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Abstract

Face recognition is one of the most studied research problems in the pattern
recognition problem family. It refers to the problem of detecting and recognizing
human faces in digital images. It has a wide range of applications from identity

management, access control, and behaviour analytics along with more
controversial applications such as automated public surveillance. This dissertation
studies the field of face recognition in context of a specific real world application,

namely, identity verification in access control systems for office buildings and
other places of work. The dissertation starts off with a general overview of the

problem and discusses the individual components of face recognition such as face
detection, facial embeddings and face recognition. The pertaining theoretical ideas

and the current research landscape is studied for each of these components. The
second section of the dissertation is experimental and studies the effectiveness of
popular algorithms used in face recognition such as viola jones, hog detectors and

deep learning. Experiments are carried out on several face detection and
recognition datasets to measure metrics such as speed, accuracy and overall

performance on a raspberry pi. The goal is to pick the best algorithms in terms of
accuracy and speed for the individual components that can be used to construct an
end to end, near real time face recognition pipeline. The last part of the dissertation
deals with the development of a plug and play face recognition platform that can be

used by office buildings to add face recognition to their access control system .
This platform consists of a web application that can be used to manage multiple
face recognition nodes. The features of this platform include device registration,

employee registration, attendance reports, employee access management and alerts
for unauthorized access attempts. In addition to the web platform, a local

application is developed for a raspberry pi in order to convert it into a face
recognition node that works in conjunction with the web application to provide a
seamless experience. The goal of the developed consumer system is to provide an

easy to set up, batteries included solution to incorporate face recognition as an
added layer of security.
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General Information

All of the implementation code and the analysis notebooks can be found in the
attached zip file or at the following github link:

Github Repo: https://github.com/talhabinijaz576/dissertation

The overall repository is divided into three folders. The “experiments” root folder
pertains to the raw python implementations and the analysis notebook. Moreover,
the “rpi_app” folder contains the desktop application developed for the raspberry
pi. Lastly, the “server” folder contains the django web application that contains the
webportal and the websocket server. For your convenience, the web application has
been made live and is accessible at the following location.

Url: https://facerecognition.jazeetech.com/
Username: test
Password: test123

Word Count: 27,263 words

https://github.com/talhabinijaz576/dissertation
https://facerecognition.jazeetech.com/
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Section 1 - Introduction

Face recognition is a biometric verification technology that involves locating,
extracting and identifying a human face by matching it against a dataset of faces.
Face recognition works by identifying face landmarks and features and uses a
comparison mechanism to compare and match human faces from a still image or a
video frame. The earliest form of face recognition was developed in the early
1960s and worked by pinpointing the coordinates of manually selected, crude
features from images of faces . Since then, the field has come a long way and is
considered one of the most popular and well researched sub fields in artificial
intelligence and computer vision. Face recognition technologies have a wide array
of commercial and security applications such as identity management, access
control, behaviour analytics and public surveillance.

Several major achievements have been made in the field over the past few decades
that have propelled the performance of face recognition to human levels. Present
day face recognition algorithms are extremely robust and have achieved
satisfactory performance in complex, unconstrained environments. Moreover, the
exponential increase in processing capacity has made face recognition technologies
viable for practical, real time applications. The non-intrusive nature and the lack of
custom hardware requirements such as iris scanners has made face recognition a
front runner in modern biometric systems. Today, face recognition is adopted at a
large scale due to its contactless nature despite a lower accuracy compared to
fingerprints verification or iris verification.

1.1 Motivation

Face recognition is arguably one of the most active areas of research in the
computer vision field. There is an incredibly large amount of research in the field
with new algorithms and techniques launching by every passing week. The
overwhelming amount of research over the past decades makes it difficult for new
people to break into the fields. In addition to this, face recognition is more complex
of a problem compared to vanilla object recognition or detection problems as it
consists of multiple distinct components which adds up the difficulty. One of the
primary motivations for this dissertation is to offer a condensed and linear view of
the face recognition landscape with the goal of providing a comprehensive
overview of each phase of the face recognition pipeline.
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Even with a deeper understanding, the amount of algorithms in a single phase is
overwhelming and comparative analyses are hard to come by in the research
literature despite a multitude of papers that discuss individual algorithms
separately.  The second motivation for this dissertation is to select the best
candidate algorithms for each phase and compare them within a common context.
An in depth analysis is required to not only compare the overall performances of
the selected algorithms, but also to study the behaviour of the algorithms in
different circumstances. In favour of condensation, the goal is to conclude with the
selection of a single algorithm for each of the phases for people who do not require
an in-depth understanding.

Still, it is hard to use it in commercial applications due to the complicated
supporting infrastructure and applications that enable non-technical people to
utilize the technology. The third and final motivation for this dissertation is to
implement an end-to-end plug and play face recognition system with a “batteries
included” approach. This includes not only an easy to use implementation of the
face recognition pipeline, but also the supporting infrastructure such as a
centralized webportal, desktop application, raspberry pi OS images and on click
installation scripts. This is focused on non technical people who are not
programmers and have no need to understand the inner workings of a face
recognition system. A real world application is developed that can be configured in
minutes without any real programming knowledge and serve as a complete
solution for adding face recognition as an additional security measure to office
buildings.

1.2 Objectives

The formal objectives of this dissertation are closely related to motivations
mentioned in the previous sub-section. The dissertation hopes to accomplish four
distinct objectives:

● Identify and explain the individual phases that makeup the face recognition
pipeline;

● Discuss historical and modern algorithms for each component and select
several candidates for each phase for further testing. Finally, a detailed
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literature review is to be done that explains the inner workings of the
algorithms;

● Implement the selected algorithms in a programming language. Then, design
and execute comprehensive experiments to perform a comparative analysis
for the algorithms in different situation and from different perspectives with
the goal of choosing a single best algorithm for each phase of the pipeline
that can be used in a real world application;

● Develop a complete, plug and play face recognition solution that can be
easily set up and used by the layperson for employee access control in office
buildings. The solution should abstract away the technicalities of the
underlying system and should be accessible to the average person. The goals
for this system are as follows:

○ Centralized control room (web application) for management;
○ Real time server for real time communications with desktop app;
○ Autonomous desktop application to be run on a raspberry pi;
○ Preconfigured raspbian OS images for the raspberry pi;
○ One click registration scripts to connect nodes to the control room.
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Section 2 - The Face Recognition Pipeline

The section serves as an overview of the thesis with a goal of explaining the
background of the different concepts in face recognition. First, the  main
components of a face recognition pipeline are discussed individually as well as in
the context of a complete, end-to-end pipeline. Moreover the experiments carried
out to evaluate the performance of the various algorithms used for each of the
components of the pipelines are introduced and discussed.

The broader face recognition pipeline can be broken down into several
components. These components include face detection, face alignment, calculation
of face embeddings, face verification and face recognition.

2.1    Face Detection

Face detection constitutes the first phase in the end-to-end face recognition
pipeline. Before performing any comparison or “recognition”, it is necessary to
process the image provided in order to identify and localize all of the faces (if any).
Face detection refers to the problem of identifying and location human faces in a
given picture. The goal of face detection is two-folds. The first goal is to determine
how many, if any, faces are present in a given picture and the second goal is to
locate and determine a bounding box for each individual face. There has been an
extensive amount of research in face detection and today, there are a lot of
traditional algorithms as well as deep learning algorithms that are used for face
detection. These four most popular algorithms, the Viola Jone algorithm, the
Histogram of Oriented Gradients (HOG) detector, the Yolo V3 Tiny convolutional
neural network and the MobileNet single shot detector (SSD) convolutional neural
network are discussed in detail in section 3. An explanation is provided for each of
them to illustrate how they work and a complete experimental analysis is
performed on a raspberry to compare the algorithms, evaluate their performance
and determine the best face detection algorithm to be used in our application.
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2.2    Face Alignment

After detection and localization, the face must be conformed to a common standard
in order to effectively compare it with other faces for verification or recognition.
Face alignment is necessary due to the existence of different human poses and face
expressions as a robust face recognition application should be, for example, able to
compare a fully front facing human face with the face looking sideways.  Face
alignment is typically done by identifying landmarks such as eyes, nose, lips etc on
the detected face and using the facial landmarks as reference points to transform
the image perspective. Traditional alignment techniques involve using a landmark
detector to locate the face and using computer vision algorithms such as
perspective transform for the alignment. Recently, however, a lot of deep learning
algorithms have emerged that replace the two phase alignment process with end to
end face alignment.

2.3    Facial Embedding

A technique to convert faces into some sort of mathematical representation is
necessary in order to compare two faces and evaluate their similarity. Face
embeddings are high quality features that are extracted from images of aligned
faces in the form of mathematical vectors. Older techniques for extracting the face
embeddings include traditional feature extractors such as hog features while the
newer techniques include using the feature extractor component of general
convolutional neural networks or custom deep learning models such as FaceNet
that are trained specifically for face recognition. The face embeddings naturally
relate to the face verification and recognition components of the pipeline and are
considered the most crucial part of a face recognition system. The most widely
used face embedding techniques are explained, evaluated and compared in section
4 of the dissertation.
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2.4    Face Verification

Face verification refers to the part of the face recognition pipeline that deals with
the comparison of two faces in order to determine the similarity. It is a binary
classification problem in which the output is either “yes” if the faces belong to the
same human or “no” if they belong to different people. Face verification is carried
out by comparing the “distance” between the respective numerical embeddings
(mathematical representation vectors) of the two faces and assigning the pair a
verification score. A threshold that is determined through trial and error is used to
make the final judgement. The verification is considered successful if the
verification score (the distance) is higher than the threshold and a failure otherwise.

2.5    Face Identification

Face identification is the generalized form of face verification. It refers to the
problem of recognizing the face of a human from a predefined collection of human
faces. The outputs of face recognition are two folds. The first goal is to determine
if the face in question is recognized (that is, matches one of the faces in the
collection) or is unknown. The second goal is the determination of the person, if
any, the face belongs to. This is typically the last component of the pipeline and
does not require complex algorithms of its own. It is typically carried out by
verifying the new face with every face in the database and checking the
verification score. If the verification score of the highest performing face is above a
certain threshold, the recognition is deemed successful and the identity of the
person is returned as output. The recognition is deemed a failure and the face is
marked as unrecognized if the highest score is below the threshold.
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Section 3 - Face Detection

Face detection refers to the problem of identifying and location human faces in a
given picture. Face detection constitutes the first phase in the end-to-end face
recognition pipeline. The goal of face detection is two-folds. The first goal
determines how many, if any, faces are present in a given picture. The second goal
is to locate and determine a bounding box for the face.

A bounding box can be elliptical (with a center coordinate, width and height of the
oval) or rectangular box with four coordinates that correspond to the four corners
of a rectangle. There are merits and demerits for either choice and the issue has
been researched extensively with rather inconclusive results. While the theoretical
characteristics may be comparable, rectangular bounding boxes are significantly
easier to define and compare to each other. Furthermore, rectangular boxes are
more explicit which makes them a better choice for machine learning algorithms.
Finally and most importantly, most of the public face detection and recognition
datasets consist of rectangular bounding boxes so in order to perform a more
comprehensive analysis, this dissertation will only deal with evaluation strategies,
datasets and analysis with rectangular bounding boxes.

To summarise, a face detection workflow takes a single picture as an input and
returns a list of bounding boxes where each bounding box comprises a set of points
that locate a single face.

3.1 Performance Evaluation

A perfect face detector would be able to identify every face present in an image
without giving any false positives (results where no human faces are found) and
locate them perfectly. Hence, the evaluation of a face detection algorithm can be
broken down into two components.
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The first component of the evaluation corresponds to the collective performance of
the algorithm on all faces. It is a discrete classification problem and refers to the
proportion of faces correctly identified. Before we go any further, it is important to
establish the exact definition of what constitutes a correct identification. Since the
result is continuous as it constitutes the coordinate of a bounding box, a threshold
must be set to discretize the results, associate each bounding box with an individual
face and evaluate false positives and false negatives. The general consensus among
the research community is to use some form of overlap ratio between the
prediction and the ground truth to execute the evaluations. The most common
metric used is the “Intersection over Union (IoU)” which is the ratio of overlap of a
predicted bounding box B1 and the ground truth bounding box (B2). It can be
further illustrated as follows:

For evaluation, the IoU value for every possible pair of the prediction boxes and
the ground truth boxes. The IoU value ranges from 0 to 1 with 0 representing “no
overlap” and 1 representing “perfect overlap”. For our purposes, we can set the
threshold at a reasonable value such as 0.5. This means, if a predicted bounding
box is associated with a ground truth bounding box if the IoU value is greater than
0.5. All ground truth bounding boxes without an associated predicted bounding
box are labelled as false negatives while all predicted bounding boxes that remain
unassigned are labeled as false positives. The aforementioned perfect face detector
would have a strictly one-to-one association between the predicted bounding boxes
and the ground truth with zero unassociated predicted boxes (no false positives)
and zero unassigned ground truth bounding boxes (no false negatives).

Once this is done, a single metric can be calculated for the collective performance
(or overall accuracy) for a particular image. A naive metric would be simple
accuracy or the percentage of ground truth boxes correctly predicted.  It, while
simple, ignores the false positives and would incentivize the final system to simply
predict as many faces as possible. A better approach would be to consider the
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precision and recall metrics that take in account the overall performance, the
number of false positives and the number of false negatives.

In addition to the precision and recall metrics, it is worth evaluating how “correct”
the predicted bounding boxes are with reference to the associated ground truth
bounding boxes. This score is readily available at this point in the form of the IoU
score. In order to obtain a singular metric for a particular image, a simple mean of
the IoU scores of all the correctly associated pairs can be taken.

Finally, we have to consider the time requirements and performance constraints
that a raspberry pi poses. Since the entire face recognition pipeline has to be run in
real time, it is vital that the face detection component does not take more than a
few milliseconds in order to achieve a decent frame rate. All experimental tests
should be done on a raspberry pi for this reason and the average time per image
should be measured for each of the algorithms.

