
During 

Interval, 
Interval, pt 

    qt   

0-4 20 
20-(1/2) = 

19.5 
2 1 

2/19.5 = 
0.103 

1-0.103 = 
0.897 

1(0.897) = 0.897 

05 to 9 17 
17-(2/2) = 

16.0 
1 2 

1/16 = 
0.063 

1-0.063 = 
0.937 

(0.897) 
(0.937)=0.840 

[55]Table 3.2: Survival Probability estimation - calculation 

 

 

3.5 Handling Censored Survival Data  

The major difference between survival analysis and standard classification is censoring. If our 

event of interest like death is not observed for any particular observation, we say it censoring. In a 

scenario like ours of “Stanford heart transplant dataset”, it corresponds to the early withdrawal 

from the study group of a patient for any reason and we don’t have any information about it any 

further on the timeline. For example, censoring in a heart transplant study occurs for a patient 

who died in a car accident or moved to another country during the trial before the event could be 

observed [1]. 

Kleinbaum [56] gives three reasons for the occurrence of censoring: (1) a person does not 

experience the event before the end of the study; (2) a person is lost to follow-up during the 

study; (3) a person is withdrawn from the study because of death unrelated to the event observed. 

These kinds of censoring are often referred to as right censoring. 

This is the primary reason behind unable to use supervised ML methods to predict the events and 

are not used for fitting models in clinical trials. Hence, we cannot clearly assert if the final outcome 

for a patient about the occurrence of the event or if the subject’s observation was censored. In that 

case, if we need to model the final outcome is of interest, it is quite difficult to learn the models 

from censored data. From conventional statistical modelling point of view, it can be considered as 

noise in the dependent variable. If such censored observations are comparatively low in dataset, we 

can go ahead with standard classification models and data can be handled normally without 

affecting the model’s performance however, if it is high in numbers , it will definitely affects the 

performance and leads to completely inaccurate modelling . 

In this paper, we are treating all censored cases as event-free, irrespective of observation time. So, 

if the subject has left the study group early, or survived till the observation period would be 

considered Censored. Doing this enables us to assess the influence of censoring in the data on BN 

learning methods and how to learn correct BN structures and good classifiers. However, for the 

cases those censored early creates a problematic scenario as we have no clue for the event 

occurrence. Their probability of survival is close to the a priori probability of survival for the whole 

sample. This leads to bias of the model [Kattan et al. [51]].  Few have addressed this by learning 

models from different learning sets for several time intervals. 
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3.6 Survival Plots 

Overall Survival Analysis  
 

 

Fig 3.5 : Overall survival plot of the dataset 

 

The plot gives the survival probability across the time. As can be inferred from the plot, the 

survival probability decreases with time. It decreases from 100% to nearly 25% within time 

interval of 500 unit. The plot gives the Kaplan Meier Survival curve in which the survival 

probability is plotted across the time.  
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 Fig 3.6 : Plot shows the difference in the survival probability for transplant indicator.  

 

Above plot explains, how the survival probability of the patients is higher and having less 

steepness who have transplant indicator “Yes” . Also , it infers that probability of surviving 

increases when undergoning with heart transplant.  

Below plot also compares the probability of surviving if the subjects has underwent into the 

transplant program. It also plot the p-value of log rank test as well. The p-values suggests the hihl 

signigficant results if we consider p< 0.05 as statistically significant value.  

 

 

 
 

Fig 3.7 : comparative plot of the survival probability for transplant indicator with log rank test 
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Fig 3.8 : comparative plot of the survival probability for prior surgery with log rank test 

The above plot shows the survival probability based on the if the patient had the prior surgery. It is 

a clearly visible with the plot that patients who had any kind of prior surgery has low surviving 

probability thorough out the time. The decrease in survival probability is follows a very different 

path and this result is significant as well.  

 

 

Fig 3.9 : Comparative plot of the survival probability for different age group with log rank test 
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This is very crucial plot to understand, and it is very intuitive too. First of all, the long rank test p 

value is very low which means it is highly significant results. Now, the patient who belongs to the 

category of age group above 50 and enrolled in the study have higher chance of dying early 

compared to patients who belong to age group below 50. However, only the age factor is not the 

only perspective to see it but it is an import key feature having dependency with event status.   

 
 
 
 

 

 
 

Fig 3.10 : Kaplan Meier survival probability for age group >50 and <50 

This plot for the same Age group. But it shows superposing region where the probability of 

surviving is similar still there is clear distinction between the expected value of 2 trend. It can be 

observed that the decrease in survival probability is more prominent in age over 50.  

There are some better systematic methods of analysing the survival data in terms of hazard function. 

Cox hazard models gives us the framework to look in the covariates in terms of rate of failure also 

called Hazard Ratio. Below plot is a forest plot which shows Hazard ratio (HR) which is being 

derived from the model. As per hazard function definition, h(t) , HR > 1 indicates increased risk of 

death , specifically to patient condition. Similarly, HR <1 shows decreased risk. 
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Fig 3.11 : Hazard Ratio Plot for Key covariates 

 

 

 
 

Fig 3.12 : Survival Probability of Predictors with its significance  

 

Random Forrest plot: Below plot shows the plot for each observation which could be helpful in 

certain scenario .It plots 25 random patients from the dataset and the dark black line shows the 

global average for all the subjects .  
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Fig 3.13 : Individual Patient survival Curve  

 

Now , we will check how the random forest provides variable importance among the transplant , 

surgery and age .  
     

Variable Variable_importance 

transplant    0.1535 

surgery         0.0260 

age             0.0223 

 
Table 3.3 – Variable Importance by Random forrest 

 

Above results shows that transplant is most important factor for the study and survival probability 

also. It lies with our belief in considering the patients who underwent through transplant program 

will enhance the probability of survival or reduces the risk of death. 
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Chapter 4 

Modelling Technique 
 

4.1 Bayesian Network 

We need to represent the covariates, its causal dependencies, and risk prediction in a probabilistic 

graphical structure. One such model is Bayesian Network which displays the structure to construct 

our prediction model. A Bayesian network B [9] is formally defined as a pair B=(G,Pr), where G is 

a DAG G=(V(G),A(G)) with a set of vertices V(G)={V1,V2,…,VN}, representing stochastic 

covariates, and a set of arcs A(G)⊆V(G)×V(G), representing conditional and unconditional 

stochastic independencies among the covariates[1]. On the set of covariates V, a joint probability 

distribution Pr is defined that respects the (in)dependencies represented in the graph: 

     Pr(V1,…,VN)=∏ 𝑃𝑟(𝑉𝑖|𝜋(𝑉𝑖))𝑁
𝑖=1   

where π(Vi) stands for covariates corresponding to the parents of vertex Vi. 

The causal nature of Bayesian networks [57], where nodes represent states and arrows represent 

causal influence, is probably too simple to be assigned a single inventor. In statistics the redecessors 

of these kinds of models are usually stated to be path diagrams [58,59] and structural equation 

models [58]. 

Bayesian networks are broadly applicable and significant because of it is both intuitive with respect 

to the domain of interest and, also itemize the objects that which provides equations to predict. 

Mathematically, it explains the generalization, and planning. These important attributes of BN 

make them widely useful in clinical datasets. The way how BN automatically learns the structure 

from the data supplements its prospects for global usage. Academically, BN’s intuitive nature 

makes it a very contemporary and interesting scenarios in developing complex structures by 

principled ways of using data. One important thing to understand here is, because of its robustness 

to handle the causal dependency it is more as dependence networks instead of Bayesian Network 

as there is no Bayesian in BN. This is a part of probabilistic graph models and viewed as one 

member in a much larger family of graphical models [68, 37]. 

4.1.1 Bayesian Network as Knowledge Representation  

As probability theory has been used for knowledge graph because of its ability to answer the 

correlated evidence, still it has its own set of issues which makes it infeasible. It requires all possible 

permutations and combinations of events which may happen to model.  Bayesian networks comes 

up with a solution by developing the structures using joint distribution of the domain into smaller 

chunks of interconnected sections (Fig 4.1). It acknowledges much efficient inference and calculate 

conditional probabilities which measures the probabilities or chances of unknown events given the 

data observations. Its efficiency improves with compactness of the graph. The Bayesian network 

structure contains causal links which represents causal mechanism of the domain generating graph 

connecting these links, which makes the probabilities easy to access which is required to measure 

the dependencies between the covariates and target variables.  

