
ANN LAB: A Web application based on XAI

concepts and implementing ANN models to solve

NLP task

Yifan Pei

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science(Intelligent Systems)

Supervisor: Yvette Graham

September 2021

Acknowledgments

The first person I would like to thank is my mother, Mrs Lei Tang. She supported me

in the completion of dissertation writing and, more importantly, without her financial

help, I cannot even come to Trinity College Dublin and start my M.s.c program. The

second person I want to thank is Professor Yvette Graham for her insight and guidance.

In our biweekly discussion, we will talk about our progress so far and discuss the plan for

the next step. Her professional and responsible attitude impressed me and motivated

me to finish the dissertation. Then I would like to thank Professor Tim Fernando, my

second reader. He gave me beneficial suggestions in the oral presentation, which helped

me to increase the quality of my dissertation. Finally, I want to thank Mrs Kun Niu

and Mr Mu Xu, who are my landlords. Due to the COVID-19 pandemic, their efforts

to provide me with a quiet environment is touching.

Yifan Pei

University of Dublin, Trinity College

September 2021

i

ANN LAB: A Web application based on XAI

concepts and implementing ANN models to solve

NLP task

Yifan Pei, Master of Science in Computer Science

University of Dublin, Trinity College, 2021

Supervisor: Yvette Graham

Artificial Neural Network (ANN) is a kind of powerful Artificial Intelligence (AI) model
inspired by the structure of a biological neural network and Explainable Artificial In-
telligence (XAI) is a concept to emphasize the importance of the interpretability of
the output of AI models for people. But, the potential of XAI in other fields, includ-
ing education, can be still extracted since most applications of XAI are confined to
researchers and developers, but the people who lack professional language cannot use
applications based on XAI ideas to increase their knowledge.
This dissertation compares two existing projects: ANN Playground, developed by Ten-
sorFlow and Language Interpretability Tool (LIT) maintained by Google Research. We
made a summary of their strengths and weaknesses and designed our Web application
called ANN LAB. We choose a sentiment analysis problem, a subtype of Natural Lan-
guage Processing (NLP), as the context of using four kinds of ANN models and showing
the internal details. Besides, we have also implemented the visualization of the corpus
called IMDB, which we use to train the models to allow users to gain knowledge about
the impact the corpus will have on the performance of ANN models. Finally, to ensure
the effectiveness of self-implemented ANN models, we choose AUC and ROC as the
metrics to evaluate the models.

Summary

The primary purpose is to develop a Web application that applies the ideas from XAI

to show the mechanism details of ANN models when using them to solve NLP or sen-

timent analysis problems.

We have developed a Web application that provides three services mainly: ”corpus

pre-analysis”, ”text visualization”, and ”ANN models”. We make a simple introduc-

tion of the corpus that we use called IMDB. We randomly selected 5000-row data as

the data set we will actually use.

We implemented three kinds of vectorization methods: TF-IDF, Doc2Vec and Word2Vec.

While the factorized corpus is usually high-dimensional, in order to present the result

of vectorization, we choose Uniform Manifold Approximation and Projection (UMAP)

and Principle Component Analysis (PCA) to finish decomposition and put them in a

3D scatter chart. We also provide access for users to check the original review and

processed review if they click the point in the visualized corpus in the scatter chart.

We used Keras to implement four ANN models: Multi-layer Perceptron (MLP), Con-

volutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long Short-

term Memory (LSTM).

To ensure the ANN models that the users can change the hyper-parameters including

the selection of optimizer can solve the sentiment analysis successfully, we use receiver

operating characteristic curve(ROC) and area under the curve (AUC) as the metrics

to evaluate the ANN models, and the average AUC is 91.67%, and the worst one is

iii

88.39% from RNN.

iv

Contents

Acknowledgments i

Abstract ii

Summary iii

List of Tables vii

List of Figures viii

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Contributions . 5

1.4 Thesis Structure . 5

Chapter 2 Literature Review 6

2.1 Natural Language Processing . 6

2.2 Sentiment Analysis . 7

2.3 Artificial Neural Networks . 9

2.3.1 Multiple Layer Perceptron . 12

2.3.2 Convolutional Neural Network 12

2.3.3 Recurrent Neural Network . 14

2.3.4 Long Short-Term Memory . 16

2.4 Explainable Artificial Intelligence . 17

v

Chapter 3 Implementation 20

3.1 Project Structure . 20

3.2 Technical Implementation . 22

3.2.1 Corpus Exploration and preprocessing 22

3.2.2 Text Visualization . 28

3.2.3 ANN Model Implementation . 36

3.2.4 Flask Route Building . 41

3.2.5 Front-end Design . 42

Chapter 4 Evaluation 48

4.1 Metrics for ANN Models . 48

4.1.1 ROC and AUC . 48

4.1.2 Confusion Matrix . 49

4.1.3 Training History . 51

Chapter 5 Conclusion and Future Work 54

5.1 Conclusion . 54

5.2 Limitations . 55

5.3 Future Work . 55

Bibliography 57

Appendices 63

.1 Github Links . 64

.2 Code Pieces from Implementation . 64

.2.1 Overall Text Preprocessing Function 64

.2.2 Regular Expression Rules in Processing Special Characters . . . 65

.2.3 Example of Vectorization Method Implementation 65

.2.4 PCA Implementation . 65

vi

List of Tables

1.1 Summary and expectations from IDC about AI market 1

1.2 Summary and expectations from Statista about revenue from AI industry 2

3.1 Stat of Corpus Sentiment Polarity . 22

3.2 Stat of Corpus Reviews Length . 22

3.3 Optional Values of Hyper-parameters from ANN Models 47

4.1 Table of Confusion Matrix of MLP Model 50

4.2 Table of confusion matrix of CNN model 50

4.3 Table of Confusion Matrix of RNN Model 50

4.4 Table of confusion matrix of LSTM model 51

vii

List of Figures

1.1 Demo of Language Interpretability Tool (LIT) hosted by Google Research 3

1.2 Demo of ANN playground designed by TensorFlow 4

2.1 General sentiment analysis system structure[1] 8

2.2 A Review in Amazon for a certain laptop 9

2.3 Category of ANN models[2] . 10

2.4 MLP model example . 12

2.5 An example of max pooling operation 14

2.6 An example of RNN model . 15

2.7 Comparison between RNN and LSTM 16

2.8 Categorization of explainable machine learning models[3] 18

2.9 Six questions in XSec[4] . 19

3.1 Project structure . 21

3.2 The experiments that text preprocessing has on English Emails corpus[5] 23

3.3 Text mining preprocessing techniques[6] 24

3.4 A possible situation when applying stemming and lemmatization 25

3.5 Recall-Precision curves for the general stoplist[7] 27

3.6 Sequence diagram of text preprocessing 28

3.7 An example of the task for continuous skip-gram 30

3.8 Structure diagrams of CBOW and continuous skip-gram [8] 31

3.9 Results from the principal component analysis for the first six principal

components[9] . 33

3.10 UMAP algorithm[10] . 34

3.11 Comparison between different decomposition methods[10] 35

viii

3.12 Results in the single-cell analysis using four different decomposition

methods[11] . 36

3.13 MLP model structure . 38

3.14 CNN model structure . 39

3.15 RNN model structure . 40

3.16 LSTM model structure . 41

3.17 Project UI implementation . 43

3.18 UI of section of ”corpus description” 44

3.19 UI of section of ”visualization” . 45

3.20 UI of section of ”visualization” . 46

4.1 ROC and AUC of ANN models . 49

4.2 A screenshot of the internal structure of partial training history 52

4.3 Training History of ANN Models . 53

1 Text preprocessing function . 64

2 Regular expression rules in processing special characters 65

3 Example of vectorization method implementation 65

4 PCA implementation . 65

ix

Chapter 1

Introduction

1.1 Background

According to the statistics of the social institution, the current market of Artificial

Intelligence (AI) has developed rapidly. Based on the analysis and prediction finished

by International Data Corporation (IDC)[12] (see Table 1.1). Meanwhile, the statis-

tics portal Statista[12] expects that revenues from the AI market worldwide will grow

fleetly. (Table 1.2).

Table 1.1: Summary and expectations from IDC about AI market

2017 Expectation

(2021)

Scale in US

dollars

12 billion 52.2 billion

1

Table 1.2: Summary and expectations from Statista about revenue from AI industry

2017 Expectation

(2021)

Scale in US

dollars

480 billion 2.59 trillion

Both statistics show that the scale of the current AI market and the expectation of fu-

ture growth are optimistic. Although various AI algorithms appear powerful in results

and predictions, they still suffer from low transparency, a Black-box problem. In other

words, it is not easy to get insight into their internal working details.

Explainable Artificial Intelligence, also known as XAI, seized the interests of researchers,

who are trying to increase the knowledge of ML algorithms working mechanisms. The

Artificial Neural Networks (ANN) is a typical representation of the black-box problem

since it is hard for researchers to determine the relationship between the input features

and the output results.

Hence, we think the effectiveness of the combination of XAI and ANN would be an

attractive point. We will be exploring the history of four kinds of ANN models and the

cutting-edge research achievements in the fields of natural language processing (NLP)

and sentimental analysis. Then we will introduce the design and implementation of

our Web application: ANN LAB, which tries to provide an environment for users to

learn the ANN models’ details.