In order to compare two face detection algorithms, the Receiver Operating
Characteristic (ROC) curve which takes in account both precision and recall along
with mean IoU metric can be compared separately in context of the time
requirements and hardware constraints of a raspberry pi. Since the number of face
detection algorithms is limited, the best choice can be selected manually. Using the
evaluation approach and comparison strategy mentioned in this section, it is
possible to select the best face detection algorithm that correctly identifies the
highest number of human faces with a minimum number of false negatives, highest
precision that works within a reasonable amount of time.
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3.2 Datasets

Tests and experiments have to be done in order to evaluate and compare the
performance of the face detection algorithms. These tests are carried out on several
publically available datasets. It is important to select the appropriate datasets that
reflect the settings of the final system as closely as possible. As mentioned above,
the consumer system designed and implemented in this dissertation is supposed to
be used for access control and employee verification inside office buildings. The
indoor settings somewhat simplifies the problem as the variation in the images that
the system can be seen is relatively constrained. That said, the selected datasets for
the tests are to be chosen to resemble in door settings as much as possible.
The following subsections deal with the several face detection datasets that are
used to run the experiments:

3.2.1    WIDER Face dataset

One of the most interesting face recognition datasets I found is the WIDER face
dataset. This dataset was made public in correspondence with the research paper in
2016 and is by far, the most diverse, easily accessible dataset available in public.
The dataset comprises over 32,000 individual images that contain a large number
of faces each. Face annotations are done manually and the recognizable faces
where at least 30% of the face is visible. All of the faces in images are annotated
with rectangular bounding boxes which is ideal.

A casual inspection of the dataset reveals that pictures are taken from further away
which closely resembles the office environment as the mean distance from the
camera to the room is similar to the distance between the camera and the faces in
the dataset. Not only that, each image contains, on average, 12 faces which is
similar to what we would expect in a single room in an office setting. Furthermore,
the general theme seems to be unconstrained scenes as there is a huge variation in
the images which may help us estimate performance in unconventional office
settings such as warehouses where access control is more relevant. In addition to
this, most of the images of the people are full body and do not just focus on upper
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bodies or closeups. These features make this data set an ideal testing ground to
evaluate and compare the performance of different face detection algorithms.

The dataset also segregates the images in 61 event categories that correspond to the
background setting of the image. This means that the appropriate categories that
are similar to a workplace setting can be selected to further reduce the number of
images and increase the relevancy to the problem at hand.. Based on a cursory
review, I chose, handshaking, press conference, meeting, group, interview and
greetings category to name a few. Out of the original 32,000 images, the final
refined dataset comprises around 2700 images from sixteen categories which is
large and diverse enough to achieve a statistically sound conclusion and small
enough to run the experiments in a reasonable amount of time.

3.2.2    Face Detection Dataset and Benchmark (FDDB)

Another promising dataset is the face detection dataset and benchmark (FDDB).
While somewhat dated at 12 years old, the images still look very decent. The
dataset contains about 3000 images collected from the Yahoo news website and
seems to be unconstrained in nature as it contains images of different dimensions,
perspectives and event settings. Since the average number of faces per image is
low, obstructed and partial faces are not a big problem and the annotations are very
clear. Both elliptical and rectangular bonding boxes are available for each face.

Compared to the WIDER face dataset, the images seem to be taken from a lot
closer up. Furthermore, most images are very candid in nature and tend to focus on
the upper torso rather than the full body. In addition the images contain between 1
and 3 faces per image so it may not be 100% relevant to our place settings. On the
other hand, the images do contain several scenarios, backgrounds and situations
which provides enough diversity. No event categories are found so it is not possible
to further reduce the size of the dataset.

My primary rationale for selecting this dataset was to provide a different
perspective. The differences in the FDDB and the WIDER dataset can be used to
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highlight the contrasts in the results and to compare the face detection algorithm in
different situations (for example close up vs far away or single face vs large
number of faces).

3.3 Algorithms

Face recognition is one of the most widely studied topics in artificial intelligence
with the earliest research dating back to the early 1970s when Woody Bledsoe and
Helen Wolf developed a rudimentary mathematical methodology to compare faces.
Since then, we have come a long way to sophisticated convolutional neural
networks with billions of parameters that outperform humans on pretty much all
fronts. The recent development in machine learning and statistical methods have
allowed for more robust face detection system that can manage

Even though the earlier research is very relevant from a historical and
mathematical point of view, this dissertation mainly focuses on more recent
algorithms including but not limited to deep learning convolutional neural
networks. The most important breakthrough in modern face detection is definitely
the Viola and Jones algorithm released by Paul Viola and Michael Jones in 2001.
The viola and jones algorithm was the first algorithm with performance
comparable to that of humans as it achieved a 75% to 90% detection rate on
various face detection datasets. In addition to the Viola and Jones algorithm, the
Histogram of Oriented Gradients (HOG) algorithm is also widely popular. In recent
years the majority of the face detection research occurs in the realm of deep
learning due to the exponential increase in processing power. Deep learning is a
family of blackbox algorithms inspired by the biological neural networks. Deep
learning is used for complex prediction tasks where manual feature crafting is too
complicated. Members of this family include the multilayer perceptrons (MLP),
artificial neural networks, recurrent neural networks, LSTM and convolutional
neural networks.

Convolutional neural networks are, by far, the most popular choice for object
detection tasks so only they are discussed and experimented with in this
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dissertation. CNNs are end to end algorithms that require little to no preprocessing
and take care of everything from feature generation, feature selection and the
actual classification. They exploit the structural information of the image by
recursively applying filters (or kernels) in a layered manner. The initial layers
extract simpler features such as geometric shapes while subsequent layers build on
those features to generate more complex features. The last convolutional layer of
the network can extract very complex features such as an entire eye from a face.
Final layers of the CNNs are typically fully connected and use the extracted
features to make a final classification. Convolutional neural networks can be
further divided into object recognition networks and object detection networks.
The aim for object recognition is to simply recognize the image and predict the
object class. One the other hand, object detection deals with object recognition as
well as localisation which is why only the second category is appropriate for face
detection.

Unfortunately, the raspberry pi is not able to run the majority of deep learning
convolutional neural networks due to resource constraints so we can only consider
the least complex, mainstream models such as the YoloV3-tiny and the Single Shot
MultiBox detector (SSD).

3.3.1    Viola and Jones (Haar Cascades)

The Viola and Jones algorithm was first released by PaulViola and Michael Jones
in 2001. The significance of this algorithm comes from the high accuracy (for the
time) as well as being the first real time face detection algorithm. Briefly speaking,
the viola jones algorithm uses running a sliding window over the image and
extracts some image features. These features are then run through a classifier to
classify faces from non-faces. The algorithm comprises four steps. There are two
steps pertaining to model training and two for the actual face detection. In the
training phases the classifiers must be trained and the best features must be
selected whereas in the detection phase, haar-like features are detected and an
integral image is calculated.
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The first main concept is the Haar-like features similar to Haar wavelets. Haar-like
features exploit the localized differences and contrast to extract image features by
exploiting the difference in the sum of grayscale pixel values. For example, a
vertical edge can be detected using a haar function that exploits the difference in
the sum of pixel values on the left side and the right side of the box. The three
main types of Haar-like features proposed by the authors are edge features
designed to detect edges, line features designed for line segment detection and four
side features. A high value for a haar feature means a higher probability of the
existence of the image characteristic it represents. Thresholding is applied to filter
the lower values and determine if the feature exists.

Calculations with a sliding window are very computationally expensive, however,
Viola Jones does this very efficiently using integral images, also called a summed
area table that do the calculation in one go. A value for each coordinate (x, y) is
calculated by summing all values to the left and above. Then , the individual sums
within a rectangle are calculated by referencing the summed area table and
performing simple arithmetics using the point values for the four corners, thus
emulating the sliding window effect mentioned above.

The algorithm uses multiple iterations of adaptive boosting (AdaBoost) to select
and filter the overwhelming number of features in order to create an effective
classifier. The model tests each feature individually and ranks them on the number
of false positives and false negatives in the predictions. For example a feature that
exists in 4 face images and 1 non face image is considered to be better than a
feature that exists in 3 face images and 2 non-face images. Once the best feature is
selected, the next features are selected based on how well they complement the
previous best feature by assigning greater importance to the false negatives and
using a weighted cumulative function ensuring a collective outlook. With this
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approach, it is possible to select just 200 of the most important features that best
complement each other.

The final piece of the puzzle is known as “Cascading” Instead of using a single
classifier, a cascade of classifiers is used to speed up the model and increase the
accuracy. Early in the cascade, simple models (such as the existence of the most
important feature) are used that immediately reject the vast majority of
subwindows within the image. Classifiers then become increasingly complex at
every step for more careful selection to reduce false positives. This “cascade” of
simple and complex classifiers ensures that no time is wasted on the majority of the
image subwindows where no faces are found.

Viola jones is a promising algorithm that is still used for face detection where
computing resources are constraints which makes it the ideal candidate for a
raspberry pi. It is efficient and works well in a large environment. On the other
hand, Viola Jones was developed for the frontal view of faces so the algorithm
works best with pictures where people face the camera instead of looking
sideways. Partial faces and unusual positions do not bode well with the algorithm.
This may not be a problem as face recognition systems in buildings have people
looking directly. Still, the algorithm is tested due to its reputation and efficiency. A
complete evaluation and the results of tests can be found in the experimental
section of the thesis.

3.3.2    Histogram of oriented gradients (HOG)

Histogram of oriented gradients (HOG) detector was proposed by Naveet Dala and
Bill Triggs in 2005 as a better, more robust alternative to the Viola Jones algorithm.
Like Viola Jones, HOG detectors work by first extracting images features and then
running a classifier to determine the existence of a face. Unlike Viola Jones, this
algorithm uses histogram features generated using the edge gradients (small
changes in spatial directions) of the image instead of haar features and a support
vector machine (SVM) classifier which leads to more robust face detection. The
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detector works well, is fast enough to be run on a raspberry pi and remained the
state of the art for face detection until the deep learning era.

The feature extraction is based on the evaluation of localized histograms of
gradient orientation. The premise is that the shape and appearance of the object is
well reflected in the gradient intensity of the “direction” of the edges. The original
image is broken in a grid of regions. The original image is broken down in a
localized region and the gradients and orientations are calculated using the “slope”
of the pixel values of adjacent pixels. The value of the gradient is higher whenever
there is a greater change in pixel intensity as is the case around edges. These
gradients and orientations are then used to generate a histogram that is essentially a
frequency distribution of a set of adjacent points in the region. This can be done by
binning the gradients and orientations  and calculating the number of instances in
each bin. A histogram is calculated for a 8x8, 16x16 or 32x32 image region. A
sliding window is imitated where the stride is shorter than the width which means
there is significant overlap between regions. The region histograms are then
combined to generate feature vectors that are further normalized to account for
spatial differences. Finally, the feature vectors can be used to make final
predictions. The authors recommend a 64x128 detection window for the feature
extraction and a soft linear support vector machine (SVM) classifier with a for the
predictions. A gaussian kernel has a slightly better performance but is forgone for
performance reasons.

Hog detectors have several benefits. They capture the edges and the structure of the
image very accurately which works well for distinct shapes such as faces.
Furthermore, the features are scale invariant and can accommodate a wide variety
of distortions and resolutions. This also means the HOG detectors can manage
more perspectives compared to a Viola Jones detector. That said, HOG detectors
are still meant for frontal faces and faces looking sideways hamper the face
detection performance. According to initial research on the HOG detectors, it
seems that they might be on the sweet spot between the fickle Viola Jones and
computationally expensive convolutional neural networks. The final decision is
made after the evaluation but it seems to be the most promising candidate for the
face detection component of our pipeline.
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3.3.3    Tiny YOLO V3

Most of the recent research in face detection focuses on deep learning.
Convolutional neural networks are considered the state of the art in object
detection. Unfortunately, the planned system is built around a raspberry pi which is
too weak to run a convolutional neural network. An example would be the state of
the art R-CNN networks. While they outperform humans, a single pass takes
upwards of 10 seconds on a raspberry pi which is unacceptable. Therefore, I picked
one of the fastest object detection models called the Yolov3 which needs a fraction
of the resources required by traditional networks.

Yolo stands for “you only look once” as the model is based on a new approach that
unifies the feature extraction, object classification and object localization into a
single component. YoloV3 is the third iteration of the popular yolo object detection
algorithm family and comes in two flavours, the standard model and the more
compact tiny model.  Research in the Yolo V3 family indicates that only the tiny
version would be able to run in reasonable time on a raspberry pi. In addition to
lesser complexity, the network architecture and optimization functions of the tiny
version of YoloV3 is also optimized to be run on mobile devices that makes it more
suitable for our application. As hinted in the name, the neural network is based on
a single stage architecture with the goal of executing the prediction in a single pass
and reducing the redundant calculation to the absolute minimum in order to
significantly speed up the prediction process.

The network is made of 13 convolutional layers with 16 to 1024 filters each. In
addition, the network uses 7 maximum pooling layers along with the relu
activation and upsampling for better performance. The network does not contain
fully connected layers which means it is very flexible with different resolutions and
aspect ratios. The network architecture also includes skip connections that allow
the features extracted to be directly carried forward. This means that instead of a
sequence, some intermediate features are allowed to skip some of the subsequent
layers. For example, extracted by a kernel in layer 5 can be carried forward to layer
9 without having to go through all of the layers in the middle. This is done to
ensure flexibility and allows the network to directly use earlier, simpler features
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without adding complexity. The network also has multiple prediction heads that
each make a separate prediction at different intervals of the network and process
the image at different compression levels. This is done to increase the robustness of
the network by making it scale invariant and to allow it to learn about objects at
different sizes.