 

https://www.sciencedirect.com/science/article/pii/S0933365709001328#bib9
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  [57] Fig 4.1 Bayesian Network as interconnected sections 

 

Bayesian networks causal inference not only explains the joint probability distribution but also 

demonstrates how the real world responds on changes occurred by additional external forces [62]. 

That’s the reason why Bayesian networks are useful for planning and explanation. 

4.1.2 Bayesian networks as joint probability distributions 

A Bayesian network is a representation of a joint probability distribution for multivariate random 

variable. In this paper, we are considering Xs as multivariate features with finite domains where 

each coordinate Xi of an n-dimensional random vector X = (X1, . . . , Xn) contains finite values.[57] 

Basically, a Bayesian network has 2 parts: 

Qualitative part, also can be seen as structure that can be represented as a DAG (Directed Acyclic 

Graph) and  

Quantitative part, also considered as parameters that further demonstrates the causal dependence 

and relationship between the covariates, defined by the structure. 

 The structure G for a multidimensional random variables X’s, has one node per X. It means a BN 

will have number of nodes equal to selected features or variables. In particular, “node Xi” 

corresponds to the variable Xi. The structure of a BN can be denoted as a vector G = (G1, . . . , Gn) 

where each Gi refers a set of those nodes from which there are arcs to node Xi . Therefore, The set 

Gi is called as the parents of node Xi and the set Gi ∪ {Xi} the family of Xi []. It is to be noted that 

all vector of nodes is not mandatorily to be valid, it can be empty set if Xi doesn’t have any parent. 

This fulfils the acyclicity. 
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 Considering the joint probability, a Bayesian network B = (G, θ) the probability of a vector X = 

(X1,.., Xn) can be defined as  

         

     Pr(X|B) = ∏ 𝑃𝑟(𝑋𝑖|𝐺𝑖 = 𝑋Gi , 𝛩i)𝑁
𝑖=1   

        = ∏ 𝛩ijiki𝑁
𝑖=1  

4.1.3 Bayesian Network as generative Models 

Bayesian network can also be used as generating device. When it is required to sampling the data 

from the parameters, BN can be used to sample a data vector and generates the values of its 

coordinates in topological order. To maintain the relevance of parent child structure, it is required 

to be generated in an order that confirms that the parents’ variables are sampled before child 

variable. Therefore, it is easy to generate the Xi by the probability distribution P(Xi | Gi = XGi , 

θi) that is readily available in a network. 

[57]Algorithm  

 
Pseudo Code to use BN as generative machine 
 
 

Gendata (B, topolorder): 
input:  Bayesian network B = (G, θ),  

topological ordering topolorder of indices {1 ... n} by G  
output: data vector X  
n ← length(G) 

  X ← vector of n numbers all -1  
for i in topolorder do 

   j ← XGi  
Xi ← random sample by (θij) 

end  
return X 

 
 
 

 

4.2 Bayesian Network Requirement for this Dissertation  

This dissertation is handling the clinical data with censored information and based on the property 

of Bayesian Network, it is very well suited to tackle the intricacies of risk prediction in Stanford 

heart transplant dataset. The BN have a clear upper hand over other ML classifiers because of its 

interpretability in the healthcare domain. We are adopting the BN framework which handles the 

missing information efficiently.  

As we are estimating the risk parameter for random ith observation considering the data with 

features represented by a p-dimensional vector X =(X1, . . . , X p) where Xi is the ith risk factor, 

To be noted , values for some of the factors could be missing for certain subjects. Consider, event 

E = 1 refers to an event occurred for a particular observation within study period τ years, and E = 

0 shows no such events in same time frame. Just for simplicity for now, considering the that at least 
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τ years of follow-up is available on each patient so that E is fully observed. We can refer Bayes 

theorem to estimate  

 

 

 

PE|X(e|x), the conditional probability that E = e given the features x of a particular patient.  

The conditional probability of an event as 

   

   𝑃𝐸|𝑋(𝑒 =  1|𝑥)   =  
𝑃𝑋|𝐸(𝑥|𝑒= 1)  𝑃𝐸(𝑒= 1)

∑ 𝑃𝑋|𝐸(𝑥|𝑒)  𝑃𝐸(𝑒)𝑒 𝜖{0,1}
 

so that the focus is shifted to estimation of the conditional density/probability PX|E (x|e) and the 

probability PE (e) for e = 0, 1.  

To simplify the joint modelling task, one can represent the joint distributions of X|E = e using a 

directed acyclic graph (DAG), i.e., a Bayesian network. The DAG encodes conditional 

independence relationships between variables, allowing the joint distribution to be decomposed 

into a product of individual terms conditioned on their parent variables 

  𝑃𝑋|𝐸(𝑥|𝑒)  =  ∏ 𝑃𝑋i|𝑃a(𝑋i), E{xi|Pa(xi), e}
𝑝
𝑖=1   

where Pa(Xi ) are the parents of Xi .  

Based on above derivation, we would look for individual conditional probabilities of covariates 

present in heart transplant dataset. Hence the above equation would turn into P(Age|E =0,1). 

Similarly, for multiple features and depends on parent-child relationship between these covariates. 

Bayesian network provides a graphical structure with conditional probability. Hence , BN 

modelling is very much suitable for the kind of problem we have.  
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Chapter 5 

Learning Bayesian Network (Parameters and Structure) 

 

Learning the structure of the Network is probably the most challenging task while dealing with 

Bayesian Network. Like any other machine learning model, we do not need just a suitable model 

but to have an optimized version of it. It requires training and subsequently learned parameters of 

the model. It is very much required to achieve generalization for any kind of similar problem. In 

the context of Bayesian Network, it has a structure and parameter to learn.   

Suppose we have a dataset D and we need to find a model B that is a best fit for D. Usually, we 

introduce a scoring function or a common metric which evaluates all the possible structures with 

respect to given dataset and then compare these scores against each network structure and finds the 

best one. So, this is a common approach to tackle this problem to evaluate networks according to 

the score based metrics [60]. We generally use belief scoring function and minimum description 

length-based scoring functions which is same as BIC. 

There is another way to learn network especially in the field of Bayesian Network is constraint-

based learning. Constraints are typically conditional independence statements that are determined 

by statistical tests on the data. Once the structure of Bayesian Network is completed depends on 

the dataset D , we can estimate conditional probability tables(CPTs) directly from the data using 

frequency distributions over conditional spaces.  

Now from the constructed network, we can make predictions about the target variable of “interest” 

by processing data evidence. There are various methods for learning Bayesian Network from the 

data, but most of them belongs to constraint-based or score-based as described above.  

In the later section of Learning BN from the data, we would try to explain one algorithm from each 

method, conditional independence algorithm for constraint-based methods and a hill-climbing 

algorithm for score-based methods. 

It is majorly categorized as learning the parameter of BNs when structure is given, and other is 

learning the structure itself. This chapter will discuss the techniques that are used for learning 

Bayesian Network parameters and structures. 

 

5.1 Learning Parameters for BN 

Bayesian Network parameter learning is one of the categories in learning BNs. We learn the 

parameters of BN with the structure is given. In the Bayesian network application, where Bayesian 

methods are predominantly used, the major problem arises with conjugate prior. We need to 

estimate a distribution family which has posterior over the parameters belongs to same family as 

the prior. When learning the parameters for a Bayesian network, the common assumption is to have 

a complete data and structure G of the network which is already been generated in previous section. 

However, the major challenge is to find which parameter values actually generated the data.  

While performing parameter learning, if data is sufficient enough Bayesian Networks can be easily 

constructed using conventional methods like maximum likelihood (MLH) approach. But in most 

clinical survey analysis, data is mostly insufficient, and which tends MLH to overfit. In cases like 

ours of rare disease or heart transplant, collecting sufficient data is not an option which leads to 

overfitted BN model.[2]. 