The main objective of this dissertation is by analysing the current research situation

and two famous online tools based on ANN models and is driven by the ideas from

XAI, make the summary about advantages and disadvantages, and start to state our

research and Web application and how does our research can become a supplement for

the current study.

1.2 Motivation

Although there are plenty of attempts and achievements in the field of XAI applica-

tion, most of them are designed for researchers to get a better understanding of the

2

ANN they are working on and try to get better performance of a particular task, Lane

et.al[13]lead research to come up with an XAI tool to give more effective after-action

reviews (AAR) to make integration with an intelligent tutor into the XAI framework

but did not focus on the interpretability of ANN model. Meanwhile, Suh et al. [14]

tried to develop and justify the effectiveness of a risk calculator using XAI.

In conclusion, the current attempts in XAI are primarily for professional research and

development for users who have no or limited knowledge of ANN models. the power

that XAI has can be extracted furthermore.

On the contrary, for the XAI project, which does not require much-specialized knowl-

edge, there are two projects which can be found on the Internet. One of them is the

Language Interpretability Tool (LIT), a project maintained by Google Research.[15](see

Figure 1.1)

Figure 1.1: Demo of Language Interpretability Tool (LIT) hosted by Google Research

In Figure 1.1, it can be seen that Google Research has implemented an ANN model,

which is not a simple re-implementation of the current classical ANN model, and the

UI also shows the information such as each row data, the confusion metrics.

The other one is from the team of Tensorflow, which provides a more specific interface

front-end page, and the progress of the training processing by the ANN model is more

precise than the LIT. The name of their research is ANN Playground. (see Figure 1.2)

3

Figure 1.2: Demo of ANN playground designed by TensorFlow

In Figure 1.2, it can be seen that co the UI design of ANN Playground is more

colourful and more impressively compared with LIT. ANN Playground provides the

chance to manipulate the ANN model directly, e.g. Add or reducing the features from

input layers and the number of hidden layers, and the visualization of the training

details are much more explicit than LIT.

Based on these two kinds of research analysis above, the summary strengths and weak-

nesses of these two kinds of research can be seen below.

- LIT

- Strengths

1. Complete ANN model performance measurement indicators.

2. Vectorization of the input data.

- Weaknesses

1. No explanation for the ANN model the project used.

4

2. Users cannot manipulate the ANN models but only watch the output

from the same model.

- ANN Playground

- Strengths

1. ANN model training progress is visualized clearly.

2. Adding or reducing hidden layers is available.

- Weaknesses

1. No visualization or explanation for the input data.

2. Although the amount of hidden layers can be customized, the imple-

mentation of other ANN models (e.g. CNN) is not accessible.

1.3 Contributions

In this project, we implement four ANN models and designed an interactive user inter-

face (UI), which allows the users to manipulate the pre-trained ANN models, including

changing the hyper-parameters: optimizer, batch size and number of the epoch. More-

over, any user who wants to learn about ANN models can directly change our code

after transforming our research into an open-source project.

1.4 Thesis Structure

In this thesis, the introduction of the research background will follow the first chap-

ter, where we will state the situation of the current research background. Then the

summary and comprehensive introduction of related academic publications, including

essays and statistics report from the authoritative social institution. After the liter-

ature review, we will introduce the implementation details of our Web application,

including the approaches to implement the ANN models. The introduction of experi-

mental observation and evaluation will follow the last chapter. Finally, the last chapter

will contain the summary of this dissertation, including limitations and possible future

work.

5

Chapter 2

Literature Review

This section will introduce the previous research achievements and latest progress of

the related academic field.

2.1 Natural Language Processing

The concept of NLP originally came from Information Retrieval (IR), which has the

primary purpose of efficiently indexing and searching large amounts of text. More in-

formation and interpretation about IR can be found in the essay published by Manning

et al. [16].

The early and simplistic application of NLP, which has been studied by Hutchins et

al. [17], as an example, is verbatim and Russian-to-English machine translation. But,

the appearance of disadvantages of dealing with homographs and metaphor has proved

that relying solely on the specific meaning of the single word without any consideration

about the relation between the words from context and the grammar details will lead

to bad performance when there is a more casual or text with any kind of rhetorical

device (e.g. metaphor).

After the attempt from Chomsky et al. in 1956 [18], which the authors explored multi-

ple concepts of language structure and grammar, specifically English, and found several

models that can generate new sentence from the original sentence which carries phrase

structure based on formal properties of a collection of transformations of grammar.

The conception of ”formal properties of a collection of transformations of grammar”

6

has developed into ”hand-written rules”.

Because of the two features of natural language: size is extensive, unconstrained and

ambiguous usage. The classical symbolic, hand-crafted rules for NLP task, on the one

hand, it is possible that the rules themselves may lead to the unpredictable and unman-

ageable result of text meaning extraction. On the other hand, hand-write rules have

poor performance when used in the casual and unconstrained language environment.

Based on these two questions, the technology of statistical NLP gradually matured,

Lauer[19] designed a statistical processor stands for the NLP problem:

S = 〈Ω, B, V, A〉

- Ω: set of all possible linguistic events

- 〈B, V 〉: a finite set, the bins and values respectively

- A: the trained analysis function

With the development of AI and ANN, especially the implementation of ”Embedding

Layer” in ANN, which has the functionality of transforming the input text sequence

of unequal length into a numerical fixed-length sequence[20], because of the features

of the NLP task: ambiguous and variable inputs, natural language is symbolic and

discrete, etc. Therefore, the ANN model is appealing to use in NLP.

2.2 Sentiment Analysis

For the definition of sentiment analysis, Poria et al.[21] mentioned that in 2016, which

referred that sentiment analysis is the integrated application of NLP, or computational

linguistics and text analysis.

Feldman[1] has made a summary about the applications of sentiment analysis, a struc-

ture of general sentiment analysis system is showed in their work as below:

7

Figure 2.1: General sentiment analysis system structure[1]

There are three categories of questions level of sentiment analysis: document, sen-

tence and aspect-based. The scale of the corpus decides the first two kinds, but when

people are marking comments or reviews (see Figure 2.2), people usually tend to give

their feedback of multiple attributes of the objective. Aspect-based methods are needed

to solve this kind of sentiment analysis problem.

8

Figure 2.2: A Review in Amazon for a certain laptop

2.3 Artificial Neural Networks

ANN is firstly discussed in the pioneering work by McCulloch and Pitts[22] who has

done massive mathematics reasoning. It can be seen that ANN is coming from the

structure of brains as the name of it. The human’s brain consists of billions of neurons

responsible for receiving stimulation, generating excitement, and conducting excite-

ment. More details about the human neurons are discussed by Hopefield [23]. He

analyzes the feasibility of artificial neural signals from a purely mathematical and bio-

logical perspective and conducts experiments on this idea. More significantly, he comes

up with the mathematical expression of a mathematical neuron as below:

y = θ

(
n∑

j=1

wjxj − u

)

• n: Number of input data

• xj, j = 1, 2, ...,m: input data

9

• wj, j = 1, 2, ...,m: neuron’s weight for the jth input

• u: threshold

• θ: unit step function at 0

Learning is a fundamental section of any intelligent system. Based on the equation

above, Jain et al. argue two points to build a learning model: learning paradigm, which

includes ”supervised”, ”unsupervised”, and ”hybrid”, and a learning algorithm[2]. Jain

et al. also make a summary of the category of ANN models (see Figure 2.3)

Figure 2.3: Category of ANN models[2]

There are two main sub-classes of ANN models, feed-forward and recurrent neural

networks. In the feed-forward neural network, which can also be referred to as a for-

ward neural network, while calculating the output value, the input value propagates

from the input layer unit forward layer by layer, passes through the hidden layer and

finally reaches the output layer, and obtains the output. The branches of the first layer

of the forward network are connected to all the branches of the second layer, and the

second layer is connected to the branches of the previous layer. There is no connection

between the teams in the same layer. The excitation function of the neuron in the

forward network can be represented by a linear hard threshold function or a non-linear

function of unit rising, etc.

There are two important functions in the ANN model, the loss function and the ac-

tivation function. The activation function acts on the data transfer process between

10

different layers of the neural network. If the activation function is not used in a mul-

tilayer neural network, each neural network layer is just a linear transformation. The

multilayer input is also linearly transformed after being superimposed. Because the

expressive power of the linear model is usually not enough, so the role of the activation

function is reflected at this time, and the activation function can introduce non-linear

factors. Using activation functions can guarantee to learn the sliding curve to divide

the surface, instead of using complex linear combinations to force the sliding curve

to divide the surface so that the neural network has a stronger representation ability

and can better fit the target function. The common activation functions now include:

Sigmoid, ReLU , TanH, etc.

The loss function is a basic concept in machine learning, statistics, probability and

other research involving mathematical knowledge. From a mathematical point of view,

the loss function maps the events of one or more variables to real numbers related to

a certain cost. In supervised machine learning algorithms, we hope to minimize the

error of each training example during the learning process. This is done using some

optimization strategies such as gradient descent. Moreover, this error comes from the

loss function. In other words, the loss function is used to evaluate the ANN models

and the difference between the actual value yi and the predicted value ŷ. Model perfor-

mance increases as the value of the loss function decrease. If all possible output output

vectors are yi = 0, 1 and an event x with a set of input variables x = (xi, x2...xt), then

the mapping of x to yi is as follows:

L
(
ŷL+1
i , yi

)
=

1

t

i=t∑
i=1

(yi, (σ(x), w, b))

Where L (ŷi, yi) is the loss function. The common loss functions include: Mean Square

Error (MSE), cross-entropy, etc.