Compared to other mainstream convolutional neural networks, the Tiny YOLO V3
has a much smaller footprint but is comparable in performance. The main
drawback is the complicated training process and limited number of object
categories. The training complexity is not a problem because the trained network
weights are freely available online eliminating the need for retraining and the
limited object classes are not a concern as we are only interested in a single object
category making the Tiny YoloV3 the best candidate for our implementation.

3.3.3    MobileNet Single Shot Detector (SSD)

Another promising deep learning candidate for face detection is the MobileNet
single shot detector. Released in 2016, the MobileNet SSD was one of the first
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significant ventures in real time object detection on embedded devices (such as a
raspberry pi) without sacrificing accuracy. This network is made up of a
combination of mobile net, which is a lightweight object recognition network and
SSD that is an object detection network. Like yolo, the goal of single shot detectors
is to process the image in a single take in order to minimize redundant calculations
and to achieve the speed boost.

The first part, MobileNet, is made up of 23 convolutional layers with 32 to 512
convolutional filters each. The network also uses average pooling layers between
the consultional layers to condense intermediate features along with the RelU
activation function. Moreover, batch normalization is used after each convolutional
layer to normalize the layer output for quicker, more stable learning. The network
has one final fully connected layer and one hot softmax activation for the final
classification. Unlike yolo, the mobile net has a fixed input shape of 224x224 due
to the fully connected layer. What sets the mobile net apart is the addition of
depth-wise separable convolutions that are made up of depth-wise and pointwise
convolutional layers. This gives the MobileNet the speed boost required and yields
a much smaller network which can still compete with the larger networks on
recognition accuracy.

The second component of the neural network is the multi-box SSD detector. The
single shot detector network has a base of the VGG-16 neural network that is used
as a feature extractor. The base is then stacked with multibox convolutional layers
that perform the object detection for objects at different scales. The earlier
convolutional layers of the network are wide and flat while the deeper layers have
progressively increasing depths and smaller image feature maps. The earlier layers
capture a large part of the image and construct simpler, more abstract features to
detect larger objects while the later layers increase the feature resolution by
decreasing the feature map size in order to detect smaller objects. Each of the
multibox consulting layers have anchor boxes (multi boxes) of different sizes and
aspect ratios for greater flexibility. During training, the ground truth bounding
boxes are matched with these anchor boxes and the intersection over union (IoU) is
used to calculate the fitness for optimization.
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The fully connected layers of the MobileNet are removed and the single shot
detectors are stacked on top of it to create an end to end object detection pipeline
that works very efficiently by performing the object detection in a single pass.

The network works very well and the performance is comparable to larger models
with an order of magnitude greater number of parameters. The network does
struggle with smaller objects and images with a large number of objects. This,
however, should not be a problem for our application since it constitutes a single
object (human face) that comprises a significant proportion of the images.
Compared to non-deep learning such as Viola Jones or the HOG detector, this
network can manage much larger  perspective variations, distortion and partial
faces which, while not necessary for our specific application, are still nice to have.
The actual performance on a raspberry pi still remains to be seen but it is expected
to be comparable to that of the YoloV3 tiny. The detailed analysis of the MobileNet
SSD networks can be found in the experimental section of this chapter.
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3.4 Experimental Results

This section pertains to the experiments done and the evaluations carried out to
determine the best face detection algorithm for our face recognition pipeline.

3.4.1    Methodology

As mentioned above, the Wider faces dataset and the FDDB dataset was used to
make a final evaluation. The Wider face dataset contains about 12,000 images
across multiple categories while the FDDB dataset contains about 2700 annotated
images. The most important thing that sets the two datasets apart is the average
number of faces and perspectives. The Wider face dataset has a much larger
number of faces and consequently, the average face is very small in proportion to
the image. The FDDB in comparison has few faces per image with each face
covering a much larger percentage. While the FDDB dataset with fewer images
covering a larger proportion of the image is more useful to our application, I
decided to test both dataset for greater variety in the testing data and to perform a
more thorough analysis. The distributions of the two datasets can be seen in the
following graphs:
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1500 images were sampled randomly from each of the datasets and combined to
form the final dataset that was used for the experimentation. For the Wider face
dataset, a roughly equal number of images were chosen in the different categories.

3.4.2    Results

Pretrained model weights of each of the four algorithms were found and model
interfaces were written in the python programming language to run the tests. For
each of the images, the predictions from the respective models were made. Some
code was written to parse the predictions in the form of bounding boxes. As
mentioned in section 2, the intersection over union (IoU) with a minimum
threshold of 0.4 was used to match the prediction bounding boxes with the ground
truth boxes. Then, metrics such as the accuracy, precision, recall and the average
IoU score were calculated. An overview of the results are as follows:
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The initial results show an overview of what can be expected from each of the
algorithms. The YoloV3 Tiny scores the best in the accuracy metric (percentage of
actual faces detected) by a small, somewhat insignificant margin. However, this
definition of accuracy does not take in account the number of false detections. For
that, the precision and recall metrics can be checked. The precision metric is
proportional to the number of true positives detected by the algorithm. A high
precision means that the algorithm returns mostly correct detections while avoiding
false detections. Surprisingly, the Hog detector has a higher precision compared to
more advanced deep learning detectors such as the Yolo v3 and the SSD. The
margin is very small and the deep learning networks fare very well.

While the Hog detector may look like the best candidate, the recall metric gives
away the reason behind the high precision. The recall metric is inversely
proportional to the number of false negatives detected and higher recall means that
the algorithm is detecting most actual instances (regardless of the number of false
detection). The hog detector has a significantly lower recall than the rest which
suggests that the algorithm is very conservative with the detections and offers face
detection a marginally higher true positive rate at the cost of a significantly higher
false negative rate. While the face recognition pipeline is safe from misleading
information from incorrect detections, it might miss an occasional frame leading to
higher overall detection time. Overall, yolo has the best compromise between
precision and recall (false positives and false negatives). On the contrary the Viola
Jones detector takes the opposite approach. It has a recall which is comparable to
that of the neural networks which suggests that it detects the faces correctly at the
same rate. It, however, has a significantly lower precision suggesting a higher
number of false detection. This is troubling as this means that the system gives a
lot of misleading information that can compromise the entire pipeline.

The analysis intersection over union metric is a tricky subject to deal with. While
the yolo significantly outperforms every other algorithm, it is important to dig a
little deeper and understand the difference between different face annotations. The
yolo and the mobilenet are trained on the dataset that use face annotations that are
similar to the Wider face and the FDDB  dataset as both face annotations include
the top of the head and the chin of the person. On the other hand, the viola jone and
the hog detector were trained in a different manner and prefer to annotate on the
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face only. This means that, while the IoU scores differ significantly, the algorithms
may perform at a similar level. A few examples of the detections made by each
algorithm were checked to confirm this hypothesis. The hypothesis is confirmed to
be true so the performance on the average IoU metric is considered to be a tie.

The Yolo V3 tiny model comes out on top according to most of the accuracy
metrics. However, the detection time reveals the major flaw for deep learning
systems. The Yolo V3 tiny has the highest detection time out of all of the
algorithms with the MobileNet SSD not much far behind. In comparison, the Viola
Jones algorithm and the Hog detector have an up to three times lower detection
time. This means that Viola Jones of a Hog detector can run on a raspberry pi at 6
fps compared to less than 2 fps for the Yolo V3 Tiny.

The overall results of the experiments make either the Yolo or the Hog detector the
front runner depending on the criteria. In order to perform a more thorough
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analysis, it may be worth studying the detection metrics for each of the algorithms
with reference to the type of image being processed.

3.4.3   Number of Faces

The datasets tested have different types of images and one of the main themes
along which the images differe is the amount of faces in an image. It is interesting
to study the effects of the number of faces in each of the algorithms in order to
determine the best suited choice. The dataset was filtered out to remove outliers
and images with too many faces since our application involves face detection of
only one person at a given time. Only the images with 10 or less faces were
considered and the dataset was further divided in 10 slices (1 faces, 2 faces, 3
faces...) and the general experiment mentioned above was rerun. The performance
metrics for each slice were calculated individually and compared with each other in
order to study the trends.

The graphs above show the trend of the precision and recall metrics as the number
of faces in the image rises. The precision of the Viola Jones and the Hog detector
remains the same which might suggest the algorithms fare better than the deep
learning networks. However, further analysis reveals that this is not the case as the
traditional algorithms simply stop detecting any faces in images with a large
number of faces causing both low true and low false positive rates leading to
higher precision. This is further verified in the recall graphs. Unsurprisingly, the
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The recall trends toward at a similar rate. The deep learning networks maintain
their recall very well while the traditional algorithms do not. The worst offender is
the hog detector for which, the recall nosedives (while maintaining a high
precision) confirming the conservativeness of the algorithm. That said, The hog
detector works very well for images with a small number of faces which is the
primary goal of the project undertaken in this dissertation.

The graph above shows the detection time of each of the algorithms on a raspberry
pi. For most of the algorithms, the detection time is constant. The only exception is
the Viola Jones for which the detection time rises with the number of faces. The
Hog detector remains the fastest algorithm for each dataset slice.

3.4.4   Face to Image Ratio

Apart from the number of faces, the size of the individual faces should also be
considered. The dataset contains images in various situations with faces of all
shapes and sizes. We are primarily interested in the images that contain people
looking directly in the camera for whom the faces cover a large portion of the
image. This subsection pertains to the testing done in order to evaluate the
performance of the algorithms on faces of different sizes. To accomplish this, the
face ratios were calculated by dividing the face areas by the total image size. For
example, a ratio of 0.25 means that the face covers 25% of the total image area.
The dataset was divided in 10 slices (0 - 0.05 , 0.05 - 0.1 ...) and the general
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experiment explained above was rerun. The performance metrics for each slice
were calculated individually and compared with each other in order to study the
trends.

The precision and recall increase for all algorithms as the face to image ratio rises.
This is expected as it is easier to identify faces that are more prominent and cover a
larger area. Furthermore, the image dimensions are standardized to 512x512 which
means the faces with a higher ratio are higher resolution as well making them
easier to detect.

According to the precision and recall metrics, the algorithms behave in line with in
observations in the previous experiments. The Viola Jones and the Hog detector
perform comparably to the neural networks on images with a high face to image
ratio. However, the performance of the traditional algorithms drops significantly as
the ratio decreases while the neural networks maintain performance reasonably
well. The drop in performance of the viola jones is significantly worse for the
precision metric all across the board confirming the excessive generosity of the
algorithm that causes an increasing amount of false detection as the ratio drops.
Similarly, the Hog detector is the worst performer in the recall department with the
recall significantly dropping as the ratio drops. This reiterates the excessive
conservativeness of the Hog detector that forgoes true detection in order to
minimize false detections. That said, the Hog detector performs reasonably well on
faces that cover a large portion of the image. The benefits of the deep learning
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networks are not observable unless the faces cover a much smaller  portion of the
image which is largely irrelevant to the practical problem at hand.

The detection time remains constant across the board for all of the algorithms. The
detection time of the viola jones increases slightly for very small faces but this can
easily be attributed to the fact that images with smaller faces typically contain a
large number of faces which increase the complexity and slows down the detection
process of the Viola Jones algorithm.

3.4.5  Conclusion

The Viola Jones algorithm can be ruled out at the very beginning. It has a very
large false positive rate which is arguably worse than false negatives. All it offers
is marginally higher detection rate on images with constrained backgrounds and a
single face that covers a large portion of the image at the cost of a much lower
performance on more complex images and a higher false positive rate all across the
board. It is also computationally comparable to the hog detector which leaves no
reason to pick it over any of the other algorithms. Similarly, the MobileNet single
shot detector can also be ruled out as it offers no unique benefits and Yolov3
outperforms the MobileNet in every accuracy metric. All the MobileNet offers is a
slight advantage in the detection time but is insignificant and can be written off.
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Hence, the final selection of the face detection algorithm is a choice between the
Hog detector or the Yolo V3 Tiny depending on the final objective.

From a purely performance point of view, the yolo algorithm outperforms the rest.
However the margin of victory is not as significant as one might hope. Moreover,
the yolo algorithm is the most computationally heavy of them all and runs three
times slower than the hog detector which has a comparable performance. In
addition to this, the main issue with the hog detector is missed detection which can
be easily remedied by running more video frames for each face detection attempt
which we can as we have to run the face recognition pipeline just once per scan
and a recognition time of up to a few seconds is still acceptable. The multiple
frame runs for a hog detector are easily compensated (and then some) by the three
times higher frame rate. Furthermore, the access control system has to mostly deal
with frontal face views and images with a small number faces that are detected
reasonably well with a Hog detectors. Most of the advantages of the deep learning
neural networks are observed only on more complex images with a large number of
difficult to detect faces.

Lastly, I am reluctant to use a Yolo algorithm on the raspberry pi due to the high
detection time as my tests indicated a frame rate of less than 2 fps leading to a very
high opportunity cost of processing blurry frames or frames with bad poses. The
hog detector holds out very well for a non-deep learning algorithm and only has a
slightly lower performance in exchange for a 300% boost in the detection speed
and subsequent frames per second. Therefore, I am inclined to choose the Hog
detector as the face detector of the application.
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Section 4 - Face Alignment

Successful face detection results in bounding boxes that strictly content the faces of
the humans. The next challenge is to conform the detected faces to a common
standard before the rest of the face recognition pipeline can be executed. This
intermediate stage between face detection and face verification or identification is
known as face alignment. Face alignment can be considered as a form of data
normalization or zero centering and it is considered useful because it  provides a
layer of standardization that allows for more robust face recognition as the overall
pipeline is less likely to be affected by variables like human pose, facial
expressions, face resolutions and orientation. For this reason, it is recommended by
many popular face recognition algorithms such as eigenfaces, fisherfaces and local
binary patterns (lbp) of faces. After a lot of research and experimentation, it is
generally accepted that a higher accuracy of face recognition can be achieved by
performing face alignment.

