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Abstract 

 

 

Bitcoin is a cryptocurrency which uses peer-to- peer technology for secure transactions based on 

block-chain technology. It is one of the most widely accepted crypto-currency in the world today. In 

this paper, we present a thorough comparative analysis of the performance of different predictive 

regression models (primarily non-parametric and semi-parametric) on Bitcoin price predictions. The 

models that we have used to perform the comparative analysis are K-Nearest Neighbours, Random 

Forest Regressor, Kernel Ridge Regression, Cubic Spline and Gaussian Process Regressor. We have 

also attempted to check which model is able to accurately predict the sudden rise in the bitcoin price 

using endogenous features related to price, followed by predicting the sudden slumps. We primarily 

make use of two columns from the dataset, which are date and closing price (USD). At the same time, 

we have also introduced two new features in the training data set. These new features are yesterday’s 

Bitcoin price and the difference between yesterday’s price and the price day before yesterday. 

Training of the model has been performed using data from the year 2013 to 2020 and the test set is the 

data from the year 2021. Now, since the Bitcoin price trend is extremely volatile and pattern less, it is 

understandably very difficult for prediction models to capture the behaviour of the data, let alone 

make predictions on it. Hence, we may even end up doubting the efficacy of a particular model in 

making predictions for time-series data. In order to avoid this, we have introduced an auxiliary time-

series data set, which has repetitive patterns and can be considered an ‘ideal’ time-series data set. This 

will help us judge if a particular model is suitable to make time-series predictions or not, even if the 

model performance on the Bitcoin data set is poor. This data set is an electricity consumption data set 

that has date and electricity consumption in the columns. Also, the same kind of feature engineering 

as that in the case of the Bitcoin dataset has been done here. Here, the training set extends from the 

year 2008 to 2016, while the test set is that of 2017. We find that the Gaussian Process, when used 

with an appropriate kernel, and Kernel Ridge are the most effective of the studied models while 

predicting Bitcoin price using strictly endogenous features related to price.    

Note: This work focusses on the prediction performance and analysis of different models rather than 

on optimization strategies used by the different models. 

Keywords: Bitcoin, K-Nearest Neighbours, Random Forest Regressor, Kernel Ridge Regression, 

Smoothing Spline, Gaussian Process Regressor. 
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Chapter 1 

 

Introduction 

 

 

1.1 Overview 

 

Distributed Ledger technology, most commonly known as block-chain technology, is a framework 

which enables secure transactions in a decentralized database and thus, eliminates the need for a 

central authority. This is the fundamental theory that works behind the implementation of Bitcoin. 

Bitcoin is a proper peer-to-peer electronic cash or a cash transfer system that was introduced to the 

world by Satoshi Nakamoto (pseudonymous) in his paper “Bitcoin: A Peer-to-Peer Electronic Cash 

System”. Bitcoin allows monetary transactions to take place without the intervention of any 

middleman financial institution. The bitcoin network is also considered safe from attackers and also 

does not require a lot of infrastructure. At the same time, the nodes present in a Bitcoin network can 

join or leave the network as and when required. Bitcoin also solves the double spending problem[1]. 

Double spending is a flaw present in digital cash transactions in which the same digital token is used 

more than once that leads to creating new currency that did not exist previously [2]. 

But the main problem is that the bitcoin price has been fluctuating very rapidly. This is because the 

price of Bitcoin, unlike that of stocks and shares, lacks the pillars that otherwise hold financial assets 

together and thus, lacks the support of any other ground that would make the price fluctuation more 

stable. Hence, any external factor that could easily change the demand and supply of Bitcoins would 

significantly affect Bitcoin prices. In the last few years, bitcoin price has been extremely volatile and 

the bitcoin market has been even more unpredictable due to Covid. The volatility of Bitcoin price can 
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be understood from the fact that it shot up from around $10,000 to $65,000 in a span of only 3-4 

months. More interestingly, the price fell as quickly after the peak. 

Previously, various machine learning methods have been introduced to forecast bitcoin price. 

However, not many of the models have been very successful in accurately predicting the Bitcoin 

price. Time-series forecasting involves correctly predicting future behaviour of time-series data by 

carefully analysing it. The kind of models (viz. nonparametric and semi-parametric) that are to be 

implemented depend on what information we have about the model function. It is to be noted that 

parametric regression models are the ones that are most frequently used. These models can be both 

linear and non-linear and are comparatively easy to work with since there is a sufficient amount of 

prior information regarding the function that will be used. However, in this project, we will 

concentrate on the performance of different predictive non-parametric and semi-parametric regression 

models in predicting Bitcoin price. We will present a comparative analysis of the model performances 

along with reasoning as to why certain models perform better than the others. 

 

1.2 Motivation 

 

Bitcoin is one of the most widely used cryptocurrencies today. However, the amount of its market 

volatility and the amount of non-periodic fluctuations in its price, caught my attention. Time series 

predictions can be made comparatively easily for data that has a periodic trend. However, Bitcoin 

price has an extremely uneven trend and does not follow any specific pattern. As a result, making 

correct predictions on Bitcoin prices is not an easy task. If Bitcoin has to be studied as an investment 

asset, it is very important to be able to correctly predict the future trend of its price. Most of the earlier 

Bitcoin studies have focussed on the technical aspects of Bitcoin and its network. In contrast to that, 

this work will focus on looking at Bitcoin from a financial aspect and will attempt to introduce some 

degree of predictability to it. 

At the same time, it will be very interesting to note the performance of various predictive regression 

models for Bitcoin price prediction. Different models work on different principles and not all model 

will have a high degree of performance while making Bitcoin predictions. Also, it is to be noted that 

non-parametric models capture the behaviour of the data directly from the training set and not by 

using any pre-defined function. Hence, it will be very interesting to note which model is able to 

capture the behaviour of the data most accurately. Hence, a motivation for me to work on this project 

is that if a high level of certainty can be brought about in the Bitcoin price predictions, this work 

could contribute in the direction of making Bitcoin a global currency. There have been many 

researches in predicting Bitcoin price, some of which have been discussed later. 
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On a personal note, I have been very keen to work on this project owing to my tremendous interest in 

implementing Data Science concepts in the domain of finance. Since, I take a keen interest in stocks 

and debentures, I have always wondered if some sort of accurate predictability can be built on stock 

prices. Since, most stock price data show similar kind of non-seasonality behaviour as that of bitcoin 

prices, the knowledge, experience and findings from this project will help me tremendously to 

understand and build models that would be able to make accurate stock price predictions, even though 

there are several economic and political factors that affect stock prices, unlike in the case of Bitcoin. 

This project will also help me understand the world of cryptocurrencies better from an investment 

asset point of view and the extensions of this project will also help me in identifying more stable 

cryptocurrencies and the factors that lead to this stability, a work that I wish to pursue in the future. At 

the same time, I am looking at non-parametric and semi-parametric models in this project because I 

have extensively used different parametric models in the past and have a good idea on what kind on 

predictions will these models make on Bitcoin prices. However, I have not explored the other 2 kinds 

of regression models too much on time series data and hence, would like to find out more about their 

performance on Bitcoin price data and understand whether these kinds of models are better at making 

predictions on non-periodic time-series data than on data with some seasonality. In a nutshell, this 

work can be considered the first building block of my future research on cryptocurrency and stock 

price predictability. 

 

1.3 Objectives 

 

The primary objective of this work is to analyse which of the selected predictive regression model is 

most suitable to make predictions for Bitcoin prices, while strictly using endogenous features related 

to price. The aim of this study is to serve as the ground work for my future research work on how 

non-parametric and semi-parametric models can be used to predict the behaviour of crypto currencies 

and stocks. As a result, the simplest of the available datasets have been chosen to understand how 

maximum information can be extracted from minimalistic data. Once this is done, identifying other 

relevant endogenous and exogenous features and adding them to our model will hugely limit our 

future challenges. We will try to look at which model is able to precisely extract the behaviour of the 

training data and is then able to make precise predictions. The models that we will be using for 

evaluation are K-Nearest Neighbours, Random Forest Regressor, Kernel Ridge Regression, 

Smoothing spline and Gaussian Process Regression (GPR). In case of GPR, we will also be testing the 

model performance using various kernels. It is to be noted that the period of the year 2021 will not be 

fed into the model for training purpose and will simply be used as the validation set. This will give us 
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an authentic idea about the model performance. Also, model parameters will be selected using proper 

cross validation and not blindly. 

Another important objective of this project would be to check if the models are able to predict the 

sudden rise and the subsequent plunge in the Bitcoin prices in the year 2021. The increase in the 

Bitcoin price and then the sudden crash is called a bubble. We will also try and figure out which of 

these models is able make precise predictions regarding the formation of a bubble. Having this 

capability is very important if we have to study the Bitcoin behaviour from an investment asset 

perspective. 

 

1.4 Dissertation Structure 

 

The following structure will be followed in the thesis: 

1 Chapter 1: In this chapter, we will introduce the thesis and explain what the thesis will be all 

about. This includes explaining the overview, motivation and objectives of the thesis. 

 

2 Chapter 2: In this chapter, we will look into the background of the thesis, that will involve 

understanding Bitcoin concepts from an investment and a technological point of view and 

looking into the difference between parametric, non-parametric and semi-parametric regression 

models. At the same time, some of the related previous work that were looked into as part of 

the literature review will be presented in this chapter. 

 

3 Chapter 3: In this chapter, we will look into the algorithms and theoretical concepts behind the 

different chosen models. 

 

4 Chapter 4: In this chapter, we will look into the methodologies that will be implemented for 

getting the predictions from the different models and also the model results. 

 

5 Chapter 5: In this chapter, we will look into the scope for future work and the conclusion 

drawn from the project. 
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Chapter 2 

 

Background and Literature Review 

 

 

2.1 Cryptocurrency, Blockchain and Bitcoin 

 

The concept of cryptocurrency was introduced to the world way back in 1998 by a person named Wei 

Dai. As the name suggests, cryptocurrency is nothing but currency that is encrypted and was 

developed to be used in the form of digital currency. It has today become an important financial 

commodity in the international market. Many cryptocurrencies have been developed since the 

development of Bitcoin in 2009. But the prices of all these cryptocurrencies are extremely volatile and 

keep changing dramatically. This affects the behaviour of the cryptocurrency investors. Even though 

many researchers have tried to develop an in-depth understanding of the cryptocurrency market, there 

is still a long way to go, especially compared to our understanding of other financial assets and the 

way they work [5]. 

However, what we do know with absolute certainty is that this kind of currency is only virtual and 

does not really exist in the form we know currencies to exist in. In other words, cryptocurrency is a 

form of digital currency and because it is encrypted, it is very difficult to be tampered with. These 

currencies do not find the backing of any recognised financial institution or person. These are also not 

issued in the manner in which stocks or bonds are issued. These currencies simply exist and are 

generated according to the algorithm that generates them. Cryptocurrencies are still considered an 

asset because they have some financial value, which can be exchanged for some other cryptocurrency 

or some real currency. At the same time, cryptocurrency units are called coins and their ownership 
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can be transferred from one account to another. Cryptocurrencies enable unique monetary transactions 

anywhere across the world without having money to be physically sent or received [6]. 

When these currencies move between accounts, they result in financial transactions. These 

transactions are recorded in ledgers called “Blockchain”. Bitcoin is a type of cryptocurrency that 

works on Block chain technology. Blockchain is a distributed public ledger and all transactions that 

have taken place and committed are stored in list of blocks. As newer transactions take place, new 

blocks are appended to the chain. These blocks use cryptography as means of providing security and 

use distributed consensus algorithms for maintaining ledger consistency. Blockchains are 

decentralised, maintain anonymity and can be audited, Since, blockchains allow financial transactions 

to take place without the intervention of any middleman institution, this technology can be used as 

digital financial assets, remittances and online payments, among other fields such as IoT and security 

services. The transactions, once packed into a blockchain block, cannot be changed and thus, can 

provide a high level of security. Also, because the blockchain network is distributed, a single point of 

failure can be avoided [3]. 

However, there are certain issues that blockchains still face. First and foremost, scalability is an issue 

with blockchain. When the rate of transaction information coming in increases, block size will have to 

be increased that could lead to more storage space. This will eventually lead to slower network 

transmission. Next, in case of Bitcoin mining, miners find ways to hide the mined Bitcoin blocks so 

that they could be sold once the prices have increased further. This could result in frequent branching 

and hinder the development of the blockchain. Also, Bitcoin may not be as fool proof from a security 

point of view as it may seem. It has been shown that information leakage could take place when 

transactions are taking place [3]. 

In Fig. 1, we can see that blockchain is formed by attaching one block after the other using the parent 

block hash. Each block header stores the previous block hash and thus contains the information 

regarding the parent block. These blocks store all the transaction records. The first block in a 

blockchain is called the genesis block [3]. 

 

Figure 1[3]: Diagram showing blockchain 
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Figure 2[3]: Diagram showing a block structure 

 

In Fig. 2 above, we can see that a block header constitutes the following information [3]: 

i. Block version, which decides the set of block validation rules to be followed and is 

dependent on what the blockchain will be used for such as cryptocurrency, blockchain for 

industry. 

ii. Merkel Tree Root Hash, which contains the hash value of all the transaction records 

present in the box. 

iii. Timestamp, which contains the current time, is used as proof of the time at which that 

particular block was used. 

iv. nBits, which identifies the complexity and the computation power that would be need to 

mine in a particular network. 

v. Nonce or number only used once, which is of 4-bytes and increases from 0 with every 

hash calculation. This information is used by the miners during the mining process. 

vi. Parent block hash, which is a 256-bit hash value that points to the previous block. 

Each transaction is signed using digital signatures, which uses public key cryptography. The digital 

signatures help to establish the authenticity of the account owner and also the owner’s authorisation to 

spend the funds. Also, integrity of the transaction data can be maintained using these digital 

signatures. Each user in the blockchain network has a pair of public key and private key. The public 

key of each user, which is derived from his/her respective private key using some mathematical 

function, is available to everyone on the network. In the signing phase, the message is signed using 

the sender’s private key. Now, because the public key of the sender is available to all the nodes in the 

network, any node in the network can verify the digital signature and thus, can verify the authenticity 

of the sender. Also, the integrity of the message can be verified using the digital signature since the 

signature is mathematically bound to the message and also to the private key of the sender. This 

signature will change if the data has been tampered with and validation of the data integrity will fail. 
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At the same time, the sender encrypts the data using the public key of the receiver. Upon receiving the 

encrypted data, the receiver decrypts the data using the own private key. 

There are 3 types of Blockchain categories: 1. Public blockchain, 2. Private blockchain and 3. 

Consortium blockchain. This division has been broadly created on the basis of how the network nodes 

are allowed to join the consensus process. The consensus process in blockchain is the procedure using 

which the nodes connected to the network at a certain point in time reach a common agreement about 

the current state of the ledger. In this manner, trust can be established between the network peers and 

also every new block added to the blockchain network can be agreed to be the one true block. In case 

of public blockchain, all the peers present in the network can take part in the consensus process. Also, 

all the transaction records are visible to all the peers. In case of private blockchain, the consensus 

process would be open to only those nodes that come from one particular organisation. This is a 

centralised network and is under the complete control of the organisation. Lastly, in case of 

consortium blockchain, the network is built by several organisations and only a small group of pre-

selected nodes would be allowed to join the consensus process [3]. 