[54] explained it very well by demonstrating a basic theory .  

https://www.sciencedirect.com/science/article/pii/S0933365709001328#bib15
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Suppose, there is a BN (G) with nodes  X1, ..., Xn. If there is a directed arc from Xi to Xj , Xi is 

called a parent of Xj , pa(Xj ). Given its parent nodes, a node is conditionally independent from all 

the other nodes. Thus the joint distribution of all the nodes can be written as 

   p(X1,X2, , , , Xn =  ∏ p(X𝑖
n
i=1 |pa(Xi) 

 

Now in BN , each node is linked with multiple parameters to describe the conditional probability 

distribution of the random variable given its parent node. Suppose θ is a vector of parameter value 

θijk , such that  

   θijk  =  p(xi
k|pai

j
)  ,    

Where i=(1 ,,,, n) ranges from all the variables in BN , j(j = 1,,,,,,,qi) is the all possible parent 

configuration of Xi , and k , k(1,,,,,, ri)ranges over all possible values of  Xi. 

Now the goal is to find the most probable value 𝜃 for θ which is best fit for dataset D . This 𝜃  is 

mostly quantified by the log-likelihood function, log (p(D| θ) , can be denoted as LD(θ ). In case 

when data D is complete, Maximum likelihood estimation method can be easily applied.  

However, in case when data D is incomplete, we cannot apply MLE and instead have to use EM 

algorithm. Now, consider  Y =  {Y1,Y2,, , , , YN} is observed data,   and Z =  {Z1,Z2,, , , , ZN} is missing 

data , Dl  =     Yl  𝑈  Zl.  EM algorithm starts at any initial guess at the MLE, θ (0) and then 

iteratively generates successive estimates like  θ (1) , θ (2), , ,,  by repeatedly applying Expectation 

step followed by Maximisation step. 

In this process, E step finds the conditional expectation of log-likelihood function 

   Q(θ|θ (t)) = Eθ (t)[log p(D|θ )|θ (t), Y] 

 

And M step finds a new parameter θ (t) maximises the expected log likelihood with a assumption 

that distribution found in E step is correct. 

   θ (t+1)  =  arg maxθQ(θ|θ (t)) 

For each iteration, we can be assured to get the increased likelihood and finally the algorithm 

converges to a local maximum of the likelihood function. 

To control overfitting, one could consider M to be a tunable parameter and select the number of 

mixture components using the Bayes information criteria (BIC) or some other goodness-of-fit 

measure.  

 

5.2 Learning Structure of BN  

The score-based approach is the most popular methods of building Bayesian Network from the data 

specifically when pdf (probability distribution function) estimation is required. This method 

assigns a score to each possible vector set of BN, which measures how well the BN fits the dataset 

D. Suppose a BN structure G, on given dataset D . Then score can be defined as : 
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          S(G, D) = Pr(G|D) 

It can also be inferred as posterior probability of G given dataset D.  

A score based algorithm tries to maximize the score . the above equation can be represented in 

other form using Bayes’ law: 

           S(G, D) = Pr(G|D) = 
𝑃𝑟(𝐷|G)𝑃𝑟(𝐺)

𝑃𝑟(𝐷)
 

 

In order to maximize the score, we need to maximize the numerator since the denominator is not a 

function of G. We can analyse Pr(G) from the view of prior information (Heckerman (1995)). To 

understand the structure learning, we can ignore the calculation of 𝑃𝑟(𝐺) or equivalently assume 

uniform prior over structures. However, to calculate Pr(D|G), the Bayesian approach averages over 

all possible parameters, and weighing each of it by its posterior probability: 

          

                                                  𝑃𝑟(𝐷|𝐺)  =  ∫ 𝑃𝑟(𝐷|𝐺, 𝑝)𝑃𝑟(𝑝|𝐺)𝑑𝑝 

    

For multinominal local pdfs (Cooper and Herskovits (1992)) , we will get  

 

   𝑃𝑟(𝐷|𝐺) = ∏ ∏
Γ(𝛼ij)

Γ(𝛼ij+Nij)

qij

j=1
n
i=1 ∏

Γ(𝛼ijk+Nijk)

Γ(𝛼ijk)

ri
k=1  

 

    

where 𝛼ijk and Nijkare the hyperparameters and counts for the pdf of Xi for parent configuration j. 

In large sample limit, the terms 𝑃𝑟(𝐷|𝐺, 𝑝) , 𝑃𝑟(𝑝|𝐺) in above equation would be approximated 

as multivariate Gaussian (Kass et al., 1988; Kass and Raftery, 1995). Further, approximating the 

mean of the gaussian with maximum likelihood value p̂ , we will have the BIC score as : 

    

          BICscore(G,D) = log  𝑃𝑟(𝐷|p̂, 𝐺)  − 
d

2
log N  

    

first given by Schwartz (1978). The term p̂  is the set of maximum-likelihood estimates of the 

parameters p of the BN, while d is the number of free parameters of the multivariate Gaussian, i.e., 

its number of dimensions, which coincides with the number of free parameters of the multinomial 

local pdfs. It also has the intuitive interpretation of the data likelihood minus a “penalty term”  

( 
d

2
log N) which has the effect of discouraging overly complicated structures and acting to 

automatically protect from overfitting. The BIC score has been proved as equal to minus the MDL 

(Minimum Description Length) score (described by Rissanen (1987)). 

While optimizing the score with returning structure which tries to maximize it brings up problem 

as the space of all possible structure is exponential in terms of nodes. There are 
n(n−1)

2
 possible 

undirected edges and  2 
𝑛(𝑛−1)

2 structures for every subset of these edges. Additionally, there can be 
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more than one orientation of the edges for each choice and hence brute force approach cannot be 

applied. We will see the possible approaches in next section. 

 

5.3 Approach 

 

5.3.1 Score-based approach: Hill Climbing Algorithm  

 
As discussed above, score-based methods assign a score to each candidate BN which basically 

measures how well a BN describes the dataset D. To prevent overfitting, the score is modified by 

adding a factor to penalise overly complex structures. We have found out how the BIC score  is the 

criterion function to be minimised. Since the space of possible structure is in exponential terms , 

we cannot choose a brute-force approach for computation of scores for each BN structure and hence 

we choose to pick a heuristic search algorithms also called as  hill-climbing [62][1]. 

The algorithm of HC starts with an empty graph. For each pair of nodes, algorithm will try to add, 

remove, or reverse an arc. For each iteration of the network which minimizes the score becomes 

the current structure and then further process goes on and check for next structure. The process will 

stop when there is no single-arc change can further lower the score. However, there is no definite 

assurance that the algorithm will find the global minimum. Still, some minor changes as 

hyperparameter tuning may increase the chance to reach global minimum. Of course, there is no 

guarantee that this algorithm will find the global minimum.  
 

 

 
 

 
[61] Fig 5.1 : Hill Climbing Algorithm   

 
 
 
 
 
 

https://www.sciencedirect.com/science/article/pii/S0933365709001328#bib33


38 
 

5.3.2. Constraint based methods 

 
The constraint-based methods are another way of learning BN structure. These are typically 

conditional independence statements. However, non-independence constraints can also be used in 

scenarios where latent variables exist (Verma and Pearl (1990). In this paper, we are only 

discussing the conditional independence.  

It uses conditional independence tests to find a suitable structure of the network, find V-nodes and 

applies some set of rules to find the directions of the remaining arcs.  

It starts with a complete undirected graph, the algorithm tries to find conditional independencies 

[x,y|Z] in the data. For each pair of [x,y] it sets Z ranging from 0 to total no of covariates minus 

two. 

Next, the set Z becomes a subset of covariates that are next to both x and y. The arc between x and 

y will be removed from the structure if the algorithm finds any independency.  

To test conditionally independence between the pair of covariates, a network structure with arcs  

For all z belongs to Z: z →y is compared with one with arcs {x → y} U For all z belongs to Z : z 

→y . This is done using Bayesian metric [73].  