In general, the face alignment algorithm consists of two phases. The first phase
deals with the identification of the geometric structure of the detected faces by
detecting the location of various facial landmarks. This is a classic object detection
problem and has traditionally been solved with machine learning algorithms and
computer vision techniques. Like other subfields of computer vision, face
landmark detection is also rapidly moving towards deep learning and most of the
recent research and the state of art algorithms are based on convolutional neural
networks that offer higher performance with little preprocessing. That said,
landmark detection and face alignment is extremely time sensitive as it is typically
expected to consume only a small percentage of the time taken by the pipeline. For
this reason, traditional algorithms are more commonly used compared to detection
or recognition due to the speed boost.

The second phase utilizes the face landmarks to align the face by warping and
transforming the image to conform it to a standard. More sophisticated techniques
involve imposing a predefined model that warps the entire perspective of the image
to center the face. This leads to maximum conformity as it is guaranteed that the
face landmarks of two warped faces would overlap perfectly. Despite the higher
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degree of standardization, this approach distorts the face and may lead to
information loss. The second, more simplistic approach is linear transformation
that attempts to canonically align the face based on normalized image translation,
rescaling and rotation. This is desirable as it preserves the structure of the face
while providing an acceptable degree of conformity. The basic goals of such
alignment are as follows:

1. The faces should be centered in the image.
2. The faces should be rotated such that the eyes are horizontally aligned with

each other (the y-coordinate of both eyes is identical).
3. The faces should be scaled to an identical size and resolution.

Despite its simplicity, this approach works very well and is recommended.
Furthermore, most of the face identification algorithms that are discussed later are
trained on faces where facial structure is preserved (which is the latter approach) or
no preprocessing is done leaving us with little choice but to use the second
approach of centering, rotation and rescaling faces instead of a 3D perspective
transformation.

4.1 Performance Evaluation

Performance evaluation for face alignment is tricky due to it being an intermediate
stage with no clear result that can be quantified or evaluated. The performance and
the suitability of an algorithm can be evaluated by proxy by evaluating the
performance of principle constituent algorithm, landmark detection since the
subsequent alignment algorithms are strictly deterministic and depend solely on the
quality of the face landmarks detected by the landmark detector.  The face
landmark detection problem statement is as follows. Given an image and a list of
bounding boxes that represent each detected face, for each of the detecting faces,
predict the location of a list of an arbitrary number of predefined features such as
eyes, nose etc and return a fixed length list of spatial coordinates for each of the
features. Mathematically speaking, this boils down to a regression problem as the
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output represents the actual real world value. Hence, metrics normally used for
regression analysis can be used for performance evaluation.

The first metric that can be used to evaluate the fitness of the landmark prediction
is the mean distance between the predictions and the ground truth. For a single face
this would be the sum of the euclidean distances between the coordinates that
represent the predicted location and the actual location of each of the landmarks.
To obtain a single fitness value for the entire dataset, the mean square error (MSE)
will be used.

The mean squared error works great for relative comparison between two
predictions but is incomprehensible to humans for absolute comparisons.
Therefore, for a single face, the mean percentage error will be used to establish a
minimum viable performance and evaluate the algorithms on its own in absolute
terms. In addition to the mean percentage error, the maximum and minimum
percentage error in the landmarks will be calculated for the landmarks of individual
faces in order to examine the extremes and outliers to establish upper and lower
bounds on the performance. A perfect face landmark detector, for example, would
have an mean squared error of zero which means that the euclidean distance
between predicted landmarks and actual landmarks is zero. More obviously, the
mean, maximum and minimum percentage  errors would also be zero which means
that the predicted face landmark coordinates are identical to the ground truth.

The final metric that was considered is the failure rate, or the proportion of the
faces, for which, no landmarks were detected. This is a binary metric that can be
analysed by calculating the precision, recall and the accuracy. However, a few of
the most popular algorithms used for landmark detection such as the Ensemble of
Randomized Trees (ERT) model have an a priori assumption of the existence of the
face in the given bounding box. This means that the landmarks are always
estimated regardless of the actual existence of a face. Therefore, the failure rate is
always zero and the precision and recall metrics lose their meaning which means
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that no meaningful comparison between algorithms can be made using the failure
rate.

4.2 Datasets

The experimental tests designed to evaluate, compare and choose the ideal
landmark detection algorithm were undertaken using the 300W face landmark
dataset. The 300W dataset is made up of a collection of various face recognition
datasets such as the Labelled Faces in the Wild (LBFW), Annotated Faces in the
Wild (AFW) and the IBUG dataset which makes it the ideal candidate as it makes
experimentation with multiple datasets redundant. The images are annotated
manually  using 68 separate face landmarks as shown below.

The dataset contains 300 indoor and 300 outdoor images and were carefully
selected to represent a characteristic sample of face in fully unconstrained
condition.  Hence, there is a huge variation in the types of images as the dataset
contains images with  a wide variety of lighting conditions, distance from camera,
expressions, identity, human body pose and visibility as well as images with faces
that are partially obstructed. A closer inspection reveals that the images focus on
the humans instead of the background as 50% of the images contain a single face
with a further 10-15% of the images containing only two faces. The median face is
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considerably large and visible with a median face resolution of  292x292 which is
expected due to the difficulty in the identification and annotation of face landmarks
for very small faces. That said, the diverse set of images is definitely at least as
challenging as the real world office environment. This means we can be assured
that an algorithm that works well on the dataset will also work well for the face
alignment component of the proposed access control system.

4.3 Algorithms

Landmark detection is a popular area of research and has many applications out of
face alignment in face recognition such as face swapping, gaze detection,
drowsiness detection and augmented reality. Popular modern day applications such
as mobile camera filters are built on landmark detection which generates a lot of
research and business interest in the field. This has led to the development of
various algorithms.

The earliest landmark algorithms were statistical in nature and were based on a
face mesh that fit on detected faces. The generated meshes were then used to
estimate the location of the landmarks. Examples of such algorithms include the
Active Shape Model (ASM) and the Constrained Local Model (CLM). These
algorithms kickstarted the field of landmark detection and served as the proof of
concept in the industry. While interesting, the algorithms were not powerful and
complex enough to work in real world scenarios such as employee access control
in office buildings. With the advent of machine learning, new face detection
algorithms were developed that use automated feature extraction and trainable
models that led to a drastic increase in performance making the second generation
suitable for real work applications. Examples of the second category include tree
based ensemble algorithms such as the Ensemble of Randomized Trees (ERT)
algorithm that is described, tested and evaluated in detail in the following
subsection.

Today, just like the vast majority of predictive algorithms families, the state of the
art algorithms in facial landmark detection algorithms are deep learning based
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neural algorithms. These latest neural networks offer the most accurate predictions
with the lowest prediction error and work just as well in more difficult situations.
In fact, these new networks have started to eclipse actual humans in face landmark
detection with the only significant drawback being the hardware requirements and
detection times. The most popular deep learning based landmark detector is the
Multi task Cascaded Convolutional Neural Network (MTCNN). The MCTNN is
the second algorithm that is tested in the experiments and evaluated.

4.3.1  Ensemble Randomized Trees (ERT)

Arguably the most popular algorithm used for face landmark detection is an
ensemble of randomized trees (ERT) proposed by Vahid Kazemi and Josephine
Sullivan in 2014 in the paper “One Millisecond Face Alignment with an Ensemble
of Regression Trees”.  The algorithm comprises a cascade of gradient boosting
trees that generate an ERT face template and iteratively refine it to predict the
locations of the landmarks. Even though there are more complex, deep learning
based algorithms available today, the ERT algorithm is still wisely used due to
excellent public implementation, very high precision and detection time (hence the
“One Millisecond” in the paper title).

The ERT landmark detection algorithm starts off with a generic face shape and
utilizes a casarse of regressors to iteratively improve the shape and predict the
landmarks very effecticients inefficiently in near real time. The initial shape is
usually the mean shape in the datasets and the regressors make their interactive
prediction based on image features such as the pixel intensity values. The cascade
of regressors are trained jointly. With each training iteration, the prediction
accuracy rises and the training process is repeated until sufficiently high accuracy
is achieved. The individual regressors are tree based and use the gradient boosting
algorithm to fit to the target vector.

The implementation of the ERT algorithm used for further testing is from the open
source computer vision python library called DLib. The algorithm provides a very
high prediction accuracy and fits the landmark features very well. The base
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template and the interactive improvement dramatically speeds up the prediction
process by greatly simplifying the problem and removing the binary classification
phase altogether. Further information on the detection time can be found in the
testing subsection, but casual testing demonstrates almost instantaneous prediction
explaining the popularity of the algorithm. That said, this approach has a drawback
as it strictly assumes the existence of a face in the provided bounding box. The
iterative improvement process leaves no space for a negative classification and the
algorithm will approximate the landmarks even in the absence of an actual face
without providing a confidence score. In other words, the robustness of the
algorithm significantly depends on the preceding face detection phase. An
incorrect or misaligned face will mislead the algorithm without warning,

Fortunately, good results were observed in the face detection section and the
selected face detector specifically prioritizes the reduction of false positives and
demonstrates precision detection. This significantly reduces the impact of
drawbacks of the ERT algorithm making it a promising candidate for face
alignment in the face recognition pipeline

4.3.2  Multi task Cascaded Convolutional Neural Network

The MTCNN is an ensemble of convolutional neural networks that combines the
face detection and the landmark detection and makes a joint prediction. Unlike the
68 landmark industry standard, it is designed to predict only five landmarks (left
and right eyes, nose and left and right corners of the mouth). The MTCNN
comprises a preprocessing component followed by a cascade of three separate
neural networks, the proposal network (PNet), the refine network  (RNet) and
finally the output network (ONet). The main job of the preprocessing component is
to rescale the input image to various sizes in order to generate a pyramid of images.
Subsequently, this pyramid is given as input to the three network cascades for joint
face and landmark detection.

The first state of the cascaded network, the proposal network, is a shallow fully
convolutional neural network (FCN) designed to rapidly generate candidate
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windows. The PNet predicts the initial candidates for face detection and landmark
detection and uses bounding box regression to predict the bounding boxes.
Standard post processing is done to combine overlapping regions and the candidate
windows are passed on to the second network. The refine net is a deeper, more
complex neural network with a fully connected layer. This aim of the refine net is
to reduce the number of candidate windows, calibrate the results of the regression
and further combine the overlapping bounding boxes. The RNet has a fixed input
at  24x24 and a fixed length output. It outputs a 15 length vector that constitutes a
binary output that represents whether the input reason is a face, a four length vector
that represents the bounding box for the face and a 10 length vector that represents
the x and y coordinates of each of the five landmarks. The output vectors are then
passed on to the third network. The aim of the ONet is to further refine the
predictions and add more details to the face. The structure is similar to the RNet as
it is a convolutional network with four convolutional layers and one fully
connected layer for the predictions. Like the RNet, the input is fixed at 48x48 and
the the output is a similar 15 length vector that represents the binary classification
results, bounding box for the face and the coordinates of the facial landmarks. The
face landmarks can then be used for the face alignment by calculating the required
rotation angle, scaling ratio and the center of the face.

One of the main advantages of the MTCNN is the joint prediction of the face
classification, localization and the landmark detection as it reduces the overall
complexity of the face recognition pipeline. The quality of the prediction is also
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very good and the algorithm demonstrated impressive performance on mainstream
face landmark datasets even in partially obstructed faces with difficult to
distinguish features. However, it does so at the expense of time as the precision
takes precedence over detection speed for state of the art performance. This leaves
some doubt over whether the MTCNN would be appropriate for our application
since the results of the landmark detections are only to be used indirectly for
alignment. Experimental testing was carried out to compare the MTCNN with the
ERT algorithm to resolve the doubt and select the best choice in context of the real
world application.

4.4 Experimental Results

This section pertains to the experiments done and the evaluations carried out to
determine the best face landmark detection algorithm that can be used to face
alignment between the actual recognition. As mentioned above, the remainder of
the alignment process is not tested due to the fact that it is an intermediate stage
with no clear fitness function.

4.4.1    Methodology

First, pre-trained models for both the Ensemble Randomized Trees (ERT) model
and the multi-task Cascaded Convolutional Networks (MTCNN) and modular
programming interfaces were implemented in the python programming language to
use the models. For the regression trees model, the 68_face_landmark_detector
from the dlib python library was used while a third party implementation of the
mtcnn was found on github along with pretrained weights for the mtcnn.

The images 300W dataset was used to evaluate either landmark detection
algorithm and then select the most appropriate choice. There is a difference
between the number of the landmarks detected by each algorithm and the number
of landmarks found in the annotations of the dataset. The ERT algorithm predicts
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68 landmarks which correspond exactly with the 68 landmarks that are annotated
in the dataset. However, the MTCNN only predicts 5 landmarks, of which, two do
not correspond perfectly with any of the 68 landmarks predicted by the regression
trees and the dataset. To remedy the situation, the nose, left mouth and right mouth
landmarks are filtered directly from the original 68 and landmarks for the center of
the left eye and the center of the right eye were calculated by extrapolating the
landmarks that correspond to the the outlines of each eye. The five resultant
landmarks correspond perfectly with the 5 landmark format of the MTCNN and the
rest of the face landmarks are discarded. The utilized landmarks are illustrated in
the image below.

