
School of Computer Science and Statistics

User Privacy & iPhones:
An analysis of user privacy on the iOS platform

Thomas Kelly
Supervised by Douglas Leith

April 23, 2021

A dissertation submitted in partial fulfilment
of the requirements for the degree of

MAI (Computer Engineering)

http://www.scss.tcd.ie

Declaration

I, Thomas Kelly, hereby declare that this dissertation is entirely my own work and that
it has not been submitted as an exercise for a degree at this or any other university.

I have read and I understand the plagiarism provisions in the General Regulations of
the University Calendar for the current year, found at http://www.tcd.ie/calendar.

I have also completed the Online Tutorial on avoiding plagiarism ‘Ready Steady Write",
located at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

Signed: Date:

1

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write

Abstract

As smartphones and use of the internet become ubiquitous in modern society, the main-
tenance of user privacy in these contexts has become an increasingly difficult task. With
Apple’s iPhone accounting for approximately a third of smartphone users, a large por-
tion of the world has become dependent on usage of iOS devices for staying connected
in modern society. This has become particularly relevant in light of the Coronavirus
pandemic. The success of iPhones is largely founded on the wide range of applications
available for download that grant the device additional capabilities. From popular social
media apps like TikTok, to the contact-tracing apps created in many parts of the world
to combat the spread of COVID-19, applications have become an important part of daily
life worldwide. It is therefore of upmost importance that users be made aware of what
personal data these apps collect about them, and for what purposes they are collecting
it.

This work firstly focuses on an analysis of how user data is handled by Apple on their
popular iPhone device. Subsequently, the same investigative techniques are applied to
popular iOS applications allowing them to be examined from a perspective of privacy.
While many applications are quite respectful and secure in their handling of sensitive user
data, this work finds areas in which security & privacy measures are in some cases lacking,
and highlights areas meriting concern. The apps considered in this analysis are COVID
Tracker Ireland, Aarogya Setu, Airbnb and TikTok. The findings of this work largely
indicate that users should be more concerned about their privacy, and in several cases
are left uninformed as to the length of network activity carried out on their iOS device.
Apple, alongside the applications discussed in this work, all have areas in which their
security measures could be improved, assuring the privacy of their users is maintained to
the highest available standards.

2

Acknowledgements
I firstly want to extend my gratitude to the supervisor of this work Douglas Leith, for
his continued guidance and insight throughout the course of this dissertation.

I also cannot thank my close family and friends enough, who have been unwavering in
their encouragement and support during my five years at Trinity.

3

Contents

1 Introduction 8

2 Background 10
2.1 An overview of user privacy . 10
2.2 Related work . 11
2.3 Sensitive Data . 14
2.4 Threats to user privacy . 14
2.5 Security Overview . 15

3 Experimental Setup 18
3.1 Device Configuration . 18
3.2 Jailbreaking . 19
3.3 Cydia Substrate . 19
3.4 SSL Killswitch 2 . 20
3.5 Frida . 21
3.6 mitmproxy . 24
3.7 Hopper Disassembler . 26

4 Evaluation 27
4.1 Apple . 27

a. Apple Identifiers & Sensitive Information 28
b. iCloud . 28
c. Advertising services . 31
d. App Store (iTunes) . 35
e. Find my iPhone (FMIP) . 36

4

f. Idle connections . 37
g. Maximising Privacy . 39
h. Observations . 41

4.2 COVID Tracker Ireland . 42
a. Interactions with the app . 42
b. Registration . 43
c. General Usage . 45
d. Observations . 49

4.3 Aarogya Setu . 49
a. Interactions . 50
b. Google Firebase connections . 51
c. Aarogya Setu connections . 54
d. Observations . 60

4.4 Airbnb . 62
a. Registration . 62
b. Third Parties . 64
c. General Usage . 70
d. Observations . 73

4.5 TikTok . 74
a. Gaining entry . 74
b. Registration . 75
c. General usage . 80
d. Third Parties . 87
e. Observations . 88

5 Conclusion 91
5.1 Future Work . 91
5.2 Conclusion . 91

Bibliography 93

Appendices 101

5

List of Figures

2.1 Overview of SSL operation, created with Lucidcharts. 16

3.1 Depiction of Frida’s interception strategy (25) 22
3.2 Diagram of how Frida stalking works, wrapping basic operation blocks. (25) 23
3.3 Intercepted traffic as displayed in mitmproxy CLI 24
3.4 Steps of MITM attack, made with Lucidcharts design tool. 25
3.5 Hopper: Disassembling TikTok and searching for an ‘encrypt’ methods . 26

4.1 Body of POST request to /c2, displaying activity reporting. 30
4.2 Apple Advertising settings and information 33
4.3 COVID Tracker App display of infection statistics. 47
4.4 Aarogya Setu display of infection statistics. 50
4.5 Airbnb’s privacy dialog upon registration for the app 63
4.6 TikTok’s For You page (FYP). 82
4.7 Interception of class-method HMDHeimdallrConfig performanceReportURL 86

6

List of Tables

3.1 Summary of device settings . 19

4.1 Summary of device settings . 40

7

CHAPTER 1

Introduction

With an increasing portion of human interaction and communication taking place
online in the modern world, the privacy of internet users has emerged as a pivotal issue
for the evolution of the web and the technology that relies on it. With 728 million
people in the world using iPhones (10), Apple controls about a third of smartphone
user’s data. With a reputation of being secure and trustworthy, Apple, and more
specifically iPhones have prompted only a small amount of speculation and research
around how they handle their user’s privacy. The success of smartphones has also
largely been driven by the myriad of popular applications supported by them, making
them a crucial part of how our society functions. The ever-increasing popularity of
these devices & applications has prompted concern as to how dependent we are on this
technology, and how much we should trust it with our personal information.

In light of the COVID-19 pandemic, this concern has been accentuated in many cases
through development of COVID tracker apps. Taking the example of India, the
government made downloading their COVID app Aarogya Setu mandatory in May 2020
(9), unlike any other democracy in the world. There has been much speculation and
concern directed towards its handling of user data in terms of storage, but also in how it
monitors users and shares their information with the Indian government. Many
countries adopted these COVID tracker apps as a way to control the spread of the
virus, prompting varying degrees of privacy concern depending on the app. While
COVID apps will not be in use forever, popular social media apps like TikTok have
become pervasive in modern society and have drawn a lot of attention regarding the
security and privacy of their users. So much so that former US president Donald Trump

8

threatened to ban the application over concerns about user privacy and the app’s
Chinese origins (58).

With such a large portion of the world population utilising and relying on these
applications for many different reasons, little work has been done formally analysing
how these applications and the iOS devices they run on handle their user’s data. This
project examines the data transmitted in an iPhone’s normal operation to Apple
servers, while also analysing how four different currently topical and popular iOS
applications handle user privacy. To perform this analysis, white-hat hacking techniques
are employed, using a man-in-the-middle attack to intercept internet traffic spawning
from an iPhone and analyse it from a perspective of privacy.

9

CHAPTER 2

Background

As the influence and power of the internet increases, attention must be drawn to the
vulnerabilities we expose through expanding our online presence. As a core focus of this
work, it is important to firstly discuss the state of user privacy in the world today, how
it is protected, and its threats. As this project focuses specifically on iPhones, the
following discourse largely regards privacy as it relates to Apple and iPhones.

2.1 An overview of user privacy

As one of the most influential laws protecting the privacy of internet users, it would not
be proper to proceed without brief mention of the European Union’s 2018 General Data
Protection Regulation (GDPR) (42), which is the law enforcing the compliance of data
collectors with EU standards of user privacy. Among the main definitions of the
regulation are the rights people possess regarding their personal information, outlining
that users must provide ‘freely given, specific, informed and unambiguous’ consent to
data controllers to allow them to process data. While this and other measures enforces
companies to be transparent and honest about their actions in privacy policies, it does
not entirely prohibit user tracking or any other less desirable communications of user
data, once it is outlined in the authorities’ privacy policy.

While threats of hacking are not completely impossible, the majority of companies
handle and store their user’s information securely, encrypting sensitive material and
using storage on protected servers. While security mitigations and compliance with best
practices reduce the risk of an attack, hacks such as SQL injections and DDoS still exist

10

as threats. In this manner, immense trust is placed in tech companies to protect their
user’s identities and sensitive information. It is therefore pertinent that app vendors
and servers collect the absolute minimum amount of data necessary for providing the
service in question.

Placing laws and best security practices aside, undesirable transmissions of user data is
still hugely relevant, particularly when it comes to the subject of advertising. As will be
discussed in the following section, some iOS and Android applications have been shown
to transmit sensitive user information to third parties. Examples of such practice are
enabled by services like Cuebiq (41), who are a company that specialise in offering a
service that allows app developers to track users in different ways, for the purposes of
improving and understanding advertising strategies and their impact.

Having briefly introduced the current state of user privacy in today’s world, the
following sections discuss existing work related to the analysis and examination of
iPhones and their applications, and provide further context and detail on specific
privacy concerns and avenues by which user privacy can be exploited.

2.2 Related work

While Apple boast a strong commitment to maintaining user privacy and upholding
high levels of security, iOS like any platform has a history of security vulnerabilities
that have been exploited resulting in user data being stolen. One of the more popular
works regarding user privacy as it relates to iPhones is ‘iPhone Privacy’ (43). In this
work, N. Seriot (2010) documents how malicious apps downloaded through the App
Store can access a significant quantity of sensitive data, and also includes discussion of
the history of iPhone privacy concerns - most of which have since been addressed by
Apple. Seriot also discusses the importance and sensitivity of device identifiers like the
iOS Unique Device Identifier (UDID), and International Mobile Equipment Identifier
(IMEI), both of which can be used to uniquely identify an iPhone, and should be highly
protected. Tools have been developed such as PiOS, as described by Egele (44), with
the aim of detecting privacy leaks of this sensitive information within iOS applications.
However it is generally quite difficult to detect apps leaking this kind of data, and
indeed some apps require this data and ask permission to access it, as they should. In
the event user data is leaked, third party entities can use the data for a host of
undesirable purposes, unbeknownst to the user.

For the most part, apps taking and storing this data are ones widely regarded to be
completely legitimate and trustworthy. A majority of popular apps implement security
in strict fashion and are highly respectful of user privacy, taking measures to obfuscate

11

and anonymise user data. However in the case of obfuscating data like user location, M.
Srivatsa & M. Hicks (30) demonstrate that efforts like these can be effectively defeated
by using location traces and a social network graph, determining the user’s location
based on who they meet. Another study conducted by Smith (5) observed that of a
variety of popular apps considered, 68% transmit an iPhone’s UDID to a backend
server. Smith points out the many undesirable ways in which such data can be used
once acquired (targeted advertising, user tracking). In ‘Privacy in Mobile Apps’ (39) A.
Pultier examines 21 popular applications in similar fashion to this work however on an
Android device. A core discovery of this work is that ‘mobile apps not owned by big
American tech companies, (e.g. Google, Facebook) - apps such as VG, sports apps and
dating apps - often communicate and share personal information with many third-party
trackers’ [39, p. 9].

App vendors can theoretically use UDIDs along with other user information to easily
match devices with the phone owner’s real identity, which would allow the basis for
relatively simple real-time user tracking. Smith postulates that it would be quite trivial
to implement a system that can physically track iPhone users, with a combination of
UDIDs and timestamped IP addresses, since iPhone users still have no way of blocking
the visibility of their UDID. There is however no evidence that this occurs, only that
theoretically it is possible. This particular study highlights how usage of this
information can be used for advertising tracking - however the process can be somewhat
limited in iPhone settings as will be shown later, but not completely stopped. Another
insight from Smith’s work highlights that in the case of one the considered apps (ABC
News app), a long-lasting cookie that persists for 20 years is given to each user, which
could technically be used to link new UDIDs from old, even when a user switches
phones. Practices like this make it difficult for users to escape being tracked by app
vendors. Similar findings for the relevant apps are presented in this work.

In light of the quick roll-out of COVID Contact Tracing apps, much work has been done
evaluating individual apps, alongside the Exposure Notification System (ENS) (69)
produced through collaboration of Google and Apple. Among the first COVID apps to
be produced, the Singaporean (35) and Australian (45) COVID apps drew initial
concerns and attention from a variety of academic work (Michael & Abbas (46), Cho et
al. (47)). Through ENS, app developers in these cases are enabled to use a partly
decentralized contact tracing system operating over Bluetooth. The primary goal with
such contact tracing apps is achieving a balance between high effectiveness and high
levels of user privacy. Cho discusses the case of Singapore’s TraceTogether, which
requires citizens to place trust in the government in the absence of a fully decentralized
peer-to-peer system, like many contact tracing apps around the world. However, it does
not collect more data than is necessary for good functionality, deeming Bluetooth

12

information sufficient for finding close contacts. This is contrary to that of India’s
Aarogya Setu, which is found to monitor user’s exact time-stamped GPS location, which
will be discussed in detail further into this report.

Examining a variety of COVID apps deployed across the world, Sharma & Bashir (48)
state that out of 50 considered COVID apps, 30 require permission to access different
types of user data. This ranges from phone contacts, to photos, to device IDs and even
image galleries. Another finding is that only 16 out of 50 apps are found to take
security measures to encrypt and anonymise their user’s data. What’s more, Dehaye &
Reardon (51) present evidence that an SDK utilised by many contact-tracing apps
introduces security vulnerabilities by way of Bluetooth - even if the user has opted out
of the contact tracing system.

Leith & Farrell (49) involves similar analysis to that of this work on the Android
platform, concerning a variety of COVID apps. Network traffic for the Irish app COVID
Tracker is clearly outlined, providing the grounds for comparison with the Android
version of the app. Attention is drawn to the fact that requests made by the app can be
linked together through reuse of tokens, which from a privacy point of view is not
optimal. The app however handles user data suitably, as found in the Data Protection
Impact Assessment (DPIA) (50) for the COVID Tracker app, which outlines all of the
user data taken and monitored by the app (50 p. 11). This includes specifications of the
frequency at which data is taken, retention and where it is stored. More vague
representations of personal data are used to collect stats, two examples being age ranges
in place of exact date of birth, and the use of a general locality to represent where a
person is located instead of GPS coordinates.

All of the aforementioned works designate areas of privacy concern around iPhones and
popular contemporary applications, upon which this work can use to identify specific
areas of interest. While privacy concerns have been raised around the transmission of
sensitive data from iPhones, there is currently no work specifically examining what
internet traffic is being generated between iPhone devices and Apple servers, and what
user data is being transmitted. Furthermore, while analysis of many COVID apps has
been conducted on the Android platform (46), (47), (48), 52, no in-depth analysis of the
user privacy of COVID apps has been conducted on iOS devices. The COVID Tracker
app is taken and analyzed in order to compare it with that of the android analysis as
observed in (49), while Aarogya Setu provides completely unchartered territory in terms
of privacy analysis at the time of writing this dissertation. Similarly, the application of
such techniques to popular contemporary applications like Airbnb and TikTok have not
yet been implemented.

13

2.3 Sensitive Data

There are many types of sensitive data associated with an iOS device. iOS devices of
course store lots of personal information about their users like name, address and age,
but also information about how the user interacts with their device. This might include
usage patterns and behaviours. Other types of sensitive data include device data, such
as the aforementioned UDIDs and IMEI, and also hardware serial number - which can
all be used to uniquely identify a particular iPhone. Each Apple account also has a
Digital Services Identifier (DSID) associated with it, which uniquely identifies an Apple
user’s account which they may access across multiple iDevices. Many related works (4),
(30) - as discussed in the previous section section - have shown that the acquisition of
device identifiers such as the UDID can be used for malicious purposes, such as real-time
user tracking. Other undesirable activities might include advertising tracking, whereby
app vendors collect user data to be used for the purpose of targeted advertising.

2.4 Threats to user privacy

Lots of processes on an iPhone communicate user data. Of course, there are lots of
processes that require this data and are transparent about its communication. Most
apps require information about a device such as its model, screen size and software
version to ensure it operates correctly. Some apps even require location to function as
intended, and are fully transparent about this, such as a GPS or Maps application.
Clearly, these are not infringements of user privacy.

There are however many reasons to be concerned about the collection of user data. A
core issue is that of the case where data can be linked with a user’s real-world identity,
which prompts a variety of concerns. Smith’s work (5) has established that it would be
trivial to implement a system that could physically track iPhone users, with a
combination of UDIDs and time-stamped IP addresses. Tracking can however occur
when any user data, such as address, name etc. is transmitted alongside a token or app
instance identifier of some sort. When subsequent connections occur within the app, the
identifier or token is used as authorisation, and thus all of the connections can be linked
together by this single token. In this manner, the user’s anonymity is made vulnerable.
The user need not even enter any details, since their IP address is included in every
connection their device makes. Since IP address is an indication of the user’s location,
this can be used to determine the user’s location over time when combined with other
data. Furthermore, efforts made by app vendors to anonymize user location data have
been shown to be effectively defeated as previously discussed (30). With all of this in
mind, an attempt by a third party service or entity other than Apple to collect sensitive

14

information like UDID, Serial number or DSID should draw attention and should be
appropriately explained.

Other cases which may prompt concern occur where app vendors collect sensitive
information which is unnecessary altogether, or excessively accurate. For example, some
applications may require the user’s general location, perhaps defined by the user’s
country to function correctly. As an example, which is discussed later in this work, the
Indian COVID tracker app Aarogya Setu collects exact GPS coordinates of the user,
when a more obfuscated location reading (or none at all) would be sufficient for the
app’s intentions.

Of course, hackers and other bad actors pose a constant threat. By using an iPhone and
iOS internet applications a user is agreeing in a lot of cases to the storage of their data
on certain companies servers. Because modern applications themselves rely on products
from other companies, user data can often be transmitted to third party companies, as
will be shown at length in the app analysis sections below. In this manner, once
personal information is on the internet and stored on servers, it is vulnerable to attack.
Of course the more places a user’s data is stored, the more vulnerable it is to such an
attack. Events such as the occurrence of a large Facebook account leak in 2019 (68)
serve as reminders that companies still cannot absolutely guarantee the security of their
user’s data, although they will claim to. It is therefore a focus of this work to discover
exactly what user data is being sent to back-end services for the different apps in focus,
and whether or not the privacy of users is preserved in their internet transactions using
an iPhone.

2.5 Security Overview

Departing from the topic of privacy, this section discusses the main security measures
used by an iPhone while communicating on the internet, and briefly introduces how
these measures are circumvented in order to perform analysis. While a variety of
security protocols and techniques exist for securing app user’s data, the most relevant
and important protocol for securing application network traffic is Secure Sockets Layer
(SSL) technology. SSL is a technology that secures connections to websites over the
https protocol. Internet connections are secured using SSL certificates, which are small
files that cryptographically establish an encrypted connection between a web server and
a connecting client entity. Servers receive SSL certificates from a Certificate Authority
(CA), which is a company that validates the legitimacy of the entity that owns the
server and issues them with a signed certificate. When a client application connects to a
server, an SSL handshake is performed, whereby the server sends its certificate, which
the client - in this case an iPhone - can validate against a list of trusted CAs which

15

Figure 2.1: Overview of SSL operation, created with Lucidcharts.

Apple has pre-installed on the device (1).

After the SSL handshake process - which is depicted in figure 2.1 - the client has
verified that it can trust the server, and generates a private key for itself which is
encrypted with the server’s public key. Now, both the client and server can encrypt
information with the public key, which is only possible to decrypt with the
corresponding private keys. A secure connection has been established.

In order to provide an extra layer of security against a hack such as a
man-in-the-middle (MITM) attack, applications and other client-side processes can
employ certificate pinning. This is implemented on the client-side, whereby the server’s
public key and other relevant information is pulled from the certificate into the
client-side code. When future connections occur to the server in question, the client will
validate that the incoming certificate matches the one it has ‘pinned’. In the case it is
not, the client will terminate the session.

To be able to perform privacy analysis on the traffic spawning from an iPhone, these
measures need to be circumvented. The challenges posed by these security mechanisms
are therefore two-fold.

16

• Intercept and log internet traffic, bypassing SSL security

• Unpin (disable) any certificate pinning that occurs

A man-in-the-middle or MITM attack is suitable for overcoming these mechanisms. A
MITM is an entity that sits between the client and server during an exchange, and
enables the interception of all internet traffic. In order to address the issue of certificate
pinning, tools such as SSL Killswitch 2 (2) and Frida (8) can be used to nullify the
effect of pinning procedures. The MITM attack and other necessary measures are
discussed in greater detail in Chapter 3.