Figure 2.3 shows that there are two main sub-classes of ANN. We also refer to the

classification result of this picture. Furthermore, we implement two kinds of feed-

forward networks and two kinds of recurrent networks. In the following subsections,

we will introduce the history and state-of-art development of the four ANN models we

will explore in this project.

11

2.3.1 Multiple Layer Perceptron

MLP is inspired by the Single Layer Perceptron (SLP) and perceptron learning algo-

rithm. Even if SLP is regarded as a considerable advancement in the development of

ANNN, the weaknesses of SLP still shows up with the development of ANN, in which

one of the most obvious is that the ability to process non-linear data is weak[24]. Com-

pared with the SLP structure, one of the most intuitive changes is that adding the

hidden layer as a new middle layer. Thus, each neuron of the MLP can be regarded as

an individual SLP to some extent, and the activation function is no longer limited to

the Heaviside step function. The structure example can be seen in Figure 2.4.

Figure 2.4: MLP model example

MLP as a neural network model developed in the 20th century, there have been

many related applications, including applying the MLP model in drawing solar radia-

tion maps in Spain by Hontoria, Aguilera, Zufiria[25] and Daniels and Kamp[26], where

they build MLP networks to bound rating and house pricing.

2.3.2 Convolutional Neural Network

In the 1980s, Fukushima proposed ”recognition” where he tries to build a network

structure that can solve pattern recognition tasks, behaving like the human brain to

help researchers understand the details of the human brain. He creatively introduces

original ideas from the visual system of the human being to ANN, which can be con-

12

sidered the prototype of CNN. ”Neocognitron” is an improvement of his previous work

”Congnitron”[27], ten years later, as LeCun applied backpropagation to a network like

”Neocoginitro” for supervised learning[28], the application of CNN has become more

and more widespread, CNN has a good performance not only in the field of image

recognition[29][30], but also in other fields like sentence modelling.[31]

Compared with MLP, CNN has two changes: the usage of convolution and pooling. In

The operation of convolution between two functions is defined as:

(f ∗ g)(x) =

∫
f(z)g(x− z)dz

In other words, convolution measures the overlap between f and g. When we have

discrete objects, the integral becomes a summation. For example: for the vector drawn

from the set of infinite-dimensional vectors whose index is Z, the sum of squares, we

get the following definition:

(f ∗ g)(i) =
∑
a

f(a)g(i− a)

For a two-dimensional tensor, it is the corresponding sum of the (a, b), index of f , and

(i− a, j − b), the index of g :

(f ∗ g)(i, j) =
∑
a

∑
b

f(a, b)g(i− a, j − b)

The above is the description of the convolution operation in mathematics. In the con-

volutional layer, the input tensor and the kernel tensor are cross-correlation operations

to produce the output tensor. So to some extent, the operation convolutional layer

expresses a cross-correlation operation instead of convolution.

As for pooling operation, which is usually processed after convolution, the essence of

pooling is sampling. Pooling selects a particular method to reduce the dimensionality

of the input Feature Map to speed up the calculation. A more common pooling process

is called Max Pooling. Assuming there is a 4*4 feature map used as the input feature

for max pooling. A filter with a step of 2(the value of step can be chosen manually)

will be used to scan the values in the neighbourhood of a feature map and select the

maximum value to output to the next layer. (see Figure 2.5)

13

Figure 2.5: An example of max pooling operation

After all, the pooling layer is a process of feature selection and information filtering.

In other words, the researchers have lost part of the information. This is a compromise

with computing performance. With the continuous improvement of computing speed,

this compromise is getting smaller and smaller.

2.3.3 Recurrent Neural Network

As we introduce the two ANN models before, all of them have a common feature:

MLP and CNN are both feed-forward ANN models, one-to-one correspondence between

input and output, that is, one input gets one output. There is no connection between

different inputs, but when the target data is a sequence data – a series of interdependent

data streams, using a feed-forward ANN model cannot satisfy this kind of data. For

example, in predicting the next word in a sentence, it is not appropriate to take any of

the preceding words. We not only need to know all the preceding words but also the

order between the words. That is what problem the RNN wants to solve.

The earliest paper on the concept of RNN comes from Elman[32] in 1990. This paper

mainly discusses how to find a specific pattern or structure in the time series. It is

almost the original conceptual framework of RNN proposed in this paper. RNN was

created to allow neural networks to have processing capabilities for sequential inputs.

For example, to predict the next word of a sentence, it needs to be inferred based on

14

the previous words, and the order of the first few words is essential.

RNN is called ”recurrent” because RNN performs the same operation on each sample

in the input sequence, and the output of RNN is also based on previous calculations.

Another way to think about RNN is that RNN is a learner with memory ability, which

has a specific memory ability for the sequence calculated so far. The core content of

RNN is to use recurrent links. After using recurrent links, the neural network can have

dynamic memory capabilities.

The calculation process of RNN is as follows:

• xt is the input vector of the input sequence at time t.

• st is the output of the hidden layer at time t, which is the memory unit of the

RNN. The calculation of stis based on the output of the previous hidden layer

st−1 and the current input xt.

• ot is the output of the step moment t, for example, if you want to predict the

next gait in the gait sequence, you can get: ot = softmax (V st).

RNN is currently one of the most promising tools for deep learning. It solves the prob-

lem that traditional neural networks cannot share features that share locations from

data. RNN has made many achievements in processing sequence data. Lin et al.[33]

study the accessibility of applying RNN in document modelling. They summarise pre-

vious work on word coherence in different sentences and attempt to improve the quality

of machine translation at the speech level. Then they design a hierarchical recurrent

neural network language model for document modelling. An example of RNN is showed

in Figure 2.6.

Figure 2.6: An example of RNN model

15

2.3.4 Long Short-Term Memory

Based on the introduction about RNN in the last section, the past output and the

current input will be concatenated together in RNN. The output of the two is con-

trolled through activation functions. RNN only considers the state at the most recent

moment. In order to solve the disappearance of the temporal gradient in RNN, the

machine learning field has developed a long and short-term memory unit, LSTM, which

realizes the temporal memory function through the switch of the gate and prevents the

disappearance of the gradient. We make a comparison between LSTM and RNN in

Figure 2.7.

Figure 2.7: Comparison between RNN and LSTM

There are also study on the application of LSTM. Huang et al.[34] design a variety

of traditional LSTM models solving the problem of document tagging. Specifically,

besides the LSTM model, they also combine several LSTM-based models to get better

performance. Another research result in the field of NLP with LSTM comes from

Sundermeyer et al.[35]. Their paper summarises the problem that existed when using

16

RNN, and they use English and French corpus to analyze the LSTM model.

2.4 Explainable Artificial Intelligence

The term ”Explainable Artificial Intelligence (XAI)” is firstly come up in the work of

Van Lent et.al[36], they get the sponsorship from United States Department of the

Army and state the AI architecture and possible explanation capability of an army

training system called Full Spectrum Command (FSC) which is a training system used

in US army at the moment. In their paper, The Explainable AI system in Full Spectrum

Command is developed to be used in two phases: log the AI activities in the execution

phase and use and analysis the logs in the after-action review phase.

Recently, there are no formal definitions of XAI recognized by researchers. There are

two definitions mentioned in work finished by Emmert-Streib et.al[37], one of them is an

indirect definition, which focuses on the functions and application of XAI in industry.

The second one is a direct definition, point out the XAI is supposed to extract details

and reasons to make itself apparent and easy to understand.

with the development of ML ANN in 1990s[38], the problem of ”opacity”, which is also

called as black box problem, in AI algorithms has attracted the attention of researchers,

but in fact at the very beginning, XAI serves the expert system and providing analysis of

the reasons why the system makes decisions, in the paper from London[39], he point out

the reasons why people do not only requires the accuracy of the model but also demand

the model has the ability to justify its output and furthermore, he also describes the

features of black box problem in deep learning, he argued that the researchers today

can build the models very fast but it is difficult for users (or clients) to understand what

happened inside the models and a more severe limitation is that besides the models

cannot help clients understand the situation in problem, the features tracked by model

are useless for users to understand the relationship between the actual features in the

real world.

Using the ideas from XAI to build explainable machine learning models to increase the

interpretability of AI models has become a field of extensive research to recognize the

explainable machine learning models correctly. Fouladgar et al. [3] make a summary

of the categories of explainable machine learning models. (See Figure 2.3)

17

Figure 2.8: Categorization of explainable machine learning models[3]

The application of XAI already exists in many fields. Kuppa et.al[40]

study the impact of applying XAI in the field of cyber security. In their work, they

mention the term ”Explainable Security (XSec)”, which is created by Luka et al.[4].

Luka et al. draw a diagram that contains six ”Ws” questions to describe the primary

purpose and explain critical concepts in XSec. (See Figure 2.4)

18

Figure 2.9: Six questions in XSec[4]

In Figure 2.4, it can be seen that all the aspects around XSec, including who are the

potential consumers and how to solve the explainability problems. While in work from

Kuppa et al., after they summarise the previous related work, they propose a method

to classify XAI’s dimension, which is related to the field of network security. They also

design a novel black box in order to study security. Then another research processed

by Deeks[41] proposes an idea that combing XAI and the judicial field. He agrees

with the feasibility and necessity of introducing AI into the judicial process in previous

related studies. However, he also points out that the judges should require reasonable

explanation when they use the predictions or decisions made by AI models as the

external aid to help them the sentence. Besides, he also mentions the usage of courts.