At this point, the chosen face detector (the Hog detector) is used to detect faces in
each of the images in the dataset. For successful face detections, the landmark
detectors are used to predict the landmarks. Since the images in the dataset have
landmark annotation for only one face (out of possibly multiple faces) , the overlap
was checked. Only the face detection with an overlap with all 68 original
annotations was considered and the rest were discarded. For each face landmark
prediction on an eligible face, the time taken for detection, the sum of squared
errors,  the mean, the minimum and the maximum percentage error (euclidean
distance) was calculated. The metrics for each face were saved in a csv file and
analyzed. The individual metrics were grouped by the algorithm to obtain singular
metrics for each of the algorithms.
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4.4.2    Results

Before discussing the algorithms, the exact goal should be determined in order to
determine what constitutes “good enough” for face landmark detection. Face
alignment is considered a secondary component of the face recognition pipeline
and it is absolutely vital to complete it in the shortest time possible. Furthermore,
the accuracy required for alignment is not extremely high as only the general
structure or pose of the face needs to be understood and small detection errors in
individual landmarks are of little consequence. As long as a detection is accurate
enough to calculate the center of the face, the required rotation angle and the
rescaling ratio, the detection can be presumed to be “good enough”. Hence, the
speed of the algorithm takes precedence over the precision as long as the accuracy
is somewhat reasonable. The initial results of the experiment are as follows:

Both algorithms perform very well and the sum of square error is extremely low
for either one of them. For reference, a SSE of 109.77 means that the predicted
landmarks are, on average, just 5 pixels away from the ground truth which, for all
intents and purposes, is negligible. This is further confirmed by the percentage
error metrics. The average percentage errors for the Dlib and MTCNN detector are
just 1.7% or 2.5% retrospectively. Even the maximum percentage error, which is
the worst of the five landmark predictions, is just 3.15% and 3.95% respectively
for the two detectors which is well within the acceptable range. Overall, the
difference in the performance between the two algorithms according to the
accuracy metrics is insignificant.

The detection time is a completely different story. As mentioned above, the
MTCNN is a convolutional neural network that combines the face detection and
the landmark detector. Therefore, the detection time comparison was done with the
MTCNN and the combined detection time of the Hogface detector and the Dlib
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landmark detector. The latter combination widely outperforms the deep learning
algorithm by a long shot. The ERT algorithm, surprising. holds true to its name as
the landmark detection takes a mere 0.02 seconds on a weak raspberry pi. The
detection time for the hog face detector and dlib landmark detector combination is
mere 0.23 seconds compared to 1.8 seconds for the mtcnn. Not only is the mtcnn is
eight times slower that the traditional approach, it is also too slow from an
objective, absolute point of view to be run in real time. With no discernible
difference in performance and the overwhelming speed advantage, the dlib detector
is an obvious choice for face alignment with absolutely no reason to choose the
MTCNN except for images with unique perspectives and a generous amount of
time to process them.

Before concluding the selection process for sure, a closer look was taken. One
thing to consider is the face to image ratio. Convolutional neural networks work
very well in obscure situations and it is useful to ensure that the performance of the
traditional approach does not drop as the face to image ratio decreases and the
complexity of the problem rises. To do this, the face to image ratios were
calculated and  the dataset segmented in in 10 slices according to the face ratio(0 -
0.1 , 0.1 - 0.2 ...) and the general experiment mentioned above was rerun. The
performance metrics for each slice were calculated individually and compared with
each other in order to study the trends. The graphs representing the trends in
performance as the the face to image ratio varies are as follows:

Surprisingly, the error metrics rise as the face to image ratio rises. Upon further
inspection, this can be explained simply by the higher resolution of the face that is
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caused by a larger face. The metrics are based on the euclidean distance is linearly
proportional to the resolution of the face. A mistake of the same magnitude would
yield higher error metrics in faces that are composed of more pixels, A visual
inspection confirms this hypothesis as the landmarks appear to fit better in images
with bigger faces despite the higher error metrics. That said, the two algorithms
demonstrate similar performance in terms of accuracy for all of the segments in
line with our expectations and the original results.

The detection time for both algorithms increases steadily as the face to image ratio
increases which is to be expected due to the higher number of pixels to process.
Unsurprisingly, the overwhelming difference in the detection time observed
previously holds true of all situations. The ERT algorithm is an order of magnitude
faster in all situations, hence, confirming its original selection.
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Section 4 - Face Recognition

Face recognition is the third and final step in the end-to-end pipeline. It refers to
the actual mechanism that is used to compare faces. Face recognition is generally
treated as two distinct problems, namely, face verification and face identification.

Face verification is a 1:1 comparison problem and deals with the comparison of
two faces in order to determine the similarity. It is a binary classification problem
in which the output is either “yes” if the faces belong to the same human or “no” if
they belong to different people. Face verification is carried out by comparing the
“distance” between the respective numerical embeddings (mathematical
representation vectors) of the two faces and assigning the pair a verification score.
A threshold that is determined through trial and error is used to make the final
judgement. The verification is considered successful if the verification score (the
distance) is higher than the threshold and a failure otherwise.

On the other hand, face identification is the generalized form of face verification. It
refers to the problem of recognizing the face of a human from a predefined
collection of human faces. The outputs of face recognition are two folds. The first
goal is to determine if the face in question is recognized (that is, matches one of the
faces in the collection) or is unknown. The second goal is the determination of the
person, if any, the face belongs to. This is typically the last component of the
pipeline and does not require complex algorithms of its own. It is typically carried
out by verifying the new face with every face in the database and checking the
verification score. If the verification score of the highest performing face is above a
certain threshold, the recognition is deemed successful and the identity of the
person is returned as output. The recognition is deemed a failure and the face is
marked as unrecognized if the highest score is below the threshold.

Despite their different natures, both subcategories use the same underlying
comparison mechanism. A mathematical representation called a face embedding is
calculated using an algorithm. This mathematical representation can be used in
arithmetic operations and is used to calculate euclidean distances to achieve a
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single face similarity score. As mentioned above, this score is compared against a
predetermined threshold to convert the similarity score into a positive or negative
verification. In case of face recognition, the face with the lowest distance is
selected and compared with the threshold.

4.1 Performance Evaluation

The main goal of the algorithm evaluation is to determine how well the
mathematical embeddings represent the original face. Since each of the algorithms
produces embeddings of different dimension and scale, only relativistic
comparisons can be evaluated which is why the algorithms are evaluated on their
final discrete prediction rather than the actual distances between the corresponding
face embeddings.

Face verification is a standard binary classification problem, therefore, standard
classification metrics such as accuracy, precision and recall are used to determine
the performance of the algorithms. In addition to these measures, the number of
false positives and false negatives is also analyzed in order to gain a deeper
understanding of the behaviour of the algorithms. In case of the face verification,
the following definitions of the metrics are used:

True Positive: Algorithm approves verification for images of the same person;
True Negative: Algorithm rejects verification for images of different people;
False Positive: Algorithm approves verification for images of different people;
False Negative: Algorithm rejects verification for images of the same person;

Face identification introduces more complexity but can still be treated as a binary
classification problem by changing the definitions. Therefore, the usual metrics
such as accuracy, precision and recall can be used for evaluation. Due to the 1:N
nature of the problem, there false negatives and false positives  can be further
divided into the misclassifications and misrefusal metrics. In case of the face
recognition, the following definition of the metrics are used:
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True Positive: Algorithm correctly selects image of the same person from dataset;
True Negative: Algorithm rejects identification when the selected person is not

present in the dataset;
False Positive: Algorithm selects a person when the selected person is not present

in the dataset;
False Negative: Algorithm rejects verification when the selected person is present

in the dataset or selects wrong person;

4.2 Datasets

Tests and experiments have to be done in order to evaluate and compare the
performance of the face recognition algorithms. These tests are carried out on
several publically available datasets. It is important to select the appropriate
datasets that reflect the settings of the final system as closely as possible. As
mentioned above, the consumer system designed and implemented in this
dissertation is supposed to be used for access control and employee verification
inside office buildings. That said, the datasets are selected to represent a diverse set
of conditions in order to simulate and indirectly test different backgrounds and
scenarios. The following subsections deal with the several face recognition datasets
that are used to run the experiments:

4.2.1    Labeled Faces in the Wilds (LFW)

The first dataset selected for use in the experimentation is the Labeled Faces in the
Wild (LFW) dataset. The LFW datasets were made public in 2007 and are widely
considered as the main reference benchmark for face recognition algorithms. It
contains 250x250 dimensional images of about 5800 different people. The total
number of images is around 13,000 which suggests an average of 2.2 images per
person.

The images in the LFW datasets are relatively unconstrained and seem to represent
the real world making it an effective benchmark for real world performance.
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However, most of the images are frontal views that are easy to distinguish and
identify which means the real world performance may be a bit lower that what the
dataset might represent. That said, the images contain a wide variety of
illuminations, backgrounds and poses and the popularity of the dataset has resulted
in the creation of various supplementary datasets. A few of these third party
datasets are used to add information such as age, gender and race to the images
which allows for a more comprehensive analysis. The human accuracy for the
LFW dataset is 97.2% in 1:1 face verification tasks. This human performance is
used as a benchmark to quantify the performance of the algorithms in absolute
terms.

4.2.2    Cross Age Celebrity Dataset (CACD)

The second dataset used in the experimentation is the Cross Age Celebrity Dataset
(CACD). This dataset was scraped from the popular movie rating website, IMDB,
and contains roughly 160,000 images from different life phases of 2,000 different
celebrities. As suggested by the name of the dataset, the focus is on the diversity in
ages of the same person in order to test the resilience and robustness of the face
recognition algorithms. The ages range from 16 to 62 and the dataset contains a
much larger number of images per person compared to the LFW dataset which
allows for a larger number of distinct positive comparison pairs.

The CACD dataset serves as the more complicated dataset and manual inspection
reveals that it is definitely harder than normal real world conditions. In addition to
the larger age differences, the CACD dataset contains more difficult to recognize
facial poses. Therefore, the final real world performance of an algorithm can be
expected to lie between the performances of the LFW dataset and the CACD
dataset. For reference, the human accuracy for the LFW dataset is 87% in 1:1 face
verification tasks reflecting the significant increase in difficulty. The differences in
the performance between the CACD and the LFW dataset are discussed from
various perspectives in the following sections of the dissertation.
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4.3 Algorithms

Face recognition (verification of identification) is arguably the most important
component of the pipeline and forms the crux of the problem. It solves the actual
problem of comparing faces with the indirect support from the previous
components of the pipeline. Due to its undeniable importance, research in face
recognition far outweighs the research in face detection and alignment. On its own,
this component is possibly the more important and widely researched sub-field of
the broader computer vision field. Face recognition is arguably much more
complex compared to the standard object detection and recognition problems as it
involves relative comparison of two objects instead of simple bounding boxes and
classification labels.

Research in face recognition technologies dates back to the 1970s with the majority
of the earlier research focusing on statistical methods such as logistics regression.
These earlier models relied on hard coded, hand crafted features that represent
various facial features and face recognition remained an impractical curiosity for a
long time due to the simplistic algorithms and the lack of processing power for real
time face recognition. The 1990s brought the earliest practical algorithms such as
the EigenFaces, FisherFaces and the LBPH algorithms. These algorithms were the
first ones to propose semi-automated feature extraction using statistical techniques
such as eigenvalues and automated learning. This removed the restrictions of hard
coded features and drastically improved accuracy which led to real world
applications of face recognition for the first time. Despite the significant
improvements, the new crop of algorithms was still not good enough for
unconstrained environments and generally sensitive to illumination and contrast. In
addition to the sensitivity, the algorithms could only perform reasonably well on a
narrow range of poses such as full frontal images and did not work well with
complex backgrounds and unusual poses. Finally, these algorithms had to be
trained on each dataset and performed poorly on untrained images which meant
retraining the model at every new addition to the dataset making online learning
exceptionally hard.
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As with the other components of the pipeline as well as the broader computer
vision field, the majority of the new research is based on convolutional neural
networks that require little to no preprocessing and take care of everything from
feature generation, feature selection and the actual classification. The latest crop of
algorithms has finally made face recognition viable in practical, real world
applications and is extremely resilient to variation in illumination, contrast, pose,
facial expression etc. The latest convolutional neural network based face
recognition has demonstrated superior performance to even humans.

Today, the research and the real world industry exclusively relies on convolutional
neural networks and the earlier statistical approaches are considered relics.
Furthermore, a great deal of effort has been spent to increase the efficiency of these
complex networks making them somewhat viable for a raspberry pi. This is why,
unlike the earlier components, only deep learning based techniques are considered
and experimented with in this thesis and deep learning based techniques are the
only ones that perform comparably to humans and do not require retraining at
every new addition to the dataset.

Generally speaking, all of the deep learning algorithms are designed to output a
fixed dimensional mathematical vector that is supposed to represent a human face
in a mathematical form which allows for arithmetic operations. This representation
is called a face embedding and is used to mathematically compare faces for face
verification and face identification. The standard method of comparison involved
the calculation of a spatial distance (euclidean distance, cosine distance) between
the embeddings and using an empirically determined threshold to determine the
final classification. Faces with spatial distances lower than threshold are predicted
as the same person while faces with a spatial distance higher than the threshold are
predicted as dissimilar people.

The five deep learning based, face embedding calculation algorithms discussed and
experimented with in this dissertation are the Facenet, the MobileFaceNet, the
ArcFace, the CosFace and the VGG-Face2 algorithm. A brief overview of each of
these five algorithms can be studied in the next subsections.
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4.3.1    Facenet / OpenFace

Facenet is widely considered as the state of the art in face recognition and was first
proposed in 2015 by Google researchers. It is built on a specialized adaptation of
the standard inception convolutional neural network that is used for object
recognition and offers an end-to-end, unified encoding system that maps an image
into mathematical vectors. As with most deep learning based techniques, the
facenet model takes a cropped and aligned image of a face and outputs a 128
dimensional embedding that can be used to calculate distances and determine final
prediction. Faucet does not introduce any new algorithms but rather offers a
different approach to the pre existing inception network.

The most important concept in the Facenet algorithm is its loss function. Facenet
introduces and uses the groundbreaking triplet loss function that is specifically
designed to be used for face recognition. The triplet loss function uses an anchor
image, positive (matching) image and a negative (nonmatching) image and is
designed to minimize the distance between the anchor and the positive image while
maximizing the distance between the anchor and the negative image. The intuition
behind this concept is self explanatory. We would like the loss to be high for
dissimilar pairs and low for similar pairs of images. The formal definition for the
triplet loss is as follows:

The triplets have to be carefully selected to ensure fast converagne. Essentially, we
would like to select a positive image with a large distance from the anchor and a
negative image where the distance is small to ensure the triplet holds the largest
amount of learnable information.