17

CHAPTER 3

Experimental Setup

3.1 Device Configuration

The experiments performed in this work were conducted on an iPhone 8 running iOS
14.1, jailbroken with checkra1n (6), which is an iOS jailbreaking tool. Without a sim
card, the device was not connected to a mobile network, instead using WiFi to access
the internet. The majority of optional iPhone settings were left untouched in their
default state, however an Apple account was signed-in so its traffic could be observed,
and so apps could be downloaded from the App Store. This would also allow the phone
to interact with other Apple services like iCloud and the Find my iPhone service
(52).

Location services were enabled, alongside the ‘Personalised Ads’ setting, which enables
the capability for delivering relevant ads to the user, based on their behaviour and
profile. This was done in order to allow observation of traffic spawning as a result of
such settings. Sharing of analytical data was disabled, as was the default option for the
iPhone being used. Another relevant setting was that of the ‘Allow Apps to Request to
Track’ option - which if enabled allows apps to ask permission to track the user across
apps and websites owned by other companies. By default, this was enabled.

18

Setting Configuration
Network Connection WiFi

Location Enabled
Cross-app Tracking Enabled

Analytics Disabled
Apple Advertising Enabled

iCloud Signed-in
Sim Card None

Table 3.1: Summary of device settings

3.2 Jailbreaking

Jailbreaking an iOS device involves an escalation of user privileges on the device. It is
necessary in order to install the required tools for the MITM attacks to succeed,
alongside enabling the operation of tools like Frida and Cydia Substrate (7). The
purpose of jailbreaking an iOS device is to take control of the root and media
partitions. This is where all important system files are stored, and from where the
jailbreak software can have maximum capability. An example of the capability offered
by a jailbreak is showcased by that of the operation of Cydia Substrate. This is a
runtime manipulation tool, allowing developers to build tweaks and patches that can
modify processes on the iPhone and enhance the device’s capability. The following
section discusses Cydia Substrate in more detail.

3.3 Cydia Substrate

Cydia Substrate is the code modification platform behind Cydia (29), and is similar in a
lot of ways to Frida, which will be discussed in more detail in a later section. It
provides the foundations for other tools like SSL Killswitch 2 to operate. Both tools
rely on the escalation of privilege achieved in jailbreaking the target device, however
both use a different approach to achieve their goals. The operation of Cydia Substrate is
centered around three major components.

MobileHooker

This is a component used to replace system functions, and is known as hooking. A
built-in device function called method_setImplementation is used to enable the dynamic
replacement of the implementation of an Objective-C method, with iOS code. The API
that carries this out is called MSHookMessageEx(). A class can be hooked by passing it

19

to MSHookMessageEx() and designating a replacement class, which can be modified.
As a result, system method implementations can be replaced with custom
functionality.

MobileLoader

MobileLoader enables the loading of third-party code into a running application. While
Frida injects by hijacking a thread of execution in a process, MobileLoader works by
loading itself into the application using an environment variable
DYLD_INSERT_LIBRARIES, which will result in it being called when the application
is running.

Safe model

Safe mode provides a way in which to catch any third party apps that introduce crashes
or bugs. This is handled by the MobileLoader, which will catch any extensions that
crash the SpringBoard and put the device in safe mode. The SpringBoard is simply the
application that manages an iPhone’s home screen.

These components set the foundations for tweaks to be created for modifying an
iPhone’s runtime operation. An relevant tweak crucial to the success of this project, is
that of SSL Killswitch 2.

3.4 SSL Killswitch 2

SSL Killswitch 2 is a tool used to disable SSL certificate validation on iOS. It is a
software package that is transferred to the iOS device and accessed through an ssh
connection to the iPhone. It patches low level SSL functions to override and disable the
iPhone’s default certificate validation routines. This ultimately bypasses certificate
pinning implemented by apps, allowing the basis for a MITM entity to view the
contents of internet traffic. The fundamental operation of SSL Killswitch 2 is enabled
by Cydia Substrate hooks.

The Secure Transport API is the lowest level implementation of TLS (SSL’s successor)
on iOS, handling certificate validation. The killswitch works by hooking and modifying
three functions within this API, as described below.

• SSLCreateContext() → disable the built-in certificate validation in all SSL
contexts

• SSLSetSessionOption() → remove the ability to re-enable the built in certificate
validation

20

• SSLHandshake() → Force a trust-all custom validation

– Works by making sure certificate checking/pinning doesn’t get triggered

Once installed, the killswitch can be simply enabled in the iPhone’s settings. SSL
Killswitch 2 does not however cater to applications that implement custom SSL
pinning, which draw upon security libraries that SSL Killswitch 2 doesn’t account for.
This is but one example of the many reasons for why Frida is required for further
reverse engineering.

3.5 Frida

Frida is a command line tool used by developers, security researchers and reverse
engineers. Frida allows the injection of JavaScript code into processes running on the
iPhone, alongside other tools. This enables a wide variety of functionality, allowing the
user to gain more knowledge of how the processes running on the phone operate. Apps
on iOS are stored in ipa files (iOS App Store Package). When an app process is started,
the IPA file is decrypted and its image is loaded into memory. Frida works by hooking
function calls in this memory image. This can enable the user to ‘hook’ and tweak
application processes, which users can use to discover more about a process, or modify
its operation.

Frida’s core of instrumentation is called Gum (23). It is written in C, and controls APIs
that allow the functionality offered by Frida. When the target device is a jailbroken iOS
device Gum can interact directly with otherwise restricted system commands.
Alongside Gum, Frida makes use of some of its other libraries to package JavaScript
code and inject it into existing software on the iOS device. In order for this to work, the
software package frida-server must be running on the target device, which is a daemon
that exposes Frida’s capabilities over a TCP connection. As described in Frida’s
documentation (24) this process sets up the capability for a ‘two-way communication
channel’, which allows the injection of custom JavaScript code, while also enabling the
communication of information about the device and its running processes. The inner
workings of the Frida’s operations can be broken down further around three core
principle, as described by a presentation from its developers (25).

Injection

During the injection process, the linux command ptrace is used to attach to a thread in
a remote process on the device. This process thread has now been hijacked. Memory is
then allocated for a bootstrapper function, which makes use of the mmap (27)
command. Custom code is then loaded into the bootstrapper using dlopen (28). At this

21

point, the bootstrapper is executed, which starts a fresh thread in the remote process.
This thread sets up FIFO communication to a debugger process, from which the
injection operation can be monitored. Subsequently, the thread loads an ‘.so’ file
containing the Frida agent. The agent is executed before the FIFO pipe is closed, and
the main thread execution is resumed. At this point, the custom code has been injected
and is controlled by a file called ‘frida-agent.so’.

Interception

The second angle of attack employed by Frida is that of an interception strategy. The
notion of a ‘caller’ and ‘callee’ is integral here, illustrated in a diagram from (25) (p.
19).

Figure 3.1: Depiction of Frida’s interception strategy (25)

The address of the function to be intercepted is firstly determined. A middle-man of
sorts is used, called a ‘trampoline’ which is introduced as an intermediate between the
caller and callee. The trampoline calls the interceptor function, and hides all stack and
register modifications. In this fashion, the interceptor function can be used to modify or
monitor the targeted function. This allows for iPhone processes to be intercepted for
analysis or modification.

22

Stalking

It is sometimes desirable to stalk or continually monitor a function’s operation. The
frida-trace (26) command is an example of this, whereby certain classes or methods can
be targeted and closely monitored for when they are called and what parameters they
pass. Looking deeper into the process of stalking a function, the list of operations
performed in the function are taken and split into blocks. Each block of functionality is
then wrapped in instrumentation which calls a stalker process for every basic block
transition. This allows the targeted functions to be closely monitored.

Figure 3.2: Diagram of how Frida stalking works, wrapping basic operation blocks. (25)

These components are all tied to together and made available to user’s through Frida’s
CLI interface. This allows users to run Frida commands to interact with a device
connected over USB. Some of the more commonly used commands are described briefly
below.

Frida Commands

frida-ps -Ua

This command enables discovery of running processes on the iPhone (connected over
USB), and their process identifiers (PIDs).

frida-trace -U COVID Tracker Ireland -m "-[*class* *method*]"

Executing this command will monitor method calls within the COVID app process,
spawning from the entered *class*. Strings can be entered here, which enables the
tracing of functions that contain this string as a substring. For example, entering the
Send string in the *method* position above would trace calls related to the
NSMetricsSend and SendCOVIDStats functions. Subsequently, Frida will display these
calls whenever an action is performed on the iPhone that results in one of them being

23

called. This is an important strategy for attempting to find out more about how an
application works.

frida -U cloudpaird -l {scriptToInject}.js

As has been previously referenced, scripts can be written to modify the implementation
of certain functions and injected into processes. The above command injects a script
into the cloudpaird process on the phone. A script can have many purposes here, for
example unpinning custom certificate pinning, or to analyse the execution of a function
in more detail. A more frequent application of Frida for this work was the latter reason
above, whereby a script such as that of observeMethod.js (see see Appendix B) is
injected to examine what parameters are passed to certain functions, and also see what
values are returned by those functions. This enables the user to attain a much better
understanding of what data applications handle.

3.6 mitmproxy

mitmproxy (3) is the software tool used to perform the MITM attack. mitmproxy is set
up in transparent mode (4), whereby the the man in the middle, or device intercepting
the iPhone traffic, is configured as a WiFi access point (AP). The iPhone connects to
the AP running mitmproxy and configures it as its default network gateway. The
iPhone device therefore isn’t aware of the transparent proxy, however all of its traffic is
configured to be routed through the AP. A certificate for mitmproxy must also be
installed on the iPhone and listed as a trusted certificate. After successfully installing
mitmproxy, the simple command mitmproxy can be run and the AP device can
intercept and log all of the target device’s network traffic. Figure 3.4 and following
discussion details the underlying steps involved in a successful MITM attack.

Figure 3.3: Intercepted traffic as displayed in mitmproxy CLI

As was discussed in section 2.5, after the client initiates a connection with a server, the
server will respond with an SSL certificate, signed by a Certificate Authority (CA). This
contains the public key necessary for encrypting any information shared between the

24

Figure 3.4: Steps of MITM attack, made with Lucidcharts design tool.

two entities. The MITM intercepts this, and instead sends its own self-signed certificate
to the client. Provided the client device has the mitmproxy certificate installed as a
trusted certificate, the device will accept this as the server certificate unless it fails any
further attempts to secure the connection, such as SSL pinning checks. It will proceed
to encrypt network data with the MITM’s public key, which can be decrypted by the
MITM, since it knows the corresponding private key. The MITM can now inspect the
client’s network traffic, before subsequently re-encrypting the data with the server’s
public key (which it intercepted earlier) and sends this to the server. Both the client
and server parties are now under the impression they are communicating directly with
one another, while the MITM intercepts all interactions between them.

With SSL Killswitch 2 enabled on the device and mitmproxy running, network
connections spawning from the iPhone can be logged, enabling examination of the
contents of their requests and responses. While SSL Killswitch 2 unpins most of the
connections, some connections require more work to unpin, as has been mentioned
previously. The solution for this is, as has been stated before, is the injection of scripts
using Frida.

25

3.7 Hopper Disassembler

Hopper Disassembler (Hopper) is a tool which allows the disassembly of a iOS app
binary file into assembly code. In order to get an app’s binary, a Frida script such as
that created by AloneMonkey (53) can be injected which extracts the file and dumps it
on the injecting device. After that, the app can be processed by Hopper, which presents
the app’s assembly code.

Figure 3.5: Hopper: Disassembling TikTok and searching for an ‘encrypt’ methods

The screenshot above shows an example of the operation of Hopper. In this case, the
TikTok app has been disassembled. In attempt to understand how it encrypts the
bodies of its requests, a user can search for the string ‘encrypt’ (left) and inspect app
functions and classes that match this string. Hopper auto-generates C pseudo code from
the assembly functions, which the user can inspect to build a better understanding of
how the app actually functions. This can greatly aid the process of reverse
engineering.

26

CHAPTER 4

Evaluation

Having established a successful model to perform privacy analysis, the internet traffic
for specific apps were targeted and examined. As outlined in the introduction to this
work, focus was firstly placed upon background connections that occur to Apple servers
and exactly what they transmit.

Connections were logged and discovered through use of mitmproxy, with SSL Killswitch
2 running on the device to unpin SSL certificates. In the case further SSL unpinning
was required, a custom unpinning script was injected using Frida. It is important to
note that of the majority of connections displayed only a subset of the data is shown.
Omitted data is either uninteresting, repetitive or does not add to discussion in any
way. At various points throughout the analysis process, Frida and Hopper Disassembler
were also used to dive deeper into the underlying functionality of a process, in cases
where extra efforts were required to gain access to an app and its data.

4.1 Apple

A wide variety of connections occur in the background of an iPhone’s normal operation.
These relate to different services required by the iPhone and are broken up in the
following sections, based on the overall service they are known or deduced to be part
of.

27

a. Apple Identifiers & Sensitive Information

iPhones use a variety of different identifiers for different purposes associated with the
user and their device. Apple uses these to identify the device or the user regularly
across multiple different Apple services. Some identifiers are unique and persistent, such
as UDID or Serial number, and some refresh periodically like request or session
identifiers which are sometimes used to identify a user’s connection session with a
server. A summary of the most important identifiers is provided as follows;

• UDID - Unique Device Identifier

• Serial number - Device serial number

• DSID - Digital Services Identifier

• IMEI - International Mobile Equipment Identity

• MEID - Mobile Equipment Identity (IMEI with hexadecimal digits)

• x-mme-device-id - Unique device identifier

• x-apple-i-md - Unique device identifier

• APS-Token - Apple Push Notification Service token

Of course, more standard forms of information about the user like name, address and
gender are also considered as sensitive information as outlined in section 2.3.

b. iCloud

iCloud is Apple’s cloud platform, which the iPhone will interact with when the user
signs into their Apple account on the device. It manages integration of settings and
preferences from other Apple devices, and provides a cloud drive for online file storage.
There are several regular connections to iCloud services that carry device data, which
are related to configuration, syncing and saving of settings on iCloud servers.

POST https://gateway.icloud.com/ckdatabase/api/client/subscription/create

POST https://gateway.icloud.com/ckdatabase/api/client/subscription/retrieve

POST https://gateway.icloud.com/ckdatabase/api/client/record/sync

POST https://gateway.icloud.com/ckdatabase/api/client/record/save

Each of the above connections use the same identifying request information, specified as
follows;

28

Request Headers:

"x-apple-i-md-m": "GHY...6o2"

"x-apple-i-md": "AAAABQ...Aw=="

Request Body:

"udid": "54b...5ba"

"serialNumber": "F4G...C6H"

While carrying out slightly different functions, the above connections transmit the same
sensitive device data, the main two forms being UDID and serial number, which is
sensitive device information. They mainly serve to configure and update iCloud
endpoints on the user’s status, transmitting nothing overly interesting aside from the
sensitive identifiers. It is worth noting the frequency of these requests, which can occur
multiple times in an hour.

Of course, there are many other iCloud connections catering to configuration of
settings, and also interaction with the user’s cloud drive, however they generally do not
contain anything unexpected or specifically interesting. iCloud does however collect
metrics about the manner in which iCloud services are utilised. Multiple cloud-related
processes run on the iPhone during its normal operation. The below connection request
body appears to send information about these different cloud related processes, and
some metrics information like if there were any errors, their duration, their identifier
etc. In the example pictured in figure 4.1, the request body is shown. Some device
information is specified like model and OS version, and then some information about
the ‘com.apple.syncdefaultsd’ process (which is the process being reported on in this
case) is specified. Further into the body of the request, information about the process
activity like its duration (CKOperationDuration), what error it finished with
(finishedWithError), its priority (xpcActivity_priority) etc. are specified.

29

POST https://metrics.icloud.com/c2

(a) Device information and activities being
recorded.

(b) Information about activities

Figure 4.1: Body of POST request to /c2, displaying activity reporting.

This information is assumably collected for analytical purposes, allowing Apple to
analyse the behaviour of these processes. Apple manages syncing of information
between devices registered with the same Apple account through its
p33-keyvalueservice.icloud.com server, which hosts the /sync endpoint. A base64
encoded data frame is sent here, decoded to show the sent information in the request
body as follows.

POST https://p33-keyvalueservice.icloud.com/sync

Request Headers:

authorisation: Basic MTc....T09

X-Apple-I-MD-M: GHY...6o2

X-Apple-I-MD: AAAA...AAAw==

Request Body:

DeviceGestalt1k0

ModelNameiPhone0

OSVersion18A83950

...

ComputerNameThomas’s iPhone // device name

0|Octagon

30

PublicSigningKey....

SerialNumberF4G... // iPhone serial number

...

MacBook Pro0MessageProtocol

Version0 ComputerName Mac-f01...

SerialNumberC02... // Macbook serial number

Identifying some of the sensitive IDs observed here;

• iPhone Serial number = FG4...

• Macbook serial number = C02...

Since the Apple account signed in on the iPhone also is registered to a Macbook, the
serial numbers of both devices are sent to this endpoint along with some other public
keys used by the devices relating to Apple services. This allows Apple the capability to
relate activities carried out by the same account across different devices. In this
manner, any activity carried out by a user on any of their Apple devices will be linked
under the same Apple account.

c. Advertising services

Multiple connections can occur to Apple advertising servers, some of which send
personal information about the user. The connection below specifies the user’s DSID
and retrieves information about the user, most interestingly the user’s eircode, year of
birth, and gender alongside some other less important device information.

POST https://partiality.itunes.apple.com/WebObjects/MZPartiality.woa/wa/IAD/segment

Request Body:

"dsid": "173...836"

Response Body:

...

2: "A84 ..." (eircode)

3: "1997" (year of birth)

48: "IRL"

...

As of this connection, this data is linked with the DSID. Having retrieved this data
successfully, it is then sent onwards to the ‘cf.iadsdk’ server in the following
connection.

POST https://cf.iadsdk/apple.com/adserver/2.6/segment/update

Request Body:

31

...

2: "A84..." (eircode)

3: "1997" (year of birth)

48: "IRL"

...

It is important to note here that this functionality is enabled due to the fact the device
is configured to enable the ‘Personalised Ads’ setting in the device’s Privacy settings,
which is enabled by default for this device. Indeed, examination of Apple’s advertising
targeting information in the device settings (Fig. 4.2) and support site (38) outlines
why this data is collected for advertising purposes. This section also explains how the
user is assigned to ‘Segments’ or ‘Content Categories’ based on how they have
interacted with some of Apple’s other services, essentially attempting to build a profile
of the user’s interests and use that as a basis for targeted advertising. This information
is assumably also transmitted to the /segment/update endpoint, but is encoded or
encrypted in a fashion that is not readable.

32

Figure 4.2: Apple Advertising settings and information

The iPhone will also occasionally send updates the the /attribution endpoint when
using an application. Advertising attribution refers to the process whereby advertisers
can gauge how effective certain ads are, and find out what exact ads are having the
most desirable effects. While the request body of the connection to this endpoint could
not be decoded, it appears when a new app is opened some information is logged about
it at this server. It may be the case nothing interesting is being transmitted in the
encrypted body here, nonetheless, the connection occurs.

POST https://ca.iadsdk.apple.com/adserver/2.6/attribution

Request Body:

...x14\xc8\x98\xe8"\x0ecom.airbnb.app)\x00\x00\x80\xc5...

Apple assigns users an ad-related identifier which is commonly referred to in apps as
‘advertising_id’ or ‘idfa’. ‘IDFA’ stands for ‘Identifier for Advertisers’, and acts exactly
as such. This ID serves as a way for application vendors to serve relevant ads to the
user, which they acquire information about from Apple ad servers. The presence of the

33

same ID was verified in several different applications. While referred to differently
across the applications below (even as ‘hardware_id ’ in the case of Airbnb), the
identifier is partially denoted as ‘7F7...059’ in the request bodies observed.