There are many algorithms such as PoW (Proof of Work), PoS (Proof of Stake), PBFT (Practical 

Byzantine Fault Tolerance) and many more using which consensus can be established in the network 

Different cryptocurrencies use different consensus algorithms. However, in this study, we will 

concentrate only on PoW since this algorithm is the one that is used in the Bitcoin network. In this 

algorithm, the node that wants to publish a transaction needs to perform a huge amount of task [3]. 

This huge amount of task comes in the form of a complex and a computationally intensive 

mathematical puzzle [4]. This is done so that the block created can be included in the ledger using the 

block header. This process is called mining and the nodes that carry out the mining task are called 

miners. The mathematical puzzle is such that the resultant answer is a hash value of a block header. 

The nonce, present in the block header, is constantly changed by the miners to arrive at different hash 

values. Once the miner has arrived at the correct hash value, the block is immediately broadcasted to 

other nodes in the network. These nodes then verify if the hash value is correct or not. Once the hash 

value is declared to be correct, the miner receives a certain number of cryptocurrencies. At the same 

time, this block also gets appended into the respective blockchains of the other miners [3]. The 

number of bitcoins available to miner per block halves every four years. As of 10th August, 2021, 

there are 6.25 million bitcoins available per mined block. 

There are many theories behind the inventor of Bitcoin, Satoshi Nakamoto, not revealing his identity. 

One important theory that comes to light is that Nakamoto wanted to instil people’s faith in his 

creation. Nakamoto did not want people to think that the creator of Bitcoin would be earning profits 

out of it. Bitcoin was launched right after the global financial crisis of 2008-2009 when people had 

lost faith in centralised banking institutions. This could be the reason behind why Nakamoto made the 
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Bitcoin network decentralised [7]. Bitcoin provides many advantages over normal currency because it 

can be easily transferred anywhere in the world through the internet and also maintains anonymity of 

the account owners. At the same time, Bitcoin is super transparent because every node in the network 

has a copy of the public ledger. However, Kaushal et al. [7] identifies volatility and degree of 

acceptance as the major factors hindering the growth of Bitcoin. Pavel et al. [8] analysed whether 

Bitcoin had the potential to become a global currency and found that price volatility stops it from 

widespread market acceptance. 

Bitcoin works using the “Blockchain technology” and the “Proof of Work (PoW)” consensus 

algorithm. Bitcoins are created through mining in which transactions are verified by the nodes (or 

users) in the network and recorded into a public ledger called blockchain. The users are in turn 

rewarded with bitcoins and transaction fees for their service. The computation problem in the PoW 

algorithm that the miners try to solve using huge computational power is given as [7]: 

Find nonce such that: 

H(nonce || prev_hash || tx1 || tx2 || ……... || txn) = Output hash with some leading zeros 

where, H is the hash function, pre_hash is the hash of the previous block, tx1- txn are the transactions 

that have not yet been included in the block. Bitcoin resolves the problem of double spending since it 

uses Blockchain technology. This problem occurs in digital currency transactions when the same 

digital currency can be spent twice. However, if the original digital currency transaction details can be 

copied and broadcasted, the same Bitcoin can be used multiple times. Since, Bitcoin maintains 

transaction logs in the form of blockchain, each transaction can be authenticated and double spending 

is prevented. 

Bitcoin has a financial value since it can be used to purchase goods and service if it accepted by the 

seller. Bitcoins can be bought using standard global currencies if approved by the respective 

governments. Since Bitcoins are decentralised, Bitcoin transactions can take place without the 

intervention of an intermediate financial institution. However, there are conflicting views among 

economists and financial institutions regarding whether Bitcoin satisfies the criteria of being a 

currency [8]. 

 

2.2 Data Analytics of the Price Volatility in Bitcoin 

 

Bonneau et al. [9] correctly points out that we still have very limited understanding of Bitcoin in a 

way that we still might not be in a position to create a better cryptocurrency than Bitcoin. At the same 

time, it is still unclear if a different consensus design would be able to provide more stability and 
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efficiency to Bitcoin as a functional currency. There are many such Bitcoin parameters that still needs 

more research. In a way, it is difficult to judge whether Bitcoin’s success, though limited, is due its 

design or simply because it is the first cryptocurrency. Liang etal.[10] analyses the clustering 

structures for cryptocurrency, stocks and fiat currency (or foreign exchange such as U.S. Dollars, 

Indian Rupee, Euro) in order to classify the economic activities of these financial assets and identify 

which of these assets dominate the financial market. They observe that the foreign exchange clusters 

are consistent with the geographical regions, meaning that currencies belonging to the same 

geographical region fall in the same cluster. In case of stocks, the clustering is formed with respect to 

their business domains. However, no particular clustering rule was observed in case of 

cryptocurrencies. Also, the cryptocurrency clusters kept changing more frequently than the other two 

financial assets. Thus, foreign exchange and the stock markets are more robust with respect to the 

cryptocurrency market. This raises doubts regarding the stability of cryptocurrencies, including 

Bitcoin. 

There are many financial and economic factors, including price volatility, relating to Bitcoin that 

needs to be investigated before it can be considered a global currency. However, this work will focus 

on the price volatility of Bitcoin since we are trying to understand the nature of the Bitcoin price and 

make predictions on it. Also, price volatility is the feature where Bitcoin differs from global 

currencies and other more popular financial assets the most. Price volatility of Bitcoin is very high 

within short spans of time. This can be seen from Fig.3 which shows the manner in which Bitcoin 

prices have been changing since mid-2017 (It is to be noted that the y-axis scales by 10,000$). This 

kind of massive volatility decreases the effectiveness of Bitcoin as a currency because this would lead 

to direct or indirect losses to businesses. On the other hand, global currencies such as Indian Rupee 

has on changed from around 0.016$ in 2013 to 0.013$ in 2021. In the economics world, such a small 

change too is considered high volatility, so one can understand the situation with Bitcoins. It is to be 

noted that the Bitcoin price volatility prior to mid-2017 is also considerable. However, because of the 

large scaling in the y-axis, this volatility is not getting captured and highlighted in figure 3. 

Businesses using Bitcoin as a mode of transaction would have to frequently change the value of their 

goods and services in order to keep the prices relevant with regards to the Bitcoin price changes. Of 

course, there are measures such as market exchange pricing and instantaneous exchange facilities that 

can reduce the risk to businesses due to Bitcoin price volatility [8]. 



A v i e j a y  P a u l                3 1  A u g u s t ,  2 0 2 1                  P a g e  | 22 

 
School of Computer Science and Statistics  Trinity College Dublin 

 

Figure 3 showing price volatility in Bitcoin 

 

So, in order to understand the reasons for such high price volatility in Bitcoin, we need to understand 

the drivers of Bitcoin prices. Pavel et al. [8] mentions 3 such drivers that affect bitcoin prices: 

1 Supply and Demand of Bitcoin: Bitcoin demand is estimated using 2 factors: 1. Volume of 

Bitcoin usage in exchanges and 2. Rate at which Bitcoin is circulating. This rate is a measure of 

how frequently is a unit of Bitcoin used to buy goods and services. As the rate of bitcoin 

circulation increases, the Bitcoin price also decreases. But as the Bitcoin usage increases in the 

exchanges, the Bitcoin price subsequently increases. Also, the demand for Bitcoin depends on 

how dependable it is as a medium for exchange. Because Bitcoin is a virtual currency and does 

not exist in reality, it does not have any intrinsic value. Therefore, the demand for Bitcoin 

depends only on its estimated future valuation and not on any kind of intrinsic value. However, 

this demand can be artificially changed easily by changing the future expectations from 

Bitcoins, such as by declaring more acceptance for Bitcoin in the future. On the other hand, the 

supply of Bitcoin is estimated by determining the amount of Bitcoin in circulation, which is 

declared publicly. This, in turn, depends on how frequently is Bitcoin getting mined. 

 

2 Attractiveness of Bitcoin: The more attractive Bitcoin is in the investment market, higher will 

be the price. There are several factors that determine how attractive Bitcoin is at a certain point 

in time. These are: 

 

i. Attractiveness of Bitcoin can be affected by the risk involved in the entire system. As 

mentioned earlier, Bitcoin does not have any intrinsic value. Thus, its future valuation 

will depend on the belief that Bitcoin will remain relevant as a financial asset in the 

future. If Bitcoin loses its credibility in any manner, its price will fall drastically.  
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ii. Next, the Bitcoin network has to be safe from cyberattacks. Many cyberattacks have 

occurred on the Bitcoin network in the past and this is a major hindrance in uplifting 

the confidence of participants in the financial market on Bitcoin since these attacks 

have the potential to de-stabilise the Bitcoin system. 

iii. Bitcoin attractiveness can also be impacted greatly by its portrayal in the news and 

social media. Positive portrayal will definitely boost the Bitcoin prices and vice-

versa. Also, the mere presence of Bitcoin in media can affect its price because it 

reduces the information search cost of potential investors. At the same time, 

attractiveness towards of a financial asset can be both positive and negative with 

respect to the kind of sentiments floating in the news regarding the financial asset. 

Hence, attractiveness can influence Bitcoin prices both ways in this regard. 

 

3 Global Economics and Financial Developments: Global economics parameters such as oil 

prices, currency exchange rates can also affect Bitcoin price. Such parameters, if present in 

suitable conditions, can push the use of Bitcoins in commerce, resulting in higher demand and 

eventually higher price. At the same time, parameters such as stock price can have both 

positive and negative impact on Bitcoin price. If the stock prices decrease, this could lead to 

investors pulling out money from the stock. If Bitcoin seems to be a viable investment option at 

that point in time, this money could be pumped into buying more Bitcoin and thus, increasing 

the demand. This could increase the Bitcoin prices and hence, is a negative relationship with 

stock returns. At the same time, if stocks yield good results, investors could take some risk and 

put in some of the profits in Bitcoin, thus increasing the Bitcoin price again. This shows a 

positive relation between stock returns and Bitcoin price. 

Thus, Pavel et al.[8] proposes the following model that takes into account the above 3 drivers to get 

the Bitcoin price. The model is shown below: 

 

𝑝𝑡 = 𝛽0 + 𝛽1𝑝𝑡
𝐺&𝑆 + 𝛽2𝑦𝑡 + 𝛽3𝑣𝑡 + 𝛽4𝑏𝑡 + 𝛽5𝑎𝑡 + 𝛽6𝑚𝑡 + 𝜀𝑡 , 

 

where, subscript t denotes any time ‘t’, 𝑝𝑡 is the price of Bitcoin at the time ‘t’ in dollars, 𝑝𝑡
𝐺&𝑆 is the 

price of the goods and services in the economy at time ‘t’,𝑦𝑡 is the volume of Bitcoin usage in the 

exchanges at time ‘t’ (or size of the Bitcoin economy),𝑣𝑡 is the rate at which Bitcoin is circulating at 

time ‘t’, 𝑏𝑡 is the total amount of Bitcoin in circulation in the market at time ‘t’. These variables 

account for the demand and supply of Bitcoins in the market. 𝑎𝑡 is the parameter that captures the 

attractiveness of investing in Bitcoin at time ‘t’, 𝑚𝑡 is the parameter that captures the global 



A v i e j a y  P a u l                3 1  A u g u s t ,  2 0 2 1                  P a g e  | 24 

 
School of Computer Science and Statistics  Trinity College Dublin 

economics and financial parameters at time ‘t’ and 𝜀𝑡 is an error term. It is to be noted that the given 

model is clearly a parametric model, whose details we will see later [8]. 

Now, higher the prices of goods and services, higher is the Bitcoin price. This is because a higher 

amount of Bitcoin will be used in the transactions, thus inflating the demand for Bitcoins. Thus, there 

is a positive correlation between price of goods and services and Bitcoin price and hence, 𝛽1 is 

expected to be positive. Next, bigger the Bitcoin economy, higher is the demand for Bitcoin that 

would lead to increase in Bitcoin price. Hence, here too is positive correlation between volume of 

Bitcoin usage in the exchanges at time ‘t’ and Bitcoin price at time ‘t’. Therefore, 𝛽2 can also be 

expected to be positive. We have already seen that as the Bitcoin circulation rate and the amount of 

Bitcoin circulation in the market increases, the Bitcoin price decreases. This is a negative correlation 

and hence, 𝛽3 and 𝛽4 should be negative. Now, it is to be noted that the amount of Bitcoin in 

circulation is largely pre-defined and the variable is exogenous too since it depends on how many 

Bitcoins are being mined and brought into the market. Hence, 𝛽4 will be such that it is statistically 

insignificant. 𝛽5 captures the behaviour of Bitcoin attractiveness in the model. As discussed above, 

attractiveness can positively or negatively impact Bitcoin price and hence, 𝛽5 can be either positive or 

negative. Lastly, 𝛽6 represents Global economics and Finance. Similar to 𝑎𝑡, we have seen that 𝑚𝑡 

also affects Bitcoin prices both positively and negatively. As a result, 𝛽6 can be both positive and 

negative [8]. 

There are certain intrinsic issues with the data, as analysed by Pavel et al.[8], that are handled 

separately. The first issue is that the explanatory variables are mutually correlated. Therefore, there 

will be the issue of endogeneity. Endogenous time series models are those in which an input variable 

is affected by other variables in the system. Next is the issue of stationarity in the data. This means 

that the data does not have any kind of seasonality. And making predictions on stationary data could 

lead to misleading results. These issues are tackled using various techniques, which are not in the 

scope of this study. 𝑝𝑡and 𝑝𝑡
𝐺&𝑆are determined in terms of dollars. The number of Bitcoins mined has 

been taken as the total number of Bitcoins 𝑏𝑡 in circulation. Next, in order to determine the size of the 

Bitcoin economy, 𝑦𝑡, total number of unique Bitcoin transactions per day and total number of Bitcoin 

addresses used per day are estimated. Then, instead of using the rate of Bitcoin circulation directly, an 

alternative is used. This proxy is the number of Bitcoin days destroyed for a given transaction that is 

calculated by multiplying the number of Bitcoins in a given transaction and the number of days since 

the involved coins were last used. In order to capture the data for Bitcoin attractiveness, 𝑎𝑡, the 

number of online views about Bitcoin in Wikipedia is taken into consideration. At the same time, the 

number of new members and new posts on online Bitcoin forums are extracted from bitcointalk.org. 