For example, courts can be used to simulate and evaluate judicial AI algorithms. So,

he believes that the exploration and study in applying AI in the judicial environment

will also help the development and improvement of XAI.

19

Chapter 3

Implementation

In this chapter, we will introduce the implementation for each step of building ANN

models and the front-end page.

3.1 Project Structure

After finishing the literature reading before starting researching, especially the sum-

mary of the strengths and weaknesses of the current two famous projects, we designed

the overall structure of our project(see Figure 3.1)

20

Figure 3.1: Project structure

In this project, when the user visits the front-end page, there will be a short intro-

duction that refers to the main purpose of this project and information about the data

set that is used in this project and the ANN models that we implemented.

21

3.2 Technical Implementation

In this section, we will introduce the technical implementation details in ”corpus explo-

ration and preprocessing”, which contains the content of the basic introduction of the

data set we will use and two brief descriptions of the data distribution characters of the

data set. Then in the sub-section of ”text visualization”, we will focus on the methods

that we use to create the vectors for the reviews data, reduce the high-dimensional

text vector to 3 dimensions, and draw it on the scatter chart. In the third sub-section,

”ANN Model Implementation”, we will introduce the approaches to implement four

ANN models and the corresponding overall structures. The following section will state

how we build the route in the back-end server through Flask. Furthermore, in the last

section, after the sections’ introduction above, we will state the finalized project UI

and introduce the framework that we use to build the front-end page at the same time.

3.2.1 Corpus Exploration and preprocessing

After obtained the IMDB corpus, basic observation can give us simple but useful in-

formation (see Table 3.1 and 3.2)

Table 3.1: Stat of Corpus Sentiment Polarity

Positive Negative

Amount 2517 2483

Table 3.2: Stat of Corpus Reviews Length

Review Length X Amount

X <= 100 5

100 < X < 500 474

500 <= X < 1000 2101

1000 <= X < 1500 1014

1500 <= X < 2000 558

2000 <= X 848

22

It can be seen that in the corpus that we select, the distribution of sentiment polar-

ity is balanced and avoid the problems caused by data imbalance. In Table 3.2, the

most frequent comment length range is 500 <= X < 1000, and the second common

is 1000 <= X < 1500, which can be evidence for the max vector dimension selection

when we process the text vectorization mission.

After completing the evaluation of the corpus data, we need to process text prepro-

cessing before vectorization.

The impact that text preprocessing has on the text classification has been studied

before, in work from Uysal and Gunal[5], the made experiments on the Turkish and

English corpus (see Figure 3.2)

Figure 3.2: The experiments that text preprocessing has on English Emails corpus[5]

In Figure 3.2, the graph has proved that the performance (Micro-F1) of text classi-

fication without any text preprocessing is the worst. The performance gets better when

text preprocessing is applied. However, it can be seen that ”Numerical Term Coverage”

becomes 0% after the Micro-F1 reaches the maximum, and there is no noticeable per-

formance changing whatever the coverage of unstemmed and stopword terms change.

Vijayarani and Nithya et.al[6] has come up with a flow chart with text preprocessing

(see Figure 3.3)

23

Figure 3.3: Text mining preprocessing techniques[6]

Generally, text preprocessing contains a series of recognized operations[42], includ-

ing tokenization, stemming, lemmatization and removing stop words, etc.

Tokenization

The purpose of tokenization is to transform the original string text into a list contains

separated elements. In our case, since the corpus we use is in English, tokenization

becomes easy since English text is already separated by spaces, calling the split()

function is a fast implementation for tokenization in our project.

Stemming

The purpose of stemming is to remove the prefix and suffix of a word to get the root.

The first stemming algorithm is come up by Lovins[43] in 1968, which attempts to elim-

24

inate common suffix including -ses, -ing or -ation. The derived stemming algorithms

like Porter[44], which has multiple advantages compared with Lovins’s method, e.g. an

extraordinary complexity reduction in suffix removal. Porter stemming algorithm has

been proved as a effective stemming method in real application[45][46][47][48].

In our project, we directly use the function of PorterStemmer() from nltk library to

implement stemming.

Lemmatization

Lemmatization has standard features with stemming[49], the purpose of both of them

is to find the original form of a word and try to avoid the deviations in text analysis

and semantic understanding caused by different forms of words, but compared with

stemming, lemmatization can ensure that the outcome is still an accurate, meaningful

word while stemming algorithm may cause inexplainable result, an example mentions

a possible situation in Figure 3.4.

Figure 3.4: A possible situation when applying stemming and lemmatization

The positive influence of using lemmatization in NLP has been supported in many

applications of NLP. Korenius and Laurikkala[50] made a series of experiments with

the lemmatization method in Finnish text documents, and the performance is good in

their 5000 experimental documents.

25

One of the reasons the lemmatization can guarantee the output is the meaningful

word is that it uses a certain database as the reference. In our project, we use

WordNetLemmatizer() function from nltk library to finish the lemmatization task.

WordNet is the database that the lemmatization algorithm will use. It is a lexical

database that collects words and clusters four forms of a lexicalized concept: noun,

verb, adjectives and adverbs into sets of synonyms[51]. WordNetLemmatizer() func-

tion is an existing implementation of applying WordNet database in lemmatization.

Remove Stop Words

In our sentiment polarity problem, thea basic idea is to evaluate and calculate the single

review data into a high-dimension vector and send these vectors into ANN models, but

as a matter of fact, not every word in a sentence has an influence on the sentiment

of the sentence and these words can be removed. These words can be called as stop

words, e.g. ”the”, ”if”, ”but”, ”and”[52]. The concept of ”stop word” does not only

contain the actual word, but punctuation marks in various languages are also often

used as part of stop words like ”,”, ”.”.

The impact of removal based on the stop words list has been proved in actual researches.

El-Khair[7] uses standard recall and precision to measures the performance of using

different stoplists in Arabic information retrieval missions. (see Figure 3.6)

26

Figure 3.5: Recall-Precision curves for the general stoplist[7]

Because the people’s reviews in our data set do not belong to a particular field,

building a targeted stop words list is unnecessary in our case. We use a pre-compiled

stop words corpus from library nltk to eliminate the stop words in the review data

from the data set.

In our project, since the text is crawled directly from the Internet, which causes that

the reviews data contains HTML tags, e.g.
. As the solution, besides the joint

operations in text preprocessing, the clean HTML tags are included in the implemen-

tation of our text preprocessing. Besides, some reviews contain emoticons made up of

characters, e.g. ”:)”. These strings are not actual English words, but we also believe

they are not meaningless characters that should be removed like stop words. For exam-

ple, ”:)” represents that the corresponding review is more likely to be positive. To solve

the problem of processing emoticons, in our text processing function, the measures we

27

have taken are basically to retain these meaningful but not specific strings of English

words to keep the emotional meaning in these unique strings as much as possible. We

use the regular expression from the re library from Python to find the HTML tags in

the text and remove them in our custom regular expression rules. The specific code

details related to processing special characters, please refer to appendix ??.

The sequence diagram of text preprocessing is shown in Figure 3.7. The overall text

processing function code details of preprocessing can be found in appendix ??.

Figure 3.6: Sequence diagram of text preprocessing

3.2.2 Text Visualization

In this section, there are two sub-sections: the first is the introduction for the meth-

ods that we use to implement three kinds of vectorization, then the description of

28

decomposition is included in the second sub-section.

Vectorization

In our project, to extract more information beneath the corpus, we used three kinds

of methods of vectorization: TF-IDF, Word2Vec and Doc2Vec.

TF-IDF is a weighting technique used for information retrieval and data mining. There

are two keywords: ”TF” and ”IDF” TF (Term Frequency) means to count the number

of times a word appears in the target document. However, the weakness of using TF

to describe the relevance of documents relativity ultimately is found soon. Because of

language factors, some words do not have actual meaning but play the role of connection

in the sentence. Besides, When the source of the text type is more complex, such as

speech text or some over-spoken text, the effect of using TF alone on this type of corpus

is very bad. At this time, TF cannot help us distinguish the relevance of documents.

The concept of IDF (Inverse Document Frequency) was put forward in response to this

problem. IDF method points out the necessity of penalizing words that appear in too

many documents. If a word is more common, the denominator is more significant, and

the inverse document frequency is smaller and closer to 0. The reason for adding 1 to

the denominator is to prevent the denominator from being 0 (that is, all documents

do not contain the word). TF-IDF method is firstly come up from the research from

Jones in 1972[53] and 2004[54]. The classical formula used in TF-IDF to calculate the

term weight is as below:

wi,j = tfi,j × log

(
N

dfi

)
- wi,j: the weight of term i in document j.

- tfi,j: the frequency of term i in document j

- N : number of documents in the data set.