The feature extractor layers of the inception network are used to to extract the
features and the network is trained using the adams optimizer and ReLu activation
layers. The research paper tests two pre existing models, namely the Zeiler&Fergus
model and the Inception Model. The Inception model is much lighter and has as
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much as 20X less parameters and is upto 5 times faster while having comparable
performance. The authors also recommend minimal preprocessing which is limited
to landmark detection and 2D face alignment. The overall architecture of the
inception based models are as follows:

Facenet is a proprietary algorithm and the original model was not released by the
authors. Therefore, an open source implementation on the same architecture called
OpenFace is used for testing. The Facent algorithm works very well and was one
of the first algorithms to exceed human performance making it an ideal candidate
for further testing.

4.3.2    MobileFacenet

While deep learning based algorithms work exceptionally well, they tend to be
very complicated and slow which is a major drawback in constrained environments
such as the raspberry pi. Therefore, it may be desirable to sacrifice a bit of
accuracy in the favour of a less complicated model that runs faster. The
MobileFacenet algorithm is one such algorithm that is specifically designed for
high accuracy performance in face recognition in real time. The architecture is
similar to that of the standard Facenet model, but the MobileFacenet uses a much
smaller feature extractor with only 9 layers and less than 1 million parameters. The
MobileFacenet has proven to have performance comparable to that of humans and
demonstrates a speed boat of upto 50% over the standard facenet model.
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The main improvement in the MobileFacenet comes from replacing the pooling
layers. Pooling layers are used in between convolutional layers to reduce the size
of the intermediate representation and to effectively condense the intermediate
features. The MobileFacenet replaces the global average pooling layer in the
feature extractor networks with a depthwise convolution layer which is
computationally simpler. Global pooling layers have been observed to be less
accurate and deeper networks are needed to compensate for the inefficiency.
Depthwise pooling layers achieve the better feature condensation that allows for
smaller neural networks that are faster.

The MobileFacenet seems very promising, therefore, it is included in the potential
candidate that are used for experimentation. However, despite the innovations, the
MobileFacenet is primarily focused on detection speed and the compactness of the
model which means some sacrifices in the performance of the algorithm are to be
expected. This, however, may not be a problem if the MobileFacenet achieves
satisfactory performance on the raspberry pi.

4.3.3    ArcFace

ArcFace is one of the most recent algorithms that was proposed in 2018 in the
paper “ArcFace: Additive Angular Margin Loss for Deep Face Recognition”. Like
facenet, ArcFace builds on existing convolutional networks and introduces a novel
loss function and training mechanism. The Arcface network uses a standard VGG
object recognition model as the feature extractor that is finetuned using the
ArcFace loss function.
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The ArcFace loss function normalized the weights such that the intermediate
feature range from -1 to 1. The logit for each category is represented by the angle
between the actual truth and the predicted feature inside a sphere. The goal is to
ensure that not only losses for non matching faces are high but also far away from
the decision boundary. This yields a model that is not extremely sensitive to the
threshold and there is less overlap between the classes which leads to cleaner
decision boundaries and more robust prediction. The loss function uses two
additional hyper parameters, namely the additional angular margin (m) and the
scaling ratio for the logit (s) that can be used to adjust the tradeoff between the
accuracy and the distance between two classes. A geometric illustration of the
principle can be observed below. As you can see, the ArcFace leads to a better
separation with less overlap and higher distances between the classes.

While the standard softmax function is able to roughly separate the various classes,
the distances are uniform which means it has a hard time distinguishing similar
looking faces that are close to the decision boundary. The ArcFace overcomes this
limitation and is able to distinguish similar looking faces more effectively.

4.3.4    CosFace

CosFace is another example of a loss function that is built specially for face
recognition. Cosface was first proposed by researchers at tencent in 2018. Like the
networks previously discussed, CosFace also uses pre-existing object recognition
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models as feature extractors with the Resnet or the Senet models being the
recommended choices.

The core concept in the ArcFace model is the Large Margin Cosine Loss (LMCL)
which restructures traditionally used softman loss by normalizing the intermediate
features and the model weights in order to remove the radial variation. The
objective is the same as the ArcFace loss and the CosFace model aims to maximize
the distances between classes and the decision margin to get cleaner decision
boundaries.

First, the weight vectors are standardized using L2 normalization for more
effective learning. This means that the prediction only relies on the cosine angle
with the norm of the feature vector playing no role. This enables the model to
identify features that can be separated reliably in angular space which emphasizes
the maximization of accuracy. In addition to the normalized softmax loss, the
concept of a cosine margin (m) is introduced to maximize the decision boundary.
The cosine margin is a hyperparameter that punishes small classification margins
during training which maximizes the distances between classes. The formal
CosFace loss function is a s follows:

An illustration of the CosFace can be observed below. Similar to the ArcFace loss,
the CosFace loss enables the face recognition model to better separate the classes
which overcomes limitations of the traditional softmax activation function and
allows the model to better distinguish the similar looking faces and make more
robust predictions.
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4.3.5    VGG-Face2

The VGG-Face2 model is an improvement over the older VGG-Face model that
was first proposed in 2015 by researchers at University of Oxford. The
VGG-Face2 model is architecturally similar to the Facenet models and uses the
standard triplet loss function for the model training. As mentioned before in the
Facenet subsection, the standard triplet loss uses an anchor, a positive image and a
negative image and seeks to minimize the distance between the anchor and the
positive image while simultaneously maximizing the distance between the anchor
and the negative images.

The masin continuation of the VGG-Face model family is arguably the collection
and curation of the large dataset that allows for large scale model training. The
resnet, VGG or the SqueezeNet is recommended as the best feature extractor
networks for the face recognition models. The authors train the three models from
scratch and do an extensive evaluation to compare them. The SqueezeNet is
observed to have performed better on both face verification and face identification
tasks. On the other hand, the resnet models seem to be faster which may be
desirable considering the hardware constraints that are posed by the raspberry pi.
The authors have open sourced the carefully curated VGG Face dataset which has
since been used extensively in several state of the art face recognition.
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Section 5 - Face Verification

In the first phase of the testing of the face recognition, the face verification
performances of five convolutional neural networks, namely, Facenet, ArcFace,
VGG-Face2, MobileFacenet and CosFace recognition algorithms were analyzed.
The entire testing infrastructure and the structures of the algorithms were
implemented in the python programming language using various deep learning
libraries such as keras, pytorch and tensorflow. Pretrained model weights were
found and used to run the verification workflow.

Some of the algorithms like Facenet are closed source with no code or models
provided by the original authors so third party implementations were used. Dozens
of third party models were tested and the ones with the best performance were
selected for the comparison. Since this phase of the experiments focuses
exclusively on the face verification, the same face detectors, landmarks detector
and face alignment algorithms were used in the preceding steps. As mentioned in
the previous sections, the Hog detector was selected for the face detection and the
ERT algorithm was used for landmark predictions.

5.1 Evaluation Methodology

The tests were run separately on the LFW and the CACD datasets. A large number
of tests were done and the data was collected. In each test, one random image was
selected from the dataset. A different image of the same person or an image of a
different person was choses with a 50-50 percent probability ensuring there are
roughly equal number of positive and negative examples in the testigin set. The
images were loaded and sorted using data ingestors written in python and all
images were resized to 512x512 dimensions. Then, the hog face detector and the
ERT landmark detector was run and the resultant face landmarks were used to
align the extracted bounding box. Subsequently, the cropped face was rescaled into
multiple sizes as the various face recognition algorithms are configured to work
with different sizes. Finally, the face embeddings were generated using each of the
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five algorithms and the euclidean distance was calculated. Along with the distance,
the ground truth, prediction of each algorithm, age, gender, race of each person and
the verification time was recorded in a CSV file and analyzed in a jupyter
notebook. In total, 3000 negative image pairs and 3000 positive image pairs were
processed for each dataset which means a grand total of 60,000 verifications were
carried out.

5.2 Threshold Selection

The last step of the verification is converting the numeric euclidean distance
between the two face embeddings into a boolean prediction. This is done so by
setting a maximum distance threshold. Any pair of images with an embedding
distance lower than the threshold are predicted to be the same person and a pair
with an embedding distance higher is deemed to be of different people. The
threshold is selected using a series of trial and error experimentations. In this case,
the initial thresholds were selected by manually analyzing the distances of similar
and dissimilar pairs. Then an incrementing sequence of thresholds based on the
initial threshold were tested and the accuracy, precision and recall metrics were
calculated. Finally, the threshold that yields the best performance metrics were
selected. The final thresholds are as follows:

These thresholds are used to generate the final prediction and perform the
evaluation of comparison of the algorithms in different situations.
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5.3 Initial Results

In addition to the accuracy, precision and recall, the absolute number of true / false
positives and negatives along with the false positive rate are also demonstrated.
The initial results of algorithms are as follows.

All of the algorithms show promising overall performance on both datasets inline
with our expectations. The performance on the easier LFW dataset is phenomenal
with the FaceNet and the ArcFace algorithms exceeding human performance
(97.2%) at 97.8% and 97.7% respectively. The other algorithms perform in the
same ballpark with Mobilefacenet performing the worst by a small margin at
96.4%. The precision and recall metrics tell the same story with metric values in
high nineties across the board. One the other hand, the CACD dataset is arguably a
lot harder with the accuracies, precision and recalls in the high to mid eighties.
ArcFace and Facenet outperform the other algorithms again by a more pronounced
margin while the MobileFaceNet has the worst (but still satisfactory and
comparable performance). The CACD dataset is hard, even for humans, with the
human performance in the sub 90s. This is due to the large variation in the ages in
the different images of the same person. This is further reflected by the large
number of false negatives which proves the algorithms struggle with positive
image pairs due to the drastically different appearances in the images that are often
decades apart.
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The relative comparisons between the precision and recall as well as between the
number of false positives and the number of false negatives  illustrate the
preferences of each model. At the selected threshold, all of the algorithms tend to
act conservatively by favouring false negatives while reducing false positives
which is arguably more desirable than the alternative. This behaviour, however, can
be tweaked by adjusting the threshold to tweak the “generosity” of the predictions.
The tradeoff between the false positives and the false negatives can be illustrated
using the receiver operating characteristic (ROC) curve. To calculate this, various
thresholds from 0 to 3X the ideal threshold were tested in small increments and the
the number of false positives and false negatives were tracked and graphed. The
tradeoff is illustrated in the ROC graphs below.

As expected, the facenet and the ArcFace consistently outperform the other
algorithms at most of the threshold levels. While the ArcFace has the best
performance, it is also the slowest algorithm taking over 1.5 seconds for
embedding calculations on a raspberry pi. The Facenet on the other hand is tied
with the ArcNet for the best performance and is the second fastest algorithm taking
just 0.6 seconds to run. Based on the preliminary results, the FaceNet algorithm is
the preferred choice for face verification. Further testing is done and discussed in
the subsequent sections in order to evaluate the algorithms in different
circumstances for a more thorough analysis.
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5.4 Impact of Face Size

The first and most obvious avenue for further analysis of the algorithm is the size
of the faces. Simpler frontal faces are easy to deal with and even simpler, non deep
learning algorithms perform reasonably well on them. The ideal face recognition
algorithm should also perform well on smaller, more difficult faces. To test the
impact on the faces sizes, the results were segregated into ten portions based on the
proportion of the area of face to the area of the image. For this experiment, only the
CACD dataset was considered as there is greater variation in face sizes and the
faces are generally harder to deal with. The overall trends in the accuracy, precision
and recall are as follows:

As suspected, the accuracy and the recall (that, inturn, depends on the number of
false negatives) rises as the face size increases. The precision stays constant
suggesting that the issue with small faces is the number of false negatives, not the
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false positives. This is good news as the cost of a false positive is higher than a
false negative and prediction conservativeness is a desirable property. At large
faces, all algorithms perform near perfectly while the facenet better maintains its’
performance as the face size drops and significantly outperforms the other
algorithms. For example, for images where faces cover less than 5% of the image,
the FaceNet has an 81% accuracy and a 0.68 recall compared to an accuracy of
67% and a 0.38 recall for MobileFaceNet, the worst performing candidate. FaceNet
algorithm comes out on top as the preferred choice in this section as well.

5.5 Impact of Age and Difference in Ages

The impact of age on the quality of the predictions is very noticeable while
manually checking the results of the verification. This warrants further
investigation into the trends in the performance metrics across different ages as
well as the relative age difference between the two people being compared.

To test the impact of age on the prediction quality, the results were separated into
ten separate portions each representing an increasing age bracket. The CACD
dataset was used for this test as there is more variance in the ages of the people in
the images and there are more images per person making it easier to test the
performance on boat similar and dissimilar pairs. For each of the age brackets, the
performance metrics were observed and analyzed. The general trends in the
accuracy, precision and recall are as follows:
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According to the results, all of the algorithms perform the best on people in their
twenties and thirties while the performance suffers for both younger and older
people. An explanation for this phenomena is the fact that the people in the 20 - 40
age bracket comprise the largest proportion of almost all of the face recognition
datasets. The median age in the CACD dataset, for example, is 35 years which is
consistent with our theory. Fortunately, the algorithms maintain their precision as
the age changes which is good news because it means we do not have to worry
about false verifications in the older and younger population. Similar to our earlier
analysis, the ArcFace and the FaceNet algorithms perform the best across all age
brackets. While the other algorithms perform comparably in the 20-40 age bracket,
their performance is significantly worse for younger and older people. For
example, the FacNet has an accuracy of 90% on ten years old children while the
MobileNet, VGG-Face2 and the CosFace algorithms have an accuracy of 80%,
80% and 70% respectively for the same age bracket.