Finally, to account for global economics and financial developments, 𝑚𝑡, oil prices are used since oil 

price is one of the most (or the most) important factor that drives global market [8]. 
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With regards to the result of the impact of the drivers, it is found that demand has more impact on the 

Bitcoin prices than supply. Supply is characterised by number of Bitcoins in circulation whereas, 

demand for Bitcoin is determined from total number of unique Bitcoin transactions per day, total 

number of Bitcoin addresses used per day and number of Bitcoin days destroyed. The following 

observations were noted for the price drivers through the respective coefficients of the variables [8]: 

1 Matching the expectations, it is observed that as the Bitcoin stock (supply) increases, the 

Bitcoin price decreases. On the other hand, as the size of the Bitcoin economy (demand) 

increases, the Bitcoin decreases. However, it is observed that the number of transactions, which 

forms a basis for the Bitcoin economy, has very less significance on the Bitcoin price. 

 

2 Next, Bitcoin attractiveness has a significant impact on Bitcoin price. As mentioned above, this 

driver is measured using number of online views about Bitcoin in Wikipedia, and using the 

number of new members and new posts on online Bitcoin forums. Surprisingly, it is observed 

that new members have a negative effect on the Bitcoin price. This means that members in the 

Bitcoin forums ought to be information driven. At the same time, number of new posts has a 

positive impact on Bitcoin price, implying that more discussion on Bitcoin results in more trust 

in Bitcoin among investors, resulting in higher demand and price. It is also observed that 

number of Wikipedia views on Bitcoin too has a positive impact on its price. In this case, there 

could be multiple interpretations. An increasing number of views about Bitcoin on Wikipedia 

could mean that this was fuelled by some positive or negative new regarding Bitcoin in the 

news media. However, since the impact is positive, it means that the positive sentiments in the 

new media overtake the negative sentiments, which are usually regarding security of the 

Bitcoin network. Number of Wikipedia views could also mean an increasing interest amongst 

investors in Bitcoin, thus showing more acceptance of the asset. However, it is to be noted that 

these investors who go into Wikipedia to search for more information on Bitcoin would be new 

investors since experienced Bitcoin investors are more likely to search for information in 

websites that are more specialised on Bitcoin. In a nutshell, the positive impact of a greater 

number of Wikipedia views regarding Bitcoin could either mean verifying Bitcoin related 

positive sentiments by users or simply greater interest in Bitcoin amongst new investors. 

 

3 Increase in global oil price or exchange rates could lead to inflation and thus less money 

amongst investors to invest in Bitcoin. This leads to less demand and lower Bitcoin price. 

However, it is observed that the impact of global economy and finance indicators do not have 

any significant impact on Bitcoin price. 
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Thus, is can be said conclusively that Bitcoin is a sentiment driven financial asset, unlike stocks and 

foreign exchange. Other factors such as demand and supply and global economics do not have a 

significant impact on Bitcoin price. This means that there is a high possibility that Bitcoin price will 

remain quite volatile even in the future since sentiment is a parameter that is very sensitive and does 

not take long to alter given the strength of social and new media today to influence market opinion. 

 

2.3 Previous Work on Bitcoin Predictions 

 

There has been a significant amount of study done on Bitcoin price prediction. The researchers have 

studied different model and approached and have studied different factors that could be used to 

predict Bitcoin prices. Rathan et.al [12] discusses decision tree and linear regression techniques that 

can be used to predict bitcoin prices. They managed to attain accuracies of over 95% in both the 

models and conclude that the linear regression model outperforms the decision tree model. The 

features that they use to make predictions are Time Stamp, opening price, Bitcoin High price, Bitcoin 

Low price, closing price, Bitcoin volume traded and Bitcoin value traded. However, no analysis of the 

variables has been presented. Velankar et.al [11] attempts to study the daily bitcoin trends with a 

focus on the different factors that affect bitcoin prices. The features that they use in their model are 

block size, total bitcoins mined, daily high and low values of the bitcoin, total number of unique 

bitcoin transactions and trade volume. The models that they propose to study the trends are Bayesian 

Regression and Random Forest. But the authors present no significant result or conclusion. Joshila et 

al. [13] use SVM to make Bitcoin predictions and attain an accuracy of about 70% on the test data. 

Rane et al. [14] study the Bitcoin data under numerous models such as Auto-Regressive Integrated 

Moving Average (ARIMA), Linear Regression, Binomial Generalised Linear Model (BGLM),  

Support Vector Machine (SVM), Long Short Term Memory Network Model (LSTM) and Non-linear 

Auto-Regressive with Exogenous Input Model. The authors get accuracy levels in the range of 51%-

57%. Again, not much analysis of the models and that of the results have been presented. 

Phaladisailoed et al.[15] use different regression models such as Theil-Sen and Huber regression 

models and deep learning regression models such as LSTM and GRU models. The deep learning 

regression models run for 480 epochs with batch size of 160. It is observed that the accuracy of all the 

4 models is very high with MSE in the order of 10−6.The variables used in study are same as those 

used in [12]. Ferdiansyah et al. [16] use LSTM model to make Bitcoin prediction. They train the data 

for different numbers of epochs and the best result comes out for 500 epochs with RMSE = 288.59, 

which is declared not good. The researchers attribute this to local and global political and economic 

issues which have not been considered in the study. Tandon et al. [17]use LSTM with the motive of 

studying the effect of k-cross validation on the Bitcoin data and observed that a 10-cross validation 
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does help in improving accuracy of the model by a good amount. Roy et al.[18] studies the 

performance of ARIMA, Auto Regressive model (AR) and Moving Average model (MA) on Bitcoin 

price data, with focus on ARIMA. The researchers carry out the Augmented Dickey Fuller test in 

order to check the stationarity of the data with the NULL hypothesis as “data has a unit root and is 

non-stationary”. Upon receiving a p-value of 0.999, they conclude that the data is non-stationary. This 

is contradictory to our initial understanding of the data and observation. The study does not produce 

details of the test and hence, the result of the test will not be considered in our study. The researchers 

observe that the accuracy of the ARIMA model, which is a combination of the AR and the MA 

model, is better than the other two. Nithyakani et al. [19] evaluate the performance of a Bi-directional 

LSTM and have come up with a MAPE of 13%. Hashish et al. [20] propose a hybrid model of Hidden 

Markov model and LSTM. The researchers here use a set of features that can be categorised into 1. 

Orders and Trades, which are features that have been extracted from the raw data and 2. Technical 

indicators, which have been computed from the historical data to predict the price movement. The 

authors observe that the performance of the hybrid model is very good with MAE of 2.5 and better 

than the performance of the standard time-series models such as LSTM and ARIMA. Wu et al.[21] 

perform an Augmented Dickey Fuller test on the data to check its stationarity. The researchers 

observe that the test produces a unit root and hence conclude that the data is stationary, which is at par 

with our initial observation regarding the stationarity. Hence, here we reject the conclusion of the 

ADF test of the test done by Roy et al.[18]. [21] conclude that LSTM with Auto Regressive AR(2) 

model perform better than the convectional LSTM model. Auto Regressive AR(2) model is the kind 

of model in which the present value in the time series is calculated from the previous 2 values. 

Adegboruwa et al. [22] studies the manner in methods in which time series inputs can be modelled in 

LSTM. These are some research works that mostly study the endogenous factors that determine the 

Bitcoin price trends. Anupriya et al. [32] use ARIMA to make Bitcoin predictions. Mean error in this 

case has been found to be less than 6%. But it was observed that almost all of these studies do not 

present their research in detail or provide a plot of the prediction over the test data, something that 

would have further helped to visualise the accuracy of these works. At the same time, none of these 

works concentrate completely on analysing the performance of non-parametric regression models in 

predicting Bitcoin price, which is the aim of our study. Albariqi et al. [31] is one of the few works that 

present a thorough representation of the task performed. The researchers use Multi-Layer Perceptron 

and RNN in their study. To select the hyperparameter values of learning rate, number of hidden node 

and learning algorithm, cross validation has been performed and the results have been provided. Also, 

a comparative study has been performed to select the optimisation strategies amongst Adam, 

AdaDelta, RMSProp, and Stochastic Gradient Descent (SGD). The researchers conclude that the 

models achieve better accuracy with long term predictions rather than short term predictions. At the 

same time, the researchers also conclude that MLP achieves better accuracy than RNN. 
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The next few consulted papers examine text to perform sentiment analysis in some way or the other to 

form endogenous features that can be fed into predictive models. Pavlyshenko et al. [23] analyses how 

combining a term that describes the dynamics of model deviation from real values with a regression 

model can help to make better Bitcoin price predictions. This is done using expert’s opinion where an 

expert, who understands investor behaviour, defines the points of the local extremes that serve as the 

pivots for the deviation. Also, the Bayesian approach has been investigated to use probabilistic 

concepts in order to capture the outliers in the Bitcoin price data set. This study also takes into 

account google search trends. Yao et al. [24] studies the influence of news articles on Bitcoin price. 

They perform a sentiment analysis and conclude that such articles do influence Bitcoin price. They 

also propose a new technique to extract features from the news articles called sentigraph and conclude 

that this approach yields better results than the conventional techniques. Sattarov et al. [25] study the 

impact of public opinion on twitter on Bitcoin price. The researchers conclude that Bitcoin price can 

be predicted with around 63% accuracy when analysed with Twitter feed using Valence Aware 

Dictionary and Sentiment Reasoner (VADER) and with historical Bitcoin (closing) price. The 

researchers found a strong correlation between Bitcoin price and Twitter sentiment using a Random 

Forest Regressor model. Pant et al. [26], too, perform sentiment analysis on Twitter. However, they 

use Recurrent Neural Network (RNN) to build the prediction model and use Random Forest to choose 

between the different text analysis techniques. The researchers obtain an accuracy of 77.62% in the 

prediction. Serafini et al. [27] study the influence of network sentiments by analysing Tweets related 

to Bitcoin and financial features along with statistical and deep-learning methods such as Auto-

Regressive Integrated Moving Average with eXogenous input (ARIMAX) and LSTM on Bitcoin 

price prediction. The researchers conclude that asset sentiment plays a significant factor in 

determining Bitcoin price, an observation that is consistent with our initial study. Also, another 

conclusion derived from the study is that ARIMAX achieves better prediction accuracy (very accurate 

prediction with MSE of 0.00030187 on test data) than LSTM. Radityo et al. [30] uses different 

Artificial Neural Networks models, such as Backpropagation Neural Network (BPNN), Genetic 

Algorithm Neural Network (GANN), Genetic Algorithm Backpropagation Neural Network 

(GABPNN), and Neuro Evolution of Augmenting Topologies (NEAT) in order to make predictions 

on Bitcoin price. The researchers conclude that BPNN produces the best accuracy with MAPE of 

1.998 ± 0.038%. The researchers use some popular market trend indicators such as William %R that 

serves as a momentum indicator and Exponential Moving Averages (EMA). Different periods of these 

indicators have been taken into consideration for study. Feature selection has been done using Greedy 

Forward Selection approach. The features that the researchers study are open, high, low, close, 

volume, EMA 12, EMA 26, %R 5, %R 14.These are some studies that perform text analysis in order 

to incorporate sentiment as a feature in the models. The conclusions drawn from these studies are 

pretty much in line with our expectation that Bitcoin is a sentiment driven financial asset. 
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Apart from these works, some more researches have been studied and referred to. These researches 

study the effect of other social and economic factors on Bitcoin price. Aggarwal et al. [28] analyses 

the effect of gold price on Bitcoin using models such as Convolution Neural Networks (CNN), LSTM 

and Gated Recurrent Unit (GRU). After bringing in tweet sentiment as a feature, the researchers 

conclude that LSTM performs much better than before with RMSE increasing from 151.67 to 32.98. 

The researchers also raise doubt on the correlation between gold price and Bitcoin price. Luo et al. 

[29] study the effect of Covid-19 data (confirmed case, recovery and death) on Bitcoin price. Luo 

combines this with sentiment analysis using Twitter and concludes thatCovid-19 data does not have 

any impact on Bitcoin price. Another important conclusion of this study is that investors refer to 

information from last 5 days before investing in Bitcoin. The researcher uses Random Forest, 

Decision tree, AdaBoost and SVM to make predictions and find that SVM is not very suitable to 

make Bitcoin predictions. 

 

2.4 Parametric, Non-parametric and Semi-parametric 

Regression Models 

 

The different types of predictive regression models with respect to their model function are 

parametric, nonparametric and semi-parametric. The model that is to be implemented depends on 

what information we have about the function [33].  

The type of model that is most frequently used is a parametric regression model. These models can be 

both linear and non-linear and are comparatively easy to work with since there is a sufficient amount 

of prior information regarding the function that will be used. Hence, a fair amount of precise 

estimation and correct interpretation can be done regarding parametric regression models. In these 

models, value estimation of a certain number of model coefficients is done. Accuracy of the 

prediction depends on whether the correct model form has been used and how well the model 

parameters have been tuned. These models also train pretty fast. So, if we have the data for the 

independent variable 𝑋 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘) where 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑘 forms the feature vector, and for 

the dependent variable Y, the model function required to capture the relationship between X and Y 

can be written as: 𝑌 = 𝑓(𝑋, 𝛽) + 𝜖, where X is the feature vector and the β forms the coefficient 

vector and ϵ is the distribution of the error. 𝑓(𝑋, 𝛽) should be correctly known in order to make 

correct predictions. Some examples of common parametric regression models are linear regression, 

logistic regression. Parametric models can be 2 types: 1. Linear models and 2. Non-linear models. 

Linear models are those in which the final model is just a linear combination of the predictors 𝑥1, 𝑥2 

and so on. For example: 
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𝑌 = 𝛽0 + 𝛽10𝑥1 + 𝛽11𝑥1
2 + 𝛽20𝑥2 + 𝛽21𝑥2

2 

 

In this case, estimation methods such as least square method or maximum likelihood method can be 

used. Also, it is interesting to note that in parametric regression models, unlike in the case of non-

parametric models, we do not come across the curse of dimensionality [34]. Curse of Dimensionality 

basically means that the accuracy of a model does not increase any further or even decreases after a 

threshold number of features has been fed into the model. Non-linear models are those in which the 

final model is a non-linear combination of the predictors. For example: 

 

1. 𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑒(𝛽3𝑥2) + 𝜖 

2. 𝑌 =
𝑒𝛽0+𝛽1𝑥1

1+𝑒𝛽0+𝛽1𝑥1
+ 𝜖 

 

In this case, non-linear estimation methods such as Newton’s method, Gauss-Newton algorithm can 

be used [33]. 