- dfi: number of documents containing term i

The advantage of TF-IDF is that it is simple, fast, and easy to understand. The dis-

advantage is that sometimes the word frequency is used to measure the importance of

a word in an article is not comprehensive enough, and sometimes essential words may

not appear enough. This calculation cannot reflect the location information and the

29

importance of the word in the context. If the context structure of the word needs to

be reflected, then other algorithms like Word2Vec can be an option. Word2Vec is a

tool that provides a new approach compared with TF-IDF called the word embedding

model for transforming the word into vector space. It is introduced by Mikolov et

al. [55] from Google originally. By training the Word2Vec model, the researchers can

regard the weight matrix from the hidden layer as the vector for the specific word.

There are two methods to get the matrix (vector): continuous bag-of-words, referred

to as CBOW, and continuous skip-gram. Continuous skip-gram is a method to predict

the word given based on the context and surrounding words. There is an example task

for continuous skip-gram. (see Figure 3.2)

Figure 3.7: An example of the task for continuous skip-gram

On the contrary, CBOW is a method to use the predict current value through con-

text. The comparison is showed in Figure 3.3

30

Figure 3.8: Structure diagrams of CBOW and continuous skip-gram [8]

The last vectorisation tool we used is called Doc2Vec, which is proposed by Le and

Mikolov [56]. Word2Vec can be regarded as an extension for Word2Vec n the aspect of

document-level corpus since Word2Vec attempts to preserve more information during

vectorisation by implementing simultaneous learning of both words and documents.

[57]

In our project, text vectorisation aims to present the low-dimensional visible relation

between the reviews from the data set. Considering the hardware we are using, too

many features will cause the memory to exceed, but the small number of features will

cause losing features during vectorisation. Therefore, we used 1000 as the size of the

vector to maximise the information we can retain. Then we store the vectorisation

result as a .npy file to prepare for the presentation in the front-end UI. We choose the

implementation of the TF-IDF vectorisation method as an example in appendix ??.

Decomposition

The output of vectorization is a one-to-one high-dimensional vector corresponding to

the original review data. Naturally, we cannot use these vectors to finish visualization

31

directly. We consider using decomposition methods to map high-dimensional vectors

to low-dimensional 3D space and draw the scatter graph with a front-end framework.

The concept of decomposition is coming from mathematics and statistics. In the field

of AI, the purpose of decomposition is to learn a mapping function f : x− > y, where

x is the original high-dimensional vectors and y is the low-dimensional vector after

function f processes.

We select two kinds of decomposition methods: Principle Component Analysis (PCA)

and Uniform Manifold Approximation and Projection (UMAP).

The essence of principal component analysis is to treat the data as an ellipsoid. In

two dimensions, it is an ellipse. We know that the ellipsoid has a major axis and a

minor axis. If a short axis of a 3-dimensional ellipsoid is very short, can we regard this

short axis as not? Such an ellipsoid is reduced to a 2-dimensional ellipse. This is the

principle of PCA. To facilitate calculations. First, you need to normalize the data so

that the centre of the ellipse is at the origin**. So how do we know which minor axis is

very short? Look at the variance of this axis direction data. The smaller the variance,

the shorter the axis. That is to say, the larger the variance, the more important

the data of this dimension is the principal component. The smaller the variance, the

less important this dimension (corresponding to the shorter the ellipse axis), then this

dimension can be discarded. The data with the largest variance is projected to the first

coordinate (also called the first principal component), the second-largest is projected

to the coordinate of the second dimension, and so on. More information can be found

in the works from Ringnér[58] and Karamizadeh et.al[59].

The PCA algorithm has been applied in many AI applications. For example, Destefanis

et.al[9] uses the PCA method in the mission of beef characterization. They define

multiple PCA tools and compare them to find the most influential characteristics based

on eigenvalues (see Figure 3.9).

32

Figure 3.9: Results from the principal component analysis for the first six principal

components[9]

An early technology called t-SNE is also a kind of non-linear dimensionality re-

duction technology which is brought by Van der Maaten and Hinton [60]. t-SNE is

an upgraded version of SNE. It maps data points to probability distributions through

affinity transformation. Although SNE provides a suitable visualization method, it is

challenging to optimize, and there is a ”crowding problem” (crowding problem). T-

SNE uses a heavier long-tailed distribution of t distribution in low-dimensional space

to avoid crowding and solve optimization problems.

UMAP is an attempt to overcome those weaknesses, which is a state-of-art non-linear

dimensionality reduction technology directly coming from the work of McInnes et.al[10].

In their essay, UMAP is constructed based on the theoretical framework of Rieman-

nian geometry and algebraic topology. UMAP has apparent advantages, faster running

speed, and a small memory footprint when processing large data sets. UMAP is a di-

mensionality reduction technology, similar to t-SNE. This algorithm is based on three

assumptions about the data:

• The data is evenly distributed on the Riemannian manifold (Riemannian mani-

fold)

• The Riemann metric is locally constant (or can be approximated this way)

• Manifolds are locally connected

33

The name of the first assumption is related to a mathematical concept, ”manifold”,

which refers to areas connected. Mathematically, it refers to a group of points, and

each point has its neighbourhood. Given any point, its manifold locally looks like Eu-

clidean space. In other words, it has the properties of Euclidean space in its local space

and can use Euclidean space for distance calculation. Therefore, it is easy to establish

a dimensionality reduction mapping relationship locally and then try to generalize the

local relationship to the global, and then visualize it. The pseudo-code of the UMAP

algorithm is shown in Figure 3.10.

Figure 3.10: UMAP algorithm[10]

They use the KNN classifier to evaluate the performance of different decomposition

methods in two different data sets: COIL-20 and PenDigits. UMAP has better and

more stable performance in both two data sets compared with t-SNE. (see Figure 3.11).

34

Figure 3.11: Comparison between different decomposition methods[10]

Except for their evaluation, the effectiveness of UMAP has been shown in other

researches, e.g. Becht et.al[11] apply UMAP in single-cell analysis from the field of

cytobiology. Their study also makes a qualitative comparison of UMAP with t-SNE

and the other five decomposition tools. The results show that the UMAP tool has the

best performance among them. (see Figure 3.12)

35

Figure 3.12: Results in the single-cell analysis using four different decomposition

methods[11]

We used the PCA() and UMAP () from the libraries of sklearn and umdp. The

values of the hyper-parameters in both functions are set to 3 since we need the three-

dimensional representation of the original text vectors. Partial code details can be

found in appendix ??.

3.2.3 ANN Model Implementation

All of our implementation of the ANN models is finished through Keras. It is an

easy-to-use neural network API written in Python,[61][62]. Before we introduce the

implementation of each model, we will summarise the common functions from Keras,

which provides a modular method of building ANN. In our project, we use Sequential(),

Dense(), Flatten(), and Embedding() to build the model. Sequential() function can

be regarded as the entry function of the entire neural network model, to be more

36

specific, Sequential() function defines that this model is the simplest linear and initiate

the whole models which allow the model to accept other types of ANN middle layers.

Dense() function is the pre-defined fully connected layer from Keras, where provides

multiple parameters, including whether using bias vectors. The parameter we will use

is units, the required parameter in the Dense() function and other pre-defined model

layer functions. The other parameter we will use is activation, which decides what to

launch to the next neuron. We have a more detailed introduction in Chapter 2. The

optional values for parameter activation are accessible for users to transfer the string

values, which is the name of those pre-defined activation functions, including softmax,

elu, relu, sigmoid, etc. We use relu as the activation function in the hidden layer and

sigmoid in the output layer. We choose sigmoid as the output layer activation function

because of our project two-class task. As a result, the output of our model should also

be binary, and sigmoid is a classical binary activation function.

Flattern() is an implementation of the flattening layer in Keras. The Flatten layer is

used to ”flatten” the input, to transform the multi-dimensional input data into data in

a format of a single dimension, which greatly reduces the use of parameters and avoids

over-fitting. The parameter we set is unit, and its effect is the same as the parameter

in the layers to decide the output data dimension.

Embedding() stands for the implementation of the embedding layer. The purpose of

embedding is to project high-dimensional, relatively sparse data in each dimension to

a relatively low-dimensional one. Each dimension can take the data operation of the

real number set. We use this function to process the input data.

The first ANN model we implement is MLP. Due to its concepts, MLP is the simplest

ANN model in the four ANN models we implement. All the functions we use have

been introduced previously. The model structure is shown in the Figure 3.13 drown by

the Flask internal functions.

37

Figure 3.13: MLP model structure

For CNN model, compared with MLP model, the functions that we specifically use

are Dropout(), Conv1D() and GlobalMaxPooling1D(). In Dropout(), some neurons

will be randomly deleted to train different neural network architectures on different

batches, and we use a 0.3 ratio in this function to get the best performance. Conv1D

is one of the most crucial layers in CNN, responsible for extracting different input

features and passing the result to the next layer. GlobalMaxPooling1D is a kind of

pooling layer and method. The meaning of the word ”global” is that the size of the

sliding window (decide the area to process pooling) equals the size of the whole feature

map, and ”max” means that the output element of the new feature map is the largest

element of the input feature map in the area of a sliding window. The model structure

diagram can be reviewed in Figure 3.13.

38

Figure 3.14: CNN model structure

For the RNN model, the only layer that we introduce here is SimpleRNN().

SimpleRNN() is a function from Keras that contains a complete RNN layer func-

tion. The only parameter we set is units. The model structure is shown in Figure

3.14.