The algorithm works on assumption of having data with a perfect map. Any graph G can be called 

as perfect map with a set of dependency Σ if it follows below conditions: 

 (1) every dependency logically implied by Σ can be deduced from G and  

(2) every dependency inferred from G is logically implied by Σ.  

If the above condition does not satisfy then the algorithm could not assign directions for all the 

deleted arcs [1]. Since, we are not using this method in the paper, we are not going in detail about 

undirected arcs and its application in Bayesian network. 
 

5.3.3 SoftEM Algorithm  
 
Incomplete data also called as censored data in survival analysis are common scenarios in clinical 

trials. Bayesian Network is most useful tool in such cases because of its graphical and causal 

interpretation and representation. As discussed above, we have to optimize the structure and 

parameter learning of BN using different approaches. Expectation – Maximisation algorithm (EM) 

is one such method which does both learning using belief propagation and computes the necessary 

statistics[64].  

In the context of Bayesian Networks, structure and parameter learning can be achieved using EM, 

specifically “SEM” efficiently via below process: 

For structure learning, the SEM algorithm [63] can be implemented as: 

1. E-step complete the data by computing the necessary expected statistics using the 

current network structure. 

2. M-step finds the best network structure which maximises the expected score and 

function for the completed data in E step. 

 

For the parameter learning, the E-step and M-step become: 

1. The Expectation (E) step computes the expected values of the sufficient statistics  

(the counts {nijk}) taking inferences from the complete and incomplete samples. 

2. The Maximisation (M) step estimates the parameters of the network by taking sufficient 

statistics computed in E step. 

SEM algorithm is realistic and computationally feasible as it finds the best network structure inside 

of the EM rather than embedding EM inside the network structure learning algorithm. Also, the 

most important key factor in SEM is it guarantees the convergence of the original both in its 

maximum likelihood and Bayesian formulations. However, because of the dimensionality of the 
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sufficient statistics computed in each iteration and large number makes it quite expensive to 

operate. It is different from the parametric EM as in parametric one, we already which expected 

statistics are going to be used whereas in SEM , we cannot determine it in advance and have to 

handle each query separately. Hence, most of the execution time spends in the computation of 

expected statistics. 
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Chapter 6 

 

Implementation 
 
 

6.1 Implementation – Theory  
 
Ideally, the development of model for censored data assumes presence or absence of an event as 

completely observed for all the subjects in the dataset, however, it will lead us to inaccurate 

modelling and also in real world scenario it is not possible. In our design, if the subject leaves the 

health system or the observation period ends and he/she is surviving, their status and event history 

will not be recorded in our dataset. In this paper, we have assumed observation period as τ.  If the 

subject’s follow-up ends prior to τ, then their event status at τ is unknown and their event indicator 

is said to be right-censored.  

This chapter will explain to build a probabilistic graphical model, a Bayesian network to predict 

the risk of an event “fustat” (dead/alive) in τ years when the event status at τ years is right censored. 

To establishing notation as per the standards in statistical literature, we have T as the time between 

the beginning of the follow-up period and a event, and define C as the time between the beginning 

of the follow-up period and disenrollment or the end of the study period. We would calculate, V = 

min (T, C) and δ = I(T < C), the indicator for whether or not a event occurs. If δ = 0, the subject’s 

event time is right-censored. We can only ascertain the value of E either if δ = 1, or if δ = 0 and V 

> τ; in other words, the value of E is only known if min (T, τ) < C. 

As explained above, one of the naïve approaches to handle earl censored subjects where we don’t 

know about the event E to exclude from the training set or make E = 0, but in both the cases, our 

predictions would be biased towards events to occur. Therefore, in this paper, we are proposing to 

use inverse probability of censoring weighting (IPCW) approach to handle right censoring subjects. 

This approach handles censored event times by assuming the censoring time C is independent of 

the event time T and all features X.  

Suppose, G(t) = P(C > t) be the probability that the censoring time is greater than t. As mentioned 

in previous chapters, it can be estimated  G(t) = P(C > t), using the Kaplan–Meier estimator of the 

survival distribution (i.e., 1 minus the cumulative distribution function) of the censoring times. The 

Kaplan–Meier estimator (Kalbfleisch and Prentice 2002)[69] of the censoring process is given by 

i 

   

   Ĝ(t)  =  ∏
(ni − di∗)

nii:ti <t  

    

di* is the number of subjects who were censored at time ti , and ni is the number of subjects “at 

risk” for censoring ,who do not previously censored or experiencing a CV event) at time ti. Unlike 

other ad hoc approaches to handling censored observations, the Kaplan–Meier estimator is a 

consistent estimator of G (Kalbfleisch and Prentice 2002)[69].We note that, for IPCW, Kaplan–

Meier is applied to estimate the distribution of censoring times, whereas it is much more commonly 

used to estimate the distribution of event times. Standard software functions for computing the 

Kaplan–Meier estimator of events times can be used to estimate G by setting the “event” indicators 

to δ∗i= 1−δi.    

Once ˆG, survival probability of each observation j is computed, we will calculate IPCW wj as 

below:  
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   wj = {

1

Ĝ(min(Vj,τ) 
, if min(Tj, τ) < Cj

  0, otherwise  
 

 

 

While fitting the Bayesian Network with above weights, weighted maximum likelihood would be 

used  to estimate the parameters in PE(e) and  PGi|E (gi,|e) where the contribution of the jth subject 

to the likelihood is weighted by ωj. Hence the probability equations become:  

 

   𝑃̂(𝐸(𝑒) = 
1

n
 ∑ ‖[Ej = e]wj n

j =1  

    

   𝑃̂ Zi|E (Zi,|e) =  
1

n
 ∑ ‖[Zij=zij ,Ej=e]wj n

j =1
1

n
 ∑ ‖[Ej=e]wj n

j =1

 

 

We can clearly infer from the above equations, IPCW estimator of PE(e = 1)  is the Kaplan–Meier 

event probability. To estimate the parameters in PYi |Zi ,E ( yi |zi , e) we use a weighted EM 

algorithm where the contribution of each subject j is weighted by ωj .  

 

In this approach of IPCW, the subjects for whom we can assess E would only add up to the data to 

be analysed, but they are weighted in such a way that they will overshadow the patients who were 

censored before the observation time τ.  

We can understand it as, the subjects or patients who has comparatively longer time to event are 

more chances to have smaller survival probability, G. Hence, it will receive larger weights. Also to 

be noted, the patients with E = 0 (and V > τ) the weights for all individuals are  

1/ Ĝ (τ ), so the maximum likelihood estimators for PGi|E (gi,|e) are the same as in the unweighted 

analysis. 

In the later section, we will describe how inverse probability of censoring weightings results in 

consistent estimators  

 

 
6.1.1 Inverse Probability of Censoring Weighting (IPCW) 
 
As explained in [6],the IPCW – Inverse Probability of Censoring Weighting, oversample subjects 

with E = 1 if we exclude patients for whom E is unknown. Post that, we can apply any machine 

learning for prediction of risk considering the calculated weights as weight parameters. The 

general-purpose IPCW method proceeds as follows: 

1. Using the training data, evaluate the function G(t) = P(Ci > t), the probability that the 

censoring time is greater than t, using the Kaplan-Meier estimator of the survival 

distribution of the censoring times. 
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2. For each patient i in the dataset, calculate an inverse probability of censoring weight. 

Patients whose event status is unknown at τ (i.e., are censored prior to τ and therefore have 

Ci ≤ min (Ti, τ)) are assigned weight ωi = 0. The remaining patients are assigned weights 

inversely proportional to the estimated probability of being censored after their observed 

follow-up time. 

3. Apply an existing prediction method to a weighted version of the training set where each 

member i of the training set is weighted by a factor of ωi. In other words, if ωi = 3, it is as 

if the observation appeared three times in the data set. 

Using the above method of weight assignment, it can be used to get modelled using 

conventional ML classifiers. 