Instagram

POST https://graph.facebook.com/v9.0/12..14/activities

Request Body:

"advertiser_id": "7F7...059",

"advertiser_id_collection_enabled": "1",

"anon_id": "XZ12...A065",

"application_tracking_enabled": "1",

TikTok

POST https://api16-normal-c-useast1a.tiktokv.com/api/ad/splash/musical_ly/v15

Request Params:

"idfa": "7F7...059"

Airbnb

POST https://api2.branch.io/v1/install

Request Params:

"hardware_id": "7F7...059",

"hardware_id_type": "idfa",

As can be seen, the ID is used across multiple different apps, which provides the basis
for tracking a user across all of these applications using this identifier. In the case of
TikTok, which is discussed at length later in this report, the IDFA is included as a
parameter in a large chunk of the app’s requests. This makes it even easier to attribute
all activity made by the user in TikTok to this ID. The ID does however refresh on a
regular basis, and while the exact interval was not determined it could be estimated to
be at least once weekly. Furthermore, by configuring the iPhone’s settings to disable
cross-app tracking, is is observed that this sets the IDFA to a sequence of zeroes
(0000-....-0000), by way of the /update endpoint hosted at iadsdk.apple.com.

POST https://iadsdk.apple.com/adserver/2.6/segment/update

Request Params:

...00000000-0000-0000-0000-000000000000...

After this connection, applications cannot use the IDFA to pull advertising information
from Apple servers. Unfortunately if they have already acquired that information, it is

34

entirely possible they can store it themselves.

d. App Store (iTunes)

Connections occur to App Store or iTunes related endpoints not only occur while using
the App Store, but also when the device is idle. It should be noted that the two services
(the App Store and iTunes) are often regarded as part of the same overall Apple service.
The first connection, listed below, clearly sends a lot of sensitive information about the
device in a connection appearing as being related to ‘checking the app download queue’.
Among the data sent, are the device serial number along with the UDID, along with
some other session & application identifiers.

POST https://p30-buy.itunes.apple.com/Web/.../inAppCheckDownloadQueue?guid={udid}

Request Body:

<dict>

<key>appAdamId</key>

<string>1505....357</string>

<key>appDsid</key>

<string>4qPdiWN....aMy8n6ug==</string>

<key>appExtVrsId</key>

<string>83...500</string>

<key>bid</key>

<string>in.nic.arogyaSetu</string>

<key>bvrs</key>

<string>16</string>

<key>guid</key>

<string>54b5......95ba</string>

<key>serialNumber</key>

<string>F4G.....C6H</string>

<key>vid</key>

<string>D8F4BD51-.....-.....AB0B-8B202E7B3682</string>

</dict>

The App Store retrieves information it needs like remaining device capacity and screen
type by way of the /xp_amp_appstore endpoint. The user’s DSID is also sent here. Of
course the App Store can use this to determine whether of not the user’s device is
capable of downloading new applications.

POST https://xp.apple.com/report/2/xp_amp_appstore

Request Body:

35

"capacityDataAvailable": "42800"

"capacityDisk": "61000",

"connection": "WiFi",

"dsId": "17...36",

e. Find my iPhone (FMIP)

The FMIP service is updated on the state of the device at it’s /register endpoint. In
terms of identification, the aforementioned aps_token is sent, along with UDID and
Serial number.

POST https://p33-fmf.icloud.com/fmipservice/fmf/{dsid}/{udid}/register

Request Body:

"aps-token": "403...A48",

"batteryLevel": 0.949999988079071,

"appleId": "tkelly2@tcd.ie

"batteryStatus": "NotCharging",

"buildVersion": "18A8395",

"deviceClass": "iPhone",

"deviceColor": "2",

"deviceName": "Thomas’s iPhone",

"serialNumber": "F4G...C6H",

"smlLS": true,

"supportsForceTouch": true,

"supportsNotifyV2": true,

"timezone": "Europe/Dublin",

"udid": "54b...5ba",

"Nfc": true

"passcodeConstraint": "simple",

"passcodeIsSet": false,

FMIP stores a variety of information about the iPhone, along with some information
that could be useful for recovering it in the case it is lost. The above connection is
witnessed regularly, at least multiple times per day, sending information like battery
level, device color and if the device has a passcode. All of this information is of course
useful in the case the device is lost or stolen.

36

f. Idle connections

A host of very interesting connections occur during the iPhone’s idle operation that are
not specifically related to any of the above headings. They are discussed in turn
below.

/dispatcher.arpc
Calls to the /dispatcher.arpc endpoint are witnessed regularly, observed at least several
times daily. They are identified with an identifier for the user in the request body
(080...D39), which is assumably attained in a previous interaction with this
server.

POST https://gsp-ssl.ls.apple.com/dispatcher.arpc

Request Body:

...

08064802-26C9-....-.....-0E32D39

..

Response Body:

...

A84 ...

8: Mill...

10: Deer...

11: 1...

12: 1... Deer...

17: Deer...

17: Mill...

...

9: apple

9: revgeo

9: IE

It may not be immediately evident from the response body, but an estimate of the
user’s address is returned here. Interestingly however, the estimate is slightly incorrect,
calculating the wrong house number in this case. This would indicate that the user
address has not been provided to this server by the user, but calculated in some manner
by the back-end. The response also mentions ‘revgeo’ in multiple places, which is often
used to refer to the concept of Reverse Geocoding. This is a technique used to acquire
address information such as street number or city district from a set of provided
coordinates. Apple offers an Objective-C class for this exact purpose, called CLGeocoder
(40). While this might explain how and what this interaction with the /dispatcher.arpc
endpoint is doing, as for exactly why it is happening, only Apple knows.

37

/grandslam
Another interesting Apple connection is observed in the occurrence of the ‘grandslam’
connection, which sends sensitive device information like IMEI and MEID identifiers,
which are hardware identifiers unique to the device. The response contains a ‘liveness’
key which is valued at 8,6400,000. If this is assumed to be milliseconds, corresponds to
24 hours, which might indicate the occurrence of this connection every 24 hours -
however this could not be verified. The request also denotes other information like if the
phone is using a sim card. The key-value pair labelled ‘pktn’ in the request body is the
same value as the previously witnessed ‘aps_token’. With all of this in mind, it is
evident that the ‘grandslam’ connection appears to be a large dump of sensitive
identifiers to this gsas.apple.com server. The purpose of this update is not discernable
from the data.

POST https://gsas.apple.com/grandslam/GsService/postdata

Request Header:

"x-mme-device-id": "54b...5ba" // UDID

"x-apple-I-srl-no": "F4G...C6H", // Serial Number

"X-Apple-I-MD-M": ...

"X-Apple-I-MD": ...

Request Body:

<key>imei</key>

<string>356.......03</string>

<key>meid</key>

<string>35......20</string>

<key>inUse</key>

<integer>0</integer>

...

<key>physicalSim</key>

<true/>

<key>slotID</key>

<integer>1</integer>

<key>ptkn</key>

<string>403......A48</string>

/pbcwloc
Drawing attention to another miscellaneous Apple connection, traffic to /pbcwloc
appears to be quite rare. Decoding the request body using a decoding script add-on for
mitmproxy (Appendix A), the contents can be revealed to send a list of MAC
addresses.

38

POST https://gsp10-ssl.apple.com/hcy/pbcwloc

Request Body:

...

2c:91:ab:4c:..:..

...

16:0a:c5:b5..:..

...

76:a7:ea:0b:..:..

...

Further investigating the nature of these MAC addresses, the arp -a command can be
used to view IP and MAC addresses of other devices connected to the local network
being used. After cross-examining some of these IP addresses with the ones sent in the
above connection, it could be argued the function of this endpoint is to gather the MAC
addresses of devices connected to the same network as the iPhone, allowing the server
to build a social graph of these devices. It is important to point out that MAC address
is considered personal data by the GDPR, as it can be used to identify a person when
combined with other data.

$ arp -a

fritz.box ... at 2c:81:ab:4c:..:.. on en0 ifscope ...

amazon ... at 14:a:c5:b5:..:.. on en0 ifscope ...

amazon ... at 74:a7:ea:b:..:.. on en0 ifscope ...

...

These locally observed MAC addresses can be matched with those sent in the body of
the above connection. Some small discrepancy is noted between some of the values of
the MAC addresses, however this is assumed as being down to variations in how the
content is encrypted by the device or decrypted in the analysis process. Nonetheless,
the need for collection of such data is undoubtedly questionable.

g. Maximising Privacy

As initially specified in the device configuration (section 2.1), the iPhone was initially
set up to allow optional tracking behaviour. This section aims to quickly explore the
question, ‘How privately can an iPhone be used?’. Settings were configured as
designated below.

While this configuration denies the user a lot of the services that make iPhones unique,
it outlines the most ‘private’ way to use the device. Internet traffic is greatly reduced
when such an effort is made.

Some of the connections witnessed upon disabling or signing out from the above

39

Setting Configuration
Network Connection WiFi

Location Disabled
Cross-app Tracking Disabled

Analytics Disabled
Apple Advertising Disabled

iCloud Signed-out
Sim Card None

Table 4.1: Summary of device settings

services are displayed below.

Ad Tracking

POST https://iadsdk/adserver/2.6/optout/optout_optin

Request Body: {encoded}

POST https://iadsdk/adserver/2.6/segment/update

Request Headers:

limitAdTracking: true

After this exchange, no further interactions with the ad server have been observed, and
the previously discussed idfa value is set to a string of zeroes.

Signing out of iCloud and FMIP
While signing out of iCloud in the device settings, the following connections are
spawned. Firstly, a POST request to the /grandslam endpoint sends a collection of
sensitive IDs, including the DSID which is denoted as ‘X-Apple-I-RINFO in the first
connection below. Other identifiers sent include UDID, Serial number and aps_token
(ptkn).

POST https://gsa.apple.com/grandslam/GsService2

Request Body:

<key>X-Apple-I-MD</key>

<string>AAAABQA...VAAAAAw==</string>

<key>X-Apple-I-MD-M</key>

<string>GHYBKVIm...+fxCEfcDvl6o2</string>

<key>X-Apple-I-MD-RINFO</key>

<string>17...76</string>

<key>X-Apple-I-Request-UUID</key>

<string>FA0924......D7EA033</string>

<key>X-Apple-I-SRL-NO</key>

<string>F4...6H</string>

40

<key>X-Apple-Password-Only</key>

<true/>

<key>X-Mme-Device-Id</key>

<string>54b5...95ba</string>

<key>ptkn</key>

<string>403...A48</string>

The iPhone deregisters from the iCloud services in a flurry of several connections to
different Apple services, listed in Appendix D. They once again send a variety of
sensitive identifiers to endpoints like ‘/deregisterDevice. The following connection logs
the user out of FMIP’s service.

POST https://buy.itunes.apple.com/WebObjects/MZFinance.woa/wa/logout

Request Headers:

X-apple-i-md-d: GH...6o2

X-apple-i-md: AAA..w==

Request Body:

udid: 54b....95ba

imei: 356...203

meid: 356...20

serialNumber: F4G...H

After the appropriate settings are disabled and iCloud finishes its deregistration
procedures, a great reduction in the device traffic is witnessed. A vast majority of the
connections discussed in the previous sections do not occur under these settings,
however the functionality of the device is greatly hindered. For example, without signing
in through your iCloud/Apple account, apps cannot be downloaded from the app store,
neither can any other iCloud functionality such as iCloud Drive (Files app) or Mail can
be used. While a reduction in traffic was witnessed, more extensive analysis would need
to be conducted to examine any further interaction with Apple servers.

h. Observations

The nature of the connections to a wide range of different Apple services means that
most of the sensitive identifiers outlined at the start of this section (4.1.a) can be linked
to one another across different services. In a more idyllic approach, each of these
services would use specific identifiers which refresh after a given time period, lowering
the chances of a user’s identifiers being hijacked in a security breach. This
implementation would however be quite costly and require more resources to store data
for different services. In the case of some requests, it is entirely unavoidable to use a
unique device identifier like UDID to ensure the user’s identity, however inclusion of two

41

sensitive IDs, as UDID and serial number are often witnessed in company appears
unnecessary. Furthermore, the constant updates of these sensitive identifiers appear
unnecessary when they could just be stored securely on Apple servers - which they are
likely already.

The purpose of some of the connections discussed above might also prompt questions as
to their necessity. Examples of such connections might be that of the /pbcwloc endpoint
(subsection 4.1.f). This connection allows the server to build a social graph of MAC
addresses on the same network as the iPhone in question, which does not seem
necessary at all for an iPhone’s normal operation. As a further example, the dump of
information carried out by the ‘grandslam’ endpoint begs the question as to why this
needs to happen regularly.

While its purpose is obvious, the usage of the advertising identifier IDFA is not ideal, in
the sense that multiple applications have access to it and can use it how they please. As
was shown, the presence of this identifier in the requests of multiple different
applications means it provides the basis whereby the user’s behaviour can be linked on
these different platforms. A more ideal approach might include storing a different IDFA
for different applications, to eliminate the basis for cross app tracking using this
identifier.

As discussed in the previous section, iPhone’s do provide a variety of settings to allow
the user to decrease their digital fingerprint when using their device. Settings such as
configuration of analytics, ad tracking and location allow the user to control their
preferences in terms of their privacy to a large extent, although not entirely removing
tracking. In the case a user wants to minimise their online presence, Apple does make it
possible to limit collection of data, leaving the user with functionality to make calls and
SMS messaging. This however greatly limits services which make use of a smartphone
like this worthwhile.

4.2 COVID Tracker Ireland

COVID Tracker Ireland is the Irish health service (HSE) contact-tracing app for
COVID-19. It was first rolled out in June 2020 to combat the spread of the virus, and
garnered roughly 2.4 million users as of February 2021.

a. Interactions with the app

The interactions taken with the app which produced the observed internet traffic are
firstly outlined. After installing, the app was opened and a privacy information section
is displayed to the user. Continuing through this, consent can be given to allow the

42

collection of app metrics, which are used to improve the app. At this point, the user is
asked if they would like to enable contact tracing, turning on Bluetooth and enabling
the Exposure Notification Service (ENS). With app metrics and ENS approved, the user
is asked for their phone number. This is optional, although for the purposes of this
work all optional functions were given consent and a phone number was provided. It
was verified that changing stance on app metrics consent results in the expected
behaviour of stopping the app recording metrics.

In the app, statistics relating to COVID-19 can be observed in the ‘Updates’ section,
where data is pulled from back-end servers and displayed. The ‘Check-In’ functionality
was also tested, whereby the user can specify some vague information about themselves
(Gender, age-range, county and locality) and specify whether they are experiencing
symptoms or not. The following sections expand on the internet traffic generated by
such actions within this app.

b. Registration

Two connections are observed in the registration process for the app. The client firstly
calls the /api/register endpoint with a POST request. This endpoint returns a nonce
identifier, which is a token that is typically used once for registration and then
discarded. The subsequent connection uses a PUT request to the same endpoint, using
the acquired nonce token along with a ‘deviceVerificationPayload’ to uniquely identify
the user for the back-end. The endpoint then returns a JWT token that lasts 12 hours
which can be refreshed with a ‘refreshToken’. This token acts as a unique identifier for
the user while it is in use.

POST https://app.covidtracker.ie/api/register

Response Body:

"nonce": "5229...0817"

PUT https://app.covidtracker.ie/api/register

Request Body:

"deviceVerificationPayload": "AgAAA...0qT",

"nonce": "5229...0817",

Response Body:

"refreshToken": "eyJh...GdI",

"token": "eyJh...Uz5C4",

Looking more specifically at the ‘deviceVerificationPayload’ parameter, it is generated
through use of an external library called react-native-ios11-devicecheck (11). This
library is interfaced with using React (JavaScript code) and executes Objective-C

43

functions to generate the ephemeral token to verify the device. The library uses the
method generateTokenWithCompletion from the iOS system DCDevice (13) class to do
this, which can be noted in the libraries’ source code (14). After being sent as part of
the PUT request to the /register endpoint, the deviceVerificationPayload is
subsequently sent onwards to an Apple endpoint
"http://api.devicecheck.apple.com/v1/validate_device_token" (15), where it can be
assumed that some checks occur to verify the device as a legitimate iOS device. This
identifier is not processed any further by the COVID Tracker app’s back-end, and does
not appear to encode any sensitive information.

Following registration, the app has now acquired a token which it can use to
authenticate its requests to the back-end, along with a refreshToken which is used to
acquire a new token after expiry. These tokens are encoded as JSON Web Tokens
(JWT), specified as a ‘URL-safe means of representing claims to be transferred between
two parties’ in RFC 7519 (16). Decoding these tokens using the jwt.io online tool (17),
their contents can be observed;

• token

{

"id": "5cdf3203-e9be-....-....-ac05ca98831c",

"iat": 1605606510, (17th Nov 2020, 09:48)

"exp": 1605692910, (18th Nov 2020, 09:48)

"aud": "com.hse.ftapp",

"iss": "com.hse.ftapp"

}

• refreshToken

{

"id": "5cdf3203-e9be-....-....-ac05ca98831c",

"refresh": "0dfb4843b3ad889b574364.....9fd909ab8663b1df39fe3682f66f94",

"iat": 1605606510, (17th Nov 2020, 09:48)

"exp": 1921182510, (17th Nov 2030, 21:48)

"aud": "com.hse.ftapp",

"iss": "com.hse.ftapp"

}

As can be seen here, the tokens encode an ‘id’ for the user, which is a UUID (Unique
User ID) given to the user by the server, which was verified not to persist across
different installations of the app. Since the acquired token is used for authorisation in
the header of the following app’s API requests, these requests can be linked together.

44

Concerns around user privacy can arise here as the tokens can theoretically be used to
link the identity of the user with his or her real world identity, by way of their phone
number or IP address, as discussed in section 2.3 above. This is made possible because
all requests to the back-end are linked together by the authorisation token, including
the initial registration where the users phone number can be collected. Inspecting the
source code (12), it can be observed that the refreshToken is used to set a new token
each time one expires, which is every 24 hours. The refreshToken itself however is
refreshed only every 10 years, and therefore establishes a link between the different
tokens used in requests during that period. Notice that all requests listed use the same
authorisation header value, which is the user’s token.

Aside from phone number, the only other sensitive information obtainable by the app’s
back-end would be IP address or a device identifier. However the disclosure of personal
information is made optional and the app’s privacy policy (31) does state that the
user’s IP address is ‘stripped at the server network layer on routing of the traffic to the
application layer’. This would ensure the user cannot be identified by way of their IP
address by the back-end servers. Regarding security tokens, they are deleted from the
app upon signing out or deleting the app. They are however retained on the back-end
for 60 days of inactivity before deleting. While this ‘token-linking’ does occur, the app
makes several efforts to limit its threat to the user’s privacy.

c. General Usage

Provided the user agrees, the /metrics API endpoint caters to the collection of usage
metrics.

POST https://app.covidtracker.ie/api/metrics

Request Headers:

"authorisation": "Bearer eyJ...2pg",

Response Body:

{ "event": "TOKEN_RENEWAL",

"os": "ios",

"payload": "",

"version": "1.0.4.95" }

The various metrics, taken from the source code are as follows;

export enum METRIC_TYPES {

CHECK_IN = "CHECK_IN",

FORGET = "FORGET",

45

TOKEN_RENEWAL = "TOKEN_RENEWAL",

CALLBACK_OPTIN = "CALLBACK_OPTIN",

LOG_ERROR = "LOG_ERROR"

}

Each request to the /metrics endpoint notes the occurrence of one of the above events.
This monitoring however can be refused by the user upon registration. The rest of the
metric updates include information as follows;

• CHECK_IN

Signals when a user executes the ‘Check-In’ function on the app - which involves
entering whether or not they have any symptoms.

{ "event": "CHECK_IN",

"os": "ios",

"payload": "",

"version": "1.0.4.95" }

• FORGET

Occurs when the user leaves or deletes the app.

{ "event": "FORGET" ... }

• CALLBACK_OPTIN

If the user enters their phone number this event is logged as having occurred. It denotes
whether or not the user has opted to be called back if they get marked as a close
contact.

{ "event": "CALLBACK_OPTIN" ... }

• LOG_ERROR

This logs any type of error that might occur in the app and a description of the error.
For example, an error might occur loading stats, checking-in, or uploading exposure
keys;

{ "event": "LOG_ERROR" ... }

Coronavirus infection statistics for Ireland are acquired with a GET request to the
/stats endpoint.

GET https://app.covidtracker.ie/api/stats

Request Headers:

"authorisation": "Bearer eyJ...2pg",

46

Response Body:

"stats": [(covid stats)]

Figure 4.3: COVID Tracker App display of infection statistics.