39

Figure 3.15: RNN model structure

The last model we implement is LSTM, like we introduced in chapter 2, is an

upgraded RNN model, so the structure of LSTM is very similar to RNN, and the

LSTM structure is implemented by SLTM(), in where we use the parameter of units

only. The model structure of LSTM is shown in Figure 3.15.

40

Figure 3.16: LSTM model structure

3.2.4 Flask Route Building

We use Flask to build the back-end route to provide the API for users to use this

project’s functionalities. Flask is a lightweight web application framework written in

41

Python based on Werkzeug and WSGI[63][64], we did not choose other frameworks like

Django since they can provide more features indeed, but the standard Django project

framework established by scaffolding commands will create more pressure for the server

compared with Flask project.

We design four endpoints in Flask in total. The first endpoint is ”/get vecs”, which

provides the service for users to get the generated vectors from the back-end to be

shown in the ”Visualization” section. The second endpoint is ”/get vec detail”, where

receiving the information of the clicked point in the ”Visualization” section as pa-

rameters and giving the ”processed review”, ”original review” and ”sentiment” as the

response. The third endpoint is ”/get corpus stat”, we count the number of comments

in different length ranges and return the result of counting as the response. The fourth

endpoint is ”/get ann model”. We provide the interface to receive the parameters of

the hyper-parameters selected by the users and be responsible for training new ANN

models and returning the data of training history to be presented in the front-end.

Besides, we adopt a project development model of separation of front-end back-end,

Cross-Origin Resources Sharing (CORS) must be considered and solved. When the

browser sends an Ajax request, it only receives the data resources that the same origin

server responds to. Only the protocol, origin name, and port are all the same can be

considered under the same domain. If one of the three conditions is inconsistent, it

is not considered the same origin, cross-origin. Flask has provided the CORS() func-

tion to implement CORS configuration, we use the default configuration supported in

CORS(), the method to use this function is to simply wrap the instance of Flask()

before calling its run() function.

3.2.5 Front-end Design

The other main point of this project, besides the ANN model implementation, is the

design of the front-end page.

Considering the services that this project provides, I decided to follow the principles of

Single Page Application (SPA). However, it is generally believed that there is no clear

and authoritative definition of SPA, but in work from Mesbah and Van Deursen[65],

in where they give some critical features of SPA:

- Components: the weight of term i in document j.

42

- Updated/replaced: the frequency of term i in document j

- Reloaded: number of documents in the data set.

After establishing the broad design principles, we decide to use React Hooks to build

the components need in the front-end pages, compared with classical React, where

create a class inherited from React. Component to design own class, we could directly

create our component class through custom functions instead of class inheritance. Eas-

ier to reuse code and effectively reducing code complexity are two main advantages of

using React Hooks[66][67]. However, when facing with asynchronous requirements, it

is defective compared to class inheritance. While in our project, there is not a large

number of asynchronous requests, we think this defect is negligible.

Following the rules of SAP and applying React Hooks and ideas from SAP, we finish

the front-end UI design. (see Figure 3.4)

Figure 3.17: Project UI implementation

On the initial page, we put a brief introduction of this project, which includes the

purpose of our research, the developer’s name, and a summary of the project.

In Figure 3.4, we divide the services we provide into three sections, and what is included

in the first part is showed in Figure 3.5.

43

Figure 3.18: UI of section of ”corpus description”

In the part of ”corpus description”, we firstly quote a description of the IMDB

database from Wikipedia to let the users have a preliminary understanding of the

source and content of the data set. Then we design two graphs: a pie chart of sentiment

polarity distribution and a bar chart of reviews lengths in different ranges to describe

the data distribution in the data set we will use. The purpose of sentiment polarity

is to prove to users that the data distribution in the data set used by our project is

balanced. At the same time, this icon can also indirectly prove the effectiveness of

the model we implemented. On the one hand, we want to show more details of the

data set for the other graph. On the other hand, we also believe using this chart could

provide a chance for users to build a connection between the length of the reviews and

the performance of the ANN models, thereby gain more knowledge about the ANN

models.

For the implementation of this section, we import components from Echarts to draw

these two graphs. We use useContext and useEffect from React Hooks to manage

the status, useContext could receive the variables defined by the developers and turns

them into global variables through < ContextProvider > tag, used in the JS file of the

project component configuration and wrap the root node, in order to share the global

variables with all components in the project. Nevertheless, it does not necessarily need

to wrap the root node, wrap components at any level so that variables can be shared

with that component to achieve the effect of using global variables. React also provides

44

Redux to manage the whole status, but based on the scale and needs of our project data

transmission and exchange. We believe using Redux will only unnecessarily increase

the complexity of the project.

To interact with the ”corpus description” section, the users need to click the button of

”Analysis”, and requests will be created and sent by Axios to useEffect function to

operate the settings of two graphs provided by useContext.

The second section, UI design, can be seen in Figure 3.6.

Figure 3.19: UI of section of ”visualization”

In this part, we recommend that the users use multiple methods to see the visu-

alization results, which contains two operations: vectorization and decomposition. To

save the time that users need to wait for the response, we store the visualization result

in the format of ”.npy” to give the response as soon as possible.

In the scatter chart, each point represents the review in the data set. We also allow

the users to click the point. As a result, three pieces of data will be shown in the

correct blank area: original review preprocessed review and the sentiment. Based on

the decomposition theory, the specific values on the three coordinate axes are not very

meaningful. The purpose of drawing the scatter chart is to show the distance of the

points in 3D space. Combining with the comment data displayed in the blank area on

the right, the users can have a deeper understanding of review data in the same senti-

ment polarity. e.g. Review data A is positive, and the review data B is negative, and

45

here is a positive review data C. However, review A and B are both positive reviews

but comparing the relative distance between point C and point A and point B, users

can discover more information through the comparison.

In the last section – ”ANN Models”, which we are directly inspired by ”ANN Play-

ground” by Tensorflow, we allow users to learn about the ANN models and manipulate

those models. The UI design is showed in Figure 3.7.

Figure 3.20: UI of section of ”visualization”

In this section, we provide four options for users to choose and each option repre-

sents an ANN model: MLP, CNN, RNN and LSTM. Once the user clicks the panel, a

sub-area will appear below, and on the left side, there will be a structure diagram of the

model selected, which includes the name of each layer and the data flow through the

model. Moreover, on the other side, the interface of models manipulation is provided,

the users can tune the hyper-parameters of the ANN models, including the choice of

”optimizer”, which is the optimal solution of the model, and the primary purpose is

to get the smallest possible value in the loss function, the number of ”epoch”, which

stands for the number of times to train using the entire training data, and the number

of ”batch size”, which is the sample size used in one iteration. The changeable hyper-

parameters and optional values are shown in Table 3.3.

46

Table 3.3: Optional Values of Hyper-parameters from ANN Models

Epoch Batch Size Optimizer

Options 1, 5, 10, 15, 20 100, 200, 400,

800, 1000

SGD, RMSprop,

Adam

When the users decide on the hyper-parameters, they can click the ”Submit” button,

the request will be sent to the Flask back-end to re-compile and re-train the pre-trained

ANN models stored in the format of ”.h5”. After training time as short as a few seconds

or as long as a few minutes, the back-end will transfer the ”training history” into the

front-end line graph settings and update the line graph to show the variation during

training.

47

Chapter 4

Evaluation

This chapter will state the metrics that we choose to evaluate our ANN models to

ensure that the models we provide for the users are effective and will not cause any

misunderstanding.

During the evaluation, based on the data set that we choose, a 5000 sub-data-set of

IMDB, we used the train test split() function from sklearn to divide the 5000 data

into the training set and test set at a rate of 0.3. As a result, 3500 data will be used

in the training of the ANN model, and 1500 data will be used in test and validation.

4.1 Metrics for ANN Models

This section will present three criteria applied in our project’s evaluation stage: con-

fusion matrix, ROC and AUC and ANN models training history. These criteria are

helpful for us to appraise the performance of our models.

4.1.1 ROC and AUC

ROC (AUC) is a commonly used criterion in classification tasks to evaluate the al-

gorithm performance. It is coming from the concepts of the confusion matrix. In a

particular data set and classifier, the researchers can only get one confusion matrix or

a group of TP, FP, TN and FN, to get continuous data to draw ROC, the data used

in ROC coming from the probability prediction of classifier but not actual category

classification prediction.

48

In our project, there are four kinds of ANN models. To draw the ROC, callable func-

tions roc curve() and auc() are accessible. (see Figure 4.1)

(a) MLP (b) CNN

(c) RNN (d) LSTM

Figure 4.1: ROC and AUC of ANN models

In Figure 4.1, it can be seen that the ROC is nearly the same in all ANN models,

but the most significant value of AUC is from the CNN model, which is 0.92.

4.1.2 Confusion Matrix

The confusion matrix describes the classification accuracy of a classifier. The word

”confusion” also vividly expresses the confusion that the classifier may cause when

facing multiple classifications. It is a performance measure for machine learning clas-

49

sification problems, where the output can be two or more classes. The table contains

four different combinations of predicted and actual values. The actual value in the

confusion matrix is also called ”target”, ”reference”, ”actual”. Correspondingly, the

predicted value is called ”model”, ”prediction”, ”predicted”. The binary classification

is identified as Positive and Negative, sometimes also identified as ”Normal/Abnor-

mal”, ”Accept/Reject”, or more simply as ”Yes/No.”

The tables of confusion matrices of four ANN models are presented from Table 4.1 to

4.4.