6.1.2 Interpretation IPCW  

In this section, we will explain and interpret the process of IPCW [6], inverse probability of 

censoring weighting and understand it with simple example that how it handles censoring and leads 

to accurate risk prediction across a variety of machine learning techniques. Example quoted from 

[6].Suppose we estimate that 1/3 of subjects have censoring times greater than 2.5 years (i.e., 

Gˆ(2.5) = 1/3), and that the ith subject is observed in our study to experience an event at t = 2.5 

years (i.e., δi = 1 and Vi = 2.5). For this subject, the event status is known (E = 1) and her/his IPC 

weight is ωi = 3. This subject is weighted by a factor of 3 because she/he can be thought of as 

representing 3 individuals: 2 similar or “shadow” subjects censored prior to their event time at t = 

2.5 for whom E is unknown, plus themselves (recall that on average 2/3 of subjects in this example 

with event times equal to 2.5 are censored prior to experiencing the event). Thus, subjects with 

known event status E and a longer time-to-event receive larger weights as they represent a greater 

number of “shadow” subjects whose event status is unknown due to censoring. IPCW is 

conceptually equivalent to creating a new dataset where each subject is replicated ωi times. 

However, creating such an expanded dataset is often not advisable, both for reasons of practicality 

(memory/storage limitations) and mathematical precision (ωi may not be an integer or simple 

fraction). A full justification of the use. 

Lets take a below simple dataset with single binary covariate with 50 data sample provided in [6] 

to understand the weight calculation. 
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Xi Vi δi Ei min(Vi,τ) Gˆ{min(Vi,τ)} ωi 

1 0 1 1 0 1 1 

0 0.2 1 1 0.2 1 1 

0 0.4 0 ? 0.4 0.98 0 

0 0.7 0 ? 0.7 0.96 0 

1 0.8 0 ? 0.8 0.94 0 

1 0.8 1 1 0.8 0.94 1.07 

0 0.9 1 1 0.9 0.94 1.07 

1 0.9 1 1 0.9 0.94 1.07 

0 1 1 1 1 0.94 1.07 

0 1 1 1 1 0.94 1.07 

1 1.3 0 ? 1.3 0.89 0 

0 1.3 0 ? 1.3 0.89 0 

1 1.4 1 1 1.4 0.89 1.12 

0 1.6 1 1 1.6 0.89 1.12 

1 1.6 1 1 1.6 0.89 1.12 

0 2.1 0 ? 2.1 0.87 0 

0 2.3 0 ? 2.3 0.84 0 

1 2.3 1 1 2.3 0.84 1.19 

1 2.4 0 ? 2.4 0.81 0 

0 2.5 1 1 2.5 0.81 1.23 

1 2.6 1 1 2.6 0.81 1.23 

0 2.8 0 ? 2.8 0.79 0 

1 3.2 0 ? 3.2 0.73 0 

0 3.2 1 1 3.2 0.73 1.37 

1 3.2 0 ? 3.2 0.73 0 

0 3.3 0 ? 3.3 0.7 0 

0 3.4 0 ? 3.4 0.67 0 

1 3.4 1 1 3.4 0.67 1.49 

0 3.5 1 1 3.5 0.67 1.49 

0 3.7 1 1 3.7 0.67 1.49 

0 3.7 1 1 3.7 0.67 1.49 

0 3.8 1 1 3.8 0.67 1.49 

0 3.9 0 ? 3.9 0.63 0 

1 4.2 1 1 4.2 0.63 1.58 

1 4.3 1 1 4.3 0.63 1.58 

0 4.9 1 1 4.9 0.63 1.58 

1 5.3 0 0 5 0.63 1.58 

1 5.7 1 0 5 0.63 1.58 

0 5.8 0 0 5 0.63 1.58 

0 6.1 0 0 5 0.63 1.58 

1 6.4 1 0 5 0.63 1.58 

0 6.5 1 0 5 0.63 1.58 

0 6.6 1 0 5 0.63 1.58 

0 6.6 1 0 5 0.63 1.58 

1 6.6 1 0 5 0.63 1.58 

0 6.8 0 0 5 0.63 1.58 

1 6.8 0 0 5 0.63 1.58 

1 7.6 1 0 5 0.63 1.58 

1 7.8 1 0 5 0.63 1.58 

0 8.7 0 0 5 0.63 1.58 
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Suppose that we wish to estimate the probability of having an adverse event within 5 years within 

each level of the covariate (i.e., τ = 5). So , in normal case where Ei is available for each observation 

, we would just take the average of Ei with each level of the covariate. But, as we can see there are 

many instances where Ei is not available (denoted by question mark in above table) , such subjects 

do not have complete information and did not experience an event during its observation period. 

Now, as discussed in theoretical part IPCW is a best technique to handle such data. We will 

calculate the survival distribution of censoring as G(t) using a Kaplan-Meier estimator and compute 

Gˆ{min(Vi, τ)}. The weight, ωi for each subject is given by Equation 1. Now to estimate probability 

of having an adverse event within 5 years within each level of the covariate we take a weighted 

average of Ei within each level of the covariate: 

 𝑃̂(E=1∣X=1) =  ∑
𝐸𝑡𝑊𝑡

𝑊𝑡

𝑋𝑡=1
𝑡      = 0.58       and  

  

  𝑃̂ (E=1∣X=0) =    ∏
𝐸𝑡𝑊𝑡

𝑊𝑡

𝑋𝑡=0
𝑡     = 0.53 

 

And subjects for whom we don’t know about Ei will have the weights equal to 0. Hence, Eiωi = 0. 

There are more sophisticated machine learning methods but the conceptually the idea of IPCW is 

applicable. 

6.1.3 Important Assumptions while implementing IPCW  

The IPCW method depends on the below assumptions [6]:  

• There are no unmeasured cofounders for censoring. 

• If the hazard of censoring is conditioned on the recorded history, it does not further depend 

on X (sequential ignorability of censoring). 

• The data is coarsened at random (CAR), i.e. the censoring mechanism does not depend on 

the outcome, but may depend on the covariates. 

If all these assumptions are satisfied and all prognostic factors are recorded , IPCW estimators will 

correct the bias due to dependent censoring completely. 

 

Methods to handle observations in which event status is unknown[6] 

As explained and understood, Subjects who experienced an event are considered E =1 and those 

with event free are E = 0. And those E is unknown for them who were event-free but censored 

before accruing 5 years of follow-up. Below 4 ML strategies could be applied to handle instances 

of unknown E: 

1. Set E = 0 if E is unknown. Techniques using this strategy are denoted with the suffix -Zero. 

2. Discard observations with E unknown. Techniques using this strategy are given the suffix - 

Discard. 
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3. Use IPCW on observations with E known. The resulting techniques, as described in Section 3, 

have the suffix -IPCW. 

4. “Split” observations with E unknown into two observations with E = 1 and E = 0 with weights 

based on marginal survival probability. The resulting techniques, as described subsequently, have 

the suffix -Split. 

The split technique of splitting observations with E unknown was described by [5]. For each 

observation i in the training set for which Ei is unknown, we create two observations, one with E = 

1 and the other with E = 0, but with the same features Xi. Suppose ,  Fˆ(t) is  the (KM) Kaplan-

Meier estimator of the survival probability at time t, then as per survival function :  

  F̂(t)  =  ∏
(nj − dj∗)

njj:Vj <t  

where dj is the number of subjects who are observed to experience the event at time Vj, and nj is 

the number of subjects “at risk” for the event (i.e., not yet censored or experienced an event) at 

time Vj. 

 If E is unknown for ith observation in the training data, the weight for the imputed observation 

with E = 0 is F̂ (τ)/ F̂ (Vi) and the weight for the imputed observation with E = 1 is 1 − F̂ (τ)/ F̂ (Vi). 

The implementation of weights will be similar like how we can apply IPCW. It provides weights 

to all observations and hence can be better interpreted in analysis. 

 

 

6.2 Consider it as survey weights 

IPCW method modifies our dataset with additional weights and also increases the number of 

records based on event time and censor time. This data will now act as weighted survey data. As 

an ideal case assumption, each subject of the target population has the same chances of getting 

included in the sample but in real world scenario, participation in survey is mostly voluntary and 

some might refuse as well. In such case, weighting the survey data is one of the best practical way 

to deal with imbalanced dataset however it is not the best recommended solution. We are following 

similar approach while using IPCW method to handle censored data. 
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6.3 High-level overview of the approach 

 
This is a basic algorithm to be followed in our implementation which was mentioned in [4]. 