In addition to absolute ages, the difference in the ages of the people being
compared also seems to have a noticeable impact on the verification performance.
To test this, the age differences for each verification pair were calculated and the
dataset was divided into different segments on the basis of the age difference. This
experiment was also run on the CACD dataset due to greater variation in ages,
more images per person and more difficult images that represent the more complex
scenarios. The tests were done on each segment and the results were analyzed
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The accuracy seems to show an upwards trend as the age difference rises. This is
due to the fact that it is easier to tell people of different ages apart leading to a
negligible number of false positives. In addition, there are not a pair of images of
the same person a large number of years apart which means there are less false
positives (due to less comparison overall) leading to the increase in accuracy.
Surprisingly the precision and the recall have the opposite, downwards trend.
Further investigation reveals that this is due to the small number of similar paris at
high ages differences leading to a smaller number of true positives (the numeration
in both precision and recall). The lack of any true positives (and similarly, no false
negatives) at an age difference of above 12 years causes the precision to fall to zero
and recall to become undefined. Therefore, the increase in accuracy is slightly
misleading and it is fair to conclude that all of the algorithms work better when the
age difference is lower.
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While the individual trends are similar for all of the algorithms, the FaceNet and
the ArcFace algorithms outperform the rest while the MobileFaceNet and the
CosFace algorithms demonstrate the worst performance at most of the brackets.

5.6 Performance Evaluation for Different Genders

One of the biggest concerns about face recognition is the inherent bias of the
algorithms. The deep learning networks learn autonomously but in the process of
doing so, they also learn human biases and prejudices that are unconsciously
reflected in the training datasets. One of the biases is gender. Images of men are
more prevalent comprise a larger proportion of the images in most of the datasets.
It is important that a face recognition algorithm is fair and works equally well on
both genders.

In order to test this theory, an additional dataset was found that contains the gender
information for the LFW dataset. Unfortunately a similar additional datasets that
corresponds to the CACD dataset was not found so the experiment was run on only
the LFW dataset. A preliminary inspection confirms our suspicion about the
gender bias as 73% of the images in the LFW dataset belong to men while only
27% belong to women. The dataset was divided into two segments and the
experiments were run separately on both. In addition to manual analysis, a
statistical test was run to compare the accuracy in both populations to confirm the
existence of a gender bias in the face recognition algorithms. The initial results are
illustrated in the graphs below:
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All of the algorithms seem to show a gender bias as they demonstrate the worst
accuracy and recall on images of women. The precision is similar for both men and
women which indicates that the algorithms produce more false negatives on
images with women. The overall median accuracy for men in the dataset is 97.4%
compared to just 96.3% for women. Likewise the median precision is 97.8% and
98.2% for men and women respectively. The recall has the largest difference as the
recall for men in 97.2% compared to just 94.5% for women. In fact, the worst
algorithm has a better performance on men than the performance of the best
algorithm on women indicating a significant gender bias.

This is further confirmed by a statistical t-test that compares the accuracies of the
two populations. The null hypothesis states that there is no difference between the
performance of the algorithms on men and women while the alternative hypothesis
states that the difference in performance is statistically significant. The test yields a
t-statistic of 5.166 and a p-value of 0.00002. This means we can reject the null
hypothesis with a very high confidence (>99.9%) and safely conclude that there is,
in fact, a difference in performance that warrants further consideration in future
research in face recognition.

5.7 Performance Evaluation for Different Ethnicities

Similar to different performances in gender, the difference in performances in
different ethnicities is a cause of concern. Ethical critics of face recognition allege
that modern face recognition algorithms reflect human biases by performing better
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on people of causian heritage compared to non-causacuian people. This is
understandable as most of the face recognition datasets are collected in first world
countries that happen to be predominantly causcasian. A larger portion of the
datasets contains images of causacian people which, in turn, translates to a worse
performance for non- caucasian people. This is undesirable and an ideal face
recognition algorithm should not display this behavior.

A supplementary dataset was found that contains a binary variable corresponding
to ethnicity of subject of each image in the LFW dataset. Unfortunately a similar
additional datasets that corresponds to the CACD dataset was not found so the
experiment was run on only the LFW dataset. A preliminary inspection confirms
our suspicion about the ethnic bias as 84% of the images in the LFW dataset
belong to people with caucasian heritage while only 16% belong to non-caucasuian
people. The dataset was divided into two segments and the experiments were run
separately on both. In addition to manual analysis, a statistical test was run to
compare the accuracy in both populations to confirm the existence of an ethnic bias
in the face recognition algorithms. The results of the experiments are illustrated in
the graphs below:
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Despite the understandable concerns, no significant difference is observed in the
performances of the face recognition algorithms. Some of the algorithms perform
marginally better on caucasian people but the difference in miniscule at a fraction
of a percent. Some of the algorithms such as the FaceNet and the ArcNet even (
(slightly) perform better on non-caucasian people. This holds true for the accuracy,
precision and recall metrics and the performance differences seem so insignificant
that they can simply be attributed to statistical noise.

The initial observation is further confirmed by a statistical t-test that compares the
accuracies of the two populations. The null hypothesis states that there is no
difference in the performance of algorithms on causasian and non-caucasian
subjects while the alternative hypothesis states otherwise. The test yields a
t-statistic of 1.27 and a p-value of 0.2. This means we fail to reject the null
hypothesis at any reasonable confidence level and can safely conclude that there is
no significant difference in the performances on caucasian and non-causacian
subject. Running the t-tests collectively and individually on each algorithm yields
the same result and the null hypothesis holds true in all cases.

5.8 99.9% True Positive Rate

Until now, the false positives and the false negatives are treated similarly and the
thresholds are selected to maximize the overall accuracy. This may not be the ideal
path to take as the consequences of a false positive result are a lot higher as it
means granting unauthorized access. Conversely, a false negatives means
incorrectly denying access which is a less severe offense. This means that the
thresholds should be selected to minimize the false positive rate even if it translates
to a higher false negative rate and a lower overall accuracy. The general tradeoff is
observed by the ROC curve illustrated in the preceding sections. The ideal
threshold can be selected by setting a minimum precision (percentage of positive
predictions that are actually true).

A symbolic objective for face verification algorithms is a precision of 99.9%. This
translated into a false positive rate of less than 0.1% which means, on average, less
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than 1 out of every 1000 positive predictions are wrong. This is also applicable to
the real world application at hand roughly 1 unauthorized access per thousand
verifications seems acceptable. In order to identify the correct thresholds, an
experiment was designed which involves starting from a low threshold and testing
incrementally increasing threshold levels until the 99.9% precision is observed.
The minimum thresholds for a 99.9% precision are reported in the table below.

The new thresholds are lower than the previous thresholds indicating that the
algorithms are more conservative and more stringent with positive predictions. The
new thresholds warrant another investigation in the predictions of the algorithms
on each dataset. The metrics are calculated again using the new thresholds and are
reported in the following table.

In order to achieve the coveted 99.9% precision, recall and overall accuracy has to
be sacrificed and the false negatives increase significantly for most of the
algorithms. The differences between the error metrics of the various algorithms are
much more pronounced in the new results.
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In line with our previous results, the ArcFace and the FaceNet algorithms perform
the best and only lose 2% and 3% of the accuracy on the LFW dataset respectively
compared to the MobileFaceNet and the CoseFace that lose 10% of their
accuracies. Similarly, the total number of false positives rises more drastically for
the worse performers. For example, the MobileFaceNet predicts 879 false
negatives on the LFW dataset (compared to 124 false negatives before) in contrast
with the 273 false negatives (compared to 61) for ArcFace. This means that not
only are the FaceNet and ArcFace algorithms better predictors, their predictions are
also further away from threshold (in either direction) which leads to more robust
and stable predictions.

5.9 Conclusion

The wide array of tests and experiments provide very conclusive results. The
FaceNet and the ArcFace algorithms outperform the other algorithms in most of
the tests and perform better in almost all of the segments in the individual tests.
Conversely, the CoseFace and the MobileFaceNet performs the worst while
VGG-Face2 ranks in between. Therefore, the final selection should be made
between ArcFace and FaceNet. While the ArcFace algorithm nominally
outperforms the FaceNet algorithm, it is almost 3 times slower as it takes roughly
1.5 seconds for a single pass on a raspberry pi compared to just 0.6 seconds for the
FaceNet. Since the speed of recognition is important, the FaceNet algorithm
presents itself as the ideal choice for our application. In fact, the FaceNet has
statistically similar performance to that of the best algorithms in terms of accuracy
(ArcFace) as well as speed (MobileFaceNet) as the MobileFaceNet is only
marginally faster and offers significantly worse performance.

Finally, the 99.9% precision threshold is selected for the final predictions in order
to give precedence to the reduction of false positives at the expense of false
negatives. The thresholding mechanism is further refined in the face identification
evaluation with the introduction of dynamic thresholding.
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Section 6 - Face Identification

In the second phase of the testing of the face recognition, the face identification
performances of five convolutional neural networks, namely, Facenet, ArcFace,
VGG-Face2, MobileFacenet and CosFace recognition algorithms were analyzed.
Face identification is the generalized form of face verification. It refers to the
problem of recognizing the face of a human from a predefined collection of human
faces. The outputs of face recognition are two folds. The first goal is to determine
if the face in question is recognized (that is, matches one of the faces in the
collection) or is unknown. The second goal is the determination of the person, if
any, the face belongs to. Contrary to face verification, face recognition is a
one-to-many problem. Unsurprisingly, the large number of pairwise comparisons
and the two fold objectives mean that face recognition is significantly more
complex compared to standard pairwise verification. The complexity rises as the
number of images in the test dataset increases. A larger number of images in the
test dataset increases the probability of similar faces which increases the false
positives. Face identification is more useful in the real world and is more relevant
to our real world application which means the identification results should be
prioritized over the verification results.

The entire testing infrastructure and the structures of the algorithms were
implemented in the python programming language using various deep learning
libraries such as keras, pytorch and tensorflow. Pretrained model weights were
found and used to run the verification workflow. Some of the algorithms like
Facenet are closed source with no code or models provided by the original authors
so third party implementations were used. Dozens of third party models were
tested and the ones with the best performance were selected for the comparison.
Since this phase of the experiments focuses exclusively on the face verification, the
same face detectors, landmarks detector and face alignment algorithms were used
in the preceding steps. As mentioned in the previous sections, the Hog detector was
selected for the face detection and the ERT algorithm was used for landmark
predictions.
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6.1 Evaluation Methodology

The tests were run separately on the LFW and the CACD datasets. A large number
of tests were done on various dataset sizes (number of images in the test dataset)
and the data was collected. In each test, a random section of the dataset was
selected. The dataset sizes vary from just 10 images to 30,000 images. One random
image was selected and removed from the dataset. In half of the experiments, all
images of the selected person were removed from the dataset simulating the
unknown person scenario. For the other half of the experiments the other images of
the selected were left in the dataset simulating the known person scenario.

The face recognition pipeline was run for the selected images along with all of the
images in the testing dataset. The embeddings of the original image were compared
with all embeddings of the testing dataset and the image with the minimum
distance to the selected image was selected. Finally, the minimum distance is
compared to thresholds in order to make the final prediction.

Variables such as the minimum distance, time taken, dataset size, number of
images of the selected person and the ground truth were recorded in a CSV file and
analyzed in a jupyter notebook. For each dataset and algorithm, 20,000
experiments were done at various dataset sizes. In total, about 225,000 experiments
were carried out,

6.2 Threshold Selection

Just like the last step of face verification, the euclidean distances have to be
converted into boolean predictions by utilizing a maximum distance threshold. Any
pair of images with an embedding distance lower than the threshold are predicted
to be the same person and a pair with an embedding distance higher is deemed to
be of different people. The initial thresholds were selected by manually analyzing
the distances of similar and dissimilar pairs. Then an incrementing sequence of
thresholds based on the initial threshold were tested and the accuracy, precision
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and recall metrics were calculated. Finally, the threshold that yields the best
performance metrics were selected.

Face recognition typically yields a higher number of false positives and a lower
accuracy due to the one to many nature of the comparison. Therefore, it is
reasonable to assume the final thresholds are going to be lower than the ones
observed in face verification. This means that the algorithms are going to behave
more conservatively. The ideal thresholds observed are as follows:

These thresholds are used to generate the final prediction and perform the
evaluation of comparison of the algorithms in different situations. It is reasonable
to assume that the larger the dataset grows, the ideal threshold falls as the ROC
curve shifts inwards. This can be exploited by dynamic thresholding which is
explored further in the subsequent sections.

6.3 Initial Results

In addition to the accuracy, precision and recall, the absolute number of true / false
positives and negatives along with the false positive rate are also demonstrated.
Furthermore, the number of misclassifications (false positives in examples where
the correct person is in the dataset) and incorrect refusals (false negatives in
examples where the correct person is in the dataset) are used to get a deeper
understanding of the behaviour of the algorithms. The initial results of algorithms
are as follows.
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Understandably, all of the metrics are lower than their counterparts in face
verification due to added complexity. All of the algorithms show promising overall
performance on both datasets inline with our expectations. The same overall trends
are observed with the Facnet and the ArcFace algorithms outperforming the rest in
all of the metrics. No reasonable human performance could be found in the
literature but a cursory review of the errors and the manual observation of the
misjudged images with reference to the type of error (misclassification or incorrect
refusal) shows comparable performance to humans especially for the ArcFace and
the Facenet Algorithms.

The performance on the easier LFW dataset is very good with the accuracies of
the Facenet and the ArcFace algorithms at 90.6% and 88.5% respectively. The
difference between FaceNet/ArcFace and the worse performing algorithms is more
significant compared to the earlier verification results. The CosFace algorithm
performs the worst with an accuracy of just 80.2% which means the the
comparable verification accuracies do notC translate to similar performances on in
face identification.The precision and recall metrics tell the same story with metric
values in high nineties across the board.