Table 4.1: Table of Confusion Matrix of MLP Model

True

Predict
Negative Positive

Negative 600 160

Positive 130 610

As showed in the Figure 4.1, the True Positive Rate (TPR) is 82.43%, and the False

Positive Rate (FPR) is 21.05%.

Table 4.2: Table of confusion matrix of CNN model

True

Predict
Negative Positive

Negative 610 150

Positive 80 660

As showed in Figure 4.2, the True Positive Rate (TPR) is 89.19%, and the False

Positive Rate (FPR) is 19.74%.

Table 4.3: Table of Confusion Matrix of RNN Model

True

Predict
Negative Positive

Negative 570 180

Positive 160 590

50

As showed in Figure 4.3, the True Positive Rate (TPR) is 78.67%, and the False Positive

Rate (FPR) is 34.00%.

Table 4.4: Table of confusion matrix of LSTM model

True

Predict
Negative Positive

Negative 570 180

Positive 120 640

As shown in Figure 4.4, the True Positive Rate (TPR) is 84.21%, and the False Positive

Rate (FPR) is 24.00%.

Compared to all the statistics in the tables and the calculated TPR and FPR, the

model with the best quality in the ROC metrics is RNN, with the value of TPR is

89.19% and the value of FPR is 19.74%.

4.1.3 Training History

There has provided callable functions to get the history from the ANN models training

progress in Keras, combing with Python library Matplotlib, the changes in various

indicators during training.

Based on the internal structure of ”history” returned (see Figure 4.2), the value of the

x-axis and y-axis can be decided.

51

Figure 4.2: A screenshot of the internal structure of partial training history

To draw the training history line graphs for four pre-trained ANN models, we use

the value of ”epoch” in the x-axis and the value of ”ROC and AUC” in the y-axis.

Thus, the line graph is showed in Figure 4.3.

52

(a) MLP (b) CNN

(c) RNN (d) LSTM

Figure 4.3: Training History of ANN Models

In the sub-figures in Figure 4.2, it can be seen that after 20 epochs, the values of

”val auc” and ”auc” has reached a relatively high level (almost 90%). However, it can

be seen that after 20 epochs, the values of ”loss” and ”val loss” even starts to increase.

This situation is undeniable in the LSTM model. But the ”auc” and ”val auc” show

that the training of the four ANN models is practical.

The evaluation of the training history of ANN models is also a reference for us to set

the range of epoch that we can provide for users to use in adjusting our pre-trained

ANN models. We make a trade-off here that set the maximum epoch that users can

use is 20.

53

Chapter 5

Conclusion and Future Work

This chapter will present the conclusion of this dissertation, the limitations of this

project, and the resulting possible future work.

5.1 Conclusion

In this project, we designed a Web application, React and React Hooks are used with

Ant Design to build the front-end UI. For the back-end side, there are two parts.

The first part is responsible for building and training ANN models and other related

work, including vectorization and decomposition using Keras, sklearn and Numpy, the

second part is the route, which is implemented by Flask, to make the services that we

implemented available to the users once we host the project. All the ANN models:

MLP, CNN, RNN and LSTM reach the AUC precision around 90%.

For the data set used in this project, we are considering the IMDB data set, which

contains the movie-related data, e.g. review and the information of actors directors,

but we select 5000 data from a sub-dataset of IMDB, which only contains the movie

review and the corresponding sentiment to use as the input data in the ANN models

because the original IMDB data set is too large to implement the function that the

user can adjust the ANN model and get a response in real-time.

54

5.2 Limitations

Limited Types of Corpus

In this project so far, only one type of corpus can be used: IMDB data set. However, the

performance of the four kinds of ANN models has been proved to be effective. However,

it is not sound enough to use only one kind of data set since the users cannot get more

knowledge about the data set’s influence on the ANN model performance. Therefore,

maybe trying different data sets, incredibly different types of a corpus, e.g. long text

in sentence-level, documents collection in document-level and even conversation data

collected in real-time.

Unclear Visualization of Training Progress

Even though we try to visualize every training detail, but restricted to the programming

level, we still cannot gain more information during the ANN model training (e.g. the

variation of inner hidden layer matrix) and return the data in real-time, modifying the

source code of the functions from Keras and build own classes for it may become a

solution.

ANN Training Slowness

Slow ANN training is a severe problem in the future progress since it is intolerable for

users to see the training progress when it is processing a much larger corpus, changing

the current project architecture, in where the front-end and back-end are separated,

into an integrated front-end and back-end structure maybe can be put into considera-

tion.

5.3 Future Work

In addition to the last section of ”Limitations”, other potential works might be con-

sidered in the future.

The first possibility is the type of sentiment polarity from the data set. However, we

have mentioned in the last section that replacing data set with longer or shorter text

would be a possible work changing binary classification into a multi-class classification

55

and even design the ANN models which have the adaptive ability towards both binary

classification and multi-class classification. It will provide the users with more views

when they are using ANN models.

Besides, an extensive user feedback survey before any further work has been done is

available to get more ideas. It is a valuable method to get the direction that this

project should follow in the future.

56

Bibliography

[1] R. Feldman, “Techniques and applications for sentiment analysis,” Communica-

tions of the ACM, vol. 56, no. 4, pp. 82–89, 2013.

[2] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural networks: A tutorial,”

Computer, vol. 29, no. 3, pp. 31–44, 1996.

[3] N. Fouladgar and K. Främling, “Xai-pt: a brief review of explainable artificial

intelligence from practice to theory,” arXiv preprint arXiv:2012.09636, 2020.

[4] L. Viganò and D. Magazzeni, “Explainable security,” in 2020 IEEE European

Symposium on Security and Privacy Workshops (EuroS&PW), pp. 293–300, IEEE,

2020.

[5] A. K. Uysal and S. Gunal, “The impact of preprocessing on text classification,”

Information processing & management, vol. 50, no. 1, pp. 104–112, 2014.

[6] S. Vijayarani, M. J. Ilamathi, M. Nithya, et al., “Preprocessing techniques for text

mining-an overview,” International Journal of Computer Science & Communica-

tion Networks, vol. 5, no. 1, pp. 7–16, 2015.

[7] I. A. El-Khair, “Effects of stop words elimination for arabic information retrieval: a

comparative study,” International Journal of Computing & Information Sciences,

vol. 4, no. 3, pp. 119–133, 2006.

[8] T. Mikolov, Q. V. Le, and I. Sutskever, “Exploiting similarities among languages

for machine translation,” arXiv preprint arXiv:1309.4168, 2013.

57

[9] G. Destefanis, M. T. Barge, A. Brugiapaglia, and S. Tassone, “The use of princi-

pal component analysis (pca) to characterize beef,” Meat science, vol. 56, no. 3,

pp. 255–259, 2000.

[10] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation

and projection for dimension reduction,” arXiv preprint arXiv:1802.03426, 2018.

[11] E. Becht, L. McInnes, J. Healy, C.-A. Dutertre, I. W. Kwok, L. G. Ng, F. Ginhoux,

and E. W. Newell, “Dimensionality reduction for visualizing single-cell data using

umap,” Nature biotechnology, vol. 37, no. 1, pp. 38–44, 2019.

[12] A. Adadi and M. Berrada, “Peeking inside the black-box: a survey on explainable

artificial intelligence (xai),” IEEE access, vol. 6, pp. 52138–52160, 2018.

[13] H. C. Lane, M. G. Core, M. Van Lent, S. Solomon, and D. Gomboc, “Explain-

able artificial intelligence for training and tutoring,” tech. rep., UNIVERSITY

OF SOUTHERN CALIFORNIA MARINA DEL REY CA INST FOR CRE-

ATIVE . . . , 2005.

[14] J. Suh, S. Yoo, J. Park, S. Y. Cho, M. C. Cho, H. Son, and H. Jeong, “Development

and validation of an explainable artificial intelligence-based decision-supporting

tool for prostate biopsy,” BJU international, vol. 126, no. 6, pp. 694–703, 2020.

[15] I. Tenney, J. Wexler, J. Bastings, T. Bolukbasi, A. Coenen, S. Gehrmann, E. Jiang,

M. Pushkarna, C. Radebaugh, E. Reif, et al., “The language interpretability tool:

Extensible, interactive visualizations and analysis for nlp models,” arXiv preprint

arXiv:2008.05122, 2020.

[16] C. D. Manning and P. Raghavan, “and schutze, h.[2008] introduction to informa-

tion retrieval,” 2008.

[17] J. Hutchins, “The first public demonstration of machine translation: the

georgetown-ibm system, 7th january 1954,” http://www. hutchinsweb. me. uk/GU-

IBM-2005. pdf, 2005.

[18] N. Chomsky, “Three models for the description of language,” IRE Transactions

on information theory, vol. 2, no. 3, pp. 113–124, 1956.

58

[19] M. Lauer, “How much is enough?: Data requirements for statistical nlp,” arXiv

preprint cmp-lg/9509001, 1995.

[20] Y. Goldberg, “Neural network methods for natural language processing,” Synthesis

lectures on human language technologies, vol. 10, no. 1, pp. 1–309, 2017.

[21] S. Poria, E. Cambria, and A. Gelbukh, “Aspect extraction for opinion mining

with a deep convolutional neural network,” Knowledge-Based Systems, vol. 108,

pp. 42–49, 2016.