Theoretically, we are approaching the below process from weight assignment to building Bayesian 

network. 

 
Pseudo Algorithm 

     Input: 

       Graphical structure of the probabilistic relationships (edges) between input features 

(nodes) 

       Training dataset (each record consists of input values, follow-up time, and an event 

indicator) 

     Output: 

       Function for estimating conditional probability of the event given the input values 

 

1: Estimate survival distribution of the censoring times using Kaplan–Meier estimator  

2: For each subject (each record in a dataset): 

3:    Compute the inverse probability of censoring weight using the distribution from Line  

4: For each node Xi in the graphical model:  

5:    Identify the set of parent nodes of Xi , i.e., Pa(Xi ) 

6:    Model the conditional joint distribution of Xi and Pa(Xi ) given event status as follows: 

7:       Let Gi = {Xi , Pa(Xi )} 

8:       Partition Gi into continuous and discrete features 

9:       For the set of discrete features of Gi : 

10:         Compute the IPCW estimates of the conditional probability given event status 

11:     For the set of continuous features of Gi : 

12:  For each distinct state of discrete features of Gi and event status: 

13:      For each number of multivariate Gaussian mixtures (vary from 1 to 4): 

14:          Create 40 bootstrap samples of the training data 

15:         For each bootstrap sample: 

16:   Use IPCW EM algorithm to estimate parameters in multivariate 

normal mixture distribution using the IPCW weights  

17:   Calculate the BIC values for the current model  

18:            Compute the average model BIC value across 40 bootstrap samples 

From individual BIC values  

19:      Find the model complexity weight for each number of mixtures using 

the average model BIC values  

20:  Use the model complexity weights  

21:       Obtain conditional joint distribution of Gi given event status by multiplying 

discrete probability estimates  

22:     Derive conditional distribution of node Xi given parents Pa(Xi ) and event status 

using the conditional joint distribution of  

23: Estimate the marginal probability of event using IPCWs  

24: Derive conditional probability estimation function of event given input features 

using (a) conditional distribution of nodes given their parents and event status 

and (b) the marginal probability of event.  
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6.4 Methodology  

Bayesian Network generation in R /Python with weight integration   

 
6.4.1 Development process  
 

1. Dataset : Stanford heart transplant  

We are using dataset Stanford heart transplant data “jasa” . From initial validation we found 

that transplant is a key variable which has a causal dependency on “fustat” which is a 

dependent or target variable. Other important covariates are age and prior surgery.  

 

2. Creating a function which compares the event time, censor time and observation period. 

Basically, it creates an indicator against each observation or for each patient id if the 

function finds out the minimum of event time and observation period is less than censor 

time. In case of true, it generates 1 else 0. 
 

3. Kaplan Meier Survival Function to find the survival probability.  

This is a core function of entire thesis where we populate weights for each 

observation/patient as per its importance. The value of its importance is measured by 

survival probability of that observation which is being calculated by Kaplan Meier survival 

function.   

 

4. Inverse Probability Censoring Weights 

Once get the Kaplan Meier Survival factor from above, we will inverse it to assign the 

weights to that observation where v is non- zero. Hence, for the observations having censor 

time less than event time or observation period weights will be zero. Also, we are fitting 

the survival model object with “v” no of times. This will increase the number of records 

with v times to overshadow those patients which are left in middle of the study or before 

the observation time. 
 

5. Now, we have the IPCW weighted data with each observation have its own weights. 

However, the subjects which left the study group before the total observation period, they 

will get 0 weights. Still, we have not excluded it from the modelling. They do contribute in 

weights calculation. Hence , we have the modified dataset with new columns like weights 

, surviving probability of each subject. This is a weighted dataset which we are going to 

save it for later use. 

 

6. Survey weight – we will integrate this new generated data with weights (conceptually as 

weighted survey data) with our Bayesian network model to learn the parameter and 

structure. Now , this dataset is a weighted survey dataset having individual weights for each  

observation. We need to check the continuous and discreet variables and factorize it based 

on its structure and property. 

 

7. We have used pomegranate framework in python which is specialised in probabilistic 

graphical model. The we will do some pre processing steps and create our X and y as no of 

features which we want to create for structure like transplant , age , surgery etc and y as our 

target variable as event status “fustat”. 
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8. The dataset will be split into train and test dataframe in 80:20 ratio respectively. Also it is 

important to note that weights needs to be used very carefully. We have to reshape the 

weights as in numerical array to be passed as “weight parameter” in the model object.  
 

9. Model object gets generated from “BayesianNetwork.from_samples() method(available in 

pomegranate package) with weights array as parameter as below . we will then fit the model 

on training set. 
 

Code Snippet  
 

 
 

 

10. The Bayesian model object created will generate a structure and conditional probability 

table in below format . we have to execute the model.plot() using pygraphiz for graphical 

structure ;  
 

Structure  
 

 

Conditional Probability Table : 
 

 
 

 

11. We will discuss the different Bayesian network structure and conditional probability table 

created using different algorithms in next section. We have performed prediction analysis 

also using this model as classifier . It resulted in 70% accuracy. Other metrics are discussed 

in detail in Performance Evaluation”. 
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12. To generate Bayesian Network in R : 

We have generated BNs in R also using “bnstruct” package which provides a framework 

to generate DAG “Bayesian Network and connects the variable as per its conditional 

dependencies. It learns the parameter and structure based on algorithm and scoring function 

provided in the framework.  

Requirement for Bayesian network to build using “bnstruct”: 

It requires a data object in the format of “BNDataset” which checks the discreetness, node 

sizes and weighted data to create a new object “BNDataset Object”. It later passed in 

learn.network() with algorithm and scoring function to generate Bayesian Network. 

 
13. Algorithms and scoring Function  

Here ,we are using multiple algorithms to generate structure and scoring function as BIC 

to learn the parameters.  

 
14. To handle missing data and imbalanced dataset, we can try for bootstrapping with 

imputation on BNDataset object created above . However, in case of using SEM algorithm, 

it automatically do the sampling while execution. 

 

After completion of all the above steps, we have got number of Bayesian network based on 

algorithm and framework used. We are going to discuss about the structure and conditional 

probability table results while executing the above steps. 

Also we have developed a BN classifier to predict the event status for test set . we will discuss on 

it and evaluate our model based on some key metrics. 
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Chapter 7  

 

Results & Evaluation 
 
 
7.1 Bayesian Network building With Weight Integration  

 

7.1.1 Results 
Our implementation consists of learning parameter and structure of Bayesian network considering 

the IPCW integrated dataset. We have used multiple algorithms to generate the structure and along 

with it we will have adjacency matrix and conditional probability table for each algorithm. We are 

using scoring function “BIC”, also called as MDL as common method to reduce the risk of 

overfitting.  

Although, we have tried to implement with various algorithms, our main focus will be along “SEM” 

and “Hill-Climbing “approach. Additionally, we will explain the network learning with all features 

present in data and also only with those features which are strongly correlated.  

 

1. Algorithm :  “ SoftEM”  , Scoring Function : BIC 
 

 

 

   Fig 7.1 : Bayesian Network using “SEM” Algorithm 

 

Above structure represents a DAG which demonstrates the relationship between different 

covariates. It is easy to interpret as graphical representation. It infers that age has a causal 
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dependency with transplant indicator, and event status “fustat” . Similarly, “prior surgery” has 

interactions with age and event status.  

Next, we will check the conditional probability table information from the below table which shows 

how significantly these covariates affects each other and with what probability. 