On the other hand, non-parametric models, which is our focus of study, do not require the assumption 

of any linearity and is used when no part of the model function can be known in prior. The function in 

this case can only be extracted from the data set that is fed into the model. Nonparametric models do 

not have a fixed number of parameters. Since the model learns the model form directly from the 

training set, the number of parameters can be infinite. This means that the relationship between the 

predictors and the dependent variable is unknown. The model function can take any form, which can 

be linear or non-linear. However, the model user will have no clue about it. This means that in case of 

nonparametric models, 𝑓𝑋(𝑥) is an arbitrary function and is unknown. As a result, the function does 

not have a finite number of parameters to capture the characteristics of the data. This is just the 

opposite of parametric functions in which the structure is known. Some models that learn directly 

from the training data are KNN, Kernel Ridge regression, decision trees, smoothing splines and many 

more. A researcher should be able to understand when to use non-parametric models [33]. If the data 

complexity is really high and introducing more features would only increase model complexity 

undesirably, introducing the curse of dimensionality and the artificial correlation between the inputs 

and outputs, resulting in lower accuracy, in that case the researchers should opt for non-parametric 

models [35]. It is to be noted that non-parametric models do not require building statistical model of 

the underlying data. In this type of models, the training set is not generalised, unlike in the case of 

parametric models. Rather, a comparison is carried out between the input test samples and the training 

set that result in predictions [41]. 
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Semi-parametric regression models are those models in which only a part of the model function is 

known. It is basically a hybrid of parametric and non-parametric regression models. Semi-parametric 

models are used when we are looking to estimate only some of the parameters. These models can take 

many different structures. In a particular case of semi-parametric models, some of the predictors may 

not take any pre-determined form. On the other hand, the rest of the part takes known forms with the 

dependent variable. In a model that is given by: 𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝑓(𝑥2) + 𝜖, the relationship between 

predictor 𝑥1 and Y is linear. On the other hand, the relationship between 𝑥2 and Y is governed by ‘f’, 

which is unknown. In another case called Single Index Model (SIM),the form of the model is given by 

𝑌 = 𝑓(𝑋𝛽) + 𝜖, where f is an unknown function, 𝑋 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) is a matrix of dimension n X 

k of predictors, 𝛽 is k X 1 matrix of parameter values. 𝑋𝛽 is called a single index and is a scalar. Error 

𝜖 is supposed to be normally distributed around 0 with constant variance 𝜎2 [37]. Even though f in 

this case is unknown to the researcher, it is still semi parametric because the fact that f, which is 

known, is specified as a linear combination of X and 𝛽[33]. Semi-parametric models adapt better to 

different data sets and have better interpretive capability [36]. Profile kernel and spline methods come 

under this category [38]. 
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Chapter 3 

 

Architecture of Models Used 

 

 

In this chapter, we will look into the architecture of the different models used. These are the models 

that will be used to predict Bitcoin prices in the next chapter and hence, it becomes important to know 

and understand how these models work. The models such as KNN, Kernel Ridge, Random Forest 

Regressor and Gaussian Process Regression are all non-parametric. The only semi-parametric model 

that we will be analysing is Cubic Smoothing Spline. 

 

3.1 K-Nearest Neighbour 

 

KNN, which stands for K-Nearest Neighbours, is a non- parametric regression model that learns the 

data directly from the training set. The distance between each training data point 𝑥𝑖is calculated and 

then the nearest training points are taken into consideration. The number of data points that will be 

involved to make a prediction for a particular point is determined by the parameter ‘K’. Once the K 

nearest data point have been figured out, the average of the predictions 𝑦𝑖for the K Nearest training 

data is calculated and is used as prediction. The distance between point x and 𝑥(𝑖)in KNN is usually 

calculated using the Euclidean distance formula, which is given by𝑑(𝑥(𝑖), 𝑥) = √∑ (𝑥𝑗
(𝑖)

− 𝑥𝑗)
2

𝑛
𝑗=1 , 

where ‘j’ keeps a count of the next reference point with which the distance will be calculated. K 

number of nearest neighbours is then selected based on this distance. These K points are then given 
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weights with respect to their distance from the referenced data point for which the prediction is being 

calculated. The kind of weights that are applied on these points are 1. Uniform weights, where all the 

nearest neighbours are given a weight of 1, and 2. Gaussian weights, where the weights of the nearest 

neighbours are decided using the formula𝑤(𝑖) = 𝑒−𝛾𝑑(𝑥𝑖,   𝑥)
2

. As a result of the Gaussian weight, the 

weight of the neighbours decreases as the distance from the referenced data point increases. The 

weighted mean that becomes the prediction for the referenced data point is given by:𝑦̂ =
∑ 𝑤(𝑖)𝑦(𝑖)

𝑖∈𝑁𝑘

∑ 𝑤(𝑖)
𝑖∈𝑁𝑘

, 

where 𝑁𝑘 defines the number of points in the neighbourhood of 𝑥𝑖, 𝑦𝑖 is the value of associated with 

each neighbouring point and 𝑤𝑖 is the weight associated with each neighbouring point.In case of 

uniform weights, the weight assigned is 1 and hence the prediction is derived from 𝑦̂ = (
1

𝑁𝑘
) ∑ 𝑦𝑖𝑖∈𝑁𝑘

. 

The rate at which this increase or decrease in weight happens is determined by the factor 𝛾. Higher the 

value of 𝛾, faster is the decrease in the weight. Also, the value of K, which represents the number of 

nearest neighbours considered while making the prediction, helps to control overfitting and 

underfitting. As the value of K increases, the number of nearest neighbours considered also increases. 

The model is then able to capture a more generalised behaviour of the data and thus, the model starts 

to become less sensitive to the training data. A combination of 𝛾and K can be used to control 

overfitting and underfitting. Figure 4 shows how 𝛾 can be used to control overfitting and underfitting 

with K equalling the data set size. A general feature of the KNN model is that it often fails to capture 

the data behaviour towards the end of the datasets and makes really inaccurate predictions in areas 

where the data is not present since the model trains directly from the dataset. 

 

 

Figure 4 showing how γ can be used to control overfitting and underfitting 
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The performance of the KNN model is dependent on the value of K and 𝛾 selected. The selection of 

the best value needs to be done using cross validation. Model complexity of KNN models is given by 

n/k. However, [39] propose a better estimate for KNN model complexity, given by 𝑑 =
𝑛

𝑘.𝑛
1
5

, where d 

is the degree of freedom, which is statistical term for model complexity. It is to be noted that KNN 

can also be used for prediction in classification problems. In this case, the referenced point will be 

classified with respect to the majority classification vote of its neighbours. This is given by 𝑦𝑖 =

arg max
𝑘

∑ 𝑦(𝑥𝑗, 𝑐𝑘)𝑥𝑗
, where 𝑥𝑗 is one of the neighbouring points, 𝑦(𝑥𝑗, 𝑐𝑘) indicates whether 𝑥𝑗 

belongs to class 𝑐𝑘. KNN is fast and requires less space when training for classification problems. 

However, it fails to yield good results if the data set is unevenly distributed among the classes [40]. 

 

3.2 Random Forest 

 

Before diving into the Random Forest Regressor model, it is very important to look into the building 

blocks of Random Forest, which are Decision Trees and Regression trees. Though, Regression Tree is 

our point of interest since we are dealing with Random Forest Regressors, a look at Decision Trees, 

which are used in classification problems, is important before delving into Regression Trees and 

eventually Random Forest Regressors. A decision tree, as the name suggests, is a tree that branches 

(or classifies) based on a decision. The classification decision at a particular level is based on the 

answer to the question that the model receives at that level. An example of a decision tree that solves 

a classification problem has been show in Figure 5.  

 

 

Figure 5 showing a decision tree 
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Figure 5 shows a decision tree that can be used to predict the level of exercise that a person needs to 

do every day. It can be seen that the decision is arrived using different questions at different levels. 

The top of the tree is called the root node and the nodes in which the branching ends are called leaf 

nodes. The leaf nodes are the ones in which the final classification is made. The sample data from 

which the decision tree can be built has been shown in table 1. 

 

Age >= 

40? 

S.B.P. 

>=130? 

S.B.P. 

>=140? 

Cheese Consumption 

> 35 g?  

D.B.P. 

>=90? 

R.H.R.>=100 

bpm? 

Body fat 

%age? 

Exercise 

level 

No No No No No No 25 No 

Yes Yes No No Yes Yes 30 Moderate 

Yes Yes Yes Yes Yes No 40 Heavy 

No No No No No No 35 Light 

No Yes No No No No 35 Heavy 

Yes Yes Yes Yes Yes No 20 Heavy 

Table 1: Sample data to build the decision (classification) tree in Figure 5 

 

Consider that there are 300 such observations. The first thing that we need to figure out is which of 

the variables should be the root node. For this, we need to start classifying the exercise levels with 

respect to the first variable in the table that is age of the person. This is done for all the persons in the 

study. This process is repeated for the other variables in the study such as Systolic Blood Pressure, 

Cheese Consumption, Diastolic Blood Pressure, Resting Heart Rate and Body Fat percentage. From 

the sample data, it can be seen that none of the variables make the classification perfectly, meaning 

that a particular category of exercise cannot be recommended with absolute certainty if the age of 

person in greater than greater than 40. Similarly, it also cannot be said that if the systolic blood 

pressure of a person is greater 140, he/she definitely needs to go for heavy exercise. Since, none of the 

variables manage to make classifications with absolute certainty on its own, these variables are 

considered impure. Hence, it cannot be directly determined which variable would be the best choice 

for root node. Thus, in order to determine which variables makes the best classification, there are 

different techniques such as Gini Index, Entropy, Chi-Square and so on. Using any of these 

techniques, the first split and the subsequent splits can be determined, thus building the decision tree. 

Note that the variable Body Fat %age is numeric whereas the other variables in table 1 are categorical. 

Hence, we need to find cut offs for the Body Fat %age variable that will help us classify the exercise 

levels with respect to this particular variable. This can also be done using the techniques mentioned 

above. Once the decision tree has been prepared, making prediction becomes easy for a new sample 

that comes in with some combination of the variables. 
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Regression Trees on the other hand are used when the dependent variable does not have a linear 

relationship with the predictors. This means that a straight-line model will not work in this case and 

we need to introduce polynomial features into the model. In such a scenario, Regression Trees can 

also be used. Regression Trees are a type of Decision Trees. In a Regression Tree, each leaf node 

represents a numeric value, unlike Decision Trees in which the leaf nodes represent categorical 

values. Figure 6 shows increase in life expectancy when a 100ml of different concentrations of a 

certain drug has been administered in humans. It can definitely be said that there is no point in 

building a Regression Tree for only one predictor since prediction can be made simply by 

visualisation. However, Regression Trees become very useful when more predictors come into the 

model and prediction using visual aid become almost impossible. 

 

 

Figure 6 showing increase in life expectancy with variation in drug concentration 

 

The average increase in the life expectancy from the 2 smallest dosages (dosage < 10 mg/L) is about 

2% and the average increase in the life expectancy of the points on the greater side of 10mg/L is 18%. 

Therefore, a simple tree that splits the observations based on “dosage < 10 mg/L?” will have leaf 

nodes of 2% (left leaf) and 18% (right leaf). The values in each of these leaves will be the prediction 

that this tree will make in case of a dosage < 10 mg/L split. Even though the deviation in the 

prediction from the actual value of the points less than 10 mg/L is almost NILL, the deviation in the 

prediction of the points for dosage > 10 mg/L is quite high. For example, deviation for dosage = 40 

mg/L is about 40%-18% = 22%.It is noticed that the sum of squared residuals of the deviation of the 

prediction from the actual value of all the points on either side of dosage = 10 mg/L is pretty high 

value if the split is made at this point. Hence, this dosage = 10mg/L is not an ideal split. The point 

along the x-axis at which the sum of squared residuals is the lowest will be the first split point and 

thus, the root node. Say that the root node is made at dosage = 25 mg/L. Now, if we look at the points 
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to the left of dosage = 25 mg/L, we can further split these points using the same technique that we 

used above. We can make such splits down to the last point until no change in the prediction value 

can be observed on the left nodes (corresponding to answer ‘Yes’). However, as the number of splits 

increases, the model becomes more and more sensitive to the data and this would definitely lead to 

overfitting. The parameter provided by Scikit-Learn to control the number of splits and hence the 

depth of the tree is max_depth. This parameter determines the depth to which a tree will be 

built.There are many other techniques that can be employed to prevent overfitting. Another common 

technique is to make a split only when there are a minimum number of sample available. This is 

controlled by a parameter called min_samples_split provided by the Scikit-Learn library. In this case, 

let this minimum number be 6. Figure 7 shows the Regression Tree built for the data set. For points 

less than 25 mg/L, the average increase would be 5% (say). Hence, this will be the prediction of the 

model for points less than 25 mg/L, which is not too bad. Also, since there are only 5 points to the left 

of 25mg/L, we will not make any further split. So, we need to find the ideal split for points to the right 

of 25mg/L since we have more than 6 observations on this side. This is done in the similar way the 

root node was found and the initial split was made. The smallest sum of squared residual is found for 

the point to the right of 25mg/L and the next split is made at 59 mg/L (say) with the average value of 

the points to the right of 45 mg/L equalling to 2.5%. Again, since the number of sample points to the 

right of 59mg/L is less than 6, no further splits are made in this region. The next split is made in the 

region between 25mg/L and 59 mg/L. This process continues until the number of sample points left in 

a particular region does not become less than 6. 

 

 

Figure 7 showing a sample regression tree with only one variable 

 

This becomes a little trickier when more than one predictor comes into the picture. Table 2 shows a 

sample of the data when other predictors come into the picture. Just like earlier, we will try different 
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values of concentration and check at which point do we find the lowest sum of squared residual. The 

point (say concentration = 25 mg/L) at which we find the lowest sum of squared residuals becomes a 

candidate for the root. This process is repeated for age and the point (say at age = 50), at which the 

lowest sum of squared residuals is found, becomes another candidate for the root node. This process is 

repeated for the variable sex. However, for this variable, there can only be one split and that is 

between males and females. We use this split to calculate the sum of squared residuals, which 

becomes the 3rd candidate. And the average of the percentage increase in case of males and the 

average of the percentage increase in case of females in considered as the predictions. The candidate 

for which the sum of squared residual is the minimum is selected to be the root node. In this case say 

the second candidate that is age = 50 has the lowest sum of squared residuals. Hence, this is 

considered the root node. The tree is grown with the next branching considered with the second 

candidate (second smallest sum of squared residual) that is concentration = 25 mg/L (say) and 

repeated for the last candidate. The sample Regression Tree built in this case is shown in figure 8. 