[22] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–

133, 1943.

[23] J. J. Hopfield, “Artificial neural networks,” IEEE Circuits and Devices Magazine,

vol. 4, no. 5, pp. 3–10, 1988.

[24] L. Noriega, “Multilayer perceptron tutorial,” School of Computing. Staffordshire

University, 2005.

[25] L. Hontoria, J. Aguilera, and P. Zufiria, “An application of the multilayer per-

ceptron: solar radiation maps in spain,” Solar energy, vol. 79, no. 5, pp. 523–530,

2005.

[26] H. Daniels and B. Kamp, “Application of mlp networks to bond rating and house

pricing,” Neural Computing & Applications, vol. 8, no. 3, pp. 226–234, 1999.

[27] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural network

model for a mechanism of visual pattern recognition,” in Competition and coop-

eration in neural nets, pp. 267–285, Springer, 1982.

[28] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

pp. 436–444, 2015.

[29] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recognition: A

convolutional neural-network approach,” IEEE transactions on neural networks,

vol. 8, no. 1, pp. 98–113, 1997.

59

[30] L. Xu, J. S. Ren, C. Liu, and J. Jia, “Deep convolutional neural network for

image deconvolution,” Advances in neural information processing systems, vol. 27,

pp. 1790–1798, 2014.

[31] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural net-

work for modelling sentences,” arXiv preprint arXiv:1404.2188, 2014.

[32] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14, no. 2, pp. 179–

211, 1990.

[33] R. Lin, S. Liu, M. Yang, M. Li, M. Zhou, and S. Li, “Hierarchical recurrent

neural network for document modeling,” in Proceedings of the 2015 Conference

on Empirical Methods in Natural Language Processing, pp. 899–907, 2015.

[34] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for sequence tagging,”

arXiv preprint arXiv:1508.01991, 2015.

[35] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for language

modeling,” in Thirteenth annual conference of the international speech communi-

cation association, 2012.

[36] M. Van Lent, W. Fisher, and M. Mancuso, “An explainable artificial intelligence

system for small-unit tactical behavior,” in Proceedings of the national conference

on artificial intelligence, pp. 900–907, Menlo Park, CA; Cambridge, MA; London;

AAAI Press; MIT Press; 1999, 2004.

[37] F. Emmert-Streib, O. Yli-Harja, and M. Dehmer, “Explainable artificial intelli-

gence and machine learning: A reality rooted perspective,” Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, vol. 10, no. 6, p. e1368, 2020.

[38] R. Andrews, J. Diederich, and A. B. Tickle, “Survey and critique of techniques for

extracting rules from trained artificial neural networks,” Knowledge-based systems,

vol. 8, no. 6, pp. 373–389, 1995.

[39] A. J. London, “Artificial intelligence and black-box medical decisions: accuracy

versus explainability,” Hastings Center Report, vol. 49, no. 1, pp. 15–21, 2019.

60

[40] A. Kuppa and N.-A. Le-Khac, “Black box attacks on explainable artificial intel-

ligence (xai) methods in cyber security,” in 2020 International Joint Conference

on Neural Networks (IJCNN), pp. 1–8, IEEE, 2020.

[41] A. Deeks, “The judicial demand for explainable artificial intelligence,” Columbia

Law Review, vol. 119, no. 7, pp. 1829–1850, 2019.

[42] S. Kannan, V. Gurusamy, S. Vijayarani, J. Ilamathi, M. Nithya, S. Kannan, and

V. Gurusamy, “Preprocessing techniques for text mining,” International Journal

of Computer Science & Communication Networks, vol. 5, no. 1, pp. 7–16, 2014.

[43] J. B. Lovins, “Development of a stemming algorithm.,” Mech. Transl. Comput.

Linguistics, vol. 11, no. 1-2, pp. 22–31, 1968.

[44] P. Willett, “The porter stemming algorithm: then and now,” Program, 2006.

[45] W. Kraaij and R. Pohlmann, “Porter’s stemming algorithm for dutch,” Infor-

matiewetenschap, pp. 167–180, 1994.

[46] N. H. Ali and N. S. Ibrahim, “Porter stemming algorithm for semantic checking,”

in Proceedings of 16th international conference on computer and information tech-

nology, pp. 253–258, 2012.

[47] M. V. B. Soares, R. C. Prati, and M. C. Monard, “Improvement on the porter’s

stemming algorithm for portuguese,” IEEE Latin America Transactions, vol. 7,

no. 4, pp. 472–477, 2009.

[48] C. G. Patil and S. S. Patil, “Use of porter stemming algorithm and svm for emotion

extraction from news headlines,” International Journal of Electronics, Communi-

cation and Soft Computing Science & Engineering (IJECSCSE), vol. 2, no. 7, p. 9,

2013.

[49] V. Balakrishnan and E. Lloyd-Yemoh, “Stemming and lemmatization: a compar-

ison of retrieval performances,” 2014.

[50] T. Korenius, J. Laurikkala, K. Järvelin, and M. Juhola, “Stemming and lemma-

tization in the clustering of finnish text documents,” in Proceedings of the thir-

61

teenth ACM international conference on Information and knowledge management,

pp. 625–633, 2004.

[51] G. A. Miller, “Wordnet: a lexical database for english,” Communications of the

ACM, vol. 38, no. 11, pp. 39–41, 1995.

[52] W. J. Wilbur and K. Sirotkin, “The automatic identification of stop words,” Jour-

nal of information science, vol. 18, no. 1, pp. 45–55, 1992.

[53] K. S. Jones, “A statistical interpretation of term specificity and its application in

retrieval,” Journal of documentation, 1972.

[54] K. S. Jones, “Idf term weighting and ir research lessons,” Journal of documenta-

tion, 2004.

[55] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed

representations of words and phrases and their compositionality,” in Advances in

neural information processing systems, pp. 3111–3119, 2013.

[56] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,”

in International conference on machine learning, pp. 1188–1196, PMLR, 2014.

[57] D. Kim, D. Seo, S. Cho, and P. Kang, “Multi-co-training for document classifica-

tion using various document representations: Tf–idf, lda, and doc2vec,” Informa-

tion Sciences, vol. 477, pp. 15–29, 2019.

[58] M. Ringnér, “What is principal component analysis?,” Nature biotechnology,

vol. 26, no. 3, pp. 303–304, 2008.

[59] S. Karamizadeh, S. M. Abdullah, A. A. Manaf, M. Zamani, and A. Hooman, “An

overview of principal component analysis,” Journal of Signal and Information

Processing, vol. 4, no. 3B, p. 173, 2013.

[60] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,” Journal of

machine learning research, vol. 9, no. 11, 2008.

[61] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd, 2017.

62

[62] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, 2019.

[63] F. A. Aslam, H. N. Mohammed, J. M. Mohd, M. A. Gulamgaus, and P. Lok,

“Efficient way of web development using python and flask,” International Journal

of Advanced Research in Computer Science, vol. 6, no. 2, pp. 54–57, 2015.

[64] M. Grinberg, Flask web development: developing web applications with python. ”

O’Reilly Media, Inc.”, 2018.

[65] A. Mesbah and A. Van Deursen, “Migrating multi-page web applications to single-

page ajax interfaces,” in 11th European Conference on Software Maintenance and

Reengineering (CSMR’07), pp. 181–190, IEEE, 2007.

[66] D. Bugl, Learn React Hooks: Build and refactor modern React. js applications

using Hooks. Packt Publishing Ltd, 2019.

[67] T. Luojus, “Usability and adaptation of react hooks,” 2021.

63

Appendix

.1 Github Links

The GitHub link for frnt-end:

https://github.com/Evan-CHN/dissertationProject_fontend

The GitHub link for back-end:

https://github.com/Evan-CHN/dissertationPorject_back-end

.2 Code Pieces from Implementation

.2.1 Overall Text Preprocessing Function

Figure 1: Text preprocessing function

64

https://github.com/Evan-CHN/dissertationProject_fontend
https://github.com/Evan-CHN/dissertationPorject_back-end

.2.2 Regular Expression Rules in Processing Special Charac-

ters

Figure 2: Regular expression rules in processing special characters

.2.3 Example of Vectorization Method Implementation

Figure 3: Example of vectorization method implementation

.2.4 PCA Implementation

Figure 4: PCA implementation

65

	Acknowledgments
	Abstract
	Summary
	List of Tables
	List of Figures
	Chapter Introduction
	Background
	Motivation
	Contributions
	Thesis Structure

	Chapter Literature Review
	Natural Language Processing
	Sentiment Analysis
	Artificial Neural Networks
	Multiple Layer Perceptron
	Convolutional Neural Network
	Recurrent Neural Network
	Long Short-Term Memory

	Explainable Artificial Intelligence

	Chapter Implementation
	Project Structure
	Technical Implementation
	Corpus Exploration and preprocessing
	Text Visualization
	ANN Model Implementation
	Flask Route Building
	Front-end Design

	Chapter Evaluation
	Metrics for ANN Models
	ROC and AUC
	Confusion Matrix
	Training History

	Chapter Conclusion and Future Work
	Conclusion
	Limitations
	Future Work

	Bibliography
	Appendices
	Github Links
	Code Pieces from Implementation
	Overall Text Preprocessing Function
	Regular Expression Rules in Processing Special Characters
	Example of Vectorization Method Implementation
	PCA Implementation