 

It also generates the adjacency matrix:  
 

  transplant fustat surgery age mismatch mscore 

transplant FALSE FALSE FALSE FALSE TRUE TRUE 

fustat TRUE FALSE FALSE TRUE TRUE FALSE 

surgery FALSE FALSE FALSE FALSE FALSE FALSE 

age FALSE FALSE TRUE FALSE FALSE FALSE 

mismatch FALSE FALSE FALSE FALSE FALSE TRUE 

mscore FALSE FALSE FALSE FALSE FALSE FALSE 

   Table 7.1 Adjacency Matrix for Sem Algorithm 
 
Conditional Probability Table  

 

       

CPT transplant  CPT surgery 

fustat 1 2  age 1 2 

1 0.1460177 0.8539823  1 0.9087591 0.09124088 

2 0.4003322 0.5996678  2 0.8104693 0.18953069 

       

fustat     age 

1 2   fustat 1 2 

0.2729469 0.7270531   1 0.1106195 0.8893805 

    2 0.4136213 0.5863787 

       

mismatch =1 fustat  mismatch =2 fustat 

transplant 1 2  transplant 1 2 

1 0.5 0.5  1 0.5 0.5 

2 0.7901554 0.8282675  2 0.2098446 0.1717325 

       

mscore =1 mismatch  mscore =2 mismatch 

transplant 1 2  transplant 1 2 

1 0.5 0.5  1 0.5 0.5 

2 0.5094118 0.5  2 0.4905882 0.5 

 
 

  Table 7.2 : Conditional Probability Table for “SEM” BN 

 

 

Fustat 2 – Dead, transplant 2 = yes , surgery 2 = yes  
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CPT Inference  
 

1. CPT for Transplant: It suggests the probability of event not to occur(1=Alive) given that 

transplant has been done (2) is 85%, and  40%  probability of event happening if transplant 

has not been done.  

2. CPT for fustat (event): Overall probability of event to be occurred is 72% against 27% not 

to occur. 

Let’s check the conditional probability which involves more than 2 nodes  

3. CPT for transplant given fustat and mismatch  

a. It suggests if mismatch =1, then probability of transplant to happen is going to be same 

irrespective of event status. However, the probability of transplant not done in case of 

patient is dead is slightly more compared to alive.  

b. Whereas for mismatch =2 , probability of transplant to happen is same again given any 

event , and also its very low probability for transplant to occur with any status of event. 

4. CPT for age: It is interesting and intuitive also. Since age =1 is age >50. The probability of 

age is greater than 50 given that surgery is true i.e its high probability to patient to have age 

greater than 50 with any prior surgery and its ~90% . It has a lot of information in it. 

5. Predict event given age: It infers that probability of being alive (fustat 1) when patient is 

less than 50 is almost 88% compared to 11% for patient with age >50. 

6. Similarly, as mismatch, now we have 2 condition for mscore: 

a. For mscore =1  

Probability of transplant occurred given that mismatch is 1 or 2 is almost similar as 

50%. 

b. For mscore =2 ,  CPTs are similar as transplant, and mismatch condition as a. 

 

2.Algorithm: “hc “(Hill Climbing) and Scoring Function : “BIC” 
 

 

    Fig 7.2 : Bayesian Network using “Hill Climbing” 
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Hill climbing has generated a different structure with slight changes in dependencies also. As in 

this network , event status “fustat” has a dependency with age , mscore as parent node . Also, 

surgery is dependent on fustat. We will find out the probability of these dependency using 

conditional probability table mentioned below.Also , it generates an adjacency matrix , which gives 

us the idea about causal dependency among the covariates. 

Adjacency Matrix : It shows the causal dependency between multiple covariates . 
 

  transplant fustat surgery age mismatch mscore 

transplant 0 0 0 0 0 0 

fustat 0 0 1 0 0 0 

surgery 0 0 0 0 0 0 

age 0 1 1 0 1 0 

mismatch 1 0 0 0 0 0 

mscore 0 1 1 1 1 0 

    Table 7.3 : Adjacency Matrix HC Algorithm 

Conditional Probability Table  

              

  transplant    age 

mismatch 1 2  mscore 1 2 

1 0.002347 0.997653  1 0.2443609 0.7556391 

2 0.010204 0.989796  2 0.4379845 0.5620155 

fustat = 1 mscore  fustat = 2 mscore 

age 1 2  age 1 2 

1 0.130769 0.146018  1 0.8692308 0.8539823 

2 0.559702 0.389655  2 0.4402985 0.6103448 

         

    mscore    

    1 2    

   0.5076336 0.492366    

         

mismatch =1 mscore  

mismatch 
=2 mscore 

age 1 2  age 1 2 

1 0.869231 0.712389  1 0.1307692 0.2876106 

2 0.798508 0.886207  2 0.2014925 0.1137931 

mscore = 1, surgery = 1   mscore = 1, surgery = 2   

  age   age 

fustat 1 2  fustat 1 2 

1 0.970588 0.713333  1 0.02941176 0.2866667 

2 0.853982 0.816384  2 0.1460177 0.1836158 

        

mscore = 2, surgery = 2   mscore = 2, surgery = 1 

 age   age 

fustat 1 2  fustat 1 2 

1 0.5 0.712389  1 0.5 0.2876106 

2 0.997409 0.816384  2 0.00259067 0.1836158 

             
 

  Table 7.4 : Conditional Probability table HC Algorithm 
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CPT Inferences:  
 

It shows mscore as root node and having the probability of mscore for being 1 given all the features 

is 50.7% and 49% for being 2. 

1. CPT for mismatch: It suggests very low probability of mismatch to attain value 1 given that 

transplant has been done (1) is just 0.2%, and even same with to attain the probability of 

mismatch to be 2. However, approx. 99% probability that mismatch will take any value 1 

or 2 when transplant is not done. 

2. CPT for fustat (event) given mscore, surgery and age: This is quite intuitive and complex 

to understand as it involves 4 covariates and their relationship. We have 4 different 

probability table for 4 different conditions. 

a. mscore = 1, surgery = 1 

It suggests the probability of patients to be alive event to take place given the patient is 

greater than 50 years and he/she had some prior surgery and mscore value is 1, even for 

younger patient also it is high at 70+ % of probability to event to take place if there is 

history of prior surgery. 

b. mscore = 1, surgery = 2 

As above, It says the probability of event to take place given the patient is greater than 50 

ears and he/she had some prior surgery and mscore value is 1. 

c. mscore = 2, surgery = 1 

we can infer from this table that the if there is no prior surgery, the chance of having death 

is anyway too less. The probability of event to take place means its high probability to be 

alive given the age is less than 50.  

d. mscore = 2, surgery = 2 

This is challenging, lets leave mscore, as it is not giving much information.  If there is prior 

surgery, the probability of experiencing death is very high , more than 95% if they belong 

to age greater than 50. And even, for age less than 50 , probability of experiencing death is 

more than 80%. 

We have to explore more on CPTs. 
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Other network structure generated during the experiments 
We have got different structures by changing the parameters and when selecting the few features 

or important features based on the above results. Also explored to build network without IPCW. 

However , it didn’t create any intuitive results to draw any insights.  

Below are some BNs generated while exploring : 

 

1. With 3 key features “Transplant indicator, Prior Surgery and “Age” :  
 

 

 
 

 
  Fig 7.3 : Bayesian Network for 3 Key features(Transplant, Age,Surgery) 
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2. Using Algorithm : mmhc  
 

 

 
 

     
Fig 7.4 Bayesian network using mmhc algorithm 

 

3. With bootstrapping with weight integration 
 

 

 
 

 
Fig 7.5 Bayesian Network using bootstrapping 
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4.Without weight Integration: 
 

 

 
 

 
   Fig 7.6 Bayesian Network without using weight integration 
 
 
 

7.2 Performance Evaluation  

 
As we have designed a Bayesian network with learned parameters. Also, we have interpreted the 

causal dependency between the covariates based on different algorithm. We have tried to the risk 

of getting overfitted using scoring function “BIC”. In this section, we will evaluate the performance 

of the proposed models measured using following metrics: 

 

1. Accuracy of the model is one of the key parameters to evaluate the model. However, in 

case of imbalanced dataset where presence of any one class(majority) is very high as 

compared to minority class. Hence, we have assigned weights to the observation and try to 

nullify the effect of imbalance.  So instead of plain Accuracy we have measured weighted 

classification accuracy which is expressed in the percentage of subjects in the test set.  