Regarding the check-in function of the app, the user can enter some vague information
about themselves and whether or not they have any symptoms of COVID-19. This
function is of course optional.

POST https://app.covidtracker.ie/api/checkin

Request Headers:

authorisation: "Bearer eyJ...2pg",

Request Body:

"ageRange": "16-39",

"data": [{ no symptoms }],

"locality": "Meath, ...",

"sex": "m,

"Ok": true,

Published keys of infected people are retrieved with a call to the /exposures endpoint.

47

The response returns a JSON object which denotes the path to different .zip files. The
number observed in the path is a unix timestamp for the date and time the exposure
update is retrieved.

GET https://app.covidtracker.ie/api/exposures?limit=6?since=12087

Request Headers:

authorisation: "Bearer eyJ...2pg",

Request Parameters:

limit: 6

since: 12087, (1970)

Response Body:

[

{

"id": 12102,

"path": "exposures/ie/1605952804798.zip"

},

{

"id": 12117,

"path": "exposures/ie/1605960005447.zip"

}

]

The next connections retrieve the .zip files designated in the previous response. These
files contain the diagnosis keys which are the keys randomly generated and uploaded by
other user’s devices who have tested positive. The app can then use the retrieved
diagnosis keys to check against the keys of devices it has come within close contact of,
therefore determining if the user is a close contact of someone who has COVID-19.

GET https://app.covidtracker.ie/api/data/exposures/ie/1605960005447.zip

Request Headers:

authorisation: "Bearer eyJ...2pg",

Response: 1605960005447.zip

The below connection is dispatched to retrieve a new token after its expiry date is
reached. The refreshToken is used to authenticate this request.

POST https://app.covidtracker.ie/api/refresh

Request Headers:

"authorisation": "Bearer eyJh...GdI", (refreshToken),

48

Response Body:

"token": "eyJ...6og", (new token)

d. Observations

User privacy is well respected in the Irish COVID app and measures are taken to
protect user identities. All personal information required by the app is completely
optional, including age, location and phone number. User data such as location and age
are kept vague, through specification of an age-range and general locality, as opposed to
a date of birth and exact GPS location. The metrics collected by the app are also not
invasive, containing no sensitive information about the user and are disclosed fully in
the app’s privacy policy. The app’s privacy policy also states that the user’s IP address
is stripped out at the network level of communication, and is not processed by the
server’s application level. While it is technically still attainable by the back-end servers,
the policy assures that IP addresses will not be processed by the back-end. Regarding
contact tracing functionality, the app uses Apple & Google’s ENS, which ensures its
user’s identity cannot be identified in the event of a positive test result. Since this could
not be tested without achieving a positive code test result, this functionality remained
unexplored. There may be a debate to be had around how these measures affect the
effectiveness of the contact-tracing app, however that is not relevant to the topic of this
work.

In the interest of complete user privacy, concern must be drawn to the concept of token
linking. Since the aforementioned refreshToken persists for 10 years, and is used to
attain a new access token every 24 hours, all requests made to the app’s backend can be
theoretically linked together by the refreshToken, while requests within 24 hour periods
are identified by the token. Due to the fact the user’s IP address is stripped as
previously mentioned, it cannot be used alongside the linked requests to track user
location over time. Despite these measures, in the interest of ultimate user privacy, it is
unnecessary to link requests together in this manner, and ideally could be avoided.

4.3 Aarogya Setu

Aarogya Setu is India’s implementation of a contact-tracing app. While similar in its
goals to COVID Tracker Ireland, it differs in both its methodology and concern for it’s
user’s privacy. A particularly relevant point in the case of this app is the nature of the
Indian Government’s requirement for mandatory usage of the app (70) in May 2020.
The Government has since backed-down on this policy, with only 83 million of 500
million Indian smartphone users downloading the app.

49

a. Interactions

Through the registration process of the app, consent was given the access location and
Bluetooth data, alongside approval of the app’s privacy policy. A One Time Passcode
(OTP) is then used as verification to authenticate the user by way of an SMS message
to their phone number. This was required to be an Indian phone number, and thus a
temporary phone number site (20) was used in place of a real Indian phone. Upon
successfully bypassing the OTP verification by submitting a temporary Indian phone
number, entry was gained to the application.

The basic functionality of the app was tested similarly to the Irish implementation, this
included updating statistics, checking-in with symptoms, and checking recent contacts.
The app displays statistics for different regions in India as shown in figure 4.4.

Figure 4.4: Aarogya Setu display of infection statistics.

The self assessment or check-in functionality was also tested multiple times. Self
assessment results in a different color-coded response based on the COVID symptoms
experienced by the user. A code green means the user is unlikely to be infected with
COVID-19, while yellow and orange codes indicate there is moderate and high risks of
infection respectively. In the case of the latter codes, or a positive test result, the user

50

will be prompted to upload their location and Bluetooth data. The user can also
optionally - at any time - share their data with the government of India. Another
function offered by the app is to view other app users within a set proximity. The app
will then indicate whether or not the user has come within Bluetooth contact of any
other users who tested positive, and if any those users feel unwell.

The registration process of the app firstly involves some configuration and retrieval of
identifiers for interaction with Google’s Firebase service (18). In this case, it is mainly
used for analytics and logging purposes although Firebase offers many other
functions.

b. Google Firebase connections

i | Registration
Upon initially opening the app after after installation, some connections occur related
to configuration for a host related to device provisioning. The connection acquires an
android_id and security_token that the device uses in some following requests to
google services. These values are confirmed not to persist across different installations
of the app, and are therefore app instance identifiers, along with other values in the
response (shown below) like the digest.

POST https://device-provisioning.googleapis.com/checkin

Request Body:

"model": "iPhone10,

"os_version": IOS_14.1",

"locale": "en_IE",

"time_zone": "Europe/Dublin"

Response Body:

"android_id": 55252......18528000,

"device_data_version_info": "ABF...YPbw",

"digest": "MH....Q==",

"security_token": 6120.....277,

"user_serial_number": 0,

The next connection observed is to the /installations endpoint, which returns the token
necessary to authenticate the app’s connections to Firebase. The identifier labelled ‘fid’
in these connections is referred to in Google Firebase documentation as Firebase
installation ID (FID) (32). Due to the fact the FID is used to retrieve a new token,
every request to refresh the JWT is linked together by the FID value, which is an app
instance identifier. It does not appear to be refreshed for the duration of the app’s

51

current instance, only changing if the app is deleted and reinstalled.

POST https://firebaseinstallations.googleapis.com/v1/projects/.../installations

Request Body:

"appId": "1:6453....56042:ios:8ac8fed...2bf8c29cfe73",

"authVersion": "FIS_v2",

"fid": "eZK_QXxV1...kaMS0cL_H",

"sdkVersion": "i:1.1.0"

Response Body:

"authToken": {

"expiresIn": "604800s",

"token": "eyJh...6og",

}

"fid": "eZK_QXxV1....kaMS0cL_H",

"name": "projects/6425235/installations/eZk_QXx...cL_H",

"refreshToken": "2_b_Dl...Ne2",

The JWT token returned by the request is decoded and shown to contain the FID
along with two other identifiers for the Aarogya Setu ap (projectNumber & appId).

{

"fid": "eZK_QXx...6mkaMS0cL_H",

"projectNumber": 6453...6042,

"exp": 1613133295,

"appId": "1:645...756042:ios:8ac8f...f8c29cfe73"

}

The projectNumber & appId identifiers are used to identify the Aarogya Setu
application to Firebase, and are therefore persistent although not sensitive.

The final connection regarding registration for Google Firebase is shown below, which is
a connection to register the user with the ‘fcmtoken’ Google API. In the authorisation
header of this connection, the aforementioned android_id and security_token identifiers
are used to verify the user’s identity. The JWT returned from /installations above is
also used as the x-goog-firebase-installations-auth header ("eyJh...6og").

POST https://fcmtoken.googleapis.com/register

Request Headers:

"authorisation": "AidLogin 5525257...28000:6120...42277"

"x-goog-firebase-installations-auth": "eyJh...6og",

Response Body:

"token": "eZK_..._CGa"

52

ii | General Usage
The below connection sends FID along with an app identifier and DID (discussed later)
to identify itself along with some other information about the device like country code
and platform version. The response contains some configuration settings information for
the app, which includes ‘launch_count_for_rating’ - i.e. after how many launches will
the app ask the user for a rating, among others.

POST https://firebaseremoteconfig.googleapis.com/.../firebase:fetch?key=AIz...YFU

Request Body:

"app_instance_id": "eZK_...._H"

"app_id": "1:645345756042:ios:8ac8fed9ca2bf8c29cfe73"

"country_code": "ie",

"language_code": "en",

"Platform_version": "14.1"

Response Body:

{

"appName": "in.nic.arogyaSetu",

"entries": {

"blur_location_meter_ios": "0",

"exclude_battery_check_enabled": "true",

"launch_count_for_rating": "20",

"scan_poll_time_android": "60",

"scan_poll_time_ios": "30"

},

"state": "UPDATE"

}

After registration, a frequent connection observed is to the app-measurement.com/a
endpoint, which sends metrics and usage information. The data is encoded in a protocol
buffer (19) and contains timestamps of what screen controllers are used at certain
times. This could be observed as monitoring what parts of the app the user is utilising,
and how long they spend using them.

POST https://app-measurement.com/a

Request Body:

{

1 {

1: _si

3: 25058604070285130

}

1 {

53

1: _sc

2: Aarogya_Setu.HomeScreenViewController

}

1 {

1: _sn

2: webviewScreen

}

1 {

1: _o

2: auto

}

2: _ab

3: 1608231964039 (December 17, 19:06)

4: 1608229233465 (December 17, 18:20)

}

c. Aarogya Setu connections

i | Registration
During the registration process the app requires an OTP for verification which is sent to
the user’s phone number. As mentioned, an Indian phone number was acquired through
use of a temporary phone number website, as phone numbers outside India were unable
to receive the OTP code. The connections below show the OTP verification process,
noting that the user’s phone number is sent, alongside an identifier labelled ‘pt’, which
is a unique identifier which will be examined in more detail later.

POST https://fp.swaraksha.gov.in.com/generateOTP

Request Body:

"primaryId" : "+917.....963"

Response:

"message": "OTP sent"

POST https://fp.swaraksha.gov.in.com/validateOTP

Request Headers:

"pt": "fc643....98f"

Request Body:

"primaryId": "+917.....963"

"passcode": "278123"

Response:

54

"auth_token": "eyJ....XOBo"

"refreshToken": "eyJ....cq3U"

Having successfully passed the OTP verification, the device now has an auth_token it
can use to authenticate subsequent requests to the app’s servers. The JWT is shown in
its decoded state below, encapsulating the user’s phone number and ‘username’ value
which is a unique identifier for the user for their current instance of the app. It does not
however persist across different installations.

• auth_token

{

"exp": 1612614989, (→ 6th Feb, 12:36)

"iat": 1612528589, (→ 5th Feb, 12:36)

"sub": "+9174...963",

"username": "25a...277"

}

• refresh_token

{

"exp": 1613824589, (→ 20th Feb, 12:36)

"iat": 1612528589, (→ 5th Feb, 12:36)

"sub": "+9174...963",

"username": "25a...277"

}

The refresh_token expires after a 15 day period, within which it is used to acquire new
auth_token’s. This allows linking together of requests made within this period.
However, even requests across 15 day periods can be linked due to the inclusion of the
user’s phone number encoded in both auth_token and refresh_tokens. This can be used
to link requests together, but is also personal information that theoretically could be
used to track the user and reveal their identity, as has been discussed in previous
sections. Another interesting observation is that the ‘pt’ identifier witnessed in these
connections actually persists across different installations of the app, even several weeks
apart. This would mean the identifier is either unique to the iOS device being used, or
is simply an identifier assigned to all iOS users of the app. Examining the source code
(33), this value is revealed as being a platformToken, which is specified in the
keystore.properties file in the application. The source code readme.md file denotes that
this ‘can be any UUID (unique user identifier)’ and therefore its nature and what
information it might contain is unclear. In the case it is an identifier unique to the user
as the readme.md outlines, it would serve to link all of the user’s requests together,

55

which really defeats the point of using refresh tokens.

The user is registered as of the below connection, identified by the pt identifier and
auth_token which stores their phone number and temporary username. This JWT
(‘eyJ...XOBo’) which was received earlier from the /validateOtp endpoint performs the
authorisation for all requests made to the app’s back-end. The ft identifier is also sent,
which is the token received from Firebase registration. While denoted with ft in the
below connection, the same value is referred to as FID in the Firebase connections. The
endpoint returns a ‘DID’.

POST https://fp.swaraksha.gov.in.com/api/v1/users/register

Request Headers:

"pt": "fc643...98f"

"authorisation": "eyJ...XOBo"

Request Body:

"ft" : "ezK...CGa"

"is_bl_allowed": true,

"is_bl_on": false,

"is_loc_allowed": true,

"is_loc_on": true,

"n": "iOS User"

Response Body:

"did": "ac...7"

The DID value observed here is an identifier which is later seen to be uploaded along
with the user’s Bluetooth scans and GPS location. It is a unique identifier for the user
for their current instance of the app, however it refreshes after a new installation of the
app. The app’s Privacy Policy (34) states that ‘the DiD will thereafter be used to
identify you in all subsequent App related transactions and will be associated with any
data or information uploaded from the App to the Server’.

ii | General Usage
The /users/fcm endpoint appears to cater to the updating of the FID on Aarogya Setu
servers. With the occurrence of this connection, Aarogya Setu’s back-end can now
identify what information Firebase stores on the user.

POST https://fp.swaraksha.gov.in.com/api/v1/users/fcm

Request Headers:

"authorisation": "eyJ...XOBo",

56

"pt": "fc643....98f"

Request Body:

"ft" : "eZK_..._H",

Response Body:

"did" : "acd...7",

A status update for the user is acquired by the app through the /users/status endpoint.
This informs the user of their health risks based on their symptoms, or if anyone in
their proximity has tested positive for COVID-19. It also indicates whether or not you
should quarantine, along with some other configuration options. The ‘color’ field
returned here designates the user’s COVID-19 risk level, which ranges in order of
increasing risk through green, yellow & orange. The endpoint also returns a ‘p’ field,
which is found to be representative of whether or not the user’s GPS and Bluetooth
data should be uploaded silently within the app based on their risk level. This is
discussed in more detail later in this report.

POST https://fp.swaraksha.gov.in.com/api/v1/users/status

Request Headers:

"authorisation": "eyJ...XOBo",

"pt": "fc643...98f"

Response Body:

{

"did": "ac...7",

"full_upload": "0",

"meta": {

"color": "green",

"radius": 0,

"target": "https://web.swaraksha.gov.in/ncv19/"

},

"p": 0,

"proximity": 0,

"s": "healthy",

"self_assess_popup": 0,

"self_assessment_status": "great",

"show_form": false,

"show_link": false,

...

}

57

The app attains information about other users of the app within a specified radius
through the following connection. Exact coordinates of the requesting device are
specified. The response contains information about nearby users like if they are unwell,
infected or have carried out self-assessments.

POST https://webapi.swaraksha.gov.in/ncv19/nearby-stats/?dist=1km

Request Headers:

"authorisation": "eyJ...XOBo",

"pt": "fc643...98f"

"Lat": 53... // latitude

"Lon": -6... // longitude

Response Body:

{

"bluetoothPositive": 0,

"infected": 0,

"selfAsses": 0,

"success": true,

"unwell": 0,

"usersNearBy": 1

}

The self-assessment functionality is regarded as optional but is strongly encouraged at
multiple points during the app’s normal functioning. It sends symptom data and GPS
coordinates.

POST https://fp.swaraksha.gov.in.com/api/v1/user/chat/data/

Request Headers:

"pt": "fc643...98f"

"auth_token": "eyJ...X0Bo"

Request Body:

{

"confirm": "Ok",

"lat": "53.....",

"lon": "-6......",

"status": "eligible",

"symptom_past": "Lung disease, Hypertension, Diabetes, Heart Disease",

"symptom_past_travel_social": "Travelled internationally in the last 14 days",

"symptoms": "Difficulty in Breathing"

}

58

The user is able to share their exact GPS location & Bluetooth scan data with the
app’s authority, which is the Government of India. They can do this willingly at any
point while using the app, and will also be prompted to do so after taking a self
assessment that indicates high likelihood of having Coronavirus. In any case, the data is
sent to the endpoint as follows;

POST https://fp.swaraksha.gov.in.com/api/v3/users/data/

Request Headers:

"pt": "fc643...98f"

"auth_token": "eyJ...X0Bo"

Request Body:

\x1f\x8b\x08\x00\x00\x0\.........dcF\x01\x00\x00

The content of the request body is encoded as a protobuf, and can be decoded with use
of a python script (see Appendix A) developed to be used as an addon for mitmproxy.
The script returns the request body contents below.

{

"m": "",

"d": "ac....7e7", // DID

"upload_type": "tested_positive_consent",

"data": [

{

"l": {

"lat": 53,.....

"lon": -6......

},

"ts": "1612528589",

"dl": []

},

...

{

"l": {

"lat": 53.......

"lon": -6.....

},

"ts": "1612528589",

"dl": []

}

]

}

59

When decoded, it is clear the data contains time-stamped exact GPS coordinates of the
subject device. In the case Bluetooth close-contacts are detected, they are also sent
here. This information can be collected by the app in three cases, which are all outlined
in its privacy policy. The first case, is in which the user tests positive for COVID-19.
The second, occurs when the user completes a self assessment that indicates them as
being likely to have COVID-19. They will be prompted to upload this information, but
are however afforded the option to ‘do this later’. The third is whereby the user’s
color-coded risk status is set to yellow or orange, indicating moderate or high risk of
contracting the virus, based on contacts or assessment. In this last case, if the user had
not read the privacy policy, they would have no idea the app is tracking them in
real-time as the app gives no clear indication of the occurrence of this upload.

The capability that allows this can be observed in the source code for the iOS app (21),
where checks occur for the connection response key p and if it equals ‘1’. If this is the
case a function called uploadBluetoothScans() is called, which does as its name might
suggest, alongisde uploading time-stamped GPS coordinates. This p field was
mentioned before under the /users/status endpoint, as that is where it is acquired by
the app from the back-end. Investigating this finding further, the response from this
endpoint was intercepted making use of mitmproxy ’s capabilities to intercept and
modify connection’s requests and responses (22). The p field returned by the /status
endpoint was modified to be ‘1’ along with setting risk level to ‘yellow’. Subsequently,
the user’s Bluetooth and GPS data is uploaded to the above endpoint, although there is
no indication of this within the app.

d. Observations

When compared with the Irish COVID Tracker app, Aarogya Setu undoubtedly
employs some approaches that could be deemed more unnecessary and invasive in terms
of user privacy. Before the user has even passed OTP verification, traffic occurs setting
the user up with Google’s Firebase service. The simple fact that a third party service is
used - while convenient for development - is not ideal. While there is nothing inherently
wrong about this, it is always optimal to store a minimum amount of user data, in as
little places as is possible. Furthermore, the app is not transparent about its use of this
third party service - with no mention in its privacy policy - although this service does
not collect any sensitive information. The app uses a variety of tokens to identify the
user, which are outlined below.

• DiD - ‘Unique digital ID’ - Used to identify the user, and is sent with any data or
information uploaded from the app to servers

• auth_token - A JWT used to authenticate the user with the app’s back-end. This

60

token refreshes every 24hrs, and when decoded reveals the user’s phone number
and username identifier. New auth_token’s are retrieved with the refresh_token.

• platformToken (‘pt’) - An identifier sent in almost every connection to the
back-end. It persists across different installations of the app, which, if unique links
all requests together.

• Phone number - The user’s phone number, sent to servers during OTP verification
and subsequently encoded in every authentication token used by the app.

• refresh_token - Used to acquire a new auth_token. The refresh token itself
expires every 15 days

• username - UUID encoded in the auth_token

These tokens are used in important connections in different combinations. As
previously discussed, this provides ample opportunity for linking of the app’s requests
to the back-end servers. Sensitive information like the user’s phone number is encoded
in the auth and refresh tokens, which easily allows for hypothetical real-time tracking of
the user, as has been previously mentioned. Furthermore, the ‘pt’ or platformToken is
used very consistently in connections, which the project’s Readme.md states is a UUID
although this could not be verified. This simply provides an extra unnecessary medium
whereby the app’s requests can be linked, and ideally would be avoided. The encoding
of extra information like phone number in the JWTs could also surely be entirely
avoided. While the DID is a useful identifier for the user’s account, its usage could also
be avoided by using one single identifier that could be encoded in the authorisation
token, which is the approach taken by COVID Tracker Ireland.