 

Concentration Age  Sex %age increase 

2 30 M 10% 

5 10 F 25% 

15 25 F 15% 

18 45 M 34% 

22 60 M 40% 

25 75 F 37% 

Table 2 sample data to build the Regression Tree with multiple predictors 

 

 

Figure 8 showing the sample Regression Tree formed using the variables in table 2 
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Hence, we see that the basic principle to construct a Regression Tree is to divide the original space 

into 2 separate regions and construct a binary tree. Hence, if we consider a dataset like: 

{(𝑋1, 𝑦1), (𝑋2, 𝑦2), … , (𝑋𝑖, 𝑦𝑖), … , (𝑋𝑛, 𝑦𝑛)}, where 𝑋𝑖 is ap-dimensional vector with ‘p’ number of 

features. The steps to build a Regression Tree would be as follows [43]: 

1 Solve the objective function, which is given as follows: 

min
𝑗,𝑠

[min
𝑐1

∑ (𝑦𝑖 − 𝑐1)2 +𝑥𝑖∈𝑅1(𝑗,𝑠) min
𝑐2

∑ (𝑦𝑖 − 𝑐2)2
𝑥𝑖∈𝑅2(𝑗,𝑠) ], where 𝑐1 and 𝑐2 are the 

predictions of each region, 𝑅1 and 𝑅2 are the 2 separate regions created after a node splits a 

region,j represents the best segmentation variable and s represents the best segmentation point 

from the variable j, meaning the variable that is used to split the region and the point at which 

the region is split respectively. The 2 regions 𝑅1 and 𝑅2created using the selected 

segmentation variable ‘j’ and the segmentation point ‘s’ of the variable j is given as follows: 

i. 𝑅1(𝑗, 𝑠) = (𝑋|𝑋𝑗 ≤ 𝑠) 

ii. 𝑅2(𝑗, 𝑠) = (𝑋|𝑋𝑗 > 𝑠), where 𝑋𝑗 is the 𝑗𝑡ℎ  feature 

 

2 The prediction 𝑐𝑚for regions noted in i and ii aboveis as follows: 

𝑐𝑚 = (
1

𝑛
) ∑ 𝑦𝑖𝑥𝑖∈𝑅𝑚(𝑗,𝑠) , 𝑥 ∈ 𝑅𝑚, 𝑚 = 1, 2 since the space is divided into 2 sub-regions.‘n’ is 

the total number of input data points in each region. This basically means that the prediction 

in each region will simply be the average of the actual values in each region. 

3 Steps 1 and 2 are repeated until the stop condition is met. The stop condition could be defined 

by the number of samples required to make a split. 

4 The final step is to segregate the input space into ‘p’ regions in order to build the Regression 

Tree, where p is the total number of input features. 

Random Forests are built using Decision trees (or using Regression Trees in case of Random Forest 

Regressor model). Decision Trees are not very accurate with their predictions. Hence, a collection of 

Decision Trees in the form of a Random Forest is used to increase the prediction accuracy by a huge 

margin. Random Forest also increases the flexibility of Decision Trees. Creating a Random Forest 

requires the following steps: 

1 The first step in building a Random Forest is to create a Bootstrap dataset. In order to create a 

bootstrapped dataset, samples are randomly selected from the original dataset. Also, the same 

sample can be selected more than once from the original dataset. It is to be noted that the size 

of the Bootstrap dataset has to be the same as that of the original dataset. 

2 The next step is to create a Decision Tree using the bootstrapped dataset. This is done by first 

randomly selecting only a subset of the variables from original dataset. For example, say that 

out of a total of 5 variables (A, B, C, D, E) in the original dataset, any 2 variables (say) have 
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been picked randomly. Of these 2 variables selected (say B and E), the variable that does the 

best job in separating the samples needs to be figured out using techniques such as Gini Index, 

Chi Square, Entropy and many more. The variable that has the least impurity becomes the root 

node say variable B. Out of the remaining 4 variables (A, C, D, E), 2 variables (say A and 

D)are again randomly selected and the variable with the least impurity makes the next node 

(say D).This is how the tree is built as usual by randomly selecting a fixed number of variables 

from the remaining variables at each step. Regression Trees are used in case of Random Forest 

Regressors. The only difference is that the sum of squared residuals technique is used to select 

the nodes as discussed earlier instead of the techniques such as Gini Index as used to build 

Decision Trees. The best number of random variables is selected using cross validation.  

3 Step 1 and Step 2 are repeated many hundreds of times and many different Decision Trees (or 

Regression Trees) are built and hence, a Random Forest (or Regressor) is built. 

Once the Random Forest is built, the new data sample is passed through it and the predictions of all 

the individual trees are aggregated. In case of classification, the value to which the test data is 

classified the maximum number of times is taken as the final prediction for the sample data. Similarly, 

in case of regression, the average of the predictions of all Regression Trees is taken as the final 

prediction for the sample data. This process of bootstrapping the data and then using the aggregate to 

take the final decision is called Bagging. Random Forests make it possible to capture the non-linear 

interactions between the dependent and independent variables [42].It is generally observed that about 

33% of the samples from the original data set are left out during bootstrapping. This data is called Out 

of bag data and can be used as test data to measure the prediction accuracy of the model. The flow 

diagram that represents the working of a Random Forest Regressor model is shown in Figure 9 [42]:

  

 

Figure 9: A schematic view of the Random Forest Regressor model 
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3.3 Kernel Ridge Regression 

 

Kernel Ridge Regression is a kind of non-parametric regression model, which merges ideas from 

KNN and linear regression with L2 regularization. The basic idea behind this model is to associate a 

feature with every training data point and then use a linear model. This basically means that there will 

be a lot of features in this model and thus, the feature vector will be large. This is done by introducing 

a kernel function. Consider a generalised form of the training data, which is given by: (𝑥(𝑖), 𝑦(𝑖)), 

where 𝑥(𝑖) is the input feature of the 𝑖𝑡ℎ data point and 𝑦(𝑖) is the corresponding output of the 𝑖𝑡ℎ 

training data point. Now, since every training data point is associated with a feature, the 𝑖𝑡ℎ feature 

will be derived from the training data point 𝑥(𝑖) using the function 𝑦(𝑖)𝐾(𝑥(𝑖), 𝑥), where x is the point 

for which the prediction is being calculated. The 𝐾(𝑥(𝑖), 𝑥) function, which is called a Kernel, gives a 

sense of the distance between 𝑥(𝑖) 𝑎𝑛𝑑 𝑥 in a way that K is more of a weighting function of the 

distance between 𝑥(𝑖) and 𝑥. If the distance between 𝑥(𝑖) and 𝑥 is very less, then K will be close to 1 

and when 𝑥(𝑖) and 𝑥 are far apart, K will be close to 0. The kernelized regression model that comes up 

from here is: 

 

𝑦̂ = 𝜃0 + 𝜃1𝑦(1)𝐾(𝑥(1), 𝑥) + 𝜃2𝑦(2)𝐾(𝑥(2), 𝑥) + ⋯ + 𝜃𝑚𝑦(𝑚)𝐾(𝑥(𝑚), 𝑥) 

So, we can see that the Kernel Ridge Regression model is more or less a kernelized version of linear 

regression. It is to be noted that kernels can also be used for classification and the model that is used 

in that case is: 

 

𝑦̂ = 𝑠𝑖𝑔𝑛(𝜃0 + 𝜃1𝑦(1)𝐾(𝑥(1), 𝑥) + 𝜃2𝑦(2)𝐾(𝑥(2), 𝑥) + ⋯ + 𝜃𝑚𝑦(𝑚)𝐾(𝑥(𝑚), 𝑥)) 

 

The model parameters𝜃0, 𝜃1, … , 𝜃𝑚need to be estimated and can be learnt by minimising the cost 

function just like in the case of linear models with non-linear features, where instead of using 

polynomials, we can use the Kernel weights. Since, each training data point gets associated with a 

feature, the vector of parameters is huge in this case. As a result, Kernel Ridge Regression ends up 

occupying a lot of space for its calculations. As the distance between the training data points and the 

reference point gets bigger, the farther points become insignificant and the model gets reduced to the 

“K nearest neighbours”. Hence, a simpler way to calculate the prediction is to take the weighted 

average of the nearest neighbours which is given as: 𝑦̂ =
1

𝑁
∑ 𝜔𝑖𝑦𝑖

𝑁
𝑖=1 , where N is the number of 

nearest neighbours, 𝜔𝑖 is the weight calculated for each of the neighbouring points and 𝑦𝑖 is the actual 
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value of the nearest neighbours. The weights are decided by the Nadaraya-Watson estimator, which is 

given as 𝑤𝑖 =
𝐾(

𝑥𝑖−𝑥

𝑏
)

∑ 𝐾(
𝑥𝑖−𝑥

𝑏
)𝑁

𝑗=1

 [45], where K is a non-negative, real valued function such that K(x)=K(-x) 

that is it is symmetrical for all values of x and ∫ 𝐾(𝑥)𝑑𝑥 = 1.The denominator of the estimator 

always results in 1. The selection of kernels must satisfy the conditions given by: 1. 𝐾(𝑥, 𝑥𝑖) > 0, 2. 

∫ 𝑥𝐾(0, 𝑥)𝑑𝑥 = 0 and 3. 0 < ∫ 𝑥2𝐾(0, 𝑥)𝑑𝑥 < ∞ [46]. Some commonly used kernel functions are 

uniform kernel, Gaussian kernel and Epanechnikov kernel. The numerator put higher weights on the 

points that are closer to the reference point x. ‘b’ is the bandwidth or the “smoothing parameter” that 

controls how quickly the weight falls as the training data points move away from x. The smoothing 

parameter value is chosen using the Jackknife cross validation given by: 𝐶𝑉(𝑏) = (
1

𝑁
) ∑ [𝑦𝑖 −𝑁

𝑖=1

𝑦[𝑖]̂]
2
, where𝑦[𝑖]̂ is the prediction for x when one observation is left out. The value for ‘b’ needs to 

selected very carefully since the model is very sensitive to this parameter. The smoothness of the 

model increases as the value of ‘b’ increases. A sample model built using Kernel Ridge has been 

shown figure 10. The model is able to correctly capture the behaviour of the data and also, is able to 

make correct predictions where the data is not present.      

 

 

Figure 10 showing a sample Kernel Ridge Regression model. 

 

3.4 Natural Cubic Splines 

 

Smoothing splines is a semi-parametric algorithm that successfully manages to fit non-linear data. 

The idea behind smoothing spline is to divide the data set into different segments and then capture the 

behaviour of every segment separately. This regression approach is different from the rest of the 
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models because it does not aim to capture the behaviour of the entire dataset in a single polynomial 

model, but combine separate models to form one final model. Figure 11 shows how segments selected 

can be used to fit separate models. The breakpoints have been selected to be at 2006-08, 2007-01 and 

2007-08. These breakpoints are called knots. And between each knot, a linear model has been fit. This 

technique is referred to as piece-wise regression. It is to be noted that figure. 11 does not show the 

actual model, but is only a descriptive representation. 

 

 

Figure 11 showing a descriptive representation of piece-wise regression 

 

However, it can be clearly seen from fig. 10 that these linear models are breaking in at the knots and 

are discontinuous. So, for 𝑥 ≤ 10, the model is given by 𝑦 = 𝛽0
(1)

+ 𝛽1
(1)

𝑥 + 𝜀(1). Similarly, for 10 ≤

𝑥 ≤ 15, the model is given by 𝑦 = 𝛽0
(2)

+ 𝛽1
(2)

𝑥 + 𝜀(2). For 15 ≤ 𝑥 ≤ 25, the model is given by 𝑦 =

𝛽0
(3)

+ 𝛽1
(3)

𝑥 + 𝜀(3) and so on. In order to build a continuous model, we use truncated functions. 

Thus, the model is given by: 

 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2(𝑥 − 10)+ + 𝛽3(𝑥 − 15)+ + 𝛽4(𝑥 − 25)+ + 𝜀, 

 

where a truncated function is given as: (𝑥 − 𝑘)+ = {
0, 𝑖𝑓 𝑥 < 𝑘

𝑥 − 𝑘, 𝑖𝑓 𝑥 ≥ 𝑘 
. Thus, we can see that between 0 

and 10, the model simplifies to 𝑦 = 𝛽0 + 𝛽1𝑥. Between 10 and the 15, the model becomes 𝑦 = 𝛽0 +

𝛽1𝑥 + 𝛽2(𝑥 − 10)+ and so on. Thus, we can clearly see that the number of parameters has decreased 

because earlier we had separate intercept terms for each interval, whereas now there is a single 

intercept term and the intercept of every segment is affected by equation of the line formed in the 



A v i e j a y  P a u l                3 1  A u g u s t ,  2 0 2 1                  P a g e  | 44 

 
School of Computer Science and Statistics  Trinity College Dublin 

previous segment. Thus, we get a continuous model comprising of separate linear models called linear 

splines. A descriptive representation of linear splines has been shown in figure 12 [44]. 

 

Figure 12 showing a descriptive representation of linear splines 

 

Now, instead of having straight forward lines between the segments, we can have polynomial models 

that would represent the data behaviour better. Hence, we need to introduce polynomial features into 

the model up till order 3. This would be given as: 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4(𝑥 − 10)+ +

𝛽5(𝑥 − 10)2
+ + 𝛽6(𝑥 − 10)3

+ + 𝛽7(𝑥 − 15)+ + 𝛽8(𝑥 − 15)2
+ + 𝛽9(𝑥 − 15)3

+ + 𝛽10(𝑥 − 25)+ +

𝛽11(𝑥 − 25)2
+ + 𝛽12(𝑥 − 25)3

+ + 𝜀. When polynomial features are introduced, the model looks like 

as shown in figure 13 [44].  

 

 

Figure 13  showing descriptive representation of polynomial features introduced with linear splines 

 

However, it is can be noticed clearly that at the knots, the function is non-differentiable. Hence, we 

can better this model by removing these sudden changes in the model. The idea to achieve this comes 

from the fact that the first and second derivative of a function needs to exist in order for the function 
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to be differentiable. Also, the first and the second derivative of a function play a significant role in 

determining the smoothness of the function. The first derivative is given by: 𝑦′ = 𝛽1 + 2𝛽2𝑥 +

3𝛽3𝑥2 + 𝛽4(𝑥 > 10)+ + 2𝛽5(𝑥 − 10)+ + 3𝛽6(𝑥 − 10)2
+ + 𝛽7(𝑥 > 15)+ + 2𝛽8(𝑥 − 15)+ +

3𝛽9(𝑥 − 15)2
+ + 𝛽10(𝑥 > 25)+ + 2𝛽11(𝑥 − 25)+ + 3𝛽12(𝑥 − 25)2

+ + 𝜀 and the second derivative 

is given by: 𝑦′′ = 2𝛽2 + 6𝛽3𝑥 + 2𝛽5(𝑥 > 10)+ + 6𝛽6(𝑥 − 10)+ + 2𝛽8(𝑥 > 15)+ + 6𝛽9(𝑥 −

15)+ + 2𝛽11(𝑥 > 25)+ + 6𝛽12(𝑥 − 25)+ + 𝜀. Hence, it can be seen that the first and the second 

derivative are discontinuous at the knots that are given by the associated intercept terms. The trick 

here is to simply drop the truncated function terms with order less than 3. This is because if these 

terms are dropped, the first and the second derivative of the functions will become continuous [44]. 

When this is done, the final model becomes: 

 

            𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4(𝑥 − 10)3
+ + 𝛽5(𝑥 − 15)3

+ + 𝛽6(𝑥 − 25)3
+ + 𝜀.  

 

The final model is shown in figure 14. It is to be noted that regression splines can use any degree of 

polynomials, but cubic polynomials are the most effective often since these have the best capability to 

capture most of the data behaviour. The models in which the highest order is 3 are called cubic splines 

[44].  