Weighted Classification Accuracy: The accuracy of the trained model with weights is 

70.3. 

 
2. Another metric is F-measure which is defined as a harmonic mean of precision and recall. 

A high value of F-measure indicates that both precision and recall are reasonably high. 

  F − measure = 2 × Precision × Recall / (Recall + Precision) 

 F1 score for event status, 0 is 0.61 

 F1 score for event status, 1 is 0.76 
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3. Classification Report  

   

  precision recall f1-score support 

Fustat 0 0.87 0.48 0.61 82 

Fustat 1 0.64 0.93 0.76 83 

accuracy                                  0.7 165 

macroavg 0.75 0.7 0.69 165 

weightedavg 0.75 0.7 0.69 165 

    Table 7.5 Evaluation Metrics for BN model 

 

We can see from above table with multiple metrics for each class of events. Overall 

accuracy shows 70%. It looks good as compared to sample size and presence of imbalance 

nature present between the classes. 

 

4. Confusion Matrix: This is a very strong table which contains lots of information about 

how the model is predicting against the actuals. 

In below confusion matrix, our BN model with weighted data is predicting 77 true positive 

and 39 false positive. However, there are 49 cases where model is not predicting accurately 

which is required to be analysed.  

Intuitively, at 6 instances where our model is predicting is to be present when its not.  

  

CM 

Predicted 

0 1 

ACTUAL  1 
0 39 6 

1 43 77 

 
  Table 7.6: Confusion Matrix for Predicted result on test data 
 

7.3 Overall Results 
 We can draw below conclusion from the results and evaluations: 

 

1. We have successfully implemented the Bayesian Network model using IPCW method 

for censored survival data. We have generated multiple networks using different 

framework and discussed the conditional probability and structure generated in the 

process.  

 

2. As few covariates in the data has large number of null/NA values. To overcome this 

issue we have tried imputation methods and bootstrapping for resampling. We have 

also tried to overcome the chances of overfitting using scoring function “BIC” which 

uses penalty factor to regularize the function.  

 

3. We were able to develop a Bayesian model as a classifier to predict the risk of the 

event. Also, evaluated the performance of the model using different metrics and 

achieved to have 70% accuracy when predicting the results with test set. 

 

4. We can further analyse to tune the model and also can check the impact of imbalanced 

data set . 
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Chapter 8 

 

Discussion & Future scope 
 

8.1 Conclusion and Discussion 

 
The clinical health records have crucial information where large number of patients seeking care 

and hence such efficient risk prediction mechanism is demand of time. However, such sources 

contain lots of data infrequency as many patients may be lost to follow up after enrolling into the 

system. Most of the conventional machine learning techniques doesn’t take observation time into 

the account and could not predict the event in future time frame. This paper has proposed a general 

purpose “Inverse probability of censoring weights “a weight assigning technique to the observation 

based on its survival probability. This weight allocation seems to improve the prediction probability 

when incorporated with Bayesian network. Using IPCW along with Bayesian network model 

leading the weighted accuracy to 70+ percentage.  

This approach is a multipurpose with easy computations and can be used directly with advanced 

classification or regression technique like Neural network or other statistical models as well. 

However, we have not implemented it with other models but the mathematics behind it is simple 

and easily approachable which we have shown in this paper. Also, the principles outlined this 

algorithm is such that, it can be adapted widely on various tools. Because of its approach and 

mechanism, it is very much possible to develop it with ensemble – based model for risk predictions 

to apply to censored survival data.  

This extended Bayesian Network incorporate with IPCW is easy to implement and have better 

approximation with other machine learning techniques. We can do a comparative analysis using 

other machine learning technique as future scope. 

Finally, a properly treated censored outcomes with the help of IPCW emphasises to acknowledge 

that if all the patients had complete follow up information or not. This technique gives us the 

opportunity to include all the records even though having partial information so as to not leading 

to inaccurate predictions which is very critical in field of healthcare, as we cannot afford large false 

negatives.  

 

8.2 Advantages  

 
This paper focused on the application of a machine learning approach to risk prediction using heart 

transplant data with censored information due to unequal follow up of each subject. The traditional 

statistical models for censored survival data are well developed within the observation time but 

they are less flexible than efficient machine learning classifiers. However, machine learning 

classification techniques have its limitation in handling censored data as it assumes labels in the 

training data should be fully observed. The method which we have applied in this paper combines 

both features from statistical modelling to handle censored data and classifier techniques for 

prediction and flexibility by using inverse probability weighting to extend the Bayesian network 

technique for censored event data. Although we apply our approach to a Bayesian network, IPCW 

can be extended to other machine learning classifiers. Moreover, we have implemented the 

Bayesian network model using weights as a parameter to predict the event status without letting 

network to overfit using proper scoring functions.  
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Other than providing modelling flexibility and statistical validity, this technique handled the 

missing data efficiently and provides the opportunity to get the insights in sometime very complex 

clinical data without a domain expert as well.  

 

From the entire process we can suggest that:  

1.  Excluding censored observations from the study results in very poor classification results and 

affects the relationship between the dependent covariates. 

 2. From the different studies, Bayesian network performs better in learning  non-linear relationship 

between the features and outcome result compared to conventional hazards regression models while 

dealing with censored data. 

3. We also suggest to choose proper evaluation metrics while assessing the performance of the 

model in censored data as some common metrics can give the misleading results because of 

imbalanced dataset.  

 

8.3 Limitations  

Although this method is very intuitive in nature, ease with usability and can handle censored data 

still there are some shortcomings in it. As we noted from the beginning, there are some assumptions 

on which this technique has been based on. The applicability of IPCW (inverse probability of 

censoring weighting) assumes that the censoring time is independent of the event time. 

Additionally, we assume heuristically, that patients more likely to have an event are not more or 

less likely to leave from the study group. We could relax this assumption considering the censoring 

time related to risk as a function of it. Though we have multiple techniques used for searching 

across the different Bayesian network structures still, we focussed on methods for learning the 

parameters for a given network structure. The reason behind this was the Bayesian Network are 

very much prone to get overfitted so to avoid it we chose for it. And we are handling the risk of 

overfitting by using scoring function “BIC” and bootstrapping. Though, this method is not sensitive 

to tuning parameters and number of bootstrap samples if set within nominal ranges. 

Additionally, major drawback in IPCW is assigning weights to zero to those subjects for whom 

event status are unknown and hence, this method can be inefficient as these subjects do not 

contribute directly to the estimation. However, they do have a role in computation of weights. 

 

 

8.4 Future Scope  

 
Our work was completed with a reference of heart transplant data, still the technique which we 

have approached is globally applicable to all those scenario of clinical censored survival data and 

even beyond the field of medicine as well. In case of prediction of machine reliability system or in 

economics where we want to estimate the probability of re-hiring of recently unemployed 

candidates within a fixed time interval. Also, it can be applied in the scenarios where an result is 

likely to be censored. We can explore this method to be integrated with other machine learning 

techniques and statistical models also where target is to estimate the risk prediction for subjects 

with medical history given. 

By applying some tuning parameters and with different dataset to improve the overall performance 

of the model and also comparative analysis can be done in order to compare the performance of the 

technique with other models as well.  

We can even apply Weibull and Log-Logistic distributions to verify the results. 
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The IPCW technique has a limitation that it assigns zero weights where the even status is unknown. 

To overcome this, we can try positive and negative instances to each observation and get the 

weights for each observation.  

As suggested by  Kraisangka, Jidapa, and Marek J Druzdzel [48] , the alternative approach to use 

BN-Cox which we can be applied in the light of Cox Haphazard model with BN to get the best of 

both worlds in terms of getting the best statistical approach to handle the survival data by Cox and 

classifier flexibility with BN. 
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APPENDIX  

 

  
1. Data Analysis , Survival analysis and Survival Plots are generated in R scripts  

2. IPCW mechanism has been developed in R using Surv function  

3. Generated weights has been integrated with BN in python  

 

 

 