One the other hand, the CACD dataset is arguably a lot harder with the accuracies,
precision and recalls in the high to mid eighties. ArcFace and Facenet outperform
the other algorithms again by a more pronounced margin while the CosFace has the
worst (but still satisfactory and comparable performance). The difference between
the CACD and the LFW dataset is less pronounced and the ArcFace and Facenet
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algorithms seem to better maintain their performance on more difficult datasets
(CACD) indicating higher robustness and stability.

The relative comparisons between the precision and recall as well as between the
number of false positives and the number of false negatives  illustrate the
preferences of each model. At the selected threshold, all of the algorithms tend to
act conservatively by favouring false negatives while reducing false positives
which is arguably more desirable than the alternative. This behaviour, however, can
be tweaked by adjusting the threshold to tweak the “generosity” of the predictions.
The tradeoff between the false positives and the false negatives can be illustrated
using the receiver operating characteristic (ROC) curve. To calculate this, various
thresholds from 0 to 3X the ideal threshold were tested in small increments and the
the number of false positives and false negatives were tracked and graphed. The
tradeoff is illustrated in the ROC graphs below.

The ROC curves are shifted inwards compared to the ROC curves of face
verification due to the higher complexity.  A peculiar observation is that the curves
do not fully extend fully to the theoretical limits and seem to taper off at a true
positive rate of less than 1. This is due to the nature of face identification and the
fact that face identification is a  pure classification problem with three outcomes
rather than just two. In some of the examples, an image of a different person has a
lower euclidean distance compared to that of an image of the same person. This
means that the person is misidentified and no amount of threshold tweaking will
fix the problem which means the algorithm never attains a 100% true positive rate.
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This is more pronounced in the CACD dataset in which the age varies more
drastically increasing the probability of misidentification.

Other than this, the observed curves behave as expected with the Facenet and
ArcFace algorithms consistently outperforming the other algorithms at most of the
threshold levels. While the ArcFace has the best performance, it is also the slowest
algorithm taking over 1.6 seconds for embedding calculations on a raspberry pi.
The Facenet on the other hand is tied with the ArcNet for the best performance and
is the second fastest algorithm taking just 0.7 seconds to run. Based on the
preliminary results, the Facenet algorithm is the preferred choice for face
verification. Hence, the initial results corroborate all of the earlier testing results.
Some deeper analysis is done in the subsequent sections before the final choice can
be made. Results of the experiments made with reference to face sizes, number of
faces per image, gender, race, age and age difference mirror the results of similar
experiments in face verification, therefore, they are not discussed further. Instead,
the impact of the number of images in the test dataset and the impact of the number
of images of the selected person are discussed.

6.4 Impact of Dataset Size

Compared to pairwise face verification, face recognition poses the additional
problem of selecting the best match out of a dataset with multiple test images. It is
reasonable to expect the performance of any face recognition algorithm to drop as
the number of images in the test dataset rises. This is simply due to the larger
comparisons to be made and the higher probability of a similar, false negative
image. In addition to the performance, one can also expect the recognition time to
increase linearly with the size of the dataset simply because of the larger number of
comparisons.

An experiment was designed in order to test this hypothesis. The general face
recognition test was run multiple times using different face recognition algorithms
and test dataset sizes and the accuracy was measured for each instance. The results
were then grouped by the number of images and performance metrics along with
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the recognition times were averaged and graphed for demonstration. This
experiment was carried out on the CACD dataset due to the greater difficulty that
mirrors that of real life scenarios. The results of the these experiments are as
follows:

For all algorithms, a downwards trend can be observed in the face accuracy and
precision while the recall metric does not change by much. This suggests that the
number of false positives rise as the test dataset size increases while the number of
false negatives does not change significantly. This is further confirmed by a
manual inspection of the mislabelled instances. The algorithms work very well and
maintain their performance if the selected person is present in the dataset
suggesting the relative comparisons are very robust. The more problematic
scenario is when the image of the selected person is not present in the dataset. In
that case, the importance of the arbitrary threshold is magnified as it is more likely
that a similar looking person is present in a large dataset, hence leading to a larger
number of false positives, lower precision and worse accuracy. This can be
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somewhat remedied by dynamic thresholding that is discussed in the next section.
The ArcFace and the Facenet algorithms win again and perform better than the
other algorithm across all dataset sizes and metrics making one of them the
obvious choice.

The recognition time is just as important as the performance so the recognition
time was analyzed in reference to the test dataset size. The recognition time was
broken down into two components. The first component corresponds to the time
taken for embedding calculation and the second component corresponds to the time
taken for calculations necessary to calculate the distances between embeddings.

Understandably, the time taken for embedding calculation stays the same as a
single embedding (that of the selected image) is calculated in real time regardless
of the dataset size. Conversely, the comparison component rises linearly as the
number of calculations necessary for comparison scale linearly. The VGG-Face
scales the worst owing to the largest embedding size (512 dimensional
embedding). On the other hand, the ArcFace and the MobileFacenet scale the best
due to their 128 dimensional embeddings. That said, at small dataset sizes (less
than 30,000 images), the comparison time is much lower than the embedding
calculation time making ArcFace the worst algorithm in terms of speed. The
scaling advantage only comes into play if the test dataset contains hundreds of
thousands of images. The Facenet algorithm seems to be the best compromise as it
offers the second best embedding calculation time and the second best scaling in
terms of comparison time.
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6.5 Dynamic Thresholding

The problem of the large number of false positives in larger datasets stems from
the limitations of the static thresholding. Using the same threshold to make the
final decision across all dataset sizes tends to be inefficient as it is either too low
and results in a large number of false negatives for smaller datasets or it is too high
and yields a large number of false positives on larger datasets. An interesting
approach to resolve the tradeoff and rectify the situation is dynamic thresholding.
In dynamic thresholding, multiple optimal thresholds are used for different dataset
sizes instead of a single threshold across the board. In general, a higher threshold is
used for smaller datasets to minimize false negatives. The threshold is
progressively lowered as the dataset increases in size to offset the increasing risk of
false positives. Dynamic thresholding can be configured using a simple decreasing
function or the explicit calculation of optimal thresholds and various levels. Both
approaches were experimented with and better results were observed with the
explicit calculation due to the removal of arbitrary assumptions that come with the
mathematical approach. The scaled optimal thresholds for each dataset size can be
observed in the following graph.

The explicitly calculated thresholds are stored in a lookup table and can be
referenced during the recognition phase before making a final prediction.
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6.5 Conclusion

The results in the face recognition experiments corroborate what has already been
observed in the preceding section. The Facenet and the Arcface algorithms
consistently beat the other algorithms by a significant margin in most of the tests.
Not only do they demonstrate higher performance metrics but are also more robust
and tend to maintain their performance in difficult scenarios pretty well. While the
Arcface algorithm is nominally better than Facenet, it is more than twice as slow.
Infact, the only algorithm that is faster than the Facenet is its’ less complicated
counterpart, the Mobile Facenet which is consistently the worst performer in the
majority of the undertaken experiments.Since speed is a major concern due the the
hardware constraints posed by using the raspberry pi as the base of the platform,
the Facenet algorithm is the obvious choice and is selected for the face verification
and face recognition part of the pipeline.

Furthermore, since the overall number of employees is variable, dynamic
thresholding was chosen as the classification mechanism in the interest of a more
robust system. Explicit threshold calculations were carried out for the Facenet
algorithm using a combination of the CACD and the LFW dataset and the optimal
thresholds are saved in a CSV file that is referenced by the desktop application.
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Section 7 - Web Portal and Desktop App

As the final goal of the dissertation, a complete face recognition system consisting
of a centralized web portal, a desktop application for a raspberry pi that connects
with the web portal in real time and on click installation scripts for installation and
registration of new face recognition nodes (raspberry pis). The goal is to provide an
easily configurable, plug and play system that can be setup by non technical people
in a few minutes.

At this point, the testing, experimentation and technical implementation of the
various algorithms has been completed and one algorithm has been selected for
each individual component of the face recognition pipeline. While the
implementation and analysis are useful for technical people, considerable effort is
required by the layperson to understand all aspects of the technology and put the
system in practice. Therefore, the surrounding infrastructure is just as important as
the core face recognition technologies. There is a need for an easily configurable,
ready made face recognition system that the layperson should be able to use
without having to understand the technical aspects.

7.1 Web Portal

A web portal was implemented to manage the workforce and provide a centralized
interface to business users. The core web portal is written in python using the
django framework. The consumer portal is accessible through any web browser as
a standard web application. A second server was written using websockets which is
primarily used to manage real time notifications and alerts in the web app. In
addition, the websockets server is also used by the desktop application  to enable
real time communication which allows for instant syncing in case a new employee
or image is added to the webportal. The server also exposes an application
programming interface (API) which is used to receive authorization requests from
the desktop application and returns an approval or rejection based on the user
permissions defined in the portal.



88

For production, the web application is hosted on a digital ocean Ubuntu instance
and uses NGINX as the reverse proxy, Gunicorn as the HTTP server, Daphne as
the ASGI server for the websockets and Postgresql as the database. Note that all
server components are part of the same application and use the same database.

The code can be found in the github repository and a live demo of the web portal
can be viewed at the following location:

Url: https://facerecognition.jazeetech.com/
Username: test
Password: test123

Some of the features of the web application include:

● Real Time Communication with the desktop application
● Syncing datasets and managing access requests
● Room Management: Adding or removing rooms
● Camera Management: Adding or removing rooms
● Employee Managements: Adding or removing Employees
● Access Permission: Managing employee access to rooms
● Alerts: Realtime notifications for unauthorized verifications
● History: Historical logs of all authorization requested
● Reports: Downloadable attendance reports for employee

In order to better illustrate the feature, a few screenshots of the web portal are
included in this section.

The “Rooms” submenu allows us to add or remove new rooms. A room is defined
as a single enclosed space in a building. Access permission is granted on the basis
of rooms

https://facerecognition.jazeetech.com/
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The “Cameras” submenu is designed to keep track of all of the registered cameras.
A camera refers to a physical node (that is, a raspberry pi). A camera is attached to
a single room and uses the permissions set for that particular room. On the other
hand, one room can have multiple cameras for greater flexibility and to allow for
multiple entry points. A camera record is automatically created when a raspberry pi
is registered successfully using the one-click installation scripts explained below.
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Next, the “Employees” submenu allows us to manage employees. The home screen
allows for the user to view, add or delete employees while additional interfaces are
used to manage the images and permission for an individual employee.
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The “Alerts” and “Authorizations” submeus allow the user to check historical logs
of the approvals and rejections given by the system. In case of an unauthorized
access attempt, a real time notification is shown on the top left side of the
webpage.



92

Finally, the “Reports” submenu allows the user to download authorization records
for a particular employee in the form of CSV files.
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7.2 Desktop Application

The second component of the system is a local application designed to be run on a
raspberry pi to execute the actual face recognition algorithms and work with the
web servers to manage accesses and authorizations. A python project was
implemented to serve as an always running daemon that performs the actual
recognition on a single face recognition node and communicates to grant or deny
accesses. Some of the features of the Desktop Application are as follows:

● Real time communication with the server;
● Syncing employees images;
● Performing continuous face recognition;
● Face recognition on trigger from the raspberry pi GPIO pins;
● Requesting access from server and manual;
● Triggering GPIO pins to simulate actuator control.

The desktop application has no graphic user interface and works autonomously.
After the initial installation, no further human intervention is required.

7.3 One Click Install

To further facilitate setup, the “batteries included” concept is used. First, a
Raspbian OS ISO image is created with all of the necessary software including
python installation, python packages, the local application and a supervisor service
to automatically start the application on boot up and keep it running forever in the
background. Thus, converting a raspberry pi into a camera node is as simple as a
simple OS installation which includes everything.

After OS installation, one simply has to run the “install.py” file in the root
directory and enter the room activation code (from the web portal) when prompted.
The script takes care of the rest of the installation and automatically adds the
camera node and syncs the images stored on the cloud. At this point, the camera
node is activated and the  raspberry pi can be left alone to work autonomously.
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Section 7 - Conclusion

The dissertation is comprehensive and all of the original goals have been
accomplished successfully. A single reading of the report should be enough to
provide a complete introduction to face recognition. The pipeline is explained and
each individual component is introduced and discussed in detail. For each
component, the research landscape is investigated including the historical and
modern approaches. Finally, a set of promising algorithms is selected to be tested
in the experimental section of the dissertation. A literature review has been written
to explain the selected algorithms for each individual part of the face recognition
pipeline.

The experimental portion of the dissertation deals with the experiments that were
designed to evaluate the different algorithms from various perspectives and to
choose the best suited algorithm for each phase of the face recognition pipeline.
The algorithms were implemented successfully, tested and experimented
thoroughly to analyze their performance under various circumstances in general
and in the context of our specific employee access control application. The
strengths and weaknesses of the algorithms were discussed and a single algorithm
has been selected for each phase. The final selection for unconstrained face
recognition on a raspberry pi as as follow:

Face Detection: Histogram of Oriented Gradients (HOG) Detector
Landmark Detection: Ensemble of Regression Trees (ERT) Detector
Face Alignment: 2D face alignment with image rotation and centering
Face Recognition: FaceNet Convolutional Network with dynamic thresholding

Lastly, an end-to-end plug and play face recognition platform was successfully
developed which includes a centralized web portal, a desktop application, OS disk
images and installation scripts with all the batteries included.

As a final thought, I think the project is very detailed and the dissertation does a
good job explaining the undertaken project. The developed infrastructure makes it
incredibly easy to implement a face recognition employee authorization system in
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office buildings and can be configured easily even by non-technical people. The
hosted web app will stay online until 30th November 2021 as a demo. After that,
please contact me in case a reactivation is required.

I hope that you find the report interesting and useful. For any questions or queries,
please contact me at ijazm@tcd.ie.

Thank you.

mailto:ijazm@tcd.ie
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