As the number of knots increases, the flexibility of the model increases and hence, the residual sum of 

squares decreases. However, as the number of knots increases, the sensitivity of the model increases 

and this could lead to overfitting. Model accuracy will also depend on the location of placing the 

knots. The idea behind the placement of these knots is that the number of knots in the model will 

more or less be uncontrolled. However, a penalty will be introduced in the residual sum of squares to 

control the roughness of the model, which is introduced by the more number of knots. This penalty 

will be introduced in the form of a second derivative of the function because second derivative 

essentially gives a sense of the rate at which the slope of the curve is changing, which in turn is a 

measure of how rough the fitted curve is. Hence, the residual sum of squares, including the penalty 

parameter called roughness penalty, is given by: 

 

∑(𝑦𝑖 − 𝑓(𝑥𝑖))
2

𝑛

𝑖=1

+ 𝜆 ∫[𝑓′′(𝑥)]2 
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Interestingly, 𝑓(𝑥), which is the optimised solution of the above problem is nothing but a cubic spline 

with knots at every training data point 𝑥𝑖. However, it is not practical to put a knot in the place of 

every training data point. Instead, a large number of knots is used and the roughness penalty 

parameter is chosen using cross validation. Also, the knots are placed, by default, such that the 

number of data points between each knot is the same [44].  

 

Figure 14 showing a descriptive representation of smoothing splines 

 

3.5 Gaussian Process Regressor 

 

Gaussian Process Regressor is a probabilistic, non-parametric regression model that works on the 

principles of Bayesian Inference, including the concepts of prior and posterior. In this case, prior 

knowledge or kernels are extensively used to make predictions. The probability distribution function 

in form of Gaussian distribution of a random variable X that assumes values 𝑥1, 𝑥2, … , 𝑥𝑛 is 

represented as 𝑃𝑋(𝑥) ~ 𝑁(𝜇, 𝜎2) and is given by: 

 

𝑃𝑋(𝑥) = (
1

√2𝜋𝜎
) exp (−

(𝑥 − 𝜇)2

2𝜎2 ) 

 

When more than one correlated variables (𝑋1, 𝑋2, … , 𝑋𝐷) comes into the system, we use a multi-

variate normal (MVN) as the probability distribution, where D represents the total number of 

variables in the system or the dimension of the system. The probability distribution in this case is 

given by: 
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𝑃(𝑥|𝜇, Σ) =
1

(2Π)
𝐷

2 |Σ|
1

2

exp [− (
1

2
) (𝑥 − 𝜇)𝑇Σ−1(𝑥 − 𝜇)] 

 

Where x represents the vector of the random variables [𝑋1, 𝑋2, … , 𝑋𝐷], 𝜇 represents the vector of 

means of the individual variables [E(𝑋1), 𝐸(𝑋2), … , 𝐸(𝑋𝐷)], Σ represents the covariance matrix, 

which measures how the values of the random variables 𝑋1, 𝑋2, … , 𝑋𝐷 change with respect to each 

other. |Σ| represents determinant value of the covariance matrix and Σ−1, which itself is a matrix 

represents the inverse of the covariance matrix. It is to be noted that a random vector x which 

represents a collection of multiple correlated variables is multivariate normal if any linear 

combination of the variables, given by 𝑎1𝑋1 + 𝑎2𝑋2 + ⋯ + 𝑎𝐷𝑋𝐷, has a univariate normal 

distribution for any value of 𝑎1, 𝑎2, … , 𝑎𝐷 [48]. Figure 15 shows a representation of the normal 

distribution of 2 variables (for easier visual representation) both when the variables correlated and 

when the variables are independent. It can be clearly seen that because the 2 variables X and Y are 

correlated, the probability distribution of the points of X and Y makes an elliptical shape. On the other 

hand, when the variables X and Y are non-correlated, the probability distribution of the points makes 

a circle. The probability distribution will look like a bell with highest probability towards the middle 

and lowest probability towards the lower end of the curve. However, for simplicity, the bell has been 

replaced with a colour index. A MVN is expressed as: 

 

[

𝑥1

𝑥2

…
𝑥𝐷

] ~𝑁 ([

𝜇1

𝜇2

…
𝜇𝐷

] , [

𝜎11 𝜎12 … 𝜎1𝐷

𝜎21 𝜎22 … 𝜎2𝐷

… … … …
𝜎𝐷1 𝜎𝐷2 … 𝜎𝐷𝐷

]) ~𝑁(𝜇, Σ) 

 

Where, 𝑥1, 𝑥2, …, 𝑥𝐷 represent values that the random variables 𝑋1, 𝑋2, … , 𝑋𝐷 take. Similarly, 𝜇1, 𝜇2, 

…, 𝜇𝐷 are the mean values of the random variables 𝑋1, 𝑋2, … , 𝑋𝐷 and Σ is the co-variance matrix that 

represents the correlation between every pair of the random variables [48]. This covariance matrix 

will later be replaced by the kernel matrix in Gaussian Process Regression. 

For a vector of input of random variables [𝑋1, 𝑋2, … , 𝑋𝐷], if the output vector f(x), given by 

[𝑓(𝑥1), 𝑓(𝑥2), 𝑓(𝑥3), … , 𝑓(𝑥𝐷)], where 𝑥1, 𝑥2,…, 𝑥𝐷 are the values taken by random variables 

𝑋1, 𝑋2, … , 𝑋𝐷, is Gaussian distributed, then f would be referred to as a Gaussian process.  
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Figure 15 showing the normal distribution of 2 variables X and Y 

 

The Gaussian process, given as 𝑓 (𝑜𝑟 𝑦)~𝐺𝑃(𝜇, 𝑘) just like in the case of MVN, is specified using 

the mean function 𝜇(𝑥), defined by the mean vector [𝜇(𝑋1), 𝜇(𝑋2), 𝜇(𝑋3), … , 𝜇(𝑋𝐷)] and D X D 

covariance or kernel matrix. A kernel is a function that describes the co-variance between each pair of 

random variables or the relationship between each pair of the random variables used in the Gaussian 

process as 𝑘(𝑥, 𝑥′). These kernels help us to use our prior knowledge about the characteristic of data 

while building the model [47]. A kernel matrix looks like: 

 

𝐾 = [

𝑘(𝑥1, 𝑥1) 𝑘(𝑥1, 𝑥2) … 𝑘(𝑥1, 𝑥𝐷)

𝑘(𝑥2, 𝑥1) 𝑘(𝑥2, 𝑥2) … 𝑘(𝑥2, 𝑥𝐷)
… … … …

𝑘(𝑥𝐷 , 𝑥1) 𝑘(𝑥𝐷 , 𝑥2) … 𝑘(𝑥𝐷 , 𝑥𝐷)

] 

 

where 𝑘(𝑥1, 𝑥2) is the co-variance between the values of random variables 1 and 2 and is measured 

using the kernel chosen and so on.  Also, a kernel function must be symmetric and positive definite. 

Kernel functions are used to introduce some degree of smoothness in the models. Different kernels are 

used with respect to the designer’s prior information about the data. If it is known that the data is not 

very smooth, in that case the squared exponential kernel (or the RBF kernel), given by 𝑘(𝑥, 𝑥′) =

exp (−
(𝑥−𝑥′)

2

2
) can be used since this kernel brings in a tremendous amount of smoothness in the 

model. The periodic kernel, given by 𝑘(𝑥, 𝑥′) = 𝜎2 exp (−
2𝑠𝑖𝑛2(𝜋|𝑥−𝑥′|/𝑝)

𝑙2 ) , where p is the distance 

between the repetitions in the function and l determines how long the curves will be in the function, is 

used when there is some periodicity in the data. 

One of the most important differences between the polynomial regression models and the Gaussian 

process is that the polynomial regression techniques output only a single model, whereas there could 

be multiple ways to connect the training data points and build the model. This is facilitated using the 
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Gaussian process as shown in figure 16. For simplicity of visualisation, figure 16 uses only one 

random variable to depict the probability distribution over functions.  Gaussian process enables us to 

build distributions over models (or functions) and the mean of these functions is then selected as the 

ultimate model as shown by the thick black line in figure 16. The wider these distributions are, the 

more uncertainty is in the actual prediction. Gaussian process can also be used to model functions that 

have some amount of noise in them. That is, these functions do not necessarily pass through the given 

points but pass very close to them [47]. 

 

 

Figure 16 showing the mean function of the different functions generated by GPR 

 

The task at hand now is to calculate the different distribution of the models. This is where Bayesian 

concepts of posterior and prior comes in. The posteriors, which are the different functions, are nothing 

but the prior that has been combined with the sample data points. Hence, it can be seen from figure 16 

that all the functions pass through the same point where the observed data point is present. However, 

in regions where the observed data point is not present, the same functions vary a lot since the 

posterior has not been combined with any data point in that region. Also, when there are greater 

number of observed data, the functions get updated and the final prediction becomes accurate. Also, 

the variance in the probability distributions over the functions decreases as shown in figure 17. 

 

 

Figure 17 showing change in the function as more data points are added 
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The form of the multivariate regression model is given by: 𝑃(𝑓|𝑥) = 𝑁(𝑓|𝜇, 𝐾), where 𝑥 ∈ ℝ𝐷 is the 

observed data point, 𝑦 = 𝑓 = [𝑓(𝑥1), 𝑓(𝑥2), … , 𝑓(𝑥𝐷)], where 𝑥1, 𝑥2, … , 𝑥𝐷 are the values taken by 

the random variables [𝑋1, 𝑋2, … , 𝑋𝐷 ], µ is the mean vector given by [𝜇(𝑋1), 𝜇(𝑋2), 𝜇(𝑋3), … , 𝜇(𝑋𝐷)] 

and K is the kernel matrix [47]. In Gaussian process, there are majorly 2 types of observations, viz. 

noise free observation and noisy observation. In case of noise free observations, the sampled function 

(or the observed training label y) will be present exactly at point x. This is given by 𝑦𝑖 = 𝑓(𝑥𝑖). Let X 

represent the training set that is a matrix of P number of points having D dimensions and let 𝑋∗ 

represent the test set that is a matrix of Q number of points having D dimensions. The joint 

distribution of the actual output, given by f and prediction of the test points, given by 𝑓∗ is [49]: 

 

[
𝑓
𝑓∗

] ~𝑁 (0, [
𝐾(𝑋, 𝑋) 𝐾(𝑋, 𝑋∗)

𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)
]) 

 

where 𝐾(𝑋, 𝑋∗) is the P X Q matrix of covariances calculated for every pair of the training and test 

data point. Similar are the interpretation of the other matrices 𝐾(𝑋, 𝑋), 𝐾(𝑋∗, 𝑋) and 𝐾(𝑋∗, 𝑋∗). Using 

these matrices, the prior knowledge that the training data provides about the function can be 

incorporated to build the posteriors. From here the posterior distribution can be calculated by 

conditioning the predictions of the Gaussian process on the training set and test set matrices along 

with the actual output, f. This conditional probability distribution is given by [49]: 

 

𝑓∗|𝑋∗, 𝑋, 𝑓 ~ 𝑁(𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)−1𝑓, 𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)−1𝐾(𝑋, 𝑋∗)) 

 

Thus, the output values 𝑓∗ of the test data, that can be plotted as functions, can be sampled from the 

above normal distribution with mean = 𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)−1𝑓 and variance = 𝐾(𝑋∗, 𝑋∗) −

𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)−1𝐾(𝑋, 𝑋∗) [49].  On the other hand, in case of noisy observations, which is a more 

practical case, the function values are not available directly. Only a distorted version of the true 

function values is available and is given by 𝑦𝑖 = 𝑓(𝑥𝑖)+∈, where ∈ is considered to be some 

Gaussian noise given by ∈ ~𝑁(0, 𝜎2). The joint distribution of the actual output, given by y and the 

prediction of the test points, given by 𝑓∗ is [49]:    

 

[
𝑦
𝑓∗

] ~𝑁 (0, [
𝐾(𝑋, 𝑋) + 𝜎2𝐼 𝐾(𝑋, 𝑋∗)

𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)
]) 
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where the matrices of the covariances have the same meaning as in the earlier case and I is the identity 

matrix. The posterior of the predictions in this case is given by [49]: 

 

     𝑓∗|𝑋∗, 𝑋, 𝑦 ~ 𝑁(𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎2𝐼]−1𝑦, 𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + +𝜎2𝐼]−1𝐾(𝑋, 𝑋∗)) 

 

Thus, in both the cases, different samples can be created from the posterior distribution of functions. 

The average of these functions is considered the prediction of the model as shown in fig. 17. 
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Chapter 4 

 

Methodology and Results 

 

 

4.1 General Idea of the Data Sets and Feature Selection 

 

The focus of this work is to examine how future price trends of Bitcoin can be predicted from past 

price trends using different models. Hence, the simplest of the available Bitcoin price datasets have 

been considered in this research. A sample of the Bitcoin dataset that has been downloaded from 

https://www.coindesk.com/price/bitcoin has been used in this research has been shown in table 3: 

 

Currency Date 

Closing Price 

(USD) 

24h Open 

(USD) 

24h High 

(USD) 

24h Low 

(USD) 

BTC 01-10-2013 123.65499 124.30466 124.75166 122.56349 

BTC 02-10-2013 125.455 123.65499 125.7585 123.63383 

BTC 03-10-2013 108.58483 125.455 125.66566 83.32833 

BTC 04-10-2013 118.67466 108.58483 118.675 107.05816 

BTC 05-10-2013 121.33866 118.67466 121.93633 118.00566 

Table 3: sample of the original Bitcoin data set 

 

https://www.coindesk.com/price/bitcoin
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From this dataset, only the columns ‘date’ and “closing price (USD)” have been used and rest of all 

the other columns have been dropped. This is because the other columns in the data set won’t make 

any difference in the prediction since they would be passing the same kind of information and similar 

values to the model. Also, our motive is not to provide any hint to the model regarding the price of a 

particular date while feeding the test data in the model. If the dropped columns are fitted into the 

model for training, they will also have to be fed into the model as part of the test data and hence, the 

model will be fed with a major clue regarding the closing price prediction. Thus, prediction of the 

models will exceptionally high, which will be misleading. The data set contains Bitcoin price data 

from November 2013 till mid-July 2021. The Bitcoin price trend has been shown in figure 18.  

 

 

Figure 18 showing Bitcoin price trend from Nov-2013 till Jul-2021 

 

At the same time, since Bitcoin price does not have any kind of seasonality as evident from the trend 

in figure 18, making accurate price predictions based on such less information (using history price 

data) will be extremely difficult for any model. As a result, this could lead to doubts regarding the 

general efficacy of the model in predicting time-series data. Hence, in order to analyse whether 

prediction of the models is low due to model architecture or due to the data trend, another data set has 

been used as an auxiliary data set. This data set is the electricity power consumption dataset for 

Germany from the year 2006 to 2017 and has been downloaded from 

https://www.kaggle.com/mvianna10/germany-electricity-power-for-20062017. A sample of the data 

set has been shown in table 4: 

 

Date Consumption 

01-01-2006 1069.184 

02-01-2006 1380.521 

https://www.kaggle.com/mvianna10/germany-electricity-power-for-20062017
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03-01-2006 1442.533 

04-01-2006 1457.217 

05-01-2006 1477.131 

Table 4: sample of the electricity power consumption data set 

 

As can be seen from table 3 and 4, the data that is being fed into the model is very similar. Also, there 

are no missing data in both the datasets. Both are time-series data with date in the daily date format. 