In terms of the app’s strategy for contact tracing, it uses exact GPS coordinates of the
user. When compared with other contact tracing apps like Singapore’s TraceTogether
(35) or indeed the Irish contact-tracing app, this seems excessive. In the case of these
applications, they use Bluetooth scanning to trace the spread of the virus between
phone users, surmising that exact GPS location traces are not necessary for tracking the
spread of infections. This approach to contact-tracing is much more respectful of user’s
privacy, and there is no evidence that it is less effective. Collecting GPS data here could
be deemed excessive and unnecessary, with less accurate location readings serving
perfectly well for collecting location-based COVID-19 statistics.

A more interesting finding of this work is that of the ‘silent’ uploading of user data
based on their risk level. As discussed, this was revealed through examination of the
source code, where code enabling the back-end to change the user’s status of consenting
to uploading Bluetooth scans. The capability was verified as previously stated, through
modification of a server response which enabled the functionality. While the privacy

61

policy states that this does occur - and explicitly states that this will not occur if the
user’s risk level is ‘green’ - there is little indication to the user within the app that their
location is being tracked in real time while their risk status is maintained at this level.
In this manner, the app is tracking where the user is and at what time. When they are
assigned a moderate (or high) risk level through close contact or self-assessment, all of
this data is uploaded to the server without any obvious indication within the app.

Further examples of contrast with the Irish COVID Tracker app can be witnessed by
simply comparing their privacy policies and handling of user data. It is clear from the
privacy policy of the Irish COVID Tracker that user privacy is a core concern and
consideration of the developers and steps have been taken to ensure best practices are
adhered to. As it is recognised as sensitive information, the Irish COVID Tracker ’s
back-end strips the user’s IP address at a network level, in an attempt to assure the
user’s privacy in this regard. The app also keeps vague information about the user. No
such effort is made, nor are any other extra measures taken to obfuscate user data in
Aarogya Setu, aside from the uploading of GPS and Bluetooth data.

4.4 Airbnb

Airbnb is an app which allows users to search and book travel accommodation. For this
study, the app was simply signed-in, and some search & exploration functionality was
tested, which are the core functions of the app and provide interesting topics for
discussion. Other functions offered by the app include booking accommodation and
communication with hosts, however these are not discussed as nothing immediately
interesting was found to occur in those contexts.

a. Registration

After installation, the app attains some configuration information for the device such as
currency and language settings. The request is authenticated with the x-airbnb-api-key
and x-airbnb-device-id identifiers, which are persistent across different installations of
the app. While the x-airbnb-api-key may be the same for ever user, the
x-airbnb-device-id based on its name is assumed to be derived from device identifiers
somehow. It is also important to note that this identifier persists even when signed-in
with different accounts. Therefore, requests made to Airbnb services across different
accounts are linked together by this x-airbnb-device-id, as it is regularly included as a
header in request to Airbnb servers.

POST https://api.airbnb.com/v2/client_configs

Request Headers:

62

"x-airbnb-api-key": "915...5b2"

"x-airbnb-device-id": "23f...34b"

Response Body:

"bot_detection_config": [

"action_name_ios": "phoneOTP/ios",

"endpoint": "v2/phone_one_time_passwords",

],

"country_alpha2": "IE",

"currency_settings": [

{

"code": "AED",

...

"name": "United Arab Emirates Dirham",

},

...

Figure 4.5: Airbnb’s privacy dialog upon registration for the app

Several methods of signing-in are offered, namely Google, Apple, Facebook, Email or
OTP verification through a phone number. Choosing the Google sign-in flow, a flurry of
connections are observed to Google’s services to authenticate by way of the OAuth
service (54). This results in the user being provided with an authCode. The following
connection uses this code to authenticate the user with Airbnb’s back-end. It returns a
unique identifier for the user, ‘userId’ (38...52). This identifier is specific to the instance

63

of an app, and therefore will not persist across different installations or accounts used in
the app. It is mostly referred to as ‘customerId’ or ‘userId’.

POST https://api.airbnb.com/v2/authentications

Request Headers:

x-airbnb-device-id: 23f...34b

x-airbnb-device-fingerprint: MTQ...Dgt

x-airbnb-api-key: 915...5b2

Request Body:

"authCode": "4/0A...SkQ"

Response Body:

"authAction": "LOGGED_IN",

"accessToken": "ya29...Yp7",

"authMethod": "GOOGLE",

"userId": 38...52

"token": "ee1...2ni"

b. Third Parties

Airbnb utilises several third party services for many different reasons. As mentioned
above, several mediums of third-party sign-in are offered, although some of the more
interesting services are used for functions like analytics, error monitoring, advertising
and collecting customer information. It is also relevant to mention that all of these
services are registered before the user has signed-in.

Facebook
One of the first connections for the app occurs to a Facebook endpoint. The response
contains some language and configurations for Facebook’s SDK and sign-in flow.

POST https://graph.facebook.com/v4.0

Request Body:

"batch_app_id": "13..76" (Airbnb app identifier)

Response Body:

...

"sdk_update_message": "Your Facebook SDK is out of date..."

"recovery_message": "The server is temporarily busy, please try again.",

"recovery_options": ["OK", "Cancel"]

The /activities endpoint caters to more configuration for Facebook, sending some
identifiers called advertiser_id & anon_id. The advertiser_id seen here is the Apple
user’s IDFA. Therefore, while the user is using Airbnb, and hasn’t even signed in yet,

64

Facebook has attained their IDFA which they can use to pull advertising information
from Apple’s ad servers.

POST https://graph.facebook.com/v4.0/13..76/activities

Request Body:

"advertiser_id": "14CB...4C2",

"advertiser_tracking_enabled": "1",

"anon_id": "XZF6...5D17",

"application_tracking_enabled": "1",

reCaptcha
The app uses Google’s reCaptcha (55) service to verify the user is not a robot.

POST https://www.recaptcha.net/recaptcha/api3/iosc

Geolocation
The app then registers and receives access tokens from the geolocation.onetrust.com
authority as displayed in the below connection. OneTrust (59) is a company that
specialises in privacy management for applications and web services. An article at
CookiePro (which is a service run by OneTrust) (60) explains that the geolocation
service is used to customise content based on a user’s location. The article states that
‘this is done by leveraging CloudFlare to perform a reverse IP lookup that will return
the general location of the user’.

GET https://geolocation.onetrust.com/auth/v1/token/login/device/init

Request Headers:

"signature": "eyJ...xXg"

Response Body:

"access_token": "eyJ..QLE"

"refresh_token": "eyJ...uSA"

"tenantId": "fe1...164"

"dsPortalId": "8b3...848"

"preferenceCenterId": "2e6...a6d"

The ‘signature’ header observed above is a JWT token which is decoded to reveal the
device-specific Airbnb identifier, which has been previously referenced as
x-airbnb-device-id.

{

"identifier": "23f6ca06f6823d7362ce0ec557c7f226a0b2e34b"

}

The response to this request contains an access_token which is displayed in its decoded
state below, which encapsulates several identifiers for the geolocation.onetrust service,

65

including x-airbnb-device-id.

{

"user_name": "23f...34b", // x-airbnb-device-id

"scope": [

"preferenceCenter"

],

"tenantId": "fe...164",

"exp": 1612529185,

"preferenceCenterId": "2e6e...a6d",

"authorities": [

"USER"

],

"jti": "040...adae",

"dsPortalId": "8b3...848",

"client_id": "dsar"

}

Bugsnag
Another service is utilised, called Bugsnag (71) which handles error reporting and
stability monitoring for applications. This service logs general information about the
iPhone including if it is jailbroken or not, using an API key header and session identifier
to manage the user’s connection. No further connections were observed to the service,
assumably because the no errors occurred during the app’s operation.

POST https://sessions.bugsnag.com/

Request Header:

bugsnag-api-key: 9d7...1f1

Request Body:

"device": {

"jailbroken": true,

"modelNumber": "D20AP",

"osVersion": 14.1

}

"sessions": [

{

"id": "7AC...689",

}

]

mParticle
mParticle is service that collects customer data for the purposes of ‘driving better

66

customer interactions’ (61). It allows developers to connect their customers data to
product analytics, targeted marketing and data warehousing tools through their API.
Companies like Facebook, Google Ads, Snapchat, Twitter and Remerge have all
integrated with this service. For example, leveraging their Facebook integration ‘will
enable Facebook to perform ad-tracking and attribution for your Facebook campaigns,
by causing mParticle to forward app event data to Facebook’ (62). As will be shown in
later connections, Airbnb does send information about user behaviour like search
history and device information to this service.

The connections refer to identifiers which have been previously identified as
follows;

• ‘ios_idfa’ = advertising_id = IDFA

• ‘other3’ = x-airbnb-device-id

The user is intially registered with mParticle as follows:

POST https://identity.mparticle.com/v1/identify

Request Body:

"device_application_stamp": "421...926",

"ios_idfa": "14C...4C2",

"ios_idfv": "863...B27",

"other3": "23f...34b",

"push_token": ""

Each time the Airbnb app is opened, mParticle’s service receives an update on the
device’s identifiers in similar fashion to the previous registration endpoint (/identify),
however after this includes the Airbnb userId value.

POST https://identity.mparticle.com/v1/login

Request Body:

"customerid": "38...52", // userId

"device_application_stamp": "6AE6...6C3",

"ios_idfa": "243...6A2", [AD ID]

"ios_idfv": "1EB...A54",

"other3": "23f...34b",

mParticle receives updates by way of the following endpoint, which lists device
information and unique identifiers, along with some search history from the Airbnb,
which in this case includes Galway City. As earlier connections to Facebook’s
graph.facebook.com server exhibit, Facebook also has access to the ‘advertiser_id’
value. With both parties able to communicate with mParticle using this unique
advertisement identifier, Airbnb can supply targeted material for advertising, which can

67

be subsequently displayed on the same user’s Facebook profile. This is an example of
how targeted advertising works.

POST https://nativesdks.mparticle.com/v2/70...2e/events

Request Body:

...

attrs: {

"audience_type": "visitor",

"checkin_date": "2021-02-28",

"checkout_date": "2021-03-02",

"city": "Galway",

"country": "Ireland",

"region": "County Galway",

"search_string": "Galway City, Ireland",

"user_bucket": "47",

"user_group": "30"

}

...

"dn": "Thomas’s iPhone",

"aid": "14C...4C2" // IDFA (advertiser-id)

"i": "23f...34b" // x-airbnb-device-id

"i": "38...52" // userId

Sift science
Sift science is a company that provides a fraud prevention service. This service provides
defense against attacks such as account takeover attempts, but also payment security
mechanisms and defense against spam and scams. The app registers with this service as
shown below. The service appears to send evidence of the device being jailbroken along
with other information about the device’s memory and model.

POST https://api3.siftscience.com/v3/accounts/529...709/mobile_events

Request Body:

"cache_l1_dcache_size": 32768,

"cache_l1_icache_size": 49152,

"cache_l2_cache_size": 8388608,

...

"cpu_logical_cpu_count": 6,

"device_hardware_machine": "iPhone10,1",

"device_hardware_model": "D20AP",

...

"device_memory_size": 2070790144,

"device_model": "iPhone",

"device_name": "Thomas’s iPhone",

68

...

"evidence_files_present": [

"/private/var/lib/apt",

...

"/Applications/Cydia.app"

],

"evidence_url_schemes_openable": [

"cydia"

],

"is_simulator": false,

Sift science acquires updates by way of the next connection, somewhat unusually
acquiring information such as magnetic field data for the device, network addresses, and
device orientation. The transmitted network addresses shown in the connection below
take the form of IPv6 Link Local addressses (fe80::...), specified in RFC4291 (56). They
are typically used for communication between nodes on an attached link (router). As to
why they are required by Sift science, speculation could be cast on the fact these
addresses could be used to build a social profile of other devices on the same network as
the target device. The need for magnetic field data is more unusual. One study by C.
Tejada et al. (57) shows how the magnetic sensors in modern mobile devices can be
leveraged to determine a user’s indoor location. While there is no evidence that this is
how Sift science uses the data, the data is nevertheless transmitted as displayed
below.

POST https://api3.siftscience.com/v3/accounts/529...709/mobile_events

Request Body:

"device_orientation": "ui_device_orientation_face_up",

"battery_level": 0.20000000298023224,

"battery_state": "ui_device_battery_state_charging",

"heading": {

...

"raw_magnetic_field_x": 16.369277954101562,

"raw_magnetic_field_y": -20.823753356933594,

"raw_magnetic_field_z": -15.40911865234375,

...

},

"network_addresses": [

"192.168.2.4",

"fe80::..2c",

"169....74",

"fe80::...fc",

"fe80::...fc",

69

"fe80::...ef",

"fe80::...a0"

],

"time": 1616611923723

c. General Usage

Sessions of use within the app are opened and closed with connections to the /open and
/close endpoints respectively. These connections are largely similar and send a variety
of information, including identifiers, device information and configurations. They serve
to update Airbnb’s back-end about the device’s status for every session of use within
the app.

POST https://api2.branch.io/v1/open

Request Body:

"ad_tracking_enabled": false,

"apple_ad_attribution_checked": false,

...

"cpu_type": "16777228",

"device_carrier": "Carrier",

"device_fingerprint_id": "886...585",

...

"hardware_id": "14C...4C2",

"hardware_id_type": "idfa",

"identity_id": "886...579",

...

"local_ip": "169.254.2.23",

"screen_height": 1334,

"screen_width": 750,

The app retrieves information about its users from the /accounts/me endpoint. It is
worth noting the name and birth date is not entered through the app but rather pulled
from the Google account the app was signed-in with. The user is identified with their
‘id’, referred to before as userId.

POST https://api.airbnb.com/v2/accounts/me

Request Body:

"currency": "EUR",

"id": 38...52, // userId

...

"is_facebook_connected": false,

...

"required_steps": [

70

"profile_picture",

"phone_number"

],

"user": {

...

"all_active_phone_numbers": [],

"birthdate": "1997-11-17",

"country_of_residence": "IE",

"email": "tkelly2@tcd.ie",

"encrypted_id": "Z7c...MGA==",

"first_name": "Thomas",

"friends_count": 0,

"government_id_dob": null,

Similarly, the user’s notifications and inbox contents are pulled as follows.

GET https://api.airbnb/v2/notifications

Request Headers:

x-airbnb-device-fingerprint: MTQ...Dgt

x-airbnb-device-id: 23f...34b

x-airbnb-advertising-id: 14C...4C2

Response Body:

"notifications": [

{

"category": "promotion",

"is_read": true,

"is_seen": true,

...

"name": "business_travel_offer",

"priority": 1,

"text": "Add your work email to unlock extra perks for business trips.",

}

]

GET https://api.airbnb.com/v3/InboxPagesQueryGetInboxItems....

Request Headers:

x-airbnb-device-fingerprint: MTQ...Dgt

x-airbnb-device-id: 23f...34b

x-airbnb-advertising-id: 14C...4C2

Response Body:

71

"inboxItems": []

"archived": "0"

"unread": "0"

/tracking/jitney is Airbnb’s event logging service which is hosted at www.airbnb.com.
This endpoint caters to regular updates about a variety of device-related data based on
the occurence of different events. An example of some events might include
‘native_measurement’, which logs the invocation of different classes, another event
called ‘universal_session_start’ occurs when the app session begins. As a further
example, an event called ‘universal_api_response’ logs every API call made by the app
and some information about it, such as status code, response size and response
time.

POST https://www.airbnb.com/tracking/jitney/logging/messages

Request Body:

[

...

{

"event_name": "universal_api_response",

"host": "api.airbnb.com",

"http_method": 2,

"http_status_code": 200,

"response_size": 103,

"response_time_ms": 504,

"server_total_time_ms": 77

}

...

]

With regard to the core purpose of the app, which is to search for holiday experiences
or accommodation, this is handled by the following connections, which exhibit example
behaviour for searching for a stay in Galway, Ireland.

GET https://api.airbnb.com/v2/explore_tabs...&query=Galway%20City...

Request Headers:

x-airbnb-device-fingerprint: MWJ...zIt

x-airbnb-device-id: 23f...34b

x-airbnb-advertising-id: 14C...4C2

Request Parameters:

adults: 2

checkin: 2021-02-28

checkout: 2021-03-02

72

Response Body:

"lat": 53.27056400000001,

"lng": -9.0566819,

"location_shape": {

"id": "93b59378-c597-49cc-a568-fabca2690ae3",

"name": "Galway City"

},

"listings": [{listings}]

This request returns information about the searched location like its coordinates, and
produces an array of listings to be shown to the user.

d. Observations

It is first worth noting the variety of identifiers used by Airbnb to identify a user, and
pointing out that they are spread across a variety of different services. As before, the
issue of linking requests by IDs is certainly present here, with the x-airbnb-device-id
used quite frequently along with the userId and IDFA. Due to the fact each of the third
party services typically use one or more of these identifiers in their requests, all requests
to these services can theoretically be attributed to the same user.

In this way one of the most striking findings with Airbnb is the wide range of third
party services used by the app, which might prompt questions about their necessity. For
example, the need for usage of the Geolocation service appears altogether unnecessary,
as the user’s general location can be revealed from their IP address. For the app’s
purposes, attaining the users address also appears unnecessary. Also to be clear here, it
is important to note no evidence was found in this work of the Geolocation service being
used to determine user address, only that the user is registered with it when opening
the app. Moving focus to the Sift Science service, a user might be surprised to know
this service is monitoring their device data like the device name and cache size, but also
collects evidence about whether their iPhone is jail broken or not. Perhaps most
concerning is the fact the service collects magnetic field and local MAC network address
data. The exact applications of this data could not be discerned, only that it is
certainly being collected by the back-end. Speculating on the collection of such data,
attention was previously drawn to the fact that local position can be determined with
use of magnetic field data, and that network addresses of other devices on the same
network as the iPhone can be used to build a profile of the network. Of course this is
just speculation. In any case, the collection of such data appears unusual for a travel
lodging app, and isn’t specified explicitly in the app’s privacy policy (63).

73

The most frequently observed third party connections were those that interfaced with
mParticle. While there is nothing inherently wrong about use of a third party service,
and the privacy policy does state that third party services may be used for advertising,
this is not made abundantly clear to the user upon signing up to Airbnb. The privacy
policy states ‘We may use personal information to...’ rather than ’We almost certainly
will use your personal data to...’. The findings here are pretty clear as to how the
advertising services are being utilised. mParticle collects user data from Airbnb like
search history and makes it available to its partners, the prime example of which is
Facebook. While a user might be under the impression that disabling Targeted
Advertising in the iPhone’s settings might prevent the occurrence of this process, due to
the fact mParticle is a third party service, Apple cannot control what data it collects
for advertising once the user has consented upon signing up for the app. While Airbnb
does outline third party services are being used, it certainly isn’t obviously transparent
about what these services do, or what data they collect. Furthermore, the user isn’t
given an obvious option to opt-out of these services within the app. It is also worth
stating that the abundance of third party services in this app is not ideal in and of
itself, as due to the nature of data leaks and hacks in today’s world, the more spread
out user data is, the less secure it is.

4.5 TikTok

TikTok is a hugely popular social media app owned by the company Bytedance. It is
essentially a platform for making and sharing short videos and has garnered
approximately 689 million users since its launch in 2016. The app has drawn scrutiny
regards its security and privacy, due to claims it is being used by the Chinese
Government to spy on US citizens. Such was the concern for the application that
former US president Donald Trump attempted to ban the application in 2020 (58). The
following section attempts to address some of these concerns on the iOS platform, and
analyse the app’s handling of user data.

a. Gaining entry

TikTok immediately posed more challenges in terms of gaining access to the app and
enabling the usage of the tools used to conduct analysis. The app uses a third-party
library to perform certificate pinning, and therefore Frida needed to be utilised to
attempt a bypass of these measures. After many unsuccessful attempts, it was
eventually discovered by chance that the first time the app is opened after installation,
certificate pinning does not occur. This is assumably because the first instance of the
app connects to back-end servers without HTTPS, only pinning the certificates after

74

this first instance of the app. In this manner, the internet traffic from first instance of
the app is fully observable using mitmproxy, which is a noteworthy finding in terms of
security in and of itself. However, some specific connections included request bodies
which were encrypted. In order to view the data being transmitted in these requests in
an decrypted state, Frida was used to examine the data being sent before it was
encrypted.