And in both cases, apart from date, only that quantity is being fed into the model whose prediction 

will be made by the models, that is Bitcoin price in the Bitcoin data set and consumption in the 

electricity power consumption data set. The only differences that exists between both the data sets are 

that spread of the data around near-by dates is almost nil except in the region after Jan-2021, whereas 

there is considerable spread in the data throughout the electricity consumption data set and that the 

electricity consumption data set has a considerable seasonality as can be seen from figure 19. The 

reason why this data set has been chosen is that it will provide a very good analysis and comparison 

ground between the model predictions on these 2 datasets. 

 

 

Figure 19 showing energy consumption trend from Jan-2006 till Dec-2017 

 

4.2 Feature Engineering and Cross-Validation  

 

We have already seen that the only information that is being sent into the model as part of the training 

set is the Bitcoin price corresponding to each date. Thus, in order to increase the amount of 

information getting into the model, 2 more features are introduced. These new features are built using 

the available Bitcoin price. The features that being added are: yesterday’s price and the difference 
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between yesterday’s price and the day before yesterday’s price. As a result, the model gets a reference 

of the Bitcoin price for 3 days in total. Hence, the predictors are: 1. Date, 2. yesterday’s price and 3. 

yesterday’s price – day before yesterday’s price. It is to be noted that exactly the same feature 

engineering has been carried out for the auxiliary data set as well.  

The cross-validation technique that is used for the train-test split is called the Forward Chaining 

Strategy. This technique particularly produces better results in case of time series data than k-fold 

cross validation. In fact, it is not wise to use the k-fold cross validation technique in case of time-

series data. This is because in case of k-fold cross validation, the test set that is formed by data that 

comes later in the data set can be used to train the model and can be used to make predictions for the 

data that comes earlier in the data set. However, this technique will not give us a good estimation of 

the model performance in case of time-series data. This is because, in time-series data, it does not 

make sense to train the model on future data and make predictions for past dates. To counter this 

problem, forward chaining strategy has been used. The difference between k-fold cross validation and 

forward chaining strategy with 5 splits has been shown in figure 20, where the red blocks resemble 

the training set and the yellow blocks resemble the validation set. It can be clearly seen that the 

training set is formed only in a forward direction with respect to time and the predictions are always 

made for future dates in the forward chaining strategy. 

 

 

Figure 20 showing the difference between Forward chaining strategy and k-fold 

 

On performing a forward chaining cross validation (splits = 10) spot check comparison between the 

KNN, Random Forest, Kernel Ridge Regression and Gaussian Process Regression models using the 

default parameters available in the sklearn library for these models, it is observed, from the mean 

absolute error box plots in figure 21, that though the performance of the KNN, Random Forest and 

Kernel Ridge models on the Bitcoin price data is similar with respect to the median of the error, the 

Kernel Ridge model performs better overall since the mean error is the least. Performance of the 

Gaussian Process Regression model, as evident from the box plot, is the least impressive. When the 

same comparison, as shown in figure 22, is done on the electricity comparison data set, it is observed 
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that the KNN and the Random Forest models perform much better. Again, performance of the 

Gaussian model is very poor. This check, in a way, gives us some idea on what to expect in the 

comparison analysis between these 3 models when predictions would be made using the best model 

parameters and hyper-parameters. These models also perform as individual baseline models.     

  

 

Figure 21 showing the box plot comparison for prediction errors on the Bitcoin price dataset 

 

 

Figure 22 showing the box plot comparison for prediction errors on the electricity consumption dataset 

 

On performing cross validation using model parameters, the best parameters values for the model are 

selected. Only the important parameters that can majorly influence the performance of a model have 

been considered. After performing the forward chaining cross validation, the data set is divided into 

training and test sets. The data set is divided in such a way that all data till December 31st, 2020 will 

be used for training and the data after that till July 17th, 2021 will be used as the test data set. In the 

Bitcoin data set, there are 2844 data points in total, of which 2646 data points are included in the 

training set and 198 data points are included in the test set. Similarly, of the electricity consumption 



A v i e j a y  P a u l                3 1  A u g u s t ,  2 0 2 1                  P a g e  | 57 

 
School of Computer Science and Statistics  Trinity College Dublin 

data set, data till December 31st, 2020, which has 4016 data points will be included in the training set. 

On the other hand, the test set contains data for the 2017 and has 365 data point. 

 

4.3 Measure of Model Comparison 

 

The measure chosen to compare the models is Mean Absolute Percentage Error (MAPE). This is 

given by: 

 

∑ [(
|𝑦𝑖−𝑦𝑖̂|

𝑦𝑖
) ∗ 100]𝑛

𝑖=1

𝑛
 

 

Where, n is the total number of samples, 𝑦𝑖 is the actual value of the dependent variable and 𝑦𝑖̂ is the 

prediction against 𝑦𝑖. Here, MAPE has been chosen because it is the best measure when a 

comparative analysis of different model or of different data sets. This is because measures such as 

root mean square error, mean square error or mean absolute error cannot be used to compare model 

performance when used on different data sets since these measures will be on different scales when 

used on different data sets.     

 

4.4 Performance Evaluation of the Random Forest Regression 

Model 

 

The grid of parameters and parameter values to select the model have been shown below. 

'n_estimators': [20, 30, 50, 100], 

'max_features': ['auto', 'sqrt', 'log2'], 

'min_samples_split': [20, 25, 30, 50], 

'min_samples_leaf': [ 20, 25, 30, 50], 

'max_depth' : [i for i in range(5,15)], 

'max_samples': [30, 50, 75, 100, 200] 
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In the grid above, ‘n_estimators’ is the number of trees in the forest, ‘max_features’ is the number of 

features that will be considered while making the split. This number will either be the actual number 

of features present, or the square root of the total number of features or the log of the total number of 

features depending on the algorithm chosen (auto, sqrt, log2 respectively). ‘min_samples_split’ is the 

number of the samples required to split a node, ‘min_samples_leaf’ is the number of samples required 

for a node to be considered a leaf node, ‘max_depth’ is the maximum of depth of the tree, that is the 

number of level till which the tree will be drilled down and ‘max_samples’ is the number of samples 

that will be pulled out from the actual data set to build the trees in case of bootstrapping. The 

bootstrap parameter takes in Boolean values and the default value is True. The same grid has been 

used for both the data sets. The measure that is used to compare the quality of the cross validation 

split is mean squared error [50].  

The best model that comes out of the cross validation on the grid parameters for the Bitcoin price 

prediction data set is: bootstrap = True, max_depth = 10, max_features = 'auto', 

max_samples = 200, min_samples_leaf = 20, min_samples_split = 30, 

n_estimators = 20. The best model for the electricity consumption data set is: bootstrap = 

True, max_depth = 13, max_features = 'auto', max_samples = 200, 

min_samples_leaf = 20, min_samples_split = 30, n_estimators = 30. On 

making the test train split, the MAPE of the best model on the Bitcoin price prediction data is 69.62%, 

which is definitely not a good accuracy. The prediction on the test data has been shown in figure 23. 

On the other hand, the MAPE of the best model on the electricity consumption data is 5.84%. The 

prediction on the test data of the electricity consumption data set has been shown in figure 24.  

 

 

Figure 23 showing the prediction on the test data of the Bitcoin price data set using Random Forest 
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Figure 24 showing the prediction on the test data of the electricity consumption data set using Random Forest 

 

It can be seen from figure 23 and figure 24 that Random Forest Regressor has a tendency to make flat 

predictions. In the electricity consumption data set, since the data is spread out, the model makes flat 

predictions on multiple levels that balance out each other and hence the overall error is less. On the 

other hand, in case of the Bitcoin price test data set, the data does not have any ‘overall’ significant 

spread at all and hence, the prediction is flat in only one level, thus adversely affecting the accuracy of 

the model. It is unlikely that seasonality in the electricity consumption data plays any role in 

determining accuracy of the model since Random Forest Regressor does not have any parameter that 

captures the seasonality in the data. Because of the tendency of the model to make flat predictions, 

Random Forest might not be a good choice to work with time-series data. 

 

4.5 Performance Evaluation of the K-Nearest Neighbour  Model 

 

The grid of parameters and parameter values to select the model have been shown below. 

'n_neighbors': [2, 5, 7, 10, 20, 30, 50, 100], 

'weights': ['uniform','distance'], 

'p': [1,2] 

In the grid above, ‘n_neighbours’ is the number of neighbours that will be considered to make the 

prediction for a given training data point, ‘weights’ is amount of contribution of each nearest 

neighbour towards calculating the prediction of a given training data point. The amount of 

contribution of these points may vary with distance from the given training data point based on the 

type of weight selected. When weight = ‘uniform’, the weight of the nearest neighbours remains 
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constant with increase on distance. When weight = ‘distance’, the weight of the nearest neighbours 

decreases as the distance increases from the reference training data point. Here too, the same grid has 

been used for both the data sets. The measure that is used to compare the quality of the cross-

validation split is mean squared error. ‘p’ represents the kind of distance that will be measured. p = 1 

represents Manhattan (l1) distance and p = 2 represents Euclidean (l2) distance [51]. 

The best model that comes out of the cross validation on the grid parameters for the Bitcoin price 

prediction data set is: n_neighbors = 5, p = 2, weights = 'uniform'. The best model 

for the electricity consumption data set is: n_neighbors = 20, p = 2, weights = 

'distance'. On making the test train split, the MAPE of the best model on the Bitcoin price 

prediction data is 36.37%, which is definitely not good, but almost twice as good as the Random 

Forest Regresor. The prediction on the test data has been shown in figure 25. On the other hand, the 

MAPE of the best model on the electricity consumption data is 4.02%. The prediction on the test data 

of the electricity consumption data set has been shown in figure 26. 

 

 

Figure 25 showing the prediction on the test data of the Bitcoin price data set using KNN 

 

As can be seen from figure 25, the prediction is twice as good as in the case of Random Forest 

because the prediction level, even though flat, has risen almost halfway of the y-axis, compared to 

Random Forest. However, the flat predictions, as seen in the case of Random Forest Regressor, may 

not be characteristic of this model since there is no sign of any flatness in the in the model prediction 

for the electricity consumption data set. It can be seen from figure 26 that when the data has some 

spread in it, the prediction accuracy on the test data is pretty high. Hence, it can be said that KNN 

works well with time-series data, but only when there is some spread in the data as can be seen in the 

electricity consumption data set in figure 26. 
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Figure 26 showing the prediction on the test data of the electricity consumption data set using KNN. 

 

4.6 Performance Evaluation of the Kernel Ridge Regression 

Model 

 

The grid of parameters and parameter values to select the model have been shown below. 

'alpha': [10, 1, 0, 0.1, 0.01], 

'gamma': [0,1,5,10,25], 

'kernel': ['rbf', 'linear','laplacian', 'poly', 'sigmoid'] 

 

In the grid above, ‘alpha’ determines the amount regularisation that will be imposed on the model. 

This parameter is used to control overfitting and underfitting in the model. The formula for alpha is 

𝑎𝑙𝑝ℎ𝑎 =
1

2𝐶
, where C in the penalty parameter. Gamma is the parameter that determines how fast the 

value of the kernel decreases as the distance of the nearest neighbours from the training data point 

increases. Kernel hold the kind of prior information that we are feeding into the model about the 

training data set. This is done by calculating the covariance between random variables or the predictor 

variables. There are different ways in which the covariance can be calculated and this is defined by 

the values passed in the kernel parameter. For example, the rbf kernel, also called the Radial Basis 

Function kernel, is given by 𝑘(𝑥, 𝑥′) = exp (−
(𝑥−𝑥′)2

2𝑙2 ), where ‘l’ determines how long will the 

curves be in the function generated. Linear kernel is given by 𝑘(𝑥, 𝑥′) = 𝑥𝑇𝑥′, polynomial kernel is 

given by 𝑘(𝑥, 𝑥′) = (𝑥𝑇𝑥′ + 1)𝑑, where d is the order of the polynomial [52][53][54]. Kernels can be 

manually designed functions too, but in this case we wanted to study the effect of the inbuilt kernels 

provided with Kernel Ridge. The manually designed kernel functions will be studies later under 

Gaussian Process Regression.             



A v i e j a y  P a u l                3 1  A u g u s t ,  2 0 2 1                  P a g e  | 62 

 
School of Computer Science and Statistics  Trinity College Dublin 

The best model that comes out of the cross validation on the grid parameters for the Bitcoin price 

prediction data set is: alpha = 0.1, gamma = 0, kernel = 'linear’. The best model for 

the electricity consumption data set is: alpha = 10, gamma = 10, kernel = 'poly'. On 

making the test train split, the MAPE of the best model on the Bitcoin price prediction data is 3.45%, 

which is a major improvement over Random Forest Regressor model and KNN. The prediction 

accuracy of the best model on the electricity consumption data is: 7.67%. It can be seen from figure 

27 and 28 that the model performs exceptionally well on both the data sets. However, surprisingly the 

performance of the algorithm is better on the Bitcoin data set than on the electricity data set. It is 

particularly surprising to note that the linear kernel is able to push the model accuracy to such high 

extent in case of the Bitcoin price data set in spite of very limited information regarding Bitcoin being 

into the model. However, there is definitely a chance that customised kernel functions could perform 

even better than the built-in kernels on these data sets. Thus, we see that the initial trend that was 

observed between the skeleton of the KNN, Kernel Ridge and Random Forest models, where in the 

performance of the Kernel Ridge model is almost at par with that of KNN and Random Forest as 

shown in figure 23, does not hold anymore for the Bitcoin data. It can be clearly concluded that 

performance of KNN can be much better than of Random Forest and that the performance of the 

Kernel Ridge algorithm can be increased many folds when used with right kernels. At the same time, 

the Kernel Ridge model is able to properly predict the rise and fall in the Bitcoin price. In financial 

terms, this rise and fall is referred to as a bubble.   

 

 

Figure 27 showing the prediction on the test data of the Bitcoin price data set using Kernel Ridge 
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Figure 28 showing the prediction on the test data of the electricity consumption data set using Kernel Ridge 

 

4.7 Performance Evaluation of the Natural Cubic Spline Model 

 

The only parameter that is tuned in case of Natural cubic spline is the number of knots. This 

parameter controls overfitting in the model. Too many knots, though would reduce the MAPE on the 

training data, would also make the model over-sensitive to the training data. Hence, this MAPE would 

be misleading and we will have to select the best model by check the model prediction on the test 

data. The number of knots that the model is tested with are: 25, 50, 150 and 250. The model that 

produces the best MAPE on the test data is the one with number of knots = 50. The behaviour of the 

different models with different number of knots on the training data is shown in figure 29. The 

placement of the knots is equidistant throughout the range of the training data. 