There was three specific sets of connections for which this was the case.

• Connections to the Apps Flyer service (65).

• Connections to TikTok’s ‘/app_log’ endpoint

• Traffic to the monitoring service, identified by the /monitor endpoint.

The decryption issue was partly resolved with the injection of two Frida scripts (see
Appendix B & C). The encryption methods these scripts target were discovered and
examined using the frida-trace command. Both scripts essentially work by targeting the
method provided by the user and intercepting its execution. They then print out the
arguments passed and return value of the method. The usage of these scripts are
outlined in more detail as they arise below.

b. Registration

Approximately 90 connections are observed when the app is firstly opened. When
compared to other applications discussed in this work, this is quite a large amount. A
vast majority of these connections acquire things for the app that are uninteresting,
such as configuration settings and language strings. Among the first of the registration
connections is to a /device_register endpoint.

POST https://log-va.tiktokv.com/service/2/device_register/...

Request Header:

x-ss-stub: 5EB...B93

x-tt-trace-id: 00-6...6-01

x-khronos: 1616768551

x-gorgon: 840...d1e

Request Parameters:

...

aid: 1233

vid: 645...B34

screen_width: 750

openudid: 6e4...26f

cdid: 6A0...984

75

os_version: 14.1

tz_name: Europe/Dublin

...

device_type: iPhone10,1

idfa: ABA...B0B

...

Request Body:

tc\x05\...\xc1\xa4

Response Body:

{

"device_id": 6950952705176094213,

"device_id_str": "6950952705176094213",

"install_id": 6950953156965287685,

"install_id_str": "6950953156965287685",

"new_user": 1,

"server_time": 1618394913

}

What is immediately noticeable about this connection, and indeed a majority of
TikTok’s requests is the amount of parameters included in the request. Those listed
above are but a subsection of parameters sent, and are usually sent in requests to
TikTok’s servers. Due to the recurrence of the same volume of parameters in different
connections, the parameters above are denoted by the ‘general-params’ identifier
henceforth for other connections. Alongside this, several other identifiers are often used
in the request header. The ones included here ‘x-ss-stub’, ‘x-tt-trace-id’ and ‘x-gorgon’
appear to be IDs for the request, while the ‘x-khronos’ value is a UNIX timestamp for
when the request occurred. Examining the request parameters, ‘idfa’ is the Apple
advertising_id that has been discussed previously. Other IDs include ‘vid’, ‘openudid’
and ‘cdid’ are identifiers for the user which persist for the installation of the app. The
endpoint returns some more identifiers, and denotes whether or not the user is new,
based on their device. While it’s label may indicate it as a persistent ID, the ‘device_id’
passed here is unique for every installation of the device. It nonetheless serves to
uniquely identify the user. The ‘aid’ value 1233 is simply the app ID. The app proceeds
by acquiring some configuration settings.

POST https://api16-normal-c-useast1a.tiktokv.com/tfe/api/request_combine/v1/...

Request Parameters: {general-params}

Response Body:

76

"aweme_will_stop_when_headphones_pulled": true

...

"shutter_sound_enable": false,

...

"tt_regions": "JP,HK,ID,MO,TW,KR,VN,TH,PH,MY,SG,KH,LA,MM,test",

"tt_use_settings_v3": true,

...

"log_in_order": "FACEBOOK,GOOGLE,TWITTER,INSTAGRAM,APPLE",

"whatsapp_friend_invite_title": "Add WhatsApp friends here!"

Examining this connection response, a huge chunk of configuration information and
language strings are acquired for the app, of which only a sample are shown above. This
ranges from indicating whether or not the camera shutter sound is enabled, to a string
for adding WhatsApp friends through the app.

POST https://api.snapkit.com/v1/config

Response Body:

{

"data": {

"config": {

"bitmojiLearnedSearch": {

"enabled": true

},

"skateConfig": {

"sampleRate": 0.01

}

}

},

}

Snap Kit (64) is a service run by social media company Snapchat that allows developers
to harness tools offered by Snapchat like camera kits and custom emoji capabilities.
The other social media service TikTok interacts with is of course Facebook, from which
it acquires sign-in information in the same way as Airbnb from the graph.facebook.com
server. Registration occurs for the AppsFlyer service, however the request contents
could not be decrypted. AppsFlyer is discussed in more detail in section 4.5.e. The app
uses Firebase for storing app information and metrics. As with Aarogya Setu,
registration occurs for Firebase at /installations as shown.

POST https://firebaseinstallations.googleapis.com/v1/projects/musically../installations/

Request Body:

{

"appId": "1:340331662088:ios:3c6c52c4762af402",

77

"authVersion": "FIS_v2",

"fid": "cFE...evE",

"sdkVersion": "i:7.4.0"

}

Response:

{

"authToken": {

"expiresIn": "604800s",

"token": "eyJ...MsQ"

},

"fid": "cFE...evE",

"name": "projects/340331662088/installations/cFElpYSah0oBhiIoQ-LevE",

"refreshToken": "2_U...Msy"

}

The FID is seen once again here for TikTok, and allows the user to acquire an
authentication token from Firebase which they can use for authenticating Firebase
requests. Another server is used for what appears to be app performance monitoring,
called mon-va.tiktokv.com. The first connection to this server registers user and device
information with it.

POST https://mon-va.tiktokv.com/monitor/appmonitor/v2/batch_settings

Request Body:

{

...

"access": "WIFI",

"aid": "1233",

"carrier": "Carrier",

"cdid": "755...43E",

"device_id": "695...213",

"device_performance_level": "2",

"device_type": "iPhone10,1",

...

"idfa": "7F7...059",

"iid": "695...685",

"install_id": "695...685",

"is_env_abnormal": "1",

"openudid": "ff4...14f",

"os": "iOS",

"region": "IE",

"resolution": "750*1334",

...

78

"vid": "AA5...D67"

},

Information is also returned from the above endpoint, largely containing more
configuration settings for how the device should interact with the monitoring server.
After registering these different services, the app’s server collects some information
about the device to determine its region before prompting the user with sign in
options.

POST https://api16-normal-c-useast1a.tiktokv.com/ttloc/submit

Request Params: {general-params}

Request Body:

{

"carrier_region": "",

"locale": "en-IE",

"mcc_mnc": "",

"network_sim_region": "",

"system_language": "en",

"system_region": "IE"

}

Having collected some evidence of the user’s country, the app provides some sign in
options including Google and Facebook. Choosing sign-in by way of Google Email
address, Google’s OAuth 2.0 sign in procedure is carried out.

POST https://accounts.google.com/_/signin/oauth

...

POST https://oauth2.googleapis.com/token

Response:

"id_token": "eyJ...3DQ"

After the occurrence of the two connections above, the user is signed in through their
Google account and given an id_token which is sent as ‘access_token_secret’ to
TikTok’s back-end for verification.

GET https://api16-normal-c-useast1a.tiktokv.com/passport/auth/only_login/

Request Params:

{general-params}

"access_token_secret": "eyJ...3Dq"

Response Body:

"platform_screen_name": "Thomas Kelly",

"name": "Thomas Kelly89"

"user_id": 690...297,

79

...

Decoding the JWT transmitted above, it can be observed how TikTok then has access
to the user’s Google account information.

{

"iss": "https://accounts.google.com",

...

"hd": "tcd.ie",

"email": "tkelly2@tcd.ie",

...

"given_name": "Thomas",

"family_name": "Kelly",

...

}

Before admitting entry to the main part of the app, the user is asked to designate some
of their interests, which are sent to the back-end as follows.

POST https://api16-normal-c-useast1a.tiktokv.com/aweme/v1/user/interest/select/

Request Parameters: {general-params}

Request Body:

selectedInterestList:

{"interest_list":

[{"id":"Fitness & Health"},

{"id":"OddlySatisfying"},

{"id":"Travel"},

{"id":"Comedy"}]}

}

c. General usage

The main page of the app is an infinitely scrolling feed of videos, which the user can
interact with by ‘liking’ or commenting on the video, among other things, like sharing.
Any user can upload a video, who has their own profile page where all of their content
is viewable. Regarding the main video feed, it is called the ‘For You’ page. Sets of
videos are acquired for this feed ahead of scrolling by the following connection, with
include an additional parameter designating the user’s interests.

POST https://api16-normal-c-useast1a.tiktokv.com/aweme/v2/feed/

Request Parameters:

{general-params}

"interest_list":

{

80

"recommend_group":11,

"select_duration":91,

"interest_list": {

[{"id":"Fitness & Health"},

{"id":"OddlySatisfying"},

{"id":"Travel"},

{"id":"Comedy"}]

}

}

Response Body (protobuf):

[

...

{

1: {tiktok-id}

3: {author name}

4: {caption}

...

1: https://p16-sign-sg.tiktokcdn.com/...webp?... // link for image

2: https://p16-sign-sg.tiktokcdn.com/...jpeg?... // link fore image

...

}

...

]

81

Figure 4.6: TikTok’s For You page (FYP).

The user’s previously indicated interests are provided to this endpoint. As the app is
used more, the user is assigned ‘recommend_groups’ as shown in the above request
body. While there is no direct evidence for what the nature of these groups is, it is
deducible that these groups resemble topics of interest, which the user is assigned to
based on how they engage with different content. The response to the above endpoint
contains information about the videos to be displayed to the user, like their creators,
URLs for the videos themselves, video labels, etc. The video and image content (images
for creator profile picture) is retrieved from a server cluster called tiktokcdn.com.

GET https://p16-amd-va.tiktokcdn.com/img/musically-maliva-obj/16..70~noop.webp

Response Type: image/jpeg

GET https://v19.tiktokcdn.com/0c3...29c/607713df/video/tos/useast2a/....

Response Type: video/mp4

The main way in which the user can interact a video is by ‘liking’ it to show their
approval or enjoyment of the content. A piece of TikTok content is identified by an
‘aweme_id’.

GET https://api16-normal-c-useast1a.tiktokv.com/aweme/v1/commit/item/digg/

82

Request Body:

aweme_id: 6948450097461988614 // content ID

channel_id: 0

enter_from: homepage_hot

The user can hold the video and choose the ‘Not interested’ option to express dislike for
the video, which spawns the same connection as above except to an endpoint called
/dislike. This sends the creator’s author_id which is assumably used by the back-end to
avoid displaying any other content by this creator to the user.

GET https://api16-normal-c-useast1a.tiktokv.com/aweme/v1/dislike/item/

Request Parameters:

{general-params}

aweme_id: 6948450097461988614 // content ID

Request Body:

author_id: 6942449334701376518 // author ID

channel_id: 0

video_type: 0

Other ways the user can interact with content include commenting on the video or
sharing it, both of which are carried out by the following endpoints respectively.

POST https://api-va.tiktokv.com/aweme/v1/comment/publish/

Request Parameters: {general-params}

Request Body:

aweme_id: 6948100149482687749

...

text: "Test" // comment text

GET https:api-va.tiktokv.com/shorten/

Request Parameters:

{general-params}

aweme_id: 6948100149482687749

Response Body:

"data": "https://vm.tiktok.com/ZMeu7PyfY/" // sharable link

All of these actions signal to TikTok’s back-end how the user engages with different
content. It is obvious from the nature of the application that the back-end processes
this information and builds a profile of what topics the user is interested in, and serves
content based on this. While unconfirmed, it is not unreasonable to speculate this is
carried out by assigning the user to groups as previously mentioned. These groups are
pulled by the user’s device from the /notice/count endpoint.

GET https://api-va.tiktokv.com/aweme/v1/notice/count...

83

Request Parameters: {general-params}

Response Body:

"groups_in_filters": [

{

"filter_type": 3,

"groups": [

6,

14

]

},

...

{

"filter_type": 6,

"groups": [

84

]

},

...

{

"count": 0,

"group": 86,

"show_type": 2

},

...

{

"clear_occasion": 1,

"count": 0,

"group": 88,

"show_type": 2

},

If the assumption here is correct, the response here would inform the application on
what groups or topics the user has interest in, perhaps designating their display priority
by the ‘filter_type’ or ‘show_type’ values. In this way, the app builds a strong profile of
the user’s interests, which is an extremely powerful basis for targeted advertising.

With regard to monitoring and event logging, two connections occur very regularly -
roughly every 20 seconds - to different servers. The first of which is an encrypted
connection, which occurs to log-va.tiktokv.com. In order to decrypt the body of this
request, a Frida script called observeMethod.js (Appendix B) was injected, targeting
the method responsible for building requests to this endpoint, and print out its the
methods arguments and return value. This script was adapted from another script

84

found at (66). The targeted method is called ‘actualSendTrack:...:postParams:...’ and
belongs to the TTTrackerProxy class. It was targeted based on its name likely
indicating the sending of data. The results produced by this technique were verified to
be correct by cross referencing the output with the findings of a blog post (67) which
aimed to decrypt the same request spawning from an Android device. The full decoded
request body is displayed in Appendix E, however a subsection of the more interesting
data is shown below.

POST https://log-va.tiktokv.com/service/2/app_log/...

Request Parameters:

{general-params}

Request Body:

header = {

...

custom = {

...

"earphone_status" = off;

...

};

...

"is_jailbroken" = 1;

};

"event_v3" = (

{

...

datetime = "2021-04-15 12:05:26";

event = "ug_skadnet_conversion_value";

data = {

"conversion_value" = 47;

"first_activation_time" = 1618394913;

"launch_duration" = 25;

"session_launch" = 2;

"sum_duration" = 2437;

vv = 0;

};

},

{

datetime = "2021-04-15 12:05:51";

event = "ug_skadnet_conversion_value";

data = {

"conversion_value" = 47;

85

"first_activation_time" = 1618394913;

"launch_duration" = 25;

"session_launch" = 2;

"sum_duration" = 2462;

vv = 0;

};

}

);

While one might expect more sensitive data to be transmitted in this encrypted
connection, the request body does not contain anything immediately concerning. Some
interesting observations might be parameters such as ‘earphone_status’ to designate if
the user is using an external audio device, or perhaps some of the data included in the
‘event_v3’ object. This contains data about certain events that occur within the app,
and information about how long they take (‘sum_duration’) and when they first
occurred (‘first_activation_time’). As mentioned, this connection is extremely frequent
and was verified to transmit data about a variety of different events. Some examples of
event names observed include ‘ug_skadnet_conversion_value’,
‘PUSH_SDK_synchronize’, and ‘stay_time’ to name but a few. This accounts for the
contents of the first of the previously listed encrypted connections. The second, involves
communications with a ‘/monitor’ endpoint. If the class - method
‘HMDHeimdallrConfig performanceReportURL is observed, the return string is one of
interest.

Figure 4.7: Interception of class-method HMDHeimdallrConfig performanceReportURL

While this might indicate the class responsible for building this request, more
information could not be discerned about this connection, meaning its contents could
not be decrypted. While one might speculate due to the method name above that this
connection regards performance monitoring, it would not be reasonable to speculate
that this is the only kind of data being transmitted in the request. Ideally, more work
could be done to uncover the nature of this connection, and others to the
mon.tiktokv.com server.

86

d. Third Parties

While TikTok draws briefly on services from Facebook and Snapchat for sign-in flows
and camera filters respectively, Firebase and AppsFlyer have connections occurring
more regularly as the app is used. In both of these cases, a report is sent to both
services when the app is closed after a session of use. Looking at communications with
Firebase, the app behaves in similar fashion to Aarogya Setu, whereby error reports and
usage information is stored in the Google service. Nothing new or hugely interesting is
transmitted in these connections. In the case of AppsFlyer, this is a company that
caters advertising attribution and marketing analytics. There are multiple connections
that occur to this service, however the request body of each is encrypted. In order to
discover the contents, the following strategy was implemented.

1. Use frida-trace to search for classes including the substring ‘AppsFlyer’

2. Observe the ‘executeRequestWithUrlString ’ function from the ‘AppsFlyerLib’ class
being called.

3. Intercept the arguments and return value of this function using observeMethod.js
(Appendix B)

4. This method returns a url, https://launches.appsflyer.com/..., which is one of the
connections we want to monitor.

5. The parameters of this request are created by another method, called dict from
the AppsFlyerDictionary class. Target this function with observeMethod.js, and
what is likely the request contents of this connection can be observed.

POST https://launches.appsflyer.com/api/v6.1/iosevent?app_id=835599320&buildnumber=6.1.4

Request Body:

{

JBDevice = 1;

advertiserId = "7F7...059";

"af_timestamp" = 1618594033824;

counter = 79;

...

"dev_key" = XY8Lpakui8g4kBcposRgxA;

deviceData = {

"cpu_64bits" = true;

"cpu_count" = 6;

"cpu_speed" = "-1";

"cpu_type" = "ARM64_V8";

"device_model" = "iPhone10,1";

dim = {

87

"x_px" = 750;

"y_px" = 1334;

};

osVersion = "14.1 (Build 18A8395)";

"ram_size" = 1974;

};

disk = "42893/61005";

event = Launched;

eventName = Launched;

firstLaunchDate = "2021-04-15_152604+0100";

...

reinstallCounter = 7;

"sc_o" = p;

sessioncounter = 11;

timepassedsincelastlaunch = 60;

timestamp = "1618594033.824621";

wifi = 1;

}

Device information like whether it is jailbroken, the amount of times it has been
reinstalled, and CPU information are among the data being collected. This occurs
whenever the user closes the app or locks the screen on the app, serving as a regular
update on this information for the Apps Flyer service. Another two connections to this
service were observed, however they could not be decrypted or discovered through use
of Frida within the time-frame of this work. Those connections occur less frequently,
perhaps once every instance of the application.

• https://conversions.appsflyer.com/

• https://inapps.appsflyer.com/

Due to its similarity of Apps Flyer’s service to that of mParticle’s - as is evident in
Airbnb - it would be reasonable to assume the data being transmitted here is of a
similar nature, although clearly this could not be verified.

e. Observations

Having garnered enough attention to be considered for a ban by the American
government might cause one to believe TikTok is performing some sort of undesirable
activity with regards to security and privacy of its users. However, from what this work
has discovered, nothing outside the ordinary is being transmitted. Of course, the
concept of token linking is certainly present, with common parameters being used
constantly in lots of connections, and usage of a lot of different IDs (cdid, device_id,

88

openudid). This constant transmission of identifiers is surely avoidable, and would be
suitably replaced by a single identifier for the user or their device. The parameter
identifiers cdid, vid and openudid were found to persist for the duration of an the app’s
installation, along with the device_id value. All of these however, were verified to
change when the app was deleted an reinstalled. The app also uses cookies in a lot of its
back-end requests. This seems unnecessary because all requests are linked by the IDs
being transmitted anyway, from which the app’s back-end could use to identify a user
across sessions, eliminating the need for cookies. While the app uses a third party
library for certificate pinning, the mere fact that all connections are unpinned and
therefore insecure on the first instance of the app is a noteworthy observation about the
app’s security in its own right. Surely a more secure strategy could be employed
here.

Another striking observation while examining TikTok’s traffic is the volume of requests,
two of which specifically occur every 20 seconds. The first of these is a POST request to
the ‘/service/2/app_log/’ which sends event logging information to the server. The
other of these connections is a GET method request to the /skan endpoint, which
essentially keeps the application updated on how long it has been running, and the
number of sessions it has experienced. The frequency of these requests could surely be
avoided, with updates perhaps really only needed when the app is opened or
closed.

While the exact details of the connections to AppsFlyer’s service could not be
discerned, it is assumable that its purpose is similar in nature to the previously
discussed mParticle service, and how that is used in Airbnb. This would mean
information about how the user interacts with certain content is made available to
AppsFlyer, who could send it on to social media partners for advertising purpose. An
important point here, is that when the user disables targeted advertising in the iPhone’s
settings, the idfa value is nullified in these requests, which limits AppsFlyer’s ability to
track the user for advertising purposes.