 

 

Figure 29 showing how models with different number of knots capture the behaviour of the training data of the Bitcoin data 

set 
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From figure 29, it is clear that the model with number of knots = 50 (red) would be the best model to 

make the prediction on the test data. This model is able to successfully capture the general trend of the 

data. Figure 30 shows the prediction of the best model both on the training data and on the test data. 

The MAPE of the model on the training data is 8.4%, which increases drastically to 31.9% on the test 

data. Also, clearly, though the model is able to capture the initial rising trend of the test data, it fails to 

capture the formation of the bubble and also the eventual slump in the Bitcoin prices. Also, it is 

observed that for none of the models, the prediction is in the form of a cubic spline. Rather, the model 

makes a linear prediction for all the different number of knots, which is not desired.  

 

 

Figure 30 showing the prediction of the best model on the training and test data 

 

Using the same methodology on the electricity consumption data set, the models developed for the 

same number of knots, as in the case of the Bitcoin price dataset, have been shown in figure 31. Based 

on the MAPE of these models on the test data, the best model comes out to be the one with number of 

knots = 25. The prediction of the model on the training and test data has been shown in figure 32. It is 

clearly seen that in the of this data set, the prediction of the model is a cubic spline. Hence, it can be 

said that it is difficult for cubic splines to make better predictions on data that does not have any 

spread in it and probably should not be considered for such kind of data. The MAPE of the best model 

on the test data is 11.92%. The model is also able to predict the wobbly trends in the test data to an 

extent. However, an observation here is that the prediction accuracy of the model increases even 

further when the number of knots is reduced below 25 and when model clearly under fits. This 

phenomenon has been shown in figure 33. The prediction of the model here is almost linear. The 

number of knots of the model in this case is 5, but the MAPE is 11.16%, which is less than that when 

the number of knots is 25 and hence, can be considered a better prediction. 
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Figure 31 showing how models with different number of knots capture the behaviour of the training data of the electricity 

consumption data set 

 

 

Figure 32 showing the prediction of the best model on the training and test data 

 

 

Figure 33 showing the under fitting in the model but decreasing MAPE 
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4.8 Performance Evaluation of the Gaussian Process Regression 

Model 

 

While evaluating the performance of this model, 4 different kernel have been used. These kernels are 

all callable functions and are combination of individual kernels. The kernels that have been used are: 

1. ConstantKernel() + ConstantKernel() * RBF()  + WhiteKernel() 

2. ConstantKernel() *  RBF() 

3. DotProduct() + WhiteKernel() 

 

Performances of each of these models have been discussed in the next sub-section. However, before 

moving into the individual kernels, we will look into what these individual kernels are that combine to 

form the kernels noted above. A Constant kernel is nothing but a uniform prior that takes a constant 

value. This value is passed into the function in the form of an argument. This kernel is used to adjust 

the magnitude of other kernels or adjust the mean of the posterior functions. A constant kernel is 

given by: 𝑘(𝑥, 𝑥′) = 𝑐, ∀𝑥, 𝑥′ [55]. A RBF kernel is also called a squared exponential kernel. It is 

given by: 𝑘(𝑥, 𝑥′) = exp (−
𝑑(𝑥,𝑥′)

2

2𝑙2 ), where 𝑑(𝑥, 𝑥′) is the Euclidean distance between 𝑥, 𝑥′and l 

determines the length of the curves of the function. The parameter is passed as an argument in the 

function. This kernel is used when the data is extremely rough and needs to be smoothened. The 

smoothening property of this kernel come from the fact that this kernel is infinitely differentiable [56]. 

A White kernel is used to add noise to the GP distribution. This noise is in the form of independent 

and identically distributed points and is given by: 𝑘(𝑥, 𝑥′) = 𝜎2𝐼𝑛, where 𝐼𝑛 is the identity matrix and 

𝜎2 is the variance in the noise. Thus, the covariance matrix that is formed has 0s everywhere except 

on the diagonal of the matrix. This is because there should not be any sort of correlation between the 

generated points [57]. The variance in the noise data is passed into the model as an argument. The last 

individual kernel that has been experimented with is the Dot product kernel. A dot product kernel is 

given by: 𝑘(𝑥, 𝑥′) = 𝑥. 𝑥′ + 𝜎0
2. This is nothing but the dot product of 𝑥 𝑎𝑛𝑑 𝑥′. This kernel is 

clearly a linear combination of the product of the D dimensions of 𝑥 𝑎𝑛𝑑 𝑥′, along with a variance 

parameter 𝜎0
2. This parameter controls whether the kernel is homogenous or not, a concept that 

comes from the “systems of equations”, which is divided into homogeneous systems given by Ax + 

By + Cz = 0 and non-homogeneous systems, given by Ax + By + Cz = P, where P is any constant. 𝜎0
2 

is the variance of the normal prior that is imposed on the bias. In our research, we have used some of 

the common combinations of these kernels and their default parameter values.             
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GPR Model with ConstantKernel() + ConstantKernel()*RBF() + WhiteKernel (): This kernel has 

been formed using a combination of 3 different kernels that are in the form of callable functions. 

These kernels are constantkernel(), WhiteKernel() and RBF(). The GPR model with this kernel 

produces a MAPE of 70.27% while predicting on the Bitcoin price test data set and a MAPE of 3.97% 

while predicting on the electricity consumption data set. The prediction of model on the Bitcoin and 

electricity consumption, have been shown in figures 34 and 35 respectively. Figure 36 (a) and (b) 

capture the error in the prediction between the true value and the prediction for both the datasets.  

 

 

Figure 34 showing the prediction of the model on the Bitcoin price test data set 

 

Figure 35 showing the prediction of the model on the electricity consumption test data set 

 

Figure 36(a) (left), 36(b) (right) showing the error plot of the bitcoin price and electricity consumption data set respectively 
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The flat prediction in figure 34 for a range in the data set is due of the combining effect of the RBF 

kernel, that has a tremendously smoothening capability, and the constant kernel, which is basically a 

uniform prior. The error plot precisely captures the behavioural difference in the prediction of the 

model on both the data sets. In the second data set (figure 35), because the data has a considerable 

spread and is noisy to an extent, the smoothening capacity of the RBF kernel is counterbalanced by 

the white kernel. The negative correlation in figure 36(a) is due to the opposite prediction trend of the 

model on the test data to the actual value as can be seen in figure 34. On the other hand, because the 

prediction of the model on the electricity consumption data has high accuracy, the R2 value in this 

case close to 1 as can be seen in figure 36(b). However, since variation in the error bar of the model 

prediction in the second data set is higher than that in the first data set, the confidence in the 

prediction values in figure 36(b) is lower than that in figure 36 (a), though there is no doubt regarding 

the correlation of the predictions being positive with the actual values in 36(b). Thus, it can be said 

that the Gaussian Process Regression model with “ConstantKernel() + ConstantKernel()*RBF() + 

WhiteKernel ()” kernel will produce better results when there is some spread in the data as in the case 

of the Electricity Consumption data set. 

GPR Model with ConstantKernel() * RBF(): This kernel has been formed using 2 different kernels 

are Constantkernel() and RBF(). The GPR model with this kernel produces a MAPE of 89.81%, 

which is a very poor accuracy, while predicting on the Bitcoin price test data set and a MAPE of 

9.89% while predicting on the electricity consumption data set. The prediction of model on the 

Bitcoin and electricity consumption, have been shown in figures 37 and 38 respectively. Figure 39 (a) 

and (b) capture the error in the prediction between the true value and the prediction for both the 

datasets. The main difference between the previous kernel and this kernel is the absence of the white 

kernel is this case. The effect of this absence can be clearly seen in the prediction in figure 37, where 

the prediction of the model on the test data is perfectly flat. Also, the prediction on the electricity data 

set is also constant around most of the test data points. 

 

 

Figure 37 showing the prediction of the model on the Bitcoin price test data set 
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Figure 38 showing the prediction of the model on the electricity consumption test data set 

 

 

Figure 39(a) (left), 39(b) (right) showing the error plot of the bitcoin price and electricity consumption data set respectively 

 

From figure 39(a), it can be seen that the error bar is flat, which is expected from the kind of 

prediction that the model makes in figure 37. Also, there is no confidence in the model predictions in 

case of the Bitcoin data set. The negative R2 value in the error bar of both the data sets show that 

there is no correlation between the predicted values and the actual test data. However, since the R2 

value in the second data set is very close 0, it can be said that the prediction is almost equivalent to the 

mean of the test data points, something that is evident from the prediction of the model in figure 38. It 

can be clearly seen that the predictions made by the model on most of the test data point lie half-way 

through the span of the consumption axis (y-axis) of the data. As a result of which, even though the 

MAPE of the model on the electricity data set is not very bad, the quality of the prediction made is not 

good at all. Hence, it can be said that this kernel is not a good choice for making predictions on time 

series data. 

 

GPR Model with DotProduct() + Whitekernel(): This kernel has been formed using 2 different 

kernels are DotProduct() and WhiteKernel(). The GPR model with this kernel produces a very low 

MAPE of 3.45%, which is a very high accuracy and same as that of the Kernel Ridge model, while 

predicting on the Bitcoin price test data set and a MAPE of 7.69% while predicting on the electricity 
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consumption data set. The prediction of model on the Bitcoin and electricity consumption, have been 

shown in figures 40 and 41 respectively. Figure 42 (a) and (b) capture the error in the prediction 

between the true value and the prediction for both the datasets. This kernel proves to be a very 

powerful kernel since the accuracy of the model predictions, in both the data sets, is very high in spite 

of such limited amount of information being fed into the model for training. 

 

Figure 40 showing the prediction of the model on the Bitcoin price test data set 

 

Figure 41 showing the prediction of the model on the electricity consumption test data set 

 

 

Figure 42(a) (left), 42(b) (right) showing the error plot of the bitcoin price and electricity consumption data set respectively 
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From figure 40 and 42(a), it can be seen that the prediction of the model using the DotProduct() + 

Whitekernel() kernel is quite perfect. The R2 value of the error plot of the Bitcoin price data set is 

close to 1 and this shows that the prediction on the individual training data points is quite high. On the 

other hand, the R2 value of the error bar plot of the electricity consumption data set is quite low. This 

tells us that the even though the overall prediction quality of the model in this particular data set is not 

bad (MAPE < 8%), the accuracy of the individual predictions is quite low as can be seen figure 41. 

Also, it can be seen from the error bar plot in figure 42(b) that the confidence of the predictions is 

quite low.      
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Chapter 5 

 

Conclusion and Future work 

 

 

5.1 Conclusion 

 

From the study carried out, it can be concluded that not all predictive regression models have the 

capability to accurately predict Bitcoin price based solely on history data and that too when then data 

in itself is neither periodic nor does it have any significant spread. And the ones that do make precise 

predictions can be considered really powerful models. It cannot be conclusively said that the models 

that do not have a good prediction accuracy would not be able to make Bitcoin price predictions. This 

is because the amount of information fed into the models regarding the data is very less. It is quite 

possible that if more information, in the form of features, are fed into the models, the prediction 

accuracy of these models would increase drastically. However, it can definitely be concluded that 

when it comes to making predictions solely based on history pricing data, some models will simply 

not work. This point can also be used when working on stocks. Table 5 gives a gist of the model 

performances from Chapter 4. 

A very interesting observation here is that the models that had the best predictions on the Bitcoin data 

set are Kernel Ridge (with linear kernel) and GPR (with DotProduct() + WhiteKernel()). The 

similarity between these two kernels is that both the linear kernel and the DotProduct kernel are more 

or less 𝑥𝑇𝑥′, that is a ‘linear combination’ of the D-dimension elements of the data points. Hence, it 
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can be concluded that the introduction of priors with linear characteristics has played a pivotal role in 

achieving such high prediction accuracy of the models.  

 

Model 

Model Accuracy 

on Bitcoin Data 

Set (MAPE) 

Model Accuracy 

on Electricity 

Consumption 

(auxiliary) Data 

Set (MAPE) 

Comments 

Random Forest 

Regressor 
69.62% 5.84% 

Not suitable to make predictions 

on time series data set due to flat 

prediction tendency. Can result 

in high mean accuracy but that 

would be misleading since most 

of the individual accuracy would 

be way off  

K Nearest Neighbour 36.37% 4.02% 

Not suitable to make predictions 

on this particular Bitcoin data 

set. Can perform better when 

more Bitcoin related information 

is fed in 

Kernel Ridge 3.45% 7.67% 

Near perfect prediction on very 

limited information. Can be 

categorised as a powerful model. 

Able to predict the bubble 

Natural Cubic Spline 31.90% 11.92% 

Not suitable for the given 

Bitcoin data set. Makes a very 

general prediction on the 

Electricity consumption data set 

as well. Even though mean 

prediction accuracy is not bad on 

the electricity consumption data 

set, the predictions on the 

individual level are way off.    
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Gaussian Process 

Regression 
3.45% - 89.81% 3.97% - 9.89% 

Prediction accuracy heavily 

depends on the choice of kernel. 

Different kernels have different 

characteristics and behave 

differently with different kinds 

of data set. With the right kind 

of kernel, this algorithm can be 

used to model any kind of time-

series data.  

Table 5: gist of the model performances 

 

5.2 Future Work and Prospects 

 

As mentioned in section 1.2, this study provides the first ground work to a series of research that I 

plan to carry out in the near future on crypto-currency and then extend the findings on cryptocurrency 

predictions to stocks and debentures. The scope of this dissertation was limited to studying whether 

Bitcoin price prediction can be made on the basis of historical price and also analysing the 

performance of different predictive regression models in predicting future price. The scope has been 

sufficiently covered in this dissertation. Now that the prediction behaviour of these predictive 

regression models on future Bitcoin price based solely on historical data is quite clear, the next 

immediate research would be to study the impact of several other endogenous predictor variables such 

as Bitcoin volume traded, Bitcoin value traded, number of Bitcoins mined, number of unique Bitcoin 

transactions and many more. From here on, I wish to extend this research further on to study the 

exogenous factors that affect Bitcoin prices. Of course, a lot of work has already been done in this 

sphere, but a holistic study of endogenous and exogenous factors has not been done yet on Bitcoin 

price prediction. At the same time, research could be done to identify more endogenous and 

exogenous features that have not yet been considered in the researches and that truly affect prices of 

cryptocurrencies. Such kind of study will introduce a tremendous amount of predictability on Bitcoin 

price and make a huge contribution towards making Bitcoin a global currency.  

Also, after studying the endogenous factors affecting Bitcoin price, a pivot will be made by using the 

findings of the study towards researching the endogenous factors that affect stock prices. Most shares 

and stocks related studies focus on the effects of exogenous features on stock price predictions. 

However, similar to the case of Bitcoin, a holistic study to develop a model that takes into account 

both endogenous and exogenous factors that affect stock prices will serve a better and a wider purpose 

in the world of financial assets.  
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In the technological domain, this work will be extended to study the performance of some more 

predictive models (not necessarily regression models but non-parametric) such as Support Vector 

Regression and Neural Networks. Neural Network based models such as LSTM are perform very well 

on time-series data.    
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