As a final point, it is important to discuss the nature of TikTok’s core functionality, and
the strategy they employ to make their app addictive to users. As a user interacts with
TikTok over the course of time the application its back-end services build a very strong
profile of their user’s interests, beliefs and perhaps even political leanings so they can
serve relevant content. This is an incredibly powerful basis for advertising, and when
highlighted might encourage users to think about how their behaviour and interest
patterns are being monitored. The popular phrase used to describe advertising, ‘If you
are not paying for the product, you are the product’, might be used to aptly sum-up the
nature of these interactions. With this in mind, users might be encouraged to think
about how much an app like TikTok can deduce about them, which might not only

89

include interests, but also political leanings, religious beliefs and other patterns of
behaviour that can reveal a lot about a user. It is certainly worth considering and
informing users before using an app like TikTok, if they are happy to surrender this
aspect of their privacy.

90

CHAPTER 5

Conclusion

5.1 Future Work

This work outlines a formal basis by which any iOS application can be deconstructed
and analysed through a lens of user privacy. Of course different applications employ
different security measures, such as encryption, and also draw on different third party
services. The general methodology defined in this work however, could be applied to
any iOS application, on iOS for version 14.1.

In one or two cases specifically regarding TikTok, the contents of some internet traffic
could not be uncovered within the time frame of this work. Such a popular application
certainly merits further exploration into exactly what these connections are encrypting
and sending. Furthermore, applications are constantly changing and updating their
implementations and usage of different services. It is important that these updates are
always geared towards increasing security of maintaining the privacy of the app’s
users.

5.2 Conclusion

For the most part, the data of iPhone users is secured and transmitted in accordance
with the best policies for protection of user’s privacy. There are however cases, which
have been outlined at length above, in which transmission of data is questionable,
handled poorly or seemingly unnecessary altogether. Specifically regarding Apple,
frequent transmissions of sensitive identifiers are observed, enabling the linking user’s

91

requests across various different Apple services. Some questionable transmissions of data
also do occur, such as that of local MAC addresses connected to the same network as
the iPhone. Apple do also however provide the basis for users to limit a lot of the traffic
spawning from an iPhone, as discussed in section 4.1.g. This does allow users to retain
control over their information, but largely defeats the point of a smartphone.

Sometimes applications acquire data that they do not appear to need, or if required is
excessively accurate. For the provision of a travel lodging application like Airbnb,
information about the user’s device magnetic readings or link-local IP addresses do not
immediately appear to be important for the functioning of the app, and collection of this
information would ideally be avoided. Further demonstrations of this can be observed
in Aarogya Setu, who acquire GPS coordinates when it really could be substituted for a
vague representation of location. TikTok also sends a huge chunk of parameters which
identify the user in the vast majority of requests it makes to its servers, a lot of which
appear to be entirely avoidable. Vendors should ideally aim to collect as little data as
possible for the functioning of the app. In the case personal information is required
about the user, efforts should be made to see if obfuscating that data is a viable course
of action, such as that witnessed in COVID Tracker Ireland.

While Apple has control over what apps are made available on the App Store, it is
largely up to application vendors to define a privacy policy and protect their user’s data
in a manner that adheres with best practices. It has been observed at many points
throughout the course of this work that at times, app vendors take liberties with their
user’s data, and are often not hugely transparent about how they use this data, which is
particularly evident in Airbnb & to a degree, TikTok. In other cases, such as that of
Aarogya Setu, the user can often be unaware - unless they read the app’s privacy policy
in detail - about what data is being uploaded to servers and at what times. This
highlights an important point about privacy policies, in that they are used by vendors
to state their intentions and compliance with user privacy laws, in the knowledge that
only a tiny fraction of users will actually read them before consenting to their terms. It
is clear more could be done in ensuring users are made aware of how their data is being
used in a more transparent manner. A slightly more difficult case is that of TikTok,
whereby collection of data about how users interact with different types of content isn’t
really eliciting sensitive information, however over time allows the amassing of data
with potential to build a very accurate profile of a user. This is harder to define in a
privacy policy, and undoubtedly goes unconsidered by a lot of TikTok’s users.

While the use of a third party service like Google’s Firebase for storage is entirely
reasonable and in some cases a good option for the storage of application data, ideally
usage of third party services would be kept to a minimum. In the event they are used,
little sensitive information should be stored on third party servers. In the case of

92

Airbnb, several third parties are used and in regular communication with the app. A lot
of these services are also sent identifiers like the x-airbnb-device-id and IDFA, which
provides them with an identifier for the user. This of course is not ideal.

At multiple times, advertising has become a relevant topic of discussion during this
work. Somewhat unfortunately, advertising has become one of the dominant avenues by
which app vendors make profit, which essentially means they are monetising their users
data and patterns of behaviour. Companies like Apple are increasing efforts in allowing
users to control and limit how their data is used for targeted advertising, however they
can only do so much, as applications turn to third party advertising services like
mParticle. Apps like TikTok build such a strong profile of their users that one can
imagine how shocking it would be for a user to see how much the app knows about
them. The power that users bestow upon companies that own these applications is
formidable, and should be treated with much more care. With all of these findings in
mind, it is important to consider the question as to if the technology companies in
control of all this data are doing enough to keep it safe and secure. Events such as data
breaches in Facebook (2019), which leaked the account data of approximately 500
million users (68) certainly do not inspire confidence. As a concluding statement for
this work, it becomes evident through analysis of an iPhone’s interaction with the
internet that the state of user privacy in the world today still has a long way to go,
before the full security and privacy of internet users can be assured. There are however,
reasons to be hopeful for the future.

93

Bibliography

[1] List of trusted root certificates in iOS 14.
https://support.apple.com/en-gb/HT212140

[2] SSL Killswitch 2 - An open source blackbox tool for disabling certificate pinning
validation on iOS, created by nabla-c0d3
https://github.com/nabla-c0d3/ssl-kill-switch2

[3] mitmproxy - A hacking tool for intercepting traffic.
https://mitmproxy.org/

[4] mitmproxy transparent mode setup.
https://docs.mitmproxy.org/stable/concepts-modes/#transparent-proxy

[5] Eric Smith, (2010) iPhone Applications & Privacy Issues: An Analysis of
Application Transmission of iPhone Unique Device Identifiers (UDIDs)
http://pskl.us/wp/wp-content/uploads/2010/09/

iPhone-Applications-Privacy-Issues.pdf

[6] Checkra1n jailbreaking software tool.
https://checkra.in/

[7] iPhone wiki for Cydia Substrate.
https://iphonedevwiki.net/index.php/Cydia_Substrate

[8] Frida - A dynamic instrumentation toolkit used for reverse engineering.
https://frida.re/

[9] Article discussing the how Aarogya Setu was made mandatory in May 2020.
https://indianexpress.com/article/technology/social/

aarogya-setu-app-mandatory-contact-tracing-app-6389284/

94

https://support.apple.com/en-gb/HT212140
https://github.com/nabla-c0d3/ssl-kill-switch2
https://mitmproxy.org/
https://docs.mitmproxy.org/stable/concepts-modes/#transparent-proxy
http://pskl.us/wp/wp-content/uploads/2010/09/iPhone-Applications-Privacy-Issues.pdf
http://pskl.us/wp/wp-content/uploads/2010/09/iPhone-Applications-Privacy-Issues.pdf
https://checkra.in/
https://iphonedevwiki.net/index.php/Cydia_Substrate
https://frida.re/
https://indianexpress.com/article/technology/social/aarogya-setu-app-mandatory-contact-tracing-app-6389284/
https://indianexpress.com/article/technology/social/aarogya-setu-app-mandatory-contact-tracing-app-6389284/

[10] Statistics on worldwide iPhone usage.
https://www.statista.com/statistics/755625/

iphones-in-use-in-us-china-and-rest-of-the-world/#:~:text=In%20April%

202017%2C%20728%20million,120%20million%20in%20the%20U.S

[11] React library react-native-ios11-devicecheck - Used to check iOS device information.
https://github.com/dayitv89/react-native-ios11-devicecheck

[12] COVID Tracker Ireland repository source code (React).
https://github.com/HSEIreland/covid-tracker-app

[13] Apple Developer support page for the DCDevice class.
https://developer.apple.com/documentation/devicecheck/dcdevice/

2902276-generatetokenwithcompletionhandl?language=objc

[14] Source code showing how react-native-ios11-devicecheck generates the
deviceVerificationPayload.
https://github.com/dayitv89/react-native-ios11-devicecheck/blob/

e037405c4aa5a304c031ed9a32a9d9d14afa5420/ios/RNIOS11DeviceCheck.m#L30

[15] Source code showing how COVID Tracker Ireland sends the
deviceVerificationPayload onward to Apple servers.
https://github.com/HSEIreland/covid-tracker-backend-api/blob/

851409d46c66749a2228206678af9b1b83680127/lib/plugins/verify/index.js#

L74

[16] RFC 719 outlining JSON Web Tokens (JWT).
https://tools.ietf.org/html/rfc7519

[17] jwt.io - JWT decoder tool.
https://jwt.io/

[18] Google Firebase service.
https://firebase.google.com/

[19] Protocol buffers.
https://developers.google.com/protocol-buffers

[20] Temporary Indian phone number site.
http://receive-sms-online.info/919532437525-India

[21] Aarogya Setu source code; Occurrence of Bluetooth uploads.
https:

//openforge.gov.in/plugins/git/aarogyasetuos/ios-mobile-application?a=

95

https://www.statista.com/statistics/755625/iphones-in-use-in-us-china-and-rest-of-the-world/#:~:text=In%20April%202017%2C%20728%20million,120%20million%20in%20the%20U.S
https://www.statista.com/statistics/755625/iphones-in-use-in-us-china-and-rest-of-the-world/#:~:text=In%20April%202017%2C%20728%20million,120%20million%20in%20the%20U.S
https://www.statista.com/statistics/755625/iphones-in-use-in-us-china-and-rest-of-the-world/#:~:text=In%20April%202017%2C%20728%20million,120%20million%20in%20the%20U.S
https://github.com/dayitv89/react-native-ios11-devicecheck
https://github.com/HSEIreland/covid-tracker-app
https://developer.apple.com/documentation/devicecheck/dcdevice/2902276-generatetokenwithcompletionhandl?language=objc
https://developer.apple.com/documentation/devicecheck/dcdevice/2902276-generatetokenwithcompletionhandl?language=objc
https://github.com/dayitv89/react-native-ios11-devicecheck/blob/e037405c4aa5a304c031ed9a32a9d9d14afa5420/ios/RNIOS11DeviceCheck.m#L30
https://github.com/dayitv89/react-native-ios11-devicecheck/blob/e037405c4aa5a304c031ed9a32a9d9d14afa5420/ios/RNIOS11DeviceCheck.m#L30
https://github.com/HSEIreland/covid-tracker-backend-api/blob/851409d46c66749a2228206678af9b1b83680127/lib/plugins/verify/index.js#L74
https://github.com/HSEIreland/covid-tracker-backend-api/blob/851409d46c66749a2228206678af9b1b83680127/lib/plugins/verify/index.js#L74
https://github.com/HSEIreland/covid-tracker-backend-api/blob/851409d46c66749a2228206678af9b1b83680127/lib/plugins/verify/index.js#L74
https://tools.ietf.org/html/rfc7519
https://jwt.io/
https://firebase.google.com/
https://developers.google.com/protocol-buffers
http://receive-sms-online.info/919532437525-India
https://openforge.gov.in/plugins/git/aarogyasetuos/ios-mobile-application?a=blob&hb=f5da99c25a9aa7f2b0a1f18ef841c14a83593a3d&h=703f652aea492aad622dfc645c8045ee0ff8fc8f&f=CoMap-19%2FAppDelegate.swift#L322
https://openforge.gov.in/plugins/git/aarogyasetuos/ios-mobile-application?a=blob&hb=f5da99c25a9aa7f2b0a1f18ef841c14a83593a3d&h=703f652aea492aad622dfc645c8045ee0ff8fc8f&f=CoMap-19%2FAppDelegate.swift#L322
https://openforge.gov.in/plugins/git/aarogyasetuos/ios-mobile-application?a=blob&hb=f5da99c25a9aa7f2b0a1f18ef841c14a83593a3d&h=703f652aea492aad622dfc645c8045ee0ff8fc8f&f=CoMap-19%2FAppDelegate.swift#L322

blob&hb=f5da99c25a9aa7f2b0a1f18ef841c14a83593a3d&h=

703f652aea492aad622dfc645c8045ee0ff8fc8f&f=CoMap-19%2FAppDelegate.

swift#L322

[22] mitmproxy interceptions.
https://docs.mitmproxy.org/stable/mitmproxytutorial-interceptrequests/

[23] Frida’s core of instrumentation - Gum.
https://github.com/frida/frida-gum

[24] Frida’s documentation.
https://frida.re/docs/modes/

[25] "The engineering behind reverse engineering" - a presentation about how Frida
works.
https://frida.re/slides/

osdc-2015-the-engineering-behind-the-reverse-engineering.pdf

[26] frida-trace - command for tracing remote processes functions.
https://frida.re/docs/frida-trace/

[27] mmap linux command.
https://man7.org/linux/man-pages/man2/mmap.2.html

[28] dlopen linux command.
https://man7.org/linux/man-pages/man3/dlopen.3.html

[29] Cydia
https://cydia-app.com/

[30] Srivatsa & Hicks, (2010), Deanonymizing mobility traces: Using social networks as
a side-channel
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.5128&rep=

rep1&type=pdf

[31] COVID Tracker Ireland privacy policy
https://github.com/HSEIreland/covidtracker-documentation/blob/master/

documentation/privacy/DPIN%20IE%20EFGS%20Updated%20FINAL%2015.10.2020.

pdf

[32] Google Firebase documentation on client identifiers.
https:

//firebase.google.com/docs/projects/manage-installations#objective-c_3

96

https://openforge.gov.in/plugins/git/aarogyasetuos/ios-mobile-application?a=blob&hb=f5da99c25a9aa7f2b0a1f18ef841c14a83593a3d&h=703f652aea492aad622dfc645c8045ee0ff8fc8f&f=CoMap-19%2FAppDelegate.swift#L322
https://openforge.gov.in/plugins/git/aarogyasetuos/ios-mobile-application?a=blob&hb=f5da99c25a9aa7f2b0a1f18ef841c14a83593a3d&h=703f652aea492aad622dfc645c8045ee0ff8fc8f&f=CoMap-19%2FAppDelegate.swift#L322
https://openforge.gov.in/plugins/git/aarogyasetuos/ios-mobile-application?a=blob&hb=f5da99c25a9aa7f2b0a1f18ef841c14a83593a3d&h=703f652aea492aad622dfc645c8045ee0ff8fc8f&f=CoMap-19%2FAppDelegate.swift#L322
https://openforge.gov.in/plugins/git/aarogyasetuos/ios-mobile-application?a=blob&hb=f5da99c25a9aa7f2b0a1f18ef841c14a83593a3d&h=703f652aea492aad622dfc645c8045ee0ff8fc8f&f=CoMap-19%2FAppDelegate.swift#L322
https://docs.mitmproxy.org/stable/mitmproxytutorial-interceptrequests/
https://github.com/frida/frida-gum
https://frida.re/docs/modes/
https://frida.re/slides/osdc-2015-the-engineering-behind-the-reverse-engineering.pdf
https://frida.re/slides/osdc-2015-the-engineering-behind-the-reverse-engineering.pdf
https://frida.re/docs/frida-trace/
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man3/dlopen.3.html
https://cydia-app.com/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.5128&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.5128&rep=rep1&type=pdf
https://github.com/HSEIreland/covidtracker-documentation/blob/master/documentation/privacy/DPIN%20IE%20EFGS%20Updated%20FINAL%2015.10.2020.pdf
https://github.com/HSEIreland/covidtracker-documentation/blob/master/documentation/privacy/DPIN%20IE%20EFGS%20Updated%20FINAL%2015.10.2020.pdf
https://github.com/HSEIreland/covidtracker-documentation/blob/master/documentation/privacy/DPIN%20IE%20EFGS%20Updated%20FINAL%2015.10.2020.pdf
https://firebase.google.com/docs/projects/manage-installations#objective-c_3
https://firebase.google.com/docs/projects/manage-installations#objective-c_3

[33] Aarogya Setu iOS source code.
https:

//openforge.gov.in/plugins/git/aarogyasetuos/ios-mobile-application

[34] Aarogya Setu Privacy Policy.
https://web.swaraksha.gov.in/ncv19/privacy/

[35] Singapore’s Contact Tracing app: TraceTogether.
https://www.tracetogether.gov.sg/

[36] Apple calendar configuration developer documentation Caldav.
https://developer.apple.com/documentation/devicemanagement/caldav

[37] Apple Push Notification Service documentation (APNs).
https://developer.apple.com/library/archive/documentation/

NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html#

//apple_ref/doc/uid/TP40008194-CH8-SW1

[38] Apple’s documentation & information on advertising and privacy.
https://support.apple.com/en-us/HT205223

[39] A. Pultier, N. Harrand & P.B. Brandtzaeg, (2016), Privacy in mobile apps.
Available here.

[40] Apple documentation on the CLGeocode Obj-C class.
https://developer.apple.com/documentation/corelocation/clgeocoder?

language=objc

[41] Cuebiq
https://www.cuebiq.com/

[42] GDPR laws and regulations.
https://gdpr.eu/

[43] N. Seriot, (2010), iPhone Privacy
http://seriot.ch/resources/talks_papers/iPhonePrivacy.pdf

[44] M. Egele et. al. (2011), PiOS: Detecting Privacy Leaks in iOS Applications.
http://www.syssec-project.eu/m/page-media/3/egele-ndss11.pdf

[45] COVIDSafe - Australia’s COVID tracking app.
https://www.health.gov.au/resources/apps-and-tools/covidsafe-app

[46] K. Michael & R. Abbas, (2020) Behind COVID-19 Contact Trace Apps: The
Google-Apple partnership.
https://ieeexplore.ieee.org/abstract/document/9117186

97

https://openforge.gov.in/plugins/git/aarogyasetuos/ios-mobile-application
https://openforge.gov.in/plugins/git/aarogyasetuos/ios-mobile-application
https://web.swaraksha.gov.in/ncv19/privacy/
https://www.tracetogether.gov.sg/
https://developer.apple.com/documentation/devicemanagement/caldav
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html#//apple_ref/doc/uid/TP40008194-CH8-SW1
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html#//apple_ref/doc/uid/TP40008194-CH8-SW1
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html#//apple_ref/doc/uid/TP40008194-CH8-SW1
https://support.apple.com/en-us/HT205223
https://d1wqtxts1xzle7.cloudfront.net/42723605/Report_No_PRIVACY_MOBILE_SISTE_FEB.pdf?1455616931=&response-content-disposition=inline%3B+filename%3DPrivacy_in_Mobile_Apps_Measuring_Privacy.pdf&Expires=1618569638&Signature=TpWpWhoJR5MoyiV4Jcxr4wGd5MUQm4DPXAlnU7JnOzqfA4BZGlKBxGIk8WSfKCkhXB3CVgXzkPP7OhzEF92G6mRw035UpaYv6BL71JG7HJsUXE5-haLSIXx-c208CUtYFafyIImfZlW0cz1PZzpsOt6294eyCeVyDgloF3o80EaW9yw1ElvFbr5BNxCpOtigsD5moTTVkx48ra3sjSc5IFxuve-zvNTybEc5Uq07VXs9ZuKbxObKGSD-VuEDOO4aheAOFYwtb13r5W1brNNNlv4JTmYctnPpyvEtcyEgyNl~k5HmQQyX7bk2HM1F0I-S7T-GUc0adTaouUS8PEZNfg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://developer.apple.com/documentation/corelocation/clgeocoder?language=objc
https://developer.apple.com/documentation/corelocation/clgeocoder?language=objc
https://www.cuebiq.com/
https://gdpr.eu/
http://seriot.ch/resources/talks_papers/iPhonePrivacy.pdf
http://www.syssec-project.eu/m/page-media/3/egele-ndss11.pdf
https://www.health.gov.au/resources/apps-and-tools/covidsafe-app
https://ieeexplore.ieee.org/abstract/document/9117186

[47] H. Cho, D. Ippolito & Y. W. Yu, (2020), Contact Tracing Mobile apps for
COVID-19: Privacy considerations and related trade-offs.
https://arxiv.org/pdf/2003.11511.pdf

[48] T. Sharma & M. Bashir, (2020), Use of apps in the COVID-19 response and the
loss of privacy protection.
https://www.nature.com/articles/s41591-020-0928-y?mc_cid=79a90b1fb5&mc_

eid=547d4476efs

[49] D. Leith & S. Farrell, (2020), UseContact Tracing App Privacy: What Data Is
Shared By Europe’s GAEN Contact Tracing Apps
https://www.scss.tcd.ie/Doug.Leith/pubs/contact_tracing_app_traffic.pdf

[50] HSE Data Protection Impact Assessment (DPIA) of COVID Tracker Ireland.
https://github.com/HSEIreland/covidtracker-documentation/blob/master/

documentation/privacy/IE%20Data%20Protection%20Impact%20Assessment%

20for%20the%20COVID%20Tracker%20App%20EFGS%20update%20FINAL%2015.10.

2020.pdf

[51] P. Dehaye & J. Reardon (2020) Proximity Tracing in an Ecosystem of Surveillance
Capitalism
https://arxiv.org/pdf/2009.06077.pdf

[52] Find my iPhone service.
https://www.apple.com/icloud/find-my/

[53] frida-ios-dump - AloneMonkey’s script for dumping an iOS app file.
https://github.com/AloneMonkey/frida-ios-dump/blob/master/dump.py

[54] Google’s OAuth protocol.
https://developers.google.com/identity/protocols/oauth2

[55] Google’s reCaptcha service.
https://www.google.com/recaptcha/about/

[56] RFC4291 - IPv6 Link local addresses.
https://tools.ietf.org/html/rfc4291

[57] C. Tejada, J. Carrasco-Jimenez & R. Brena, (2013), Location Identification Using a
Magnetic-field-based FFT Signature.
https://www.researchgate.net/publication/242061764_Location_

Identification_Using_a_Magnetic-field-based_FFT_Signature

98

https://arxiv.org/pdf/2003.11511.pdf
https://www.nature.com/articles/s41591-020-0928-y?mc_cid=79a90b1fb5&mc_eid=547d4476efs
https://www.nature.com/articles/s41591-020-0928-y?mc_cid=79a90b1fb5&mc_eid=547d4476efs
https://www.scss.tcd.ie/Doug.Leith/pubs/contact_tracing_app_traffic.pdf
https://github.com/HSEIreland/covidtracker-documentation/blob/master/documentation/privacy/IE%20Data%20Protection%20Impact%20Assessment%20for%20the%20COVID%20Tracker%20App%20EFGS%20update%20FINAL%2015.10.2020.pdf
https://github.com/HSEIreland/covidtracker-documentation/blob/master/documentation/privacy/IE%20Data%20Protection%20Impact%20Assessment%20for%20the%20COVID%20Tracker%20App%20EFGS%20update%20FINAL%2015.10.2020.pdf
https://github.com/HSEIreland/covidtracker-documentation/blob/master/documentation/privacy/IE%20Data%20Protection%20Impact%20Assessment%20for%20the%20COVID%20Tracker%20App%20EFGS%20update%20FINAL%2015.10.2020.pdf
https://github.com/HSEIreland/covidtracker-documentation/blob/master/documentation/privacy/IE%20Data%20Protection%20Impact%20Assessment%20for%20the%20COVID%20Tracker%20App%20EFGS%20update%20FINAL%2015.10.2020.pdf
https://arxiv.org/pdf/2009.06077.pdf
https://www.apple.com/icloud/find-my/
https://github.com/AloneMonkey/frida-ios-dump/blob/master/dump.py
https://developers.google.com/identity/protocols/oauth2
https://www.google.com/recaptcha/about/
https://tools.ietf.org/html/rfc4291
https://www.researchgate.net/publication/242061764_Location_Identification_Using_a_Magnetic-field-based_FFT_Signature
https://www.researchgate.net/publication/242061764_Location_Identification_Using_a_Magnetic-field-based_FFT_Signature

[58] Business Insider article on Donald Trump’s attempted TikTok ban.
https://www.businessinsider.com/

donald-trump-tiktok-ban-us-china-explained-in-30-seconds-2020-8?r=US&

IR=T

[59] OneTrust.
https://www.onetrust.com/

[60] CookiePro article about the usage of geolocation service.
https://community.cookiepro.com/s/article/

UUID-fe9e37a5-1560-433e-abcb-642ce2073ad4

[61] mParticle website.
https://www.mparticle.com/

[62] mParticle information about parters.
https://www.mparticle.com/integrations/category/advertising

[63] Airbnb’s privacy policy.
https://www.airbnb.ie/help/article/2855/privacy-policy?locale=en&_set_

bev_on_new_domain=1617360138_Njk3YTAzYzA1MTdm

[64] Snapkit.
https://snapkit.com/

[65] AppsFlyer
https://www.appsflyer.com/

[66] Frida script for printing function arguments and return value.
https://codeshare.frida.re/@mrmacete/objc-method-observer/

[67] Blog post on decrypting log connections from TikTok on Android.
https://medium.com/@fs0c131y/tiktok-logs-logs-logs-e93e8162647a

[68] Business Insider article on Facebook data leak.
https://www.businessinsider.com/

stolen-data-of-533-million-facebook-users-leaked-online-2021-4?r=US&

IR=T

[69] Apple & Google’s Exposure Notification Service (ENS)
https://www.google.com/covid19/exposurenotifications/

[70] Article describing the mandatory nature of India’s COVID tracker app.
https://www.reuters.com/article/

us-health-coronavirus-india-app-idUSKBN22E07K

99

https://www.businessinsider.com/donald-trump-tiktok-ban-us-china-explained-in-30-seconds-2020-8?r=US&IR=T
https://www.businessinsider.com/donald-trump-tiktok-ban-us-china-explained-in-30-seconds-2020-8?r=US&IR=T
https://www.businessinsider.com/donald-trump-tiktok-ban-us-china-explained-in-30-seconds-2020-8?r=US&IR=T
https://www.onetrust.com/
https://community.cookiepro.com/s/article/UUID-fe9e37a5-1560-433e-abcb-642ce2073ad4
https://community.cookiepro.com/s/article/UUID-fe9e37a5-1560-433e-abcb-642ce2073ad4
https://www.mparticle.com/
https://www.mparticle.com/integrations/category/advertising
https://www.airbnb.ie/help/article/2855/privacy-policy?locale=en&_set_bev_on_new_domain=1617360138_Njk3YTAzYzA1MTdm
https://www.airbnb.ie/help/article/2855/privacy-policy?locale=en&_set_bev_on_new_domain=1617360138_Njk3YTAzYzA1MTdm
https://snapkit.com/
https://www.appsflyer.com/
https://codeshare.frida.re/@mrmacete/objc-method-observer/
https://medium.com/@fs0c131y/tiktok-logs-logs-logs-e93e8162647a
https://www.businessinsider.com/stolen-data-of-533-million-facebook-users-leaked-online-2021-4?r=US&IR=T
https://www.businessinsider.com/stolen-data-of-533-million-facebook-users-leaked-online-2021-4?r=US&IR=T
https://www.businessinsider.com/stolen-data-of-533-million-facebook-users-leaked-online-2021-4?r=US&IR=T
https://www.google.com/covid19/exposurenotifications/
https://www.reuters.com/article/us-health-coronavirus-india-app-idUSKBN22E07K
https://www.reuters.com/article/us-health-coronavirus-india-app-idUSKBN22E07K

[71] Bugsnag
https://www.bugsnag.com/

100

https://www.bugsnag.com/

Appendices

101

Appendix A - Decode a protobuf - decode_protobuf.py

1 from mitmproxy import http
2 import zlib
3 import subprocess
4 from codecs import encode , decode
5 import os
6 import json
7 import codecs
8
9 ##

10 # Run with:
11 # mitmdump -nr <an mitm flow > -s decode_protobuf.py
12 ##
13
14 class Decode:
15 def __init__(self):
16 print("- Initialise -")
17
18 def decode_pb(self , bites):
19 f = open(’dp’, ’wb’)
20 f.write(bites)
21 f.close()
22
23 try:
24 print("> Decoded protobuf")
25 os.system("cat dp")
26 except:
27 return "Failed"
28
29 def response(self , flow: http.HTTPFlow):
30 focus_url = "https ://fp.swaraksha.gov.in/api/v3/users/data/"
31
32 if flow.request.pretty_url == focus_url:
33 print("==")
34 try:
35 print("Attempt 1: Protobuf , Zlib decode")
36 pb = self.decode_pb(
37 zlib.decompress(
38 flow.request.raw_content ,
39 32 + zlib.MAX_WBITS ,)
40)
41 except:
42 print("Attempt 2: Try simple decode as utf8")
43 pb = self.decode_pb(flow.request.raw_content)
44 try:

102

45 pb = (flow.request.raw_content.decode(’utf -8’))
46 print("2: ", pb)
47 except:
48 print("Attempt 3: Bytes --> ascii")
49 pb = bytes(flow.request.raw_content)
50
51 for i in range(len(pb)):
52 print(chr(pb[i]), end="")
53 print("\n=======================================\n\n")
54
55 addons = [Decode ()]
56
57 def hexdump(src , length =16):
58 FILTER = ’’.join ([(len(repr(chr(x))) == 3) and chr(x) or ’.’
59 for x in range (256)])
60 lines = []
61 for c in range(0, len(src), length):
62 chars = src[c:c+length]
63 hex = ’ ’.join(["%02x" % ord(x) for x in chars])
64 printable = ’’.join(["%s" % ((ord(x) <= 127 and FILTER[ord(x)])
65 or ’.’) for x in chars])
66 lines.append("%04x %-*s %s\n" % (c, length*3, hex , printable)

)
67 return ’’.join(lines)

Appendix B - Observe class method

observeMethod.js

1 // SCRIPT adapted from the script found here: https :// codeshare.frida.
re/@mrmacete/objc -method -observer/

2 // - Adapted to target TTTrackerProxy which builds an encrypted request
for TikTok

3 // - Intercepting this method allows examination of parameters before
encryption.

4
5 const classN = "TTTrackerProxy";
6 const methodName = "actualSendTrack:trackerIDs:v3TrackIDs:URLString:

headerField:postParams:needEncrypt:policy:";
7
8 var ISA_MASK = ptr(’0x0000000ffffffff8 ’);
9 var ISA_MAGIC_MASK = ptr(’0x000003f000000001 ’);

10 var ISA_MAGIC_VALUE = ptr(’0x000001a000000001 ’);
11
12 const c = ObjC.classes[classN][‘- ${methodName }‘];
13 console.log(‘Intercepting: ${c}‘);

103

14
15 observeMethod(c.implementation , classN , methodName);
16
17 function observeMethod(impl , name , m) {
18 console.log(’Observing ’ + name + ’ ’ + m);
19 Interceptor.attach(impl , {
20 onEnter: function(a) {
21 this.log = [];
22 this.log.push(’(’ + a[0] + ’) ’ + name + ’ ’ + m);
23 if (m.indexOf(’:’) !== -1) {
24 var params = m.split(’:’);
25 params [0] = params [0]. split(’ ’)[1];
26 for (var i = 0; i < params.length - 1; i++) {
27 if (isObjC(a[2 + i])) {
28 const theObj = new ObjC.Object(a[2 + i]);
29 this.log.push(params[i] + ’: ’ + theObj.

toString () + ’ (’ + theObj.$className + ’)’)
;

30 } else {
31 this.log.push(params[i] + ’: ’ + a[2 + i].

toString ());
32 }
33 }
34 }
35 this.log.push(Thread.backtrace(this.context , Backtracer.

ACCURATE)
36 .map(DebugSymbol.fromAddress).join("\n"));
37 },
38 onLeave: function(r) {
39 if (isObjC(r)) {
40 this.log.push(’RET: ’ + new ObjC.Object(r).toString ());
41 } else {
42 this.log.push(’RET: ’ + r.toString ());
43 }
44
45 console.log(this.log.join(’\n’) + ’\n’);
46 }
47 });
48 }
49
50 function isObjC(p) {
51 var klass = getObjCClassPtr(p);
52 return !klass.isNull ();
53 }
54
55 function getObjCClassPtr(p) {
56 if (! isReadable(p)) {

104

57 return NULL;
58 }
59 var isa = p.readPointer ();
60 var classP = isa;
61 if (classP.and(ISA_MAGIC_MASK).equals(ISA_MAGIC_VALUE)) {
62 classP = isa.and(ISA_MASK);
63 }
64 if (isReadable(classP)) {
65 return classP;
66 }
67 return NULL;
68 }
69
70 function isReadable(p) {
71 try {
72 p.readU8 ();
73 return true;
74 } catch (e) {
75 return false;
76 }
77 }

Appendix C - Observe all methods of class

observeClass.js

1 // Script taken from https :// codeshare.frida.re/@mrmacete/objc -method -
observer/

2 // Used to view ALL methods of a specified class
3 // Allows examination of arguments and return values of every method in

the class.
4
5 var ISA_MASK = ptr(’0x0000000ffffffff8 ’);
6 var ISA_MAGIC_MASK = ptr(’0x000003f000000001 ’);
7 var ISA_MAGIC_VALUE = ptr(’0x000001a000000001 ’);
8
9 function observeSomething(pattern) {

10 var resolver = new ApiResolver(’objc’);
11 var things = resolver.enumerateMatchesSync(pattern);
12 things.forEach(function(thing) {
13 observeMethod(thing.address , ’’, thing.name);
14 });
15 }
16
17 function observeClass(name) {
18 var k = ObjC.classes[name];

105

19 if (!k) {
20 return;
21 }
22 k.$ownMethods.forEach(function(m) {
23 observeMethod(k[m]. implementation , name , m);
24 });
25 }
26
27 function observeMethod(impl , name , m) {
28 console.log(’Observing ’ + name + ’ ’ + m);
29 Interceptor.attach(impl , {
30 onEnter: function(a) {
31 this.log = [];
32 this.log.push(’(’ + a[0] + ’) ’ + name + ’ ’ + m);
33 if (m.indexOf(’:’) !== -1) {
34 var params = m.split(’:’);
35 params [0] = params [0]. split(’ ’)[1];
36 for (var i = 0; i < params.length - 1; i++) {
37 if (isObjC(a[2 + i])) {
38 const theObj = new ObjC.Object(a[2 + i]);
39 this.log.push(params[i] + ’: ’ + theObj.

toString () + ’ (’ + theObj.$className + ’)’)
;

40 this.log.push(‘Stink worth: ${(theObj.handle.
readUtf8String ())}‘);

41 } else {
42 this.log.push(params[i] + ’: ’ + a[2 + i].

toString ());
43 }
44 }
45 }
46
47 this.log.push(Thread.backtrace(this.context , Backtracer.

ACCURATE)
48 .map(DebugSymbol.fromAddress).join("\n"));
49 },
50
51 onLeave: function(r) {
52 if (isObjC(r)) {
53 this.log.push(’RET: ’ + new ObjC.Object(r).toString ());
54 console.log(‘LEAVE: ${r.toString ()}‘);
55 } else {
56 console.log(‘LEAVE: ${r}‘);
57 this.log.push(’RET: ’ + r.toString ());
58 }
59
60 console.log(this.log.join(’\n’) + ’\n’);

106

61 }
62 });
63 }
64
65 function isObjC(p) {
66 var klass = getObjCClassPtr(p);
67 return !klass.isNull ();
68 }
69
70 function getObjCClassPtr(p) {
71 if (! isReadable(p)) {
72 return NULL;
73 }
74 var isa = p.readPointer ();
75 var classP = isa;
76 if (classP.and(ISA_MAGIC_MASK).equals(ISA_MAGIC_VALUE)) {
77 classP = isa.and(ISA_MASK);
78 }
79 if (isReadable(classP)) {
80 return classP;
81 }
82 return NULL;
83 }
84
85 function isReadable(p) {
86 try {
87 p.readU8 ();
88 return true;
89 } catch (e) {
90 return false;
91 }
92 }
93
94 observeClass("AFSDKiAdClient"); // enter the class you want to monitor

here.

Appendix D - Deregistration connections for iCloud

DELETE https://pr-pod3-smp-device.apple.com/broker/v4/device/04...67

Request Headers:

X-apple-i-md-d: GH...6o2

X-apple-i-md: AAA..w==

POST https://gateway.icloud.com/ckdevice/api/client/pushUnregister

Request Headers:

107

X-apple-i-md-d: GH...6o2

X-apple-i-md: AAA..w==

Request Body:

54b...95a (uuid)

F4G...6H (serial number)

POST https://setup.icloud.com/setup/account/deregisterDevice

Request Headers:

X-apple-i-md-d: GH...6o2

X-apple-i-md: AAA..w==

Request Body:

<key>appleId</key>

<string>tkelly2@tcd.ie</string>

<key>backupDeviceUUID</key>

<string>D:e91f.....39a5</string>

<key>dsid</key>

<string>173....6</string>

<key>pushToken</key>

<string>403....A48</string>

<key>serialNumber</key>

<string>F4G....6H</string>

<key>udid</key>

<string>54b....95ba</string>

POST https://profile.gc.apple.com/WebObjects/GKProfileService.woa/wa/logoutUser

Request Headers:

X-apple-i-md-d: GH...6o2

X-apple-i-md: AAA..w==

POST https://buy.itunes.apple.com/WebObjects/MZFinance.woa/wa/logout

Request Headers:

X-apple-i-md-d: GH...6o2

X-apple-i-md: AAA..w==

Request Body:

54b5....95ba (uuid)

Appendix E - Request sent to /app_log endpoint

POST https://log-va.tiktokv.com/service/2/app_log/...

Request Parameters: {general-params}

108

Request Body:

header = {

access = WIFI;

aid = 1233;

...

cdid = "5FA...312";

channel = "App Store";

custom = {

"app_language" = en;

"app_region" = IE;

"build_number" = 190016;

"earphone_status" = off;

"filter_warn" = 0;

"is_kids_mode" = 0;

"user_mode" = 0;

"user_period" = 0;

};

"device_id" = 695...213;

idfa = "7F7...059";

"install_id" = 695...110;

"is_jailbroken" = 1;

"os_version" = "14.1";

package = "com.zhiliaoapp.musically";

"vendor_id" = "AB0...415";

};

"event_v3" = (

{

"ab_sdk_version" = "50042294,50053182,70100883,70105287,0,50017293";

datetime = "2021-04-15 12:05:26";

event = "ug_skadnet_conversion_value";

nt = 4;

params = {

"error_code" = 0;

"local_time_ms" = 1618484726425;

nt = 4;

"res_data" = {

"_AME_Header_RequestID" = 2021041511052601023410003623EC4711;

code = 0;

data = {

"conversion_value" = 47;

"first_activation_time" = 1618394913;

109

"launch_duration" = 25;

"session_launch" = 2;

"sum_duration" = 2437;

vv = 0;

};

message = ok;

};

"tea_event_index" = 105;

};

"session_id" = "19D0483F-177E-4348-8E53-DF05B56AC094";

},

{

"ab_sdk_version" = "50042294,50053182,70100883,70105287,0,50017293";

datetime = "2021-04-15 12:05:51";

event = "ug_skadnet_conversion_value";

nt = 4;

params = {

"error_code" = 0;

"local_time_ms" = 1618484751929;

nt = 4;

"res_data" = {

"_AME_Header_RequestID" = 2021041511055101023410602939FCBB95;

code = 0;

data = {

"conversion_value" = 47;

"first_activation_time" = 1618394913;

"launch_duration" = 25;

"session_launch" = 2;

"sum_duration" = 2462;

vv = 0;

};

message = ok;

};

"tea_event_index" = 106;

};

"session_id" = "19D0483F-177E-4348-8E53-DF05B56AC094";

}

);

110

	Introduction
	Background
	An overview of user privacy
	Related work
	Sensitive Data
	Threats to user privacy
	Security Overview

	Experimental Setup
	Device Configuration
	Jailbreaking
	Cydia Substrate
	SSL Killswitch 2
	Frida
	mitmproxy
	Hopper Disassembler

	Evaluation
	Apple
	Apple Identifiers & Sensitive Information
	iCloud
	Advertising services
	App Store (iTunes)
	Find my iPhone (FMIP)
	Idle connections
	Maximising Privacy
	Observations

	COVID Tracker Ireland
	Interactions with the app
	Registration
	General Usage
	Observations

	Aarogya Setu
	Interactions
	Google Firebase connections
	Aarogya Setu connections
	Observations

	Airbnb
	Registration
	Third Parties
	General Usage
	Observations

	TikTok
	Gaining entry
	Registration
	General usage
	Third Parties
	Observations

	Conclusion
	Future Work
	Conclusion

	Bibliography
	Appendices

